
A Model-based Trace Testing Approach for Validation of
Formal Co-simulation Models

Adisak Intana, Michael R. Poppleton, and Geoff V. Merrett
Electronics and Computer Science

University of Southampton, Southampton, SO17 1BJ, UK
{ai1n10,mrp,gvm}@ecs.soton.ac.uk

ABSTRACT
This paper presents a model-based trace testing (MBTT) ap-
proach to strengthen verification and validation techniques for
formal co-simulation based wireless sensor network develop-
ment (FoCoSim-WSN). This framework enables the function-
ality and protocol algorithms to be encoded in the controller
model in the formal Event-B language. Use of proof tools
can guarantee safety properties of this formal model. Also,
network reliability and performance analysis is performed by
MiXiM simulation including e.g. the network load distribu-
tion and the network latency. However, this framework lacks
focus in validation coverage since test scenarios for the con-
troller model are generated randomly from the simulation en-
vironment. Consequently, the MBTT technique is applied to
validate the formal Event-B controller in co-models. This
technique enables us to create test scenarios from the se-
quence of events in our co-simulation master algorithm. We
use event trace diagrams, fault injection and recovery test-
ing to specify functional, failing and recovery test scenarios.
We define MiXiM co-simulation runs to generate long run-
ning test scenarios meeting our test requirements. The result
shows how failing test scenarios in these runs (“killer traces”)
enable model debugging in terms of absent or erroneous con-
straints and events.

Author Keywords
co-simulation; formal methods; wireless sensor networks;
model-based trace testing; validation coverage.

ACM Classification Keywords
D.2.4 SOFTWARE ENGINEERING: Software/Program Ver-
ification—Formal methods,Validation; D.2.5 SOFTWARE
ENGINEERING: Testing and Debugging—Tracing, Cover-
age Testing; I.6.4 SIMULATION AND MODELING: Model
Validation and Analysis

INTRODUCTION
A Wireless Sensor Network (WSN) is a distributed system
of cooperating embedded devices called sensor nodes which
are deployed to monitor and control physical real-world phe-
nomena over a self-organised wireless network topology. Ad-
vances in low-power micro-embedded devices together with
short-range wireless communication means that WSNs be-
come increasingly adopted in a number of scientific fields
e.g. environmental monitoring, traffic control, and habitat

TMS/DEVS 2015 April 12-15, 2015, Alexandria, VA
Copyright c© 2015 Society for Modeling & Simulation International (SCS)

monitoring systems. Despite the powerful capability of this
technology application, the successful development and de-
ployment of WSNs is still a challenging task as the applica-
tion is developed under the constraints of display-less, low-
level specific platform and low power design [15, 3]. Fur-
thermore, WSNs have encountered problems from real-world
deployment concerning system failures that may be caused
from node death or communication failures [3, 5]. Conse-
quently, good software engineering (SE) methodologies and
techniques are essential for WSN development.

Reliable Verification and Validation (V&V) is one of the
most important techniques to provide a good SE practice for
WSNs. The demand on V&V for WSN development is high
since WSNs are potentially being deployed in safety-critical
fields surrounded by harsh and remote environments. There-
fore, several research studies have introduced various V&V
techniques for WSN development, including formal methods
[4, 18, 8] and experiment-based testing techniques such as
simulation, emulation and testbeds [10, 7, 11]. Traditional
pure formal development gives strong verification in which
functional requirements and correctness properties - such as
a loop-free property in the route tree - are defined formally
as a safety invariant and proved that it is always satisfied
[8]. On the other hand, experimental-based testing techniques
provide confidence about reliability and performance analy-
sis through long running simulation with a stochastic physical
environment [10, 7, 11].

More recently, research studies have investigated a hybrid
V&V approach between formal methods and simulation test-
ing [13, 14, 9] to increase the strong V&V. In our preliminary
work [9], we proposed a Formal Co-Simulation (FoCoSim-
WSN) framework for WSNs providing an iterative inter-
working framework between proof-based formal verification,
Event-B, and test-based simulation approaches, MiXiM. For-
mal methods provide the controller, a formal model of code in
the real nodes, containing the protocol algorithms separately
from the physical environment. An environment simulator
provides stochastic sensed data and radio environment, allow-
ing simulation scenarios to be defined as required. The result
of this work confirms that our verified target formal controller
models satisfy their specification including functional, safety
and non-functional properties under different long running
environmental conditions in a simulation engine. However, in
terms of functional validation, this framework only provides
the coarse-gained testing in which test scenarios are generated
randomly in a simulation environment to validate the con-

922



troller model. Unexplored scenarios may still contain flaws
e.g. incorrect constraints and events in the executable formal
model. Consequently, the fine-gained testing approach sup-
porting validation coverage by using a trace testing technique
is introduced in this work.

The work we present in this paper is extended from our pre-
vious work [9]. The contribution of this work is to examine
validation of formal controller models in WSN co-simulation
by applying a model-based trace testing technique. This tech-
nique can derive test scenarios for functional, failure and re-
covery testing from a formal Event-B model, the model under
test (MUT). Different testing experiments are created from
these test scenarios and configured in the configuration file
for MiXiM, test driver in the co-simulation framework. This
work shows how “failure test cases” (“killer traces”) contain-
ing failure scenarios that can influence the model debugging
to reveal the absent or erroneous constraints and events.

The rest of this paper is organised as follow. Firstly, the
next section provides an overview of background including
the necessary approaches, methodologies and techniques we
use in this work. Secondly, we describe a model-based trace
testing (MBTT) approach for formal co-simulation. Then,
the validation mechanism influenced by the MBTT process is
expressed and demonstrated using a case study. This also de-
scribes “killer traces” for failure testing that enable the hidden
incorrect constraints and events to be detected and debugged.
Next, the results and related work are discussed. Finally, con-
clusions and areas of future work are summarised.

BACKGROUND
In this section, we introduce an overview of the languages,
approaches and techniques we use in this work. This includes
an overview of Event-B modelling and MiXiM simulation.
Furthermore, our developed formal co-simulation (FoCoSim-
WSN) framework is also expressed in this section.

Overview of Event-B Modelling
Event-B [1] is a proof-based formal method for specification
and verification based on set theory and first order predicate
logic. An Event-B model consists of two parts: context and
machine. The context describing the static part contains car-
rier sets, constants and axioms. A machine representing the
behavioural part includes the context by using the sees cause.
The machine consists of three elements: variables, invariants
and events. Dynamic behaviour in the model is defined by
events updating variables. States are described by typed vari-
ables. Invariants that state the guaranteed properties of the
model express the functional requirement and safety property.
Proof Obligations (POs), e.g. for maintenance of invariants,
are generated from the model, and proved by RODIN theorem
provers. A trace is defined by a sequence of executing events.
Each event contains guard(s), G(v) and action(s), A(v). The
event guards express the necessary conditions which must be
true to enable the event to successfully and usefully trigger,
and actions describe the state transitions over the variables.
An event with parameter t can be represented by the follow-
ing form:

e =̂ any t when G(t,v) then A(v) end.

Event-B Tool: RODIN [2] is an open tool platform based on
Eclipse. This extensible tool was developed by the European
Union ICT Project DEPLOY1(2008-2012). RODIN includes
editors, a proof obligation generator (PO-generator), graphi-
cal front ends, theorem provers and the ProB2 animator and
model checker.

Refinement is a method that allows software engineers to
manage the complexity of the development by layering the
abstraction of the models. A simple abstract view of essen-
tial requirements is implemented first. More requirement or
design detail is added at each refinement step until implemen-
tation, data structure and algorithm are added to the concrete
model in order to bring the model to become close to the real
implementation. Refinement POs state that concrete refining
events must correctly implement their counterpart abstract re-
fined events.

Overview of MiXiM Simulation
MiXiM3[11] provides a development framework for the sim-
ulation and performance analysis of wireless networks in-
cluding WSNs. It provides generic and flexible component
architecture for models based on a standard network simu-
lation engine, OMNeT++4. Nodes in the simulation repre-
sent the wireless devices with their protocol stacks. Thus,
the environment model is layered into the standard IP proto-
col stack. The data that has to be sent to a data sink is col-
lected by Application Layer (app) before sending it down to
lower layers. Next layer is the Network Layer (net) that man-
ages the route tree used to decide the next hop for transmis-
sion towards the sink. The third layer is MAC Layer (mac)
that manages power consumption by switching radio on/off
to sending/receiving packets and provides an acknowledge-
ment (ACK) mechanism for reliable transmission. The lowest
layer, the Physical Layer (phy), performs the radio propaga-
tion for packet sending and receiving.

MiXiM provides the base module (the general structure) that
contains only communication interfaces named gates that cre-
ate the connection between two adjacent layers. This base
module can be extended to implement different protocol algo-
rithms. The configuration file in MiXiM enables the specific
protocol model for each layer to be identified and their pa-
rameter values to be assigned. This defines testing scenarios
in order to analyse and evaluate non-function requirements of
network e.g. the number of successful transmissions, network
latency and network congestion.

FoCoSim-WSN framework
A Formal Co-Simulation (FoCoSim-WSN) [9] is a framework
providing co-modelling and co-simulation for WSN devel-
opment. This framework provides an iterative interworking
scheme through multiple refinement levels between the for-
mal node controller implemented by Event-B language and

1see DEPLOY - Industrial deployment of system engineering meth-
ods providing high dependability and productivity: FP7 Project
214158 - http://www.event-b.org
2see ProB - http://www.stups.uni-duesseldorf.de/ProB/
3see MiXiM -http://mixim.sourceforge.net/
4see OMNeT++ -http://www.omnetpp.org/

923



physical environment and channel models on MiXiM simula-
tion. This framework can be divided into three main compo-
nents as shown in Figure 1.

Figure 1. FoCoSim-WSN Co-simulation Framework

(1) The node software controller, representing the functional
requirement, computation and algorithm for each protocol
layer is developed and verified through refinement steps pro-
vided by Event-B and its RODIN toolkit. The safety property
defined as a safety invariant guaranteeing the absence of cer-
tain classes of fault can be proved that it is always satisfied.

(2) MiXiM provides physical and communication environ-
ment for formal node controller models. The virtual node,
node created at the simulation period by MiXiM, encodes
the base protocol stack containing the gates for the communi-
cation between formal models and environment models e.g.
physical and wireless channel models (ChannelAccess). The
connection between each virtual node can be established by
ConnectionManager and WorldUtility. Only nodes that are
placed within the maximal distance interference can commu-
nicate to each other. This is used to identify who is the neigh-
bour to receive a transmitted packet from the sender.

(3) A master, Groovy script - programmable API for ProB,
co-simulates between formal node controller and simulation
environment. Traces in Event-B controller model are imple-
mented by an Event-B interface (EventBCtl) in the master.
This class enables the instance of the Event-B model to be
created and implemented as a thread for multithreading in the
master. Each thread represents the controller of each sensor
node and exchanges input/output parameters with the physi-
cal and simulation environment encoded in the corresponding
virtual node in MiXiM. These parameters are exchanged via a
socket interface implemented in a master and MiXiM’s front-
end interface, named FMInterface. The packet parameter
(chnPar) passed from FMInterface through back-end inter-
face SimManager are transited down to/up from the wireless
channel. The receiving neighbour list (nbrLst) is generated
from the packet receiving information collected by SimMan-
ager and returned back to each node controller to perform
receiving packet operation via FMInterface and master.

The co-modelling and implementation of this framework
shows flexible mode of working. Two upper protocol lay-
ers, SensorApp for application and MintRoute for network,

were modelled in Event-B and exercised with existing phys-
ical environment models provided by lower protocol models
in MiXiM including MAC (implementing S-MAC), Pathloss
and Analogue models.

MBTT APPROACH FOR FORMAL CO-SIMULATION
Figure 2 shows the Model-Based Trace Testing (MBTT)
Approach for Formal Co-Simulation. This approach is a
specification-based testing integrated from model-based test-
ing [17] and trace checking [6] approaches. It aims to identify
test traces for the controller model testing and validation.

Figure 2. Model-based Trace Testing Approach for Formal Co-
Simulation

In co-simulation modelling and implementation, the formal
controller model, which encodes the WSN software require-
ments including the functionality and safety properties, is
created and verified through stepwise refinement. This re-
sults in the verified formal specification of the node controller
containing layered communication protocols and algorithms.
This specification model is then deployed as a model under
test (MUT), driven with an environment model, a test driver
in the co-simulation framework for the validation process.

For testing and validation, event trace diagrams (ETDs) are
used to reduce the gap for translating a nonexecutable formal
model to implementable concrete test scenarios. These dia-
grams express the sequence of events in the Event-B model
representing the scenario of the controller behaviour. ETDs
can be generated automatically from the master interface
EventBCtl. Furthermore, the generated ETD, viewed as an
abstract test scenario, can be refined to concrete test scenar-
ios by adding the interaction between the formal controller
model and simulation environment. Fault injection and recov-
ery are also considered in this step in order to create failure
and recovery test cases. Each concrete testing scenario can be
considered as an abstract representation of an executable test
case. Thus, this can derive the executable test case by adding
the specific value of the parameter being able to find errors in
a scenario execution.

MBTT IN ACTION
This section demonstrates the action taken in applying the
MBTT approach proposed in the previous section to our case
study’s controller model. To accomplish this, we start with
describing the controller modelling in Event-B in which two
upper layer protocols, SensorApp and MintRoute, are layered
through refinement steps. Then, we describe how we can
analyse and formalise the event trace in the controller model

924



in order to create abstract and concrete test scenarios, respec-
tively. Furthermore, test case production and the validation
are demonstrated, before the experiment results are discussed.
Finally, “killer traces” for detecting and debugging the hidden
erroneous constraints and events are highlighted.

Event-B Controller Models
In our previous work [9], two upper layer protocols were
modelled in Event-B. The first is SensorApp for a periodic
sensor application in which the sensed packet is transmit-
ted periodically down to the lower layer. The second is
MintRoute[19], a link quality protocol that builds the route
tree from every node towards a sink. The route tree is dynam-
ically changed based on the link quality (the successful rate
of transmitted packet delivery) between nodes. The Event-B
development for these two upper protocols constitutes initial
model M0 and five refinement models M1-M5 as shown in
Figure 3.

Figure 3. Event-B Controller Modelling Structure

SensorApp protocol modelling: an initial model M0 develops
SensorApp as a simple abstraction over the network protocol.
Then, the first two refinement M1 and M2 fulfill the opera-
tion for SensorApp. Shared events are implemented as a port
to interact with simulation environment including broadcast
packet forwarding by neighbour nodes, sensing mechanism
and adjacent layer gate communication.

MintRoute protocol modelling: the final model for Senso-
rApp protocol (M2) is refined to implement the MintRoute
protocol, performing four main mechanisms: neighbourhood
discovery, link quality estimation, route broadcast, and par-
ent selection. We start by creating the model M3 by encod-
ing neighbourhood discovery. In this refinement model, one
neighbour discovers another neighbour based on broadcasting
a beacon packet. The receiving node will record the sender as
a neighbour with the receiving information e.g. the number
of receiving and lost packets. Furthermore, this refinement
model implements link quality estimation. The estimation of
the reception (inbound) link quality ratio is calculated peri-
odically by observing the successful rate of receiving packets.
As the link quality for both directions needs to be determined,

the model M4 introduces route broadcast mechanism. The re-
ception link quality ratio needs to be attached in “route update
message” and transmitted back to the neighbour. Finally, the
model M5 implements the parent selection mechanism, per-
forming periodically to specify one of a node’s neighbours as
a parent for routing. The path cost towards a sink is calcu-
lated based on an inverse of the multiplication of both two
ratios (reception and transmission). A link which has these
two ratios less than the quality threshold is not considered. A
neighbour with the smallest path cost is chosen as a parent.

Failure detection implementation: MintRoute provides the
poor/dead neighbour detection mechanism in which each
neighbour in the neighbour table is maintained by the live-
liness value. This liveliness is set at a high value when a
new neighbour node is discovered. This value decreases over
the time and is reset back when the sensor node receives a
route update packet from the neighbour. Dead neighbours are
identified in the neighbour table when their liveliness value
becomes zero. Furthermore, this node is excluded during
performing the parent selection mechanism. We implement
dead neighbour detection mechanism and the liveliness main-
tenance mechanism in model M4.

Event-B Model Trace Analysis
Before creating test scenarios, we start analysing the event
trace representing the controller behaviour. This can be ex-
pressed by the event trace diagram (ETD)[16]. Firstly, we
extract the system scenarios represented in terms of the fi-
nite sequence of occurring events in the interface class Event-
BCtl. Then, ETDs are generated automatically from this in-
terface class by an eclipse based UML creator and generator,
ModelGoon5. Five ETDs corresponding to SensorApp and
MintRoute operations are generated. These include the data
sensing and transmission mechanisms of SensorApp, beacon
broadcasting, link quality estimation, route broadcasting and
parent selection of MintRoute protocols. These generated
ETDs can be viewed as an abstract test scenario we use to
create the concrete one described in the next section.

Figure 4. ETD describing the trace of the data sensing and transmission
mechanisms

Figure 4 shows an example of generated ETDs describing the
data sensing and transmission mechanisms for the SensorApp
protocol. These mechanisms can be described as follows.
5see ModelGoon - http://www.modelgoon.org/

925



(A1) Only active sensor node (hasSetSense==TRUE) senses
data periodically from the environment (shared event sens-
ing). Then, a data packet containing sensed data is created
(node sense pkt). (A2) if the node has a parent (complet-
edRoute==TRUE), this parent will be specified as the next
node to transmit such a created packet (start tx dataPkt fwd).
On the other hand, otherwise, it will assign the broadcast
code (-1) for the next node destination to broadcast the data
packet to all neighbours (start tx dataPkt bct). Step (A3)
demonstrates the packet transmission mechanism via the pro-
tocol stack. Each created/forwarded packet recorded in each
sender/forwarder node’s buffer is sent down (shared event
sent down) to the lower layer of the protocol stack and fi-
nally to the wireless channel, before this packet is sent up
(shared event sent up) to the upper layer of the receiving
node. This creates the alternative choices of the receiving
packet mechanism in which the receiving node including a
data sink will accept the transmitted packet (receive dataPkt
or sink recv dataPkt) or detect the incoming packet to be a
duplicated packet (receive dup dataPkt).

Deriving Concrete Test Scenarios
As described in the earlier section, two types of testing are
considered in MBTT approach for co-simulation, functional
and failure testing. The former group of testing concerns
on testing with a valid trace. Thus, we derive the abstract
test scenarios that are five ETDs achieved from the previous
section to manually identify the concrete test scenarios for
the normal transmission and calculation (grouped into TS-1).
These test scenarios fulfill information about the operation
of Event-B controller and its environment implemented by
MiXiM simulation. However, the automatic generation for
this step is required for future work.

On the other hand, the latter testing involves forcing our co-
simulation to behave consistently with fault scenarios. We
apply the fault injection technique to achieve this testing goal.
The fault model including the common failures in WSN sys-
tems after the deployment, node and link failures, together
with the recovery mechanism are implemented in a simu-
lation environment. Various failure and recovery scenarios
are configured in the simulation configuration file. These are
used to check whether our formal controller model can han-
dle the occurrence of fault. To develop this, we extend each
normal testing scenario described above by injecting the fail-
ure scenarios which can be grouped into four categories in
TS-2 to -5 and failure recovery as in TS-6. Here, the group of
achieved testing scenarios can be shown as follows:

TS-1: Normal transmission including packet unicasting and
broadcasting for both protocols and calculation for MintRoute
protocol including link quality estimation and parent selec-
tion.

TS-2: Partial link failures e.g. in Figure 5(a), some links
surrounding transmission node (node 3) lose the connection.

TS-3: All link failures e.g. in Figure 5(b), all links surround-
ing transmitting node (node 3) lose the connection.

TS-4: Single dead node e.g. in Figure 5(c), sensing node 3
dies and it does not sense and transmit any packets. Further-

more, this dead node will not receive the broadcast packet
from its neighbours such as node 2.

TS-5: Multiple dead nodes e.g. in Figure 5(d), the protocol
algorithm should exclude dead nodes 1 and 3 during perform-
ing the specific operation such as route construction. This
scenario mainly aims to evaluate the fault tolerance and re-
covery by injecting the massive failure.

TS-6: Link and node failure recovery which validates the pro-
tocol algorithm whether it is back to perform normally after
the repair point. (This is replicated from the failure detection
and repair scenario of SensorScope project6)

Figure 5. Different testing scenarios derived from ETDs

In order to generate the executable test cases, we refine our
abstract ETDs to be the concrete version that interacts with
the MiXiM environment model. Figure 6 shows one of con-
crete test scenarios in scenarios TS-2 describing partial link
failure of node 3 as in Figure 5(a). This test scenario extends
the abstract scenario described in Figure 4 with link failure
injection. The scenario flow is described in Table 1.

As can be seen in Figure 6, we indicate some links surround-
ing the sender to be failed in order to drop the link quality
ratio of failed link below the threshold. In this scenario, links
l23, l32, l35 and l53 fail at time tf before node 3 starts sensing
and transmitting a packet at time ti. This causes the neigh-
bour nodes (2 and 5) of node 3 to not receive such a trans-
mitted packet. The number of lost packets will be recorded
and used to calculate the link quality ratio which is very low
at the end. In test case TC-21 in Table 2 corresponding to this
test scenario, for example, failed time tf was set to 230s to
fail the corresponding links before the second sensing cycle
of node 3 (ti=240s). Note that we configured SensingTmr to
be 120s to indicate each node to sense data periodically every
120 seconds.

Designing and Creating Test Cases
The achieved testing scenarios provide us the guideline to de-
sign and create executable test cases that will be configured in
6the real deployment project used to derive our case study [8, 9]

926



Figure 6. Testing scenario TS-2 initiating partial links (of node 3) to be failed (corresponding to Figure 5(a))

B1 failedLnkTmr indicates the timer for the link fail-
ure. This timer activates each virtual node to get
failed link information.

B2 SensingTmr activates each node controller (e.g.
node 3) to sense data. Shared and local events
sensing and node sense pkt are used to sense and
create a data packet respectively.

B3 Shared event send down passes the packet infor-
mation to the corresponding virtual node in the
MiXiM environment. This enables the virtual
packet to be created.

B4 Then, the virtual packet is transmitted down
(sendDown()) to the lower layer and finally to the
wireless channel.

B5 Next, the transmitted virtual packet is sent up
from wireless channel to the neighbour node (han-
dleLowerMsg()).

B6 This packet is not sent up to the neighbour nodes
who have a failed link.

B7 Shared event send up passes the receiving infor-
mation from the alive receiving node in MiXiM to
the corresponding controller node in Event-B.

Table 1. Scenario flows of test scenario TS-2

MiXiM’s configuration file of our co-simulation framework.
We apply the MiXiM’s testing methodology in which multi-
ple instances of test scenarios are created to implement spe-
cific test cases configured in the configuration file. In this
work, each instance of our test scenarios (TS-1 to -6) is cre-
ated based on criteria including different number of nodes
with different network topologies (from 4 to 10 nodes with
1-hop to 4-hop network) and various periods to estimate link
quality (e.g. the link quality will be calculated every 1, 2 or 3
packet transmission cycles).

As a result of this, functional test cases are derived from each
instance of testing scenario TS-1, the normal transmission and
calculation with the perfect network. For the failure and re-
covery test case purposes, instances of test scenarios related
to the failure and recovery model (TS-2 to -6) are considered
to derive test cases. Table 2 shows 8 test cases derived from

one of test scenario TS-2’s instances for partial link failures.
These test cases are the most important test cases especially
for the MintRoute protocol. As this protocol establishes and
maintains the route tree based on the various link qualities.
Thus, most of the test cases illustrated in this table are related
to monitoring the quality of each link in the network and val-
idating the dead neighbour detection mechanism operated by
the MintRoute protocol.

TC# Objective Pass/Fail
TC-21 Detecting lost transmitted data packet

from failed links.*
Pass

TC-22 Detecting lost transmitted beacon
packet from failed links.**

Pass

TC-23 Checking cost estimation after some
link fails.**

Pass

TC-24 Detecting lost transmitted route pack-
ets from failed links.**

Pass

TC-25 Checking sentEst recorded at cycle
3.**

Pass

TC-26 Checking liveliness.** Pass
TC-27 Detecting dead neighbours.** Pass
TC-28 Checking choose parent module.** Fail

* - SensorApp and ** - MintRoute
Table 2. Some test cases corresponding to test scenario TS-2

Testing Execution and Results
Our test cases were run with co-models in the FoCoSim-WSN
framework within 1400 seconds of simulation time. The sim-
ulation executions were generated from the parameters rep-
resenting different test cases configured in the MiXiM con-
figuration file. This performed eleven sensing cycles. After
the simulation completed, we checked the actual test case re-
sults recorded in a log file by comparing it with the expected
results. Around 94% of the total number of test case results
satified the expected result. There were no failed results in the
test cases of test scenarios TS-1 and TS-4 to -6 (22 test cases
in total). However, two test cases of test scenarios TS-2 and
TS-3 enabled us to reveal the computation errors occuring in
the MintRoute algorithm as shown in Table 3.

927



# of Test CasesTS# Pass Fail Total
TS-1 6 0 6
TS-2 7 1 8
TS-3 3 1 4
TS-4 8 0 8
TS-5 4 0 4
TS-6 4 0 4

Table 3. Summary of results containing failed test cases

Discoveries from failed test cases: the failed test cases en-
able us to discover “killer traces” which can detect an error
in our formal controller model. We discovered the faults in
the parent selection operation during running of the simula-
tion with test cases TC-28 and TC-32 regarding partial and all
link failure scenarios respectively.

Considering test case TC-28 in Figure 8(a), we injected links
l23, l32, l35 and l53 corresponding to Figure 5(a) to be failed
before each node broadcasts a route update packet. We ex-
pected these failed links to affect the neighbour nodes sur-
rounding the failed link not to be able to receive a route up-
date packet. This led the transmission ratio (sentEst) of such a
neighbour node in the neighbour table to be zero. This neigh-
bour node must be excluded when each node calculates and
selects a parent. However, there was an error message re-
ported on the Groovy console when co-simulation reached
this step. We discovered that such an error came from the
wrong guard in event cal PCost le. Ideally, this event should
be enabled when there is a neighbour node who has either
the reception (receiveEst) or transmission (sentEst) ratios less
than the quality threshold. In an incorrect model, this condi-
tion is implemented as the conjunction of two guards (as @g6
and @g7 in Figure 7(a)) in which both guards have to be true.
This implements the wrong semantic which means that this
event will operate if both ratios are less than the threshold.
This led us to correct this event by combining two guards and
using the disjunction predicate to check both ratios (as @g6
in Figure 7(b)).

Figure 7. (a) incorrect guards in cal PCost le and (b) the guard after
correction

On the other hand, test case TC-32 in Figure 8(b), enabled us
to discover a missed event. This test case injected all links
surrounding the transmitting node like node 3 (as illustrated
in Figure 5(b)) to be failed before transmitting a packet. This
led to both link quality ratios of the failed link to drop be-
low the threshold. When the simulation reached to a parent
selection step, this node could not identify its parent and led
the thread of node 3’s controller to stop executing. To correct
this, we added new event choose parent skip to manage the
case that there are no suitable neighbours to be a parent.

Figure 8. “Killer Traces”of test cases (a) TC-28 and (b) TC-32, discover-
ing the error along the trace execution

DISCUSSION
Based on the experience we have gained from this work,
we confirmed the value of combining experimental simula-
tion testing and MBTT approaches. Simulation creates the
“macroscopic testing views” in which our verified formal
model can be executed coarsely with the realistic and stochas-
tic physical environment. For example, we use Signal-to-
Noise Ratio (SNR) to model transmission errors in the de-
cider and intentional interference determining packet loss.
Random coarse- and large-scale testing scenarios, generated
automatically by simulation environments, enable the non-
functional requirements regarding network performance to be
analysed and evaluated. Unlike this, the MBTT technique
provides “microscopic testing and debugging views” in which
the executable formal model can be validated finely through
various test cases. Different and specific test scenarios en-
abling validation coverage created from event traces, the
representation of system behaviours and functional scenar-
ios, can validate the correctness of formal model behaviours.
Fault injection test cases through simulation can improve test
effectiveness which creates “killer traces” to reveal the absent
or erroneous constraints and events. Furthermore, validation
coverage enabled by MBTT approach can influence simula-
tion testing techniques to be improved.

RELATED WORK
Trace checking became integrated into model-based or
model-driven software engineering paradigm to strengthen
the relationship between modelling and testing. In [6], model-
based trace testing is proposed to integrate tracing exe-
cutable formal models and automated analysis into a model-
based testing (MBT) framework. The traces are created and
recorded from the execution of the system under test (SUT),
developed by java web-based development toolkits. These
generated traces are run through ProB animator for B models
and SPIN model-checker for Promela models to check them
whether satisfy the safety, liveness and deadlock properties of
those models. Instead of generating test traces from SUT, our
work generates abstract test traces directly from the Event-
B controller interface which connects directly to the Event-B
model. These are refined to concrete test traces for validating
the model under test.

928



Malik et al. in [12] propose the application of a scenario-
based testing (a kind of model-based testing) approach using
Event-B stepwise development. Formal models, representing
functional requirements and safety properties, are translated
into Java to create SUT. Communicating Sequential process
(CSP) is used to express test scenarios from Event-B models.
These scenarios, then, generate executable JUnit test cases
for testing generated SUT. This work is the closest to our ap-
proach in which test scenarios are generated from Event-B
models. However, ETDs are used in this work rather than pro-
cess algebra to express test scenarios from Event-B models as
their graphical representation is useful for understandability.

CONCLUSION AND FUTURE WORK
We have presented how MBTT can be used to validate our
formal model in the co-simulation environment. The abstract
test scenarios are firstly generated automatically in the event
trace diagram. This diagram contains the sequence of the
events or the event traces of the Event-B controller expressing
the scenario or phenomenon of the model behaviours. More
concrete test scenarios are created manually from these ab-
stract test scenario by adding interaction between formal con-
troller model and simulation environment. Test cases are gen-
erated at the end and configured in the configuration file in
order to drive testing scenarios during co-simulation. This in-
cludes the functional, failure and recovery testing which are
used to test the valid and invalid traces. Our results show
that failing test scenarios enable “killer traces” to detect and
debug the absent or erroneous constraints and events. We be-
lieve that the validation coverage provided by this MBTT ap-
proach can strengthen the V&V including proof-based verifi-
cation and simulation-based testing techniques provided by
FoCoSim-WSN framework to enable early detection of de-
fects in WSN systems before the deployment.

As the testing framework proposed in this work supports the
semi-auto generation from the Event-B model controller to
the executable test cases in the configuration file, the mapping
between abstract and concrete test scenarios is accomplished
manually. Thus, an automatic translation between these two
models is required for future work. Open research issue is
code generation from the node controller for the real node
together with the extension of MBTT for validating generated
SUT.

ACKNOWLEDGMENTS
The authors would like to thank the Royal Thai Government
for funding a scholarship which made this research and paper
possible.

REFERENCES
1. Abrial, J.-R. Formal methods : Theory becoming

practice. Journal of Universal Computer Science 13, 5
(2007), 619–628.

2. Abrial, J.-R., Butler, M. J., Hallerstede, S., and Voisin,
L. An open extensible tool environment for event-b. In
Proc. ICFEM 2006, Springer Berlin Heidelberg (2006),
588–605.

3. Allen, M., Challen, G., and Brusey, J. Designing for
deployment. In Wireless Sensor Networks, E. Guara,
L. Girod, J. Brusey, M. Allen, and G. Challen, Eds.
Springer, 2010.

4. Bernardeschi, C., and Masci, P. Early prototyping of
wireless sensor network algorithms in pvs. In Proc.
SAFECOMP 2008, Springer-Verlag (2008), 346–359.

5. Beutel, J., Roemer, K., Woehrle, M., and Ringwald, M.
Deployment techniques for sensor networks. In Sensor
Networks - Where Theory Meets Practice. Springer,
2010, 219–248.

6. Howard, Y., Gruner, S., Gravell, A. M., Ferreira, C., and
Augusto, J. C. Model-based trace-checking. Computing
Research Repository abs/1111.2825 (2011).

7. Imran, M., Said, A. M., and Hasbullah, H. A survey of
simulators, emulators and testbeds for wireless sensor
networks. In Proc. ITSim 2010 (2010), 897–902.

8. Intana, A., Poppleton, M. R., and Merrett, G. V. Adding
value to wsn simulation through formal modelling and
analysis. In Proc. SESENA 2013, IEEE (2013), 24–29.

9. Intana, A., Poppleton, M. R., and Merrett, G. V. A
formal co-simulation approach for wireless sensor
network development. ECEASST 70 (2014).

10. Kiess, W., and Mauve, M. A survey on real-world
implementations of mobile ad-hoc networks. Ad Hoc
Netw. 5, 3 (Apr. 2007), 324–339.

11. Köpke, A., and et al. Simulating wireless and mobile
networks in omnet++ the mixim vision. In Proc.
SIMUTools 2008, ICST (2008), 71:1–71:8.

12. Malik, Q. A., Laibinis, L., Truscan, D., and Lilius, J.
Requirement-driven scenario-based testing using formal
stepwise development. International Journal On
Advances in Software 3, 1 & 2 (2010), 147–160.

13. Matouek, P., Ryav, O., De, G. S., and Danko, M.
Combination of simulation and formal methods to
analyse network survivability. In Proc. SIMUTools 2010,
ICST (2010), 6.

14. Niazi, M., and Hussain, A. A novel agent-based
simulation framework for sensing in complex adaptive
environments. Sensors Journal, IEEE 11, 2 (Feb 2011),
404–412.

15. Pietro, G. P. Software engineering and wireless sensor
networks: Happy marriage or consensual divorce? In
Proc. FoSer 2010, no. 4, ACM (2010), 283–286.

16. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Lorensen, W. Object-oriented Modeling and Design.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991.

17. Utting, M., and Legeard, B. Practical Model-Based
Testing: A Tools Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2007.

18. Wang, A., Basu, P., Loo, B. T., and Sokolsky, O.
Declarative network verification. In Proc. PADL 2009,
Springer-Verlag (2009), 61–75.

19. Woo, A., Tong, T., and Culler, D. Taming the underlying
challenges of reliable multihop routing in sensor
networks. In Proc. SenSys 2003, ACM (2003), 14–27.

929


