

Preliminary study of MoS₂ based saturable absorber used for crystal based mode locking laser system

Chun Yin Tang¹, Li-li Tao¹, Hui Long¹, Long-Hui Zeng¹, Chung-Che Huang², Daniel W. Hewak², Yuen Hong Tsang^{1*}

¹*Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China*

²*Optoelectronics Research Centre, University of Southampton, Highfield, Southampton SO17 1BJ, UK*

*Email: Yuen.Tsang@polyu.edu.hk

Abstract

Due to the extremely high pulse peak power produced by ultrafast laser and its potential applications for precious material processing and cutting e.g. sapphire wafer surface processing [1] for mobile phone display technology, it has attracted great interests from the laser photonic industry [2]. Apart from Semiconductor Saturable Absorber Mirror (SESAM), the carbon based materials e.g. carbon nano tube or graphene and graphene oxide materials have demonstrated mode locking successfully by using different types of gain materials with operational wavelengths at near 1 micron [3-5], 1.3 micron [6], 2 micron [7], confirming their wide operational waveband properties. These carbon based absorbers can be fabricated by some simple technique that can be used for mass production of the absorber e.g. dip coating [5], ultrasound, chemical process etc.

2D layered transition metal dichalcogenides, TMDs, e.g. MoS₂ offers a wide range of intrinsic open band gap structure and favourable electrical and optical properties. Compared with graphene, MoS₂ has larger distance of the neighbouring layers (0.62 nm) than that of the carbon layers (0.34 nm) in graphite, leading to weaker Van Der Waals (VDW) force between inter-layers and being easily separated from bulk MoS₂ [8]. Additionally, their intrinsic open bandgap leads to its direct bandgap semiconducting properties, offering great potential for electronic and optical devices e.g. transistors [9], optical limiter [8], solar cells [10] etc.

Recently the mode locking operation has been demonstrated by using MoS₂ based saturable absorber in Yb fiber and Yb:Er fiber laser systems to generate ultrafast pulses operating at $\sim 1\mu\text{m}$ [11] and $\sim 1.5\mu\text{m}$ [12-14]. However, due to the limitation of fiber structure, the laser output power is limited to several mW [11]. Higher average output power can usefully be achieved by using diode pumped crystal laser [5].

The APCVD, Atmospheric Pressure Chemical Vapor Deposition, -grown MoS₂ film on quartz substrate [15] has been used as saturable absorber in the Nd:YVO₄ crystal laser system to produce mode locking pulses successfully for the first time as shown in Fig. 1. The Raman spectrum of the MoS₂ absorber has been shown in Fig. 2(a), with the Transmission Spectrum of the MoS₂-SAs samples of different initial transmission ratio had shown in Fig. 2(b). The preliminary mode locking features from this MoS₂ based Nd:YVO₄ crystal laser with repetition rate agree well with the laser cavity round trip time as Fig. 3 shown. These results indicate these MoS₂ based saturable absorbers offer great potential to be used for high power ultrafast mode locking laser. For next step, we are planning to add a protective layer on the MoS₂-SA to further improve the output pulses stability and output power.

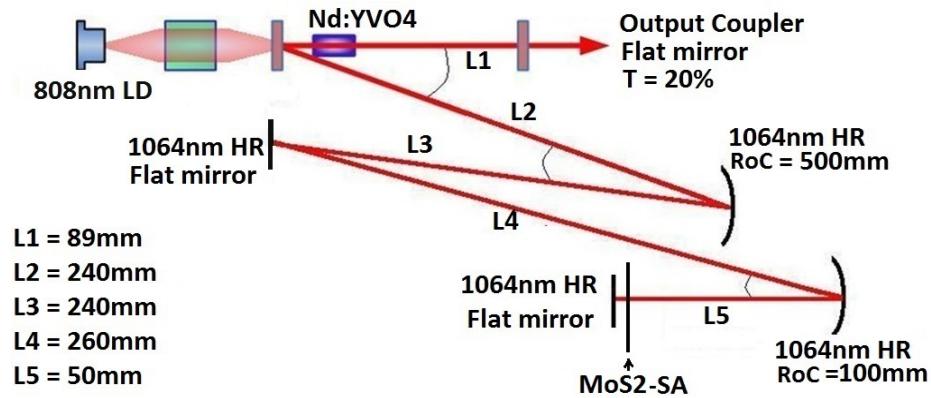


Fig 1. The schematic diagram of laser, HR-High reflection, T-Transmission ratio, RoC – Radius of Curvature of the mirror.

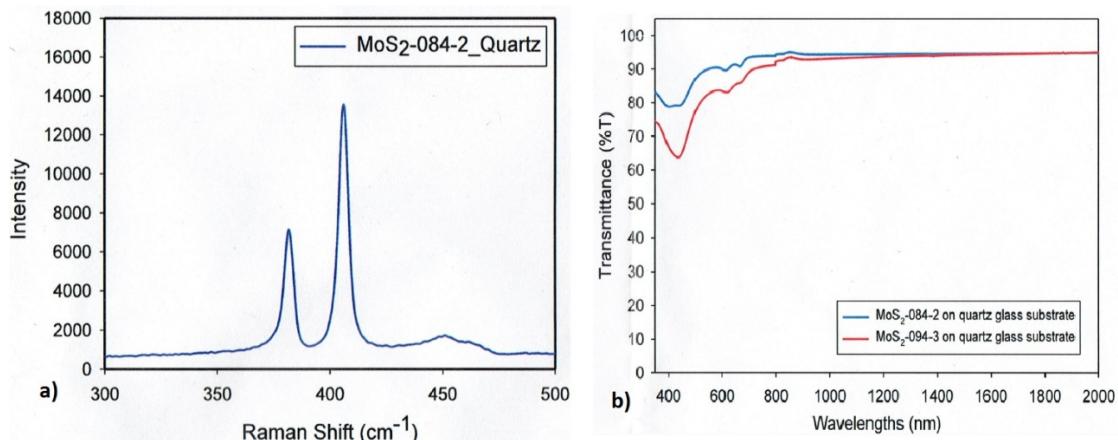


Fig. 2 (a) Raman spectrum of MoS₂-084-2 quartz sample. (b) Transmission spectrum of the MoS₂-SA samples.

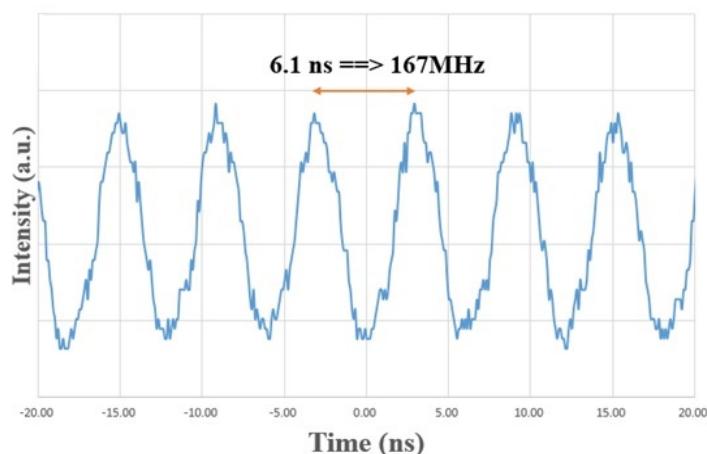


Fig. 3. The mode locked pulse train generated by using MoS₂-SA.

References

1. L. Qi, K. Nishii et al., “Femtosecond laser ablation of sapphire on different crystallographic facet planes by single and multiple laser pulses irradiation,” Opt. Laser Eng. 48(10),1000-1007(2010).
2. W. Zhang, L. Li et al., “Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. 109(2), 291-297 (2012).
3. L. Zhang, Y. G. Wang et al., “ 20W high-power picosecond single-walled carbon nanotube based MOPA laser system,” IEEE J. Light. Technol. 30(16), 2713-2717(2012).
4. Y.G. Wang, Z.S. Qu et al., “ Graphene Oxide absorbers for watt-level high power passive mode-locked Nd:GdVO₄ laser operating at 1 μ m,” IEEE J. of Light. Technol.30(20), 3259-62(2012).
5. C.Y. Tang, Y. Chai et al., “High-power passively mode-locked Nd:YVO₄ laser using SWCNT saturable absorber fabricated by dip coating method,” Opt. Exp.23(4), 4880-4886 (2015).
6. S.V. Garnov, S.A. Solokhin et al., “ Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO₄ and Nd:Y0.9 Gd0.2 VO₄ lasers operating at 1.34 μ m,” Laser Phys. Lett. 4(9), 648-651(2007).
7. W. B. Cho, A. Schmidt et al., “ Passive mode-locking of a Tm-doped bulk laser near 2 μ m using a carbon nanotube saturable absorber,” Opt. Exp.17(13), 11007-11012 (2009).
8. L.L. Tao, H. Long et al., “ Preparation and characterization of few-layer MoS₂ nanosheets and their good nonlinear optical responses in the PMMA matrix,” Nanoscale 6, 9713-9719(2014).
9. B. Radisavljevic, J. Brivio et al., “Single-layer MoS₂ transistors,” Nature Nanotechnology 6, 147–150(2011).
10. M. L. Tsai, S. H. Su et al., “ Monolayer MoS₂ Heterojunction Solar Cells,” ACS Nano, 8 (8), 8317–8322 (2014).
11. J. Du, Q. Wang et al., “Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS₂) saturable absorber functioned with evanescent field interaction,” Scientific reports 4 (6346), 1-7(2014)
12. H. Xia, H. Li et. al., “Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS₂) saturable absorber” Opt. Exp., 22(14), 17341-17348 (2014).
13. R. Khazaeizhad, S. H. Kassani et. al., “ Mode-locking of Er-doped fiber laser using a multilayer MoS₂ thin film as a saturable absorber in both anomalous and normal dispersion regimes,” Opt. Exp., 22(19), 23732-23742(2014).
14. Y. Wang, D. Mao et. al. “Harmonic mode locking of bound-state solitons fiber laser based on MoS₂ saturable absorber,” Opt. Exp., 23(1), 205-10(2015).
15. C. C. Huang, a Feras Al-Saab et. al., “Scalable high-mobility MoS₂ thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature”, Nanoscale, 6, 12792-12797(2014).

Presentation Method: Invited Oral (30 min presentation)

* A full paper should be submitted separately if authors intend to submit one.