

# Descent towards the Icehouse: Eocene sea surface cooling inferred from GDGT distributions

Gordon N. Inglis<sup>a,b,\*</sup>, Alexander Farnsworth<sup>b,c</sup>, Daniel Lunt<sup>b,c</sup>, Gavin L. Foster<sup>d</sup>, Christopher J. Hollis<sup>e</sup>, Mark Pagani<sup>f</sup>, Phillip E. Jardine<sup>g</sup>, Paul N. Pearson<sup>h</sup>, Paul Markwick<sup>i</sup>, Amanda M.J. Galsworthy<sup>i</sup>, Lauren Raynham<sup>i</sup>, Kyle. W.R. Taylor<sup>a,b</sup> Richard D. Pancost<sup>a,b</sup>

<sup>a</sup> Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom

<sup>b</sup> Cabot Institute, University of Bristol, Bristol, BS8 1UJ, United Kingdom

<sup>c</sup> BRIDGE, School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, United Kingdom

<sup>d</sup> Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton SO14 3ZH, United Kingdom

<sup>e</sup> Department of Paleontology, GNS Science, PB 30-368, Lower Hutt 5040, New Zealand

<sup>f</sup> Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520, USA

<sup>g</sup> Department of Environment, Earth & Ecosystems, The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom

26 <sup>h</sup> School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3AT,  
27 United Kingdom

28

29 <sup>i</sup> Getech UK, Kitson House, Elmete Hall, Elmete Lane, Leeds, LS82LJ, United Kingdom

30

31 \*Corresponding author. Tel: +44-(0)117-9546395. Email: gordon.inglis@bristol.ac.uk

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51 **Key Points:**

52     • Archaea other than marine Thaumarchaeota exert a minimal impact on most Eocene  
53        temperatures

54     • Tropical and high-latitude cooling during the descent towards the icehouse

55     • Carbon dioxide is the most likely driver of long-term Eocene cooling

56

57 **Abstract:**

58 **The  $\text{TEX}_{86}$  proxy, based on the distribution of marine isoprenoidal glycerol dialkyl  
59        glycerol tetraether lipids (GDGTs), is increasingly used to reconstruct sea surface  
60        temperature (SST) during the Eocene epoch (56.0-33.9 Ma). Here we compile published  
61         $\text{TEX}_{86}$  records, critically re-evaluate them in light of new understandings in  $\text{TEX}_{86}$   
62        palaeothermometry and supplement them with new data in order to evaluate long term  
63        temperature trends in the Eocene. We investigate the effect of archaea other than  
64        marine Thaumarchaeota upon  $\text{TEX}_{86}$  values using the branched-to-isoprenoid  
65        tetraether index (BIT), the abundance of GDGT-0 relative to crenarchaeol (%GDGT-0)  
66        and the Methane Index (MI). We also introduce a new ratio, %GDGT<sub>RS</sub>, which may  
67        help identify Red Sea-type GDGT distributions in the geological record. Using the offset  
68        between  $\text{TEX}_{86}^H$  and  $\text{TEX}_{86}^L$  ( $\Delta H-L$ ) and the ratio between GDGT-2 and GDGT-3  
69        ([2]/[3]), we evaluate different  $\text{TEX}_{86}$  calibrations and present the first integrated SST  
70        compilation for the Eocene (55 to 34 Ma). Although the available data are still sparse  
71        some geographic trends can now be resolved. In the high-latitudes ( $>55^\circ$ ), there was  
72        substantial cooling during the Eocene ( $\sim 6^\circ\text{C}$ ). Our compiled record also indicates  
73        tropical cooling of  $\sim 2.5^\circ\text{C}$  during the same interval. Using an ensemble of climate model  
74        simulations that span the Eocene, our results indicate that only a small percentage  
75        ( $\sim 10\%$ ) of the reconstructed temperature change can be ascribed to ocean gateway**

76 **reorganisation or paleogeographic change. Collectively, this indicates that atmospheric**  
77 **carbon dioxide ( $p\text{CO}_2$ ) was the likely driver of surface water cooling during the descent**  
78 **towards the icehouse.**

79

80 **Index terms:** 1055, 4928, 4954, 0428

81 **Keywords:** greenhouse climates, Eocene, organic biomarkers

82

### 83 **1. Introduction**

84 Throughout the Phanerozoic, and possibly throughout geological time, the Earth's  
85 climate has oscillated between greenhouse and icehouse climate states, where greenhouse  
86 climates are characterised by high atmospheric carbon dioxide ( $p\text{CO}_2$ ) (Pearson and Palmer,  
87 2000; Pagani et al., 2005; Lowenstein and Demicco, 2006; Pearson et al., 2009), high sea  
88 surface temperatures (SST) (Pearson et al., 2007; Bijl et al., 2009; Hollis et al., 2012) and the  
89 absence of continental ice sheets (Francis and Poole, 2002; Contreras et al., 2013), and  
90 icehouse climates are characterised by the opposite: reduced  $p\text{CO}_2$ , reduced SST and  
91 presence of continental ice sheets (Zachos et al., 1992; Pearson and Palmer, 2000; DeConto  
92 and Pollard, 2003; Pagani et al., 2005; Lear et al., 2008; Zhang et al., 2013). The most recent  
93 transition, from a greenhouse to an icehouse climate state, occurred during the Eocene-  
94 Oligocene transition (EOT; ~33.6-34.1 Ma). It is thought to have been driven by either a  
95 long-term decline in  $p\text{CO}_2$  (Pagani et al., 2005; Zhang et al., 2013) and/or changes in ocean  
96 circulation and heat distribution as a result of ocean gateway reorganisation (Kennett and  
97 Exxon, 2004; Stickley et al., 2004; Bijl et al., 2013). The generation of long-term, regional  
98 temperature records is essential for developing a more detailed picture of global cooling  
99 during the Eocene and elucidating the driving mechanisms responsible.

100           TEX<sub>86</sub>, an organic palaeothermometer based upon the distribution of isoprenoidal  
101           glycerol dialkyl glycerol tetraethers (GDGTs) in marine Thaumarchaeota, has previously  
102           been used to reconstruct spatial and temporal patterns of oceanic cooling during the Eocene  
103           (Pearson et al., 2007; Burgess et al., 2008; Bijl et al., 2009; Hollis et al., 2009; Liu et al.,  
104           2009; Hollis et al., 2012; Bijl et al., 2013). A recent TEX<sub>86</sub> core-top calibration introduced  
105           two separate indices and calibrations for: 1) the entire dataset (GDGT ratio-1; TEX<sub>86</sub><sup>L</sup>) and 2)  
106           for a sub-set of the dataset that excluded GDGT distributions from high-latitude sediments  
107           (GDGT ratio-2; TEX<sub>86</sub><sup>H</sup>) (Kim et al., 2010). Kim et al., (2010) recommended applying  
108           TEX<sub>86</sub><sup>H</sup> when SSTs are estimated to have been above 15 °C and TEX<sub>86</sub><sup>L</sup> where SSTs may  
109           have ranged below 15 °C. However, this approach has been questioned (Taylor et al.,  
110           2013) and it is unclear which of the two calibrations is most appropriate for a given setting.  
111           The most recent TEX<sub>86</sub> calibration is based upon the original TEX<sub>86</sub> (Schouten et al., 2002)  
112           and calibrated to SST using a spatially-varying, Bayesian regression model (BAYSPAR)  
113           (Tierney and Tingley, 2014).

114           The TEX<sub>86</sub> proxy is based upon the assumption that GDGTs in sediments are largely  
115           derived from Thaumarchaeota living in the upper water column (Schouten et al., 2002;  
116           Pearson and Ingalls, 2013). However, Thaumarchaeota are not restricted to these settings and  
117           inputs of GDGTs to sediments from alternative sources will affect TEX<sub>86</sub> SST estimates. For  
118           example, Group I.1a and I.1b Thaumarchaeota are present in the terrestrial environment  
119           (Jurgens et al., 1997; Ochsenreiter et al., 2003) and can bias TEX<sub>86</sub> SST estimates in areas  
120           with high terrigenous input (Hopmans et al., 2004; Sluijs et al., 2006; Weijers et al., 2006b;  
121           Sluijs et al., 2009). Considerable work has also explored the potential for sedimentary GDGT  
122           production to affect TEX<sub>86</sub> values. Particular interest has focused upon methanotrophic  
123           (Schouten et al., 2003; Weijers et al., 2011; Zhang et al., 2011a) and methanogenic (Schouten

124 et al., 2002; Blaga et al., 2009) archaea, yet these sources are rarely discussed in deep time  
125 investigations.

126 As Thaumarchaeota live throughout the water column (Karner et al., 2001), it is also  
127 likely that subsurface archaea are exported to sediments (Pearson et al., 2001; Shah et al.,  
128 2008; Taylor et al., 2013; Hernández-Sánchez et al., 2014). During the Eocene, unexpectedly  
129 large offsets between  $\text{TEX}_{86}^{\text{H}}$  and  $\text{TEX}_{86}^{\text{L}}$  ( $\Delta\text{H-L}$ ) are observed above 15 °C (Hollis et al.,  
130 2012).–The reason for this is unclear, but it has been argued that it could, in part, reflect  
131 enhanced export of archaea living in the subsurface with elevated ratios of GDGT-2 to  
132 GDGT-3 ([2]/[3] ratios) (Taylor et al., 2013; Kim et al., 2015)

133 Paleotemperature reconstructions based on  $\text{TEX}_{86}$  assume that Thaumarchaeota in  
134 modern oceans are representative of those living in ancient settings. In most open ocean  
135 settings, thaumarchaeotal assemblages are dominated by Group I.1a Thaumarchaeota (Pester  
136 et al., 2011) which are the putative biological source of the sedimentary GDGTs that define  
137 the  $\text{TEX}_{86}$  coretop calibration. In the Red Sea, however, phylogenetically distinct archaeal  
138 communities occur both above and below the thermocline (Eder et al., 2002; Ionescu et al.,  
139 2009; Qian et al., 2011) and correspond to coretop sediments in which  $\text{TEX}_{86}$  values  
140 consistently overestimate satellite-derived SST by 6-8 °C (Trommer et al., 2009).

141 Here, we critically evaluate new and previously published GDGT distributions from  
142 Eocene sediments in order to understand the drivers of long-term cooling. Using the Methane  
143 Index (MI) (Zhang et al., 2011a), %GDGT-0 (Sinninghe Damsté et al., 2012) and the  
144 branched and isoprenoidal tetraether (BIT) index (Hopmans et al., 2004; Weijers et al.,  
145 2006b), we assess the impact of archaea other than marine Thaumarchaeota upon Eocene  
146  $\text{TEX}_{86}$  values. We also propose a new index (%GDGT<sub>RS</sub>) which we use to tentatively identify  
147 Red Sea-type GDGT distributions within the geological record. We use  $\Delta\text{H-L}$  offsets and  
148 [2]/[3] ratios (Taylor et al., 2013) to suggest the most appropriate  $\text{TEX}_{86}$  calibration for a

149 given setting. Based on those observations, we use new and previously published  $\text{TEX}_{86}$  SST  
150 estimates to reconstruct spatial patterns of cooling during the Eocene (55-34 Ma) and earliest  
151 Oligocene (33-34 Ma). We compare our results with an ensemble of climate model  
152 simulations and investigate the most likely driving mechanism of long-term cooling during  
153 the descent towards the icehouse.

154

## 155 **2. Methods**

### 156 2.1. Data compilation

157  $\text{TEX}_{86}$  indices were compiled from Deep Sea Drilling Project (DSDP) Site 277 (Liu et al.,  
158 2009), DSDP Site 511 (Liu et al., 2009), Ocean Drilling Program (ODP) Site 628 (Liu et al.,  
159 2009), ODP Site 803 (Liu et al., 2009), ODP Site 925 (Liu et al., 2009), ODP Site 929 (Liu et  
160 al., 2009), ODP Site 998 (Liu et al., 2009), ODP Site 1218 (Liu et al., 2009), ODP Site 1172  
161 (Bijl et al., 2009; Bijl et al., 2010), ODP Site 913 (Liu et al., 2009), International Ocean  
162 Drilling Program (IODP) Site 1356 (Bijl et al., 2013), Tanzania (Tanzania Drilling Project:  
163 TDP [Sites 2, 3, 7, 12, 13, and 18]): Pearson et al., 2007) New Zealand (Hampden Beach and  
164 Mid-Waipara River: Burgess et al., 2008; Hollis et al., 2009; Hollis et al., 2012) and the  
165 Arctic Coring Expedition (ACEX) (Sluijs et al., 2006; Sluijs et al., 2009) (Fig. 1). Where  
166 possible, we calculate and report the fractional abundance of all individual GDGTs (see  
167 Auxiliary Material). All GDGT-based indices are reported relative to the Geologic Time  
168 Scale 2012 (GTS2012) (Gradstein et al., 2012).

169

### 170 2.2. GDGT analyses

171 To complement our data compilation, we have determined GDGT distributions from ODP  
172 Site 929 (Ceara Rise), ODP Site 913 (Greenland Basin), South Dover Bridge (Atlantic  
173 Coastal Plain) and Hampden Beach (New Zealand) using methods similar to those of

174 previous studies (Liu et al., 2009; Hollis et al., 2012) (Fig. 1). Approximately 35-70 g of  
175 ground sediment were extracted via Soxhlet apparatus for 24 hours using  
176 dichloromethane/methanol (2:1 v/v) as the organic solvent. The total lipid extract was  
177 subsequently separated over silica into neutral and fatty acid fractions using chloroform-  
178 saturated ammonia and chloroform:acetic acid (100:1 v/v), respectively (Dickson et al.,  
179 2009). The neutral fraction was further fractionated over alumina into apolar and polar  
180 fractions using Hexane:DCM (9:1 v/v) and DCM:MeOH (1:2 v/v), respectively. The polar  
181 fraction, containing the GDGTs, was dissolved in hexane/*iso*-propanol (99:1, v/v) and passed  
182 through 0.45  $\mu$ m PTFE filters. Fractions were analyzed by high performance liquid  
183 chromatography/atmospheric pressure chemical ionisation – mass spectrometry  
184 (HPLC/APCI-MS) using a ThermoFisher Scientific Accela Quantum Access. Normal phase  
185 separation was achieved on an Alltech Prevail Cyano column (150 mm x 2.1 mm; 3  $\mu$ m i.d.)  
186 with a flow rate of 0.2 ml. $\text{min}^{-1}$ . Initial solvent was hexane/*iso*-propanol 99:1 (v/v), eluted  
187 isocratically for 5 mins, followed by a linear gradient to 1.8% *iso*-propanol over 45 mins.  
188 Analyses were performed in selective ion monitoring mode (SIM) to increase sensitivity and  
189 reproducibility and  $[\text{M}+\text{H}]^+$  (protonated molecular ion) GDGT peaks were integrated.  
190

### 191 2.3. GDGT-based SST indices

192 To reconstruct SST, Kim et al. (2010) invoke two separate TEX<sub>86</sub><sup>H</sup>-based SST indices and  
193 calibrations. TEX<sub>86</sub><sup>H</sup> uses the same combination of GDGTs as in the original TEX<sub>86</sub>  
194 relationship (Schouten et al., 2002; Kim et al., 2008) and is defined as:  
195

$$\text{GDGT index-2} = \log \frac{[\text{GDGT-2}]+[\text{GDGT-3}]+[\text{Cren.}']}{[\text{GDGT-1}]+[\text{GDGT-2}]+[\text{GDGT-3}]+[\text{Cren.}']} \quad (1)$$

196

197 Where numbers refer to individual GDGT structures shown in Figure 2. GDGT index-2 is  
198 correlated to SST using the calibration equation:

199  
200  $\text{TEX}_{86}^{\text{H}}\text{-derived SST} = 68.4 \times (\text{GDGT index-2}) + 38.6$  [calibration error:  $\pm 2.5$  °C] (2)

201  
202  $\text{TEX}_{86}^{\text{L}}$  employs a combination of GDGTs that is different from  $\text{TEX}_{86}^{\text{H}}$ , removing GDGT-3  
203 from the numerator and excluding crenarchaeol isomer (Cren.) entirely:

204  
205  
206  $\text{GDGT index-1} = \log \frac{[\text{GDGT-2}]}{[\text{GDGT-1}]+[\text{GDGT-2}]+[\text{GDGT-3}]}$  (3)

207  
208  $\text{TEX}_{86}^{\text{L}}\text{-derived SST} = 67.5 \times (\text{GDGT index-1}) + 46.9$  [calibration error:  $\pm 4$  °C] (4)

209  
210 Kim et al. (2010) argue that  $\text{TEX}_{86}^{\text{L}}$  can be used to reconstruct SST across all temperature  
211 ranges, whereas  $\text{TEX}_{86}^{\text{H}}$  is restricted to SST reconstruction above 15°C. Above 15 °C,  
212  $\text{TEX}_{86}^{\text{H}}$  has a smaller standard calibration error, but both calibrations should yield similar  
213 temperatures and no significant offset should exist between them in the modern ocean ( $\Delta\text{H-L}$   
214 = 0) (Taylor et al., 2013). Despite this, unexpectedly large  $\Delta\text{H-L}$  offsets exist during the  
215 Eocene (e.g. Hollis et al., 2012). Hollis et al. (2012) also observed that Eocene  $\text{TEX}_{86}^{\text{H}}$  SSTs  
216 are higher than those derived from inorganic proxies (i.e. Mg/Ca ratios and  $\delta^{18}\text{O}$  values for  
217 planktic foraminifera). As a result, Hollis et al. (2012) developed an Eocene or “paleo”  
218 calibration based on the relationship between these inorganic SST proxies and GDGT-ratio 2:

219  
220  $\text{SST} = 39.036 * (\text{GDGT-ratio 2}) + 36.455$  ( $r^2 = 0.87$ ) (5)

220

221 This relationship (defined as pTEX<sub>86</sub>; Hollis et al., 2012) is derived from four Eocene  
222 records in which TEX<sub>86</sub> indices and SSTs based on well-preserved, mixed layer planktic  
223 foraminifera have been determined for the same samples (Zachos et al., 2006; Pearson et al.,  
224 2007; Burgess et al., 2008; Hollis et al., 2009). In the SW Pacific, this yields SST estimates  
225 that are consistently lower than TEX<sub>86</sub><sup>H</sup> but generally similar to those derived using TEX<sub>86</sub><sup>L</sup>  
226 (Hollis et al., 2012). Taylor et al. (2013) argue that the ΔH-L offset is a function of the  
227 GDGT-2/GDGT-3 ratio ([2]/[3] ratio). As this ratio is markedly higher in deeper waters than  
228 the mixed layer (Taylor et al., 2013), it is governed by export dynamics (Hernandez-Sanchez  
229 et al., 2014) but also partly related to water depth. For example, deep settings (>1000 m) in  
230 the modern ocean are characterised by low ΔH-L offsets (< 3.0) and high [2]/[3] ratios (> 5.0)  
231 whereas shallow settings (<1000 m) are characterised by high ΔH-L values (> 3.0) and low  
232 [2]/[3] ratios (< 5.0). Other recent developments in TEX<sub>86</sub> palaeothermometry include the  
233 expansion of the core-top dataset into subpolar and polar regions (Ho et al., 2014) and the  
234 development of a spatially-varying, TEX<sub>86</sub> Bayesian regression model (BAYSPAR) (Tierney  
235 and Tingley, 2014). In deep-time settings, BAYSPAR searches the modern core-top dataset  
236 for TEX<sub>86</sub> values which are similar to the measured TEX<sub>86</sub> value and draws regression  
237 parameters from these modern “analogue” locations. SSTs are derived using an online  
238 graphical use interface (GUI) ([www.whoi.edu/bayspar](http://www.whoi.edu/bayspar)) (Tierney and Tingley, 2014). Using  
239 this approach, an Eocene high-latitude site will draw analogues from a modern-day mid-  
240 latitude site and so on. However, BAYSPAR does not resolve the problem of high ΔH-L  
241 offsets, as the SSTs tend to be similar to those derived from TEX<sub>86</sub><sup>H</sup> (Tierney and Tingley,  
242 2014). This is not surprising as BAYSPAR is based upon the original TEX<sub>86</sub> ratio.

243

244 2.4. Other GDGT-based indices

245 A number of indices have been developed to screen for potential secondary influences on  
246  $\text{TEX}_{86}$ . The ratio of branched GDGTs to crenarchaeol (Fig. 2) in marine and lacustrine  
247 sediments is a function of terrestrial input, expressed as the Branched vs. Isoprenoid  
248 Tetraether (BIT) index:

249

$$\text{BIT} = \frac{\text{Ia} + \text{IIa} + \text{IIIa}}{\text{Ia} + \text{IIa} + \text{IIIa} + [\text{Crenarchaeol}]} \quad (6)$$

250

251 Numbers refer to individual GDGT structures shown in Figure 2. It has been argued that  
252  $\text{TEX}_{86}$  estimates with BIT values  $>0.3$  should not be used for SST reconstruction due to the  
253 potential influence of soil-derived GDGTs on temperature estimates (Weijers et al., 2006).  
254 Although the BIT has been applied within deep-time settings (Sluijs et al., 2011; Jenkyns et  
255 al., 2012), it is unclear whether a threshold of 0.3 remains applicable.

256 The Methane Index (MI) was proposed to distinguish the relative input of  
257 methanotrophic Euryarchaeota vs. ammonia-oxidising Thaumarchaeota in settings  
258 characterised by gas hydrate-related anaerobic oxidation of methane (AOM) (Pancost et al.,  
259 2001; Wakeham et al., 2003; Stadnitskaia et al., 2008; Zhang et al., 2011a);

260

$$\text{MI} = \left( \frac{[\text{GDGT-1}]+[\text{GDGT-2}]+[\text{GDGT-3}]}{[\text{GDGT-1}]+[\text{GDGT-2}]+[\text{GDGT-3}]+[\text{Crenarchaeol}]+[\text{Cren.}']} \right) \quad (7)$$

261

262 High MIs ( $>0.5$ ) reflect high rates of gas-hydrate-related AOM and low values ( $<0.3$ ) suggest  
263 normal sedimentary conditions (i.e. no appreciable AOM input); by extension,  $\text{TEX}_{86}$  values  
264 should be excluded when MI values  $> 0.5$ .

265 Sedimentary archaeal methanogens can synthesise GDGT-0, as well as smaller  
266 quantities of GDGT-1, -2 and -3 (Koga et al., 1993; Weijers et al., 2006a). The %GDGT-0

267 index can be used to qualitatively evaluate the contribution of methanogenic archaea to the  
268 sedimentary GDGT pool:

269

$$\%GDGT-0 = ([GDGT-0]/([GDGT-0]+[Crenarchaeol]))*100 \quad (8)$$

270

271 %GDGT-0 values from thaumarchaeotal enrichment cultures fall below 67 %, such that an  
272 additional, potentially methanogenic, source of GDGT-0 is likely when %GDGT-0 values  
273 exceed this threshold. Blaga et al. (2009) and Sinninghe-Damsté et al. (2012) argue that  
274 TEX<sub>86</sub> values become unreliable in lacustrine settings when %GDGT-0 values >67 %,  
275 possibly because such a large methanogen input also contributes additional GDGT-1, 2 and 3  
276 that can bias TEX<sub>86</sub> values. However, it is unclear if a similar threshold applies to marine  
277 sediments.

278

## 279 2.5. Statistical analysis

280 During the Eocene, TEX<sub>86</sub> SST records have different sampling densities and/or span  
281 different intervals (Pearson et al., 2007; Burgess et al., 2008; Bijl et al., 2009; Hollis et al.,  
282 2009; Liu et al., 2009; Hollis et al., 2012; Bijl et al., 2013). To address this problem, time  
283 series which spanned the majority of the investigated time window (i.e. ODP 925, ODP 929,  
284 ODP 913, ODP 1162, IODP 1356, TDP, SDB, Mid-Waipara and Hampden Beach) were  
285 grouped into low- (<30 °) or high-latitude (>55 °) bins. Using TEX<sub>86</sub><sup>H</sup>, each timeseries was  
286 then turned into a relative temperature ( $\Delta T$ ) by comparison to the warmest temperature in that  
287 time series. In order to determine the long-term mean SST evolution in each bin (high and  
288 low latitude) with an associated uncertainty, a separate non-parametric LOESS regressions  
289 were fitted to both the low and high-latitude TEX<sub>86</sub><sup>H</sup> ΔSST compilations using the R software  
290 package (<http://www.R-project.org/>). The degree of smoothing (i.e. the span term) was

291 optimised for each time series using generalised cross validation and an uncertainty envelope  
292 ( $\pm 95\%$  confidence intervals) was calculated based upon the observed scatter of data around  
293 the best-fit line. Sequential removal of one time series at a time (jackknifing) was also  
294 performed to examine the influence of each record on the long-term mean SST (see Auxiliary  
295 Material).

296

297 2.6. Modelling set-up

298 HadCM3L, a modified version of the UKMO Unified Model HadCM3 (Gordon et al.,  
299 2000) fully coupled Atmosphere-Ocean General Circulation model (AOGCM), was  
300 employed within this study. The atmospheric and oceanic components of the model comprise  
301 a resolution of  $2.5^\circ$  by  $3.75^\circ$ , with 19 vertical levels in the atmosphere and 20 vertical levels  
302 in the ocean. Four time slice simulations were constructed utilising high resolution  
303 paleogeographic boundary conditions under the framework of Markwick and Valdes (2004)  
304 representing the Ypresian (56.0-47.8 Ma), Lutetian (47.8-41.3 Ma), Bartonian (41.3-38.0 Ma)  
305 and Priabonian (38.0-33.9 Ma) geological stages and run for 1422 model years in total to  
306 allow surface conditions to approach equilibrium, reducing the error from model drift relative  
307 to shorter simulations (see Figure S5). Mean climate state is produced from the final 50 years  
308 of the simulation. Following an initial 50 years at 280 ppmv, atmospheric CO<sub>2</sub> is prescribed  
309 at 1120 ppmv (4 x Pre-Industrial level) for each simulation, and with an appropriate solar  
310 constant (Gough, 1981) representative of each geologic stage defined. The initial ~500 years  
311 of the model simulations have a purely baroclinic ocean circulation to ensure stability during  
312 spin-up; the barotropic circulation is initialised after 500 years. The barotropic solver in the  
313 ocean model requires the definition of continental islands, around which the net ocean flow is  
314 non-zero; the defined islands in the model are shown in Figure S6. Note that Antarctica has  
315 not been defined as an island in any of these simulations, resulting in a net ocean flow of zero

316 around the margins of Antarctica, even though the palaeogeographic reconstruction implies a  
317 possible pathway for circum-Antarctic transport. Due to the small latitudinal extent and  
318 shallow depth of the Drake's and Tasman gateways at this time, we do not expect this to  
319 greatly affect our results. More details of the climate model itself are described in Loptson et  
320 al (2014); their simulation 4×DYN is carried out with an identical model to the one used here.

321

### 322 **3. Results and discussion**

323 For each site, including new and previously published datasets, we have determined  $\text{TEX}_{86}$   
324 SSTs during the Eocene and the Oligocene. All of these datasets are described in detail within  
325 the Auxiliary Material. Using a combination of parameters (BIT, MI, %GDGT-0), we  
326 investigate the sedimentary GDGT distributions and discard samples that are potentially  
327 problematic with respect to those prospective criteria (see 3.1-3.4 and Auxiliary Material).  
328 We then compare  $\Delta\text{H-L}$  offsets against [2]/[3] ratios to explore the applicability of  $\text{TEX}_{86}^{\text{L}}$  -  
329 before investigating spatial patterns of cooling during the Eocene (see 3.5). Based upon our  
330 findings, we also re-investigate cooling trends during the EOT (see 3.6).

331

#### 332 *3.1. Impact of terrestrial input upon Eocene $\text{TEX}_{86}$ values*

333 The observation that branched GDGTs occur predominantly in soils, whereas  
334 crenarchaeol occurs predominantly in the marine environment led to the development of the  
335 branched-to-isoprenoidal tetraether (BIT) index (Hopmans et al., 2004). Although this was  
336 originally used to elucidate the relative input of terrestrial organic matter into the marine  
337 realm, it can also provide insights into the efficacy of  $\text{TEX}_{86}$  estimates (Hopmans et al., 2004;  
338 Weijers et al., 2006b; Fietz et al., 2011). Weijers et al. (2006) show that when BIT values  
339 exceed 0.2-0.3, temperature estimates are  $\sim 1$  °C higher than expected, and when BIT values  
340 exceed 0.4, temperature estimates can be  $> 2$  °C higher. However, those observations are

341 specific to that depositional system (the Congo Fan), and the impact of terrigenous GDGTs  
342 on reconstructed SST will depend on the nature and temperature of the source catchment.  
343 Using our Eocene and Oligocene compilation, we examine the apparent effect of terrestrial  
344 input upon  $\text{TEX}_{86}$  SST estimates.

345 BIT values from the modern core-top dataset do not exceed 0.25 in marine settings  
346 (Schouten et al., 2013), with average values of 0.03 ( $n = 278$ ;  $\sigma = 0.03$ ) (Fig. 3). In the  
347 Eocene and Oligocene, BIT values associated with  $\text{TEX}_{86}$  data are higher with an average of  
348 0.27 ( $n = 552$ ;  $\sigma = 0.19$ ) (Fig. 3), likely arising from the fact that many of the Eocene sites  
349 from which  $\text{TEX}_{86}$  records are derived are proximal to land. Many of these proximal settings,  
350 such as Tanzania and Seymour Island (Fig. 1), do exhibit large temperature deviations ( $>5$   
351 °C) when BIT indices are  $> 0.4$  (Pearson et al., 2007; Douglas et al., 2014). Sluijs et al.  
352 (2006) suggested that enhanced terrestrial input of GDGT-3 preceding the PETM at IODP  
353 Site 302 (ACEX; Fig. 1) resulted in a significant temperature deviation. They removed  
354 GDGT-3 from the original  $\text{TEX}_{86}$  and developed a new index ( $\text{TEX}_{86}'$ ) which was calibrated  
355 to the modern core top dataset (Sluijs et al., 2006; 2009). However, we suggest that elevated  
356 GDGT-3 is not the only impact of terrigenous OM inputs on isoprenoidal GDGT  
357 distributions, i.e. an increase in GDGT-3 due to terrestrial input will also be associated with  
358 an increase in the abundance of other isoprenoidal GDGTs. As a result, we argue that  $\text{TEX}_{86}'$   
359 is not a reliable alternative to SST reconstruction when terrestrial input is high.

360  $\text{TEX}_{86}$  SST estimates from some deep (e.g. ODP Site 929, ODP Site 925) and shallow  
361 (e.g. South Dover Bridge) water settings are relatively unaffected by enhanced terrestrial  
362 input. Intriguingly, the few sediment samples from those sites with high BIT values ( $>0.4$ )  
363 generally yield similar SSTs as those with low BIT values ( $<0.1$ ). This could be fortuitous,  
364 with terrigenous input not causing significant deviations from marine distributions, but it  
365 does suggest that the threshold of 0.4 is conservative in some settings-

366

367 *3.2 Impact of archaeal methanogenesis and methanotrophy upon Eocene TEX<sub>86</sub> values*

368 Considerable work has suggested that sedimentary GDGT production can affect TEX<sub>86</sub>  
369 values and subsequent climate interpretation (Blaga et al., 2009; Zhang et al., 2011; Weijers  
370 et al., 2011). Anaerobic methane oxidising Euryarchaeota, which synthesise isoprenoidal  
371 GDGTs containing 0 - 3 cyclopentane moieties (e.g. Pancost et al., 2001), can affect TEX<sub>86</sub>  
372 values at active cold seeps (Pancost et al., 2001; Zhang et al., 2011; Liu et al., 2011) and  
373 possibly in sediments characterised by diffusive methane flux (Aquilina et al., 2010; Weijers  
374 et al., 2011). Methanogenic archaea, which synthesise small quantities of GDGT-1, -2 and -3  
375 (Koga et al., 1993; Weijers et al., 2006), are also present in marine sediments. Currently there  
376 is no evidence that they impact marine TEX<sub>86</sub> values although they do appear to affect  
377 lacustrine TEX<sub>86</sub> values (Blaga et al., 2009; Powers et al., 2010; Sinninghe Damsté et al.,  
378 2012). .

379 Figure 4.a shows %GDGT-0 values for the modern core-top dataset and our Eocene  
380 compilation. In the modern core-top dataset, %GDGT-0 values span a broad range (9 – 65 %,  
381 n = 426) with an average of 45 % ( $\sigma = 12.5$ ). This is expected for coretop sediments unlikely  
382 to have been affected by methane cycling (Martens and Berner, 1974). Higher values occur in  
383 deeper sediments (Pancost et al., 2008; Blaga et al., 2009) and are associated with the  
384 occurrence of  $^{13}\text{C}$ -depleted acyclic biphytanes ( $\delta^{13}\text{C}$ : -21 ‰ to -26 ‰) (n.b. depleted relative  
385 to thaumarchaeal-derived biphytanes ( $\delta^{13}\text{C}$ : -20 ‰ to -22 ‰)) (Schouten et al., 1998; Pancost  
386 et al., 2008). This indicates that GDGT-0 is likely derived from methanogens in deeper  
387 horizons. Eocene %GDGT-0 values span a larger range (5 to 97; n = 641), although the  
388 average %GDGT-0 value is similar to that observed in modern coretop sediments (42%;  $\sigma =$   
389 17) (Fig. 4.a). The majority of samples (>90 %) fall below 67 %, suggesting that  
390 methanogenic contributions are also relatively minor during the Eocene. In modern surface

391 sediments, %GDGT-0 exhibits a positive correlation with latitude ( $r^2 = 0.87$ ) and  $\text{TEX}_{86}^{\text{H}}$ -  
392 derived SST ( $r^2 = 0.55$ ). Despite some uncertainties in the accuracy of palaeolatitude  
393 estimates (e.g. Self-Trail et al., 2012), Eocene %GDGT-0 values exhibit a weaker correlation  
394 with latitude ( $r^2 = 0.43$ ) and  $\text{TEX}_{86}^{\text{H}}$ -derived SST ( $r^2 = 0.36$ ). This suggests an additional,  
395 potentially methanogenic, source of GDGT-0 in older sediments and provides further  
396 justification for the exclusion of GDGT-0 in  $\text{TEX}_{86}$  palaeothermometry (Schouten et al.,  
397 2002). However, the actual impact on Eocene reconstructed temperatures appears to be  
398 minor. Only 7 % of the Eocene dataset yields %GDGT-0 values in excess of 67 %,  
399 suggesting the presence of an additional, potentially methanogenic, source of GDGT-0. Some  
400 of these samples (i.e. ODP Site 913) also contain 2,6,10,15,19-pentamethylicosane (PMI), a  
401 common methanogen (Brassell et al., 1981; Schouten et al., 1997) and anaerobic  
402 methanotroph biomarker (Thiel et al., 2001), and provides independent evidence for methane  
403 cycling at this site.

404 Several sedimentary sequences contain rather variable %GDGT-0 values, sometimes  
405 in adjacent sediments (e.g. Ceara Rise), perhaps as a result of localised bioturbation. In those  
406 cases, samples with high %GDGT-0 values do not yield significantly ( $<2$  °C) different  
407 temperature estimates than samples with lower %GDGT-0 values. This suggests that  
408 sedimentary methanogenesis does not impact  $\text{TEX}_{86}$  SST estimates. This contrasts with  
409 observations made in lacustrine settings (Blaga et al., 2009; Sinninghe Damsté et al., 2012).  
410 We suggest this is because GDGT-0 and GDGT-1, and possibly GDGT-2 and -3, co-occur in  
411 terrestrial settings (Pancost and Sinninghe Damsté, 2003; Weijers et al., 2006a; Huguet et al.,  
412 2010), whereas the production of GDGT-0 by methanogens in marine settings is not  
413 associated with significant production of GDGT-1 or GDGT-2 (or any other GDGTs used in  
414 the  $\text{TEX}_{86}$  palaeothermometer).

415 In the modern core-top dataset, the Methane Index (MI) spans a narrow range (0.03-  
416 0.23) and averages 0.15 ( $n = 426$ ;  $\sigma = 0.07$ ) (Fig. 4.b). MIs exceed 0.3 in < 1 % of samples  
417 and do not exceed 0.5. As with %GDGT-0 values, this is expected for core-top sediments  
418 which are likely unaffected by methane cycling (Martens and Berner, 1974). In gas-hydrate-  
419 impacted and/or methane-rich environments, MIs are higher (>0.6) and span a larger range  
420 (~0.6-1.0). In such settings, high MIs are associated with the presence of  $^{13}\text{C}$ -depleted  
421 biphytanes, providing further evidence for a methanotrophic source (Wakeham et al., 2003;  
422 Wakeham et al., 2004; Bouloubassi et al., 2006; Pancost et al., 2008; Zhang et al., 2011a).  
423 Elevated MIs also occur in older sediments of continental marginal settings characterised by  
424 high sedimentation rate and organic matter flux (Aquilina et al., 2010; Weijers et al., 2011).  
425 MIs span a larger range (0.08-0.82) in our Eocene and Oligocene dataset (Fig. 4.b;  $n = 686$ )  
426 and yield a slightly higher average value (0.22;  $\sigma = 0.08$ ) than modern core-top sediments.  
427 MIs exceed 0.3 in ~8 % of samples and exceed 0.5 in <2 % of samples, suggesting that most  
428 Eocene and Oligocene sediments, despite their continental margin locations, are relatively  
429 unaffected by diffusive methane flux and associated anaerobic oxidation of methane

430 In the Eocene and Oligocene dataset, a non-linear, positive correlation exists between  
431 MI and %GDGT-0 (Figure S1). This is expected, because sediment profiles characterised by  
432 methanogenesis will likely also have experienced some amount of anaerobic oxidation of  
433 methane (Sivan et al., 2007). This relationship is almost certainly driven by methane cycling  
434 rather than temperature, because the latter – by decreasing %GDGT-0 and increasing MIs –  
435 would yield a negative rather than positive correlation.

436

437 3.3. Red Sea-type GDGT distributions

438 In the modern core-top calibration, sediments from the Red Sea yield much warmer  $\text{TEX}_{86}$   
439 SST estimates than observed values (Trommer et al., 2009; Ionescu 2009) and are excluded

440 from the global core-top calibration datasets of Kim et al., (2008) and Kim et al. (2010) but  
441 not the BAYSPAR calibration dataset of Tierney and Tingley (2013). Red Sea GDGT  
442 distributions are characterised by a low fractional abundance of GDGT-0 relative to  
443 Crenarchaeol regioisomer (Cren.). To identify a typical Red Sea-type distribution within the  
444 geological record we propose the following ratio:

445

$$\%GDGT_{RS} = ([Cren.]/([GDGT-0]+[Cren.])) * 100 \quad (9)$$

446

447 %GDGT<sub>RS</sub> values from the Red Sea range between 32 and 61, whereas those from the  
448 rest of the global core-top calibration range do not exceed 24. However, we propose this only  
449 as an approximate evaluation tool, because other factors, such as temperature (Schouten et  
450 al., 2002; Kim et al., 2010), can affect %GDGT<sub>RS</sub> indices (see later). Thus, we suggest it is  
451 initially employed to identify sediments with unusually low amounts of GDGT-0 relative to  
452 crenarchaeol regioisomer. Further evaluation of a putative Red Sea-type GDGT signature can  
453 be based on the entirety of the GDGT distribution (Trommer et al., 2009).

454 %GDGT<sub>RS</sub> values from the modern core-top dataset (n = 396; Kim et al., 2010) do not  
455 exceed 24, except for the Red Sea, where values range from 32 to 59 (n = 30; Trommer et al.,  
456 2009; Fig. S2). As such, we propose that a Red Sea-type contribution should be considered  
457 for %GDGT<sub>RS</sub> >30. In our Eocene compilation, these high %GDGT<sub>RS</sub> values are common,  
458 widespread and range up to 70. During the Bartonian (38.0-41.3 Ma) and Priabonian (33.9-  
459 38.0 Ma), high %GDGT<sub>RS</sub> values are confined to low-latitude sites (i.e. Tanzania). There,  
460 %GDGT<sub>RS</sub> values are highly variable and exhibit no correlation with  $TEX_{86}^H$  SSTs. High  
461 %GDGT<sub>RS</sub> values are especially common during times of elevated warmth (Fig. S4). During  
462 the Early Eocene Climatic Optimum (EECO), high %GDGT<sub>RS</sub> values become more  
463 geographically widespread, occurring at ODP Site 1172 (Bijl et al., 2009), Mid-Waipara  
464 (Hollis et al., 2009; 2012), Hampden Beach (this paper) and South Dover Bridge (this paper).

465 At these sites, %GDGT<sub>RS</sub> values gradually increase during the EECO, attain highest values  
466 during peak EECO warmth and then gradually decrease following the EECO (Fig. S4).  
467 Similarly, %GDGT<sub>RS</sub> values increase at the onset of the PETM at Wilson Lake (Zachos et al.,  
468 2006; Sluijs et al., 2007), ODP Site 1172 (Sluijs et al., 2011) (Fig. 5) and South Dover Bridge  
469 (*this paper*). GDGT-0 was not detected at Bass River (Sluijs et al., 2007; Sluijs and  
470 Brinkhuis, 2009). Unfortunately, it appears that most of the Red Sea GDGT characteristics  
471 are indistinguishable from those expected for temperatures in excess of ~30°C (based on  
472 projecting correlations to temperatures beyond the modern limits). Therefore, we cannot  
473 currently untangle these effects on GDGT distributions in the sedimentary record.

474 Aside from temperature, the underlying ecological controls that govern the occurrence  
475 of these distributions remains unclear. At ODP Site 1172, the dinocyst genus *Eocladopyxis*, a  
476 member of the extant family Goniodomidae that mainly inhabits low-latitude lagoonal  
477 environments, peaks during the PETM and the EECO (Sluijs et al., 2011) (Fig. 5). A peak in  
478 *Eocladopyxis* spp. also occurs prior to and immediately after the onset of the PETM at Bass  
479 River and Wilson Lake (Sluijs and Brinkhuis, 2009). At all three sites, the occurrence of  
480 hypersaline dinocysts coincides with an increase in %GDGT<sub>RS</sub> values. The presence of  
481 *Eocladopyxis* in the Recent has been explained by hyperstratification and the development of  
482 lagoonal conditions in the open ocean (Reichart et al., 2004; Sluijs and Brinkhuis, 2009). At  
483 Mid-Waipara River, the dinocyst genus *Homotryblium*, a similar ‘lagoonal’ indicator genus,  
484 is also present in low abundances during the early Eocene (Hollis et al., 2009) while other  
485 high-salinity, lagoonal dinocysts, such as *Heteraulacacysta* and *Polysphaeidium*, are  
486 identified during the PETM at Bass River and Wilson Lake (Sluijs and Brinkhuis, 2009).  
487 Although the presence of hypersaline and/or lagoonal dinocysts are consistent with an  
488 increase in salinity, they rarely dominate the dinocyst assemblage (e.g. Sluijs and Brinkhuis,  
489 2011) and it is possible that other factors exert a control upon Red Sea-type GDGT

490 distributions. For example, pure cultures of *Nitrosopumilis Maritimus*, a marine group I.1a  
491 thaumarchaeon, indicate that nutrient availability can influence GDGT distributions (Elling et  
492 al., 2014). However, this contrasts with Trommer et al. (2009) who correlated Red Sea TEX<sub>86</sub>  
493 values with nitrate concentrations at 100m depth and found no obvious correlation.  
494 Alternatively, Kim et al. (2015) argue that modern Red Sea GDGT distributions originate  
495 from a deep-water (>1000m) thaumarchaeotal community. Using core-top sediments from  
496 the Mediterranean and the Red Sea, Kim et al. (2015) recently developed a regional TEX<sub>86</sub>  
497 SST calibration for deep-water (> 1000m), restricted basins. This yields lower TEX<sub>86</sub> SSTs,  
498 both in the modern and during the Eocene. However, as Eocene Red Sea-type GDGT  
499 distributions are restricted to shallow water settings (typically <500m), this calibration is  
500 deemed unsuitable here.

501 Intriguingly, high %GDGT<sub>RS</sub> values and Red Sea-like GDGT distributions also occur  
502 in Mesozoic sediments, including in Oceanic Anoxic Event 1b sediments deposited at ODP  
503 Site 1049 (Kuypers et al., 2001; Kuypers et al., 2002). There, a range of biomarker evidence  
504 has shown that deposition of organic-rich sediments represents an unusual and widespread  
505 expansion of archaea (Kuypers et al., 2002). The most diagnostic biomarkers for OAE1b  
506 archaeal assemblages, i.e. tetramethyllicosane (TMI), have not been reported for the Eocene  
507 sediments discussed here nor the Red Sea. This could provide additional evidence for  
508 extreme Palaeogene and Mesozoic warmth, i.e. they reflect additional changes in the GDGT  
509 distribution beyond those reflected by TEX<sub>86</sub> values. Alternatively, they could reflect the  
510 same factors that influence Red Sea distributions and that overestimate SST. In summary,  
511 Red Sea GDGT characteristics are indistinguishable from those expected for temperatures in  
512 excess of ~30°C; as such, we continue to include high %GDGT<sub>RS</sub> values within our long-  
513 term Eocene compilation.

514

515 3.4. Interrogating GDGT distributions  
516 BIT, %GDGT-0, MI and %GDGT<sub>RS</sub> are useful tools which can be used to flag potentially  
517 problematic TEX<sub>86</sub> values. However, there are limitations to a single numerical  
518 representation of these complex GDGT distributions. Figure 6.a. shows two sets of Eocene  
519 GDGT distributions with identical TEX<sub>86</sub> values (0.70). Sample 2 has a much higher  
520 %GDGT-0 value than Sample 1 and suggests an additional, potentially methanogenic, source  
521 of isoprenoidal GDGTs. Otherwise, the GDGT distribution is very similar to Sample 1 and  
522 suggests the SST reconstructions are valid. In Figure 6.b., Samples 3 and 4 also have  
523 identical TEX<sub>86</sub> values (0.83) but different %GDGT<sub>RS</sub> values, Sample 4 being characterised  
524 by a Red Sea-type GDGT distribution. As Red Sea-type GDGT distributions fall off the core-  
525 top calibration line for TEX<sub>86</sub><sup>H</sup> (Schouten et al., 2002; Kim et al., 2010), this sample from  
526 Hampden Beach could overestimate SST (see 3.3).

527 This translation of a complex GDGT distribution into a single TEX<sub>86</sub> value can also  
528 be problematic for the BAYSPAR approach. BAYSPAR searches the modern core-top  
529 dataset for TEX<sub>86</sub> values that are similar to the measured TEX<sub>86</sub> value and draws regression  
530 parameters from these modern “analogue” locations. When a TEX<sub>86</sub> value exceeds 0.75,  
531 BAYSPAR typically draws regression parameters from the modern-day Red Sea. This  
532 assumes the ancient GDGT distribution is similar to the modern-day Red Sea; however, there  
533 are a number of Eocene and Oligocene localities where high TEX<sub>86</sub> values (>0.75) are not  
534 characterised by a Red Sea-type GDGT distribution (e.g. ODP 628, ODP 803, ODP Site  
535 925). In these samples, the Red Sea is an inappropriate analogue for a warm, subtropical site  
536 (Tierney and Tingley, 2014) and highlights the need to investigate the entire GDGT  
537 distribution before reconstructing SST.

538

539 3.5. Descent towards the Icehouse

540 3.5.1. Comparison of GDGT-based SST proxies for the Eocene

541 The following section focuses upon SST estimates derived using  $\text{TEX}_{86}^H$ ,  $\text{TEX}_{86}^L$  and  
542  $\text{pTEX}_{86}$  (see later). However, there are a number of other  $\text{TEX}_{86}$  calibrations which merit  
543 further discussion. The current mesocosm calibration extends to 40°C (Wuchter et al., 2004;  
544 Kim et al., 2010) and may be preferable in low-latitude ‘greenhouse’ environments.  
545 However, in mesocosm studies, the fractional abundance of the crenarchaeol isomer is  $\sim$ 14  
546 fold lower than expected and we thus argue against applying this calibration in deep-time  
547 settings. The application of a linear (Schouten et al., 2002; Tierney and Tingley, 2014),  
548 logarithmic (Kim et al., 2010) or reciprocal (Liu et al., 2009) calibration will also impact SST  
549 reconstructions, particularly in low-latitude greenhouse environments. However, the linear  
550 calibration yields unrealistically high SST values ( $>30^\circ\text{C}$ ) during the Holocene (Kim et al.,  
551 2010) and we therefore argue against its application in modern and ancient (sub)tropical  
552 climates. BAYSPAR, which also utilises a linear calibration, does not appear to yield  
553 unrealistically high SST values during the Quaternary (e.g. Tierney and Tingley, 2014);  
554 however, it does not formally addresses regional/oceanographic variations in deeper time  
555 reconstructions. This is because the analogue is generated by sampling within  $\text{TEX}_{86}$  space  
556 (as discussed in section 2.3) rather than on the basis of oceanographic (productivity regime)  
557 or regional (water depth, circulation, seasonal) considerations. The reciprocal approach (Liu  
558 et al., 2009), which yields similar SST estimates as the logarithmic approach (Kim et al.,  
559 2010), is associated with a maximum temperature of 35°C and is therefore also unsuitable for  
560 low-latitude greenhouse environments.

561  $\text{TEX}_{86}^L$ - and  $\text{TEX}_{86}^H$ -based temperature offsets ( $\Delta\text{H-L}$ ), both today and in the  
562 Paleogene, are similar in deep ( $>1000\text{m}$ ) water settings but up to 10°C different in shallow  
563 ( $<1000\text{ m}$ ) settings, suggesting that the choice of proxy is crucial in the latter setting (Taylor  
564 et al., 2013).  $\Delta\text{H-L}$  offsets are a function of the GDGT-2/GDGT-3 ([2]/[3]) ratio, such that

565 high  $\Delta H-L$  offsets correspond to low [2]/[3] ratios and vice versa. Sedimentary [2]/[3] ratios  
566 appear to be elevated when there is a greater contribution of subsurface GDGTs to the  
567 sedimentary GDGT pool (Taylor et al., 2013; Kim et al., 2015). After discarding  $TEX_{86}$   
568 values with potentially problematic GDGT distributions (as discussed above and shown in the  
569 Auxiliary Material), we use [2]/[3] ratios and  $\Delta H-L$  offsets (Taylor et al., 2013) to evaluate  
570 the various  $TEX_{86}$  calibrations for each site.

571 In the SW Pacific (ODP Site 1172, IODP Site 1356, Mid-Waipara River and  
572 Hampden Beach; Fig.1), high  $\Delta H-L$  offsets and low [2]/[3] ratios are consistent with  
573 sediments deposited in a relatively shallow water setting. It has been shown that the lower  
574  $TEX_{86}^L$ -derived SSTs are similar to inorganic and modelled SST estimates (Hollis et al.,  
575 2012; Bijl et al., 2013).  $TEX_{86}^L$ -derived SSTs exhibit a stronger latitudinal temperature  
576 gradient (~10 °C) than  $TEX_{86}^H$ , which yields much warmer SW Pacific SSTs (~27-33 °C)  
577 and a low latitudinal SST gradient. p $TEX_{86}$ , which has been calibrated to inorganic proxies  
578 gives SW Pacific temperatures similar to those of  $TEX_{86}^L$ . All three calibrations exhibit a  
579 similar timing and magnitude of cooling through the Eocene (Bijl et al., 2009; Hollis et al.,  
580 2012; Bijl et al., 2013). In the South Atlantic (Seymour Island; Fig. 1), [2]/[3] ratios and  $\Delta H-$   
581 L offsets are also consistent with sediments deposited in a relatively shallow water setting.  
582 There, SSTs derived from inorganic proxies, in this case clumped isotope paleothermometry,  
583 are similar to  $TEX_{86}^L$ -derived SSTs but colder than  $TEX_{86}^H$  (Douglas et al., 2014).

584 In the North Atlantic (ODP Site 913; Fig. 1),  $TEX_{86}^H$  and  $TEX_{86}^L$  yield similar SSTs,  
585 consistent with sediments deposited in a deeper water setting (Myhre et al., 1995; Eldrett et  
586 al., 2004). In contrast, SST estimates derived from p $TEX_{86}$  are significantly colder. In the  
587 western tropical Atlantic (ODP Site 925, ODP Site 929; Fig. 1), in a relatively open ocean  
588 setting, [2]/[3] ratios are high and  $\Delta H-L$  offsets are low, consistent with sediments deposited  
589 in a deep water setting (>1000 m).  $TEX_{86}^H$  and  $TEX_{86}^L$  all indicate late Eocene cooling but the

590 magnitude of cooling in  $\text{TEX}_{86}^L$  is much larger than expected ( $\sim 7$  °C). Moreover,  $\text{pTEX}_{86}$   
591 and  $\text{TEX}_{86}^L$  SSTs are colder than expected for a tropical location (21-28 °C).

592 In the Indian Ocean (Tanzania; Fig. 1), [2]/[3] ratios are low and  $\Delta\text{H-L}$  offsets are  
593 high; however, there is wide scatter in Tanzania  $\text{TEX}_{86}^L$  values when compared with  
594 inorganic SST estimates and the overall correlation to SST derived from foraminiferal  $\delta^{18}\text{O}$   
595 values is stronger when  $\text{TEX}_{86}^H$  is employed (Hollis et al., 2012). Overall, the distributions of  
596 GDGTs in Eocene sediments agree with previous findings that shallow water settings are  
597 associated with large  $\Delta\text{H-L}$  offsets and small [2]/[3] ratios, and vice versa. However, there  
598 are exceptions, including Lomonosov Ridge (ACEX) and ODP Site 511 (Fig. 1), which are  
599 both shallow water settings with relatively small  $\Delta\text{H-L}$  offsets. This reinforces previous  
600 arguments that water depth is not the primary control on differences between  $\text{TEX}_{86}^H$  and  
601  $\text{TEX}_{86}^L$ -derived SSTs (Taylor et al., 2013; Kim et al., 2015). Instead, we argue that  
602 differences are controlled by the magnitude of the subsurface GDGT contribution to  
603 sediments, which can be related to water depth but is also governed by the range of factors  
604 related to export productivity (Hernandez-Sanchez et al., 2014).

605 Our data also challenge the simple framework that  $\text{TEX}_{86}^L$  is most applicable in  
606 shallow water settings. In the Atlantic (South Dover Bridge; Fig. 1) and Gulf Coastal Plain  
607 (Keating-Bitonti et al., 2011), [2]/[3] ratios and  $\Delta\text{H-L}$  offsets are consistent with samples  
608 deposited in a shallow setting. However,  $\text{TEX}_{86}^L$  SST estimates are unexpectedly low for a  
609 subtropical setting (22 °C) and are, in fact, 2-3 °C colder than contemporary SST estimates  
610 (Levitus and Boyer, 1994). A similar problem has been observed in the Gulf of Mexico  
611 Coastal Plain during the late Paleocene (~15 °C) and PETM (~25 °C) (Sluijs et al., 2013). At  
612 Hampden Beach, [2]/[3] ratios and  $\Delta\text{H-L}$  offsets are consistent with samples deposited in a  
613 shallow setting. However, there are large variations in  $\text{TEX}_{86}^L$  SST estimates which are  
614 inconsistent with inorganic and organic SST estimates from nearby sites (Bijl et al., 2009;

615 Hollis et al., 2009; Creech et al., 2010; Hollis et al., 2012; Bijl et al., 2013). Although these  
616 estimates may reflect local variations in SST,  $\text{TEX}_{86}^L$  is far more sensitive to contributions  
617 from other archaea and in particular, the fractional abundance of GDGT-3.

618 Thus, although  $\text{TEX}_{86}^L$  does agree with inorganic proxies in some shallow water  
619 settings (Hollis et al., 2009; Hollis et al., 2012; Douglas et al., 2014) there are exceptions.  
620 Modern water column investigations suggest that the  $\text{TEX}_{86}^L$  calibration should be used with  
621 great caution. Recently, Taylor et al. (2013) showed that the increase in [2]/[3] ratios with  
622 depth is a globally widespread feature of GDGT distributions in the water column, possibly  
623 due to the predominance of different Thaumarchaeota communities in the surface mixed layer  
624 and subsurface (Villanueva et al., 2014). The implication is that subsurface export has a  
625 markedly stronger impact on  $\text{TEX}_{86}^L$  values than on  $\text{TEX}_{86}^H$ , and by extension, that the  
626 depth-related difference between  $\text{TEX}_{86}^L$  and  $\text{TEX}_{86}^H$ -derived SSTs is due to complexities  
627 associated with the former. As a result, the following section is restricted to the discussion of  
628  $\text{TEX}_{86}^H$ -derived SSTs.

629

630 3.5.2. Sea surface temperature change during the Eocene  
631 Present-day SST rarely exceeds 28-29°C (except in some isolated basins), which some have  
632 suggested indicates a homeostatic limit to tropical SST (Ramanathan and Collins, 1991;  
633 Kleypas et al., 2008). This has however been shown to be ill-founded (Pierrehumbert, 1995;  
634 van Hooidonk and Huber, 2009; Williams et al., 2009) and is not supported by SST records  
635 in the more recent geological past (O'Brien et al., 2014). During the early and middle  
636 Eocene, SST estimates from Tanzania (Pearson et al., 2007), Ceara Rise (ODP Site 925; ODP  
637 Site 929: Liu et al., 2009) and the Atlantic Coastal Plain (South Dover Bridge) regularly  
638 exceed this modern limit, with  $\text{TEX}_{86}^H$ -derived SSTs  $> 32$  °C (Fig. 7).  $\text{TEX}_{86}^H$  SSTs, which  
639 are clearly higher than those of today, do not support the existence of a tropical ‘thermostat’

640 (O'Brien et al., 2014a; Pagani, 2014), at least insofar as it is most strictly defined  
641 (Ramanathan and Collins, 1991).

642 Previous work stipulated that if SSTs were truly ~35 °C in Tanzania (Pearson et al.,  
643 2007) then some tropical regions (e.g. the Western Pacific Warm Pool (WPWP) must have  
644 been much hotter (Huber, 2008). Indeed, our modelling simulations indicate that the WPWP  
645 (~34°C) was ~3-4°C warmer than Tanzania (~30-31°C) (Fig. 10). Moderately higher tropical  
646 temperatures relative to today (>2 °C) will significantly increase evaporation rates, latent heat  
647 transport (Huber and Sloan, 2000) and the frequency and/or the strength of tropical cyclones  
648 (Sriver and Huber, 2007). Tropical cyclones help to induce ocean mixing which enhances  
649 meridional overturning and ocean heat transport. This can reduce the latitudinal temperature  
650 gradient by up to 6°C and warm high-latitude oceans by as much as 10°C (Sriver and Huber,  
651 2007; Thomas et al., 2014).

652 Our record also suggests tropical cooling during the Eocene, albeit of much lesser  
653 magnitude than that observed at high southern latitudes (see later; Bijl et al., 2009; Hollis et  
654 al., 2009; Creech et al., 2010; Hollis et al., 2012; Bijl et al., 2013).  $\text{TEX}_{86}^{\text{H}}$  indicates  $\leq 2$  °C of  
655 tropical cooling within the Indian Ocean during the middle and late Eocene (45-34 Ma; Fig.  
656 8), 3-4 °C of cooling within the western equatorial Atlantic during the middle and late  
657 Eocene (40-34 Ma; Fig. 8) and 4-5°C of cooling within the subtropical Atlantic Coastal Plain  
658 between the early and middle Eocene (53-41 Ma; Fig. 8). Crucially, middle and late Eocene  
659 (47.8-34.0 Ma) tropical cooling is apparent regardless of the calibration. By fitting a non-  
660 parametric LOESS regression to our compiled dataset we are able to determine that there was  
661 ~2.5°C of long-term tropical surface water cooling between the early and late Eocene (Fig.  
662 9.b) Jackknifing (the sequential removal of one record at a time) revealed that no single time  
663 series overly influences the magnitude of Eocene cooling determined by LOESS regression,  
664 however, removal of the South Dover Bridge record does change the pattern of the low

665 latitude long-term cooling (Fig. S7). Slight tropical cooling, as indicated by  $\text{TEX}_{86}^{\text{H}}$ , remains  
666 consistent with inorganic  $\delta^{18}\text{O}$  evidence from Tanzania which suggests slightly cooler  
667 temperatures, perhaps coupled with increasing ice volume, in the late Eocene and early  
668 Oligocene (Pearson et al., 2007).

669 For comparison, a non-parametric LOESS regression was fitted through the compiled  
670 high-latitude dataset. This approach indicates  $\sim 6$   $^{\circ}\text{C}$  of high-latitude cooling between the  
671 early and late Eocene (Fig. 9.c). As with the low latitude compilation, jackknifing revealed  
672 that no single record influences the overall magnitude of long-term high latitude cooling  
673 determined by LOESS regression (Fig S8). However, because the IODP 1356 time series has  
674 a very high sampling density around the EECO, its removal causes the general cross  
675 validation optimisation routine to choose a relatively low degree of smoothing, such that the  
676 long-term mean high latitude SST determined without this record exhibits more structure in  
677 the Mid and Late Eocene (Fig. S8). Nonetheless, long-term average high-latitude cooling, as  
678 indicated by  $\text{TEX}_{86}^{\text{H}}$  (and also BAYSPAR), is also in agreement with inorganic Mg/Ca SST  
679 estimates (Creech et al., 2010; Hollis et al., 2012) and  $\delta^{18}\text{O}$  BWT estimates (Cramer et al.,  
680 2011) which indicate amplified polar cooling during the Eocene epoch.

681

### 682 3.5.3. Latitudinal SST gradients during the Eocene

683 Our revised SST compilation provides new insights into global cooling during the  
684 descent towards the icehouse. During the early Eocene (56.0-47.8 Ma), the temperature  
685 difference ( $\Delta T$ ) between the tropics ( $2.5\text{--}4.5$   $^{\circ}\text{N}$ ) and the SW Pacific ( $\sim 55\text{--}65$   $^{\circ}$ ) is very low  
686 ( $\Delta T: < 2$   $^{\circ}\text{C}$ ) (Fig. 7) when compared with modern conditions, as has been extensively noted  
687 and discussed elsewhere (Bijl et al., 2009; Hollis et al., 2009; Hollis et al., 2012). Gradual  
688 cooling in the SW Pacific during the middle Eocene (47.8-38.0 Ma) progressively strengthens  
689 the southern hemisphere SST gradient (Fig. 7). During the late Eocene (38.0-33.9 Ma), the

690 latitudinal SST gradient between the SW Pacific (ODP Site 1772) and the tropics is markedly  
691 stronger than the early Eocene ( $\Delta T: \sim 9^\circ\text{C}$ ) (Fig. 7) but remains much smaller than observed  
692 today ( $\Delta T: > 25^\circ\text{C}$ ) (Douglas et al., 2014).

693 During the late middle Eocene (41.3-38.0 Ma), the temperature difference between  
694 the equatorial Atlantic (2.5-4.5 °N) and the South Atlantic (52-67 °S) is relatively large ( $\Delta T:$   
695 14 °C) (Fig. 7). Although there is cooling in the South Atlantic during the middle late and late  
696 Eocene, the latitudinal temperature gradient between the equatorial and South Atlantic  
697 weakens during this interval ( $\Delta T: 12^\circ\text{C}$ ) as a result of tropical cooling (Fig. 7-8).

698 During the early middle Eocene (47.8-41.3 Ma), the temperature difference between  
699 the equatorial Atlantic (2.5-4.5 °N) and the North Atlantic (67 °N) is also low ( $\Delta T: 5^\circ\text{C}$ )  
700 (Fig. 7) and similar to the temperature difference between the SW Pacific and the tropics  
701 ( $\Delta T: 5^\circ\text{C}$ ). Analogous to the SW Pacific, there is no strong cooling trend in the North  
702 Atlantic during the early middle Eocene (Fig. 7). Immediately following the MECO (~40  
703 Ma), the latitudinal SST gradient strengthens ( $\Delta T: \sim 14^\circ\text{C}$ ) (Fig. 7) before weakening during  
704 the late middle and late Eocene (38.0-33.9 Ma) ( $\Delta T: \sim 5^\circ\text{C}$ ).

705 Previous studies have shown that latitudinal temperature gradients of less than 20 °C  
706 are difficult for climate models to simulate and require large changes in latitudinal heat  
707 transport and/or substantial positive feedbacks acting at high latitudes (Huber and Sloan,  
708 1999; Bice et al., 2000; Huber et al., 2003; Lunt et al., 2012). As a result, the application of  
709  $\text{TEX}_{86}^{\text{H}}$  in high-latitude sites cannot be reconciled with modelled SSTs during the early  
710 Eocene (Hollis et al., 2012; Sijp et al., 2014). However, a closer agreement between proxies  
711 and models can be obtained via changes in the physical parameters of the model (e.g. cloud  
712 cover) (Sagoo et al., 2013).

713

714 3.5.4. Assessing the driving mechanisms:  $\text{CO}_2$ , gateways or both?

715 The apparent tropical SST stability observed by Pearson et al. (2007) suggests that  
716 mechanisms such as gateway reorganisation (Sijp et al., 2011) may have been important in  
717 regulating high-latitude cooling during the Eocene (Bijl et al., 2009; 2013). However, we  
718 note that Pearson et al. (2007) never argued that tropical SSTs were constant during the  
719 Eocene, only that SST change was much smaller than inferred from the oxygen isotopic  
720 composition of diagenetically altered foraminifera (Bralower et al., 1995; Dutton et al.,  
721 2005). In fact, a small cooling trend (perhaps coupled with minor ice growth) is apparent in  
722 the well preserved foraminifera in Tanzanian sediments during the middle Eocene (47.8-38.0  
723 Ma; Pearson et al., 2007). Although this is not reflected in the original low-resolution  
724 Tanzanian  $\text{TEX}_{86}$  data, our new higher resolution  $\text{TEX}_{86}$  data (Fig. 7-8) and compiled tropical  
725 SST record fitted with a non-parametric LOESS regression (Fig. 9) indicate the tropics  
726 cooled during the middle and late Eocene (47.8-34.0 Ma).

727 To examine the influence of gateway reorganisation upon tropical cooling we have  
728 generated corresponding model-derived SST estimates during each geological Stage of the  
729 Eocene using the HadCM3L model (Section 2.6; Fig. S5-6; Table S2-3). The model  
730 simulations all have a fixed atmospheric  $\text{CO}_2$  concentration of 4× preindustrial values (i.e.  
731 1120 ppmv), and the difference in solar constant between the simulation is relatively small.  
732 As such, any temperature variation between the simulations should record the role of ocean  
733 gateway reorganisation and palaeogeographic change upon global ocean circulation. In our  
734 model simulations, the Tasman Gateway is closed during the Ypresian (47.8-56 Ma) with  
735 early opening during the Lutetian (41.3-47.8 Ma) and significant deepening during the  
736 Priabonian (33.9-38.0 Ma), in agreement with proxy evidence (Stickley et al., 2004; Bijl et  
737 al., 2013) (Fig. 10). The Drake Passage (DP) is open throughout the Ypresian and Lutetian  
738 (Fig. 10), in contrast with tectonic and geochemical evidence which suggests that the DP  
739 remained closed until the early Bartonian (~41 Ma) (Scher and Martin, 2006; Livermore et al.,

740 2007; Borrelli et al., 2014). Despite this discrepancy, the total rate of transport (1.3-3  
741 Sverdrups (Sv); Table S1) across the DP during the Ypresian and the Lutetian simulations is  
742 very small when compared to modern observations (~130 Sv) (Chidichimo et al., 2014). The  
743 Tethys Ocean remains open between the Ypresian (47.8-56.0 Ma) and the Priabonian (33.9-  
744 38.0 Ma) (Fig. 10), in line with tectonic evidence (McQuarrie et al., 2003; Allen and  
745 Armstrong, 2008).

746 Our constant- $p\text{CO}_2$  model simulations indicate that on a regional scale, low-latitude  
747 ( $< 30^\circ$ ) SSTs decrease by  $\sim 0.3^\circ\text{C}$  between the early and late Eocene (Fig. 9.a). During the  
748 same interval, compiled, proxy-derived SSTs decrease by  $2.5^\circ\text{C}$  (Fig. 9.b). Based upon this,  
749 and assuming the model and boundary conditions are not fundamentally flawed, changes in  
750 gateways and palaeogeography can only account for  $\sim 10\%$  of the low-latitude, proxy-derived  
751 cooling between the early and late Eocene. Although the magnitude of model-derived SST  
752 change varies on a site-by-site basis (see Table S2-3), our results indicate that oceanographic  
753 change related to palaeogeographic change cannot account for the majority of tropical  
754 cooling.

755 Bathymetric change (such as gateway openings) may have been responsible for other  
756 specific regional features. For example, Sijp et al. (2009) argue that opening the DP can  
757 account for  $\sim 5^\circ\text{C}$  of Antarctic cooling under modern-day bathymetries. However, later  
758 studies, using inferred Eocene bathymetry, indicate that the magnitude of Antarctic cooling  
759 associated with DP opening is negligible ( $< 0.5^\circ\text{C}$ ) (Zhang et al., 2010; Zhang et al., 2011b;  
760 Lefebvre et al., 2012; Goldner et al., 2014). Bijl et al. (2013) argue that initial deepening of  
761 the Tasman Gateway  $\sim 49$ -50 Ma coincided with westward throughflow of the proto-Antarctic  
762 Circumpolar Current (ACC), resulting in surface water and continental cooling in the SW  
763 Pacific and along the East Antarctic margin (Pross et al., 2012; Bijl et al., 2013). Evidence  
764 from neodymium isotopes (Scher and Martin, 2006), clumped isotope and  $\text{TEX}_{86}$

765 paleothermometry (Bijl et al., 2009; Douglas et al., 2013) and model simulations of  
766 intermediate complexity (Sijp et al., 2014) also indicate that initial opening of the Tasman  
767 Gateway is linked to the intensification of deep-water formation in the Ross Sea (Bijl et al.,  
768 2013). Our model simulations indicate that on a regional scale, high-latitude ( $> 55^{\circ}$ ) SSTs  
769 increase by  $\sim 0.4^{\circ}\text{C}$  between the early and late Eocene (Fig. 9a). During the same interval,  
770 compiled, high-latitude proxy-derived SSTs decrease by  $\sim 6^{\circ}\text{C}$  (Fig. 9b). Based upon this,  
771 changes in paleogeography cannot account for the observed high-latitude, proxy-derived  
772 cooling during the Eocene (Table S2-4). On a local scale, high-latitude, HadCM3L-derived  
773 SSTs remain relatively stable (e.g. at the site of ACEX, 913) or increase during the Eocene  
774 (e.g. at the site of 1172, Hampden, 1356) (Table S3), indicating that changes in  
775 paleogeography are unable to explain the entirety of high-latitude cooling and that other  
776 mechanisms, such as  $\text{CO}_2$  drawdown, must be invoked. However, it should be noted that  
777 models often struggle to replicate specific oceanographic features. For example, the  
778 subtropical East Antarctic Current (EAC) may have extended as far south as  $\sim 54^{\circ}$  during the  
779 early Eocene and could have been responsible for warming the surface waters of ODP Site  
780 1172 and New Zealand (Hollis et al., 2012). However, many models struggle to replicate this  
781 phenomena (e.g. Lunt et al., 2012 and references therein). HadCM3L also exhibits a  
782 relatively strong early Eocene latitudinal SST gradient compared to other models (e.g.  
783 ECHAM5 or CCSM3, Lunt et al., 2012), in contradiction to several lines of evidence from  
784 proxies (e.g. Bijl et al., 2009).

785 The evolution of  $p\text{CO}_2$  during the Eocene remains poorly constrained, particularly  
786 during the early Eocene (Beerling et al., 2011; Hyland and Sheldon, 2013). Using  $\text{TEX}_{86}$  and  
787 an ensemble of climate model simulations which span the Eocene, we conclude that the some  
788 portion of tropical cooling ( $\sim 10\%$ ) can be explained by changes in paleogeography and/or  
789 ocean gateways. However, the majority of high-latitude cooling cannot be explained by

790 changes in ocean gateways and, in the absence of other plausible forcing mechanisms,  
791 indicates that CO<sub>2</sub> was primarily responsible for global surface water cooling during the  
792 Eocene.

793

794 3.6. Descent into the Icehouse

795 Long-term gradual cooling during the Eocene culminated in the establishment of  
796 permanent ice-sheets on the Antarctic continent in the earliest Oligocene. This relatively  
797 rapid ice sheet expansion may have been driven by southern ocean gateway opening (Katz et  
798 al., 2008; Katz et al., 2011), declining *p*CO<sub>2</sub> concentrations (DeConto and Pollard, 2003;  
799 Pearson et al., 2009; Pagani et al., 2011), or a combination of the two. During this interval,  
800 tropical TEX<sub>86</sub> SST estimates decrease by up to 13°C (Liu et al., 2009). However, these  
801 values are hard to reconcile with Mg/Ca SST estimates (Lear et al., 2008) and U<sup>K</sup><sub>37</sub> SST  
802 estimates (Liu et al., 2009). This suggests that parameters other than SST are controlling  
803 TEX<sub>86</sub> values during the EOT. Based upon our earlier discussion, we re-investigate this  
804 possibility using the TEX<sub>86</sub><sup>H</sup> proxy.

805 From the latest Eocene (~34-37 Ma) into the earliest Oligocene (~33-34 Ma), low-  
806 latitude TEX<sub>86</sub><sup>H</sup> SST estimates decrease, on average, between 0.2 and 5.6 °C. However, this  
807 does not take into account the full range of cooling which can exceed 10°C within tropical  
808 ODP Site 998 and 803. Both sites are characterised by very high [2]/[3] ratios and low-to-  
809 negative ΔH-L offsets, suggesting the presence of ‘deep-water’ Thaumarchaeota throughout  
810 the late Eocene and early Oligocene (Taylor et al., 2013; Kim et al., 2015). As deep-water  
811 GDGTs can be incorporated into the sedimentary GDGT pool (e.g. Kim et al., 2015), this  
812 could account for some of the observed temperature change in tropical settings across the  
813 EOT. The intensification of Antarctic bottom water formation and enhanced equatorward  
814 transport of Antarctic intermediate water associated with Antarctic glaciation (Katz et al.,

815 2011; Goldner et al., 2014) could have also influenced the depth of GDGT production during  
816 this interval. It certainly could have impacted the depth of and temperature change across the  
817 tropical thermocline, both of which could have impacted subsurface GDGT production,  
818 export and recorded temperature. Other tropical settings, such as ODP 925 and ODP 929, are  
819 characterised by relatively modest cooling (~3°C) and do not appear to be affected by  
820 changes in deep-water export of GDGTs. Future studies should attempt to exploit  
821 depositional settings which are less likely to be affected by deep-water GDGT export.

822

#### 823 **4. Conclusions**

824 Using new and previously published GDGT distributions, we have generated a composite  
825  $\text{TEX}_{86}$  SST record for the Eocene (55-35 Ma). To investigate the influence of archaea other  
826 than marine Thaumarchaeota upon Eocene (and Oligocene)  $\text{TEX}_{86}$  values, we compiled and  
827 compared BIT indices, MIs and %GDGT-0 values from modern and ancient sediments. Our  
828 results indicate that Eocene and Oligocene sediments have similar average values as the  
829 modern core-top dataset but larger standard deviations. Nonetheless, it appears that the effect  
830 of archaea other than marine Thaumarchaeota upon Eocene and Oligocene  $\text{TEX}_{86}$  values is  
831 minimal. Our compiled  $\text{TEX}_{86}$  compilation indicates that between the early and late Eocene,  
832 high-latitudes SSTs cooled by ~6°C and low-latitudes SST cooled by ~2.5 °C. Global sea  
833 surface cooling during the Eocene is not in agreement with by fixed- $\text{CO}_2$  HadCM3L model  
834 simulations. Therefore, our study provides indirect evidence that drawdown of  $\text{CO}_2$  (or some,  
835 as of yet unidentified, other factor(s)) was the primary forcing for long-term climatic cooling  
836 during the Eocene. Our dataset, combined with forthcoming model simulations under a range  
837 of different  $\text{CO}_2$  levels, pave the way to reconstructing atmospheric  $\text{CO}_2$  evolution through  
838 the Eocene.

839

840 **6. Acknowledgements**

841 Data can be accessed via the online Auxiliary Material, via <http://www.pangaea.de/> or from  
842 the author (email: [gordon.inglis@bristol.ac.uk](mailto:gordon.inglis@bristol.ac.uk)). We thank the NERC Life Sciences Mass  
843 Spectrometry Facility (Bristol) for analytical support. GI thanks Peter Bijl, Peter Douglas,  
844 Caitlin Keating-Bitonti and Appy Sluijs for the raw GDGT distributions. We thank Ian  
845 Harding and James Eldrett for helpful discussions on ODP Site 913 and Lucy Edwards and  
846 Jean Self-Trail for help with the logistics and sampling of the South Dover Bridge core. GI  
847 thanks Matt Carmichael, David Naafs and Marcus Badger for useful discussions. GI thanks  
848 the UK NERC for supporting his PhD studentship. RDP acknowledges the Royal Society  
849 Wolfson Research Merit Award. PEJ thanks the Palaeontological Association for a  
850 Sylvester-Bradley award. CH acknowledges the support of the GNS Science Global Change  
851 through Time Programme. GI, AF, DL, GF, PP and RDP were all supported by the NERC  
852 Descent into the Icehouse grant (NE/I005714/1). DL and AF also thank the NERC CPE grant  
853 for funding (NE/K014757/1). Finally, we thank the three anonymous reviewers whose  
854 comments significantly improved the manuscript.

855

856 **References**

857 Allen, M. B., and Armstrong, H. A., 2008, Arabia–Eurasia collision and the forcing of mid-  
858 Cenozoic global cooling: *Palaeogeography, Palaeoclimatology, Palaeoecology*, v.  
859 265, no. 1–2, p. 52-58.

860 Aquilina, A., Knab, N., Knittel, K., Kaur, G., Geissler, A., Kelly, S., Fossing, H., Boot, C.,  
861 Parkes, R., and Mills, R., 2010, Biomarker indicators for anaerobic oxidizers of  
862 methane in brackish-marine sediments with diffusive methane fluxes: *Organic  
863 Geochemistry*, v. 41, no. 4, p. 414-426.

864 Badran, M. I., 2001, Dissolved oxygen, chlorophyll a and nutrients: Seasonal cycles in waters  
865 of the Gulf of Aquaba, Red Sea: *Aquatic Ecosystem Health & Management*, v. 4, no.  
866 2, p. 139-150.

867 Beerling, D. J., Fox, A., Stevenson, D. S., and Valdes, P. J., 2011, Enhanced chemistry-  
868 climate feedbacks in past greenhouse worlds: *Proceedings of the National Academy  
869 of Sciences*.

870 Bice, K. L., Scotese, C. R., Seidov, D., and Barron, E. J., 2000, Quantifying the role of  
871 geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and

872 ocean models: *Palaeogeography, Palaeoclimatology, Palaeoecology*, v. 161, no. 3–4,  
873 p. 295–310.

874 Bijl, P. K., Bendle, J. A. P., Bohaty, S. M., Pross, J., Schouten, S., Tauxe, L., Stickley, C. E.,  
875 McKay, R. M., Röhl, U., Olney, M., Sluijs, A., Escutia, C., Brinkhuis, H., and  
876 Scientists, E., 2013, Eocene cooling linked to early flow across the Tasmanian  
877 Gateway: *Proceedings of the National Academy of Sciences*, v. 110, no. 24, p. 9645–  
878 9650.

879 Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G.-J., Zachos, J. C., and Brinkhuis, H., 2009,  
880 Early Palaeogene temperature evolution of the southwest Pacific Ocean: *Nature*, v.  
881 461, no. 7265, p. 776–779.

882 Blaga, C. I., Reichart, G.-J., Heiri, O., and Damsté, J. S. S., 2009, Tetraether membrane lipid  
883 distributions in water-column particulate matter and sediments: a study of 47  
884 European lakes along a north–south transect: *Journal of Paleolimnology*, v. 41, no. 3,  
885 p. 523–540.

886 Borrelli, C., Cramer, B. S., and Katz, M. E., 2014, Bipolar Atlantic deepwater circulation in  
887 the middle-late Eocene: effects of Southern Ocean gateway openings: *Paleoceanography*, p. 2012PA002444.

888 Bouloubassi, I., Aloisi, G., Pancost, R. D., Hopmans, E., Pierre, C., and Sinninghe Damsté, J.  
889 S., 2006, Archaeal and bacterial lipids in authigenic carbonate crusts from eastern  
890 Mediterranean mud volcanoes: *Organic Geochemistry*, v. 37, no. 4, p. 484–500.

891 Bralower, T. J., 2002, Evidence of surface water oligotrophy during the Paleocene–Eocene  
892 thermal maximum: Nannofossil assemblage data from Ocean Drilling Program Site  
893 690, Maud Rise, Weddell Sea: *Paleoceanography*, v. 17, no. 2, p. 13–11–13–12.

894 Bralower, T. J., Zachos, J. C., Thomas, E., Parrow, M., Paull, C. K., Kelly, D. C., Silva, I. P.,  
895 Sliter, W. V., and Lohmann, K. C., 1995, Late Paleocene to Eocene paleoceanography  
896 of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program  
897 Site 865, Allison Guyot: *Paleoceanography*, v. 10, no. 4, p. 841–865.

898 Brassell, S., Wardrop, A., Thomson, I., Maxwell, J., and Eglinton, G., 1981, Specific  
899 acyclic isoprenoids as biological markers of methanogenic bacteria in marine  
900 sediments.

901 Burgess, C. E., Pearson, P. N., Lear, C. H., Morgans, H. E., Handley, L., Pancost, R. D., and  
902 Schouten, S., 2008, Middle Eocene climate cyclicity in the southern Pacific:  
903 Implications for global ice volume: *Geology*, v. 36, no. 8, p. 651–654.

904 Chidichimo, M. P., Donohue, K. A., Watts, D. R., and Tracey, K. L., 2014, Baroclinic  
905 Transport Time Series of the Antarctic Circumpolar Current Measured in Drake  
906 Passage: *Journal of Physical Oceanography*, v. 44, no. 7, p. 1829–1853.

907 Contreras, L., Pross, J., Bijl, P. K., Koutsodendris, A., Raine, J. I., van de Schootbrugge, B.,  
908 and Brinkhuis, H., 2013, Early to Middle Eocene vegetation dynamics at the Wilkes  
909 Land Margin (Antarctica): Review of Palaeobotany and Palynology, v. 197, no. 0, p.  
910 119–142.

911 Cramer, B., Miller, K., Barrett, P., and Wright, J., 2011, Late Cretaceous–Neogene trends in  
912 deep ocean temperature and continental ice volume: Reconciling records of benthic  
913 foraminiferal geochemistry ( $\delta^{18}\text{O}$  and Mg/Ca) with sea level history: *Journal of  
914 Geophysical Research: Oceans (1978–2012)*, v. 116, no. C12.

915 Creech, J. B., Baker, J. A., Hollis, C. J., Morgans, H. E., and Smith, E. G., 2010, Eocene sea  
916 temperatures for the mid-latitude southwest Pacific from Mg/Ca ratios in planktonic  
917 and benthic foraminifera: *Earth and Planetary Science Letters*, v. 299, no. 3, p. 483–  
918 495.

919 DeConto, R. M., and Pollard, D., 2003, Rapid Cenozoic glaciation of Antarctica induced by  
920 declining atmospheric CO<sub>2</sub>: *Nature*, v. 421, no. 6920, p. 245–249.

922 Dickson, L., Bull, I. D., Gates, P. J., and Evershed, R. P., 2009, A simple modification of a  
923 silicic acid lipid fractionation protocol to eliminate free fatty acids from glycolipid  
924 and phospholipid fractions: *Journal of microbiological methods*, v. 78, no. 3, p. 249-  
925 254.

926 Douglas, P. M. J., Affek, H. P., Ivany, L. C., Houben, A. J. P., Sijp, W. P., Sluijs, A.,  
927 Schouten, S., and Pagani, M., 2014, Pronounced zonal heterogeneity in Eocene  
928 southern high-latitude sea surface temperatures: *Proceedings of the National  
929 Academy of Sciences*.

930 Dutton, A., Lohmann, K. C., and Leckie, R. M., 2005, Insights from the Paleogene tropical  
931 Pacific: Foraminiferal stable isotope and elemental results from Site 1209, Shatsky  
932 Rise: *Paleoceanography*, v. 20, no. 3, p. PA3004.

933 Eder, W., Schmidt, M., Koch, M., Garbe-Schönberg, D., and Huber, R., 2002, Prokaryotic  
934 phylogenetic diversity and corresponding geochemical data of the brine-seawater  
935 interface of the Shaban Deep, Red Sea: *Environmental microbiology*, v. 4, no. 11, p.  
936 758-763.

937 Fietz, S., Martínez-Garcia, A., Huguet, C., Rueda, G., and Rosell-Melé, A., 2011, Constraints  
938 in the application of the Branched and Isoprenoid Tetraether index as a terrestrial  
939 input proxy: *Journal of Geophysical Research: Oceans (1978–2012)*, v. 116, no. C10.

940 Francis, J. E., and Poole, I., 2002, Cretaceous and early Tertiary climates of Antarctica:  
941 evidence from fossil wood: *Palaeogeography, Palaeoclimatology, Palaeoecology*, v.  
942 182, no. 1–2, p. 47-64.

943 Goldner, A., Herold, N., and Huber, M., 2014, Antarctic glaciation caused ocean circulation  
944 changes at the Eocene-Oligocene transition: *Nature*, v. 511, no. 7511, p. 574-577.

945 Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F.  
946 B., and Wood, R. A., 2000, The simulation of SST, sea ice extents and ocean heat  
947 transports in a version of the Hadley Centre coupled model without flux adjustments:  
948 *Climate Dynamics*, v. 16, no. 2-3, p. 147-168.

949 Gradstein, F. M., Ogg, G., and Schmitz, M., 2012, *The Geologic Time Scale 2012 2-Volume  
950 Set*, Elsevier.

951 Hernández-Sánchez, M., Woodward, E., Taylor, K., Henderson, G., and Pancost, R., 2014,  
952 Variations in GDGT distributions through the water column in the South East Atlantic  
953 Ocean: *Geochimica et Cosmochimica Acta*, v. 132, p. 337-348.

954 Ho, S. L., Mollenhauer, G., Fietz, S., Martínez-Garcia, A., Lamy, F., Rueda, G., Schipper, K.,  
955 Méheust, M., Rosell-Melé, A., and Stein, R., 2014, Appraisal of TEX 86 and  
956 thermometries in subpolar and polar regions: *Geochimica et Cosmochimica Acta*.

957 Hollis, C. J., Handley, L., Crouch, E. M., Morgans, H. E., Baker, J. A., Creech, J., Collins, K.  
958 S., Gibbs, S. J., Huber, M., and Schouten, S., 2009, Tropical sea temperatures in the  
959 high-latitude South Pacific during the Eocene: *Geology*, v. 37, no. 2, p. 99-102.

960 Hollis, C. J., Taylor, K. W. R., Handley, L., Pancost, R. D., Huber, M., Creech, J. B., Hines,  
961 B. R., Crouch, E. M., Morgans, H. E. G., Crampton, J. S., Gibbs, S., Pearson, P. N.,  
962 and Zachos, J. C., 2012, Early Paleogene temperature history of the Southwest Pacific  
963 Ocean: Reconciling proxies and models: *Earth and Planetary Science Letters*, v. 349–  
964 350, no. 0, p. 53-66.

965 Hopmans, E. C., Weijers, J. W., Schefuß, E., Herfort, L., Sinninghe Damsté, J. S., and  
966 Schouten, S., 2004, A novel proxy for terrestrial organic matter in sediments based on  
967 branched and isoprenoid tetraether lipids: *Earth and Planetary Science Letters*, v. 224,  
968 no. 1, p. 107-116.

969 Huber, M., and Sloan, L. C., 1999, Warm climate transitions: A general circulation modeling  
970 study of the late Paleocene thermal maximum (~ 56 Ma): *Journal of Geophysical  
971 Research: Atmospheres (1984–2012)*, v. 104, no. D14, p. 16633-16655.

972 -, 2000, Climatic responses to tropical sea surface temperature changes on a “greenhouse”  
973 Earth: *Paleoceanography*, v. 15, no. 4, p. 443-450.

974 Huber, M., Sloan, L. C., and Shellito, C., 2003, Early Paleogene oceans and climate: A fully  
975 coupled modeling approach using the NCAR CCSM: *Geological Society of America  
976 Special Papers*, v. 369, p. 25-47.

977 Huguet, A., Fosse, C., Laggoun-Défarge, F., Toussaint, M.-L., and Derenne, S., 2010,  
978 Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat  
979 bog: *Organic Geochemistry*, v. 41, no. 6, p. 559-572.

980 Hyland, E. G., and Sheldon, N. D., 2013, Coupled CO<sub>2</sub>-climate response during the Early  
981 Eocene Climatic Optimum: *Palaeogeography, Palaeoclimatology, Palaeoecology*, v.  
982 369, no. 0, p. 125-135.

983 Ionescu, D., Penno, S., Haimovich, M., Rihtman, B., Goodwin, A., Schwartz, D., Hazanov,  
984 L., Chernihovsky, M., Post, A. F., and Oren, A., 2009, Archaea in the Gulf of Aqaba:  
985 FEMS microbiology ecology, v. 69, no. 3, p. 425-438.

986 Jenkyns, H., Schouten-Huibers, L., Schouten, S., and Sinninghe Damsté, J., 2012, Warm  
987 Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the  
988 Southern Ocean: *Climate of the Past*, v. 8, no. 1, p. 215-226.

989 Jurgens, G., Lindström, K., and Saano, A., 1997, Novel group within the kingdom  
990 Crenarchaeota from boreal forest soil: *Applied and Environmental Microbiology*, v.  
991 63, no. 2, p. 803-805.

992 Karner, M. B., DeLong, E. F., and Karl, D. M., 2001, Archaeal dominance in the mesopelagic  
993 zone of the Pacific Ocean: *Nature*, v. 409, no. 6819, p. 507-510.

994 Katz, M. E., Cramer, B. S., Toggweiler, J., Esmay, G., Liu, C., Miller, K. G., Rosenthal, Y.,  
995 Wade, B. S., and Wright, J. D., 2011, Impact of Antarctic Circumpolar Current  
996 development on late Paleogene ocean structure: *Science*, v. 332, no. 6033, p. 1076-  
997 1079.

998 Katz, M. E., Miller, K. G., Wright, J. D., Wade, B. S., Browning, J. V., Cramer, B. S., and  
999 Rosenthal, Y., 2008, Stepwise transition from the Eocene greenhouse to the  
1000 Oligocene icehouse: *Nature Geosci*, v. 1, no. 5, p. 329-334.

1001 Kennett, J. P., and Exxon, N. F., 2004, Paleoceanographic evolution of the Tasmanian Seaway  
1002 and its climatic implications: The Cenozoic Southern Ocean: *Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica*, p. 345-367.

1003 Kim, J.-H., Schouten, S., Hopmans, E. C., Donner, B., and Sinninghe Damsté, J. S., 2008,  
1004 Global sediment core-top calibration of the TEX<sub>86</sub> paleothermometer  
1005 in the ocean: *Geochimica et Cosmochimica Acta*, v. 72, no. 4, p. 1154-1173.

1006 Kim, J.-H., Schouten, S., Rodrigo-Gámiz, M., Rampen, S., Marino, G., Huguet, C., Helmke,  
1007 P., Buscail, R., Hopmans, E. C., and Pross, J., 2015, Influence of deep-water derived  
1008 isoprenoid tetraether lipids on the paleothermometer in the Mediterranean Sea:  
1009 *Geochimica et Cosmochimica Acta*, v. 150, p. 125-141.

1010 Kim, J.-H., Van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N.,  
1011 Hopmans, E. C., and Damsté, J. S. S., 2010, New indices and calibrations derived  
1012 from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past  
1013 sea surface temperature reconstructions: *Geochimica et Cosmochimica Acta*, v. 74,  
1014 no. 16, p. 4639-4654.

1015 Kleypas, J. A., Danabasoglu, G., and Lough, J. M., 2008, Potential role of the ocean  
1016 thermostat in determining regional differences in coral reef bleaching events:  
1017 *Geophysical Research Letters*, v. 35, no. 3, p. L03613.

1018 Koga, Y., Nishihara, M., Morii, H., and Akagawa-Matsushita, M., 1993, Ether polar lipids of  
1019 methanogenic bacteria: structures, comparative aspects, and biosyntheses:  
1020 *Microbiological Reviews*, v. 57, no. 1, p. 164-182.

1021

1022 Kuypers, M. M., Blokker, P., Erbacher, J., Kinkel, H., Pancost, R. D., Schouten, S., and  
1023 Damsté, J. S. S., 2001, Massive expansion of marine archaea during a mid-Cretaceous  
1024 oceanic anoxic event: *Science*, v. 293, no. 5527, p. 92-95.

1025 Kuypers, M. M., Pancost, R. D., Nijenhuis, I. A., and Sinninghe Damsté, J. S., 2002,  
1026 Enhanced productivity led to increased organic carbon burial in the euxinic North  
1027 Atlantic basin during the late Cenomanian oceanic anoxic event: *Paleoceanography*,  
1028 v. 17, no. 4, p. 3-1-3-13.

1029 Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K., and Rosenthal, Y., 2008, Cooling  
1030 and ice growth across the Eocene-Oligocene transition: *Geology*, v. 36, no. 3, p. 251-  
1031 254.

1032 Lefebvre, V., Donnadieu, Y., Sepulchre, P., Swingedouw, D., and Zhang, Z. S., 2012,  
1033 Deciphering the role of southern gateways and carbon dioxide on the onset of the  
1034 Antarctic Circumpolar Current: *Paleoceanography*, v. 27, no. 4.

1035 Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S. R., Leckie,  
1036 R. M., and Pearson, A., 2009, Global cooling during the Eocene-Oligocene climate  
1037 transition: *Science*, v. 323, no. 5918, p. 1187-1190.

1038 Livermore, R., Hillenbrand, C.-D., Meredith, M., and Eagles, G., 2007, Drake Passage and  
1039 Cenozoic climate: An open and shut case?: *Geochemistry, Geophysics, Geosystems*,  
1040 v. 8, no. 1, p. Q01005.

1041 Lowenstein, T. K., and Demicco, R. V., 2006, Elevated Eocene Atmospheric CO<sub>2</sub> and Its  
1042 Subsequent Decline: *Science*, v. 313, no. 5795, p. 1928.

1043 Lunt, D. J., Dunkley Jones, T., Heinemann, M., Huber, M., LeGrande, A., Winguth, A.,  
1044 Loptson, C., Marotzke, J., Roberts, C. D., Tindall, J., Valdes, P., and Winguth, C.,  
1045 2012, A model-data comparison for a multi-model ensemble of early Eocene  
1046 atmosphere-ocean simulations: *EoMIP: Clim. Past*, v. 8, no. 5, p. 1717-1736.

1047 Martens, C. S., and Berner, R. A., 1974, Methane production in the interstitial waters of  
1048 sulfate-depleted marine sediments: *Science*, v. 185, no. 4157, p. 1167-1169.

1049 McQuarrie, N., Stock, J. M., Verdel, C., and Wernicke, B. P., 2003, Cenozoic evolution of  
1050 Neotethys and implications for the causes of plate motions: *Geophysical Research  
1051 Letters*, v. 30, no. 20, p. 2036.

1052 O'Brien, C. L., Foster, G. L., Martinez-Botí, M. A., Abell, R., Rae, J. W. B., and Pancost, R.  
1053 D., 2014, High sea surface temperatures in tropical warm pools during the Pliocene:  
1054 *Nature Geosci*, v. 7, no. 8, p. 606-611.

1055 Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L., and Schleper, C., 2003,  
1056 Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA  
1057 surveys and real time PCR: *Environmental Microbiology*, v. 5, no. 9, p. 787-797.

1058 Pagani, M., 2014, Palaeoclimate: Broken tropical thermostats: *Nature Geosci*, v. 7, no. 8, p.  
1059 555-556.

1060 Pagani, M., Huber, M., Liu, Z., Bohaty, S. M., Henderiks, J., Sijp, W., Krishnan, S., and  
1061 DeConto, R. M., 2011, The role of carbon dioxide during the onset of Antarctic  
1062 glaciation: *Science*, v. 334, no. 6060, p. 1261-1264.

1063 Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S., 2005, Marked Decline  
1064 in Atmospheric Carbon Dioxide Concentrations During the Paleogene: *Science*, v.  
1065 309, no. 5734, p. 600-603.

1066 Pancost, R., Hopmans, E., and Sinninghe Damsté, J., 2001, Archaeal lipids in Mediterranean  
1067 cold seeps: molecular proxies for anaerobic methane oxidation: *Geochimica et  
1068 Cosmochimica Acta*, v. 65, no. 10, p. 1611-1627.

1069 Pancost, R. D., Coleman, J. M., Love, G. D., Chatzi, A., Bouloubassi, I., and Snape, C. E.,  
1070 2008, Kerogen-bound glycerol dialkyl tetraether lipids released by hydropyrolysis of

1071 marine sediments: A bias against incorporation of sedimentary organisms?: Organic  
 1072 Geochemistry, v. 39, no. 9, p. 1359-1371.

1073 Pancost, R. D., and Sinninghe Damst , J. S., 2003, Carbon isotopic compositions of  
 1074 prokaryotic lipids as tracers of carbon cycling in diverse settings: Chemical Geology,  
 1075 v. 195, no. 1, p. 29-58.

1076 Pearson, A., and Ingalls, A. E., 2013, Assessing the use of archaeal lipids as marine  
 1077 environmental proxies: Annual Review of Earth and Planetary Sciences, v. 41, p. 359-  
 1078 384.

1079 Pearson, A., McNichol, A. P., Benitez-Nelson, B. C., Hayes, J. M., and Eglinton, T. I., 2001,  
 1080 Origins of lipid biomarkers in Santa Monica Basin surface sediment: a case study  
 1081 using compound-specific  $\Delta^{14}\text{C}$  analysis: *Geochimica et Cosmochimica Acta*, v. 65, no. 18, p. 3123-3137.

1083 Pearson, P. N., Foster, G. L., and Wade, B. S., 2009, Atmospheric carbon dioxide through the  
 1084 Eocene-Oligocene climate transition: *Nature*, v. 461, no. 7267, p. 1110-1113.

1085 Pearson, P. N., and Palmer, M. R., 2000, Atmospheric carbon dioxide concentrations over the  
 1086 past 60 million years: *Nature*, v. 406, no. 6797, p. 695-699.

1087 Pearson, P. N., van Dongen, B. E., Nicholas, C. J., Pancost, R. D., Schouten, S., Singano, J.  
 1088 M., and Wade, B. S., 2007, Stable warm tropical climate through the Eocene Epoch:  
 1089 *Geology*, v. 35, no. 3, p. 211-214.

1090 Pester, M., Schleper, C., and Wagner, M., 2011, The Thaumarchaeota: an emerging view of  
 1091 their phylogeny and ecophysiology: *Current opinion in microbiology*, v. 14, no. 3, p.  
 1092 300-306.

1093 Pierrehumbert, R., 1995, Thermostats, radiator fins, and the local runaway greenhouse:  
 1094 *Journal of the atmospheric sciences*, v. 52, no. 10, p. 1784-1806.

1095 Powers, L., Werne, J. P., Vanderwoude, A. J., Sinninghe Damst , J. S., Hopmans, E. C., and  
 1096 Schouten, S., 2010, Applicability and calibration of the TEX<sub>86</sub> paleothermometer in lakes:  
 1097 *Organic Geochemistry*, v. 41, no. 4, p. 404-413.

1098 Pross, J., Contreras, L., Bijl, P. K., Greenwood, D. R., Bohaty, S. M., Schouten, S., Bendle, J.  
 1099 A., R hl, U., Tauxe, L., and Raine, J. I., 2012, Persistent near-tropical warmth on the  
 1100 Antarctic continent during the early Eocene epoch: *Nature*, v. 488, no. 7409, p. 73-77.

1101 Qian, P.-Y., Wang, Y., Lee, O. O., Lau, S. C., Yang, J., Lafi, F. F., Al-Suwailem, A., and  
 1102 Wong, T. Y., 2011, Vertical stratification of microbial communities in the Red Sea  
 1103 revealed by 16S rDNA pyrosequencing: *The ISME journal*, v. 5, no. 3, p. 507-518.

1104 Ramanathan, V., and Collins, W., 1991, Thermodynamic regulation of ocean warming by  
 1105 cirrus clouds deduced from observations of the 1987 El Nino: *Nature*, v. 351, no.  
 1106 6321, p. 27-32.

1107 Reichart, G. J., Brinkhuis, H., Huiskamp, F., and Zachariasse, W. J., 2004,  
 1108 Hyperstratification following glacial overturning events in the northern Arabian Sea:  
 1109 *Paleoceanography*, v. 19, no. 2.

1110 Sagoo, N., Valdes, P., Flecker, R., and Gregoire, L. J., 2013, The Early Eocene equitable  
 1111 climate problem: can perturbations of climate model parameters identify possible  
 1112 solutions?: *Philosophical Transactions of the Royal Society A: Mathematical,*  
 1113 *Physical and Engineering Sciences*, v. 371, no. 2001.

1114 Scher, H. D., and Martin, E. E., 2006, Timing and Climatic Consequences of the Opening of  
 1115 Drake Passage: *Science*, v. 312, no. 5772, p. 428-430.

1116 Schouten, S., Hoefs, M. J., Koopmans, M. P., Bosch, H.-J., and Sinninghe Damst , J. S.,  
 1117 1998, Structural characterization, occurrence and fate of archaeal ether-bound acyclic  
 1118 and cyclic biphytanes and corresponding diols in sediments: *Organic Geochemistry*,  
 1119 v. 29, no. 5, p. 1305-1319.

1120 Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J. S., 2002, Distributional  
1121 variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing  
1122 ancient sea water temperatures?: *Earth and Planetary Science Letters*, v. 204, no. 1, p.  
1123 265-274.

1124 Schouten, S., Van Der Maarel, M. J. E. C., Huber, R., and Damste, J. S. S., 1997,  
1125 2,6,10,15,19-Pentamethylcyclohexanes in *Methanolobus bombayensis*, a marine  
1126 methanogenic archaeon, and in *Methanosarcina mazei*: *Organic Geochemistry*, v. 26,  
1127 no. 5-6, p. 409-414.

1128 Schouten, S., Wakeham, S. G., Hopmans, E. C., and Damsté, J. S. S., 2003, Biogeochemical  
1129 evidence that thermophilic archaea mediate the anaerobic oxidation of methane:  
1130 *Applied and environmental microbiology*, v. 69, no. 3, p. 1680-1686.

1131 Shah, S. R., Mollenhauer, G., Ohkouchi, N., Eglinton, T. I., and Pearson, A., 2008, Origins of  
1132 archaeal tetraether lipids in sediments: Insights from radiocarbon analysis:  
1133 *Geochimica et Cosmochimica Acta*, v. 72, no. 18, p. 4577-4594.

1134 Sijp, W. P., England, M. H., and Huber, M., 2011, Effect of the deepening of the Tasman  
1135 Gateway on the global ocean: *Paleoceanography*, v. 26, no. 4, p. PA4207.

1136 Sijp, W. P., von der Heydt, A. S., Dijkstra, H. A., Flögel, S., Douglas, P. M. J., and Bijl, P.  
1137 K., 2014, The role of ocean gateways on cooling climate on long time scales: *Global  
1138 and Planetary Change*, v. 119, no. 0, p. 1-22.

1139 Sinninghe Damsté, J. S., Ossebaar, J., Schouten, S., and Verschuren, D., 2012, Distribution of  
1140 tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable  
1141 TEX<sub>86</sub> and MBT/CBT palaeotemperatures from an equatorial African  
1142 lake: *Quaternary Science Reviews*, v. 50, p. 43-54.

1143 Sivan, O., Schrag, D. P., and Murray, R. W., 2007, Rates of methanogenesis and  
1144 methanotrophy in deep-sea sediments: *Geobiology*, v. 5, no. 2, p. 141-151.

1145 Sluijs, A., Bijl, P., Schouten, S., Röhl, U., Reichart, G.-J., and Brinkhuis, H., 2011, Southern  
1146 ocean warming, sea level and hydrological change during the Paleocene-Eocene  
1147 thermal maximum: *Climate of the Past*, v. 7, no. 1.

1148 Sluijs, A., and Brinkhuis, H., 2009, A dynamic climate and ecosystem state during the  
1149 Paleocene-Eocene Thermal Maximum-inferences from dinoflagellate cyst  
1150 assemblages at the New Jersey Shelf: *Biogeosciences Discussions*, v. 6, no. 3.

1151 Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos, J. C., Reichart,  
1152 G.-J., Damsté, J. S. S., Crouch, E. M., and Dickens, G. R., 2007, Environmental  
1153 precursors to rapid light carbon injection at the Palaeocene/Eocene boundary: *Nature*,  
1154 v. 450, no. 7173, p. 1218-1221.

1155 Sluijs, A., Schouten, S., Donders, T. H., Schoon, P. L., Röhl, U., Reichart, G.-J., Sangiorgi,  
1156 F., Kim, J.-H., Damsté, J. S. S., and Brinkhuis, H., 2009, Warm and wet conditions in  
1157 the Arctic region during Eocene Thermal Maximum 2: *Nature Geoscience*, v. 2, no.  
1158 11, p. 777-780.

1159 Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Damsté, J. S. S., Dickens,  
1160 G. R., Huber, M., Reichart, G.-J., and Stein, R., 2006, Subtropical Arctic Ocean  
1161 temperatures during the Palaeocene/Eocene thermal maximum: *Nature*, v. 441, no.  
1162 7093, p. 610-613.

1163 Sluijs, A., van Roij, L., Harrington, G. J., Schouten, S., Sessa, J. A., LeVay, L. J., Reichart,  
1164 G. J., and Slomp, C. P., 2013, Extreme warming, photic zone euxinia and sea level  
1165 rise during the Paleocene/Eocene Thermal Maximum on the Gulf of Mexico Coastal  
1166 Plain; connecting marginal marine biotic signals, nutrient cycling and ocean  
1167 deoxygenation: *Clim. Past Discuss.*, v. 9, no. 6, p. 6459-6494.

1168 Srivastava, R. L., and Huber, M., 2007, Observational evidence for an ocean heat pump induced  
1169 by tropical cyclones: *Nature*, v. 447, no. 7144, p. 577-580.

1170 Stadnitskaia, A., Nadezhkin, D., Abbas, B., Blinova, V., Ivanov, M., and Sinninghe Damst , 1171 J., 2008, Carbonate formation by anaerobic oxidation of methane: evidence from lipid 1172 biomarker and fossil 16S rDNA: *Geochimica et Cosmochimica Acta*, v. 72, no. 7, p. 1173 1824-1836.

1174 Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., R hl, U., Fuller, M., Grauert, 1175 M., Huber, M., Warnaar, J., and Williams, G. L., 2004, Timing and nature of the 1176 deepening of the Tasmanian Gateway: *Paleoceanography*, v. 19, no. 4, p. PA4027.

1177 Taylor, K. W., Huber, M., Hollis, C. J., Hernandez-Sanchez, M. T., and Pancost, R. D., 2013, 1178 Re-evaluating modern and Palaeogene GDGT distributions: Implications for SST 1179 reconstructions: *Global and Planetary Change*, v. 108, p. 158-174.

1180 Thiel, V., Peckmann, J., Schmale, O., Reitner, J., and Michaelis, W., 2001, A new straight- 1181 chain hydrocarbon biomarker associated with anaerobic methane cycling: *Organic 1182 Geochemistry*, v. 32, no. 8, p. 1019-1023.

1183 Thomas, D. J., Korty, R., Huber, M., Schubert, J. A., and Haines, B., 2014, Nd isotopic 1184 structure of the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean 1185 circulation and ocean heat transport in a greenhouse world: *Paleoceanography*, v. 29, 1186 no. 5, p. 2013PA002535.

1187 Tierney, J. E., and Tingley, M. P., 2014, A Bayesian, spatially-varying calibration model for 1188 the TEX<sub>86</sub> proxy: *Geochimica et Cosmochimica Acta*, v. 127, p. 83- 1189 106.

1190 Trommer, G., Siccha, M., van der Meer, M. T., Schouten, S., Sinninghe Damst , J. S., 1191 Schulz, H., Hemleben, C., and Kucera, M., 2009, Distribution of Crenarchaeota 1192 tetraether membrane lipids in surface sediments from the Red Sea: *Organic 1193 Geochemistry*, v. 40, no. 6, p. 724-731.

1194 van Hooidonk, R., and Huber, M., 2009, Equivocal evidence for a thermostat and unusually 1195 low levels of coral bleaching in the Western Pacific Warm Pool: *Geophysical 1196 Research Letters*, v. 36, no. 6.

1197 Villanueva, L., Schouten, S., and Sinninghe Damst , J. S., 2014, Depth-related distribution of 1198 a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota: 1199 *Environmental microbiology*.

1200 Wakeham, S. G., Hopmans, E. C., Schouten, S., and Sinninghe Damst , J. S., 2004, Archaeal 1201 lipids and anaerobic oxidation of methane in euxinic water columns: a comparative 1202 study of the Black Sea and Cariaco Basin: *Chemical geology*, v. 205, no. 3, p. 427- 1203 442.

1204 Wakeham, S. G., Lewis, C. M., Hopmans, E. C., Schouten, S., and Sinninghe Damst , J. S., 1205 2003, Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the 1206 Black Sea: *Geochimica et Cosmochimica Acta*, v. 67, no. 7, p. 1359-1374.

1207 Weijers, J. W., Lim, K. L., Aquilina, A., Sinninghe Damst , J. S., and Pancost, R. D., 2011, 1208 Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in 1209 sediments characterized by diffusive methane flux: *Geochemistry, Geophysics, 1210 Geosystems*, v. 12, no. 10.

1211 Weijers, J. W., Schouten, S., Hopmans, E. C., Geenevasen, J. A., David, O. R., Coleman, J. 1212 M., Pancost, R. D., and Sinninghe Damst , J. S., 2006a, Membrane lipids of 1213 mesophilic anaerobic bacteria thriving in peats have typical archaeal traits: 1214 *Environmental Microbiology*, v. 8, no. 4, p. 648-657.

1215 Weijers, J. W., Schouten, S., Spaargaren, O. C., and Sinninghe Damst , J. S., 2006b, 1216 Occurrence and distribution of tetraether membrane lipids in soils: Implications for 1217 the use of the TEX<sub>86</sub> proxy and the BIT index: *Organic Geochemistry*, 1218 v. 37, no. 12, p. 1680-1693.

1219 Williams, I. N., Pierrehumbert, R. T., and Huber, M., 2009, Global warming, convective  
1220 threshold and false thermostats: *Geophysical Research Letters*, v. 36, no. 21.

1221 Wuchter, C., Schouten, S., Coolen, M. J. L., and Sinninghe Damsté, J. S., 2004, Temperature-  
1222 dependent variation in the distribution of tetraether membrane lipids of marine  
1223 Crenarchaeota: Implications for TEX86 paleothermometry: *Paleoceanography*, v. 19,  
1224 no. 4, p. PA4028.

1225 Zachos, J. C., Breza, J. R., and Wise, S. W., 1992, Early Oligocene ice-sheet expansion on  
1226 Antarctica: Stable isotope and sedimentological evidence from Kerguelen Plateau,  
1227 southern Indian Ocean: *Geology*, v. 20, no. 6, p. 569-573.

1228 Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S.,  
1229 and Bralower, T., 2006, Extreme warming of mid-latitude coastal ocean during the  
1230 Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and isotope data:  
1231 *Geology*, v. 34, no. 9, p. 737-740.

1232 Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M., and DeConto, R., 2013, A 40-million-year  
1233 history of atmospheric CO<sub>2</sub>: *Philosophical Transactions of the Royal Society A: Mathematical,*  
1234 *Physical and Engineering Sciences*, v. 371, no. 2001.

1235 Zhang, Y. G., Zhang, C. L., Liu, X.-L., Li, L., Hinrichs, K.-U., and Noakes, J. E., 2011a,  
1236 Methane Index: a tetraether archaeal lipid biomarker indicator for detecting the  
1237 instability of marine gas hydrates: *Earth and Planetary Science Letters*, v. 307, no. 3,  
1238 p. 525-534.

1239 Zhang, Z., Nisancioglu, K., Flatøy, F., Bentsen, M., Bethke, I., and Wang, H., 2011b,  
1240 Tropical seaways played a more important role than high latitude seaways in  
1241 Cenozoic cooling: *Climate of the Past*, v. 7, no. 3, p. 801-813.

1242 Zhang, Z., Yan, Q., and Wang, H., 2010, Has the Drake Passage played an essential role in  
1243 the Cenozoic Cooling: *Atmos Ocean Sci Lett*, v. 3, no. 5, p. 288-292.

1244

1245 **Figure captions:**

1246

1247

1248 Figure 1: Palaeogeographic reconstruction of the early Eocene (47.8-56 Ma) with the location  
1249 of each Eocene site used in this compilation.

1250

1251 Figure 2: Isoprenoidal (A) and branched (B) glycerol dialkyl glycerol tetraethers used to  
1252 calculate TEX<sub>86</sub> and related indices.

1253

1254 Figure 3: Histogram of BIT indices from open-marine core-top sediments (black; Schouten et  
1255 al., 2013) and Eocene and Oligocene sediments (grey bars). Black line represents the normal  
1256 distribution curve for modern and Eocene and Oligocene BIT indices

1257

1258 Figure 4: Histogram of %GDGT-0 (left panel) and MI values (right panel) from the core-top  
1259 dataset (black; Trommer et al., 2009; Kim et al., 2010) and Eocene and Oligocene sediments  
1260 (grey bars). Black line represents the normal distribution curve for modern and Eocene and  
1261 Oligocene %GDGT-0 and MI indices

1262

1263 Figure 5: Changes in temperature and salinity across the PETM at ODP Site 1172. a. SST  
1264 derived from  $\text{TEX}_{86}^{\text{H}}$ . b. %GDGT<sub>RS</sub> values c. The percentage of *Goniodomoidae*, a  
1265 hypersaline dinocyst (Sluijs et al., 2011). Grey area denotes a Red Sea-type GDGT  
1266 distribution.

1267

1268 Figure 6: Interrogating GDGT distributions. Samples derived from (1) Mid-Waipara River,  
1269 (2) ODP Site 929, (3) ODP Site 925 and (4) Hampden Beach.

1270

1271 Figure 7: Absolute  $\text{TEX}_{86}^{\text{H}}$  SST record during the Eocene (55-34 Ma). a. Low-latitude  
1272  $\text{TEX}_{86}^{\text{H}}$  SSTs, b. High-latitude  $\text{TEX}_{86}^{\text{H}}$  SSTs, c. Global benthic foraminiferal  $\delta^{18}\text{O}$  stack  
1273 (updated to GTS2012) in grey with red being the 30 point moving average (Cramer et al.,  
1274 2011). Error bars on  $\text{TEX}_{86}^{\text{H}}$  are 2.5 °C Filled squares, diamonds and circles reflect SST  
1275 estimates from the Atlantic, Indian Ocean and the SW Pacific, respectively.

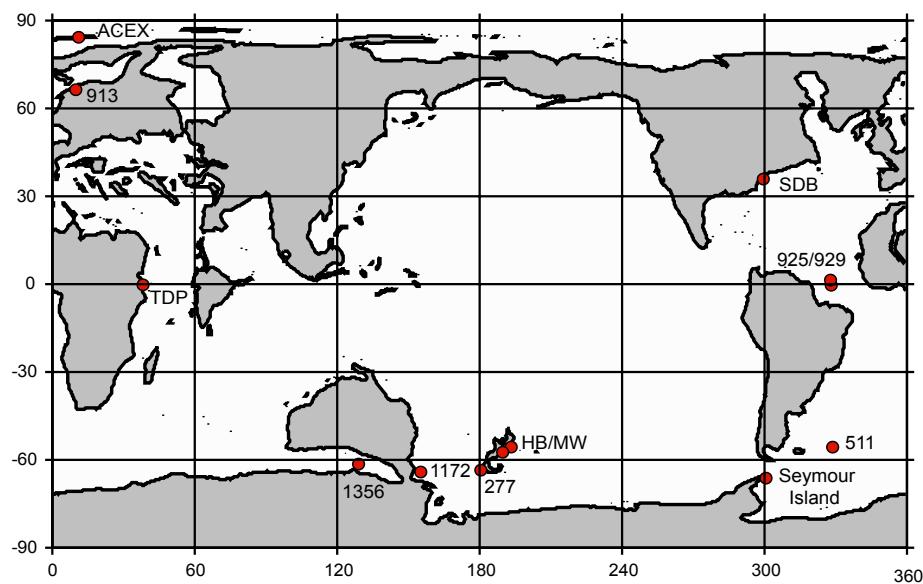
1276

1277 Figure 8: Normalised  $\text{TEX}_{86}^{\text{H}}$  SST record during the Eocene (55-34 Ma). a. Low-latitude  
1278  $\text{TEX}_{86}^{\text{H}}$  SSTs, b. High-latitude  $\text{TEX}_{86}^{\text{H}}$  SSTs, c. Global benthic foraminiferal  $\delta^{18}\text{O}$  stack  
1279 (updated to GTS2012) in grey with red being the 30 point moving average (Cramer et al.,  
1280 2011). Error bars on  $\text{TEX}_{86}^{\text{H}}$  are 2.5 °C Filled squares, diamonds and circles reflect SST  
1281 estimates from the Atlantic, Indian Ocean and the SW Pacific, respectively.

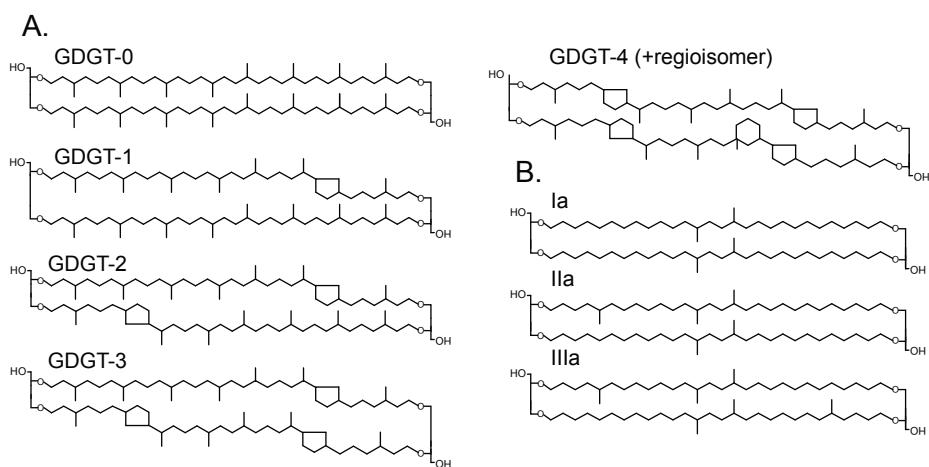
1282

1283 Figure 9: Temperature change during the Eocene (55-34 Ma). a. HadCM3L model output of  
1284 SST for low ( $<30^{\circ}$ ) and high-latitudes ( $>55^{\circ}$ ) during each stage of the Eocene. Atmospheric  
1285 CO<sub>2</sub> is prescribed at 1120 ppmv (4 x Pre-Industrial level), b. Normalised, low-latitude (red)  
1286 TEX<sub>86</sub><sup>H</sup> SSTs fitted with a non-parametric LOESS regression. Band reflects the area within  
1287 which 68 % of the data lie. C. Normalised, high-latitude (blue) TEX<sub>86</sub><sup>H</sup> SSTs fitted with a  
1288 non-parametric LOESS regression. Band reflects the area within which 68 % of the data lie.  
1289 d. Global benthic foraminiferal  $\delta^{18}\text{O}$  stack in grey (updated to GTS2012) with red being the  
1290 30 point moving average (Cramer et al., 2011).

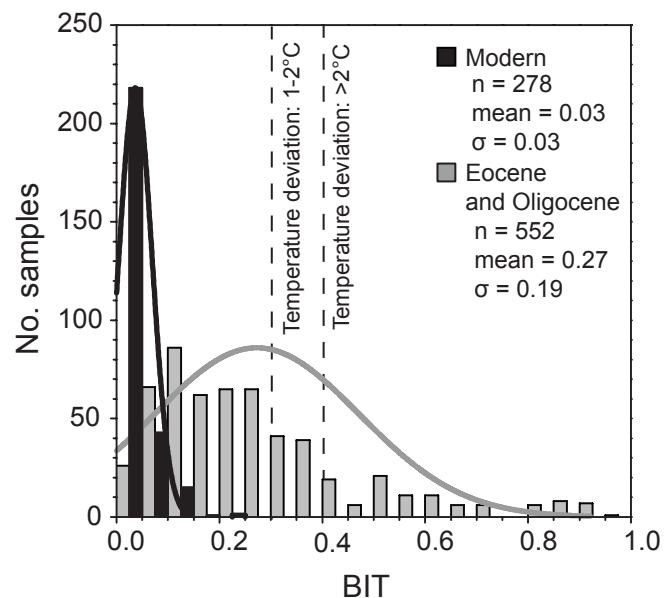
1291


1292 Figure 10: Model-derived SST estimates from 4 time slice simulations representing the  
1293 Ypresian (47.8-56.0 Ma), Lutetian (41.3-47.8 Ma), Bartonian (38.0-41.3 Ma) and Priabonian  
1294 (33.9-38.0 Ma) geological stages. Atmospheric CO<sub>2</sub> is prescribed at 1120 ppmv (4 x Pre-  
1295 Industrial level).

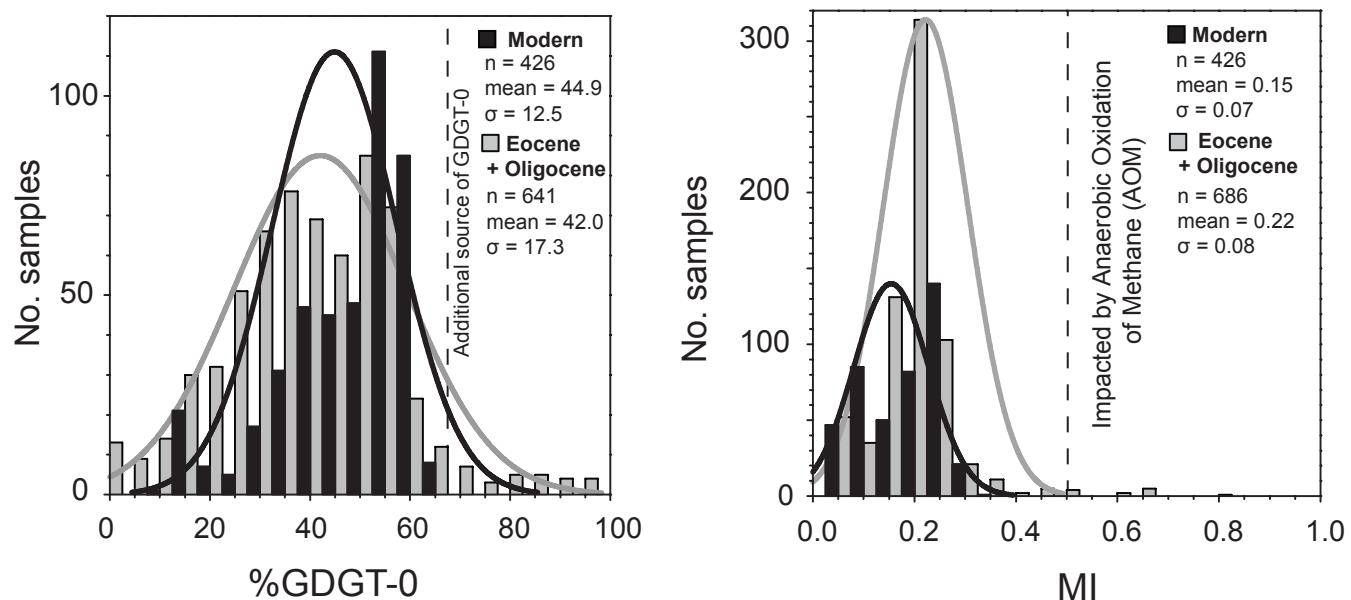
1296


1297

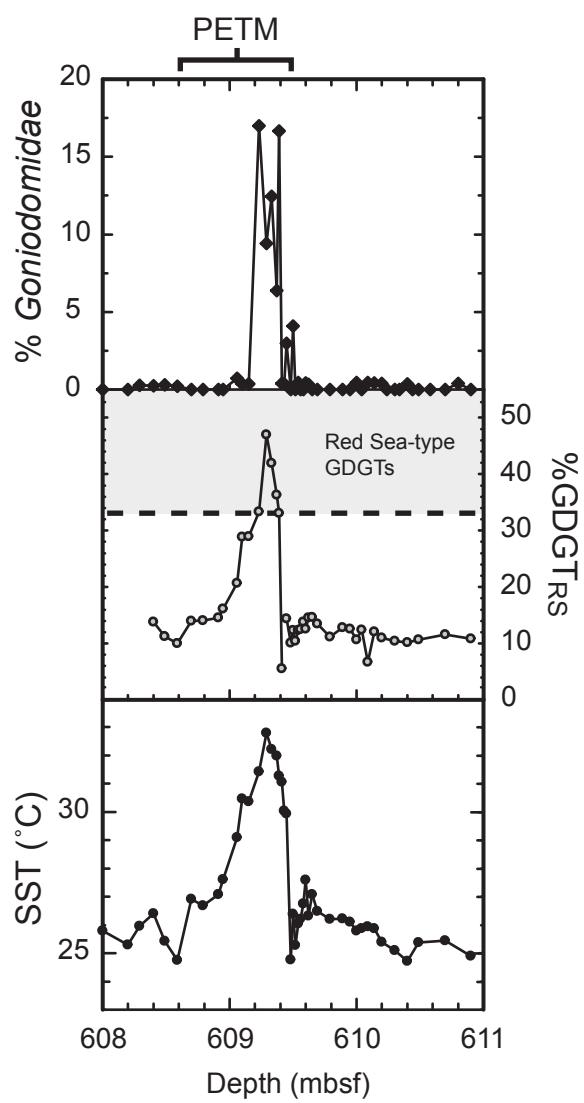
1298


Figure 1




**Figure 2.**




**Figure 3.**



**Figure 4.**



**Figure 5.**



**Figure 6.**

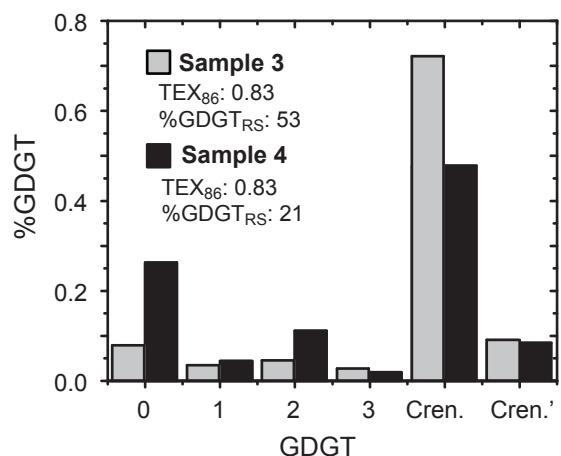
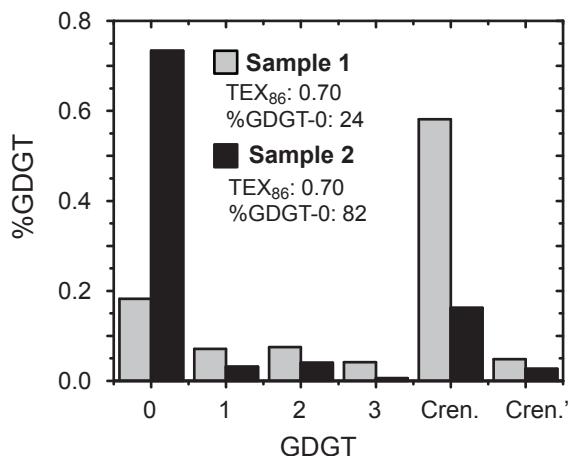
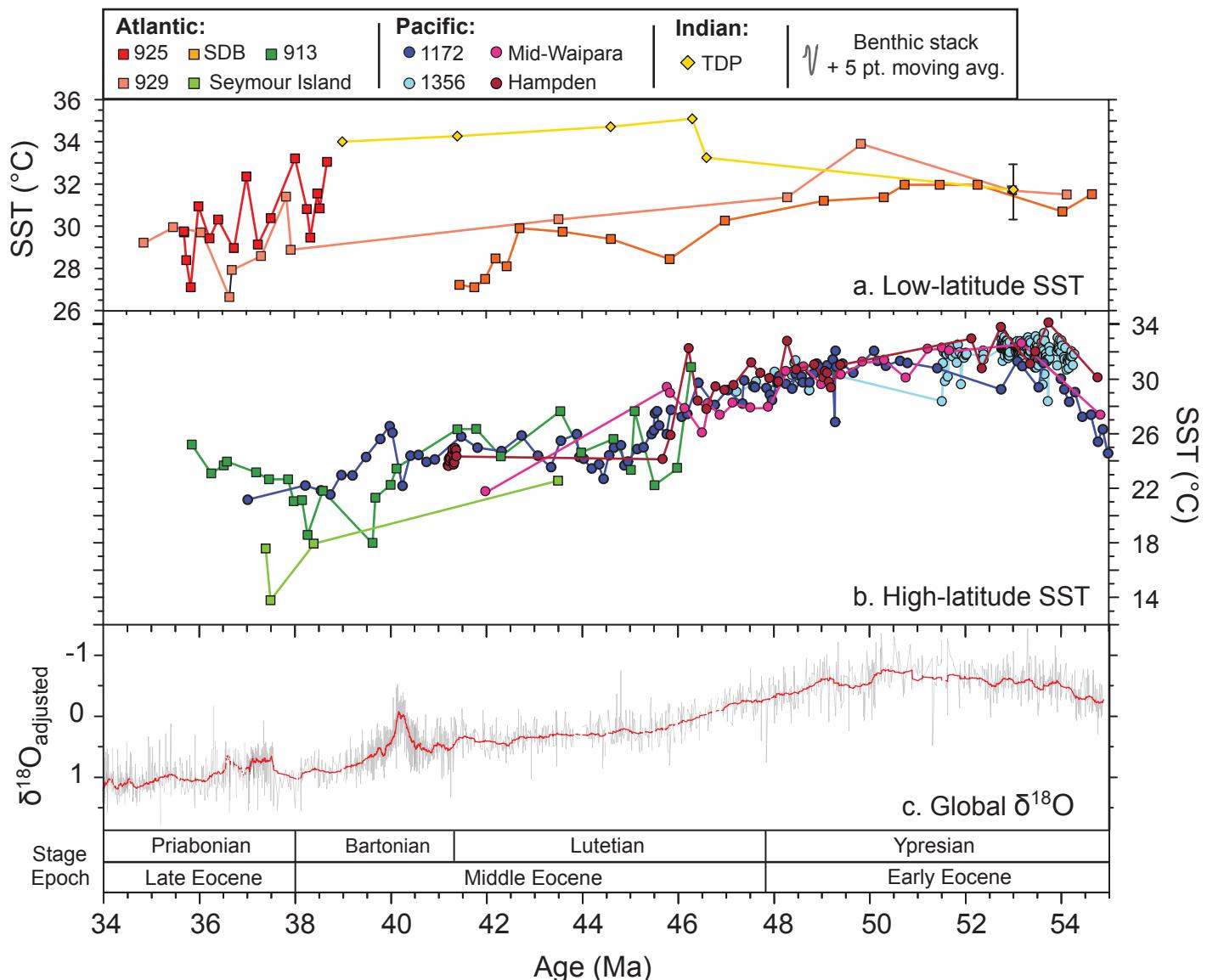
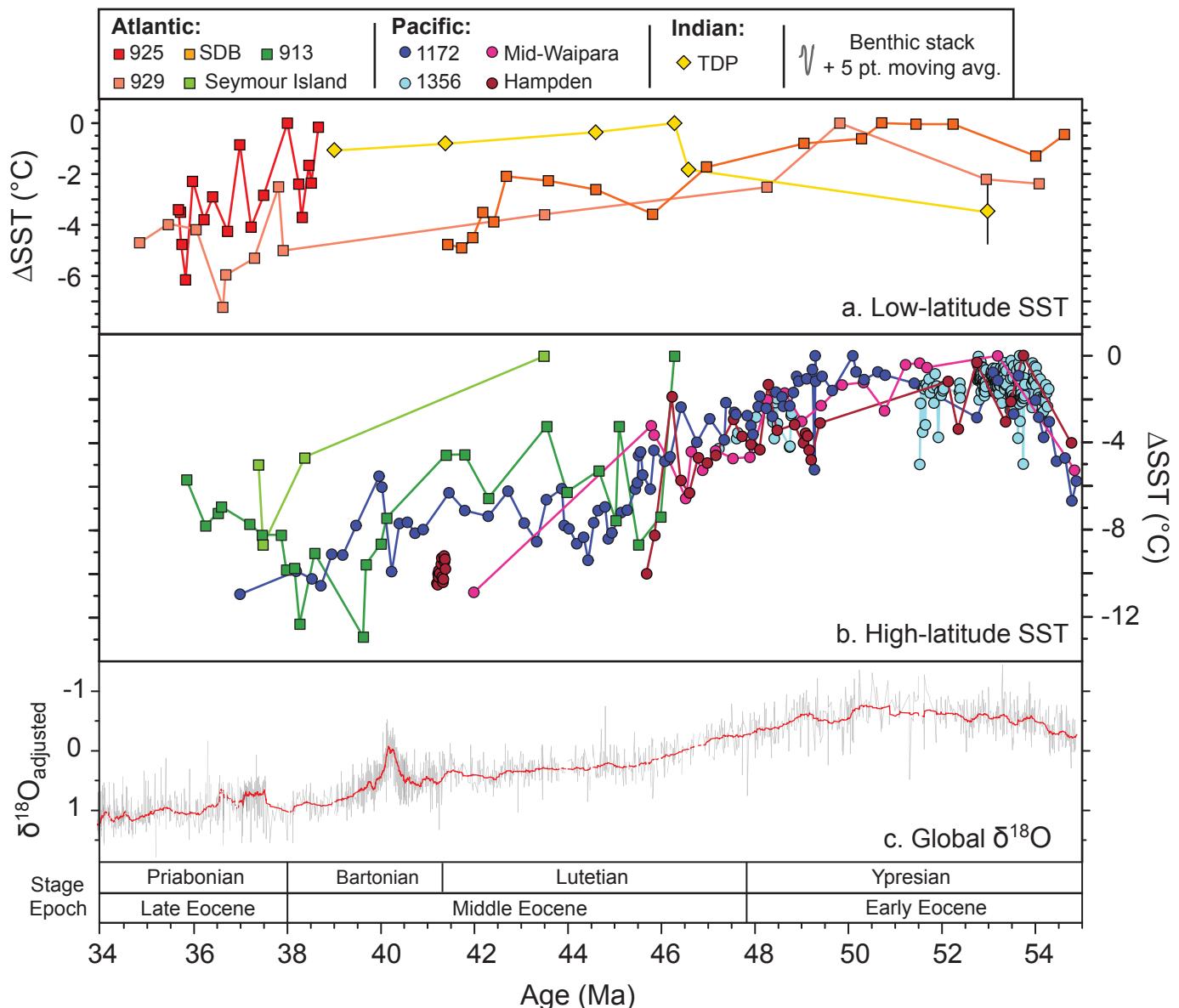






Figure 7.



**Figure 8.**



**Figure 9**

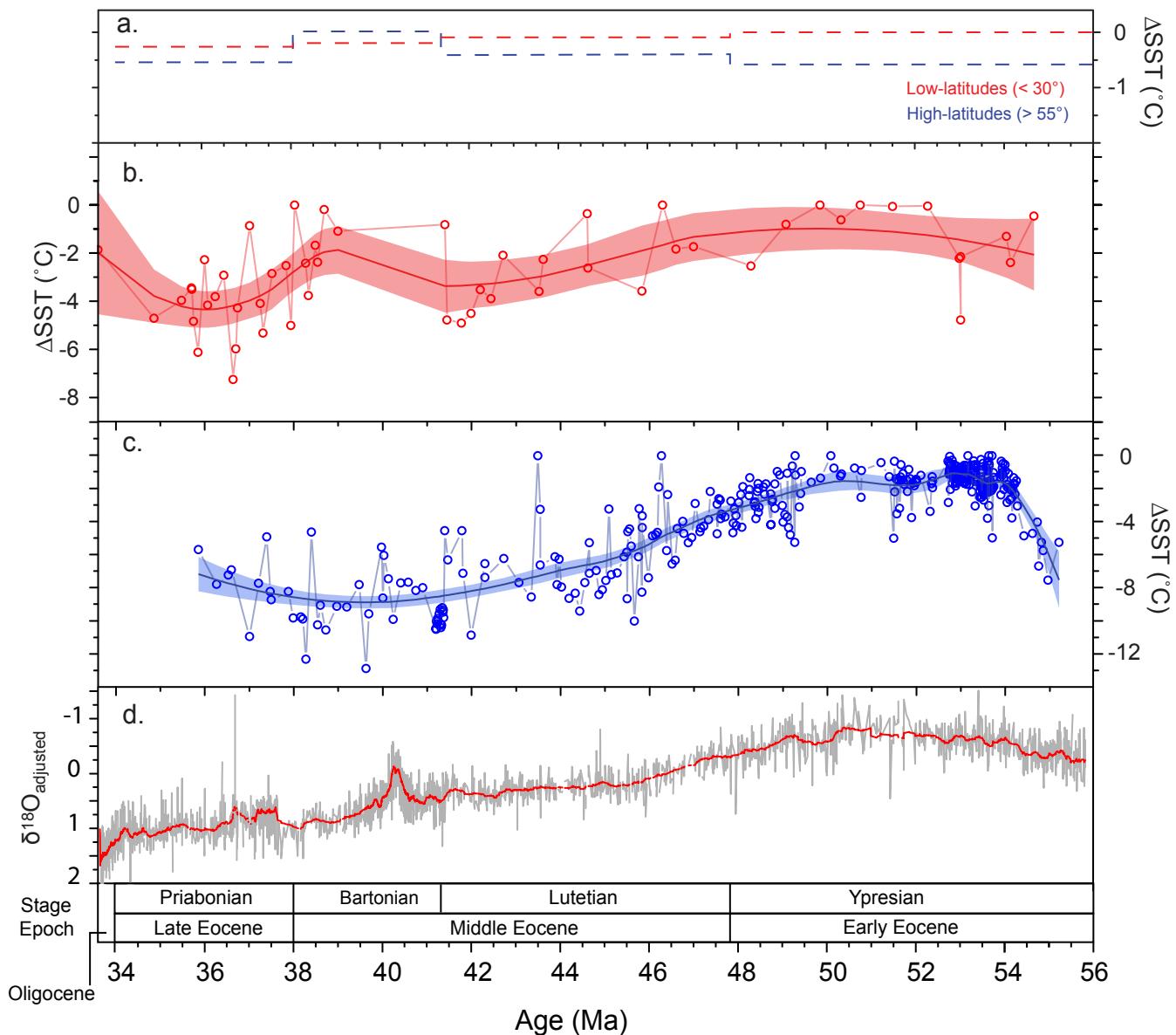
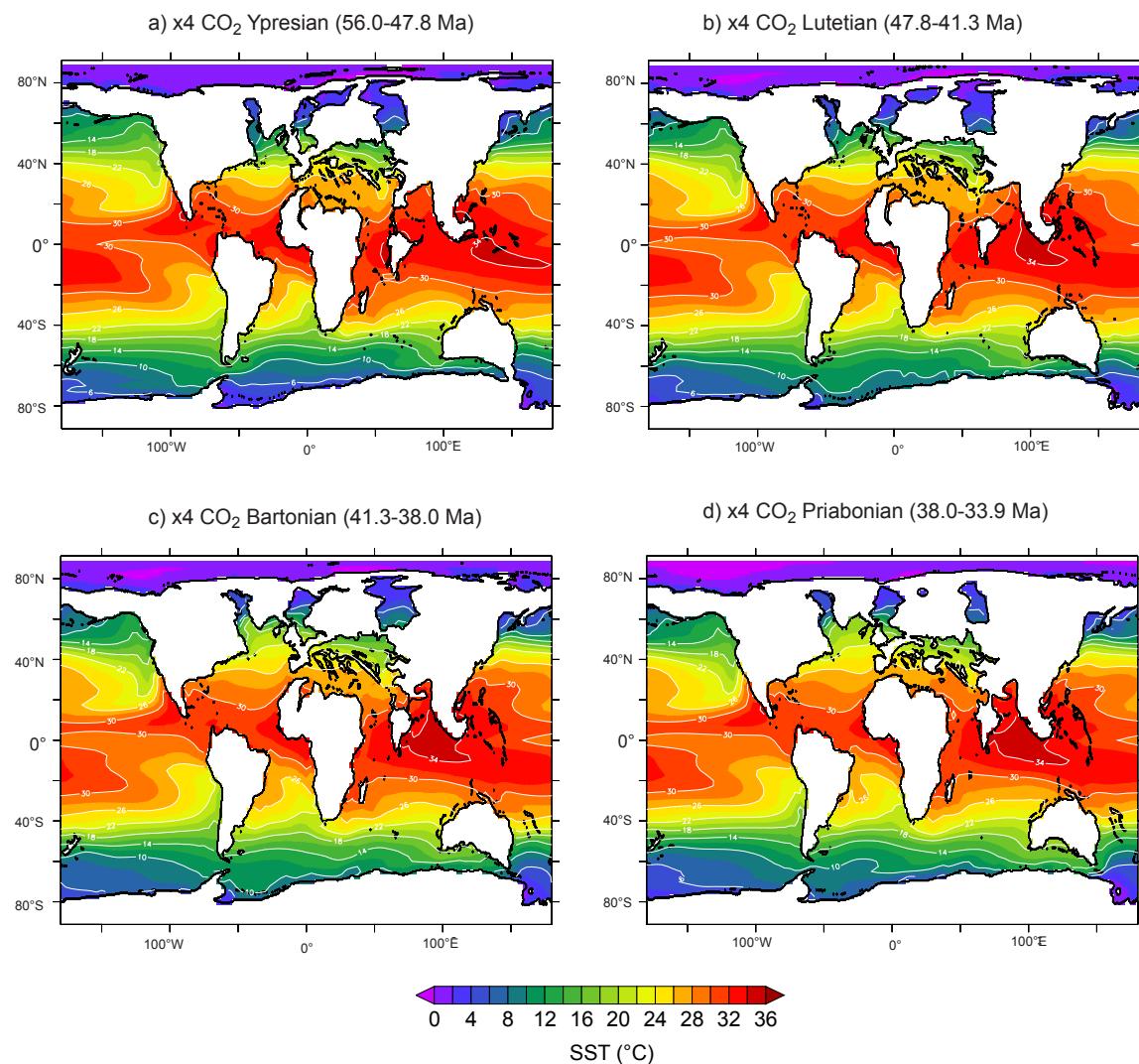




Figure 10.

