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On the Existence of Synchrostates in MultichaniteGE
Signals during Face-perception Tasks

Abstract:

Phase synchronisation in multichannel EEG is knas/the manifestation of functional brain
connectivity. Traditional phase synchronisationdsta are mostly based on time average
synchrony measures hence do not preserve the temmwolution of the phase
difference. Here we propose a new method to sh@neiistence of a small set of unique
phase synchronised patterns or “states” in mulihciel EEG recordings, each “state” being
stable of the order of ms, from typical and pathalal subjects during face perception tasks.
The proposed methodology bridges the concepts ofc Emicrostates and phase
synchronisation in time and frequency domain retypelg. The analysis is reported for four
groups of children including typical, Autism Spectr Disorder (ASD), low and high anxiety
subjects — a total of 44 subjects. In all casesphs®erve consistent existence of these states -
termed as synchrostates - within specific cognitelated frequency bands (beta and gamma
bands), though the topographies of these synchessti#ffer for different subject groups with
different pathological conditions. The inter-syna$tate switching follows a well-defined
sequence capturing the underlying inter-electraa@se relation dynamics in stimulus- and
person-centric manner. Our study is motivated frim well-known EEG microstate
exhibiting stable potential maps over the scalp.weler, here we report a similar
observation of quasi-stable phase synchronisedsstatmultichannel EEG. The existence of
the synchrostates coupled with their unique swiighsequence characteristics could be
considered as a potentially new field over conterapoEEG phase synchronisation studies.

Keywords—Anxiety; Autism Spectrum Disorder (ASD); ContinuoMgavelet Transform
(CWT); Electroencephologram (EEG); face perceptidimeans clustering; phase
synchronisation; synchrostate

1. Introduction

The intrinsic organisation of the human brain cdoddviewed as a dynamic network
changing its configuration at sub-second level terap scale depending upon a given
cognitive task. Phase synchronisation dynamics dsetw different cortical areas is
fundamental to formulate a mathematical represiemtaif such dynamically reconfiguring
functional networks (Fell & Axmacher 2011), (Engelal. 2001). Electroencephalography
(EEG) is an effective tool for studying such phagechronisation owing to its high temporal
resolution and has been applied extensively inpgt (Mulert et al. 2011)(Razavi et al.
2013), for studying such phenomena unearthing usgtirmation about cognitive processes.

Traditionally, EEG based synchronisation analysigniostly carried out at a time
scale of the order of seconds, apart from the Wwedwn microstate analysis (Thomas Koenig
et al. 2002), where the scalp level distributionetectric field was studied at ms resolution
level. Recently during a visual perception taskas been shown that at ms time scale there
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exists a small set of unique phase synchronisddrpat each being stable of the order of ms,
and then abruptly switching from one to another gifdaJamal et al. 2015). These quasi-
stable phase difference patterns are termed afi®gtates. It was first observed in a single
adult subject (Wasifa Jamal et al. 2013) and lastgroup average of typically developing as
well as autistic children (W Jamal et al. 2013jhair respective EE@-bands. Subsequently
functional connectivity networks were formulatedrfr these-band synchrostates and then
applying graph theoretic characterisation of thémvas shown possible to classify autistic
and typically developing population with high acaty (Wasifa Jamal et al. 2014). This
indicates towards the possibility of using synchates as a new way for functional
connectivity network analysis in different poputeits. However the pertinent question is
whether the synchrostates consistently exist ifviddal subjects in the cognition related
bands g andy) and if so, how much inter-subject variability thbe expected with respect
to the population average, as this is fundamentakcertaining the possibility of classifying
individual's pathological conditions using graplednetic characterization of functional brain
network formed from the synchrostates.

Therefore the main aims of this paper are: 1) syateally exploring the existence
and nature of synchrostates in both ghandy bands for individuals not only belonging to
typically developing but also from pathological pdgtion, 2) studying variability of
synchrostates with respect to the number of EEGrelges used, 3) to elaborate the method
of synchrostate formulation in step-by-step fastsbowing how this method combines the
existence of time-domain discrete state concephiofostates and frequency domain phase
synchronisation analysis. The cognitive task sebtbdor our exploration is a set of face-
perception tasks where three types of face-pemeptlated stimuli were given to four
groups of children - with typical development, diaged with ASD, with high- and low-
anxiety scores. Sincg andy bands have consistently shown increased synchdonyg
face-perception tasks (Uhlhaas et al. 2009)(Rodrget al. 1999)(Kottlow et al. 2012) and
prominent response during visual stimuli in genévdtobel 2000)(Lachaux et al. 2005) we
mainly concentrated on analysing these two bandst €xploration showed: 1) the
synchrostates exist in individual subjects consistein both thef andy bands and are
usually bounded between 3 to 7 whereas in the laguency bandsf( o) there is no
consistent existence of synchrostates; 2) syndchtexsexhibit qualitatively similar behaviour
as that of the EEG microstates in terms of themperal stability and switching
characteristics; 3) although the general set otlssostate topographies are similar for a
subject group corresponding to different visualcpgtion stimuli, the actual time-courses of
inter-synchrostate switching sequence are markdidfgrent indicating towards stimulus-
specific dynamics even within the broad categoryisfial perception task; and 4) using less
number of electrodes results in greater variahifitthe number of synchrostates with respect
to the corresponding population average whereds tiensity EEG gives more consistent
result.

In addition, here we define all the synchrostatesoading to their topographical
distribution of average phase difference over t&psand reassign the class labels of similar
topoplots with a state label which has been shamraty little across different stimuli within
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the same population. We also observed that thesehsystates have different configurations
in f andy bands as well as across different subject groAfsn in order to quantify the
gualitative behaviour of the synchrostate transgjowe calculated the probability of self-
transition implying the degree of relative stalildf these states in each combination of
stimulus, population and frequency band.

2. Method
2.1Background

Typically synchronisation can be studied from EE@hals in two domains i.e. time
and frequency. The work reported in (D Lehmannlel@37)(Thomas Koenig et al. 2014)
considered brain electric states with consisteripselectric field topography and their
sequence which lead to what is commonly known a6 Hiicrostates. Its most important
characteristic is that the topography does not ghaandomly or continuously over time but
exhibit quasi-stable behaviour in the order of 8020 ms; and abruptly switches from one
topography to another — the number of unique taages being small (typically 3 — 10)
(Thomas Koenig et al. 2002). Another way to stutydynchronisation phenomenon is in the
frequency domain. This is led by the assumption ithiwvo points (i.e. two EEG electrode
sites) are in coherence (i.e. maintaining congpéuaise relationship over time), they can be
considered as functionally synchronised or conmk(feies et al. 2001). Phase coupling has
been studied in patients with mental disorders @vtiét al. 2011)(Razavi et al. 2013) and the
merits of synchrony analysis have been found inuhéerstanding of neurodevelopmental
disorders (Uhlhaas et al. 2008). Since the metlhodcdherence analysis like Global Field
Synchronisation (GFS) (Kottlow et al. 2012) use f@utransform, inherently it does not
preserve the temporal information of synchronisatibhis methodology was later modified
by several researchers by using Continuous Wavétansform (CWT) and Hilbert
Transform (HT) to compute phase in transformed dosmand for deriving associated
synchronisation indices from the coherence valbas tbtained. The mean phase coherence
measure (Mormann et al. 2000) computes the synidation over the whole time series and
therefore gives an average measure of synchrooisdtir the whole signal span. Phase
Locking Value (PLV) although varies with time, maess the inter-trial variability of phase
difference (Rodriguez et al. 1999) rather than terapvariability. Additionally, various other
measures of phase synchronisation have been rdport@uiroga et al. 2002). Although
useful, such approaches only give insight intoghase synchronisation in a time-averaged
way over all the frequency bands, rather than capuhe true picture of the temporal or
transient evolution of phase synchrony in a baretiic way. On the other hand, in
principle, CWT and HT both being time-frequencynsorm methods, have potential to
describe the temporal evolution of phase synchatiois at sub-second resolution level
which could be more informative to understand thgasnics of the synchronisation
phenomena from the onset of a given stimulus lidl end of the corresponding cognitive
action.

As evident from the foregoing discussion the emgstirequency domain methods
compute the phase synchronisation over the entist gtimulus segment of the signal and
therefore are unable to retain the transient in&diom at finer temporal granularity, whereas
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the method of microstate finds the unique elegitential patterns and their transients
during the execution period of the task (Giandttale 2008). Itoet al. studied the dynamics

of spontaneous transitions between globally phgeeksonised states in the alpha band EEG
activity (lto et al. 2007). Their method was apglieo explore the phase dynamics of

individuals with cerebral palsy (Daly et al. 2014he technique proposed in these articles

investigate phase dynamics by segmenting the velgithase patterns into global phase
pattern states by thresholding and using a critecadled the Instantaneous Instability Index
(IlN. The GPS pattern vectors are then clusteréd 6 centroids. Here we propose a slightly
different approach for studying the dynamical etviolu of phase patterns by using intrinsic
optimization criterion in thek-means clustering for segmentation of the image$otm

compact clusters or states without any prior thotstsh In this paper we merge two concepts,
i.e. the concept of temporal switching (transieahdviour) of stable states along with the
band specific phase locking by considering a jome-frequency representation of the EEG

signal.

2.2Data and pre-processing

The data analysis was conducted with four distsarnples of children: 1) with
typical development, 2) diagnosed with Autism SpeutDisorder (ASD), 3) diagnosed with
high-anxiety and 4) with low-anxiety. More speddiky, we have used the data acquired
during the experiments described in (Fabio Apicellal. 2013) and (Chronaki 2011). For
more information regarding the data used in thiglgtplease refer to the supplementary
material. The main characteristics of these foynutations are summarised in Table 1.

Table 1: Summary of the subject group and presestiealli

=2

Group Groun tvpe Number of Age Number of Stimuli presented
number PP subjects range | EEG channels (types of faces)
Typical i
I development 12 6-13 128 Happy, fear, neutr
[l ASD 12 6—-13 128 Happy, fear, neutr
m High-anxiety 10 612 30 Happy, angry,
neutral
IV Low-anxiety 10 6— 12 30 Happy, angry,
neutral

For group | and Il the data was acquired using d28nnel EEG system and was
segmented into 1000 ms epoch with 150 ms basetide8&0 ms post-stimulus response.
Epochs over a threshold of 200 pV were rejectedrafacts. Data was baseline corrected
and band-pass filtered from 0.5 — 50 Hz for remgvlaw-frequency drifts and high-
frequency measurement noise usifigoder Butterworth filter. On the other hand, foogp
Il and IV a 30 channel EEG system was used foa @aguisition and data was epoched at
100 ms pre-stimulus to 1000 ms post-stimulus. Ctdle data was band-pass filtered in the
range 0.1 — 70 Hz for eliminating the drift ands®as done in the former case. These pre-
processed EEG signals were then transformed in-fieggeiency domain using CWT and
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particularly focussing on the two bands of intenest f (13-30 Hz) and (30-50Hz). Only
the response of the frequencies in these two bamhdsaterest is then used for further
processing. Being band-specific this processing aliews us to compare the response of the
signals across all the groups on a uniform platf@itmough they were acquired with
different instruments. The studies in (Nunez efl@87)(Schiff 2005point out that the use of
average reference for calculating coherency is @ gaompromise against the effects and
noise introduced by the reference electrode. Instuty, all the signals were re-referenced to
average reference data (average across all charamelgshen were used for our calculation.
The different data collection protocol adopted fwoup | - II; and 1l - IV allows us to
explore the effect of variability in the numberEEG electrodes.

2.3 Computation of time-dependent phase difference twm@phy

It has been observed by researchers that the appotver of different EEG bands
significantly changes depending upon the stimulugerg (Boiten et al. 1992). As a
consequence it may be assumed that the tempobditgtaf instantaneous phase difference
topographies and hence the overall synchronisgbattern may manifest differently in
different EEG bands. Therefore it appears to beentogical to study the synchronisation
phenomenon in a band-specific way. Since CWT decse® a signal to different scales
(equivalent frequencies) at each time instants ipassible to study the temporal evolution
pattern of phase difference topographies for alaied frequency band of interest. Therefore
in our analysis we used CWT as the main analysi§ toore precisely, we have used a
complex Morlet basis function as shown in (1) fomputing the CWT of the EEG data.

W (1) == (2)

I

Where{ Fb,Fc} denote the bandwidth parameter and the centre drexyurespectively. For

our purpose we considerés] =1 andF, = 1.5.
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Figure 1: The structure of the phase differenceaimat frequencyy at timet.

Considering N number of EEG channels placed over the scalp and
% (t),%,(t), -+, %, (t) be the EEG signals acquired at the respective @isnapplication of
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complex Morlet CWT o (t),i 0{1, 2, ... N} results in a complex time seri¥ (a,t) at
the wavelet scala at timet. W, (a,t) can be converted to a function of frequency amti

W (f,t) using the following relation (Addison 2010) in (2)

f=F/(ald) (2)

where, o and f are the sampling period and the approximate pséedoency, i.e. the
frequencies corresponding to the scales, respéctiBabsequently, the instantaneous phase
oi(f, t) of Wi(f, t) can be computed as (3).

¢ (f.t)= tan‘l[—lm[wi (. t)]] 3)

Re[W (f .1)]

Im[Wi(f, t)] and Re[W(f, t)] being the imaginary and the real part\Wi(f, t) respectively.
Consequently, the instantaneous phase differégge(f,t) between the channéland] can

be given by (4).

A9, (1.4) [, (1.0)-0,(1 1) @
[a0(£.0)] [Ap(£.0)] [Ae(/fi-0)]

0 (apz|...|an 0 | a i Soo || 0 |apz|...|an
a, | 0 | ... | amw az| 0 J ... | ay a2 | 0 |...|aw
ay|ay|...| 0 an | axn ‘ e N a ||| 0

Il
JL
0 [bis|...| by
bia| 0 |...|ba Time = t
bin|ban|...| 0
[—\@s(’)]

M
[40,0]= 73 A0, (1

Figure 2: Computation principle of band-specifi@apé difference matrix.

Computation ofAg, (f,t) at a time instant; and frequency; for i, | D{l, 2,.. ,N}

yields a symmetric square matfiag(f,t,)] that describes the pairwise relationship of phase

difference at the frequendyfor all the EEG channels gttime instant as shown in Figure 1.
For computing the average response within a sulgjemtp the individualAg, ;(f,t) were
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averaged over all the subjects to get the averageelet response for the group in
consideration. Therefore, if the frequency bandntérest BO{B,)} is spanned over the

frequencies{ﬁ,fz,---,fM} then the instantaneous phase difference matriBfat timet as

shown in Figure 2 can be formulated as (5)-(6).

[YEO RS WYICR) ©)
(0o, () =2 2@ g, © ©)

where(h;),,, (t)is the {, j)" element of the matrpAg, (t)]and (@ ,)ap, () is the T, jm
element 0[A¢fk (t)]. Subsequently{AqﬁB(t)] can be computed at different time instants

{t,t,,+-,1, }resulting in a set of such matri({a%(tl)], [quB(tz)],---, [Ach(tn)] like that

shown in Figure 3 that describes the complete mcai temporal evolution of the phase
difference from the onset of a stimulus till thedeaf the corresponding action in the
particular frequency banB over all the EEG channels on the scalp. The wpobeess is
pictorially depicted in Figure 1-Figure 3. As evndedue the high dimensionality of the
clustering problem, a simple cluster discriminatibrough a scatter plot is not possible in the
present study. In our clustering framework, at e@mie instant the dimension of the feature
space, denoting all possible cross-electrode pinésenation, becomebl” and the clustering

algorithm considers the evolution of each elentogr(tt)along time.
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Figure 3. Computation of band-specific phase déffice matrix from the onset of a stimulus
till the end of the desired time window.

2.4 Clustering of phase difference matrices into unigset of ‘states’

Once all the cross-electrode phase difference ceatrior a particular band are
formulated over the entire duration of a specifiatk interval — in our case, we are interested
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to see the temporal evolution of these topograpaiesubsecond order time interval — the
next pertinent question is whether there existswamgue ‘spatio-temporal pattern’ of phase
difference topographies during the execution ofdbgnitive task. The first step for that is to
identify all ‘possibly unique’ topographies oveetbntire time duration of interest. A certain
class of pattern recognition techniques could bg@leyed for this purpose. Thiemeans
clustering is one such unsupervised pattern retiogntechnique. For a give dataset

X :{xp},pD[1,~--,P], assuming the number of underlying clusters iswkmok-means

algorithm iteratively minimises a cost function givbelow (7).

3(00)= 30,6, @)

p=1q=1

whereg =[4,,...6,.]",| Olis the Euclidean distanag,is the centre of a cluster ang, =1 if

Xp lies closest t@y; 0 otherwise. Initiallyk centroids are defined and depending on how near
the data vector is to the centroids, it is assigiwed class. Thé& centroids are iteratively
recalculated and the data is reassigned to thesecestroids until the data vectors fron
form compact clusters and the cost functioils minimised. Initially a rangeyin, Mmax] IS
defined for possible clustera for the dataseK. The k-means clustering runs (n random
initializations) times for eacn within that range and for everyruns the minimum value of
the cost functiond,, (as shown in (7)) is calculated and stored. Thst danction Jn,
essentially indicates the sum of distances of @@-goints from the nearest cluster mean
whenm clusters are considered. The valuelgis dependent on the number of clusters and
also the dataset under consideration whereas aJailgie ofJ, represents a less compact
cluster. Thus we search for a ‘knee’ in the plofpagainsim as an indication of the number
of optimal clusters underlying the data. If thetp®J, againstm shows a significant ‘knee’
atm =my (say) then it signifies that the number of optimcionsters underlying the datasét

is likely to bemy. To be noted that in the plot df versusm it is typical to have multiple
such knees am varies within its selected range. In cases, whiegee is an increase in thg
value, it indicates that the distance betweenhal data points with respect to the nearest
mean of clusters has increased. This increase dmuldue to the splitting of large compact
clusters into several smaller ones, caused byasarg the value ofn. In such a case, one
need to consider the earliest and the most promkmege as theharacteristic knee and the
correspondingm as the underlying number of clusters as it expldine dataset with
minimum complexity. Another important point to ndteat the absolute value @f, in the
plot of J,, againstm is not important but the value of at whichJ,, attains minimum value
(the significant knee) is the important parameteraating the number of underlying clusters.
This method is also known as incremeriaheans or elbow method and is widely used to
find the optimum number of clusters in a given esga

In a higher dimensional feature space, the landscdghe cost functiod(d) may
have multiple local minima and there is small ptaligy of finding a higher value of the
cost function if a local minima has been found iy dptimization process. Since theneans
clustering have the problem of getting trappedacal minima, it should be run multiple
times with different initialization of the clustemeans and the best result with the minimum

8
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value of the cost function should be considerecrdtore in our method, the best-results of
the k-means algorithm for each choice lofis considered out ofi = 10 different random
initializations of the cluster means. This way therementalk-means plots the best cost
function to obtain thd,, as also suggested in (Theodoridis et al. 2010).

The unsupervised learning technique adopted hebassd on the concept of hard
clustering, i.e. a single data-point correspondmgach time instant should belong to one of
the clusters, because in a temporal resolutionibiisetond, we assume that the brain stays
only in one state. Other paradigms of soft cluatgtike fuzzyc-means or similar methods
(Dimitriadis et al. 2013) where a single data-paan be associated with more than one
cluster according to its degree of associativitthvdifferent classes, could also be applied to
the present problem.

In our caseX is the dataset of all pairwise EEG instantaneduase differences
[A¢B(tl)},[A¢B(t2)}, ...,[A¢B (tn)}, as a function of time. We clustered the datasatong

time t, for a chosen frequency bamj to find out unique phase difference patterns. The
algorithm yieldsk centroidsg, for each cluster or state and a vector of lengthith the

corresponding state or cluster labels for el (t)] for every time instance over which we

clustered. The centroids hold average informatarefich of the clustered states whereas the
cluster labels signify when in time each state basurred. Once the phase-difference
matrices are uniquely clustered over different tinstances, the centroids are translated into
corresponding colour-coded head-map topographidewing arbitrary colour coding
convention. This is done by first calculating thei@ge phase difference seen at a particular
electrode with respect to the rest of the elecsadde taking row-wise average (g, (t)]

and considering it as the average phase differantteat electrode index corresponding to the
considered row and assigning a particular coloaresponding to the numerical value of that
phase difference and finally transforming it toantour plot. Such head-map topographies
give a visual representation of the distributioraeérage phase differences between different
regions of brain over the scalp. Note that thesésghould not be viewed or compared to the
typical EEG potential plots or the power spectrulmt pypically generated in quantitative
EEG (gEEG) analysis. Here the plots show the gpissse difference between different
electrodes over the scalp over a particular timedatv. Higher numerical values represent
greater gross phase difference of the electrode alitthe other electrodes and low values
indicate that the electrode has relatively lesssptdifference with all the other electrodes in
that configuration. We term the set of topograpluwgters identified using-means algorithm
as synchrostates. The state labels are used tdrwcina transition plot to illustrate the
switching sequence of the synchrostates over the tif the EEG recording. This is simply
done by plotting the time labels yielded by thestduing algorithm.

3. Results

As mentioned previously, we restrict our study anlyhef andy band since research
indicated that they are directly related to therstige task related to face perception (Wrobel
2000)(Lachaux et al. 2005). We present the regultwo steps: first as a population average
and then for individual subjects belonging to ayapon. To study the population average
we first formulate the average phase differenceirédr each subject by taking the mean of
the phase difference matrices across all trailenTle take an average of the phase matrices
of each subject belonging to that population atryguwene instant and invok&-means
clustering on that set of average matrices as ibestm Section 2.2 and 2.3. In essence this

9
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gives a general picture of temporal evolution ofag# relationship between different
electrode sites for a specific population. Our ergtion shows that the cost function for
clustering does not fall arbitrarily with the inese in the number of clusters confirming the
existence of a finite number of compact underlychgsters or states during the whole time-
course of the EEG data. The detailed results feritilividual groups are furnished in the
following subsections.

3.1 Typical development

Figure 4 shows the results of tkeneans clustering algorithm in both the bands for
all the given stimuli from the population averagel@ children with typical development
(group I). It is clear that the dominant knee odtcminction for all the three stimuli appears at
k = 3 although in some cases after the knee the faostion increases and then again
decreases. These are the typical situations alrdsdyssed in Section 2.4 and accordingly
where the earliest knee appeared needs to be eoadidnly. This means that in the dataset
considered, there exist three unique phase differematrix configurations — synchrostates —
from the onset of stimulus till the end of an aetio
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Figure 4:k-means clustering result gfandy band for the typical group.

In Figure 5, from the corresponding head-plots ievident that the topographies of
all the three synchrostates are very similar fothe different stimuli in th¢ band. A similar
result is observed for theband in Figure 6 where the synchrostate topogcapluts are
similar and more importantly closely resembles ltose obtained in thg band although
differing slightly in the numerical values, in pattlar in the reddish hue regions. Here, each
of the colours in the head topographies signifyagigular range of phase differences as
shown in the legend (in a normalized scale witpeesto the maximum and minimum phase
difference amongst all the states). However, agrasting difference is observed in the state
transition plots shown in Figure 7. Although in bdhe bands the transitions start from state
2, the overall transition patterns are marked|yedént not only between theandy band but
also between different stimuli within a band. THEmonstrates the stimulus specific nature
of the synchrostates.
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Typical states in B band

State 1 State 2 State 3

Figure 5: The topographic map for all the thremasti in § band for the typical group.
Typical states in y band
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Figure 6: The topographic map for all the thremasti in y band for the typical group.
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Figure 8:k-means clustering result gfandy band for the ASD group.

The k-means clustering results for ASD population (Grélup Table 1) is shown in
Figure 8 for thes andy bands for all the three applied stimuli i.e. fegrhappy and neutral
faces. Once again the significant knee appear& at 3 implying existence of three
synchrostates similar to the typical case. Theesponding phase difference topographies
over the scalp are shown in Figure 9-Figure 10 eedIplots. It appears that although the
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stimuli are different the topographies are neaityilar in the g bands (in Figure 9) in
particular for state 1 and state 3. However topalges corresponding to state 2 are markedly
different. On the other hand, jnband the state 1 for happy and neutral stimulisarelar
while it differs significantly for fear stimulus {Gure 10). State 3 shows close similarity
under all the three stimuli. The time-course pluftshe synchrostate transition are shown in
Figure 11. In both of the bands the time coursésphoe markedly different depending upon
the stimulus and thereby indicating different temapatability period of the synchrostates at
different points in time.

ASD states in § band
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Happy

Neutral

State 1 State 2 St;x; 3

Figure 9: The topographic map all the three stirmuyi band for the ASD group.
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Figure 10: The topographic map for all the thremuli in y band for the ASD group.
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The k-means clustering when run on the population awemdghe children with low
anxiety for thef band resulted with four states for all the thrisadli i.e. angry, happy and
neutral face. This is shown in Figure 12 as aké¢hplots have the earliest significant ‘knee’
in the cost function plot & = 4. However in ther band the number of states is different for
the neutral face perception case. The number tdssta they band for angry and happy face
remain unchanged &t= 4 whereas for neutral face it is 6. In the hegubgraphies for thg
band, (Figure 13) although the number of synchtestis consistently four, their
characteristics for each different task are quiierent. From ther band head plots in Figure
14 it can be seen that the states 1, 4, 5 anddgiets are almost similar and common for all
the three stimuli. However the neutral stimulus tvas extra states which do not exist in the
other two stimuli of angry and happy as can be demn Figure 14. The transition of the
states ing band is shown for each specific stimulus in Figle It can be observed that
during the execution of the angry face stimulusititer-state transition is not as frequent as
compared to the other two stimwiz. happy and neutral. Thgband state transition shows
that except for angry stimulus for both the othiémsli the sequence start with state 4,
whereas for the angry visual stimulus it startsrfrstate 2. In the band, the state transitions
are more frequent in neutral face perception coetpén the other two stimuli as shown in
Figure 15.

Optimal k estimate -y
Fearful face Happy face Neutral face

28

4 268

{4 24

4 22
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Number of clusters
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Figure 12:kk-means clustering result gfandy band for the low anxiety group.
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Figure 13: The topographic map for all the thrémsli in g band for the low anxiety group.
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Figure 14: The topographic map for all the thremsli in y band for the low anxiety group.
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Figure 15: The time-course plot of synchrostateditéons ing andy band.
3.4High Anxiety

For the group of high anxiety subjects, as showirigure 16, for both the bands the
number of synchrostates is consistently four fdfedent stimuli. The head plots for the
averagey responses of the children as can be seen fromd=iguiare to some extent similar
across all the stimuli. This close similarity issevmore prominent in theband head plots
depicted in Figure 18. Looking at the transitiofshe states i, shown in Figure 19 we see
that they end in state 1 for all the three stimiilso state 3 is the most occurring state over
the duration shown for happy and neutral face. Tikialso the case for band state
transitions for all stimuli as shown in the Figl:@
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Figure 16:k-means clustering result gfandy band for the high anxiety group.
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Figure 17: The topographic map for all the thremslhi in 4§ band for the high anxiety group.
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Figure 18: The topographic map for all the thremsli in y band for the high anxiety group.

18



Biomedical Physics & Engineering Express

B band High Anxiety v band
Angry Angry

] g.hUUH I

i L 1 i i i 1 L
0 200 400 600 800 1000 0 200 400 600 800 1000

0 200 400 600 800 1000 0 200 400 600 800 1000
Neutral Neutral

Sl Yy | |

0 200 460 600 800 1000 0 200 460 660 860 1000
time (ms) time (ms)

Figure 19: The time-course plot of synchrostateditéons ing andy band.
3.5 Variability analysis for individual subjects

So far the reported figures for the group-wise wialhighlight subtle changes in the
average phase difference topographies over the sral state transition plots for different
stimuli. Now the statistical measures like the raadinter-quartile ranges of the inter-person
variability for the optimal number of synchrostate$oths andy band are shown in the box-
plots given in Figure 20. The red line in the pladicates the median and the crosses show
the outliers. The blue boxes denote the inter qaaidnge for the data. This is obtained by
applying k-means clustering on the phase-difference matraggined from individual
subjects at different time instants under differstinuli. The variability in the number of
synchrostates observed when results from the ithdali subjects are compared to the
respective population average is not significardr the pool of typical children we got
consistently three states for every child in ghgand but in thgg band the number of states
for the children varies from 3-7. This observatieads us to believe that the number of
synchrostates is person-specific although this rarmgbounded within a small range only.
Also in Figure 20, for ASD group in thieandy band only few subjects show 5 synchrostates
whereas the population average result as well agh® other subjects, the number of
synchrostates is consistently 3. For the low agx&td high anxiety groups (low-density
EEQG) it is interesting to note that the medianh&f humber of synchrostates varies between 5
and 6 whereas the median is consistently 3 forA8B and typical children (high-density
EEG). The important factor to note here is thatyo®0 electrodes were used for EEG
acquisition for the anxiety groups (Il and IV). i§lreduced number of electrodes inherently
introduced less resolution in computing the pha#ferdnce matrix and as a consequence
may introduce a larger variability in the synchatstformulation. Therefore it is evident that
the optimal number of synchrostates largely depemdghe number of electrodes and high-
density EEGs (as in the first two groups, Typigad ASD) are more likely to give consistent
result. Apart from that, the small variability obged in all the four cases is also expected
because of inter-person and inter-trial variabiléyd possible existence of parallel
background processes not related to the cognassie given.
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Figure 20: Box-plot of the variation in the optinmaimber of synchrostates in each group of
subjects.

3.6 Quantification of the synchrostate transition
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Figure 21: Average state transition (across differgimuli) diagrams for the typical and
ASD group in thes andy band

We now model the temporal switching sequence osyimehrostates in a probabilistic
framework for a representative case of the typacel ASD group. This is chosen due to the

fact that the high-density EEG system used in datpuisition for these two groups resulted
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into consistent results in synchrostates as mesdioearlier. However without loss of
generality the same method could be applied fotyaimey the anxiety groups as well. We

construct the transition probabilityp( = nij/z n; ) of the synchrostate sequence which show
J

the probabilistic nature of each of the state itenms. Here,n; is the number of transitions
from statei to j. The three probability values 1P P,,, and Bz show how long each state

remain stable i.e. how stable each of the staf5(,S)) are in terms of the probability of
staying in the same state, for different poputatgroups, as shown in Figure 21. The
elements of the state transition matri ({l j} D[1,2,E}) for different population are more

informative, although the phase difference topokieg for two different populations could

N
be similar. Therefore, the average value of thétsmhsitions (],/N)ZF?i , N being the

i=1
optimal number of synchrostates) for a particulandy can be considered as one of the
discriminating measure between two groups as showiable 2. It is evident from the Table
2 that in the? band with fear and happy stimuli the ASD group taisa higher probability of
self-transition than the typical case. On contrdrg y band shows an increase in self-
transition for fear and neutral stimuli.

Table 2: Self-transitions ifi andy band for the typical and ASD group with differstimuli

Typical ASD
B Y B Y
Fear 0.8432930.756196| 0.880439| 0.880439
Happy | 0.834324 0.695356| 0.904088| 0.674856
Neutral | 0.880439 0.684694| 0.757696| 0.752797

Stimuli

4. Discussion

The results shown in the foregoing section indicatg when observing in the sub-
second order temporal resolution the phase difeeretopography and hence phase
synchronisation between EEG electrodes distribubgdr the scalp for all the four
populations is bounded within a small number (tgyc3 to 7) unique patterns. These results
are based on the sensor or scalp level EEG synishtamn analysis. It is well known that
often the scalp level synchronization with zerogehéag could be confounded by the effect
of volume conduction. Therefore, a similar method gynchrony analysis could be done at
the source level. Because of the lack of spatisbltgion in EEG, source level synchrony
gives more reliable physiological interpretatiorBut the very nature of source level
synchrony analysis suffers from the lack of tempogaolution restricting such methods for
carrying out transient analysis of brain dynamicéree temporal granularity level. One way
to capture this effect is to translate the EEGHe torresponding source level using an
inverse mapping techniques. However it is well ggeped that reconstructing source activity
from EEG is an ill-posed problem and using EEG alcannot uniquely determine the spatial
locations of the underlying sources. Theoreticadigly an infinite humber of electrodes on
the scalp would allow the unique determinationha locations of the sources inside (Koles
1998). Therefore, one has to make some assumpionst the inverse problem, to obtain
optimal and unique solution which leads to appratersources (Phillips et al. 2005).
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4.1 Possible artifact and volume conduction effect

Before continuing discussion about the implicatiafsthis result one needs to
eliminate possible artefact effect that may bias tibservation. Once again we need to
emphasise that the head plots shown here are fiendahly different from those obtained
from gEEG analysis where the average power spectsuplotted over the scalp. Any
possible artefact in such cases is manifestedrasgstorrelation at the scalp edges. On the
contrary, the head plots shown here are more hkevisualisation of the phase difference
patterns distributed over the scalp. The bluishshimeply nearly zero phase difference
whereas the reddish hue implies large phase diftere

Here, each of the head plots show phase differepmgraphies existing of the order
of ms. While processing the data, as mentionecestiéh 2, we eliminated the epochs above
200 pV as possible artefacts. Therefore the dagd usour analysis is likely to be artefact
free in the first place. Secondly, since the syostate topographies are constructed in the ms
order and as the transition diagrams show that tdpographies switch from one
configuration to another and back, in the ms otaee interval, in the presence of possible
artefacts all of the states should exhibit simpaase relation at the scalp edge for all the
states which is not the case. Therefore while pm&ting the results one may eliminate the
effect of possible artefacts. This argument is aisiad for eliminating the effect of volume
conduction which one may also view as possibldaste. The synchrostate phenomenon we
report here cannot be explained by volume condactiace electrical impulses within the
human brain spread almost instantaneously thronghvalume. Hence, zero phase lag is a
characteristic of volume conduction (Thatcher e28D8) and phase delays are attributes of
network formation. Synchrostates do not report zgihase delays and thus suggests the
synchronies are not artefactual. In addition, thpairisus synchronisation phenomena
typically observed due to the presence of volumeduootion does not account for the
different synchronisation and desynchronisatiortgpas in the ms order in the switching
characteristics of the synchrostates as such efeexpected to be present for all the
synchrostate topographies in that case while ifityethe synchrostate topographies for a
stimulus are different from each other. Synchroaysed due to volume conduction would
render a constant synchronisation pattern (pha$erefice) throughout the scalp over the
observed time-course of the signal. This is notcte in synchrostates as the phase patterns
change suddenly both in strength and between etixdrover time and again remains stable
for a finite duration. From these points one magabtade that the results shown in this work
are not due to possible artefacts but manifestatibthe phenomena of transient phase
difference dynamics triggered by different faceceetion stimuli.

4.2 Existence of synchrostates

The most important finding of this study is thatothe four different subject groups
and a total of 44 subjects a small set of uniqueseldifference patterns — synchrostates —
each being stable of the order of ms have beendfearexist in thes andy band. These
synchrostates switch from one to another abrupity thereby constructing a characteristic
time-course to the applied stimulus. This is qa#liely similar to the results obtained with
microstates (T Koenig et al. 2005) albeit the mstate topographies are constructed in the
EEG amplitude domain where the number of stategpiso 10. From our experiments, we
observe that the number of synchrostates is bourmdeen 3 and 7 depending on
individual subjects, stimuli and also the numbelE&G electrodes for recording. From the
time-course plots it is evident that different Syrastates show different duration of stability
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at different time point depending on the appliathatus and thereby possibly capturing the
dynamics of phase synchronisation at a finer teadgpanularity level.

An interesting observation for the case of typdavelopment population is that the
topographies of population average synchrostatealarost similar for all the applied stimuli
in both the bands. This is similar to our earlibservation (Wasifa Jamal et al. 2013) where
initial exploration was carried out with single n@al adult subject. Intuitively this implies
that although different stimuli have been applsdce all of them belong to the general class
of face perception task, the fundamental phaséarkhip over the scalp remains nearly the
same indicating a specific type of information gregion phenomenon pertaining to the
general face perception scenario. However the teffedifferent stimuli within the general
class of face perception is reflected in the respe¢ime-course plot which showed marked
difference as the characteristic of the appliedchshius. On the other hand, although the
topographies in the case of ASD population showedam similarities they are more
variable compared to the typical case along witkirtime-course. This may be due to the
difference in information processing in the bragtveen the two subject groups. In addition,
it is apparent that generally for the ASD group ¢iness phase difference of each electrode
across the scalp is higher than that comparedettyfhical group as there is more presence of
red and yellow hues in the ASD states in tHend (Figure 10) compared to the more blue
hues in the states for the typical (Figure 6) groilipis implies predominantly loose
synchronisation in the former case which also fallshe line of already established theory
that ASD brains show less synchronisation in infation processing compared to the
typically growing children. Individuals with autispresent atypical neural activity in face
processing and eye gaze tasks and this has beeoiadsd with later diagnosed autism
(Elsabbagh et al. 2012). Similar considerationdyafipthe children with anxiety. However
as discussed in Section 3.5 it seems that detetiomnaof the optimal number of
synchrostates depends on the electrode systemdarsdeBG recording and more consistent
result could be obtained using high-density syst&iven this fact a direct comparison
between group I-1l and 1lI-IV could be misleading thhey do not share the same number of
electrode configurations. But despite this fats gvident that the number of synchrostates in
all the four cases does not vary widely and is kednwithin a small number of 3 to 7
depending on the pathophysiological conditionshefgubject.

4.3 Physical Interpretation

Synchrostates are the states within which the-elesstrode relative phase difference
varies little over time and the corresponding tii@mrs plot indicates how long each of these
phase-difference topographies remain stable. Hareénterpretation of these states cannot
be done in an isolated way from its transition glointerpretation of the synchrostate
topographies and the state transitions should bee dogether combining the stability
duration and their respective numerical valueshafse difference. When considered together
one can formulate a synchronisation index corredimgnto each of the synchrostates from
which scalp-level functional connectivity networdutd be derived. These dynamic networks
are governed by the nature of switching patterrth@synchrostates and therefore in essence
capture the temporal evolution of functional conivety in stimulus-specific way at fine
temporal granularity level. Fundamental graph-te8or measures could be used for
characterizing such networks for gaining quantiedyi deeper insight into the temporal
dynamics of the connectivity pattern prevailingeafthe onset of stimuli and therefore may
provide a quantitative means for assessing cognftinctionalities. This approach has been
adopted in (Jamal et al. 2014) to classify a pdpmraof typical and ASD children.
Therefore, synchrostates and their associated tein@witching sequences may be
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considered as a new tool for analyzing the saaketifunctional connectivity dynamics at a
fine temporal scale given a type of stimulus intiigatowards the dynamics of information
exchange in a person-centric, and frequency baad{gp manner. A major implication is
that comparing the graph-theoretic measures, dgttafrom the functional connectivity
networks formulated through synchrostates may pewa new way of classifying different
neurodevelopment disorders.

Why such synchrostates exist and, given the fattEEG has poor spatial resolution,
how the phase difference configurations describethb synchrostates corroborate with the
actual anatomical level (or source level) connétgtiand information exchange, is still an
open question and requires further experiments amatelling activities. Thus the
neurological perspective of synchrostate topogespltheir numbers and transitions needs to
be explored in future research. Another importaat is that the results reported here are
only for face perception tasks. Whether the samenpimenon exists with other types of
stimuli, e.g. auditory stimuli or different reafdi cognitive activities is still a question to
answer. Also whether the existence of synchrosteteassociated only with the active
cognitive states or not, is an area to explore.

5. Conclusions

Our analysis described in this paper shows thaetbrist a small set of unique phase
difference patterns at ms order time interval ansonige EEG electrodes when 44 subjects
from three different neuro-pathological groups ane healthy group were subjected to a set
of facial perception task. These unique pattertsrmed as synchrostates — abruptly switch
from one to another and construct a stimulus-sigetiine course. The synchrostates and
their transition plots can together be utilizedaageneric method to understand temporal
dynamics of EEG phase synchronisation as was dor{@amalet al. 2014). Our present
exploration shows that existence of such synchi@sta consistent and exhibits only a small
variability that may be attributable to inter-persar inter-trial variation often expected to be
present in such experiments. Another possible fahtd may contribute in such variability is
the number of electrodes — less number of EEGreldes exhibiting greater variability by
introducing less resolution in computing the phdgterence pattern. Also quantification of
the synchrostate transition in different groupsdoee in a probabilistic frame in terms of the
self-transitions which might help in understandiing EEG phase synchronisation based
derivation of the functional brain connectivity.tAbugh we observed consistent number of
synchrostates their physiological origin in relatim the anatomical brain network is yet to
be established. Also it is still an open questidrethier the existence of synchrostates is a
general phenomenon associated with active cogrotweputation. However if established as
a generic phenomenon, combining the phase topogmi the synchrostates and their
temporal stability from the time-course plot, onaynestablish a set of quantitative index that
may give deeper understanding in transient phdagamship with effective connectivity in
brain which may be useful in quantifying cognitiaeility in task-specific manner as well as
classifying atypical neuropsychiatric conditiongrfr normal brain functionality.
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