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Abstract

This study is an attempt to approximate simply and accurately the power transmission
of complex built-up structures consisting of both long- and short-wavelength
substructures. For practical concern, the long-wavelength substructures are usually to
be the sources, while the short wavelength substructures to be the receivers. For
discrete coupling cases the multi-pole method and a new technique — the power mode
method, have been investigated. Three approximation expressions for the transmitted
power have been derived base on this power mode theory. For line-coupled cases, a
foundation consisting of a beam-stiffened plate with the excitation applied to the
beam is studied. The power transmission from the source beam to the plate receiver
are investigated for three cases: Case 1, an infinite beam attached to an infinite plate,
is investigated by the Fourier Transform and wave-based methods;, Case 2, a finite
beam attached to an infinite plate, is investigated by a combined modal
analysis/Fourier Transform approach as well as the locally reacting impedance
method; and Case 3, a finite beam attached to a finite plate, is investigated by the
modal analysis theory. Simple expressions for the power transmission as well as the
modified dynamic response of the source beam have been derived. Furthermore the
effects of coupling the plate to the beam are discussed and compared with the results

obtained from the “Fuzzy” theory.






1. Introduction

An understanding of the vibration power transmission in complex built-up systems,
composed of both source and receiver substructures, is essential in the attempt to
solve the many vibration problems of practical concern, such as vehicles, aircraft
structures, mechanical equipment, etc. In the study of power transmission from source
substructures to receiver substructures, two general cases are involved 1 jdeal
force/velocity sources and general linear sources.

A force source is one that generates forces regardless of the velocity responses of the
receiver, and a velocity source generates velocities which can not be affected by the
force responses of the receiver. Force-source-like behaviour may, for example, be
observed at mounting points at which rigid frames of unbalanced rotating machines
are attached to other structures. Velocity-source-like behaviour may be produced, for
example, by the action of a piston in a reciprocating machine operating at constant
rotational speed. Most realistic sources depart from these ideal behaviours, of course.
It is usual to consider a general linear source, whose force output and velocity output

are linearly related by

F=F s =hls
MS MS

where F, and ¥, are the outputs of a force source and of a velocity source, and

(1.1)

and V; are the force and velocity outputs of the general source, and M denotes its

mobility. In [1], such a general linear source is illustrated by the two equivalent

representations shown in Figure 1.1.
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Figure 1.1 Two equivalent representations of a general linear force



Tt can be seen then a force source corresponds to M =, and a velocity source to
M, =0, ie, ideal force/velocity sources are only special cases of general linear

SOUTrCes.

When a general line force source is attached to a receiver with an input mobility M,
as shown in Figure 1.2, the interface force response 7, and the velocity response v,

is then related by
£y s

- = 1.2
M+ M 1+M /M, (1.2)

V}:FJ"MR

Tt can be seen from the above equation that the outputs of source depend on both the

properties of the source and the receiver. Equation (1.2} also denotes that F, = F; for

a force source, and ¥, =V, for a velocity source.

v,

it 1 >

| V> F

| F, !

| 2 O AR

: M, i

R
—
__..}?}

Figure 1.2 Two equivalent representations of a general linear force
attached to a receiver

Some investigations of vibration power transmission induced by ideal force/velocity
source excitations have been reported in [16]. This study is therefore proposed to
investigate the vibration power transmission from general linear sources to recelivers,
which are more complex than the ideal force/velocity source excitation cases. Since in
geometries of practical interest, the case of stiff source/flexible receiver prevails, a
typical complex built-up system can be considered as composed of a long-wavelength
and/or low-modal-density source substructure and a short-wavelength and/or high-
modal-density receiver substructure.

To model the dynamic characteristic of such structures at higher frequencies, neither

deterministic methods 7! (e.g. FEA) nor stochastic approaches 31 (e.g. SEA) are



able to predict the vibration behaviour with acceptable accuracy. In the low frequency
range deterministic methods can be used to predict the vibration behaviour of coupled
structures very accurately with same computational cost. However, at higher
frequency, in what might be termed the ‘mid-frequency’ range, the wavelength of the
system deformation reduces as frequency increases and the size of the model
increases accordingly. In the context of FEA, it is generally considered that
approximately four to eight elements (depend on the related vibration shape functions)
must be used to adequately resolve each structural wavelength, and this can and does
lead to unfeasibly large models at high frequencies. The Statistical Energy Analysis
(SEA) method has been successfully applied to the high-frequency vibration analysis
of coupled systems, provided that each subsystem ideally contains a number of
resonant modes over the analysis frequency band of interest, i.e., the wavelength of
the subsystem deformation is of the same order as, or less than, the dimensions of the
subsystem. The primary aim of the analysis is to estimate the distribution of vibration
energy among the coupled subsystems. In the mid-frequency range, ie. the
frequencies are not high enough to make the wavelengths of all subsystems to be
sufficiently short, this high-frequency, energy-based approach will become too broad-
brush and lose all details of the system vibration behaviour.

Some modal reduction techniques '*7 have been developed to deal with the coupled
responses of such complex built-up structures. As the most commonly used one, the
FRF-based sub-structuring method has been shown very useful if the frequency
response functions of all the subsystems of a built-up structure can be obtained easily
(either analytically or experimentally). The fundamental concept of this technique is
to utilize the individual uncoupled component FRFs to construct the total system
response based on dynamic compliance formulation. The procedure is reviewed below
for a general source/receiver system:.

For the source substructure, its velocity responses at the interface degrees of
freedom, by referring to Figure 2.1 and equation (1.2), can be written as

V=V, MK (1.3)

where F, is a vector of interface force applied to the source by the receiver, Mg the

uncoupled mobility matrix of the source at the interface degrees of freedom (DOFs),

and V, the free velocity vector of the source at the interface DOFs before it is

coupled with the receiver so that



V, =M,F, (1.4)

§

where F, is a vector comprising the force excitations applied to the source structure,

and M, the source mobilitj matrix from the excitation coordinates to the coupling

coordinates. The compatibility and equilibrium boundary conditions at the interface

also give

V, =M F (1.5)

where M, is the uncoupled mobility matrix of the receiver at the interface. The
dynamic response of the receiver at the interface DOFs can then be defined as

F =(M; +M.) " V, (1.6)

V, = Mg (Mg + M)~ V, 1.7

The power transmitted from the source to the receiver thus can be expressed as

L -
P= %Re{FIHVI}z %Re{Ver (M + M) ' | Mg (M + M) st} (1.8)
where H denotes complex conjugate of the matrix. Equation (1.8) can be written as

where,
-1 -1
Z oy =| (M + M) } M, (M, +M,) (1.10)

A full description of the power transmission from a source to a recetver by this
approach inherently requires evaluation of many terms as well as a matrix inversion,
This can be computationally prohibitive, especially when the number of the interface
degrees of freedom is very large (e.g. line coupling, which can be regarded as being
discrete point connection, if the points are close enough). Also, inaccurate results may
be obtained during the matrix inversion if the mobility matrix is ill-conditioned.
Therefore this technique could be rather problematic for many interface DOFs
coupling cases.

It is generally more useful to approximate the main properties of the power

transmission rather than to predict precisely its detailed response, since the theoretical
results can only rarely be applied to practical structure-borne sound problems 1. As

frequency increases the system response becomes increasingly sensitive to
geometrical imperfections, so that even a very detailed deterministic mathematical

model based on the nominal system properties may not yield a reliable response



prediction. Although some specialist methods P11 have been developed by different
authors to approximate the transmitted power from stiff sources to flexible receivers,
certain significant limitations exist in their applications, especially for the line-
coupling cases. It is true to say more research is required before a complete and
generally accepted approximate theory is developed. Therefore the emphasis in this
study is to approximate simply and accurately the power transmission between stiff
sources and flexible receivers coupled by either discrete or line couplings. Since many
of the basic features of structures of practical concern can be reduced to relatively
simple configurations of beams and plates, for line-coupling cases 2 typical
foundation consisting of beam-stiffened plate with the excitation applied to the beam
is therefore investigated in the first instance. Extending the methods to more complex
geometries is the subject of the further research.

For discrete point-coupling cases, both the multi-pole and the power mode methods
have been used to simplify the power transmission prediction from a stiff source to a
flexible receiver. For line-couplings e.g. beam-stiffened plate systems, three cases are
investigated: Case 1, an infinite beam attached to an infinite plate, is investigated by
Fourier Transform method and wave analysis method; Case 2, a finite beam attached
to an infinite plate, is investigated by a combined modal analysis and Fourier
Transform method; and Case 3, a finite beam attached to a finite plate, is investigated
by modal analysis method. Simplified expressions for the power transmission are
derived, and their accuracy verified by comparing with numerical resuits by the FRF-
based sub-structuring approach. Moreover the coupling effects of the plate to the
beam are analysed quantitatively and compared with those obtained by fuzzy structure
theory >4,

Tt is expected that these approximate techniques can be further generalized so as to
form a complete approximation approach applicable to any system composed of both
long-wavelength (low modal density) and short-wavelength (high modal density)

substructures. This forms the next stage of this study.



2. Power transmission through discrete couplings, Part I: Application of
the multipole method

2.1 The multipole theory

The multipole method, which is first developed in [9], is to attempt to simplify the
modelling and measurement of power transmitted into machine mounting configurations,
by describing the source vibrations as moving in a set of vibration poles and the receiver
as a set of polar mobilities or impedances. The main theory of this method is reviewed
below.

Let ® be an N xN Hadamard matrix, i.e., a matrix of orthogonal functions and whose
elements are +1. The matrix ® implies such relations

o=, ¢ -lo 2.1)
N

Then let the set of force excitations F be weighted by ® to give a new set of polar forces
Q defined by

Q=®F 2.2)
Accordingly the polar mobility matrix can be defined by

1

Then the power transmitted by multipoint forces F is given as

1 u 1
P=_Re {F"MF} = JRe {Q"M,0} (2.4)

Likewise, a set of polar velocities U as well as the polar impedance matrix can be

expressed as

1
U=V 2.5
N @5)

Z =M/ (2.6)

The power transmitted by the set of velocity excitations is then given as

P= %Re{VHM‘l V)= %Re{UHZnU} 2.7



If both the receiver structure and the excitation points are symmetric, M, will be
diagonal and equaito A, i.e,

A= —A-;E—Q)MCI) 2.8)

The power transmission to the receiver then can be written as
1 1
P= EQH Re{A}Q :EUH Re{A™'}U 2.9)

Equation (2.9) shows that the vibration power transmitted by N forces/velocities can be
regarded as the power transmitted by N independent poles of vibration, where the nth

polar power is given by

1 2 1 2 _
P,,=E|Q,,| Re{Am}=-2—|U,,| Re{A;} (2.10)

2.2 Power transmission approximation using the multipole method
2.2.1 Fully symmetric source/receiver coupled system

For a coupled source/receiver system, if the receiver is fully symmetric, the interface
force acting on the recetver, from equation (1.6) and (2.2), can be expressed as the polar

force
1 -1
Q:[AR +F®MS®J U, (2.11)

where Ay is the polar mobility matrix of the receiver, and U, is a set of free polar

velocities, determined by equations (2.3) and (2.5), respectively, i.e.,

1

Ag =—OM,P (2.12)
N
1
Usf :F(I)VS, (213)

The power transmission to the recetving structure can then be written as
1 N
P:EQHRe{AR}Q=ZPn (2.14)
#n=1

where P, is the nth polar power given by

p=1
2

0, Re{Ag,.} (215)



If the source structure is also fully symmetric, we can similarly write

1
A= F(I)MS(I) (2.16)
Then Z,,, in expression (1.10) can be written as
1 7! -1
Z,.,= F@[(AS +A) | An(As+Ag) @ 2.17)
The power transmission is then
N N Re A -
P=2F, =Zl|Ubf,n2~——+—{ cn (218)
n=1 a=1 2 |ARnn + AS,nn]

Thus the power can also be regarded as transmitted by N independent poles of vibration.
Tt can be seen in this case, the multi-pole method has great advantages for simplifying the
power transmission estimation from the source to the receiver.

Equation (2.18) also demonstrates that the power transmitted to each pole of the recetver
has a direct relation with its corresponding source pole but is independent of other source
poles. In this case (both the source and the receiver are fully symmetric), it might be
appropriate to characterise the source by a set of free polar velocities, while the receiver
is described by a set of ‘modified’ polar impedances, since the coupling effects between
the source and the receiver have to be taken into account,

If either the source, the receiver, or the excitations are not fully symmetric, then
generally the transformed polar mobility matrices Ag and Agare not diagonal, and hence
the transmitted power in equation (2.18) contains also coupled terms, which indicate the
couplings between different poles. In these circumstances, the multipole technique seems
have no advantage over the FRF-based sub-structuring method. However, in certain
cases, the off-diagonal coupling terms may be so small that the polar mobility matrices
can almost be regarded as diagonal. Therefore it is possible to yield a valuable

approximation using this polar analysis approach.
2.2.2 Asymmetric source/receiver coupled system

For a flexible receiver with high modal overlap so that there is no distinct resonant
behaviour, due to high modal density and/or heavy damping, the cross terms of Ag in

equation (2.12) can be ignored ! e, the polar mobility matrix can be regarded as



diagonal. As far as such flexible receiver structures are concerned, the transmitted power
can be simply approximated using equation (2.18) with acceptable accuracy, provided the
source structures are fully symmetric.

If the source structure is neither fully symmetric nor has high modal overlap, the cross
terms of source polar mobility matrix are usually not small enough to be ignored
compared to the diagonal terms. However, if the source structure has much lower
mobility compared to that of the receiver, such a relation always holds as

Agm >> Agm (2.19)

R.nn
In this case equation (2.18) can be also applicable to approximate the transmitted power.
For other cases, however, the multipole method has no advantages over the FRF-based

sub-structuring method.
2.3 Numerical studies

To get more understanding of this polar analysis method as well as to investigate the
accuracy of the power transmission approximations made by this approach, some
numerical results are presented for a system consisting of a stiff beam connected to a

flexible rectangular plate by two discrete points, as shown in Figure 2.1

*—e
*—-9

w(x)

L7,

Figure 2.1 Point coupled beam-plate system

For simplicity, both the ends of the beam and the four edges of the rectangular plate are
chosen to be simply supported. The material of the system is chosen to be perspex and the
relevant properties are listed in Table 2.1. An external point force F, acts on the beam at
a distance £=0.73m to one end of the beam. Three different coupling cases are

investigated: (1) the coupling points are symmetric to both the beam and the plate; (2) the



coupling points are symmetric to the beam but asymmetric to the plate; (3) the coupling
points are asymmetric to both the beam and the plate. The locations of the coupling
points on the beam and on the plate for the three different cases are listed in Table 2.2.
First the mobility method is used so to get the accurate results of power {ransmission
from the beam to the plate, and then the polar analysis approach is used. Comparisons are

made in Figure 2.2-2.4 for case 1, Figure 2.5-2.6 for case 2, and Figure 2.7-2.8 for case 3.

Table 2.1 Properties of the numerical beam and plate structures

Structure Beam Plate
Dimension | Length=2m; width=0.05%m; Length=2m; Width=0.9m,
sizes Height=0.068m Thickness=0.010m

Material Young’s modulus=4.4e9 N/m?;, Density=1152kg/m’; Loss factor=0.05;

propertics | Poisson’s ratio=0.38

Table 2.2 Locations of the coupling points

Coupling positions on the beam (m) | Coupling positions on the plate (m)
Casc 1 | x, =0.56;%, =1.44 (x,1,¥,1) =(0.56,0.45);
(x,2,¥,2) =(1.44,0.45)
Case2 | x, =0.56;%,, =144 (%1, Y51 ) =(0.43,0.45);
(x,2.7,2) =(131,045)
Case3 | x,, =0.43;x, =131 (x,1,7,1)=(0.43,0.45);
( Pz,yﬁ) (1.31,0.45)

Figures 2.2-2.3 compared the point- and polar mobilities of the source beam and the
receiver plate, respectively. It can be seen that when a structure exhibits resonant
behaviour, only one polé dominates at each resonant frequency. Around the first natural
frequency of the structure, the monopole dominates. However, when the structure has no
distinct resonant behaviour due to, for example, high modal overlap (e.g. Figure 2.3), the

values of different poles tend to be close. This is because the point mobility and the

10



transfer mobility can be very close to each other due to a resonant mode or a long
wavelength, thus by the relation of equation (2.3) one of the poles will be much larger
than the others. For the high modal overlap areas, however, the point mobility becomes
larger than the transfer mobility, and each pole will have a significant effect on the
vibration properties of the system. Figure 2.4 shows the relation between the total
transmitted power and the power transmitted by each pole. It can be seen that there do
exist some frequency ranges where the power is specially related to one pole. For these
frequency areas, this polar analysis method will be particularly useful.

Figure 2.5 shows comparisons of the diagonal terms and the off-diagonal cross terms of
the polar mobility matrix of the receiver for Case 2. It can be seen that for high modal
&erlap areas (e.g. the modal overlap factor of the receiver is at least bigger than 1 or the
frequency range is above 150 Hz), the cross terms tend to be much less than the diagonal
terms. Therefore it is quite reasonable to take the polar mobility matrix of such a receive
structure as diagonal. Consequently the power can be also regarded as transmitted by
independent poles. Figure 2.6 shows the comparison between the exact result of
transmitted power and the approximation made when all the off-diagonal terms of the
polar mobility matrix of the receiver are ignored. It can be seen that when the modal
overlap factor of the receive structure is more than unity or the frequency range 1s above
150 Hz, the approximate result is quite accurate.

In Case 3, the source structure is asymmetric and has low modal overlap, the cross terms
of source polar mobility matrix are comparable with the diagonal terms, as shown in
Figure 2.7, however, it can be seen from Figure 2.8 that equation (2.18) still can be used
to make a good approximation due to the source structure being stiff enough compared to

the flexible receiver.
2.4 Discussion

Based on the multipole theory, the transmitted power from a source structure to a
receiver structure can be approximated with acceptable accuracy using a simple
expression of equation (2.18) for the following cases: Case 1, both the source and the
receiver structures are fully symmetric; Case, 2, the source structure is fully symmetric
and the receiver has high modal overlap with non-distinct resonant behaviour; and Case

3, the source structure is much stiffer than the receiver, which has high modal overlap

11



with non-distinct resonant behaviour. For other situations, the multipole method has no
advantages over the FRF based sub-structuring method.

One may also have noticed that the orders of Hadamard matrices are

N=27 p=123... but the number of excitation pomnts N may not be related by

N =27, although four or eight points are relatively common in practical engineering. In
[9], it is pointed out that the number of points used may not have to correspond to exact
number of excitations but to N =27, since the polar mobilities are not very sensitive to
the exact positions of the coupling points. This is particularly useful if there are a large
number of excitation points and some of them are spaced within one half wavelength. But
for higher frequencies where all the excitations points are spaced more than half of the

wavelengths with each other, no such a simplification can be made.

12
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3. Power transmission through discrete couplings, Part II: Application
of the power mode method

3.1 The power mode theory

In [16], a new technique, power mode method, was developed to simplify the prediction
of the power transmitted to flexible recetvers from discrete force/velocity sources. The
method approximates the transmitted power by the mean value and upper and lower
bounds. In summary the power mode approach is a transformation from physical to
modal forces and responses, analogous to the multipole approach, but of a more general
form so that the transformed mobility/impedance matrix becomes diagonal. Based on this
power mode theory again, this study is an attempt to approximately and simply predict
the vibrational power transmitted to a flexible receiver from discrete general linear
sources, i.e., the power transmission from a stiff source structure to a flexible receiver
structure by discrete point couplings. For convenience the main principles of power mode
theory are recapitulated below. Further details are given in {16].

For a general receiver structure excited by discrete force sources, the time-averaged real
power can be calculated by

P:%FH Re[M]F (3.1)

where M is the complex mobility matrix of the structure. By matrix theories 7%,

Re[M] can be decomposed into the form

Re[M] = ¥YD¥' (3.2)
where D is a real and non-negative diagonal matrix composed of all the eigenvalues of
Re[M], and ¥ the normalized orthogonal matrix composed of the corresponding
eigenvectors (in columns) such that PYP” =1, Usually the eigenvalues are arranged in

descending order so that

D 2D,>.. 2Dy 20 (33)
Let the force vector F be weighted by ¥ so to give a new set of power modal forces

Q=Y'F (3.4)

17



The relation

N

Sof -3ef (3.5)

n=l
exists. Combining Equations (3.1), 3.2) and (3.4), the transmitted power to the receiver

can be re-written as
1.E 2
p==2 o[ D, (3.6)
n=1

The above equation denotes that the vibration power input to a structure by N forces
can be regarded as the power inputby N independent power modes. The set of forces F

1s defined by a new set of power modal forces Q, and the receiver by a set of power
modal mobilities D, .
In principle, full knowledge of Re[M] is required to determine its eigenproperties, so

ostensibly there are no benefits. However benefits do arise because in a number of
situations approximations and bounds can be found for the transmitted power.

From equations (3.3), (3.5) and (3.6) upper and lower bounds can be simply derived as

B, x—;—[}Nj IF,,F]DH (.7)

=1

1{ & 2
P, =5[ZIF,J JDW (3.8)

The mean value of the transmitted power to the receiver when averaged over all the
power modes can then be approximated in terms of the mean square force and the mean

point mobility

P *%[i [a[zJRe(ﬁij /N] (3.9)

=1
3.2 Power transmission approximation by the power mode method

For a source/receiver system, the interface force vector F of the receiver, by equation

(1.6), is written as

F=(M,+M,)"V, (3.10)

18



The power transmission from the source to the receiver is given in equation (1.8).

Physically the maximum powér transmission will occur when the source structure is
rigid, 1.e,

M =[0] (3.11)
so that the excitation velocities are in effect applied to the receiver structure directly. The

upper bound of the power transmission therefore can be approximated as

1 _
P, = Re (V™M V } (3.12)
From equation (3.10), it follows that
N
YIEf =v," [(MR + M) ]H (M + M) Yy (3.13)

n=1
Equation (3.13) is a positive definite quadratic form, and hence its strict lower bound can
be found using steps similar to those described in section 3.1.
If M, + M is decomposed as
M, + Mg = DAL P (3.14)
where A is a diagonal matrix and @ the corresponding unitary matrix, then equation

(3.13) can be re-written as

il o
ZIE: '2 = UsfH [ARS_1:] ARsilUsf (3.15)
n=l
where
U, =07V, (3.16)
Combining equations (3.15) and (3.16), it gives
N N ) 1
Fnzz[ V.. )—— (3.17)

Here |ﬂ,§;| is the maximum magnitude of the diagonal elements of Ags. In [19], it 18

seen that

|zﬁ<|s,/ﬂf§“‘n AV (3.18)
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M H - . : H
where AMEM® and AMsMs represent the maximum eigenvalues of matrices MpMyg and

ML M, respectively, and where

JAS < max (M, |+ 3 S M| (3.19)
JAME < max (M| + > S M) (3.20)

Combining equations (3.8), (3.17)-(3.20), a strict lower bound of power can be obtained

(S 2
P 2 - Ea ‘min

low:[me\MR,th #max ||+ MZ,,,ZIMS’"'"F}

where A%, is the minimum eigenvalue of the receiver mobility matrix Re[Mg].

as

(3.21)

2

For a very flexible and/or heavily damped receiver, the point mobility tends to be much

larger than the transfer mobility so that the points can be taken as ‘uncoupled’, 1.e.,

Ag Mg, Re[A,]~Re[M] (3.22)

Y ZEPonf 62)
(14T o

The bounds of the transmitted power then can be approximated by

B, 13, [ Re ! (3.24)
o 2 n=1 " MR,nn ‘

2) min {Re[MRm]}
(mf.x |MRM + (1 + NN -1) )milx IMS,M I)2

Note that these bounds depend only on the diagonal elements of the mobility matrices.

Equation (3.18) then becomes

l Vi

max

< maleR o +max|MS -
n ” n ’

<maxiMp,,
p .

(3.25)

1 N
PIDW & E(E\V#n

These can often be estimated (to a good approximation) from the equivalent infinite

system if the modal overlap is high.
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Of course the practical usefulness of these upper and lower power bounds depends on the
width of this band. It can be seen that the stiffer the source and/or the more flexible the
receiver, the closer the values of upper and lower bounds, i.e., the more narrow the band.

Specifically, if the source structure is much stiffer than the receiver structure so that

max ‘MR.MI >> (1 +N(N —1))111:1:( P\/I&m

the upper and lower bounds are almost the same. Under such circumstances, the power

(3.26)

therefore can be actually approximated by that transmitted by a set of free velocities V.

Tt is known that a finite structure may be approximated by an equivalent structure of
infinite extent to give the frequency average level of the response. This is because the
frequency average point mobility of a finite structure equals that of the equivalent infinite
structure. For a stiff-source/flexible-receiver system, the lower bound of the transmitted
power can be quite close to the ‘exact’ value of the transmitted power, since the band
width formed by the upper and lower bounds can be rather narrow if the mismatching
between the source and the receiver is big enough. It is therefore reasonable to expect that
the power transmitted from a stiff source to a finite flexible receiver can be simply and
accurately approximated by

1 N
P= E(;!stﬂ

2} Re{M; .} 2
(|M;m|+(1 + N 1) ) max |MSM|)

corresponds to the point mobility of the equivalent infinite receiver. The

(3.27)

where, M,

R.nn
bigger the mismatching between the source and the receiver, the more accurate this
approximation expression is.

In the above sections, only the power transmission in the vertical degree of freedom has
been considered, this usually being the most significant 1 However, the power
transmission by other components of motion, particularly bending moments, is also
desirable. Under such circumstances, by assuming no cross-coupling between these
components of motion, the power transmission due to bending moment excitations can be
approximated by analogy with equation (3.27), in which the free velocity vector is
composed of a set of rotation “velocities” and the mobility corresponds to the frequency

response function between the bending moment excitation and the rotation velocity.
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3.3 Numerical examples

Three expressions have been derived in the section 3.2 to approximate the transmitted
power from a stiff source (o a flexible receiver by its upper and lower bound
approximations as well as its frequency average response approximation. To investigate
the validity and accuracy of these approximation approach, a numerical case is set up
consisting of a stiff beam connected to a flexible rectangular plate by four evenly spaced

points with a unit point force acting on the source beam, as shown in Figure 3.1.

F5{(x-¢)

Figure 3.1 Point coupled beam-plate system
The boundary conditions of the beam and of the plate, the material of the system, as
well as the external force excitation are all same as those in Section 2.3. Three different
plate models, shown in Table 3.1, are used to investigate how the mismatching between
the source and the receiver affect the accuracy of the approximations. It is seen then that

the wavenumber ratios k,/k, are 2.5, 3.5 and 5.6 corresponding to the plate thickness
0.010m, 0.005m and 0.002m, respectively.

Table 3.1 Parameters of the beam and plate structures

Structure Beam Plate
Dimension Length=2m; width=0.059m; Length=2m; Width=0.9m;
sizes Height=0.068m Thickness=0.010m/0.005m/0.002m

First the FRF-based sub-structuring technique is used to get the exact vibration
responses of the coupled system, and then the approximations for the upper and lower
bounds as well as the frequency average of the transmitted power are made using the
expressions defined in equations (3.24), (3.25) and (3.27). The comparisons with the
FRFT results are shown in Figure 3.2-3.8. A running frequency average technique has been
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used in the calculations to get the broad features of the transmitted power. The frequency-
band used in the frequency a{/erage is chosen to be 10 Hz wide so that each band consists
of a couple of (plate) vibration modes. (The plate modal densities are 0.15, 0.42 and 1.65
mode/Hz when the plate thickness is 0.010m, 0.005m and 0.002m, respectively.)

Figures 3.2-3.4 are the comparisons made between the approximated upper/lower

bounds and the exact result of the transmitted power, corresponding to k, /kb =25,35

and 5.6, respectively. It can be seen that the band width formed by the approximated
upper and lower bounds becomes more narrow as the plate receiver gets more flexible, as
we have expected. It is easier to see from equation (3.25) that the more flexible the
receiver is, the more accurate the lower bound approximation is. This trend, however,
cannot be seen directly from the upper bound approximation expression of (3.12).
Nevertheless, one can explain it using the general linear source properties, which has
been briefly introduced in Section 1. The upper bound approximation is indeed made
more broadly than the lower bound approximation, which gives the maximum available
power transmission when the source only generates velocities at the interface DOFs, and
therefore bigger errors can be caused between the exact results and the upper bound for a
general linear source, see Figure 3.2, due to the source generated velocities at the
interface DOFs are greatly effected by the generated interface forces. When the receiver
becomes more flexible than the source, or the source mobility gets smaller than the
receiver mobility, the source structure exhibits more velocity-source-like behaviour, i.e.,
the source generated velocities at the interface DOFs become less effected by the
generated interface forces. Consequently, the upper bound approximations tend to be
more accurate, as shown in Figure 3.3. When the receiver becomes much more flexible
than the source structure, or the mobility of the source is much smaller than the mobility
of the receiver, the source can almost be treated as a set of free velocity sources, i.e., the
generated interface velocities are almost independent of the interface forces. As a result
the transmitted power can then be simply approximated by that transmitted by a set of
free velocities sources, as shown in Figure 3.4, especially for the frequency range where
the modal overlap factor of the receiver is much greater than unity. It can be seen from

» [13-14 ]

Figure 3.5 that, in this case, the receiver is actually behaving in a “fuzzy manner,

which is equivalent to add certain damping as well as mass to the vibrations of the source
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structure. For the low modal overlap areas (of the receiver), say less than unity, neither
the upper- or the lower-bound approximations are applicable.
Figures 3.6-3.8 are the frequency average approximations made using equation (3.27),

corresponding to &, /kb =2.5,3.5 and 5.6, respectively. It can be seen that the frequency

average power transmitted to the receiver can be accurately approximated provided the
receiver has high modal overlap and is much more flexible than the source structure (e.g
the wavenumber of the receive is at least three or four times that of the source structure).
When the receiver is not very flexible, see Figure 3.6, with a wavenumber ratio

k, /kb =2.5, the approximation tends to underestimates the frequency average value of

the transmitted power about 3dB.

3.4 Summary

This study is an attempt to simplify the estimation of the transmitted power from a stiff
source to a flexible receiver by discrete point coupling. Three new approximation
expressions of power transmission have been derived using a new technique, the power
mode method. The main results are summarized below: |
(1) The maximum and minimum power transmission can be simply approximated by
upper and lower power bounds. The practicality of these upper and lower power bounds
depend on the width of this band. The bigger mismatch between the source and the
receiver, the more narrow is this band.

(2) The frequency average power can be approximated quite accurately provided the
receiver has high modal overlap and flexible enough compared to the source structure
(e.g. the wavenumber of the receive is at least three or four times that of the source
structure). In other cases, the approximation tends to underestimate the transmitted
power. _

(3) When the receiver structure is much more flexible than the source so that it behaves in
a ‘fuzzy’ manner, the power can be regarded as transmitted mainly by a set of free

velocities, especially for the mid- and high frequency ranges.
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4. Power transmission through line couplings, Case 1: An infinite beam
attached to an infinite plate

4.1 The Fourier Transform method

It has been shown in the companion Technical Memorandum '® that the Fourier
Transform method is particularly useful for predicting the power transmitted by a line-
distributed source to an infinite uniform receiver. In this section this technique will be
used to predict the power transmission between an infinite beam and an infinite plate.

In [22], the one-dimensional Fourier Transform is defined by

G(ﬁ)zTg(x)e’jﬁxdx 4.1)
g(x)=é [e(B)e*dp 4.2)

For an infinite beam attached to an infinite plate with an external point force F, acting

at x=0, if it is assumed that the beam drives the plate with a force distribution f(x)

along the coupling line, the equation of motion of the beam then can be written as
d*w, (x w, (x
), P
Ox ot

Using equations (4.1) and (4.2), the beam equation can be written in the wavenumber

= F8(x)- f(x) (4.3)

domain as _
D,k*W, (k) ~m,a0*W, (k)= F,- F (k) (4.4)
Thus both the displacement of the beam and the force distribution are transformed into

the wavenumber domain. This will yield an algebraic equation for the dynamic response

which can be solved analytically as below.

If Z(k) represents the line (dynamic) stiffness of the plate to the beam (in the

wavenumber domain), then
F(k)=Z(k)w, (k) {4.5)

where Z (k) was derived in [16] as
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Z(k)=2D, ¥ K} (& + K} + I -3 (4.6)

and where k, = \jm, @’ /Dp is the wavenumber of the plate.

Combining equations (4.4), (4.5) and (4.6), the following relation can be derived
£y

W (k)= 4.7
» (¥) D —me® +Z(k) “7)
The general expression for the power transmitted to the plate is written as
P= %Re{ [ £ (x)jow, (x)dx} (4.8)
From [22], equation (4.8) is equivalent to
1 1%
P=—Res— | F (k) joW, (k)dk 4.9
el L T om0 @9)

From equation (4.6) it can be seen that when |k|> %, then Im(Z)= 0, neglecting the

small damping of the plate. Hence equation (4.9) can be simplified as

P zim{f AGLAGH dk} (4 10)

Fi% o %,
Physically the above expression demonstrates that only the wave terms with k <k, can

radiate power to the plate, and thus only the wave terms with wavenumber less than %,

should be taken into account to estimate the power transmission from the beam to the
plate. A good simplification can then be made to predict the transmitted power in the

wavenumber domain.
4.2 Wave analysis method

Similarly, the dynamic tesponse of such a coupled beam/plate system can also be
obtained by wave analysis method. In [11-12}, the line impedance of the plate to the

beam has been derived in terms of waves as

ZA@):”ZP”Jl-[%} \/1{%—] +j\/1—(2—":J (4.11)
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where k, is the wavenumber of the beam after coupling. Multiplying j@ to both sides
of equation (4.11), it is seen then that jwZ, (k,) is formally identical to Z (k) which is
given in equation (4.6) derived from the Fourier Transform approach.

Usually the plate is relatively thin so that k; /k‘]J is less than unity. If (k; /kp)2 <<1,

equation (4.11) can be approximated by

7 ZmPa)
i k

r

1+ /) (4.12)

Equation (4.12) shows that provided the plate wavenumber is much larger than the
coupled beam wavenumber, the line impedance of the plate is independent of the beam
properties, and also the plate can be regarded as locally reacting 112 Having determined
the condition under which the plate can be considered locally reacting, it is appropriate to
consider the dispersion relation for a beam coupled to a general locally reacting receiver

plate. In this case, the general dispersion relation 1s given by (1]

D' =mw’ - joZ, (4.13)
Equation (4.13) shows that in effect the presence of the plate loads the dynamic response
of the beam. Then the dynamic response as well as the power transmission of the coupled
beam/plate system can be approximated simply.

Assume that the F,d(x) acted at the position of x=0 of the beam. Then before

coupling with the plate, the displacement response at point x is defined as i8]

w, (x) = j4;0k 3 (e_jk"" —je"k"x), x=20 (4.14)
bvb
E) Jhyx . kx
wb(x)zw(e - Jje ), x<0 (4.15)
5™

where k, = 3m,w’ /D, is the wavenumber of the uncoupled beam. After coupling the

wavenumber of the beam becomes

2 .
me° — jol
k;=4b—” (4.16)
Db

The coupled response of the beam can then be approximated as
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F ~ Jhyx :  —kyx
w, (x)zm(e Hx_ jek ), x=0 4.17)

Iy (% = jet*), x <0 (4.18)

W (%)~ 7AD"

The transmitted power from the beam to the plate then can be approximated by

1 +a0
Pw ERe{zaﬁ ! Z, |w, () dx} (4.19)

4.3 Discussion

The coupling effects of the plate on the beam can be obtained deterministically by the
dynamic analysis of the beam/plate system in Section 4.1.

From equation (4.6), it follows that when |k| < k,, then
Z(k)=Re(Z)+ jim(Z) (4.20)
where
Re(Z)=-2D, (k2 —*) K2 +4* (4.21)
Im(Z)=2D, (k2 +k* )k -#* (4.22)

For simplicity, the small material loss factor of the plate 7, has been ignored. Equation

(4.7) becomes
F
W (k)= L 4.23
> () Dkt —myw* + Re{Z (k)}+ jim{Z (k)} (4.23)
This equation can be rewritten as
W, (k) = . 0 y > (4.24)
D, [1+J(nb +1yk)]k —[my, +m, o
where
Im(Z
M= ( 4) (4.25)
N
m, = Re(zz) (4.26)
@
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Thus the effect of the plate on the vibration of the beam can be regarded as to add
damping 7, and a mass per unit length m, to the beam. The energy dissipated by 1,

represents the energy transmitted from the beam to the plate.

Substituting equations (4.21) and (4.22) into (4.25) and (4.28), respectively gives

2D, (k24K )Jk2 R @27

77_
: D,k*
2D, (K2 k) k2 + &
m, = (5 2) ? (4.28)

@
Equation (4.27) indicates that the damping effects of the plate on the beam depend on
both the properties of the beam and of the plate regardless of the internal damping of the
plate. Equation (4.28) denotes, however, that the mass added to the beam by the plate
tends to depend on the plate properties only.

When k <<k,, these expressions reduce to

2D (kY
7, 7 [_P_} ~_nf£..,__ (4_29)

"DEN\K ) m,rmk, /2
2m, m,A
m o m—t=—"t2 (4.30)
k 4

P
From equation (4.29) one may reasonablly suppose that when a set of wave travels along
the beam, the waves with fast wave velocity (k is very small) can transmit most of their
energy to the plate. Equation (4.30) shows that the mass added to the beam is almost
equivalent to the plate mass in a strip of width equal to one third of the plate wavelength.
When the plate receiver is much more flexible than the source beam (e.g. behaves in a
“Fuzzy” manner to the beam), it is seen then the damping added on the beam depends on
the wavenumber of the plate as well as the mass ratio between the beam and the plate
only, regardless of the internal damping of the plate. This is in good agreement with the

fuzzy structure theory >4,

For |k| 2 k,, no damping is added to the beam by the plate since Im(Z) ~ 0, i.e., waves

travelling along the beam with wavenumber greater than the plate wavenumber will not
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radiate power to the plate. In this situation, the influence of the plate on the beam

vibrations can be regarded as mainly increasing its stiffness by D, so that

I
W.{k)= g 431
b( ) (Db+Dk)k4—mbﬂ)2 ( )
where
2D, E -k B+ R+ (B -k 432
Dkz?-\/ _P(J +P+\/ _P) ( )
When k >>k_, the added stiffness of the beam by the plate can be estimated by
40 2D
), ™ — _2DA (4.33)
k s

Equation (4.33) means that the stiffness added to the beam is almost equivalent to the

plate stiffness in a strip of width 2/7 times the beam wavelength.

4.4 Numerical examples

In Section 4.1, an analytical solution of the power transmission has been given in the

wavenumber domain as equation (4.7). Moreover in Section 4.2 it was seen that if the
plate receiver is so flexible that (kp /kb )2 >>1, the plate can be regarded as locally

reacting, as shown in equation (4.12). Consequently, the power transmitted within the
beam/plate system can be approximated simply by equation (4.19). A numerical model is

therefore set up to investigate how the wavenumber ratio &, /kb affects the accuracy of

the locally reacting approximation, comprising an infinite beam attached to an infinite
plate with an external point force acts on the beam at the point x=0. Three different
wavenumber ratios are investigated for which three different thickness of the plate are

chosen. All the relevant parameters are listed in Table 4.1.

Table 4.1 Parameters of the numerical beam and plate structures

Structure Beam Plate _
Dimension Width=0.05%m; Thickness=0.020m/0.010m/0.005m
sizes Height=0.068m '

Material Young’s modulus=4 49 N/m”; Density=1152kg/m’; Loss factor=0.05;
properties Poisson’s ratzo=0.38
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It is seen then that %, /kb =1.8, 2.5, and 3.5 corresponding to the plate thickness

0.020m, 0.010m and 0.005m, respectively.

Firstly the input mobilities of the beam before and afier coupling with the plate are
predicted by the analytical FT approach. Then the input mobility of the beam after
coupling is simply approximated by the locally reactive theory. Comparisons are made in

Figures 4.1-4.3 for k, /kb =1.8, 2.5 and 3.5, respectively. It can be seen the modulus of

the input mobility of the beam, after coupling with the plate, decreases in a manner which
can be explained well as the beam being loading more mass and damping by the presence
of the plate. It also can be seen that the input mobility of the coupled beam tends to be
less affected as the plate flexibility increases. This means the coupling effects between |
the beam and the plate decrease when the plate receiver 1s more flexible. All these three
figures have shown that the locally reacting approximation gives a good estimate of the

input mobility of the coupled beam, even when &, /k,, =1.8. In [11], the locally reacting
theory is considered to be valid when &, /k, >2.

Then Figures 4.4-4.6 show the comparisons of the transmitted power using the
analytical prediction of equation (4.7) and the approximate result of equation (4.19). It
can be seen that the locally reacting approximation agrees well with the analytical result,

provided the plate wavenumber is at least twice that of the beam.
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5. Power transmission through line couplings, Case 2: A finite beam
attached to an infinite plate

5.1 Dynamic analysis by a combined modal analysis/Fourier Transform method

In the companion study [16], it has been shown that for line-distributed force sources
modal analysis and Fourier Transform methods can be used to predict the transmitted
power to the flexible receiver in a straightforward way. In Section 4.1 an analytical
expression of the power transmission from an infinite source beam to an infinite thin
receiver plate through line coupling, is derived based on the Fourier Transform approach.
If the source beam of the coupled system is finite and its vibration exhibits obvious
resonant behaviour, however, this FT-based approach is not applicable any more. In this
section, a new approach which combines modal analysis and Fourier Transform methods
is then developed to simply and accurately predict the power transmitted to an infinite

plate from a finite source beam. The procedure is described below.

Fé(x=¢)

T nlw AT
b fr

Figure 5.1 A finite beam excited by a point force and a distributed force

Suppose a finite beam structure is excited simultaneously by a point force Fi5(x—£)

and by a distributed force f (x) , as shown in Figure 5.1. The displacements along the

beam length can then be expressed in a general form of
L,
w, (x) = BT, (x.£) = [ f (%), (x5 ) dx 5.1)
{

where L, is the beam length, and ¥,(x,x,) is the transfer receptance or the Green

function of the beam. The receptance can be written in terms of the uncoupled modes of

the beam as
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Y, (%, %) =;bm¢m (%), (%) (5.2)

where ¢,,(x) is the m th mass normalized mode shape of the beam,

1
@, (1+ 7, ) -

- (5.3)

_—

and 7, is the material loss factor of the beam corresponding to the m th mode. The

displacement of the beam, therefore, can be written in the form
w, ( x) = angén (x) (5.4)
Now let f (x) represent the interface force applied to the beam by the plate along the

coupling, and also decompose f (x) into components of these beam modes so that
=2 58.(x) (5.5)

From equations (5.1) and (5.5), it follows that
Zw (x)= Foz.bmgi (x)p (¢ j[zfga X, ][Zb ¢ _(x)d, (xo)deo (5.6)

Multiplying both sides of the above equation by ¢, (x) and integrating along the beam
length, it is found that

W, = Fb g, () -2t 6.7

where m, is the mass per unit length of the beam.

Equation (5.7) shows that the effect of the plate is to apply additional forces to each
mode of the beam, thus affecting the response in that mode. The next stage is therefore to
use the qun’er Transform approach to estimate the added modal forces.

The Fourier Transforms of the components of the beam displacement and of the

interface force, due to the 1 th mode ¢, (x) of the beam, have the forms

I,
W,,(B)=w, | 8,(x)ePds=w,,(B) (5.8)
F,(B)=1,] 8,(x)e""ds = 1,2, (B) 59)
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It was seen in Section 4.1 that the Fourier Transformed line dynamic stiffness of an

infinite plate is

2(B) =20, =k, (B + 1 + B -2 (5.10)

An approximation 1s now introduced by assuming that the displacements of the plate
outside the coupling joint with the beam can be ignored, i.e., by approximating the plate

response along y=0 as

O0<x<
w, ()= w, (x), (0=x<L) (5.11)
0, (x<0)U(x>L,)
Figure 5.2 An infinite plate excited by a distributed force
Then
2. 1.2, (B)=Z(8) L w.@.(5) (5.12)
By Fourter Transform theory it is known that
I
¢ 1% . Vm,, n=m
- = 5.
8,090 (x)e= [ @ (B) 2, (B)ap { o mem (5.13)

Multiplying both sides of equation (5.12) by ®.(8) and integrating over B from —oo to

+ o0, it follows that

1 2
£ {5 [m,|@,(8) Z(ﬂ)dﬁ]w" =Zw, (5.14)
where Z, represnents the dynamic stiffness of the mth mode. Substituting equation
{5.14) into (5.7} gives
b,

W, =mﬁa¢n () (5.15)

The power transmission from the beam to the plate can be expressed as
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P =%Re{§? [£.8.(x)] joo[w.s, (x)]dx}:lz—[mﬂb; w[ hn{z,,}] (5.16)

Equation (5.16) can be re-expressed in the wavenumber domain as

R —C0

P:%ﬂmﬂwnfhn{f @, (ﬁ)lzz(ﬂ)dﬁ} (5.17)

From equation (5.10) it can be seen that Im {Z ( ﬁ)} ~ 0 when |ﬁ| >k, (ignoring the small

damping of the plate). Thus equation (5.17) can be simplified to

zlm{_kf @, (ﬁ)rz(ﬁ)a’ﬁ} (5.18)

PzLa)

W
4 =

Physically, equation (5.18) denotes that only the components of the beam response with
wavelengths greater than the plate wavelength can transmit power to the plate, while the
short wavelength components cannot transmit power. This is in agreement with the case
of an infinite beam attached to an infinite plate. Thus it is reasonable to suppose that the
wave components of the source beam with wavelengths shorter than the plate wavelength
cause only near-field wave motions of the plate, or one may say that the plate can “block’
the short wavelength wave motions of the beam. As a result great simplifications to
approximate the coupled responses can be made by ignoring all the short wave terms but

with very good accuracy.
5.2 The locally reacting impedance method

In Section 4.2, it was seen that the plate can be regarded as locally reacting, provided the
plate wavenumber is at least twice that of the coupled beam. Therefore it is possible to

approximate the power transmission of a stiff source/flexible receiver system, where

kb’ /kp < 0.5, by the locally reacting impedance method.

The locally reacting impedance of the plate has been approximated in equation (4.13) as

ZmPaJ
Z,= 2

r?

!

(1+ /) (5.19)

Then the interface force f(x) applied to the plate by the beam along the coupling can be

expressed as
F(x) = jow, (x)Z, (5.20)
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The beam displacement of equation (5.6) becomes
)= E S0, ()6 (6)- [ (o, (2)2,) St (9 () o, 521

By the compatibility condition at the interface, it follows that
w, (x)=w,(x)=2 w,8,(x) (5.22)

Equation (5.22) then, after some manipulation, can be written as
Jow,Z,
Zw ¢,(x)=F, Zb ¢, (x)g,(¢)- Zb { ] , (%) (5.23)

Multiplying both sides of the above equation by ¢, (x) and integrating along the beam

length gives
Fid, (5) (5.24)

W= wZ
o2 (1+ jn, ) - + 22

b

Comparing equations (5.15) and (5.24), it can be found that Z ~ jwZ, when a beam
attached to a locally reacting plate, which only depends on &, and m,. The displacement

of the interface can then be written as

wp (x):Z F0¢n (‘f)¢n (x)ja)z (5‘25)
@, (1+ g, )—0° + z

b

Consequently the power transmitted can be approximated by

P:—a) Re{ ”w (=) dx} (5.26)

Equation (5.26} is derived based on the locally reacting impedance technique, i.e., the
recetver is much more flexible than the source so that the correlations among the different
pomts of the receiver (along the coupling) can be ignored. If it is not the case, e.g. the
receiver is very stiff, the locally reacting theory will not hold, i.e., the correlations of the
plate vibration at different points become significant. Equation (5.26) then cannot be used
to provide a good approximation of the transmitted power. Equation (5.16) predicts the

power by decomposing the interface dynamic responses (both displacement and force)
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into the components of the beam modes so that the cormelations among different
components can always be ignored, due to the orthogonal property of modal shape
functions. Therefore a very good approximation can be made to the transmitted power
using equation (5.16), provided the only assumption concemning this combined mode/FT
method holds, i.e., the displacement of the plate outside the coupling line with the beam
can be ignored, regardless of the stiffness of the beam and/or the flexibility of the plate.

5.3 The effects of coupling the plate to the beam

In the above sections, the dynamic response and the transmitted power of the coupled
beam/plate system are simply approximated based on a combined modal analysis/Fourier
Transform method as well as locally reactive theory. Furthermore, a quantitative analysis
of the coupling effects of the plate on the beam vibration can be described as below from
Section 5.1.

For the finite beam excited by a point force F,6(x—¢ ) , its displacement before the

coupling can be determined by

w, (x)=> w4, (x) (5.27)
where
wn = an0¢n (é) (528)
After coupling the expression of (5.28) becomes
w, =b,F, () (5.29)
where
b! b, (5.30)

" 14,2, /m,
Let equation (5.3) be re-expressed as

m,

b, = 531
"D ) e

where k, = §mw? /D, corresponds to the wavenumber of the beam at its nth natural

frequency @, . Then equation (5.30) becomes



m
b = u 5.32
" Dk (L+ jn,)-me’ +Z, (5-32)

The analysis in Section 5.1 has shown that only the long wave components are of

interest for the coupled response. Thus the expression for Z, in equation (5.14) can be

approximated by
1 +k, )
z,=— [ m|®,(B) z(B)dp (5.33)
27 ,
where

z(B)=-2D, (k2 - *) K2+ g7 + j2D, (k] +5%), K2 - g (5.34)

Then equation (5.32) may be re-expressed as

' n,
oyl YT ey y I p v (5:39)
where
D &
7, =—tr | m, ®,(8) (k§+ﬁ2),/k§ —p*dp (5.36)
7Dk, =,
D "
m,=—L, | m )@, (8) (- B K2+ pdp (5.37)

&,

Thus the coupling effects of the plate on the beam can be regarded mainly as adding
mass and damping to each vibration mode of the beam as given by equations (5.36) and
(5.37). The energy dissipated by the added damping corresponds the energy fransmitted
from the beam to the plate. It also can be seen that the added damping depends on both
the properties of the beam and of the plate, but is almost regardless of the internal
damping of the plate, which is in good agreement with the resuit obtained from fuzzy
theory "*'¥. The added mass only depends on the properties of the plate as well as the
mode shape functions of the source beam. As frequency increases, the added mass tends

to depend on the plate properties only.
5.4 Numerical examples

Numerical examples of a finite beam attached to an infinite plate are presented to

investigate the validity of the combined mode/FT approximation method. For simplicity,
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both the ends of the beam are chosen to be simply supported so that its nth mass

normalized modal shape function is

8, (x)= fmeb sin% (5.38)

The same material, perspex, is used in the numerical model as in the previous sections.

An external point force acts on the beam at a position which has a distance of &=0.73m

from one end of the beam. All the other relevant parameters are listed in Table 5.1.

Table 5.1 Parameters of the numerical beam and plate structures

Structure Beam Plate
Dimension Length=2m; Width=0.059m; Thickness=0.020/0.010m/0.005m
sizes Height=0.068m

First the FRF-based sub-structuring method is used, where the line coupling is modelled
by many discrete point couplings. The infinite number of degrees of freedom along the
coupling is replaced by a finite number of points. If the number of the points is big
enough, an accurate prediction of the dynamic response of the coupled system can be
obtained. Of course, the more points used, the more calculations are required. Therefore
for a line coupling cases, the FRF-based sub-structuring method tends to be
computationally prohibitive. Nevertheless, this approach can be used as a benchmark for
evaluating the efficiency and accuracy of the approximations developed in this section.

Tests were conducted to ensure the approach converged. Figures 5.3-5.5 show the
calculated results for the transmitted power when different number of points (per plate
wavelength) are used in modelling the line coupling, corresponding to the three different
plate thicknesses. These examples show that, provided the discrete points are spaced at no
more than a quarter of the plate wavelength apart discrete point couplings can be used to
accurately model the line coupling. Therefore, in the following evaluations,. the exact
power transmissions are calculated using the FRF-based sub-structuring method by
modelling the line coupling as discrete point couplings spaced at a quarter of the plate
wavelength.

The dynamic response of the beam is approximated using the combined mode/FT

approach given by equation (5.15). Figures 5.6-5.8 show the approximate and exact input
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mobility of the beam after coupling with plates of various thicknesses. It is seen that the
dynamic response of the beam can be approximated quite accurately using the developed
mode/FT approach, except in the low frequency area of Figure 5.6 which corresponds to
the thickest plate. This is because in the low frequency area, both the beam and the plate
wavelengths are very long, thus the plate displacements outside the coupling region are
comparable with those of the coupling positions, while the approximation method
developed here has ignored these displacements. But for mid- and high-frequency range,
a very good approximation can be made using equation (5.15), even when the receiver is
not very flexible compared to the source structure. When the plate receiver is flexible
enough, see Figures 5.7-5.8, good approximations can be made for almost the whole
frequency range, i.e., equation (5.11) on which this mode/FT approach based, always
holds to good accuracy. Therefore, the more flexible the receiver, the more accurate the
mode/FT approach.

Of course the most interest of this study is to approximate the power transmitted to the
flexible receiver, which is given by equation (5.18). Comparisons between the
approximate and the exact results are shown in Figures 5.9-5.11 for plate thicknesses of
0.020m, 0.010m and 0.005m, respectively. It can be seen that the approximations meet
well with the exact results but are found with much less computational cost. For example,
when the plate thickness is chosen to be 0.005m, the calculation time used by the
mode/FT approximation approach only takes about one twentieth of that of the FRF-
based sub-structuring method.

In Section 5.2 it is seen that the power transmission can also be approximated using
equation (5.26) when the receiver structure is locally reactive, i.e., the recetver is very
flexible so that the cross coupling between different points along the coupling can be
ignored. Comparisons between this locally reactive approximation by equation (5.26) and
the exact FRF predictions are made in Figures 5.12-5.14 for different plate recetvers. It
can be seen that the locally reacting impedance method can be quite accurate and
efficient for approximating the power transmitted to the receiver. However, when
equation (5.25) is used to approximate the input mobility of the coupled beam, as shown
in Figures 5.15-5.17, it can be seen that this locally reacting approach is not applicable

for predicting the dynamic response of the source structure, even when the receiver is
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much more flexible than the source as shown in Figure 5.17. Nevertheless, as far as the
transmitted power 1s ooncerhed, the locally reacting impedance method is a good
approach for a coupled system where the wavenumber of the receiver is at least twice that
of the coupled source structure.

The final part of this numerical study concems the coupling effects of the plate on the
beam. Figure 5.18 shows the input mobilities of the source beam before and after
coupling calculated using the FRF-based sub-structuring approach for vanous plate
thickness. It can be seen that in effect the coupling effects of the plate on the beam can be
regarded as adding damping and mass: the added mass decreases the lower natural
frequencies of the beam significantly and the added damping decreases its resonant
responses greatly. Figure 5.19-5.20 then show the damping and mass, given by equations
(5.36) and (5.37), respectively, added to the first four modes of the beam when it is
attached to the 0.005m thick plate. (In Figure 5.20, the dimensionless mass is defined to
be the mass added divided by the mass density of the uncoupled beam). & can be seen
that the added damping increases as the frequency increases while the added mass
decreases as frequency. Therefore for high-frequency vibrations, the effect of coupling
the plate to the beam is mainly to add damping to each vibration mode, whereas for low-
frequency vibrations, the coupling effect can be considered as mainly adding mass to
each mode. Both the damping and the mass added to the beam (by the coupling} are

largest for its low order modes.
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6. Power transmission through line couplings, Case 3: A finite beam
attached to a finite plate

6.1 The modal analysis method

Tn Section 5 a combined modal analysis/Fourier Transform approach is developed to
approximate both the dynamic response of the source beam and the power transmitted to
the plate receiver. It is based on the assumption that the displacement of the receiver
outside the coupling region can be ignored and the interface force and the interface
displacement are then decomposed into a set of components in terms of beam modes.
This technique has been shown to be quite accurate and efficient for various numerical
examples. Therefore it is reasonable to suppose that similar approaches can be used to
deal with such coupled systems as a finite beam attached to a finite plate by decomposing
the interface displacement/force into a complete set of orthogonal functions. The modal
analysis method of course will be one obvious choice to meet such a purpose, but this
raises the question of whether the decomposition should be performed in terms of the
beam mode shapes or the plate mode shapes. At the first stage of this study, a rectangular
plate stiffened beam system is considered where the boundary conditions of the beam and
of the plate (normal to the coupling) are the same. The plate modes are written using
separation of variables, and the variation along the line of coupling is thus the same as
that of the beam. It will be seen beiow that in this case, the analytical expressions for the
dynamic response of the source beam and the transmitied power to the receiver can be
derived very simply using the modal analysis method. The application of this technique
to more general cases where a finite beam is attached a finite plate arbitrarily, is

underway.
Fo(x-¢)

A /
v,/ /

w(x) X

Figure 6.1 Line-coupled beam-plate system
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For a coupled beam/plate system, as shown in Figure 6.1, the interface force is f (x) (as

shown in Figure 5.1), and the m th normalized mode shape of the beam is ¢, (x) so that

L 1, n=
J¢n(x)¢m(x)dx={o :#z ©.1)
The vibration of the beam can then be written using equations (5.4)-(5.7) as
w, (x) =2 w4, (x) (6.2)
f(x)=21.4,(x) (6.3)
w, =Ipb.4,(5)-b,1, (6.4)
where
b o=t ! 6.5)

"

m, o (1+ jn,) -0’
Let now assume ®, (x,y)} be the % th normalized mode shape of the plate, and that 1t

can be separated into the form
®, (%)=, (x)v.(¥) (6.6)
If
@ (%)=, (¥) 6.7)

i.e., the mode shapes of the beam and of the plate along the coupling are the same, then in
this case each plate mode interacts with one and only one beam mode.

If y, is the coupling position in the plate, the force distribution on the plate is thus
f(x)8(y-,). By the modal analysis theory, the kth modal force on the plate is

therefore

Je= j J-f(x)é‘(y_yo)@k (xay)dde’;%®k (x:y) (6.8)

L L,
Hence the plate displacement along the coupling region y =y, , as shown in Figure 5.2,

can then be written as

v, (xsyo): Zk:qk@k (xzy)J Jf(x)(s(y_}’o)®k (x:y)dxdy (6.9)
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where L =L, and L, correspond to the lengths of the plate along and normal to the

coupling direction, respectively, and
1 1

(6.10)
m, o (1 N Jn“’)) 2

q, =

In the above equation, m,, (F ) and 17 are the mass density, the & th natural frequency

and the corresponding loss factor of the plate, respectively. Combining equations (6.3)

and (6.6)-(6.9), gives

(x35)=1{ [Z 1.8, (xO)J[z 2ot (%), (34:0)de0 (6.11)

where

1 v, (%) (6.12)
m, a)(") (1+j7;:,;’,’)—aJ2

Pn=

and where ,(y, ) is the » th mode shape of the plate in y-direction normalized so that

L, —
! wn(y)wm(y)dy={;: " 613)
Continuity of the displacement at the coupling gives
w,(x,y,)=w,(x) (6.14)
Combming equations (6.2), (6.11) and (6.14), then mulltiplying both sides of (6.11) by
@, (x) and integrating along the length of the beam, leads to
W, = f.P | (6.15)
The above relation shows that the beam modes are still uncoupled after coupling with the
plate, and p, may be regarded as the line receptance of the plate to the »th mode of the
beam which contains compenents from all those modes of the plate whose x -dependence
is ¢,{x). Combining equations (6.4) and (6.15), the dynamic response of the coupled

beam then can be written as

b,

O TRl (616)
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bﬂ
i () 17

£ =
P

n

The power transmission from the bearmn to the plate can then be expressed as
1 K . 1, [, .
P =5Re{z _[ |:f,,¢" (x)] _]C!)[Wn¢n (x)]dx} = ERe{szj; w,,} (6.18)
#o0 n

Substituting equations (6.16) and (6.17) into (6.18), the power transmission can be

written as
2
@ b .
== = F. Im 6.19
P Ly Foe (&) m{p) (6.19)
From equation (6.12)
2 2
m{p} =t (%)@ 1, (6.20)

m,r (mi)rmw2)2+(coi,,ﬂp)2

Thus a simple analytical expression for the power transmission from a source beam to a
plate receiver has been derived. Theoretically it is much more efficient and accurate than
the FRF based sub-structuring method because it does not need to calculate the large
mobility matrices of both the beam and the plate, and at the same time it avoids the
process of matrix inversion which may provide inaccurate values caused by the ill-

conditioned matrices.
6.2 The effect of coupling the plate to the beam

For the finite beam excited by a point force F,5(x~¢), the displacements before

coupling to the plate can be determined by

w, ()= b.F, ()4, (x) (6.21)
After coupling the displacement response is given by equation (6.16) as
w, (x) = D b.Fd, ()¢, (x) (6.22)
where
b= (6.23)
" 1+8,/p, '

Let equation (6.5) be re-expressed as
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b = 1
" Dk, (1+ I ) —mw°

(6.24)

where k, corresponds to the wavenumber of the beam at its nth natural frequency. The

term p, of equation (6.12) can be expressed in the form
Py = P~ Pra = JPs3

where

1 Z Wf (yo)@:,r

P = 2 2
2 2 2
m, (w,,)r -® ) + (a)n,,np)

e RO
Pz mp Zr: (wir '_a)z )2 “*“((Oirﬂp )2

1 W? (yO ) mﬁ,rnp
P ="—
% (o) +lotn)
Then & can be written as

1

!

{Db [1+j(qb +17n):l+Dn}k: —(m, +m,)
where

— 1 pﬂ3
Dbk: (pnl —Pn )2 t Pﬂ32

¢

— _L P
n 2
Ry (P = Pus) + Pus’

m =i_ pnl

§ a)2 (pnl - pn?. )2 + pn32

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

Thus the coupling effects of the plate on the beam can be regarded as adding damping,

stiffness, and mass to each mode of the beam, given by equations (6.30), (6.31) and

(6.32), respectively. The energy dissipated by the added damping corresponds the energy

transmitted from the beam to the plate.

6.3 Numerical examples
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A numerical example comprising a finite beam attached to a rectangular plate as shown
in Figure 62, is considered to investigate the efficiency and accuracy of this modal
analysis based approach. For simplicity, both the ends of the beam and the four edges of

the plate are chosen to be simply supported. The normalized mode shapes of the beam

and of'the plate is then
2 nrx
= (—sin— 6.33
()= 7 sin T 633)

®k(x,y0)=¢,,(x)wm(yo)=[ LimLi][\[%‘n";ﬂJ (6.34)

X X Y
Since L, =L, here, the beam and the plate have the same spatial variation along the
coupling, i.e., ¢, (x} =g, (x). In this case, the dynamic response of the coupled beam and

the power transmitied to the plate can therefore be obtained using the analytical

expressions described in Section 6.1.

F(x=¢)

A 7
L/ 7

w{x) X

Figure 6.2 Line coupled simply supported beam/plate system
The numerical model chooses the same material (Perspex) and external force

(£=0.73m) as in the previous sections, and y,=0.45m. All the other relevant

parameters are listed in Table 6.1.

The dynamic response of the coupled beam and the power transmitted to the plate are
firstly calculated using the FRF-based sub-structuring method where the line coupling is
modelled by many discrete point couplings spaced at a quarter of the plate wavelength,
and then predicted using equations (6.16) and (6.19) derived based on the modal analysis
approach. Comparisons between the numerical solutions (FRF-based) and the analytical
solutions (modal analysis based) are made in Figures 6.3-6.6. Figures 6.3-6.4 concern the
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modulus of the input mobility of the coupled beam, and Figures 6.5-6.6 the transmitted
power, corresponding to plater thickness 0.020m and 0.005m, respectively. It can be seen
that the results by the two different approaches are almost exactly the same, but the
analytical solution takes much less computing time than the numerical solution (e.g. only
about one twentieth when the plate thickness is 0.005m). Theoretically the analytical
solution is also more accurate than the FRF-based sub-structuring method because of the
finite number of points used. Therefore this mode-based analytical approach is better than
the FRF-based sub-structuring technique both in efficiency and in accuracy. However, it
requires the beam and the plate mode shapes (along the coupling) to be the same.

Figure 6.7 are the input mobilities of the beam before and after coupling with the plate

(k,/k, =1.8 for the plate thickness 0.020m and %, [k, =3.5 for thickness 0.005m), given

by equations (6.21) and (6.22), respectively. It is similar to Figure 5.18 in that the effect
of coupling the plate to the beam can be regarded as adding damping, mass and stiffness
to the each mode of the beam. (In section 5, the added stiffness is considered to “block™
the propagations of beam wave components with wavelengths shorter than the plate
wavelength.) Figures 6.8-6.10 then show the damping, stiffness and mass, given by
equations (6.30)-(6.32), respectively, added to the first four modes of the beam when it is
coupled with the 0.005m thick plate. (In Figure 6.9, the dimensionless stiffness is defined
to be the stiffness added divided by the stiffness of the uncoupled beam, and in Figure
6.10, the dimensionless mass the mass added divided by the mass density of the
uncoupled beam.) It can be seen that both the damping and the stiffhess are added to the
low order modes of the beam, but the mass added tends to be independent of the mode
order. This is in agreement with the case of a finite beam attached to an infinite plate. It
also can be seen, surprisingly, that the maximum values for the added parameters occurs
at 37, 120, 251, 429, 655 and 932 Hz but not at the natural frequencies of the uncoupled
plate (these are listed in Table 6.2). Physically it means that the maximum coupling does

not occur at the natural frequencies the uncoupled plate.
6.4 Summary and discussion

The dynamic analysis of a coupled beam/plate system can be greatly simplified by the
modal analysis method if the mode shapes of the beam and of the plate (along the
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coupling) are the same. In this case simple analytical expressions for the dynamic
response of the coupled beam and the transmitted power to the plate can be found.
Numerical examples have shown that this new mode-based approach is better than the
classical FRF-based sub-structuring technique both in efficiency and in accuracy.
Moreover, three analytical expressions for the damping, mass, and stiffness added to each
mode of the beam are derived to simulate the coupling effects of the plate on the beam, as
the other two cases investigated in the previous sections.

For a more general case of a finite beam attached to a finite plate, where the mode
shapes of the beam and of the plate (along the coupling direction) are quite different, the
equations of motion of the beam and of the plate tend to be coupled with each other, and
the situation becomes more complicated. However, it might be still possible to simplify
the vibration predictions by choosing appropriately a set of complete orthogonal
functions along the coupling line, which will couple the ‘unloaded” modes/waves of the

beam/plate. This work will be done in the next stage of the research.

Table 6.1 Parameters of the numerical beam and plate structures

Structure Beam Plate
Dimension Length=2m; width=0.05%m; Length=2m; Width=0.9m;
sizes Height=0.068m Thickness=0.020m/0.005m

Table 6.2 Natural frequencies of the uncoupled plate (thickness=0.005m)

m 1 2 3 4 5 6 7 8
n
1 7 25 54 96 145 214 291 380
2 11 28 58 99 153 218 294 383
3 17 34 64 105 159 224 300 389
4 25 43 72 114 167 232 309 398

Note: 7 denotes the mode order along x -direction, and m the order along y -direction.
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7. Conclusions

This study concerns approximating, simply and accurately, the power transmission of
complex built-up structures consisting of long-wavelength source structures and short-
wavelength receivers. For discrete coupling cases the multi-pole method and a new
technique — the power mode method, have been investigated. For line-coupled cases, a
foundation consisting of a beam-stiffened plate with the excitation applied to the beam
was considered. The power transmission from the source beam to the plate receiver was
investigated for three cases: Case 1, an infinite beam attached to an infinite plate, was
investigated using the Fourier Transforms and wave analysis methods; Case 2, a finite
beam attached to an infinite plate, was investigated by a combined modal analysis and
Fourier Transform method; and Case 3, a finite beam attached to a finite plate, was
investigated by a modal analysis method. Numerical examples were presented to verify
the validity and accuracy of the various approaches, in which the classical FRF-based
sub-structuring technique was used to provide a benchmark for the comparisons. For
these the line couplings were modelled by discrete point couplings spaced a quarter of the
plate wavelength apart. The main results are summarised below.

The transmitted power from a source structure to a receiver structure through discrete
couplings can be approximated with acceptable accuracy using the multipole theory if
either both the source and the receiver structures are fully symmetric, or the source
structure is fully symmeiric and the receiver has high modal overlap and does not show
distinct resonant behaviour, or the source structure is much stiffer than the recerver which
has high modal overlap and non-distinct resonant behaviour. For the remaining cases, the
multipole method has no advantages over the FRF based sub-structuring method.

The power-mode method is another approach to predicting the power transmitted
through discrete couplings. Three new approximation expressions for the power
transmission have been derived: (1) The maximum and minimum power transmission can
be simply approximated by upper and lower bounds. The practiceﬂity of these upper and
lower power bounds depend on the width of this band. The stiffer the source and/or the
more flexible the receiver, the narrower is this power band. (2) The frequency average

power can be approximated quite accurately provided the receiver has high modal
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overlap and is flexible enough compared to the source structure (e.g. the wavenumber of
the receiver is three or four times that of the source structure). (3) When the receiver
structure is much more flexible than the source so that it behaves in a ‘fuzzy’ manner, the
power can be regarded as transmitted mainly by a set of free velocities, especially for the
mid- and high frequency ranges.

For an infinite beam attached to an infinite plate, the Fourier Transform method is
extremely useful. It has been found that only the wave components (of the beam) with
wavelengths longer than the plate wavelengths can transmit power from the beam to the
plate, and hence a good simplification can be made in the wavenumber domain to predict
the power transmission. Similarly, the dynamic response of such a coupled beam/plate
system can also be obtained by a wave-based approach in which the locally reacting
theory can be derived when the plate wavenumber is much larger than the coupled beam
wavenumber so that the line impedance of the plate is independent of the beam
properties. Then the transmitted power to the flexible plate can be approximated simply.
Moreover the effects of coupling the plate to the beam are discussed. Three expressions
for damping, mass and stiffness have been derived to quantify how the plate loads the
beam. It is found that the added damping depends on both the properites of the plate and
the beam, whereas the added mass depends on the plate properties only.

For the case of a finite beam attached to an infinite plate, a combined modal
analysis/Fourier Transform method has been developed to analyse the vibration relations
between the subsystems by assuming that the displacement of the plate outside of the
coupling region are ignorable. It has been found that very good approximations of the
dynamic response of the coupled beam as well as the power transmission can be made
with very low computational cost. The transmitted power can also be approximated based
on the locally reacting impedance technique, i.e., the recetver is much more flexible than
the source so that the correlations among the different points of the receiver (along the
coupling) can be ignored. Since the mode/FT approach is to predict the vibration by
decomposing the interface dynamic responses (both displacement and force) into the
components of the beam modes so that the correlations among different components can
always be ignored, due to the orthogonal property of modal shape functions, very good

approximations can be made for both the modified dynamic response of the beam and the
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transmitted power to the plate provided the only assumption holds, regardless the
stiffness of the beam and/or the flexibility of the plate. Numerical study has shown that
the assumption is not valid only for the very low frequency range where both the beam
and the plate wavelengths are very long so that the plate displacements outside the
coupling region are comparable with those of the coupling region. But for mid- and high
frequency range, very good approximations can be made using the mode/FT approach,
even when the receiver is not very flexible compared to the source structure. Of course
the more flexible the receiver is, the more accurate the mode/FT approach is. The locally
reacting approach, however, is not applicable for predicting the dynamic response of the
source structure, even when the receiver is much more flexible than the source.
Nevertheless, as far as the transmitted power is concerned, the locally reacting impedance
method is a good approach to deal with such coupled system where the wavenumber of
the receiver is at least twice that of the coupled source structure. The coupling effects of
the plate on the beam can also be regarded as adding damping and mass to each mode of
the beam. (The stiffness added is considered to block the short-wave-propagations of the
beam.) The added damping depends on both the properties of the beam and of the plate
(but almost regardless of the internal damping of the plate, which is in good agreement
with the result obtained from fuzzy theory), and the added mass only depends on the
properties of the plate as well as the mode shape functions of the source beam. As
frequency increases, the added mass tends to depend on the plate properties only.

When both the beam and the plate are finite, the dynamic analysis of coupled system
can be greatly simplified by the modal analysis method if the mode shapes of the beam
and of the plate (along the coupling) are the same. In this case simple analytical
expressions for the dynamic response of the coupled beam and the power transmitted to
the plate can be defined. Numerical examples have shown that this new mode-based
approach is better than the classical FRF-based sub-structuring technique both in
efficiency and in accuracy. Moreover, three analytical expressions for the damping, mass
and stiffness added to each mode of the beam are derived to simulate the coupling effects
of the plate on the beam.

For a more general case of a finite beam attached to a finite plate, where the mode

shapes of the beam and of the plate (along the coupling direction) are quite different, the
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equations of motion of the beam and of the plate tends to be coupled with each other, and
the situation becomes more complicated. However, it might still be possible to simplify
the vibration predictions by choosing appropriately a set of complete orthogonal
functions along the coupling line, which will couple the ‘unloaded’ modes/waves of the

beam/plate. Further research, which forms the next stage of the study, is underway.
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