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Abstract We dedicate this contribution to Prof. Arjan van der Schaft on the occa-
sion of his 60-th birthday.
We study the dynamics of energy distribution networks consisting of switching
power converters and multiple (dis-)connectable modules. We use parsimonious
models that deal effectively with the variant complexity of the network and the
inherent switching phenomena induced by power converters. We also present the
solution to instability problems caused by devices with negative impedance char-
acteristics such as constant power loads. Elements of the behavioral system theory
such as linear differential behaviors and quadratic differential forms are crucial in
our analysis.

1 Introduction

In recent years, the development of a new paradigm of energy generation and dis-
tribution systems has become a pressing research question. Issues such as the urge
to reduce CO2 emissions, the compelling advantages of renewable energy genera-
tion and the undesirable power losses in complex transmission lines, have motivated
the development of distributed energy generation systems based on renewable en-
ergies [31]. However, the intermittent nature of renewable energies is reflected in
the characteristics of the voltages/currents (e.g. amplitude and frequency) provided
by transducers, prompting to regulate such variables to satisfy the nominal require-
ments of the the loads.

In order to achieve voltage/current/frequency regulation and distribution of elec-
tricity, interconnections of power converters are implemented; however, their inter-
action can display unstable behaviors (see [3, 30, 32]). A common example of this
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issue is the negative impedance instability produced by current/voltage controlled
converters behaving as constant power loads (see [17]). In order to address instabil-
ity problems, we first need to choose a modeling framework that is suitable to de-
scribe the network characteristics. We consider the network as a complex switched
system whose dynamic modes with variant state space dimension are induced by
switching power converters and the arbitrary (dis-) connection of loads.

There exist traditional approaches to switched systems based on state space- (see
e.g. [7]) and descriptor form- (see e.g. [23]) representations, where the dynamic
modes share a global state space. However, the fact that the dynamic modes of
energy distribution networks do not necessarily share the same state space engenders
three main disadvantages in current approaches:
1) Loss of parsimony. The complexity of “lower order modes” needs to be increased
by adding fictitious variables and equations, only to satisfy a predefined global struc-
ture, see [11, 12].
2) State representations are not given a priori. The modeling of elements of the
network as impedances offer considerable computational advantages when dealing
with complex scenarios (see e.g. [6]). Such approach leads directly to higher-order
descriptions and not state space representations. Consequently additional computa-
tions must be performed to derive state space models.
3) Loss of modularity.The incremental modeling of the dynamic modes in the bank
is not permitted, i.e. new dynamic modes cannot be added to the underlying bank
without altering the existing ones. The need to allow for incremental modeling arises
naturally in an energy distribution network when new loads are connected to the
network, see [11].

These issues motivated the development of the switched linear differential sys-
tems framework (SLDS) in [9, 10, 11, 12, 18, 19], which is not representation-
oriented and thus permits the use of the type of models that are most natural for
each application (e.g. the modeling of impedances). This approach is based on the
concepts of behavioral system theory, and allows the modeling of dynamic modes
expressed by sets of linear differential equations that do not necessarily share the
same state space, as well as the introduction to new dynamic modes to the bank
without altering the existing ones. In this chapter, we study the notion of passiv-
ity in the SLDS framework, using quadratic differential forms (see [27]) as a tool
to model energy functions of the network. We also derive a systematic procedure
to design passive stabilizing filters in terms of standard bilinear- and linear matrix
inequalities, that can be easily constructed from the higher-order models.

2 Notation

We use the following notation. The space of n dimensional real vectors is denoted
by Rn, and that of m× n real matrices by Rm×n. R•×m denotes the space of real
matrices with m columns and an unspecified finite number of rows. Given matri-
ces A,B ∈ R•×m, col(A,B) denotes the matrix obtained by stacking A over B. The
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ring of polynomials with real coefficients in the indeterminate s is denoted by R[s];
the ring of two-variable polynomials with real coefficients in the indeterminates ζ

and η is denoted by R[ζ ,η ]. Rr×w[s] denotes the set of all r× w matrices with
entries in s, and Rn×m[ζ ,η ] that of n× m polynomial matrices in ζ and η . The
set of rational m×n matrices is denoted by Rm×n(s). The set of infinitely differen-
tiable functions from R to Rw is denoted by C∞(R,Rw). D(R,Rw) is the subset of
C∞(R,Rw) consisting of compact support functions. For a function f : [t−ε, t)→R•
we set the notation f (t−) := limτ↗t f (τ); and similarly for f : (t, t+ε]→R• we set
f (t+) := limτ↘t f (τ), provided that these limits exist.

We also use standard concepts and notation of the behavioral setting, in particular
those of linear differential behaviors, state maps and quadratic differential forms.
A simplified collection of the theory that is relevant for the presented results can be
found in App. A, p. 2046 of [12].

3 Modeling of Energy Distribution Networks

Consider the energy distribution network in Fig. 1, consisting of a switching power
converter feeding three types of loads represented by impedances. ZN represents a
nominal load, i.e. the load that is considered during the design stage of the converter
and which remains connected in the implementation. Zk, k = 1, ...,L, represents a
switched impedance, i.e. a finite amount of loads that can be connected or discon-
nected arbitrarily and which are not necessarily known during the design stage, e.g.
domestic/commercial (dis-)connectable loads, (dis-)connectable electric vehicles,
etc. Finally, ZCPL represents the negative impedance of a switching power converter
behaving as a constant power load (CPL), which is a potential destibilizer of the
network (see [8]). The CPL is modeled according to [17] as a negative impedance
in parallel with a constant current source.

Fig. 1 Energy distribution network.
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Note that the complexity of the network is neither initially bounded nor fixed,
i.e. the McMillan degree associated to each impedance depends on their constitutive
reactive elements which in the case of Zk, k = 1, ...,L, may change depending on the
loads that are connected during certain intervals of time. In the following sections we
discuss a natural modeling approach that deals effectively with this type of network.

3.1 Modeling of Loads as Impedances

When we study systems consisting of interconnections of port-driven electrical net-
works, e.g. transmission lines with points of common coupling, filters, loads, etc.,
we are compelled to adopt the calculus of m-port impedances for simplification of
computations, see e.g. [6, 15, 14, 21, 29]. In the case of energy distribution networks
this is also a common approach for the study of stability, see e.g. [8, 20, 25, 30].

Models based on impedance matrices describe the “input-output dynamics” of
the network in terms of the variables V := col(v1, ...,vm) and I := col(i1, ..., im),
corresponding respectively to the voltages across and currents through each port.
Let P

( d
dt

)
V = Q

( d
dt

)
I, with P,Q ∈Rm×m[s], be an input-output representation (see

[16]) of the network obtained by applying current and voltage laws. Adopting C∞ as
the solution space, the external behavior of the network is defined as

B :=
{

col(V, I) ∈ C∞(R,R2m)

∣∣∣∣ P
(

d
dt

)
V = Q

(
d
dt

)
I
}

. (1)

The impedance Z ∈ Rm×m(s) associated to the external behavior is defined as
Z(s) := P(s)−1Q(s). If the behavior B is controllable (see Ch. 5 of [16]), i.e.
R(s) :=

[
Q(s) −P(s)

]
is such that rank R(s) is equal to rank R(λ ) for all λ ∈ C,

then it admits an image representation[
I
V

]
=

[
U
( d

dt

)
Y
( d

dt

)]z (2)

where z ∈ C∞(R,Rz) corresponds to a latent variable and U,Y ∈ Rm×m[s] are such
that Z(s) =Y (s)U(s)−1. Moreover, if M(λ ) is of full column rank for all λ ∈C, we
conclude that the latent variable z is observable from w := col(V, I) and its number of
components corresponds to the number of inputs, i.e. z=m. A controllable behavior
always admits an observable image representation (see [28], Sec. VI-A).

Assuming controllability, the dynamic model of a network described as (2) can
be obtained in a simple way by series- and parallel computations, since any com-
plex m-port impedance matrix Z consists of the interconnection of impedances of
lower complexity. The simplest components are 1-port impedances corresponding
to inductors, resistors and capacitors, i.e. ZL(s) = Ls , ZR(s) = R , Zc(s) = 1

Cs .
The inverse of an impedance, if exists, is equal to an admittance denoted by Y , i.e.
Y = Z−1.
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Consider for instance the n-port networks in Fig. 2, whose terminals represent
an m number of terminal pairs. The resultant m-port impedance/admittance due to
series (Fig. 2 a) and parallel (Fig. 2 b) interconnections is computed as Z = Z1 +Z2
and Y = Y1 +Y2 respectively.

Fig. 2 Series/parallel interconnection of impedances/admittances

Example 1. Consider the 1-port electrical circuit in Fig. 3. The 1-port impedance of

Fig. 3 Port-driven electrical circuit.

the circuit can be computed by series and parallel operations as

Z(s) = L1s+
(L2s+R)

(
1

C1s

)
(L2s+R)+

(
1

C1s

) =
L1L2C1s3 +RL1C1s2 +(L1 +L2)s+R

L2C1s2 +RC1s+1
, (3)

which corresponds to the input-output description

L1L2C1
d3

dt3 I +RL1C1
d2

dt2 I +(L1 +L2)
d
dt

I +RI = L2C1
d2

dt2 V +RC1
d
dt

V +V .

Let for simplicity R = 1 Ω , L1 = L2 = 1 H and C = 1 F , then
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V
I

]
︸︷︷︸
=:w

=

[
d3

dt3 +
d2

dt2 +2 d
dt +1

d2

dt2 +
d
dt +1

]
︸ ︷︷ ︸

=:M( d
dt )

z ,

where z is a latent variable corresponding to the current through the inductor L2.
Since M(λ ) is of full column rank for all λ ∈C, we conclude that the latent variable
z is observable from w. ut

The calculus of impedances facilitates our analysis, for instance the energy dis-
tribution network in Fig. 1 can be simplified by computing ZTk , k = 1, ...,L, as

1
ZTk(s)

=
1

Zk(s)
+

1
ZN(s)

+
1

ZCPL(s)
; k = 1, ...,L .

The simplified network is depicted in Fig. 4.

Fig. 4 Simplification of the energy distribution network in Fig. 1.

Remark 1. It is important to emphasize that ZCPL and consequently ZTk , k = 1, ...,L,
do not necessarily correspond to impedances of passive networks as in traditional
circuit theory, since ZCPL corresponds to the local approximation of a constant power
load which is by definition non-passive (i.e. it is not positive-real in the sense of
[14]), tipically modeled as a negative resistor [17].

We have illustrated the modeling of loads as impedances, that gives rise in a natu-
ral way to higher-order descriptions. In the following section we discuss a modeling
approach that permits the study of switching dynamics induced by the DC-DC con-
verter and the switched impedance ZTk , k = 1, ...,L, directly in higher-order terms.

3.2 Switched Linear Differential Systems Framework

We now introduce the SLDS framework. We illustrate the main concepts of this
approach by modeling a switching power converter.

Definition 1 ([10]). A switched linear differential system (SLDS) Σ is a quadruple
Σ = {P,F ,S ,G } where
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• P = {1, . . . ,N} ⊂ N, is the set of indices;
• F = {B1, . . . ,BN}, with Bi a linear differential behavior and i∈P , is the bank

of behaviors;
• S = {s : R→P}, with s piecewise constant and right-continuous, is the set of

admissible switching signals; and
• G =

{
(G−k→ j(s),G

+
k→ j(s)) ∈R•×w[s]×R•×w[s] | 1≤ k, j ≤ N , k 6= j

}
, is the set

of gluing conditions.

The set of switching instants associated with s ∈ S is defined by Ts := {t ∈
R | s(t−) 6= s(t+)}= {t1, t2, . . .}, where ti < ti+1.

The set of all admissible trajectories satisfying the laws of the mode behaviors
and the gluing conditions is the switched behavior, and is the central object of study
in our framework.

Definition 2 ([10]). Let Σ = {P,F ,S ,G } be a SLDS, and let s ∈ S . The s-
switched linear differential behavior Bs is the set of trajectories w : R→ Rw that
satisfy the following two conditions:

1. for all ti, ti+1 ∈ Ts, w |[ti,ti+1)∈Bs(ti) |[ti,ti+1);
2. w satisfies the gluing conditions G at the switching instants for each ti ∈ Ts, i.e.

G+
s(ti−1)→s(ti)

(
d
dt

)
w(t+i ) = G−s(ti−1)→s(ti)

(
d
dt

)
w(t−i ) . (4)

The switched linear differential behavior (SLDB) BΣ of Σ is defined by BΣ :=⋃
s∈S Bs.

The trajectories in BΣ are piecewise infinitely differentiable functions from R to Rw

denoted by C∞
p (R,Rw), i.e. smooth when a mode is active and possibly discontinuous

at switching instants.

Example 2. Consider the high-voltage switching power converter presented in [2]
and depicted in Fig. 5 a). For practical purposes such as voltage/current/power reg-
ulation, we are particularly interested in the dynamics at the input/output terminals.
Consequently we define the external variable (the set of variables of interest) as
w := col(E, iL,v2, io).

By means of a switching signal, we can arbitrarily induce two possible elec-
trical configurations that occur when the transistor is in either closed (see Fig. 5
b)) or open (see Fig. 5 c)) operation. Considering a standard modeling of two-port
impedances for each case, we can derive the following physical laws describing the
dynamics of the power converter.

Mode 1:


L

d
dt

iL +RLiL−E = 0

(C1 +C2)
d
dt

v2 +
1
R

v2− io = 0
.
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Fig. 5 a) High-voltage switching power converter, b) electrical configuration when the transistor
is closed, c) electrical configuration when the transistor is open.

Mode 2:


LC1

d2

dt2 iL +RLC1
d
dt

iL−C1
d
dt

E + iL = 0

C2
d
dt

v2 +
1
R

v2− io = 0
.

The mode behaviors are defined as B j := ker R j
( d

dt

)
, j = 1,2, where

R1

(
d
dt

)
:=
[
−1 L d

dt +RL 0 0
0 0 (C1 +C2)

d
dt +

1
R −1

]
;

R2

(
d
dt

)
:=

[
−C1

d
dt LC1

d2

dt2 +RLC1
d
dt +1 0 0

0 0 C2
d
dt +

1
R −1

]
.

As we show later, the physical constraints imposed by physics at switching instants
can be modeled using gluing conditions. ut

According to Def. 1 gluing conditions are algebraic constraints on the trajectories
of the dynamical modes at switching instants and in real-life situations their selec-
tion is motivated by physical laws. For instance, at switching instants conservation
principles forbid instantaneous changes in conserved quantities (see [13]) such as
charge, flux, momentum, molar mass, volume, etc. Another well-known example of
this type of constraints is the case of state reset maps in multicontroller systems that
re-initialize a bank of switched controllers interconnected to a plant.

Example 3 (Cont’d from Ex. 2). At switching instants the physical laws of the circuit
impose constraints to the trajectories of the external variable at switching instants.
By inspecting the circuits in Fig. 5 and using the principle of conservation of charge
(see [13], Sec. 3.3.3), we find the following conditions at switching instants.
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When switching from B1 to B2 at ti:

iL(t+i ) = iL(t−i ) ,

E(t+i )−RLiL(t+i )−L
d
dt

iL(t+i )︸ ︷︷ ︸
v1(t

+
i )

= v2(t−i ) ,

v2(t+i ) = v2(t−i ) .

(5)

When switching from B2 to B1 at ti:

iL(t+i ) = iL(t−i ) ,

(C1 +C2)v2(t+i ) =C1E(t−i )−C1RLiL(t−i )−LC1
d
dt

iL(t−i )︸ ︷︷ ︸
C1v1(t

−
i )

+C2v2(t−i ) . (6)

Consequently, the gluing conditions can be defined as

G+
1→2

(
d
dt

)
:=

0 0 1 0
1 0 (−RL−L d

dt ) 0
0 0 0 1

 ; G−1→2

(
d
dt

)
:=

0 0 1 0
0 0 0 1
0 0 0 1

 ;

G+
2→1

(
d
dt

)
:=
[

0 0 1 0
0 0 0 (C1 +C2)

]
; G−2→1

(
d
dt

)
:=
[

0 0 1 0
C1 0 (−C1RL−LC1

d
dt ) C2

]
.

Equations (5)-(6) can be compactly written as

G+
1→2

(
d
dt

)
w(t+i ) = G−1→2

(
d
dt

)
w(t−i ) ;

G+
2→1

(
d
dt

)
w(t+i ) = G−2→1

(
d
dt

)
w(t−i ) .

ut

A realistic set of gluing conditions are well-defined and well-posed. In order to
introduce these concepts, we use the notion of state maps.

Definition 3. Let Σ be a SLDS and let X j ∈Rn(B j)×w[s], induce minimal state maps
for B j, j = 1, ...,N. The gluing conditions are well-defined if there exist constant
matrices F−j→k and F+

j→k, with j,k = 1, ...,N, j 6= k, such that G−j→k(s) = F−j→kX j(s)
and G+

j→k(s) = F+
j→kXk(s), with j,k = 1, ...,N, j 6= k.

If G := {(F−j→kX j(s),F+
j→kXk(s))} j,k=1,...,N, j 6=k. are well-defined, we call them

well-posed if for all k, j = 1, . . . ,N with k 6= j, there exists a re-initialisation map
L j→k :Rn(B j)→Rn(Bk) such that given a switching signal s∈S such that s(ti−1) =
j and s(ti) = k; for all ti ∈ Ts and all admissible w ∈ BΣ with associated latent
variable trajectories, it holds that X j

( d
dt

)
w(t+i ) = Lk→ jXk

( d
dt

)
w(t−i ).
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Well-defined and well-posed gluing conditions imply that if a transition occurs
between B j and Bk at ti, and if an admissible trajectory ends at a “final state”
v j := X j

( d
dt

)
w(t−i ), then there exists at most one “initial state” for Bk, defined by

Xk
( d

dt

)
w(t+i ) =: vk, compatible with the gluing conditions. Moreover, the matrix

L j→k determines the re-initialization of the state space of Bk as a linear function of
that of B j, as illustrated in Fig. 6.

Fig. 6 Example: Switching between dynamical modes with different state space and well-posed
gluing conditions.

Example 4 (Cont’d Ex. 2). Consider the following state maps for B1 and B2 respec-
tively.

X1

(
d
dt

)
:=
[

0 0 1 0
0 0 0 1

]
; X2

(
d
dt

)
:=

0 0 1 0
1 0 (−RL−L d

dt ) 0
0 0 0 1

 ;

inducing the states X1
( d

dt

)
w = col(iL,v2) and X2

( d
dt

)
w = col(iL,v1,v2). The gluing

conditions can be written as

G+
1→2

(
d
dt

)
:= I3X2

(
d
dt

)
; G−1→2

(
d
dt

)
:=

1 0
0 1
0 1

X1

(
d
dt

)
;

G+
2→1

(
d
dt

)
:=
[

1 0
0 (C1 +C2)

]
X1

(
d
dt

)
; G−2→1

(
d
dt

)
:=
[

1 0 0
0 C1 C2

]
X2

(
d
dt

)
.

It is thus a matter of straightforward verification to conclude that the gluing condi-
tions are well-defined and well-posed according to Def. 3. ut



Title Suppressed Due to Excessive Length 11

The properties of well-definedness and well-posedness are in general satisfied for
common implementations of energy networks, consider for example the following
proposition.

Proposition 1. Assume that switching among the dynamical modes of a switched
electrical network described does not involve short-circuiting of voltage sources, or
open-circuiting of current sources. Then the gluing conditions are well-defined.

Proof. If switching between modes does not involve short- or open-circuiting
sources, no constraints on the input variables of the system are imposed at the
switching instants. Consequently, the gluing conditions only impose constraints on
the output variables of the modes, which are linear functions of the state variables.
The claim follows. ut

Well-posed gluing conditions (see Def. 3) guarantee that after a switching instant
only one initial state for the new dynamical regime is specified from the final state of
the previous one. Such property holds since the switching cannot cause any increase
in the total amount of charge or flux stored in the system. On this issue, see [13]
where the analysis of a wide variety of physical systems exhibiting discontinuities
is presented, and [4, 5, 22]. In the rest of this paper we assume that the gluing
conditions are well-posed.

3.3 Latent Variables

As discussed in the previous section, controllable mode behaviors can be described
using observable image representations w = M j

( d
dt

)
z j, j = 1, ...N. It follows that

every trajectory of the latent variable z j corresponds to a unique trajectory of the
external variable w when the j-th mode is active. In the rest of this chapter we adopt
the use of image representations where w := (u,y) has m inputs and m outputs,
denoted by u and y respectively, and corresponding to port- voltages and currents,
as discussed in Sec. 3.1.

Example 5 (Cont’d from Ex. 2). Recall that w := col(E, iL,v2, io). It can be verified
that the mode behaviours B j, i = 1,2, are controllable and thus can be described by
w = M j

( d
dt

)
z j, j = 1,2, where

M1

(
d
dt

)
:=


L d

dt +RL 0
0 (C1 +C2)

d
dt +

1
R

1 0
0 1

 ;

M2

(
d
dt

)
:=


LC1

d2

dt2 +RLC1
d
dt +1 0

0 C2
d
dt +

1
R

C1
d
dt 0

0 1

 ;
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and z1 := col(iL,v2), z2 := col(v1,v2). Moreover, since M j(λ ), j = 1,2, are full
column rank for all λ ∈ C we conclude that the latent variables z j, j = 1,2 are
observable from w. ut

According to Def.s 1 and 2, the gluing conditions are algebraic constraints acting
on the external variables at switching instants; however, they can be rewritten in
terms of latent variables z j, j = 1, ...N, in the following manner. Define

G+
s(ti−1)→s(ti)

(
d
dt

)
:=
(

G+
s(ti−1)→s(ti)

Ms(ti)

)( d
dt

)
,

G−s(ti−1)→s(ti)

(
d
dt

)
:=
(

G−s(ti−1)→s(ti)
Ms(ti−1)

)( d
dt

)
,

with s ∈ S . Consequently, if w and z j are related by an observable image repre-
sentation w = M j

( d
dt

)
z j, the gluing conditions in (4) can be equivalently written

as

G+
s(ti−1)→s(ti)

(
d
dt

)
zs(ti)(t

+
i ) = G−s(ti−1)→s(ti)

(
d
dt

)
zs(ti−1)(t

−
i ) .

Example 6 (Cont’d from Ex. 5). Given the gluing conditions in Ex. 4, we can refor-
mulate them in terms of latent variables using M1

( d
dt

)
and M2

( d
dt

)
as follows.

G−1→2

(
d
dt

)
:=
(
G−1→2M1

)( d
dt

)
=

1 0
0 1
0 1

 ,

G+
1→2

(
d
dt

)
:=
(
G+

1→2M2
)( d

dt

)
=

C1
d
dt 0

1 0
0 1

> ,

G−2→1

(
d
dt

)
:=
(
G−2→1M2

)( d
dt

)
=

[
C1

d
dt 0

C1 C2

]
,

G+
2→1

(
d
dt

)
:=
(
G+

2→1M1
)( d

dt

)
=

[
1 0
0 C1 +C2

]
.

ut

4 Modularity

One of the main features of this framework is its modularity; every time a dynamic
mode is added to the underlying bank, there is no need to modify the mathematical
description of the existing modes. In the case of the energy distribution network in
Fig. 4, the dynamic modes of the converter and the loads can be individually mod-
eled and linked in a single model by the elimination of auxiliary variable. Consider
the following proposition.
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Proposition 2. Consider the energy distribution network in Fig. 4. Assume that the
dynamical modes of the switching power converter can be described in image form
w = M j

( d
dt

)
z j, where M j ∈ R4×2[s]; z j = col(z1, j,z2, j) ∈ C∞

p (R,R2); j = 1,2; and

w :=
[
V I i v

]>. Let zk ∈ C∞
p (R,R), k = 1, ...,L, then there exist M̂ j,k ∈R4×2[s] such

that the mode behaviors can be described by image representations
V
I
i
v

= M̂ j,k

(
d
dt

)[
z1, j
z′k

]
, (7)

with j = 1,2, and k = 1, ...,L.

Proof. The impedance ZTk , k = 1, ...,L, is described by a one-port, and consequently
can also be represented in observable image representation by M′ ∈ R2×1[s] with
external variables w′ :=

[
I′ v
]> and a one-dimensional latent variable denoted by z′k.

It follows from the elimination theorem (see Sec. 6 of [16]) that after the elimination
of the latent variable z2, j, j = 1,2, the interconnection of this one-port with the
switching power converter has a number 2L of dynamic modes that can be described
as two-ports, corresponding to the image representations (7). ut

Example 7. Consider the energy distribution network in Fig. 4, where the DC-DC
converter is that of Fig. 5. Let pk,qk ∈ R[s], k = 1, ...,L, define Zk(s) := nk(s)

dk(s)
,

k = 1, ...,L. The mode dynamics with w := col(E, I, iL,v) are described by w =
M j,k

( d
dt

)
zk, where z1 := col(i1,z′k), z2 := col(v1,z′k), k = 1, ...,L, and j = 1,2.

M1,k

(
d
dt

)
:=


RL +L d

dt 0
0 dk

( d
dt

)
+(C1 +C2)

d
dt nk

( d
dt

)
1 0
0 nk

( d
dt

)
 ;

M2,k

(
d
dt

)
:=


LC1

d2

dt2 +RLC1
d
dt +1 0

0 dk
( d

dt

)
+C2

d
dt nk

( d
dt

)
C1

d
dt 0

0 nk
( d

dt

)
 ;

with k = 1, ...,L. The gluing conditions can be obtained by defining the impedances
Zk, k = 1, ...,L and following the procedure exemplified in Ex. 2 and Ex. 6. ut

As illustrated in Ex. 7, each mode can be modeled independently, i.e. we compute
the laws of each two-port network that depends on the mode of operation of the
converter and the model of the switched impedance Zk, 1, ...,L. It can be easily
verified that the McMillan degree of each mode behavior is not fixed and depends
on the degree of the denominator of Zk, 1, ...,L. However each mode exhibits only
the required level of complexity to describe each dynamic mode. This is in sharp
contrast with the traditional approach where the dynamic modes are represented
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by d
dt x = Aix, with Ai ∈ Rn×n, i.e. considering a global state space and where n is

the highest possible McMillan degree. The latter approach results in more complex
dynamic models (with more variables and more equations), which has an impact
also on the complexity of stability analysis, simulation, control, etc. Moreover, there
is no compelling reason to resort to such non-parsimonious approach if we can study
the dynamic properties of the network directly in higher-order terms, as shown in
the following section.

5 Passivity

The concept of passivity will be crucial for the development of stability conditions
and stabilization methods discussed in this chapter. To define passive SLDS, we
first introduce the following notation. Since we require the integration of function-
als acting on w∈BΣ , we assume that they involve piecewise infinitely differentiable
trajectories of compact support whose set is denoted by Dp(R,Rw). Thus the trajec-
tories which we will be considering in the following belong to BΣ ∩Dp(R,Rw).

Let s ∈S be a fixed switching signal, with associated set of switching instants
Ts := {t1, t2, ..., tn, ...}. We denote by |Ts| the total number of switching instants,
possibly infinite, in Ts. Let

Φ :=
1
2

[
0m×m Im

Im 0m×m

]
, (8)

and let w ∈BΣ ∩Dp(R,Rw). If |Ts|= ∞, define

∫
QΦ(w) :=

∫ t−1

−∞

QΦ(w)dt +
∫ t−2

t+1
QΦ(w)dt + ...+

∫ t−n+1

t+n
QΦ(w)dt + ... .

If 0 < |Ts|< ∞, then define

∫
QΦ(w) :=

∫ t−1

−∞

QΦ(w)dt +
|Ts|

∑
k=2

∫ t−k

t+k−1

QΦ(w)dt +
∫

∞

t+|Ts|

QΦ(w)dt .

If |Ts|= 0, i.e. no switching takes place, then∫
QΦ(w) :=

∫ +∞

−∞

QΦ(w)dt .

The definition of passive SLDS is as follows.

Definition 4. Let Σ be a SLDS and define Φ as in (8). Σ is passive if
∫

QΦ(w)≥ 0
for all w ∈BΣ ∩Dp(R,Rw).

In the previous definition, the quadratic differential form QΦ can be interpreted
as the power that is oriented into the system, consequently, its integral over the real
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line measures the energy that is being supplied to, or flows out from the SLDS. If the
net flow of energy is nonnegative then we call the SLDS passive. Passivity implies
input-output stability (see e.g. [26]), in the sense that unbounded output trajectories
cannot occur as a consequence of bounded input trajectories (see also Sec. V of [10]
for further elaboration).

In the SLDS framework, the concept of storage function arises in a natural way,
describing the energy stored in each individual dynamical mode.

Definition 5. Let Σ be a SLDS and let s ∈S . An N-tuple
(
QΨ1 , ...,QΨN

)
is a mul-

tiple storage function for Σ with respect to QΦ if

1) d
dt QΨi

Bi
≤ QΦ , i = 1, ...,N.

2) ∀ w ∈BΣ and ∀ tk ∈ Ts, it holds QΨs(tk−1)
(w)(t−k )−QΨs(tk)

(w)(t+k )≥ 0 .

We now prove that the existence of a multiple storage function implies that the
SLDS is passive.

Theorem 1. Let Σ be a SLDS and let Φ := 1
2

[
0m×m Im

Im 0m×m

]
. Assume that there exists

a multiple storage function as in Def. 5. Then Σ is passive.

Proof. Let t0 := −∞ and let sw ∈S denote the switching signal that corresponds
to a given trajectory w ∈BΣ . We consider the three possible cases, i.e. 1) |Ts|= ∞,
2) 0 < |Ts| < ∞ and 3) |Ts| = 0. It follows from Th. 4.3 of [24], that since there

exists QΨi such that d
dt QΨi

Bi
≤ QΦ , i = 1, ...,N, then Bi, i = 1, ...,N, is passive (i.e.

dissipative with respect to QΦ ).
Let a < b, then for all w ∈ BΣ with sw(t) = i for t ∈ [a,b], it holds that∫ b

a QΦ(w) dt ≥ QΨi(w)(b)−QΨi(w)(a), corresponding to the integration over t ∈
[a,b] of QΨi ≤ QΦ , for w ∈Bi ∈Dp(R,Rw).

Since limt→±∞ w(t) = 0 for all w ∈ BΣ ∩Dp(R,Rw) we obtain the following
expressions for cases 1) and 2), where s = sw:

1)
∫

QΦ(w)≥ (QΨs(t0)
(w)(t−1 )−QΨs(t1)

(w)(t+1 ))+ ...

+(QΨs(tn−1)(w)(t
−
n )−QΨs(tn)

(w)(t+n ))+ ... .

2)
∫

QΦ(w)≥ (QΨs(t0)
(w)(t−1 )−QΨs(t1)

(w)(t+1 ))

+Σ
|Ts|−1
k=2 (QΨs(tk−1)

(w)(t−k )−QΨs(tk)
(w)(t+k ))

+(QΨs(|Ts |−1)(w)(t
−
|Ts|)−QΨs(|Ts|)

(w)(t+|Ts|)).

Since QΨs(tk−1)
(w)(t−k )−QΨs(tk)

(w)(t+k )≥ 0, ∀ tk ∈Ts, we conclude that in both cases∫
QΦ(w)≥ 0.
Finally the claim for 3) when no switching takes place, i.e. sw(t) = i for all t,

follows readily from the existence of a storage function QΨi and Th. 4.3 of [24]. ut
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The conditions for the existence of a multiple storage function can be expressed
in terms of linear matrix inequalities according to the following result (see Th. 4
of [10]) providing an LMI-based test for passivity of SLDS. In the following, the
coefficient matrix of F(s) = ∑

N
i=0 Fisi ∈ Rq1×q2 [s] is defined by

F̃ :=
[
F0 F1 . . . FN

]
. (9)

Note that F(s) = F̃
[
Iq2 sIq2 . . . Iq2sN]>.

Theorem 2. Let Σ be a SLDS with G well-defined and well-posed. Let Xk ∈Rn(Bk)×z[s]
be a minimal state map for Bk, acting on the latent variable zk, k = 1, ...,N, and
let Li→ j ∈ Rn(B j)×n(Bi) for all i, j ∈P , i 6= j, be the re-initialisations maps of Σ .
Denote the coefficient matrix of Mk(s) by M̃k :=

[
Mk,0 . . . Mk,Lk

]
; then there exist

Xk, j ∈ Rn(Bk)×m, k = 1, ...,N, j = 1, ...,Lk − 1 such that Xk(s) can be written as
X̃k :=

[
Xk,0 . . . Xk,Lk−1

]
.

If there exist Kk = K>k ∈ Rn(Bk)×n(Bk), k = 1 . . . ,N, such that

M̃>k ΦM̃k−
[

0m×n(Bk)

X̃>k

]
Kk

[
X̃k 0n(Bk)×m

]
−
[

X̃>k
0m×n(Bk)

]
Kk

[
0n(Bk)×m X̃k

]
≥ 0 ,

(10)
and moreover, if for k, j = 1, . . . ,N, k 6= j, it holds that

Kk−L>k→ jK jLk→ j ≥ 0 , (11)

then Σ is passive.

Based on this result, in the following section we develop a stabilization technique
for energy distribution networks.

6 Energy-based stabilization

To deal with instability of energy distribution networks we use passive damping
(see e.g. [1]), where a passive load (filter) is interconnected to the system in order
to guarantee stability.

We consider the case where the energy distribution network is unstable due to
the presence of constant power loads (see [17]). We proceed to design a filter that
guarantees stability when interconnected to the converter, see Fig. 7.

For ease of exposition we consider only one impedance ZT (s) and the filter as an
additional load in the array depicted in Fig. 7. The impedance function of the filter
is given by

Z f (s) =
p(s)
q(s)

; (12)

with an associated image form representation
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Fig. 7 Energy distribution network with a stabilizing filter.

[
i f
v

]
=

[
p( d

dt )

q( d
dt )

]
z′ , (13)

and whose parameters need be computed. The interconnection of impedances (12)
and ZT (s) in Fig. 7 yields

Zint(s) :=
ZT (s)Z f (s)

ZT (s)+Z f (s)
=

n(s)
d(s)

. (14)

The first step in our procedure is to obtain image representations w = Mk
( d

dt

)
zk,

i = 1, ...,N, describing each mode as in Prop. 2, and exemplified in Ex. 7. Similarly,
we model the corresponding gluing conditions and compute re-initialization maps
as in Def. 3.

The second step in our procedure is the setting up of a system of matrix inequali-
ties corresponding to the conditions of Th. 2. To make explicit the linear dependence
on the parameters of Zint , in the following we write Mk(s) and their corresponding
state maps Xk(s) respectively as Mk,ñ,d̃(s) and Xk,ñ,d̃(s), where ñ, d̃ are the coefficient
matrices of the numerator and denominator of Zint , that also involve the coefficients
of the passive filter:

M̃>
k,ñ,d̃

ΦM̃k,ñ,d̃−

[
0m×n(Bk)

X̃>
k,ñ,d̃

]
Kk

[
X̃k,ñ,d̃ 0n(Bk)×m

]
−

[
X̃>

k,ñ,d̃
0m×n(Bk)

]
Kk

[
0n(Bk)×m X̃k,ñ,d̃

]
≥ 0 , k = 1, . . . ,N ,

Kk−L>k→ jK jLk→ j ≥ 0 ,k, j = 1, . . . ,N ,k 6= j . (15)

The third step is to formalize the requirement that the filter is passive. Define

Φ
′ :=

1
2

[
0 1
1 0

]
, M′(s) :=

[
p(s)
q(s)

]
, X ′(s) :=


1
s
...

sdeg(p)−1

 , (16)
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and denote the coefficient matrices of M′ and X ′ by M̃′ p̃,q̃ and X̃ ′, respectively. With
these positions, it follows from the positive-real lemma that q

p is positive-real if and

only if there exists K′ = K′> ∈ Rdeg(p)×deg(p) such that

M̃′>p̃,q̃Φ
′M̃′p̃,q̃−

[
01×deg(p)

X̃ ′>

]
K′
[
X̃ ′ 0deg(p)×1

]
−
[

X̃ ′>

01×deg(p)

]
K′
[
0deg(p)×1 X̃ ′

]
≥ 0 .

(17)

If values of the parameters p̃ and q̃ exist such that the matrix inequalities (15),(17)
are satisfied for some Kk, k = 1, . . . ,N and K′, then the interconnection of Fig. 7 is
passive, and consequently i/o stable. Moreover, the filter q

p can be implemented
using only resistors, capacitors, inductors and transformers (see [14]).

We close this section with a numerical example.

Example 8 (Cont’d from Ex. 7). We consider the implementation in Fig 8, with RL =
0.1Ω ; L = 880µH; C1 =C2 = 220µF ; R = 500Ω . According to (12) we define the
impedance of the filter Z f (s) := p(s)

q(s) with p(s) = a0s+ a1 and q(s) = 1, for which
the a-parameters will be computed.

Fig. 8 Stable interconnection of a DC-DC converter with a passive filter and a constant power
load.

We consider the total impedance as a constant power load, i.e. ZT (s) = −RCP
with −RCP = −300Ω . Considering (14), we obtain n(s) = 300(a0 + a1s) and
d(s) = 300−a0−a1s. We thus substitute n

( d
dt

)
and d

( d
dt

)
in the dynamic models

computed in Ex. 7. Define state maps for each dynamical mode acting respectively
on the latent variables z1 and z2 as

X1

(
d
dt

)
:=

1 0
0 n
( d

dt

)
0 d
( d

dt

)
 , X2 :=

C1
d
dt 0

1 0
0 n

( d
dt

)
 ,

then for every tk ∈ Ts, the gluing conditions can be expressed as X2
( d

dt

)
z2(t+k ) =

L1→2X1
( d

dt

)
z1(t−k ) and X1

( d
dt

)
z1(t+k ) = L2→1X2

( d
dt

)
z2(t−k ), where
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L1→2 :=


1 0 0
0 1 0
0 1 0
0 0 1

 , L2→1 :=

1 0 0 0
0 C1

C1+C2

C2
C1+C2

0
0 0 0 1

 .

We now solve simultaneously the bilinear matrix inequalities (15) and (17) using
standard solvers such as Yalmip. We thus obtain a solution a0 = 377, a1 = 293×
10−6, b2 = 377. Finally, the realization of the filter with impedance Z f (s) = 293×
10−6s+377 is shown in Fig. 9. ut

Fig. 9 Realization of the stabilizing filter.

7 Conclusions

We introduced a modeling approach for energy distribution networks based on the
switched linear differential framework in [12]. We also introduce the concept of
passive SLDS and we study its relevance in the study of networks, deriving a stabi-
lization method for switching power converters feeding potential destabilizers such
as constant power loads. We have shown that elements of behavioral system theory
such as linear differential behaviors and quadratic differential forms provide suitable
tools to study the network using higher-order differential models obtained directly
from first principles.
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