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Abstract The Löwner approach, based on the factorization of a special-structure
matrix derived from data generated by a dynamical system, has been applied suc-
cessfully to realization theory, generalized interpolation, and model reduction. We
examine some connections between such approach and that based on bilinear- and
quadratic differential forms arising in the behavioral framework.
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1 Introduction

The Löwner framework was initiated in [17, 18] in the context of tangential interpo-
lation and partial realization problems (see also [1, 4]). Its relevance for the problem
of modelling from frequency-response measurements and for model order reduction
has been reported in a series of publications (see [2, 3]), resulting also in important
applications in the (reduced-order) modelling of physical systems from data (see
[15, 16]). Time-series modelling from a behavioral perspective has been introduced
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in [30, 31], specialized to the vector-exponential case in [32], and applied to metric
interpolation problems in [13, 14, 27].

The purpose of this paper is to illustrate some connections between these two
approaches. The relation between rational interpolation and partial realization prob-
lems and the behavioral framework for data modelling is well known, see [7]; we
will concentrate here on the analogies and insights coming from a more recently
introduced approach (see [21, 25]) that while essentially behavioral (i.e. trajectory-
based) also uses Gramian-based ideas to derive models from data. An important
tool in such approach is the calculus of bilinear- and quadratic differential forms
(B/QDFs in the following), introduced in [33] and applied successfully in many ar-
eas of systems and control (see [22, 28]). In this paper we show that several results
derived in the Löwner approach can be formulated also in terms of the two-variable
polynomial matrix representations of B/QDFs derived from the system parameters.
Of particular relevance is that the factorization of the Löwner matrix- an important
step of the Löwner approach in obtaining state models from data- can be given a
trajectory-based interpretation based on B/QDFs.

The paper is organized as follows. In section 2 we illustrate the essential con-
cepts of the Löwner approach, of bilinear- and quadratic differential forms, and of
behavioral systems theory. In section 3 we show how the Löwner matrix and some
of its properties can be formulated in the polynomial language of the representations
of B/QDFs. In section 4 we show how the computations of state equations based on
Löwner matrix factorizations have a straightforward interpretation in terms of bi-
linear differential forms. Finally, section 5 contains an exposition of directions of
current and future research.

Notation

The space of n dimensional real (complex) vectors is denoted by Rn (respectively
Cn), and that of m× n real matrices by Rm×n. R•×m denotes the space of real ma-
trices with m columns and an unspecified finite number of rows. Given matrices
A,B ∈ R•×m, col(A,B) denotes the matrix obtained by stacking A over B.

The ring of polynomials with real coefficients in the indeterminate ξ is denoted
by R[ξ ]; the ring of two-variable polynomials with real coefficients in the indeter-
minates ζ and η is denoted by R[ζ ,η ]. Rr×q[ξ ] denotes the set of all r×q matrices
with entries in ξ , and Rn×m[ζ ,η ] that of n×m polynomial matrices in ζ and η . The
set of rational m×n matrices is denoted by Rm×n(ξ ).

The set of infinitely differentiable functions from R to Rq is denoted by C∞(R,Rq).
D(R,Rq) is the subset of C∞(R,Rq) consisting of compact support functions. Given
λ ∈ C, we denote by eλ · the exponential function whose value at t is eλ t .
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2 Background material

We restrict ourselves to the minimum amount of information necessary to under-
stand the rest of the paper. For more details and a thorough introduction to behav-
ioral system theory, bilinear/quadratic differential forms and the Löwner framework
we refer to [19, 33, 17], respectively.

2.1 Behavioral system theory

The basic object of study in the behavioral framework is the set of trajectories, the
behavior of a system. In this paper we consider linear differential behaviors, i.e.
subsets of C∞(R,Rq) that consist of solutions w : R → Rq to systems of linear,
constant-coefficient differential equations:

R
(

d
dt

)
w = 0 . (1)

where R ∈ R•×q[ξ ]. A representation (1) is called a kernel representation of the
behavior

B :=
{

w ∈ C∞(R,Rq) | R
(

d
dt

)
w = 0

}
,

and we associate to it in a natural way the polynomial matrix R ∈ R•×q[ξ ]. Note
that B admits different kernel representations; such a representation is minimal if
the number of rows of R is minimal among all possible representations of B. We
denote with Lq the set of all linear time-invariant differential behaviours with q
variables.

If a behavior is controllable (see Ch. 5 of [19] for a definition), then it also admits
an image representation. Let

w = M
(

d
dt

)
` , (2)

where M ∈ Rq×l [ξ ] and ` is an auxiliary variable also called a latent variable; i.e.,

B := {w ∈ C∞(R,Rq) | ∃ ` ∈ C∞(R,Rl) such that (2) holds}=: im M
(

d
dt

)
.

We call (2) an image representation of B.
The latent variable ` in (2) is called observable from w if [w = M( d

dt )`= 0] =⇒
[`= 0]. A controllable behaviour always admits an observable image representation.
The set of linear differential controllable behaviours whose trajectories take their
values in Rq is denoted by Lq

cont.
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A latent variable ` is a state variable for B if there exist E,F ∈ R•×•, G ∈ R•×q

such that

B=

{
w | ∃ ` s.t. E

d`
dt

+F`+Gw = 0
}

, (3)

i.e. if B has a representation of first order in ` and zeroth order in w. The minimal
number of state variables needed to represent B in this way is called the McMillan
degree of B, denoted by n(B).

A state variable for B can be computed as the image of a polynomial differential
operator called a state map (see [9, 20, 26, 29]); such polynomial can act either on
the external variable w, or on the latent variable ` of an image representation of B.

Finally, we introduce the notion of dual (or adjoint, see [29]) behavior. Let B ∈
Lq and let J = J> ∈ Rq×q be an involution, i.e. J2 = Iq. We call

B⊥J :=
{

w′ ∈D(R,Rq) |
∫ +∞

−∞

w′>Jw dt = 0 for all w ∈B∩D(R,Rq)

}
(4)

the J-dual behavior of B; if J = Il , we denote it simply by B⊥. It can be shown
that if B= im M

( d
dt

)
= ker R

( d
dt

)
, then B⊥J = im JR>

(
− d

dt

)
= ker M>

(
− d

dt

)
J.

Note that if R induces a minimal kernel representation and M an observable image
representation of B, then M>(−ξ )J induces a minimal kernel representation and
JR>(−ξ ) an observable image representation of B⊥J .

2.2 Bilinear- and quadratic differential forms

Let Φ ∈ Rq1×q2 [ζ ,η ]; then Φ(ζ ,η) = ∑h,k Φh,kζ hηk, where Φh,k ∈ Rq1×q2 and the
sum extends over a finite set of nonnegative indices. Φ(ζ ,η) induces the bilin-
ear differential form (abbreviated with BDF in the following) LΦ acting on C∞-
trajectories defined by

LΦ : C∞(R,Rq1)×C∞(R,Rq2)→ C∞(R,R)

LΦ(w1,w2) := ∑
h,k
(

dhw1

dth )>Φh,k
dkw2

dtk .

If q1 = q2 = q, then Φ(ζ ,η) also induces the quadratic differential form (abbrevi-
ated QDF in the following) QΦ acting on C∞-trajectories defined by

QΦ : C∞(R,Rq)→ C∞(R,R)

QΦ(w) := ∑
h,k
(

dhw
dth )>Φh,k

dkw
dtk .
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Without loss of generality we can assume that a QDF is induced by a symmetric
two-variable polynomial matrix Φ(ζ ,η), i.e. one such that Φ(ζ ,η) = Φ(η ,ζ )>;
we denote the set of such matrices by Rq×q

s [ζ ,η ].
Φ(ζ ,η) ∈ Rq1×q2 [ζ ,η ] (and consequently also the BDF LΦ ) can be identified

with its coefficient matrix

Φ̃ :=
[
Φh,k

]
h,k=0,...,∞ ,

in the sense that

Φ(ζ ,η) =
[
Iq1 ζ Iq1 · · ·

]
Φ̃

 Iq2
ηIq2

...

 .

Although Φ̃ is infinite, only a finite number of its entries are nonzero, since the
highest power of ζ and η in Φ(ζ ,η) is finite. Note that Φ(ζ ,η) is symmetric if and
only if Φ̃> = Φ̃ .

Factorizations of the coefficient matrix of a B/QDF and factorizations of the two-
variable polynomial matrix corresponding to it are related as follows.

Proposition 1. Let Φ ∈ Rq1×q2 [ζ ,η ], and let Φ̃ be its coefficient matrix. Then the
following two statements are equivalent:

1. There exist real matrices F̃, G̃ with n rows such that

Φ̃ = F̃>G̃ ;

2. There exist polynomial matrices F ∈ Rn×q1 [ξ ], G ∈ Rn×q2 [ξ ] with coefficient

matrices F̃, G̃, i.e., F(ξ ) = F̃

 Iq1
ξ Iq1

...

 and G(ξ ) = G̃

 Iq2
ξ Iq2

...

, such that

Φ(ζ ,η) = F(ζ )>G(η) .

Proof. This follows from the discussion on p. 1709 of [33]. ut

Factorizations as those of Proposition 1, which moreover correspond to the min-
imal value n = rank(Φ̃), are called minimal (or canonical as in [33]). Note that the
matrices F̃ and G̃ involved in a minimal factorization of Φ̃ are of full row rank.
Minimal factorizations are not unique; using standard linear algebra arguments the
following proposition can be proved in a straightforward way.

Proposition 2. Given a minimal factorization Φ̃ = F̃>G̃, every other minimal fac-
torization Φ̃ = F̃ ′>G̃′ can be obtained from it by premultiplication of F̃ and G̃ by
a nonsingular n× n matrix S, respectively S−>. In view of Proposition 1 this im-
plies that Φ(ζ ,η) = F(ζ )>G(η) = F ′(ζ )>G′(η) with F ′(ξ ) := SF(ξ ), G′(ξ ) :=
S−>G(ξ ).
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Given LΨ , its derivative is the BDF LΦ defined by

LΦ(w1,w2) :=
d
dt
(LΨ (w1,w2))

for all wi ∈ C∞(R,Rqi), i = 1,2; this holds if and only if

Φ(ζ ,η) = (ζ +η)Ψ(ζ ,η) (5)

(see [33], p. 1710). An analogous result holds for QDFs. From this two-variable
characterization it follows that if LΦ = d

dt LΨ , then Φ(−ξ ,ξ ) = 0q1×q2 ; it can be
shown (see Th. 3.1 p. 1711 of [33]) that also the converse implication holds true.

Finally, we introduce a standard result in B/QDF theory of great importance for
the rest of this paper. The first part of the result is a straightforward consequence of
the relation (5) between the two-variable representation of a B/QDF and its deriva-
tive; the second part follows from Prop. 10.1 p. 1730 of [33].

Proposition 3. Let R ∈ Rg×q[ξ ] and M ∈ Rq×l [ξ ] induce a minimal kernel, respec-
tively observable image representation of B ∈ Lq. There exists Ψ ∈Rg×l [ζ ,η ] such
that

R(−ζ )M(η) = (ζ +η)Ψ(ζ ,η) . (6)

Moreover, there exist polynomial matrices Z ∈ R•×g[ξ ] and X ∈ R•×l [ξ ] such that

Ψ(ζ ,η) = Z(ζ )>X(η) , (7)

and Z
( d

dt

)
is a minimal state map for B⊥ and X

( d
dt

)
is a minimal state map for B.

State maps such as Z and X in (7) are called matched. Factorizations such as (7) can
be computed factorizing canonically the coefficient matrix Ψ̃ as illustrated in Prop.
1, see also Prop. 2.

2.3 Rational interpolation and modelling of vector exponential
time-series

Define the left and right interpolation data as the triples in C×Cp×Cm and C×
Cm×Cp, respectively:

{(µi, `
∗
i ,v
∗
i )}i=1,...,k1 , µi ∈ C, `∗i ∈ C1×p,v∗i ∈ C1×m

{(λi,ri,wi)}i=1,...,k2 , λi ∈ C,ri ∈ Cm×1,wi ∈ Cp×1 . (8)

In the rest of this paper we will assume for simplicity of exposition that the
µis and λis are distinct; the general case follows with straightforward modifica-
tions of the statements and the arguments. We will also assume that {µi}i=1,...,k1 ∩
{λ j} j=1,...,k2 = /0.
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Let H ∈ Rp×m(ξ ) be a proper rational matrix. H satisfies the interpolation con-
straints if

`∗i H(µi) = v∗i , i = 1, . . . ,k1

H(λi)ri = wi , i = 1, . . . ,k2 . (9)

Rational interpolation can be stated as behavioral modelling of vector-exponential
functions (see [7]). Assume that H ∈Rp×m(ξ ) satisfies the interpolation constraints,
and let H(ξ ) =N(ξ )D(ξ )−1 =P(ξ )−1Q(ξ ) be right-, respectively left coprime fac-
torisations of H(ξ ), with N ∈ Rp×m[ξ ], D ∈ Rm×m[ξ ], P ∈ Rp×p[ξ ], Q ∈ Rp×m[ξ ].
We associate to the right coprime factorisation of H(ξ ) the observable image repre-
sentation

M(ξ ) :=
[

D(ξ )
N(ξ )

]
(10)

and to the left-coprime factorisation the minimal kernel representation

R(ξ ) :=
[
Q(ξ ) −P(ξ )

]
. (11)

It follows from standard results in behavioral system theory (see Ch. 5 of [19]) that

ker
[
Q
( d

dt

)
−P
( d

dt

)]
= im

[
D
( d

dt

)
N
( d

dt

)]=: B . (12)

Under the standing assumption that D(µi) and P(λi) are nonsingular at µi, re-
spectively λi, we rewrite (9) equivalently as

[
v∗i −`∗i

][D(µi)
N(µi)

]
= 0 , i = 1, . . . ,k1[

Q(λi) −P(λi)
][ ri

wi

]
= 0 , i = 1, . . . ,k2 . (13)

From the equalities (13) it follows that[
v∗j −`∗j

]
∈ row span

[
Q(µ j) −P(µ j)

][
ri
wi

]
∈ im

[
D(λi)
N(λi)

]
,

j = 1, . . . ,k1, i = 1, . . . ,k2. We conclude that the interpolation constraints (9) (and
the equations (13)) are equivalent with

wi(·) :=
[

ri
wi

]
eλi· ∈B , i = 1, . . . ,k2

w′j(·) :=
[

v j
−` j

]
e−µ j · ∈B⊥ , j = 1, . . . ,k1 , (14)



8 P. Rapisarda and A.C. Antoulas

where B⊥ is the dual behavior B⊥= im
[

Q>
(
− d

dt

)
−P>

(
− d

dt

)]= ker
[
D>
(
− d

dt

)
N>
(
− d

dt

)]
.

In the language of [31], B and B⊥, respectively, are unfalsified models for the tra-
jectories (14). Thus every solution of the interpolation problem yields an unfalsified
model for the exponential trajectories associated with the data; and conversely, ev-
ery minimal kernel or observable image representation of such an unfalsified model
for such trajectories yields a solution of the interpolation problem.

From (13) it follows that there exist vectors s j ∈ C1×p, j = 1, . . . ,k1 and pi,
i = 1, . . . ,k2, uniquely defined because of observability and minimality and control-
lability, such that [

v∗j −`∗j
]
= s∗j

[
Q(µ j) −P(µ j)

][
ri
wi

]
=

[
D(λi)
N(λi)

]
pi . (15)

It is straightforward to check that such vectors define (unique) latent variable tra-
jectories pieλi· and s je−µ j · for the image representations B = im M

( d
dt

)
, B⊥ =

im R>
(
− d

dt

)
, respectively.

3 The Löwner matrix and its properties

The Löwner matrix associated with the interpolation data (8) is defined by

L :=
[

v∗i r j−`∗i w j
µi−λ j

]
i=1,...,k1; j=1,...,k2

. (16)

The shifted Löwner matrix is defined by

σL :=
[

µiv∗i r j−λ j`
∗
i w j

µi−λ j

]
i=1,...,k1; j=1,...,k2

. (17)

The first result of this paper connects the Löwner matrix and the two-variable
polynomial matrix Ψ(ζ ,η) in (6), and is the fundamental connection between the
two approaches.

Proposition 4. Let Ψ(ζ ,η) ∈ Rp×m[ζ ,η ] be defined by (6), with M and R defined
by (10) and (11), and si and p j defined as in (15). Then

L=− [s∗i Ψ(−µi,λ j)p j]i=1,...,k1; j=1,...,k2
. (18)

Proof. It follows from the equations (15) that if H ∈ Rp×m(ξ ) satisfies the interpo-
lation constraints, then the Löwner matrix (16) can also be written as
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L=

 s∗i
[
Q(µi) −P(µi)

][D(λ j)
N(λ j)

]
p j

µi−λ j


i=1,...,k1, j=1,...,k2

, (19)

where si and p j are defined by (15). The claim follows easily from this equation and
the definition of Ψ(ζ ,η). ut

If all −µi and λi are all on one and the same side of the imaginary axis (e.g. the
left-hand side) then the two-variable polynomial (22) is associated with a BDF, and
the Löwer matrix has the interpretation of a Gramian, as illustrated in the following
result.

Proposition 5. Partition the variables in B, respectively B⊥ by w′ :=
[

y′

u′

]
∈

C∞(R,Cm+p), respectively w :=
[

u
y

]
∈ C∞(R,Cm+p). Assume that λi,−µ j ∈ C−,

i = 1, . . . ,k1, j = 1, . . . ,k2.
Define the bilinear form 〈,〉 on B′∩D(R,Rq)×B∩D(R,Rq) by

〈w′,w〉 :=
∫ +∞

0
y′∗u+u′∗y dt .

Then
Li, j = 〈w′i,w j〉 ,

where w′i, w j are defined by (14).

Proof. The claim follows integrating w′>i w j on the half-line. ut

The equality (18) is instrumental in obtaining the following result, analogous to
Lemma 2.1 in [17].

Proposition 6. Denote by n the McMillan degree of B. If k1,k2≥ n, then rank L= n.

Proof. Using the factorization (7) of Ψ(ζ ,η), conclude that L = −S∗P, where S
and P are defined by

S :=
[
Z(−µ∗1 )s1 . . . Z(−µ∗k1

)sk1

]
∈ Cn×k1

P :=
[
X(λ1)p1 . . . X(λk2)pk2

]
∈ Cn×k2 .

We now prove that under the assumption that the λis are distinct, the matrix P has
full row rank n; a similar argument yields the same property for S.

Assume by contradiction that rank(P) = r < n; then there exist αi ∈ C, i =
1, . . . ,k2, not all zero, such that Pcol(αi)i=1,...,k2 = 0. Let F ∈ Rm×m[ξ ] be such that
ker

(
F
( d

dt

))
equals the subspace of C∞(R,Rm) spanned by vieλi·, i = 1, . . . ,k2; such

F always exists (see section XV of [32]). Now consider the following equations:
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w = M
(

d
dt

)
`

x = X
(

d
dt

)
`

0 = F
(

d
dt

)
` . (20)

The external behavior B′ ⊂ B described by these equations is autonomous (see
[19]), of dimension k2. Moreover X

( d
dt

)
is a state map for B′, since it is a state

map for B. Consider the trajectory ˆ̀ defined by ˆ̀(t) := ∑
N
i=1 αi pieλit , and let ` = ˆ̀

in (20); then the value of x̂ := X
( d

dt

) ˆ̀ at t = 0 is zero. Since B′ is autonomous, it
follows that ŵ := M

( d
dt

) ˆ̀ is also zero. From the observability of M it follows then
that ˆ̀= 0, which is in contradiction with the assumption that not all αi’s are equal
to zero. Consequently P has rank n. ut

Another result well-known in the Löwner framework (see the first formula in (12)
p. 640 of [17]) follows in a straightforward way from (18) and Prop. 3.

Proposition 7. Define the matrices

M := diag(−µi)i=1,...,k1

Λ := diag (λ j) j=1,...,k2

S :=
[
s∗i
[
Q(µi) −P(µi)

]]
i=1,...,k1

∈ Ck1×q

W :=
[[

D(λ j)
N(λ j)

]
p j

]
j=1,...,k2

∈ Cq×k2 .

L satisfies the Sylvester equation

ML+LΛ =−S∗W . (21)

Proof. Observe that

Q(−ζ )>D(η)−P(−ζ )>N(η) = ζ
Q(−ζ )>D(η)−P(−ζ )>N(η)

ζ +η

+ η
Q(−ζ )>D(η)−P(−ζ )>N(η)

ζ +η
.

The claim follows in a straightforward way substituting ζ with−µ∗i , η with λ j, and
multiplying on the left by s∗i and on the right by p j. ut

Remark 1. In the special case of lossless- and self-adjoint port-Hamiltonian systems,
the results of Prop.s 6 and 7 coincide with results obtained in the B/QDF approach
in [25]. Note that Prop. 4, on which the Löwner approach is fundamentally based,
is valid for any linear differential system, while the results illustrated in Rem. 1 and
?? are valid only under the assumption of conservativeness or self-adjointness.
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The transfer function H(s) ∈Rm×m[s] of a lossless port-Hamiltonian system (see
[25, 22] for the definition) satisfies the equality−H(−s)> = H(s). From such prop-
erty, using the right- and left-coprime factorisations already introduced we conclude
that given the image representation M, a kernel representation is

R(s) = M(−s)>
[

0 Im
Im 0

]
=
[
N(−s)> D(−s)>

]
.

Thus for this class of systems the two-variable polynomial matrix Ψ(ζ ,η) defined
in Prop. 3 is

Ψ(ζ ,η) =

[
N(ζ )> D(ζ )>

][D(η)
N(η)

]
ζ +η

.

If we consider symmetric data, i.e. k1 = k2, µi = λi and si = pi, i = 1, . . . ,k1, then
it is a matter of straightforward verification to check that the Löwner matrix (16)
coincides with the Pick matrix defined in formula (1) in [25]. Moreover, if the fre-
quencies µi and λ j lie all on one and the same side of the complex plane, the Pick
(i.e. Löwner) matrix has a straightforward interpretation as a Gramian for the tra-
jectories in the indefinite inner product on the half real line induced by

J :=
[

0 Im
Im 0

]
,

see formulas (8) and (11) of [25].
Under the assumptions mentioned above, the rank result of Prop. 6 of this paper

coincides with the result of Prop. 1 of [25], and the Sylvester equation result of Prop.
7 coincides with that of Prop. 2 of [25].

The transfer function H(s) ∈ Rm×m[s] of a self-adjoint port-Hamiltonian system
(see [25] for the definition) satisfies the equality H(s)> = H(s), from which using
the right- and left-coprime factorisations already introduced we conclude that given
an image representation M, a kernel representation is

R(s) = M(s)>
[

0 Im
−Im 0

]
=
[
N(s)> −D(s)>

]
.

Thus for this class of systems the two-variable polynomial matrix Ψ(ζ ,η) defined
in Prop. 3 is

Ψ(ζ ,η) =

[
N(−ζ )> −D(−ζ )>

][D(η)
N(η)

]
ζ +η

.

If we consider symmetric data, i.e. k1 = k2, µi = λi and si = pi, i = 1, . . . ,k1, and
if the frequencies λi lie all on the right- or left-half plane, then the Löwner matrix
(16) coincides with the Pick matrix of formula (34) in [25]. In this case, the Löwner
matrix has an interpretation as Gramian for the indefinite inner product on the half
real line induced by
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J′ :=
[

0 Im
−Im 0

]
.

Results analogous to Prop. 6 and Prop. 7 of this paper appear as Prop. 6 and Prop.
7, respectively, in [25]. ut

Remark 2. In this paper we restrict ourselves to the problem of modelling continuous-
time trajectories. Gramian-based ideas for the identification of state-space systems
in the discrete-time case under the assumption of losslessness have been illustrated
in [23]. ut

The shifted Loewner matrix (17) can be associated with a two-variable polyno-
mial matrix in the following way. From the right- and left-coprime factorizations of
H define

Ψ
′(ζ ,η) :=

ζ Q(−ζ )>D(η)+P(−ζ )>N(η)η

ζ +η
; (22)

note that Ψ ′(ζ ,η) is a polynomial matrix, since substituting −ξ in place of ζ and
ξ in place of η in ζ Q(−ζ )>D(η) +P(−ζ )>N(η)η yields the zero matrix. The
following result follows in a straightforward way from (22).

Proposition 8. Let Ψ ′ ∈ Rk1×k2 [ζ ,η ] be defined by (22). Then

σL=−
[
s∗i Ψ

′(−µi,λ j)p j
]

i=1,...,k1; j=1,...,k2
.

If the frequencies λi, −µi are all on one and the same side of the imaginary axis
(e.g. the left-hand side) then the two-variable polynomial (22) is associated with
the following BDF, and the Löwner matrix has the interpretation of a Gramian, as
illustrated in the following result. .

Proposition 9. Assume that λi,−µi ∈ C− and partition w′ and w as in Prop. 5.
Define the following BDF on B′×B:

〈〈w′,w〉〉 :=
∫ +∞

0

(
d
dt

y′
)>

u+u′>
(

d
dt

y
)

dt ;

then
σLi, j = 〈〈w′i,w j〉〉 ,

where w′i, w j are defined in (14).

Proof. The claim follows integrating
( d

dt vi
)>

r j + `′>i
( d

dt w j
)

on the half-line. ut

Another dynamical interpretation of the shifted Löwner matrix can be given as
follows: associate to the behavior B defined in (12) the behavior

B′ :=
{

col(y′,u′) | ∃ col(y,u) ∈B s.t. y′ :=
d
dt

y,u′ = u
}

. (23)

To each trajectory (14) in B, B⊥ one can associate a corresponding trajectory in B′

by “differentiating the output variable”. It is straightforward to see that the shifted



Bilinear differential forms and the Löwner framework for rational interpolation 13

Löwner matrix is the Löwner matrix of such new set of interpolation data, or equiv-
alently, the Löwner matrix associated with the transfer function sH(s). Now follow-
ing an argument analogous to that used in proving Prop. 7, one can prove that σL
satisfies the following Sylvester equation:

MσL+σLΛ =−S′P′ ,

where M, L are as in Prop. 7 and

S′ :=
[
s∗i
[
Q(µi)µi −P(µi)

]]
i=1,...,k1

∈ Ck×(l+g)

P′ :=
[[

D(λ j)
λ jN(λ j)

]
p j

]
j=1,...,k2

∈ C(l+g)×q .

This is the counterpart of the second formula in (12) p. 640 of [17].

4 Computation of interpolants

Generalized state-space formulas of interpolants based on the Löwner matrix and
the shifted Löwner matrix are given in Lemma 5.1 p. 643 of [17]. The dimension of
the generalized state variable equals the number of right-interpolation data, and thus
in general this procedure does not produce a minimal order interpolant; on the other
hand, the interpolant is constructed directly from the Löwner and shifted Löwner
matrices, without need of further computations. In section 5.2 of [17] formulas for
a minimal order interpolant are obtained in terms of the short singular value de-
composition of the matrix νL−σL, where ν ∈ {µ j}∪{λi}, under the assumption
(20) on p. 645 ibid. In this section we show how analogous results can be derived
in the B/QDF approach; we examine separately the mono-directional interpolation
problem (where only the right- or left interpolation constraints need to be satisfied)
and the bi-directional one.

Given a matrix S∈Rk1×k2 , a rank-revealing factorization of S is any factorization
S =U1U2 with U ∈ Rk1×n, U2 ∈ Rn×k2 of full rank n = rank S; such a factorization
can be computed in a straightforward way from a singular value decomposition of S.
The results presented in this section are based on the following fundamental result
connecting rank-revealing factorizations of the Löwner matrix and state trajectories
corresponding to the vector-exponential ones (14) in the external variables of the
primal- and the dual system.

Proposition 10. Let L = Z∗V be any rank-revealing factorization of the Löwner
matrix associated with the data (8); denote by Vi, respectively Zi, the i-th column of
V , respectively Z.

There exists a minimal state representation (3) of B, respectively B⊥, such that
Vieλi·, respectively Zie−µi·, are minimal state trajectories of B, respectively B⊥.

Proof. The claim follows straightforwardly from Prop. 3 and Prop. 4. ut
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Different rank-revealing factorizations of L yield different state trajectories and
thus different realizations; see [24] for an application to the computation of canoni-
cal realizations.

4.1 Mono-directional interpolants and factorizations of the Löwner
matrix

We first show that under suitable assumptions on the number of interpolation data, a
minimal state representation (3) of an interpolant of the right interpolation data can
be computed from a rank-revealing factorization of L.

Proposition 11. Assume k1,k2 ≥ n = rank(L), and let L= Z∗V be a rank-revealing
factorization with Z ∈ Cn×k1 and V ∈ Cn×k2 . Define

M := diag(−µi)i=1,...,k1 ∈ Ck1×k1

S :=
[
s∗i
[
Q(µi) −P(µi)

]]
i=1,...,k1

∈ Ck1×q

Then a minimal state-representation (3) of a right-interpolant for the data
(

λi,

[
ri
wi

])
,

i = 1, . . . ,k2 is

Z∗
d
dt

x+(MZ∗)x+Sw = 0 . (24)

Proof. We prove that the external behavior of (24) contains the trajectories
[

ri
wi

]
eλi·,

i= 1, . . . ,k2, i.e. that there exist trajectories xi, i= 1, . . . ,k2 such that (24) is satisfied.
Denote by vi the i-th column of the matrix V of the rank-revealing factorization of
L, and define xi(·) := vieλi·, i = 1, . . . ,k2. It follows from Prop. 10 and the Sylvester
equation (21) that with such positions (24) is satisfied. ut

Remark 3. Formula (24) is similar to formula (15) p. 642 of [17], which gives a
input-state-output representation of an interpolant of McMillan degree k1. Note
however that the McMillan degree of (24) equals rank(L).

Remark 4. Prop. 11 implies that the rational matrix −(sZ∗+MZ∗)−1S satisfies the
equations

(λiZ∗+MZ∗)−1S
[

ri
wi

]
= vi , i = 1, . . . ,k2 ,

where vi is the i-th column of the matrix V associated with the rank-revealing fac-
torization of L. Thus the matrix V plays a role analogous to that of the generalized
tangential controllability matrix of p. 639 of [17]. ut

Remark 5. When minimal, respectively observable, kernel and image representa-
tions of B are known, a state representation (3) of B can be obtained directly from
the coefficient matrices of Z(ξ ) and X(ξ ) in (7), see sect. 2.5 of [29]. ut
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In order to find an input-state-output (iso) representation

E
d
dt

x = Ax+Bu

y = Cx+Du (25)

of an interpolant, assume k1,k2 ≥ n = rank(L), and compute a rank-revealing fac-
torization L= Z∗V . Define

U :=
[
r1 . . . rk1

]
∈ Cm×k1

Y :=
[
w1 . . . wk1

]
∈ Cp×k1 .

The following result, whose proof is straightforward and hence omitted, character-
izes iso representations of right interpolants.

Proposition 12. A quintuple (E,A,B,C,D) ∈Rn×n×Rn×n×Rn×m×Rn×p×Rm×m

defines an iso representation of a right interpolant if and only if

[
E −A −B 0n×p
0 C D −Ip

]
VΛ

V
U
Y

= 0 . (26)

It follows from Prop. 25 that in order to find an iso representation of a right inter-
polant it suffices to find a matrix whose rows form a basis for the space orthogonal

to im


VΛ

V
U
Y

, and with the special structure

[
E −A −B 0n×p
0 C D −Ip

]
.

This can be achieved with standard linear algebra computations; we will not deal
with such details here.

Remark 6. In Prop. 4 and section VI of [25] explicit formulas in terms of the matri-
ces arising from a rank-revealing factorization of L are given for computing A, B,
C, D of an input-state-output representation

d
dt

x = Ax+Bu

y = Cx+Du

of a right interpolant for data generated by conservative- and adjoint port-Hamiltonian
systems (see Remark 1 of this paper). Moreover, a parametrization for all such in-
terpolants is also given. ut
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Remark 7. Following an argument analogous to that used in proving Prop. 11 it can
be shown that a state representation (3) of an interpolant for the left interpolation
data can be computed defining E := V ∗, F := V ∗diag(λi), G := W ∗. Moreover, a
result analogous to that of Prop. 12 holds true also for left-interpolants; we will not
state it explicitly. ut

4.2 Bi-directional interpolation and BDFs

In Th. 5.1 of [17] formulas are given for the matrices E, A, B and C of an iso
representation (25) of a left- and right-interpolant. In the following we show that
these can be given an interpretation in terms of BDFs, and in case the interpolation
points are all on the same side of the imaginary axis, in terms of factorization of the
Löwner and shifted Löwner matrix.

In the following, besides the iso representation (25) we consider its dual (note
that the terminology “dual” is not uniform in the literature; on this issue see also
[8, 10, 11]), defined by

E>
d
dt

z = −A>z−C>u′

y′ = −B>z , (27)

where z ∈ C∞(R,Rn), u′ ∈ C∞(R,Rp), y′ ∈ C∞(R,Rm).
The following two results are crucial for computing E and A from factorizations

of the Löwner matrices.

Proposition 13. Let col(x,u,y) and col(z,u′,y′) be full trajectories of the behaviors
described by (25) and (27), respectively. Then

d
dt

(
z>Ex

)
= −u′>y− y′>u =−

[
u′> y′>

][ 0 Ip
Im 0

][
u
y

]
. (28)

Proof. The claim follows from the following chain of equalities:

d
dt

(
z>Ex

)
=

(
d
dt

z>
)

Ex+ z>E
(

d
dt

x
)
=
(
−z>A−u′>C

)
x+ z> (Ax+Bu)

= −u′>y− y′>u .

We now state another important result.

Proposition 14. Let col(x,u,y) and col(z,u′,y′) be full trajectories of the behaviors
described by (25) and (27), respectively. Then

d
dt

(
z>Ax

)
= −u′>

(
d
dt

y
)
+

(
d
dt

y′>
)

u . (29)



Bilinear differential forms and the Löwner framework for rational interpolation 17

Proof. The claim follows from the following chain of equalities:

u′>
(

d
dt

y
)
−
(

d
dt

y′>
)

u = u′>
(

C
d
dt

x
)
−
(
− d

dt
z>B

)
u

=
(

u′>C
) d

dt
x+

d
dt

z> (Bu)

= −
(

d
dt

z>E + z>A
)

d
dt

x+
d
dt

z>
(

E
d
dt

x−Ax
)

= − d
dt

(
z>Ax

)
The next result follows in a straightforward way from Prop. s 13 and 14 and

reformulates (28) and (29) in two-variable polynomial terms.

Proposition 15. Let R ∈ Rp×(p+m)[ξ ], respectively M ∈ R(p+m)×m[ξ ] be a minimal
kernel, respectively observable image representation of the external behavior B of
(25). Define

Ψ(ζ ,η) := R(−ζ )M(η)

Ψ
′(ζ ,η) := R(−ζ )

[
0 −Ipη

ζ Im 0

]
M(η) .

There exist state maps X ,Z ∈ R•×m[ξ ] for B and B⊥, respectively, such that

Ψ(ζ ,η) = (ζ +η)Z(ζ )>EX(η)

Ψ
′(ζ ,η) = (ζ +η)Z(ζ )>AX(η) . (30)

The following is an important consequence of Prop.s 13, 14 and 15.

Proposition 16. Let (25) be an iso representation of a bi-directional interpolant.
There exist X ′,X ∈ Cn×k such that

L = X ′∗EX

Ls = X ′∗AX . (31)

Moreover, the columns of X ′, respectively X correspond to the directions of (expo-
nential) state trajectories of the dual, respectively primal system, corresponding to
the external trajectories (14).

Proof. The claim follows by substituting µi in place of ζ and λi in place of η in
(30), and multiplying on the left by s∗i and on the right by p j. ut

Remark 8. If −µi and λ j lie on the same half-plane, the result of Prop. 16 can be
proved integrating by parts (28) and (29) along the trajectories (14). ut

To compute E and A from L and Ls, respectively, observe that from (31) it follows
that
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L Ls

]
= X ′∗

[
EX AX

][
L
Ls

]
=

[
X ′∗E
X ′∗A

]
X . (32)

These factorisations are the counterpart of those in formula (2.25) of [5], with Y =

X ′∗, Σ`X̃∗ =
[
EX AX

]
and Ỹ Σr =

[
X ′∗E
X ′∗A

]
. A “short” SVD of the two matrices on

the left-hand side of (32) yields matrices X ′∗ and X with orthonormal rows; under
such assumption we recover E and A by projection of L and Ls as

E = X ′LX∗

A = X ′LsX∗ ,

respectively, see the first two formulas (22) p. 646 of [17].
The matrices B, C of a representation (25) can be obtained as follows. From the

output equation y′=−B>z of the dual system (27) it follows that V =−B>X ′, where

V :=
[
`1 . . . `k1

]
∈ Cm×k1 .

Assuming that X ′ has been obtained via a short SVD, it follows that

B =−X ′V ∗ .

This is the third equation in (2.28) p. 17 of [6]. Analogously, from the output equa-
tion y =Cx of the primal system (25) it follows that W =CX , where

W :=
[
w1 . . . wk2

]
∈ Cm×k2 .

Consequently
C =WX∗ ,

the fourth equation in (2.28) p. 17 of [6].

Remark 9. The BDFs used to compute E and A in Prop.s 13 and 14 are not the same;
such difference goes against the interpretation of the shifted Löwner matrix as the
Löwner matrix associated with the transfer function sH(s). It is currently investi-
gated whether such asymmetry depends on our possibly non-standard definition of
the dual system (27), or whether there is an intrinsic motivation to it. ut

5 Conclusions

We have shown that several results in the Löwner framework for interpolation can
be given a direct interpretation in the language of bilinear differential forms and
their two-variable polynomial matrix representations. We have shed new light on
known results in the Löwner framework (e.g. the rank result of Prop. 6, the Sylvester
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equation in Prop. 7), and we have also given insights of a more fundamental nature
(e.g. the correspondence between state trajectories and factorizations in Prop. 10,
the interpretation of the Löwner matrices as Gramians, see Prop.s 5 and 9).

For reasons of space we have refrained from illustrating the correspondences
between the Löwner approach to model order reduction and that based on BDFs (see
section 3 of [6], section V of [25]); this will be pursued elsewhere. Current research
questions include the formulation of recursive interpolation in the BDF framework,
and the extension to parametric interpolation and parametric model order reduction
(see [12]).
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