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Abstract The minimum-cost spanning tree game is a special class of cooperative
games defined on a graph with a set of vertices and a set of edges, where each
player owns a vertex. Solutions of the game represent ways to distribute the total
cost of a minimum-cost spanning tree among all the players. When the graph is
partitioned into clusters, the generalized minimum spanning tree problem is to
determine a minimum-cost tree including exactly one vertex from each cluster.
This paper introduces the generalized minimum spanning tree game and studies
some properties of this game. The paper also describes a constraint generation
algorithm to calculate a stable payoff distribution and presents computational
results obtained using the proposed algorithm.

Keywords Generalized minimum spanning tree game · cost allocation ·
cooperative games · the core · stability

1 Introduction

The minimum-cost spanning tree problem (MSTP) is a well-known problem in
network optimization, with a wide range of applications in communication, trans-
portation, and computer networks. The standard MSTP is stated as follows: Given
a weighted graph whose vertices might represent cities and whose edges serve as
possible communication links with edge weights representing the cost of building a
link or the length of the link, the aim is to select a set of communication links that
would connect all the vertices such that the tree has the minimum total weight
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(Horowitz and Sahni 1978). We refer the reader to the work of Kruskal (1956) and
Prim (1957) for further details and efficient algorithms to solve the problem.

The minimum-cost spanning tree game (MSTG) is defined on an undirected
graph G = (V,E) where V is the set of vertices and E is the set of edges. Each
player owns a vertex and the payoff for any group of players is defined as the
cost of a minimum-cost spanning tree of the subgraph corresponding to the group.
Minimum-cost spanning tree games arise in cost allocation problems in which a
joint enterprise can be represented as a tree that connects agents to a common
source (e.g. Claus, 1973; Bird, 1976). MSTGs are cost sharing games where players
need to be connected to a certain service supplier and form coalitions, (i.e., subsets
of users/vertices) to share the cost of this service. When the cost incurred to any
coalition is known, the question arises as how the total cost would be allocated
among the users.

A cost allocation problem has the following features: there is a setN = {1, . . . , n}
of users (e.g., residents, companies, divisions in an organization, etc.) who coop-
erate in the context of a joint venture (e.g., Internet cable network, emergency
systems, etc.). The problem is to allocate the cost of the joint venture among all
the users in a way that satisfies criteria such as fairness, stability, efficiency, etc.
Recently, cooperative game theory has been used to model various cost allocation
problems (see, for example, Frisk et al. 2010; Fiestras-Janeiro et al. 2011). Cooper-
ative game theory analyses the potential grouping of players to form coalitions. It
also provides mathematical tools for calculating stable cost allocations in the sense
that a stable share prevents the collapse of the grand coalition. We will later give
a brief introduction to cooperative game theory, and refer the interested readers
to the books of Chalkiadakis et al. (2011) and Maschler et al. (2013) for a more
detailed exposition.

Let F be the set of all 2n coalitions where n is the number of players. A
cooperative game in characteristic function form is represented by a pair (N ; c),
where and c : F → R is a characteristic function with c(R) being the cost incurred
for a given coalition R ⊆ N . If the set of feasible coalitions is a strict subcollection
of F such as when coalitions are the connected subgraphs of a communication
graph (Myerson 1977) or when a hierarchy exist on the set of players (Faigle and
Kern 1997), we refer the readers to Grabisch (2013) for some further results of
these games. For each subset R ⊆ N , let G(R) := (V (R), E(R)) be the subgraph
connecting all the vertices in the set R∪{0}. The value c(R) of a coalition R ⊆ N
is defined as the cost of a minimum-cost spanning tree on the subgraph G(R), and
the cost of the empty coalition is zero.

Among several solution concepts of cooperative game theory, the core is a set
of cost allocation where no group of players has an incentive to deviate. The core
consists of all allocation vectors x = {xj}j∈N such that (i)

∑
j∈N xj = c(N), and

(ii) x(R) :=
∑
j∈R xj ≤ c(R) for every coalition R ⊆ N . Vectors in the core are

natural candidates for stable cost allocations in the sense that no subset of users
has an incentive to leave the grand coalition. A game may have an empty core, but
even if not, generating solutions in the core may be computationally very difficult.
Granot and Huberman (1981) prove that the core of a minimum-cost spanning tree
game is non-empty. Furthermore, a point in the core can be calculated directly
from the minimum-cost spanning tree in the problem. Later, Faigle and Kern
(1997) show that, checking if a given payoff distribution is a member of the core
and computing the least core for the MSTG are NP-hard problems. This was
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done by transforming the separation problem: “Given the vector x ∈ Rn with
x(N) = c(N) decide whether there exists a coalition R such that x(R) ≥ c(R)”
into the exact cover by 3-Sets problem, which is NP-complete . We will provide
the formal definition of the core and the least core in Section 2.2.

The generalized minimum spanning tree problem (GMSTP) is an extension of
the MSTP and it was introduced by Myung et al. (1995). Given an undirected
graph whose vertices are partitioned into a number of subsets (clusters), the GM-
STP is to find a minimum-cost tree which includes exactly one vertex from each
cluster. Myung et al. (1995) show that the GMSTP is strongly NP-hard by using
a reduction from the vertex cover problem. The authors also present four inte-
ger linear programming formulations and a branch-and-bound algorithm to solve
instances of up to 100 vertices. Feremans et al. (2002) and Pop (2009) describe
twelve different formulations for GMSTP and study the relationships between the
polytopes of their linear relaxations.

This paper introduces the generalized minimum spanning tree game (GMSTG)
and proposes the computational methods for calculating its cost allocation. The
GMSTG is related to the GMSTP in the same way as the MSTG is related to the
MSTP. Our study of the GMSTG is motivated by the potential applications that
this game finds in practice, two examples are given below:

– Designing local area networks: In this application, the aim is to connect
a number of local networks via transmission links such as optical fibres as
might be the case in metropolitan area networks (Gerla and Frata 1988) or
regional area network (Prisco 1986). In this case we are seeking a minimum-
cost spanning tree which selects exactly one vertex from each local network.
Then, finding an optimal network design with the least cost is equivalent to
solving a GMSTP while calculating the shared cost among the local areas is
the GMSTG.

– Water-supply distribution: Consider the example shown in Fig. 1 in which
a company supplying water in a particular region wishes to establish distri-
bution hubs in different cities shown by A–G within the region. The hubs are
connected via edges shown in bold representing the water flow, each with a
fixed installation cost. There are several potential locations shown by vertices
labelled 1–18 on which to place distribution hubs, but only one hub will be
chosen in each city (player) depending on its power, capacity and position.

The contributions of this paper are: (i) to introduce GMSTG as a generalization
of the MSTG and study its properties, and (ii) to describe a constraint generation
algorithm to calculate stable payoffs. The rest of the paper is organized as follows.
Section 2 formally defines the GMSTG and discusses some properties of the game.
A solution algorithm based on constraint generation is described in Section 3.
Section 4 presents computational results obtained with the proposed algorithm.
Conclusions are stated in Section 5.

2 Generalized Minimum Spanning Tree Game

In this section, we first provide a formal definition of the GMSTG, following which
we define the core and the least core.



4 Phuoc Hoang Le et al.

Fig. 1 An example of a generalized water-supply network graph and a solution of the GMSTP
shown by bold lines

2.1 Definition

Let G = (V,E) represent an undirected network. The vertex set V = {1, . . . ,m}
is partitioned into n clusters Vk with k ∈ N = {1, . . . , n} and the source vertex
{0} /∈ Vk for all k ∈ N . The players in the GMSTG correspond to the n clusters
{V1, . . . Vn}, which is in contrast with other cooperative games (e.g., Granot and
Huberman 1981; Bergantinos and Gómez - Rúa 2015) where each vertex is a player.
All players are assumed to be connected to the source.

The cost of connecting vertices i and j is denoted as dij , where dij = 0 for
all i, j ∈ Vk and ∀k ∈ N (i.e., intra-cluster edges do not exist in the GMSTP)1.
If the cost of an edge is large enough, then we expect that this edge will not stay
in the graph. For a subgraph of some clusters (a coalition) S ⊆ N , consider the
subnetwork (V (S), E(S)) of the source {0} and other vertices in all clusters of S.
Notice that coalition S must contain all vertices in a cluster and the shared cost
c(S) of such a coalition S is defined by the cost of a GMST of graph (V (S), E(S)).

1 This paper supposes that intra-cluster edges do not exist and the players are different
clusters of vertices. However, if intra-cluster edges do exist and that the cost must be allocated
among the vertices of each cluster, it is possible to utilize the existing GMSTG model in a
two-stage cost allocation scheme. Initially, the GMSTG is solved in the first stage to find the
cost allocation to the clusters (e.g. cost allocation to the cities). In the second stage, the cost
of each cluster is shared among the vertices (e.g. cost allocation to the subareas in each city).
As the vertices in each cluster are connected, the cost of interconnecting these vertices is the
same as the cost of the minimum spanning tree within that cluster, which is always a constant
value no matter which vertex we choose in the cluster to form the GMST. Therefore, once the
cost of the cluster has been calculated from the GMSTG, that cost can be distributed among
the vertices by solving a MSTG on that cluster (with some scaling). The Bird rule (Bird 1976)
could be used to efficiently find the cost allocation in the second stage.
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2.2 The Core and Least Core of the GMSTG

In Section 2.3, we will show that the GMSTG has the super-additive property, i.e.
a grand coalition is always formed. The question is how to share this total cost
among all the players. One of the most popular solution concepts in cooperative
game theory is the core, which can be given in the following form:

Core(N, c) = {x ∈ Rn :
∑
i∈N

xi = c(N);
∑
i∈S

xi ≤ c(S), ∀S ⊂ N},

where c(S) is the value of the GMSTP on subgraph (V (S), E(S)).
In the water-supply distribution example shown in Fig. 1, we consider a cost

allocation vector x for seven different cities. For the cost allocation x to be in the
core, any group of players S ⊆ N must have no incentive to deviate to form a
coalition themselves. In other words, the cost allocated x(S) should be no larger
than the cost incurred c(S) by forming the coalition, i.e. x(S) ≤ c(S), ∀ S ⊆ N .
When this condition is violated, the coalition is not happy with the cost allocation
and the grand coalition is not stable.

The core, however, might be empty. If this happens, the condition of no sub-
coalition can gain anything by deviating can be relaxed. Assuming that a sub-
coalition will deviate from the grand coalition if the gain from the change is more
than the cost of deviation, one can define the ε-Core as follows:

ε-Core(N, c) = {x ∈ Rn :
∑
i∈N

xi = c(N);
∑
i∈S

xi ≤ c(S) + ε, ∀S ⊂ N}.

Let ε∗(G) = inf{ε > 0 : ε-Core of G is non-empty}. The least core of G is its
ε∗(G)-Core and ε∗(G) is called the value of the least core of G. The least core can
be found by solving the following linear programming problem

min
ε,x

ε

s.t. ε ≥ x(S)− c(S), ∀S ⊂ N,
x(N) = c(N).

(1)

One of the nice properties of the least core is non-emptiness and if the value
of the least core problem (1) is zero then the core of the game exists and coincides
with the least core.

For the MSTG, some heuristic methods have been proposed to calculate a cost
allocation in the core such as the Bird rule (Bird 1976), the obligation rule (Tijs
et al. 2006) and Folk solution (Bogomolnaia and Moulin 2010). The Bird rule of a
MSTG on the graph G is described as follows. Initially, one has to find a minimum-
cost spanning tree Γ (G) by using Kruskal’s or Prim’s algorithms. Then the Bird
allocation corresponding to Γ (G) assigns for each player (vertex) the edge cost
which connects that player with her immediate predecessor in Γ (G). However,
as we show in the example below, the Bird allocation cannot be applied to the
GMSTG to find a cost allocation in the core.

Example 1 Consider a water supply network game with the root vertex R = {0}
and 3 players (cities) N = {A,B,C}, where the connection costs are shown in Fig.
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2. Each player has one option for choosing the distribution hub, with the exception
of player A who can choose between vertices {1} or {2}. We assume that edges not
shown in the graph do not exits, i.e., with infinity cost. The characteristic function
for this game shown in Table 1.

Fig. 2 A water distribution network with a solution of the GMSTP shown by bold lines

Coalition S {∅} {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C}
c(S) 0 10 45 30 45 30 70 70

Table 1 The characteristic function of water-supply network games with 3 players

The following set of inequalities fully describe the core of the GMSTG:

xA ≤ 10, xB ≤ 45, xC ≤ 30,
xA + xB ≤ 45, xA + xC ≤ 30, xB + xC ≤ 70,
xA, xB , xC ≥ 0.

(2)

Hence the core of this GMSTG is defined by

Core(N,c):= {x ∈ R3|xA + xB + xC = 70 and inequalities (2) hold.}

We can quickly find a cost allocation such as x = (5, 40, 25) which lies in the
core. However, the solution x = (10, 40, 20) yielded by the Bird rule is not in the
core of the GMSTG, as it violates the constraint xA + xB ≤ 45 in the inequality
set (2).

One other important feature of the GMSTG is that, unlike the MSTG, its core
might be empty. As an example, if we modify the game above such that the cost
of the edge {2, 3} that connects player A and player B is changed from 35 to 25,
the core of the game becomes empty. This can be seen from the constraint set
xA + xB ≤ 35 , xC ≤ 30 and xA + xB + xC = 70, which does not have a solution.
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Hence, the Bird algorithm for finding a good cost allocation in the MSTG does
not apply to the GMSTG problem. Using the previous empty-core GMSTG in
example 1, a similar result can be shown for other rules such as the obligation rule
and Folk solution.

2.3 Properties of the GMSTG and its core

In this section, we present a number of properties of the GMSTG and its core.
The first one concerns super-additivity.

Lemma 1 GMSTG is a super-additive game, i.e., c(S1 ∪ S2) ≤ c(S1) + c(S2) for
S1, S2 ⊆ N and S1 ∩ S2 = {∅}.

Proof Let S1 and S2 be two disjoint subsets of clusters and let c(S1), c(S2), c(S1∪
S2) be the values of the solutions of the GMSTP defined on graphs (VS1

, ES1
),

(VS2
, ES2

) and (VS1∪S2
, ES1∪S2

) respectively. As we can always generate a span-
ning tree on (VS1∪S2

, ES1∪S2
) by combining the two spanning trees on two sub-

graphs (VS1
, ES1

) and (VS2
, ES2

) with a value equal to c(S1) + c(S2), we have
c(S1 ∪ S2) ≤ c(S1) + c(S2) by the definition of minimum-cost spanning tree. ut

Remark 1 Because the sum of the individual costs of the coalitions is no less than
the cost of a union of disjoint coalitions, the grand coalition will be formed for the
benefit of all players.

In the next part, we will define the optimal tree game (OTG) and show the
relationship between its core and the core of GMSTG.

For each set of vertices V ′ ⊂ V that contains at least one vertex Q′k from
each cluster Vk, ∀k ∈ M ⊆ N , we consider the subgraph G′ := (V ′, E(V ′)) of
G = (V,E). For each coalition of players S ⊆ M , let V ′(S) be the set of vertices
in the subgraph G′ belonging to the coalition S. The value c̃(S, V ′) is set as the
optimal cost the MSTP on the subgraph G′(S) := (V ′(S), E(V ′(S))). We then
define the GMSTG generated by {0} ∪ {V ′} and the cost function c̃(S, V ′) as the
GMST-subgame (V ′, c̃).

Assume we solve the GMSTP on G = (V,E) and let V ∗ := {Q∗1, Q∗2, . . . , Q∗n}
be the set of vertices appearing in an optimal tree (OT) solution. The GMST-
subgame (V ∗, c̃) is called as the optimal tree game (OTG) (V ∗, c̃) of graph G.
Let {xB} be the cost allocation generated by the ‘Bird rule’ on the optimal tree
game (Bird, 1976). If we reduce the graph G to contain only vertices in V ∗, the
GMSTG becomes the MSTG and the ‘Bird rule’ algorithm could be adapted to
find a stable cost allocation. In what follows, we show a relationship between the
cores of the OTG and the GMSTG.

Proposition 1 The core of GMSTG (N, c) is a subset of the core of the optimal
tree game (V ∗, c̃).

Proof Assume the GMSTG-core is non-empty, i.e., there is a cost allocation x =
{x1, . . . , xn} that satisfies all constraints in the core problem below:

x(S) ≤ c(S), ∀S ⊂ N,
x(N) = c(N).

(3)
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Consider the optimal tree game generated by {0} and {V ∗} as the solution of
the GMSTP on G = (V,E); it is obvious that the vector x also satisfies all the
constraints in core problem of the optimal tree game (V ∗, c̃). The definition c(S)
as the minimum-cost spanning tree in the graph G(S) = (V (S), E(V (S))) for an
arbitrary S ⊂ N leads to the following:

c(S) = min
{Q′

k}
n
k=1∈

∏n
k=1 Vk

c̃(S, {Q′k}nk=1) ≤ c̃(S, {Q∗k}nk=1).

For an arbitrary group of players S′ ⊂ N , c̃(S′, {Q∗k}nk=1) is the cost that a
coalition S′ has to pay in the optimal tree game of subgraph (S∗, E(S∗)). Hence,
x(S′) ≤ c(S′) ≤ c̃(S′, {Q∗k}nk=1) for all coalition S′ of the optimal tree game and
therefore the cost allocations {x1, . . . , xn} belongs to the core of the optimal tree
game (V ∗, c̃).

ut

The demonstration of the proper subset property for these two core sets is
shown in Example 1, where the Bird allocation xB = {10, 40, 20} is in the core of
the OTG (V ∗, c̃), but not in the core of GMSTG.

When defining the least core, the stability constraints in the definition of the
core are relaxed. An alternative approach is to relax the feasibility constraint. This
happens when an external party wishes to stabilize the game, by offering a subsidy
amount ∆ to the grand coalition if all players collaborate as a large group. More
formally, given a super-additive game (N, c) and ∆ ≥ 0, let G∆ = (N, c∆) be
cooperative game over the set of players N with the characteristic function given
by c∆(N) = c(N)−∆ and c∆(S) = c(S) for all S ⊂ N . Then, the core set of cost
allocation for the game G∆ is defined as follows:

Core(N, c∆) : x(S) ≤ c(S), ∀S ⊂ N,
x(N) = c∆(N).

(4)

In general, the characteristic function c is not a monotone function. Fig. 3
shows a subgraph of previous water-supply network in Fig. 1 where the solution of
the GMSTP defined on a coalition M ⊂ N is not a subtree of the solution of the
GMSTP defined on N . Moreover, c(M) ≥ c(N) might happen for such coalition
M ⊂ N .

For every coalition M ⊂ N , we define ∆M such that ∆M ≤ ΓM := c(N \
M) + c(M) − c(N) and ∆M ≥ ΛM := max {c(M)− c(N), 0} . From the GMST-
subgame (M, c) we define a corresponding game (M, c∆M ) in in a similar manner
as the previous part. The characteristic function of this game satisfies c∆M (M) =
c(M) −∆M ≤ c(M) − ΛM ≤ c(N) and c∆M (S) = c(S), ∀S ⊂ M . We can define
the core set of the game (M, c∆M ) of players in coalition M by the following model:

Core(M, c∆M ) : x(S) ≤ c∆M (S), ∀S ⊂M,

x(M) = c∆M (M).
(5)

After calculating the core of this subgame (M, c∆M ), for each of its cost alloca-
tion x∆M

M we could build a class {x}∆M

G of correspondent payoff distributions for
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Fig. 3 An example of a subnetwork of the players M including clusters A, B, C, E reduced
from the original graph shown in Fig. 1 and an optimal tree on this subgraph shown by the
bold lines

the GMSTG (N, c) by using the amount c(N)−c(M)+∆M ≥ 0 divided arbitrarily
to players in N \M . This process give us a set of GMSTG cost allocations denoted
by C-set(G,M). More formally,

C-set(G,M) :=
⋃

ΓM≥∆M≥ΛM

{x}∆M

G .

Remark 2 Notice that the core of GMSTG (N, c) is exactly the C-set(G,N).

Proposition 2 For coalitions S2 ⊂ S1 ⊂ N , we have the relationship of C-sets
as follows:

C-set(G,S1) ⊆ C-set(G,S2).

Proof From the C-set definition, we have C-set(G,S1) =
⋃
∆S1
≥ΛS1

{x}∆S1

G . For

each ∆S1
∈ [ΛS1

, ΓS1
], there exists a value ∆S2

such that ΓS2
≥ ∆S2

≥ ΛS2
, and

{x}∆S1

G ⊆ {x}∆S2

G .

To prove that, let x∗ be the solution in {x}∆S1

G , i.e., the subvector x∗S1
=

{x∗i }i∈S1
is in core of the game (S1, c

∆S1 ). Because S2 ⊂ S1, we can define ∆S2
:=

c(S2)−x∗(S2) = c(S2)−
∑
i∈S2

x∗i . For any coalition S that satisfies S ⊂ S2 ⊂ S1,

we have x∗(S) ≤ c(S) = c∆S2 (S) and x∗(S2) = c(S2)−∆S2
= c∆S2 (S2). Therefore,

subvector {x∗S2
} is also in the core of the game (S2, c

∆S2 ), i.e, x∗ is the solution

in {x}∆S2

G . ut

We now present another proposition showing the relationships between the
GMSTG core and its related C-sets as follows:

Proposition 3 The core of GMSTG (N, c) is the intersection of the C-set(G,M)
where M = N \ {i} for all clusters (players) {i} ∈ N , i.e.,

Core(N, c) =
n⋂
i=1

C-set(G,N \ {i}).
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Fig. 4 The relationship among the GMSTG core, the OTG core and the C-set

Proof If there exists a cost allocation {x} in the intersection of C-set(G,N \ {i})
with all i ∈ N , then {x} ∈ C-set(G,M) for arbitrary coalition M ⊂ N because of
Proposition 2. This payoff distribution will satisfy constraints x(M) = c∆M (M) ≤
c(M) for arbitrary subsets M ⊂ N . Therefore, x(S) ≤ c(S) for all S ⊂ N and
x(N) = c(N), i.e, x ∈ Core(N, c).

We now assume {x′} is a cost allocation belonging to the core of GMSTG
(N, c). For arbitrary set M ⊂ N , we will prove that x′ ∈ C-set(G,M). Because
x′(M) ≤ x′(N) = c(N) and x′(M) ≤ c(M), we set ∆′M := c(M) − x′(M) ≥
max {c(M)− c(N), 0}. For arbitrary S ⊂ M ⊂ M , x′(S) ≤ c(S) = c∆

′
M (S) and

x′(M) = c(M)−∆′M = c∆
′
M (M). Therefore x′ ∈ {x}∆

′
M

G ⊂ C-set(G,M).

ut

Remark 3 If there exists one coalitionM ⊂ N of players such that the C-set(G,M)
is empty, then the core of GMSTG (N, c) is also empty.

By solving the GMSTP, each general graph G = (V,E) can always generate
an optimal tree denoted as OT(G). We now consider the class Ω(N) of networks
G such that each network has n clusters and the OT(G) has p ≥ 2 edges incident
to the source vertex 0 (denote as the p branches property of the optimal tree).
Afterwards, p GMST-subgames (N i, c̃) are constructed for i = {1, . . . , p}. Note
that as c̃(S) = c(S) for all S ⊆ N i, the notation c is adopted instead of c̃. We
will prove that the core of the GMSTG (N, c) is a proper subset of the Cartesian
product of the core of these p GMST-subgames.

The condition that a network G = (V,E) with OT(G) has more than one edges
incident to the source vertex 0 is equivalent to the existence of an partition of N
clusters into subsets of clusters {N1, . . . , Np} such that c(N) =

∑p
i=1 c(N

i) (i.e.,
efficient coalition structure). An example of such a network partition is shown as
follows:

For each branch i ∈ {1, . . . , p} of the OT(G), let denote (N i, c) as the GMST-
subgame defined by the set of clusters {0} ∪ N i and cost function c(S,N i) =
c(S), ∀S ⊂ N i. The core of the GMST-subgame (N i, c) is presented in following
models:
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Fig. 5 A simple network in Ω(N) with OT(G) having p = 3 branches and an optimal tree
shown by bold lines

Core(N i, c) : xi(S) ≤ c(S), ∀S ⊂ N i,

xi(N i) = c(N i),
(6)

where ni is the number of clusters in N i and xi = {xij}ni
j=1.

Proposition 4 If {N1, . . . , Np} is an efficient coalition structure of the GMSTG
(N, c) with p ≥ 2, the core of the GMSTG (N, c) is a proper subset of the Cartesian
product of the cores of the GMST-subgame (N i, c) for i = 1, . . . , p, i.e.,

Core(N, c) ⊂
p∏
i=1

Core(N i, c) ⊂ C-set(G,N i).

Proof Let x∗ = {x∗1, . . . , x∗n} be a payoff vector in the core of GMSTG (N, c).
We will prove that x∗ =

∏p
i=1 x

∗i, where x∗i := {x∗j}j∈Ni is a cost payoff of the

GMST-subgame (N i, c). Because {N1, . . . , Np} is an efficient coalition structure
of the GMSTG (N, c), then c(N) =

∑p
i=1 c(N

i). Moreover, the definition of the
core has the condition x∗(N i) ≤ c(N i) for all i = 1, . . . , p and x∗(N) = c(N).
Hence, the inequality in sequence x∗(N) =

∑p
i=1 x

∗(N i) ≤
∑p
i=1 c(N

i) = c(N)
becomes equality, and x∗(N i) = c(N i) for all i = 1, . . . , p. In particular, x∗i

satisfies all constraints in the core formulation (6). Therefore, x∗ belongs to the
Cartesian product of the cores of the GMST-subgame (N i, c) for i = 1, . . . , p.
To show that the inclusion is strict, we provide an example in Section 4.1, where
Core(N, c) 6=

∏p
i=1 Core(N i, c).

Let y is a payoff vector in
∏p
i=1 Core(N i, c). For any i ∈ {1, . . . , p}, we have

y(S) ≤ c(S), ∀S ⊂ N i and y(N i) = c(N i). Because of the efficient coalition struc-
ture property,

∑p
i=1 y(N i) =

∑p
i=1 c(N

i) = c(N). Combined with the definition
of C-set, y is also a payoff vector in C-set(G,N i). ut

Remark 4 If a network G has an OT(G) such that there exists i ∈ {1, . . . , p}
where Core(N i, c) = ∅, then the core of the GMSTG (N, c) is empty. This prop-
erty provides an effective way to check the emptiness of the core for large-sized
GMSTGs.
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3 Computational Methods for Finding the Core and the Least Core

The problem of finding a feasible cost allocation in the least core is difficult be-
cause its mathematical programming formulation has 2n constraints, which would
necessitate the solution of 2n GMSTPs just for the purpose of obtaining the in-
put of the resulting optimization problem. Therefore, brute-force techniques that
attempt to solve 2n GMSTPs and then solve an LP with 2n constraints would be
impractical to solve GMSTG instances when the number of clusters is n ≥ 8. To
overcome this difficulty, we now present a constraint generation algorithm to solve
the GMSTG, and start by describing a formulation of the GMSTP that is used
within the algorithm.

3.1 A multi-commodity GMSTP Formulation

Among the four existing GMSTP formulations presented by Myung et al. (1995),
four formulations by Feremans et al. (2002) and four others in Pop (2009), we con-
sider a multi-commodity flow formulation defined on a directed graph D = (V,A)
of the first paper. The motivation behind the choice of this particular model is its
compact form (with a polynomial number of constraints) compared to other mod-
els (with an exponential number of constraints). Moreover, the formulation yields
the best linear relaxation among others because of its polytope structure. There-
fore it arises as a natural candidate for the construction of the exact algorithm for
the separation problem in Section 3.2.

This model has a total supply
∑
i∈N yi at a source {0} and individual demands

yi at each sink vertex {i} ∈ V \{0}. As variables yi are defined on vertices of V , we
denote the total demands

∑
i∈Vk

yi of vertices in a cluster Vk by y(Vk). A binary
variable wij is defined which equals 1 if and only if vertices i and j are connected,
and 0 otherwise. Continuous variables fkij are used as the amount of flow on arc
(i, j) travelling from the source {0} to the cluster Vk, for all k ∈ N .

This multi-commodity network flow formulation has a polynomial number of
constraints and is shown in the following:

P1 : min
wij ,yi,f

k
ij

∑
(i,j)∈A

cijwij (7a)

s.t.
∑
i∈Vk

yi = 1, ∀k ∈ N ∪ {0}, (7b)

∑
i∈Vk

m∑
j=1

wji ≤ 1, ∀k ∈ N, (7c)

m∑
j=1

fkij −
m∑
j=1

fkji =


1, i = {0},

−yi, ∀i ∈ Vk,
0, otherwise

 , ∀k ∈ N, (7d)

0 ≤ fkij ≤ wij , ∀(i, j) ∈ A,∀k ∈ N, (7e)

yi, wij ∈ {0, 1}, ∀i, j ∈ V. (7f)
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The first set of constraints (7b) guarantees that only one vertex is chosen from
each cluster Vk. The set of constraints in (7c) allows for at most one incoming
arc to each cluster. The set of constraints (7d) ensures flow conservation at all
intermediate vertices {i} ∈ V . The final set of constraints in (7e) models the
relationship between the design and the flow variables.

3.2 Constraint Generation Algorithm

We now describe a constraint generation algorithm to solve the (least) core prob-
lem. The motivation for using this technique is to resolve two technical issues: (a)
the LP formulation for solving the least core has an exponentially large number of
constraints and (b) the input of this LP requires solving 2n GMSTPs. The main
idea behind this algorithm is to solve problem (1) only with a limited subset of
constraints E0 ⊂ F at the beginning rather than solving the whole problem with
all |F | = 2n constraints included and later add only some necessary constraints
x(S) ≤ c(S) + ε into the system. At each step t, the algorithm initially solves the
following restricted problem:

LPr
t : min

εt,xi

εt

s.t. εt ≥ x(S)− c(S), ∀S ∈ Et
x(N) = c(N).

(8)

After solving problem (8), we obtain a new solution xt = (xt1, . . . , x
t
n) and the

value εt of LPr
t. In the separation step, we identify the most violated constraint in

least core problem (1) by solving the following optimization problem with a fixed
vector xt:

P2 : min
S⊆N ;S 6=∅

c(S)− xt(S). (9)

A coalition S is described by the binary n-vector s = {sk}k∈N , where sk ∈
{0, 1} depends on whether the player {k} is a member of the coalition S. Applying
the multi-commodity flow formulation P1 of c(S) to problem (9), the separation
problem can be written in the form of a MILP with binary variables sk, continuous
variables fkij and binary variables wij , yi as shown in the following:

P3 : min
fk
ij ,wij ,yi,sk

∑
(i,j)∈A

cijwij −
∑
k∈N

skx
t
k

s.t.
∑
i∈Vk

yi = sk, ∀k ∈ N ∪ {0},

∑
i∈Vk

m∑
j=1

wji ≤ sk, ∀k ∈ N,

m∑
j=1

fkij −
m∑
j=1

fkji =


sk, i = {0},
−yi, ∀i ∈ Vk,

0, otherwise

 , ∀k ∈ N,

0 ≤ fkij ≤ wij , ∀(i, j) ∈ A,∀k ∈ N,
yi, wij ∈ {0, 1}, ∀i, j ∈ V,

sk ∈ {0, 1}, ∀k ∈ N.

(10)
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Compared to P1, formulation P3 has a new set of variables s which changes
both the objective function and most of the constraints. Hence, the new formula-
tion becomes more difficult to solve.

After the separation step, if the optimality of the problem (1) is not reached,
the solution s of P3 is used to generate a new constraint. In particular, suppose
P3 has an optimal solution st, then the coalition St = {stj} is the one that receives
the least negative excess. A new constraint in the form ε ≥ x(St) − c(St) is then
added to the relaxed problem (8), which is resolved to produce a new set xt+1 of
variables, and the algorithm continues in this manner.

A pseudo-code of the constraint generation algorithm for calculating the GM-
STG least core is given in Algorithm 1.

Algorithm 1 Constraint Generation Algorithm

Initialize: maxiter = 104; δ = 10−6; iteration t = 1;
Constraint set E1 = E0 ⊂ F ;

repeat
Compute solution xt and value εt of LPr

t;
Find St in F such that:

St = argminS{c(S)− xt(S)};
ε(t) = xt(St)− c(St);
ε(t) = εt;
if |ε(t)− ε(t)| ≤ δ then

stop;
end if
Et = Et ∪ {St};
t := t+ 1;

until t = maxiter.

To solve problem (9), we use CPLEX 12.5.0 with Matlab interface to obtain
the optimal set St. This approach is useful if the process of finding the coalition
St that minimizes (c(S)− xt(S)) over F is fast enough. In fact, this is one of the
reason why the multi-commodity flow model P1 is used as a basis for formulating
the separation problem.

We also have some inequalities in step t as following:

ε(t) := εt ≤ val(LP (1)) ≤ ε(t) := xt(St)− c(St),

where val(LP (1)) is the optimal value of the corresponding least core linear pro-
gram. For a small enough δ, this procedure terminates when |xt(St)−c(St)−εt| ≤
δ.

3.3 Other approaches for cost sharing

In cooperative game theory, there are a few alternative mathematical formulations
for calculating stable solutions. Sometimes, an optimal solution of the least core
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problem is such that some players are disadvantaged. This may happen, for exam-
ple, when there are large differences between the shares of pairs of players. One
way to avoid such a situation is called an equal profit method (Frisk et al. 2010),
which is used to minimise the differences between the ratios of cost share over
individual cost for every pair of players. Therefore we consider a model to find a
stable cost allocation, such that the maximum difference in pairwise relative costs
is minimised. This model will take as input an optimal solution ε∗ of the least core
problem and is presented below:

P̂(ε∗) : min
x,f

f (11a)

s.t. f ≥ xi
c({i}) −

xj
c({j}) , ∀i, j ∈ N, (11b)∑

i∈S
xi ≤ c(S) + ε∗, ∀S ⊂ N, (11c)

∑
i∈N

xi = c(N), (11d)

xi ≥ 0, ∀i ∈ N. (11e)

The new model P̂(ε∗) is an LP, and could be solved by adapting the CGA
described earlier for a fixed ε∗. Because of the definition of the least core ε∗, there
always exits a cost allocation x∗ which satisfies constraints (11c)– (11e). Therefore,
the feasible region of problem (11) is non-empty. The difference of the new CGA
algorithm is in the relaxation step, where we add n2 constraints (11b) into the LP

formulation at each step t of L̂P
r

t(ε∗), given below:

L̂P
r

t(ε∗) : min
x,ft

ft

s.t. ft ≥ xi
c({i}) −

xj
c({j}) , ∀i, j ∈ N,∑

i∈S
xi ≤ c(S) + ε∗, ∀S ∈ Et∑

i∈N
xi = c(N),

xi ≥ 0, ∀i ∈ N.

(12)

The outcome of the algorithm will generate new payoff vector x∗′.

In the next section, we provide some computational results on the algorithm
and formulation described above and present some comparative results. An illus-
trative example of the equal profit model will also be shown in Section 4.1.

4 Numerical Results

This section first presents results obtained with the constraint generation algo-
rithm on a small-scale problem instance, and extends the results to a set of larger
size instances. Our CGA algorithm was implemented in MATLAB and run on an
Intel-core i5 PC with 2.6 GHz CPU and 4GB RAM.
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4.1 An illustrative example

Example 2 (Internet network)

This example is motivated by an application in telecommunication networks,
and concerns an internet provider located at vertex 0 wishing to establish its hubs
(or gateways) at four different locations displayed as K,L,M and N , by setting up
one hub in each city. Each city k will have some possible locations to set up its hub
as shown in the network Fig 6. The internet provider can connect the potential
hubs using optical fibres, where the costs between every pair of vertices are as
shown in Table 2. For edges that do not exist in the graph, the corresponding cost
in this table is shown as “—”.

Fig. 6 An internet-cable network graph and the solution of GMSTP shown by bold lines

Vertices 0 1 2 3 4 5 6 7 8

0 0 89 — 514 114 — 385 — 315

1 89 0 0 — — 296 — 40 —

2 — 0 0 — 47 — — 358 347

3 514 — — 0 — 326 457 80 44

4 114 — 47 — 0 0 — 306 —

5 — 296 — 326 0 0 252 331 —

6 385 — — 457 — 252 0 0 0

7 — 40 358 80 306 331 0 0 0

8 315 — 347 44 — — 0 0 0

Table 2 The cost matrix for the internet-cable network in Example 2
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A coalition S of some players is the collaboration of a group of cities to minimize
the network payments to the internet provider. The characteristic function of this
game is defined such that c(S) of a coalition S is the total cost of the minimum-
cost spanning tree in this subgraph S∪{0}. Solving the GMSTP for each coalition
S, we obtain the characteristic function shown in Table 3:

Coalition S c(S) Coalition S c(S)

∅ 0 {L,M} 628

{K} 89 {L,N} 359

{L} 514 {M,N} 420

{M} 114 {K,L,M} 675

{N} 315 {K,L,N} 209

{K,L} 603 {K,N,M} 243

{K,M} 161 {L,N,M} 473

{K,N} 129 {K,L,N,M} 323

Table 3 The characteristic function of an Internet cable network games with four players

The least core problem is presented as follows:

P4 : min
x,ε

ε

s.t. xK + xL + xM + xN = 323,
xK ≤ 89 + ε, xL ≤ 514 + ε, xN ≤ 315 + ε, xM ≤ 114 + ε,
xK + xL ≤ 603 + ε, xK + xN ≤ 129 + ε, xK + xM ≤ 161 + ε,
xL + xN ≤ 359 + ε, xL + xM ≤ 628 + ε, xM + xN ≤ 420 + ε,
xK + xN + xM ≤ 243 + ε, xK + xL + xM ≤ 675 + ε,
xK + xL + xN ≤ 209 + ε, xL + xM + xN ≤ 473 + ε,
xK , xL, xM , xN ≥ 0.

(13)

In this example, the internet provider faces the GMSTP and GMSTG. Solving
the GMSTP, the minimum-cost spanning tree is generated by vertices ({0},K :
{1}, L : {3},M : {4}, N : {7}) as in Fig. 6. Using the previous CGA to find the core
of the GMSTG, one has ε∗ = 0 (i.e., the core is non-empty) with the corresponding
payoff vector (0, 209, 114, 0). This means there is a stable cost allocation x∗ = (K :
0, L : 209,M : 114, N : 0) such that no city prefers to break the grand coalition.
However, this cost allocation benefits players K and N as they have no share in
the cost allocation. Using the equal profit method, we can calculate with another
cost allocation x∗′ = (K : 20.26, L : 117.02,M : 114, N : 71.72) in the GMSTG
core. This cost allocation is better with respect to relative costs of the players
being proportionate to the individual cost.

Using the Bird rule, we can find a payoff vector (K : 89, L : 80,M : 114, N :
40), which is not in the GMSTG core due to xK + xM > 161. However, as the
OT(G) has 2 branches in Fig. 2, we could check that the payoff vector belongs
to Core({M}, c)×Core({K,N,L}, c). Hence, we have the strict inclusion in the
Proposition 4.
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4.2 Results on larger instances

In this section, we present some computational results of the CGA to solve the
GMSTG on randomly generated instances and GTSPLIB instances. The numbers
of vertices for randomly generated instances range from 51 to 111 and the numbers
of clusters range between 5 and 11. The inter-cluster edge costs are drawn from
an uniform distribution of the range [1, 1000] in a similar manner as in Golden et
al. (2005).

Table 4 shows the results of CGA where column m is the total number of
vertices in the graph and column n is the number of clusters. For each choice of
(m,n) we generate 20 random instances, and each row of the table shows statistics
averaged over 20 instances. In particular, #Iter is the number of iterations of the
separation, Ave.time per.Iter is the average time (in seconds) per step and CGA
time is the total time (in seconds) for solving the least core problem.

The total computation time for finding the least core is broken down into
the time to solve the LP relaxation problems (column 5) and that to solve the
separation step of CGA (column 6). Columns 5 and 6 show that the bottleneck is
the separation step. The table also provides some comparisons between the CGA
(CGA time) and a brute-force approach (BF time) for solving least core problem.
For each problem configuration, column 9 shows the percentage of test instances
where the least core value is greater than zero, i.e., when the core is empty. The
last column of the table shows the average values of the normalized least core value
ε̄ among all 20 random instances generated for each set of {m,n}. This value ε̄ is
defined as the ratio of the least core value ε∗ to the cost of the grand coalition.

Figure 7 shows the convergence of an experiment for a randomly generated
instance with 101 vertices and 10 clusters for the least core problem using the
constraint generation method, where the blue and red lines correspond to upper
and lower bounds, respectively.

Fig. 7 Convergence of lower and upper bounds in the CGA for an instance with m=101 and
n=10

From Table 4 and Fig. 7, the following observations can be made:
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m n #Iter Ave.time LP Separation CGA BF %Empty ε̄

per.Iter time time time time core

51 5 6.25 3.97 0.03 21.70 24.83 54 10 0.045

7 10.3 4.92 0.05 45.15 50.62 228 25 0.0088

71 5 5.07 15.27 0.03 72.24 77.43 101 20 0.022

7 9.68 19.40 0.02 159.60 187.83 436 5 0.0038

91 5 5.53 35.72 0.05 163.97 197.55 217 0 0

7 10.55 41.76 0.07 403.72 440.57 1616 15 0.0075

61 7 9.58 9.39 0.04 80.47 89.97 1116 15 0.0019

9 15.25 13.09 0.12 163.83 199.63 6100 30 0.0079

81 7 10.24 20.95 0.05 181.32 214.51 1434 20 0.0061

9 15.75 29.46 0.17 431.25 463.92 6178 15 0.0074

101 7 9.58 58.57 0.04 513.87 561.06 1998 10 0.0045

9 13.91 125.03 0.22 1563.84 1739.19 10707 10 0.0045

71 9 14.4 28.82 0.21 419.52 415.06 5395 45 0.0225

11 22.20 30.31 0.25 774.36 672.84 25840 35 0.0086

91 9 16.40 47.73 0.19 734.47 782.80 14255 10 0.006

11 14.40 106.88 0.09 1385.38 1539.20 22047 30 0.0082

111 9 18.25 98.73 0.28 1651.14 1801.90 34736 20 0.0055

11 24.60 197.34 0.29 4478.99 4854.60 49038 35 0.0138

Table 4 Computational time and the number of iterations involved in the Constraint Gener-
ation Algorithm

– As we increase the number of vertices but keep the number of clusters fixed,
the average time for each iteration (with the main part of the separation step)
increases as we would expect.

– When the number of clusters increases, but total number of vertices remains
constant, the total number of iterations for the CGA increases.

– The number of iterations needed in CGA is significantly less than the total
number 2n of constraints required to solve problem (1).

In what follows, we present additional results to test the effect of the network
density on the performance of the algorithm. The results are shown in Table 5
where the first two columns are the number of clusters (players) and number of
vertices. For these experiments, we consider 10 instances for each tuple of (m,n, δ)
where δ is the density of the network. Since we have four choices of δ, resulting in
the generation of 40 random instances for each combination (m,n). Here, a density
of δ = 0.25 means the probability of having an inter-cluster edge between any two
vertices of different clusters is 25% while a density of δ = 1 means the network is
fully connected. For intra-cluster edges which is not included in the graph, we set
the corresponding variables in the formulation to zero.

The computational results indicate that when we fix the instance size but
increase the density, the total time for CGA increases significantly. Moreover, the
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m n δ #Iter Ave.time Separation CGA BF %Empty ε̄

per.Iter time time time core

0.25 1.1 9.44 2.73 10.38 62.17 0 0

51 5 0.5 1.8 7.46 5.48 13.44 42.32 0 0

0.75 2.4 7.78 10.78 18.68 81.75 0 0

1 4.2 5.08 19.15 21.34 58.27 10 0.0023

0.25 1.7 7.36 3.72 12.32 125.79.3 0 0

51 7 0.5 2.5 6.11 7.16 15.28 131.65 0 0

0.75 4.3 5.96 17.95 25.64 178.30 0 0

1 8.7 6.68 51.17 58.15 341.62 30 0.0146

0.25 1.0 26.29 5.24 26.29 87.53 0 0

71 5 0.5 1.7 19.0 10.61 32.3 121.65 0 0

0.75 3.3 15.76 29.81 52.01 88.16 0 0

1 5.4 20.86 88.32 112.67 171.49 30 0.0342

0.25 1.2 19.95 5.21 23.84 453.12 0 0

71 7 0.5 3.9 11.57 25.39 45.14 491.63 0 0

0.75 5.0 15.6 53.16 78.03 478.1 10 0.0031

1 8.3 17.80 126.61 147.76 369.20 10 0.0076

0.25 1.2 33.05 8.38 39.67 119.82 0 0

91 5 0.5 2.0 26.5 17.69 53.02 81.93 0 0

0.75 3.1 25.16 45.95 78.01 103.19 0 0

1 4.4 36.11 103.38 158.9 184.73 0 0

0.25 1.2 60.65 12.07 72.78 513.63 0 0

91 7 0.5 2.4 38.02 36.82 91.24 561.16 0 0

0.75 7.6 35.69 210.34 271.27 631.35 10 0.0022

1 7.9 50.37 309.89 397.92 1826.79 20 0.0149

Table 5 Computation time of the least core with instances of different density.

core is likely to be non-empty when the edge cost matrix is less dense. The reason
might be that there is fewer valid constraints in the core formulation of problem
(1). For problem instances with the same number of players and the density, if the
network graph has more vertices then the calculation time for separation problem
increases, although the number of iterations in CGA does not change considerably.

For finding the least core using CGA, columns 4–6 show the computational
statistics such as the average number of iterations, average time for each iteration
and total time for the CGA. Column 7 presents the time required by the brute-
force method to solve the least core problem. Comparing columns 6 and 7, one
can see the computational advantages of CGA.

To see the algorithm’s performance on more realistic instances, we performed
tests on some GTSPLIB instances (Zverovich 2002) with the number of vertices
14 ≤ m ≤ 70 and the number of clusters 3 ≤ n ≤ 14. These instances are
derived from TSPLIB instances where the vertex set has already been partitioned.
However, they contain no source vertex, which is needed to model the GMSTG.
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For this reason, we choose the last vertex of the last non-singleton cluster to be the
source vertex so that the total number of clusters in the corresponding GMSTP
instance is retained. For these instances, we also calculate the total cost of the
grand coalition c(N) to compute the normalized least core values. The results are
presented in Table 6.

Problem m n #Iter Separation CGA BF c(N) ε̄

name time time time

3burma14 14 3 1 0.06 0.31 0.45 9.2 0

4ulysses16 16 4 3 0.20 0.45 0.75 25.49 0

4gr17 17 4 2 0.21 0.51 0.84 736 0

5gr21 21 5 6 0.68 0.87 1.25 1160 0

5ulysses22 22 5 4 0.81 1.09 2.69 33.76 0

5gr24 24 5 4 1.20 1.61 2.38 259 0

6fri26 26 6 10 4.46 5.3 6.29 388 0

10att48 48 10 63 316.64 325.42 554.43 12725 0

11eil51 51 11 89 750.44 761.24 1240.7 134.9 0

11berlin52 52 11 80 717.96 730.21 1891.4 2938.4 0.00045

14st70 70 14 136 6210.23 6245.9 36713 243.1 0

Table 6 Computation time of the least core with instances of different density.

The results presented in Table 6 indicate that when the number of vertices is
less than 71, the computational time of CGA speeds up as the number of players
increases to 14. Indeed, the performance of the algorithm on GMSTG least core
problem depends on both number of vertices and number of clusters. Combining all
numerical results, it can be clearly seen that the CGA outperforms the brute-force
method in terms of the computational time.

The only case of “11berlin52”, where the core is empty, constitutes less than
10% of all the instances in Table 6. This result parallels those shown in Table
4 and 5, in which the %Empty core column shows that the core is empty in a
relatively small percentage of all cases. Another general observation is that in case
of empty-core instances, the least core value is less than 5% of the cost of the grand
coalition. The computational results presented in Table 4−−6 collectively suggest
a high probability of the existence of the core in GMSTGs, which is related to the
theoretical property of the MSTG in which the core is always non-empty.

5 Conclusion and Future Work

In this paper, we have introduced a new class of cooperative games, namely the
Generalized Minimum Spanning Tree Game, and proposed a constraint generation
method to solve the least core problem. We have provided an example showing
an empty core for the GMSTG. Numerical results have shown that randomly
generated instances defined on complete graphs with up to 111 vertices and 11
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clusters can be solved to optimality using the proposed method. We also tested
some GTSPLIB instances with up to 70 vertices and with up to 14 clusters and
observed the clear advantage of using the constraint generation algorithm. By
introducing the new generalized minimum spanning tree game, its applications and
an algorithm for calculating a stable cost share, we hope the new game will help
to promote further practical usage of cooperative game theory in cost allocation
problems.
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