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Abstract

The cycling of material from Earth’s surface environment into its interior can couple mantle oxidation state

to the evolution of the oceans and atmosphere. A major uncertainty in this exchange is whether altered

oceanic crust entering subduction zones can carry the oxidised signal it inherits during alteration at the

ridge axis, past the arc front and into the deep mantle for long-term storage. However, recycled oceanic

crust may eventually be entrained into mantle upwellings and undergo melting at ocean islands, creating

the potential for basalt chemistry to constrain the nature of past solid Earth–hydrosphere redox coupling.

Numerous independent observations suggest that Iceland contains a significant recycled oceanic crustal

component, making it an ideal locality to investigate links between redox proxies and geochemical indices

of enrichment. We have interrogated the elemental, isotope and redox geochemistry of basalts from the

Reykjanes Ridge, which forms a 700 km transect of the Iceland plume. Over this distance, geophysical

and geochemical tracers of plume influence increase dramatically, with the basalts recording both long-

and short-wavelength heterogeneity in the Iceland plume. We present new high-precision Fe-XANES mea-

surements of Fe3+/
∑

Fe on a suite of 64 basalt glasses from the Reykjanes Ridge. These basalts exhibit

positive correlations between Fe3+/
∑

Fe and trace element and isotopic signals of enrichment, and become

progressively oxidised towards Iceland: fractionation-corrected Fe3+/
∑

Fe increases by ∼ 0.015 and ∆QFM

by ∼ 0.2 log units. We carefully rule out a role for sulfur degassing in creating this trend, and by consid-

ering various redox melting processes and metasomatic source enrichment mechanisms, conclude that an

intrinsically oxidised component within the Icelandic mantle is required. Given the previous evidence for

entrained oceanic crustal material within the Iceland plume, we consider this the most plausible carrier of

the oxidised signal.

To determine the ferric iron content of the recycled component ([Fe2O3]source) we project observed liquid

compositions to an estimate of Fe2O3 in the pure enriched endmember melt, and then apply simple frac-

tional melting models, considering lherzolitic and pyroxenitic source mineralogies, to estimate [Fe2O3](source)

content. Propagating uncertainty through these steps, we obtain a range of [Fe2O3](source) for the enriched

melts (0.9–1.4 wt%) that is significantly greater than the ferric iron content of typical upper mantle lherzo-
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lites. This range of ferric iron contents is consistent with a hybridised lherzolite–basalt (pyroxenite) mantle

component. The oxidised signal in enriched Icelandic basalts is therefore potential evidence for seafloor–

hydrosphere interaction having oxidised ancient mid-ocean ridge crust, generating a return flux of oxygen

into the deep mantle.

Keywords: Mantle fO2, XANES, oxygen, mantle heterogeneity, pyroxenite

1. Introduction1

The movement of oxygen between the surface and subsurface of the planet has played a key role in the2

compositional and physical evolution of all terrestrial reservoirs (Frost, 1991). One means of reconstructing3

past oxygen fluxes is from mantle rocks, which can preserve chemical signals of ancient and modern redox4

processes through subduction recycling. Models of the modern surface oxygen budget emphasise the role of5

oceanic crust as a long-term sink for oxygen via seawater sulfate reduction during hydrothermal processes at6

the ridge axis (Lécuyer and Ricard, 1999; Sleep, 2005). This oxygen is bound into the oceanic crust as ferric7

iron (Fe2O3) and returned to the mantle during subduction, where it may enter into the mantle’s convective8

circulation, or be rapidly extracted at subduction zones (Kelley and Cottrell, 2009). If subduction has9

transported oxygen from the hydrosphere into the deep Earth then basalts sampling trace element-enriched10

mantle domains, which are commonly attributed to ancient recycled oceanic crust (Chase, 1981; Stracke,11

2012), should be oxidised relative to basalts sampling ambient mantle (Carmichael, 1991; Lécuyer and Ricard,12

1999). However, a prediction that all enriched mantle domains sample oxidised slabs is inconsistent with the13

recent finding that some enriched mantle domains, far from plumes, are more reduced than ambient mantle14

(Cottrell and Kelley, 2013). Here we investigate the role of enriched mantle domains in solid Earth redox15

cycling, with a focused regional study of the Fe2O3 content of plume-influenced mid-ocean ridge basalts16

around Iceland.17

We have made new high-precision determinations of the proportion of ferric iron, expressed as Fe3+/
∑

Fe,18

by X-ray absorption near edge structure (XANES) spectroscopy in 64 basalt glasses from the Mid-Atlantic19

Ridge south of Iceland (the Reykjanes Ridge, Murton (1995); Murton et al. (2002)). The compositional20

variability in these samples offers the potential to probe the oxidation state of enriched and depleted mantle21

domains on the broad scale of the Iceland swell and geochemical anomaly (Schilling, 1973), as well as the22

short lengthscale of single enriched seamounts. We begin with a description of the XANES methods we23

have used to obtain our new dataset. In particular we show that detailed time-resolved observations of the24

pre-edge structure can rule out beam damage oxidising the iron in natural basalt samples. We then discuss25

these observations in the context of degassing, crystallisation and melting processes. We remove the effect of26
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crystallisation and rule out degassing as a significant control on the oxidation state of most Reykjanes Ridge27

basalts. Finally, we relate the ferric iron data to a model of oceanic crustal recycling and the reintroduction28

of oxidised material to the mantle.29

2. XANES Methods30

2.1. Spectral acquisition31

Samples were analysed on the I18 beamline at Diamond Light Source (DLS) to probe the detailed pre-32

edge structure of the Fe K-edge with synchrotron X-rays over the energy range 7020–7500 eV. The X-ray33

beam was monochromatised using a double Si(333) crystal. The energy step sizes and dwell times used are34

given in Table A.1. The beam dimensions were 5x3 µm2, and the experimental geometry had the sample35

at 45◦ to the incident X-ray beam and 45◦ from the collector, giving an incident–fluoresced X-ray angle of36

90◦. Incident X-ray intensity was measured using a 1.5 cm long ionisation chamber, and the intensity of37

fluoresced X-rays were measured using a four element silicon drift detector.38

Almost all analyses were performed during a single four-day analytical session in August 2014. Sample39

98D3, and repeat analyses of 183D2 and 174D9, were performed one month later in a separate session.40

During our main analytical session the storage ring was operating at 3 GeV with an electron current of41

300 mA. For the second session, operating conditions at the beamline had changed: the electron current42

was now 200 mA and we used a germanium detector with nine elements. In all analyses, attenuation of the43

primary X-ray beam by 0.1 mm Al plates was employed to keep the count rate below the saturation limit44

of the detector. These analytical conditions translate into a photon flux of ∼ 109 photons/second.45

2.2. Beam damage46

Beam damage has been reported during sulfur XANES analyses, where the effect has been to oxidise47

sulfur in the samples on the timescale of minutes (Wilke et al., 2008; Métrich et al., 2009; Moussallam et al.,48

2014). A systematic investigation of whether the long-term exposure of basaltic samples to a µ–XANES49

X-ray beam can cause Fe oxidation/reduction was carried out by Cottrell and Kelley (2009) at NSLS, USA.50

The Cottrell and Kelley (2009) study found no spectral shift resulting from repeated and extended sample51

exposure to the X-ray beam (using cumulative exposure times at least twice as great as our 30-minute52

analyses). At DLS, Moussallam et al. (2014) acquired multiple XANES spectra on the same spot to test53

whether there was a progressive beam damage effect for Fe, but saw no change in Fe oxidation state despite54

significant changes in S oxidation. These results imply that Fe is more stable than S during XANES analysis55

of silicate glasses.56

To establish whether beam damage was occurring we performed an additional test using the natural57

basalt 153D3 from our sample set (0.17 wt% H2O, typical of Reykjanes Ridge basalts (Nichols et al., 2002)).58
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The test consisted of positioning the monochromator at a fixed energy of 7114.3 eV, corresponding to the59

oxidised peak of the pre-edge doublet. Before allowing the beam to illuminate the sample we began collecting60

the fluoresced X-rays in 1 s time windows, then opened the shutter on the sample. The hypothesis is that61

if beam damage is occurring we should see a large drift in the fluoresced X-ray count towards higher count62

rates if the beam damage was oxidative, or towards lower values if the damage was reductive. Instead, with63

the same analytical conditions as for our measurements we found that no drift in energy occurs at the onset,64

or thereafter, of the sample being exposed to the beam (Fig. 1A and B). This result indicates that Fe in65

our samples was neither oxidised nor reduced during the XANES analyses.66

We did find that changing the analytical conditions by removing the Al attenuators was able to generate67

a very small amount of photo-oxidation over the first 700 s of exposure of the sample to the beam (Fig.68

1C). However, even this amount of photo-oxidation is over two orders of magnitude less than the natural69

variability the samples exhibit, and is barely above the instrument stability. Furthermore, that we can70

see slight photo oxidation under the particular circumstances where the beam is not attenuated, gives us71

confidence that no photo-oxidation is occurring when we don’t see this signal using an attenuated beam.72

2.3. Processing of spectra73

As has been noted previously (Berry et al., 2003; Farges et al., 2004; Cottrell and Kelley, 2009) the74

handling of the raw XANES spectra can have a significant influence on the Fe3+/
∑

Fe calculated for the75

unknown materials, which although less significant for a relative study, has the potential to systematically76

offset the results produced by different groups. To mitigate against this problem we provide a detailed77

description of the calibration procedure we have selected and include in the supplementary material the78

normalised spectra we collected so that future comparisons between datasets can be carried out in a self-79

consistent manner.80

The first derivative peak on an Fe foil, 7112.0 eV, measured at the start of the analytical session, provided81

the energy calibration for the spectra. Following the method of Wilke et al. (2001) a Victoreen function82

v1F3 + v2F4, (1)

was fit to the region 7020–7090 eV before the pre-edge, where F = If/I0 is the ratio of fluoresced to incident83

X-rays and v1 and v2 are the parameters to be optimised. The Levenberg-Marquardt optimisation algorithm84

(Press et al., 1992) was used to find the best fitting parameters. The Victoreen function was subtracted85

from the spectra, which was then normalised to an edge-step of 1 by taking the average intensity over the86

region 7250–7400 eV. This energy range was chosen in order to avoid incorporating the highest amplitude87

oscillation of the post-edge spectrum, which itself moves as a function of Fe3+/
∑

Fe (see for example Fig.88

2B), potentially making the normalisation sensitive to the sample’s oxidation state.89
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The results of this normalisation routine can be seen in Fig. 2, in which the normalised spectra for90

samples and reference glasses are plotted.91

2.4. Calibration of spectra for Fe3+/
∑

Fe92

We used the NMNH 117393 basalt reference block made by Cottrell and Kelley (2009), and loaned by93

the Smithsonian Institution National Museum of Natural History, to calibrate Fe3+/
∑

Fe in the unknown94

sample spectra.95

A common method for determining the Fe3+/
∑

Fe ratio of a material is to use the energy of the 1s→ 3d96

pre-edge transition, which forms an absorption multiplet prior to the main Fe K-edge (Fig. 2C). The 1s→ 3d97

pre-edge feature shifts to higher energy and the relative height of its peak changes as Fe3+/
∑

Fe increases98

(e.g. Wong et al. (1984); Bajt et al. (1994) and Fig. 2D), meaning that it can be used to calibrate for99

Fe3+/
∑

Fe in unknowns. A majority of techniques for quantifying the pre-edge feature are ‘function fitting’100

methods, in which a combination of functions are fit to some range of the pre-edge region (between 7100–101

7120 eV) in order to extract a single parameter (such as centroid energy or peak height ratio) that can be102

related to Fe3+/
∑

Fe (Berry et al., 2003). Often these routines combine two families of functions; one set103

designed to remove the ‘background’ associated with the main absorption edge, whilst the second set fits104

the smaller amplitude pre-edge feature.105

However, it is apparent from Fig. 2D that it is not only the 1s → 3d pre-edge feature that responds to106

increasing Fe3+/
∑

Fe in the glass. The rise to the main absorption edge also moves to higher energy, by up107

to ∼ 1 eV for the range of oxidation states represented in the NMNH 117393 glasses. This is valuable extra108

information that could potentially be incorporated into forming a calibration for Fe3+/
∑

Fe (Berry et al.,109

2003). Using information beyond simply the position of the 1s → 3d multiplet would be especially useful110

for natural mid-ocean ridge basalt (MORB) samples, in which the absolute variability of Fe3+/
∑

Fe so far111

reported by XANES is extremely limited (∼ 3% (Cottrell and Kelley, 2011, 2013)).112

In order to maximise the amount of information we use in calibrating the unknown spectra for Fe3+/
∑

Fe,113

and thereby increase the signal to noise, we have used principal component regression (PCR). PCR is a linear114

mixing method (e.g. Manceau et al. (1992); Farges et al. (2004)) which first identifies spectral features115

corresponding to the maximum variance in the dataset through conventional principal component analysis116

(PCA). For the reference spectra with known Fe3+/
∑

Fe, these components can then be linearly correlated117

with Fe3+/
∑

Fe to produce a simple linear mixing model able to predict Fe3+/
∑

Fe (Malherbe and Claverie,118

2013; Vigneau et al., 1997). All that is required is that the PCA be performed simultaneously on the samples119

and standards so that the principal components form a common basis for each dataset. A decision still has120

to be made about how much of the spectrum to include to optimise the analysis, with practical limitations121

on analysis time meaning that we have here included only the pre-edge region (7105–7119 eV) for which we122

have the highest quality data (Table A.1). However, PCR is readily extensible to all parts of the spectrum123
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that are thought to contain information on oxidation state – with components describing effects uncorrelated124

with valence changes (such as noise) readily identified from the statistical insignificance of their associated125

parameters in the mixing model.126

The result of the initial PCA for our combined dataset of sample and standard spectra is shown in Fig. 3127

for the region 7105–7119 eV, which is useful as a visual description of why the PCR method works. Principal128

component 1 (PC1) effectively describes an average of the spectra studied which, given the abundance of129

sample spectra (64) compared to reference spectra (12), is relatively reduced (compare with spectra in130

Fig. 2B). Although PC1 describes a majority of the variance (99.6%), additional components are required131

to describe the systematic shifts in the pre-edge multiplet occurring with changing oxidation state. The132

component that most clearly creates the expected shifts in the pre-edge is PC2, which describes a peak at133

∼ 7114.5 eV that, when mixed with PC1, shifts the relative amplitude of the pre-edge multiplet to higher134

or lower energies. Taking a linear mixture of PC1 and PC2 is thus similar to the process of fitting the pre-135

edge with the Gaussian, Lorentzian and pseudo-Voigt functions of other calibration methods; however, PCA136

allows the data to define the best fitting form for the peaks, and no information is discarded as background.137

Principal component analysis also offers a useful check of whether the reference spectra exhibit the same138

structural features as the unknowns, similar to using the pre-edge intensity and centroid energy (Wilke139

et al., 2001). This is particularly important given the potential for Fe coordination to influence the pre-edge140

structure of the spectra and for these structural effects to vary between natural and synthetic materials.141

We show the first two PCs from our dataset in Fig. 4. The overlap in PC1 and PC2 between the sample142

and reference spectra, combined with their similarity in centroid position and pre-edge intensity, is good143

evidence that the pre-edge structure in both sets of materials is varying in response to the same process: in144

this case the proportions of Fe3+/
∑

Fe.145

After PCA, the next step is to perform the multiple linear regression of the selected PCs as predictors146

of Fe3+/
∑

Fe. To do this we have used the ‘ols’ function from the ‘rms’ package in the R statistical147

programming language (R Core Team, 2013), which carries out weighted ordinary least squares regression.148

We have used both PC1 and PC2 so as to incorporate information on the whole pre-edge region into the149

calibration. Applying this method, the form of the calibration to Fe3+/
∑

Fe is:150

Fe3+/
∑

Fe = a0 + a1PC1 + a2PC2, (2)

where a0, a1 & a2 are the regression coefficients, and PC1 and PC2 the principal component scores for the151

spectra. We note that PC1 and PC2 could also have higher degree terms included in this equation; however,152

the improvement in fit from including these additional terms is not significant and does not change our153

results.154

The multiple linear regression using both PC1 and PC2 is shown in Fig. A.1. The reduced chi-squared155

for this fit is 2.3, and remains almost constant if three or more components are used, indicating that the156
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calibration performs reasonably with just the first two components.157

2.5. Precision158

Over our analytical session we made four repeat analyses of the suite of NMNH 117393 reference glasses.159

In the final PCR calibration we used an average spectrum for each reference glass. However, we can also160

take each set of NMNH 117393 analyses separately and use these to calibrate the data for Fe3+/
∑

Fe. This161

acts as a test of the calibration’s intra-session drift and stability. Recalibrating the data there is no evidence162

of drift within the session, nor significant variability depending upon the set of standard analyses chosen163

to perform the calibration. The 1σ precision calculated on Fe3+/
∑

Fe from the different calibrations is164

∼ 0.1%, more than an order of magnitude less than the systematic change we observe along-ridge towards165

Iceland. Repeat analyses of an in-house reference glass over the same period gave a 1σ reproducibility of166

0.16%, which is the precision we quote in subsequent figures.167

To estimate the uncertainty in the calibration that derives from the linear model fit to the Mössbauer data168

and the precision of the Mössbauer data itself, we have performed Monte Carlo modelling. The modelling169

starts with the raw spectra, randomly adds noise to the spectra assuming Poisson counting statistics on170

each point, re-performs PCR permuting each Mössbauer measurement of Fe3+/
∑

Fe on the NMNH 117393171

glasses by the uncertainty quoted in Cottrell and Kelley (2009), and then calculates a new set of calibration172

parameters. There is a high degree of correlation between the intercept (ao) and coefficient for PC1 (a1),173

indicating a trade-off in their influence on Fe3+/
∑

Fe. In contrast, the coefficient for PC2 (a2) is largely174

independent of the value chosen for a0 or a1, as expected given the orthogonal basis provided by PCA.175

Propagating the error matrix for the PCR calibration parameters through to Fe3+/
∑

Fe using the176

general formula177

σ2 = pΣapᵀ, (3)

gives an external 1σ precision of 0.4% (where p is the vector of principal component scores and Σa is the178

covariance matrix for the model parameters, see Table A.2 for values). This precision is still less than half179

of the total along-ridge shift in Fe3+/
∑

Fe we observe. However, for the remainder of this paper we use180

the external reproducibility of 0.16% as our error term on the data, since we are focusing on the relative181

difference between samples rather than systematic shifts that could result from error in the calibration.182

3. Results183

The 700 km transect of mantle represented by the Reykjanes Ridge samples incorporates both the long-184

wavelength transition from background MORB-like compositions in the south to strongly mantle plume-185

influenced in the north, and short-lengthscale heterogeneities in the form of seamounts (Murton et al.,186

2002). The raw Fe3+/
∑

Fe from these samples is presented in Fig. 5A as a function of radial distance from187
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the Iceland plume centre (Shorttle and Maclennan, 2011). At any given distance, more evolved basalts with188

lower MgO are more oxidised than primitive basalts, confirming the importance of low pressure fractionation189

in modifying primary Fe3+/
∑

Fe (Bézos and Humler, 2005; Cottrell and Kelley, 2011). Nevertheless, long-190

wavelength structure is apparent, with basalts at a similar MgO showing a progressive shift to higher191

Fe3+/
∑

Fe closer to Iceland. The seamount 14D (labelled square symbols Fig. 5A) has also captured192

short-lengthscale heterogeneity, which, given its MgO, is as oxidised as basalts 700 km closer to Iceland.193

3.1. Accounting for crystal fractionation194

The sensitivity of Fe3+/
∑

Fe to low pressure fractionation has been previously demonstrated in MORB195

suites analysed by XANES (Cottrell and Kelley, 2011). Four lines of evidence indicate that fractionation196

has also affected the Reykjanes Ridge suite of basalts studied here:197

1. MgO concentrations of the Reykjanes Ridge glasses fall between 6.5 and 9 wt% MgO. Given that198

a primary MORB will have ∼ 10 wt% MgO, significant fractionation of at least olivine must have199

occurred in all these samples.200

2. There is abundant petrological evidence from these samples of olivine macrocrysts, and in many cases201

plagioclase and clinopyroxene crystals (Murton, 1995).202

3. Major element trends of Al and Ca with Mg (Fig. A.2), and trace element trends of Eu also indicate203

plagioclase and clinopyroxene fractionation (Murton et al., 2002).204

4. It is clear from Fig. 5 and 6 that crystal fractionation has also played an important role in determining205

Fe3+/
∑

Fe in Reykjanes Ridge magmas. Fe3+/
∑

Fe is systematically higher at a given distance from206

the plume centre in the most evolved samples (those with lowest MgO) compared with more primitive207

basalts.208

Crystal fractionation is therefore an important process in our Reykjanes Ridge dataset, as it is likely to be209

generating scatter in the along-ridge trend that is not associated with mantle source or processes. However,210

despite the need to correct Fe3+/
∑

Fe for fractionation, we emphasise that the existence of long- and short-211

lengthscale variability in Fe3+/
∑

Fe around Iceland is not predicated upon applying this correction to the212

data.213

For the fractionation correction we tested both Petrolog (Danyushevsky and Plechov, 2011) reverse214

fractionation calculations, and two-stage empirical and olivine addition models (Figs. A.3 and A.2). Both215

methods gave very similar results and we chose the empirical method for its simplicity.216

To apply any fractionation correction, an estimate is required of the MgO at which olivine-only crystalli-217

sation transitions to olivine + clinopyroxene + plagioclase crystallisation. We identified this point using an218

optimisation algorithm to find the MgO split that produces the two high- and low-MgO vs major element219

regressions with minimum misfit. The MgO found with this method was 8.0 wt%. Samples below 8.0 wt%220
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MgO had their major element compositions shifted parallel to a York (1969)-style fit to the low MgO data,221

until at 8 wt% MgO (Fig. 6). Further correction to 10 wt% MgO, or until the liquid was in equilibrium with222

Fo90, was performed with simple olivine addition using the Herzberg and O’Hara (2002) model. The key223

result of applying this fractionation correction to the data is that it does not remove the sense of along-ridge224

shift to more oxidised compositions (Fig. 6).225

3.2. The effect of degassing226

From a mantle geochemical perspective, it is important to exclude the null hypothesis that the along-ridge227

trends in Fe3+/
∑

Fe are a result of systematic along-ridge degassing. As the Reykjanes Ridge shallows,228

samples are erupted under progressively lower confining pressures, allowing for more syn-eruptive degassing229

prior to quenching. To account for the long-wavelength trend of increasing oxidation towards Iceland (Fig.230

5B), degassing would need to: (1) involve a net transfer of electrons from the melt to the gas phase; and (2)231

involve the redox-influencing gas phase(s) beginning significant degassing over the depth interval where we232

observe an increase in basalt fO2. Whether either of these conditions apply can be tested both empirically233

and with degassing models.234

The long-wavelength trend of increasing oxidation towards Iceland is broken by the three most northerly235

samples (Fig. 5B). These basalts were erupted in the shallowest water (< 500 m) of the sample suite, and236

have Fe3+/
∑

Fe ∼0.05 lower than the samples immediately to their south. The low pressure of eruption237

makes these samples the most likely to have experienced degassing,. Degassing of the most northerly samples238

is consistent with their lower S content compared with other samples (Fig. 7A, triangle symbols) and with239

their H2O contents (Nichols et al., 2002), which are slightly lower than the trend of increasing H2O towards240

Iceland would predict. Given the evidence for degassing, the offset of these samples to lower Fe3+/
∑

Fe241

suggests that degassing has reduced them. If this is the case, then the longer wavelength trend of increasing242

oxidation towards Iceland is unlikely to be due to degassing, and therefore degassing as a null hypothesis243

cannot explain a majority of the data.244

We can assess the influence of degassing on Reykjanes Ridge basalts with degassing models. As discussed

above, the basalts erupted in water depths of < 500 m will have been the most strongly affected by H2O

and S loss, while CO2 degassing will have been significant for all samples (Dixon et al., 1991). Of these

volatile species, sulfur has the greatest potential leverage on magma redox state; this has been shown both

theoretically (Burgisser and Scaillet, 2007) and in nature (Moussallam et al., 2014). Writing in terms of half
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reactions, sulfur degassing could proceed by

S2−[melt] → S4+O
[gas]
2 + 6e− 6 electrons transferred to melt, (4a)

S2−[melt] → H2S2−[gas] no electron transfer, (4b)

S6+[melt] + 2e− → S4+O
[gas]
2 2 electrons transferred to gas, (4c)

S6+[melt] + 8e− → H2S2−[gas] 8 electrons transferred to gas. (4d)

If we make the additional assumption that Fe, as the dominant heterovalent species in a melt, accommodates245

all the electron exchange, then these reactions are capable of producing large shifts in Fe oxidation state.246

The direction of redox change depends on the initial sulfur speciation in the liquid and the sulfur species247

formed in the gas phase, with sulfur degassing being capable of both reduction (Eq. 4a) and oxidation of248

magma (Eqs. 4c and 4d).249

In nature, multiple sulfur degassing pathways will be exploited (e.g. Gaillard et al. (2011)); their relative250

importance as a function of melt composition and pressure will determine the net redox effect on the melt.251

A key parameter in determining the mode of sulfur degassing will be its speciation in the melt (Eqs. 4a–4d).252

For Reykjanes Ridge basalts with their measured ∆QFM from +0.3 to +0.6, S2− will be the dominant sulfur253

species in the liquid (Jugo, 2009) (at this fO2 a maximum of 10% of the S is in the S6+ state). Sulfur loss254

from these basalts as SO2 will therefore reduce them (Eq. 4a), whereas sulfur loss as H2S is redox neutral255

(Eq. 4b). The precise proportions of SO2 and H2S being lost from the melt will depend on the pressure256

and temperature of degassing, but the key point is that, provided S in the melt is dominantly S2−, this257

degassing will be reducing. Fig. 7B shows a simple model implementing the redox stoichiometries outlined258

in Eqs. 4a–4d. Even in an unrealistically oxidising case where 30% of the sulfur in the melt is present as259

S6+ and degasses to 1:1 H2S:SO2, the basalts are reduced by degassing.260

The results from our simple calculations (Fig. 7B) are confirmed when we correct for degassing with261

the full thermodynamic model of Gaillard et al. (2011), which predicts sulfur solubility and speciation in262

the liquid and gas phases. For these calculations we take the H2O data from Nichols et al. (2002) and our263

measured fO2. There are two important results from our application of the Gaillard et al. (2011) model:264

Firstly, it predicts significant sulfur loss only for basalts erupted in < 500 m water depth; therefore, most265

samples experienced insufficient S degassing to explain the oxidation trend observed for basalts erupted266

in 1000 m of water (Fig. 7C). Secondly, the Gaillard et al. (2011) model predicts that, at the oxidation267

state of the Reykjanes Ridge basalts (∆QFM ∼ +0.5), the molar ratio of degassing SO2/H2S is > 5 over all268

pressures considered (equivalent water depths from 300 m to > 1000 m). As a result, applying the model269

to correct Fe3+/
∑

Fe in the four most degassed samples back to their pre-degassing (500 m water depth)270

values restores these samples to the long-wavelength trend of increasing oxidation towards Iceland (Fig. 7C).271

In summary, neither the onset of significant degassing (at ∼ 500 m water depth) nor its redox effect272
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(reducing) are consistent with the observed trend of basalts becoming more oxidised towards Iceland.273

3.3. The fractionation corrected dataset274

In the remainder of this paper we use the Reykjanes Ridge data corrected for fractional crystallisation,275

but uncorrected for degassing: we prefer to use the minimally corrected dataset that still shows significant276

structure and, as shown above, degassing will only have diminished the trend of along-ridge oxidation.277

In the fractionation-corrected dataset the along-ridge transition to more oxidised samples closer to Iceland278

remains. However, the samples furthest from Iceland (> 1000 km) also appear to show a slight increase in279

Fe3+/
∑

Fe(10) compared with those at intermediate distances, creating a U-shaped along-ridge profile. This280

is true even excluding samples 17D1 and 14D.281

The range of Fe3+/
∑

Fe(10) in the dataset, ∼ 0.015, is equivalent to the range in global primitive MORB282

(Cottrell and Kelley, 2013) (Fig. 5B). This similarity in absolute variability found in Cottrell and Kelley283

(2013) and our regional dataset is also present when Fe3+/
∑

Fe(10) is used to calculate the basalts’ oxygen284

fugacity as log(fO2) with respect to QFM buffer, ∆QFM(10) (Fig. 5C, Kress and Carmichael (1991)).285

Samples close to Iceland vary in fO2 by ∼ 0.25 log(fO2) units, compared to ∼ 0.3 log(fO2) units in global286

primitive MORB (Cottrell and Kelley, 2013). Although the amplitude of redox shifts are similar, the major287

difference between the global MORB dataset (Cottrell and Kelley, 2013) and our dataset is that we find288

both trace element and isotopic enrichment to be consistently associated with oxidation. This relationship289

holds over the 100 km scale, where increases in incompatible trace element ratios (e.g. Zr/Y) and isotope290

ratios (e.g. 208Pb/204Pb) match increasing Fe3+/
∑

Fe(10) (Fig. 5B and C); and is present on the 10 km291

scale of the enriched basalts sampled from seamount 14D.292

Fractionation-corrected Fe3+/
∑

Fe(10) shows statistically significant correlations with the incompatible293

element enrichment recorded by trace element ratios and isotope systems (Fig. 8). Sample 17D1 was not294

included in the regression analysis of Fig. 8 because of its unique composition (Murton et al., 2002): despite295

relatively low La/Yb, Zr/Y, K2O/TiO2 and absolute incompatible element concentrations, 17D1 has high296

3He/4He and is moderately oxidised. Whilst 17D1 may represent a distinct component within the plume297

mantle (Thirlwall et al., 2004), its geochemical characteristics are not reflected in the rest of the data so we298

do not consider this sample any further.299

4. Discussion300

4.1. The control of melting processes on basalt fO2301

Given the observed along-ridge oxidation towards Iceland (Fig. 5) and the correlation of this oxidation302

with lithophile element and radiogenic isotope tracers of enrichment (Fig. 8), the key question is what303

source or process relates enrichment to increased oxidation. One challenge we face is that the correlation304
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between source and mantle potential temperature inherent to our dataset, and many plume-scale transects305

of mantle/basalt chemistry, makes it difficult to identify causal relationships between enrichment, melting306

style and fO2. However, by considering both the long- and short-lengthscale chemical structure along the307

Reykjanes Ridge we can begin to separate the roles of source and temperature.308

The mantle potential temperature increases towards Iceland by > 130◦C (White et al., 1995; Shorttle309

et al., 2014), implying an associated increase in the mean pressure and extent of melting, and a higher310

pressure of initial solidus intersection. Higher mean extents of melting should cause Fe3+/
∑

Fe(10) to311

decrease towards Iceland, because Fe2O3 behaves moderately incompatibly during mantle melting (Canil312

et al., 1994). This process may in fact be controlling the slight northwards decrease in Fe3+/
∑

Fe(10)313

observed in the most distant samples (Fig. 5B): a region where the plume’s thermal influence is present and314

increasing northwards, but the chemical signature may be weak (Shorttle et al., 2010; Jones et al., 2014).315

That increasing Fe3+/
∑

Fe(10) is also observed in the basalts erupted closest to Iceland indicates that some316

other process or source factor must come to dominate over the dilution of Fe2O3 by melting degree. This317

is also clear from the ratios (Fig. 5 and 8) and raw concentrations (Murton et al., 2002) of incompatible318

elements, which increase towards Iceland despite progressively higher extents of melting.319

It is hard to reconcile the geochemistry of seamount 14D, which is oxidised and enriched, with changes320

in the temperature and pressure of melting as being the primary drivers of fO2 variability along-ridge. On321

the lengthscale of seamount 14D, which is within 30 km of otherwise more reduced and depleted basalts322

on the southern Reykjanes Ridge, background temperature changes are likely to be minimal. As many323

of the geochemical characteristics of 14D are also the same as strongly plume-influenced basalts erupted324

closer to Iceland (Hilton et al., 2000; Murton et al., 2002; Thirlwall et al., 2004) it is likely that both the325

long- and short-lengthscale structure in fO2 are explained by the same phenomenon. Only changes in326

source composition are likely to be present at high amplitude on both long and short lengthscales down the327

Reykjanes Ridge, and be capable of modifying both the oxidation state and isotope chemistry of basalts.328

(We note that 14D does not coincide with a V-shaped ridge crest or trough (Jones et al., 2014).)329

Mantle potential temperature will also have an effect on ferric iron through its influence on the mineral330

and volatile assemblages buffering melting. If the source is graphite-buffered then higher pressures of initial331

melting towards Iceland could produce more oxidised basalts, as graphite leaves the residue earlier along332

the decompression path (Ballhaus and Frost, 1994). Taking the increase in the initial pressure of melting333

towards Iceland to be ∼ 1 GPa (Shorttle et al., 2014), the earlier loss of graphite buffering under northern334

ridge segments could oxidise basalts by ∼ 0.4 log(fO2) units relative to those further south. However, both335

MORB and Reykjanes Ridge samples are too oxidised to be in equilibrium with a graphite-bearing source336

(Cottrell and Kelley, 2011). So a varying pressure of graphite exhaustion cannot be driving the observed337

changes in Fe3+/
∑

Fe or ∆QFM(10) between samples.338

A separate role for mantle carbon influencing the oxidation state of erupted basalts has been proposed by339
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Cottrell and Kelley (2013) and Stagno et al. (2013), who considered how variations in the absolute amount340

of carbon between mantle domains may affect fO2. In this model the redox melting of carbon to carbonate341

during decompression reduces the ferric iron in silicates leaving a more reduced source. As the carbon342

content of enriched mantle is (possibly) higher than that of ambient MORB mantle, enriched domains will343

produce more reduced silicate melts as more of their ferric iron is reduced during redox melting of carbon344

(Cottrell and Kelley, 2013). However, towards Iceland both the incompatible trace element content and345

Fe3+/
∑

Fe(10) of basalts increases. For example, the higher Nb content of near-Iceland basalts (Murton346

et al., 2002) could imply a mantle source 10-fold enriched in carbon with respect to MORB (Hauri et al.,347

2002). If this carbon underwent redox melting then we would expect the enriched basalts near Iceland (and348

the seamount 14D) to be the most reduced, the opposite to what is observed. Therefore, accounting for349

redox melting would imply a very oxidised enriched Icelandic source, so that following carbon oxidation the350

silicate residue could still produce melts oxidised relative to MORB.351

Ultimately, understanding the effect of simple changes in melt region parameters on the oxidation state of352

aggregate basalts will require more comprehensive thermodynamic models of mantle melting. These models353

face a significant challenge in needing to incorporate carbon-sulfur-silicate buffering in addition to silicate354

phase changes and pressure-dependent solid solutions. However, with our current understanding of melt355

region redox processes it appears likely that an intrinsically oxidised component is required in the Icelandic356

mantle to explain the relationships seen in Figs. 5 and 8.357

4.2. The origin of an enriched and oxidised Icelandic source component358

To relate our observations to solid Earth oxygen fluxes, an important question is how the enriched359

Icelandic source became oxidised. One possibility is that this occurred by metasomatic enrichment, either360

through carbonatitic fluids as has been suggested for lithospheric peridotites (Canil et al., 1994), or via361

hydrous metasomatism as may occur at subduction zones (Kelley and Cottrell, 2009). Whilst it difficult362

to place unique constraints on the origin of enriched sources (especially as the process may have been363

polyphase), we can assess each metasomatic mechanism for consistency with other major and trace element364

data.365

Canil et al. (1994) found that carbonatitic metasomatism, in addition to raising fO2, raised CaO/Al2O3366

in peridotites. However, this major element signal of carbonatite interaction is the opposite of what we see367

in enriched Icelandic basalts Shorttle and Maclennan (2011).368

The second possibility is that the Icelandic source was enriched in a subduction zone setting, transferring369

both fluid-mobile trace elements and high fO2, as is inferred to be happening beneath modern arcs Kelley370

and Cottrell (2009). To address this we have calculated the apparent relative compatibility of Fe2O3 and371

trace elements in our sample suite (Fig. 9A, Sims and DePaolo (1997); Hémond et al. (2006); Stracke et al.372

(2003a)). In the case of metasomatic hydrous enrichment we would expect: 1. fluid-mobile elements such373
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as Sr, Pb, U, Cs, Rb and Ba to be relatively enriched compared with less fluid-mobile trace elements of374

similar solid–melt partitioning (as indicated by high gradients in log(element) vs. log(Fe2O3) space); 2. for375

Fe2O3 to show the strongest correlation with these fluid-mobile elements; and 3. apparent Fe2O3 partition376

coefficients much less than the bulk DFe2O3
= 0.1 predicted for peridotite (O’Neill et al., 1993; Canil et al.,377

1994). However, Fig. 9A shows that the apparent partition coefficient for Fe2O3 is most similar to that of Gd378

(∼ 0.1), consistent with predicted solid–melt equilibria. The correlations between Fe2O3 and fluid-mobile379

elements, although high, are also weaker than for similarly incompatible non-fluid-mobile elements. And380

despite being enriched, the fluid-mobile elements are in fact less enriched than would be expected given their381

very low partition coefficients during peridotite melting.382

Following the reasoning above we reject the possibility that oxidised hydrous/carbonatitic fluids/melts383

were important in generating the enriched Icelandic source characteristics. Instead, given the evidence for384

pyroxenitic components in the Iceland plume source (Chauvel and Hémond, 2000; Stracke et al., 2003b;385

Shorttle and Maclennan, 2011; Sims et al., 2013), we instead consider that the enriched oxidised component386

is ancient recycled seafloor. Oceanic crust will be enriched in Fe2O3 relative to ambient mantle simply387

by ferric iron’s incompatibility during partial melting, but significant secondary enrichment may also occur388

during hydrothermal alteration through sulfate reduction at the ridge axis (Lécuyer and Ricard, 1999; Sleep,389

2005). De-watering of the slab during subduction could then account for the relative under-enrichment of390

fluid-mobile trace elements in the enriched Icelandic source (Fig. 9B).391

4.3. Estimating the ferric iron content of enriched Icelandic mantle392

None of the melt compositions in the Reykjanes Ridge suite are representative pure melts of single mantle393

domains. Instead they will be mixtures of melts from the enriched pyroxenitic and depleted lherzolitic394

Icelandic source components (Shorttle and Maclennan, 2011; Shorttle et al., 2014). Therefore, to constrain395

the origin of the enriched oxidised component we first need to estimate its Fe2O3, which will be more extreme396

than is recorded in any basalts we have sampled.397

To determine Fe2O3 in primitive melts from the enriched source we have regressed Fe2O3(Fo90) (ferric398

iron corrected to be in equilibrium with Fo90 olivine) from our samples against an estimate of the proportion399

of pyroxenite-derived melt contributing to their bulk chemistry (Fig. 10). The calculations to determine400

the pyroxenite-derived melt fraction in Icelandic plume basalts have been discussed in detail by Shorttle401

et al. (2014): the basic reasoning is that the chemical diversity of sampled basalts from onland Iceland402

makes it possible to identify the enriched and depleted endmember melt compositions being supplied from403

the mantle. These endmember melt compositions can then be used to form a mass balance to produce the404

incompatible trace element chemistry of derivative mixed melts, thus constraining the proportion of each405

endmember melt in the mixture. The intersection of the regression in Fig. 10A with the Fe2O3(Fo90) axis at406

100% pyroxenite-derived melt constrains the Fe2O3(Fo90) in primary melts of the enriched Icelandic source407
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to be ∼ 1.8 wt%–2.0 wt%. Depleted melt compositions are assumed to be represented by the most depleted408

basalts along the Reykjanes Ridge (at 0% pyroxenite-derived melt) with Fe2O3(Fo90) ∼ 1.5 wt%.409

We next need to project this melt composition into an estimate of ferric iron in the source ([Fe2O3](source)).410

For this we use the aggregate fractional melting equation Cl = C0(1/F (1− (1− F )(1/DFe2O3
))), where Cl411

is the liquid composition, C0 the solid composition, F the melt fraction, and DFe2O3 the bulk ferric iron412

partition coefficient. We calculate bulk partition coefficients from the mineral–melt partition coefficients413

given in Mallmann and O’Neill (2009) and considering garnet–melt partition coefficients between 0.85 and 1.414

We take a source mineralogy for the depleted Icelandic source component of a spinel lherzolite (Shorttle and415

Maclennan, 2011), sp2:ol55:opx25:cpx18 (spinel:olivine:orthopyroxene:clinopyroxene). Two mineral modes416

are tested for the pyroxenitic lithology (Shorttle and Maclennan, 2011; Kogiso et al., 1998): a garnet-417

bearing source gt27:ol23:cpx50 (gt = garnet) and a spinel-bearing source sp7:ol18:opx15:cpx60. These source418

mineralogies and partition coefficients are then combined to produce the range of bulk Ds in Table A.3, of419

which the extremes are used in calculating the bounds on our estimates of source Fe2O3. Melt fractions420

used in the calculations are taken from the model results of Shorttle et al. (2014), as reasonable estimates of421

mean degree of melting of peridotite and pyroxenitic lithologies given the requirement to match along-ridge422

crustal thicknesses (Smallwood and White, 1998; Navin and Sinha, 1998). The combination of melt fractions423

and partition coefficients used to produced the preferred and upper and lower bounds for each lithology in424

Fig. 10 are given in Table A.4.425

Fig. 10B shows that whilst the depleted basalts in our dataset are well matched by melting of a typical426

upper mantle peridotite with Fe2O3 = 0.3 wt%, the enriched source must contain between 0.9 and 1.4 wt%427

Fe2O3. This Fe2O3 range falls between sources containing regular MORB and (oxidised) altered oceanic428

crust (Fig. 10C). Although our calculations cannot uniquely identify the source composition, they illustrate429

the key parameters that need to be constrained to arrive at a source estimate.430

4.4. Implications for oxygen cycling431

The results above leave open the possibility of the solid Earth having an important role in oxygen cycling432

through the subduction of altered oxidised oceanic crust which is eventually remelted at plume settings433

such as Iceland. Oxidation of the seafloor during hydrothermal circulation has only been efficient since434

global surface oxygenation generated appreciable sulfate concentrations in the oceans (Sleep, 2005; Kasting,435

2013). Some estimates of the age of the enriched component in the Icelandic source place it at ∼ 400 Ma436

(McKenzie et al., 2004; Thirlwall et al., 2004), consistent with the requirement for oxic conditions to have437

been present in the deep ocean at the time of the source’s formation (Canfield et al., 2007). The present-day438

eruption of oxidised basalts from the Iceland plume may therefore represent closure of the global oxygen439

cycle as envisaged by Lécuyer and Ricard (1999), as oxygen sequestered into the solid Earth by subduction440

is returned to the surface environment.441
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5. Conclusions442

A suite of 64 Reykjanes Ridge basalts sampling long- and short-wavelength chemical and isotopic struc-443

ture in the Iceland plume record changes in oxidation that correlate with enrichment: enriched basalts from444

closest to the Iceland plume and from a seamount with a plume geochemical affinity, have higher Fe3+/
∑

Fe445

by up to 0.015 and higher ∆QFM by 0.25 log(fO2) units. This trend is unlikely to be explained by degassing446

or crystallisation processes and is the opposite of what would be expected from redox melting of enriched447

high-carbon mantle domains. Instead, it is likely the positive correlation between oxidation and enrichment448

reflects the presence of intrinsically oxidised sources in the Icelandic mantle.449

Fluid-mobile trace elements are under-enriched in near-plume Reykjanes Ridge basalts with respect to450

other incompatible elements, given their nominal silicate-melt partition coefficients. In addition to abundant451

evidence for the presence of recycled material in the Icelandic mantle, the relative under-enrichment of fluid-452

mobile elements suggests that enriched Icelandic mantle may have been hydrated at a ridge axis, followed453

by dehydration (and fluid-mobile element loss) during recycling. This ancient ridge axis hydration event, if454

it happened in the last 600 Ma, will have led to significant oxidation of the oceanic crust. Recycling of this455

component then introduces trace element-enriched and oxidised material back into the mantle.456

By connecting ridge axis oxidation processes to recycling and eventual resampling by mantle plumes, our457

results are consistent with a role for the solid Earth in long-term oxygen cycling.458
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Figure 1: Time series of I0 normalised fluoresced intensity (FF) at 7114.3 eV, the energy of the oxidised peak of the pre-edge

doublet. This test was performed to determine whether there was time-dependent sample damage from exposure to the high

energy X-ray beam. The test was performed at the same beam conditions as our analyses on natural Reykjanes Ridge basalt

sample 153D3. A fresh spot on the sample was illuminated with a 5 µm diameter beam and the fluoresced intensity integrated

over 1 s intervals. Plots A-C record, respectively, the time series produced for illumination from a beam attenuated with a

0.025 mm Al plate, 0.05 mm Al plate, and with no attenuation. In C, the red line marks the FF/I0 at 7114.3 eV from a

subsequent full spectrum acquisition (∼ 30 minutes).
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Figure 2: Edge-step normalised intensity vs. energy for sample and reference spectra. (a) and (b) show the full spectra collected

from samples and standards (NMNH 117393, (Cottrell and Kelley, 2009)) respectively, with the energy range used in this study

for normalisation marked on as the grey band ‘TS-norm’ and the energy range used by Cottrell and Kelley (2009) marked on

as ‘CK’09-norm’. Spectra have been coloured by their Fe3+/
∑

Fe as determined from the XANES analyses (in the case of

the reference glasses, this Fe3+/
∑

Fe is effectively the reference value as determined by Mössbauer). (c) and (d) show spectra

over the energy range of the pre-edge region we used in fitting the spectra from the samples and standards respectively. Over

the pre-edge region, counting times were 5–10 s and energy steps were 0.1 eV.
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Figure 3: Projection of the first two principal components (PC1 and PC2) into energy space, showing how the principal

components combine to reproduce the pre-edge structure of the sample and standard spectra. PC1 effectively represents an

average spectrum which, because of the larger number of samples compared with standards, exhibits the spectral features of

the 1s–3d transition in a glass with Fe3+/
∑

Fe ∼ 0.15, i.e. roughly the ferric iron content of the natural glasses in our study.

The second principal component consists of a peak at ∼ 7114.5 eV that, when mixed in with PC1, can add to or subtract

from the second peak in PC1, creating the pre-edge structure of the more oxidising reference glasses (compare with Fig. 2D).

In contrast, higher components begin to show dominantly high frequency structure indicating that they are largely mapping

noise.
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spectra are plotted as open triangles and reference spectra from reference block NMNH 117393 as circles coloured by their
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∑

Fe (Cottrell and Kelley, 2009). Inset shows a magnification of the region occupied by the samples. (B) Centroid

energies and pre-edge intensities calculated for the same reference and sample spectra. Samples and standards overlap in

PC1-PC2 and centroid energy-pre-edge intensity, indicating the validity of, 1) projecting the principal component scores of

the samples to Fe3+/
∑

Fe using linear mixing of the known standard glasses, and 2) using the standards to calibrate the

unknowns.
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Figure 5: The along-ridge increase in Fe3+/
∑

Fe and oxidation approaching Iceland. (A) Raw Fe3+/
∑

Fe is plotted as a func-

tion of radial distance from the Iceland plume centre, and coloured by the MgO content of the sample glasses. Labelled square

symbols are the samples identified as exhibiting geographically anomalous geochemical signals, of which the two 14D samples

are enriched basalts from a seamount (Murton et al., 2002). (B) Fe3+/
∑

Fe after correction for low pressure fractionation to

10 wt% MgO, with points coloured by Zr/Y. (C) Samples have been projected to their log(fO2) relative to the QFM buffer at

2 kbar using the equation of Kress and Carmichael (1991); points are coloured by their Pb isotopic composition. In each panel

the transition to more oxidised compositions occurs at ∼ 600 km, concurrent with increases in indices of mantle enrichment

such as Zr/Y and 208Pb/204Pb. Trace element and isotope data from Murton et al. (2002); Thirlwall et al. (2004).
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Figure 6: The path of reverse fractional crystallisation applied to the Reykjanes Ridge samples. The starting chemistry of

each sample is marked by an open circle and the lines extending to higher MgO mark the reverse fractional crystallisation

path. Samples with less than 8 wt% MgO were first corrected back to 8 wt% MgO by best-fit regression to their major element

data. This empirical correction accounts for liquid fractionation in the olivine + plagioclase + clinopyroxene (i.e. gabbro)

field. Subsequent reverse fractionation from 8 wt% MgO to 10 wt% MgO is performed by olivine addition using the Herzberg

and O’Hara (2002) model. The side panel presents kernel density estimates of the dataset split into samples from the northern

sector of the Reykjanes Ridge (> 61.5◦ N and within 480 km of the plume centre, solid lines with grey fill) and samples from

the southern sector (≤ 61.5◦N and further than 480 km from the plume centre, dashed lines with no fill). Thin lines are the

kernel density estimates for the raw dataset (open circles), whilst thick lines are for the data with the fractionation correction

applied. For both the raw and corrected data basalts from the southern sector of the ridge are less oxidised than those from

the northern sector.
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Figure 7: A quantification of how S degassing may have affected the redox state of Reykjanes Ridge basalts. (A) The sulfur

content of samples plotted against their iron content (symbols coloured by MgO), with a regression and 95% confidence envelope.

Samples erupted in less than 500 m water depth have a triangle plotted over them. The correlation between S and FeO implies

that basalts may be sulfide saturated. However, calculating the predicted sulfur content at sulfide saturation (Liu et al., 2007)

assuming T = 1100◦C and P = 1000 bar (grey symbols) implies that the samples are undersaturated in sulfur. (C) A simple

model investigating the effects of Eqs. 4a–4d on the oxidation state of the liquid during sulfur degassing. Degassing calculations

are performed with the S6+ fraction in the liquid as either 30% (hachured region) or 20% (blue region, our preferred value),

which then degasses as an SO2–H2S mix (we calculate degassing trajectories for SO2/H2S ratios between 1 and 10). Our

preferred estimate of SO2/H2S in the gas, consistent with the measured fO2 of Reykjanes Ridge basalts, is 5, with these

degassing paths shown as solid black (S6+/
∑

S = 0.3) and blue lines (S6+/
∑

S = 0.2). In all cases investigated, degassing

reduces the basalts, lowering Fe3+/
∑

Fe. (C) Degassing and fractionation-corrected ferric iron proportions ([Fe3+/
∑

Fe](g,10))

after applying the full Gaillard et al. (2011) degassing model to the samples erupted in less than 500 m water depth, plotted

as a function of distance from the Iceland plume. For these samples the original ferric iron proportions (grey symbols) have

been recalculated back to a water depth of 500 m (coloured symbols joined to grey symbols), largely removing the effect of S

degassing.
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Figure 8: Correlation between oxidation and geochemical indices of enrichment, Zr/Y (A), K2O/TiO2 (B), 143Nd/144Nd

(C). Black lines represent weighted regressions through the data (York, 1969), and grey lines simulations where the data has

been randomly permuted according to its analytical uncertainty, indicating the stability of the regression result. Correlations

between [Fe3+/
∑

Fe](10) and tracers of incompatible element enrichment are significant at the 95% level. In (D) the relatively

greater oxidation of the most enriched samples is shown in Fe2O3–FeO(t) space, colouring the symbols by their fractionation

corrected potassium content (K2O(10)). At a given FeO, samples with higher K2O(10) tend to have a higher Fe2O3. 17D1 is

excluded from this analysis because of its non-Iceland plume affinity (Murton et al., 2002). Trace element and isotope data

from Murton et al. (2002); Thirlwall et al. (2004); Hilton et al. (2000).
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Figure 9: The apparent relative compatibility of trace elements in our sample set relative to Fe2O3 (Sims and DePaolo, 1997;

Hémond et al., 2006). (A) Trace element data corrected for fractional crystallisation to Fo90 have been plotted against Fe2O3

in a log–log plot and the gradient and correlation coefficient calculated. Circles record positive gradients and triangles negative

gradients (absolute values plotted); coloured symbols have correlations significant at > 95% confidence level, and error bars are

95% confidence bounds on the calculated gradients. A gradient of unity in log(trace element) vs. log(Fe2O3) space indicates

similar compatibility between the two elements considered, placing the effective compatibility of Fe2O3 close to Gd. Square

symbols record the bulk garnet lherzolite– and spinel lherzolite–melt partition coefficients (Gibson and Geist, 2010), implying

DFe2O3
∼ 0.1. Elements exhibiting under-enrichment with respect to their silicate–melt partition coefficients are highlighted

in grey. (B) The mobility of trace elements during subduction from Stracke et al. (2003a) (circles) and the experimentally

determined hydrous melt–solid and fluid–solid partition coefficients of Kessel et al. (2005). Trace elements exhibiting relative

under-enrichment compared to that predicted by their silicate–melt partition coefficients systematically exhibit higher fluid-

mobility during subduction zone processing.
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Figure 10: Determining the Fe2O3 concentration of the enriched Icelandic plume component. (A) The proportion of recycled

pyroxenite melt contributing to basalt compositions is estimated using the method of Shorttle et al. (2014). This estimate

is regressed (dashed line with 95% confidence interval) against the fractionation-corrected [Fe2O3](Fo90) to determine the

[Fe2O3](Fo90) for a pure melt of the enriched endmember. (B) A simple accumulated fractional melting model is used to relate

the inferred primary magmatic [Fe2O3](Fo90) for the depleted (dashed blue line with 95% confidence envelope) and enriched

(dashed red line) to that in the source, [Fe2O3](source). Solid thick blue line represents the locus of aggregate melts for a

range of source compositions using partition coefficients calculated for a spinel lherzolite (Mallmann and O’Neill, 2009). Thin

lines represent how this locus of source composition changes taking endmember cases of melt fraction and partition coefficient

values (F = 7–13% and DFe2O3 = 0.1–0.23 respectively). Red lines use partition coefficients and melt fractions appropriate to

the more fusible garnet-rich pyroxenite lithology inferred to comprise the enriched Icelandic source component (Shorttle and

Maclennan, 2011) (F = 15–21% and DFe2O3
= 0.47–0.64). Vertical grey bars mark the source compositions which, given the

assumptions regarding F and DFe2O3
, are consistent with the observed melt compositions. (C) Viable source Fe2O3 contents

are compared to plausible mantle lithologies as black symbols (O’Neill et al., 1993; Lécuyer and Ricard, 1999; Cottrell and

Kelley, 2011). White symbols indicate the Fe2O3 estimated for the enriched Icelandic source, made of equal proportions of

primitive upper mantle (PUM) and either fresh MORB or altered oceanic crust (AOC, (Shorttle and Maclennan, 2011)).
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Table A.1: Step sizes and dwell times used for XANES analysis of the Fe K-edge.

Energy range (eV) Step size (eV) Dwell time (s)

7020.0–7100.0 10 1

7101.0–7104.0 1.0 2

7104.1–7109.9 0.1 5

7110.0–7117.9 0.1 10

7118.0–7119.4 0.1 5

7119.5–7127.0 0.5 2

7128.0–7144.0 1.0 2

7148.0–7408.0 4.0 2

7410.0–7500.0 10 1
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Figure A.1: The result of performing principal component regression (PCR) to take a linear mixture of the first two principal

components (Fig. 3) to reconstruct the Mössbauer-derived Fe3+/
∑

Fe.
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Figure A.2: Plots illustrating how the fractional crystallisation correction has been applied to the data. Samples below 8 wt%

MgO first had their MgO content increased to 8 wt%, moving their major element compositions parallel to the red lines in

the figures. These lines were calculated by York (1969)-style regression through all the data with MgO < 8 wt%. Subsequent

correction to 10 wt% MgO, or Fo90, occured via olivine addition using the Herzberg and O’Hara (2002) olivine model.
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Figure A.3: A comparison between models of fractionation in the Reykjanes Ridge dataset and empirical fits to the data. In

(A) Petrolog (version 3.1.1.3, Danyushevsky and Plechov (2011)) is used to model fractional crystallisation starting from the

major element composition of the sample glasses (open circles) and using the water data of Nichols et al. (2002). Pressure

is set to 2 kbar, partition coefficients are DFe2O3
ol = 0, DFe2O3

plag = 0 and DFe2O3
cpx = 0.45 (Mallmann and O’Neill, 2009), and we

used the mineral-melt models of Herzberg and O’Hara (2002). Fractionation paths are drawn as coloured lines showing the

co-crystallising phases. (B) shows the mixed empirical (for samples with MgO < 8 wt%) and model (olivine addition to samples

above 8 wt% MgO) method of data correction that has been used to construct figures in the main text. Coloured circles are

the new data we present here; grey squares are data from Cottrell and Kelley (2011).
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Table A.2: Covariance and correlation matrices for parameters in the PCR calibration: Fe3+/
∑

Fe = a0 + a1PC1 + a2PC2.

Correlation matrix Covariance matrix

a0 a1 a2 a0 a1 a2

a0 1.000 -0.999 -0.054 0.009 -0.08 -0.002

a1 -0.999 1.000 0.0531 -0.08 0.7 0.02

a2 -0.054 0.0531 1.000 -0.002 0.02 0.2
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Table A.3: Calculated bulk partition coefficients used in modelling for Fig. 10, f is the fraction of each mineral phase in the

source, sp = spinel, gt = garnet, ol = olivine, opx = orthopyroxene, cpx = clinopyroxene.

lithology fspDsp fgtDgt folDol fopxDopx fcpxDcpx Dbulk =
∑

fiDi

Spinel lherzolite 0.044 - 0.034 0.050 0.082 0.21

Spinel pyroxenite 0.154 - 0.011 0.030 0.027 0.47

Garnet pyroxenite - 0.27–0.41 0.014 - 0.23 0.51–0.65
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Table A.4: Bulk partition coefficient and melt fraction combinations used in constructing the upper and lower bounds (thin lines)

and preferred solution (thick line) for source Fe2O3 shown in Fig. 10. sp− lrz = spinel lherzolite, gt− px = garnet pyroxenite,

sp− px = sp pyroxenite.

Source Bound Lithology Dbulk F

Depleted lower sp-lrz 0.1 0.07

Depleted upper sp-lrz 0.23 0.13

Depleted preferred sp-lrz 0.21 0.1

Enriched lower sp-px 0.47 0.15

Enriched upper gt-px 0.65 0.21

Enriched preferred gt-px 0.51 0.18
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