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Abstract

The spatial correlation function of the sound in a diffuse field is a quantity widely used
in many reverbrant room acoustic applications. Although results for the spatial and
temporal correlation for pure tone and narrow-band diffuse fields hayé aiready been
developed, these have not been generalised for other signal types. This work presents a
generalised derivation of the diffuse field spatial-temporal correlation which can be used
for sound fields generated by stationary broadband signals with given power spectral
density. It is shown that the spatial-temporal correlation depends entirely on the
temporal-correlation of the plane waves composing the diffuse field, and that the
temporal correlation of the diffuse field is the same as the temporal correlation of these
plane waves. A simulation using the plane wave model is presented to verify the

theoretical results for tonal and broadband diffuse sound fields.

PACS numbers:



I. Introduction

The model of diffuse sound fields is widely used in the analysis of the sound in
enclosures. In particular, the spatial and temporal correlation of the sound in a diffuse
field is a useful measure that finds applications in areas from revé}"bération room
measurements [1],[2] to active control of sound [3]. The spatial and temporal correlation
function for a diffuse pure-tone sound field was first derived and tested experimentally
by Cook et al [4]. A plane wave model was assumed for the sound field, with waves
arriving from all directions, and a spatial-averaging calculation was used for the

correlation function. It was shown that the spatial correlation behaves as sin(kr)/kr

function for waves arriving from three dimensions, with & and r denoting the wave
number and distance, respectively. In the same work the spatial correlation for an
acoustic signal made from a band of frequencies was also computed as the average over
frequency of the single-frequency spatial correlation function, and was shown to contain
high-order terms of kr. A more detailed calculation of the correlation functions for tonal
and narrow-band fields can be found in [2] and [5]. Jacobsen [5] presented a
comprehensive analysis of the diffuse field and a computation of the correlation

function for both spatial and temporal variations.

Although previous work provided useful results for the pure tone case and the narrow-
band noise case, no result for the spatial correlation of a more general sound signal
appears to exist. This could be useful in cases where the sound is generated by a
broadband random noise source, for example, with a given power spectral density. This
paper presents a derivation of the spatial-temporal correlation function in a diffuse field
for such a sound signal, and shows that the spatial-temporal correlation is an explicit

function of the temporal auto-correlation of the signal generating the diffuse field. The




correlation functions for pure-tone and narrow-band sound fields are then shown to be
special cases of the more general formulation. The paper is concluded with simulations

that verify the theoretical results.

Il. Generalised spatial-temporal correlation
A. Derivation based on the plane waves model

The plane wave model of a diffuse field assumes an infinite number of plane waves,
arriving uniformly from all directions, with random amplitudes and phases. In this
analysis it is assumed more generally that plane waves arriving from different directions
are uncorrelated to each other, due to the spatial behaviour of the diffuse field. It is also
assumed that each plane wave has the same temporal auto-correlation, and hence power
spectral density, which can be justified by assuming that all waves originate from the
same acoustic source(s), and that the sound is stationary with respect to both time and

space.

The pressure at position r; and time #, is therefore an infinite summation of all plane

waves written as [1]:

p(rl’t LIE-ITZP" (1)

Where p, is a single plane wave arriving from a given direction.

The spatial-temporal correlation function can now be computed by taking the
expectation over many samples of diffuse field, where it is assumed that the field is

stationary over both time and space, so that:



R(r]’rz;flatz):R(r>7):E{p(l‘;’t1)p(rz’tz)} (2)

where 7=, -7 and 7= |12 -f,|. It should be noted that to compute the correlation

coefficient, p(r,7)e [-1,1], the correlation function is divided by the power of the

signal, which is given by R(0,0). The correlation function can now be written by

substituting equation (1) in equation (2), as:

R(r, r)..nm_ZZE{p vt ), (1, )} 3)
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Since plane waves from different directions are assumed uncorrelated, only terms in

which n=m contribute, and the correlation function can be written as:

N
R(r,7)= fim RI;‘ZE{PH (r.t)p, (1.1, )}= = lim — zR r.T) “)
e n=l

n—l

A spherical co-ordinate system is next assumed, as in Figure 1, with r{ placed at the
origin, such that r =0, and r, placed along the z-axis a distance r from ry, as shown in
Figure 2. Since it is assumed that the diffuse field is spatiaily stationary, the spatial
correlation depends only on the relative distance between the two locations, and not the
actual locations. The above locations were chosen to simplify the mathematical
formulation. The infinite summation, in the limit, converges to a double integral over 6
and ¢, covering all plane-waves arrival directions. The area element for a sphere with a
unit radius in this case is sin0d06d¢ [8], which replaces the area element of 47/N in the

summation. The correlation function can therefore be written as:

T2 (5)
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where R, is the correlation function for the plane wave arriving from direction (¢,8).
The distance r as in Figure 2 is now transformed to a propagation delay for each

individual plane wave, which depends on the angle 8, as follows:

T, = Ecos(@) ' ©

Since all waves are assumed to carry a signal with the same temporal auto-correlation

function, the correlation Ry g, can be written using equation (6) as:
R, o (r,T):Rﬁ (OvT_TQ)ERo(T_Te) (7)

Substituting equation (7) in equation (5), the correlation function can be written as:

win
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Equation (8) suggests that the correlation of the diffuse field can be calculated as the
spatial average over ¢ and 8 of the of the plane-wave correlation function. This results
was used previously for the caiculation of the correlation of a pure-tone diffuse field
[2].[4], where as the result above is more general to any given plane-wave correlation,

and includes temporal variations.

The integral in equation (8) with respect to ¢ reduces to a constant of 2w, and the

equation 1s written as:

i &)
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The parameter ¢ is introduced below as:

10
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and is substituted in the integral, with df = —sin8d8 , to produce the following equation:

r+£. (11)

This equation shows that the spatial-temporal correlation of the pressure in a diffuse
field is entirely dependent on the temporal auto-correlation of the signal carried by the

plane waves composing the diffuse field.

It should be noted that this expression is not well defined for =0, so in practice the
integral must first be calculated before the value of the correlation at »=0 can be
evaluated. A special case of this equation is the correlation dependent on space only,

with 1=0, which is written as:

: (12)
R(-0)=+ R, ()

[

B. Frequency domain formulation

The temporal auto-correlation of the signal carried by the plane waves can be written in

terms of the inverse Fourier transform of the power spectral density of the signal [6] as:

17 wr (13)
RO('L')=—2;; [ 5o (@)e* da

Substituting this equation for the auto-correlation in equation (11), the spatial-ternporal

correlation in a diffuse field can be written as:
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This shows that the spatial-temporal correlation is the inverse Fourier transform of the
power spectral density of the signal exiting the plane waves when weighted by the

spatial sinc function.

An interesting result is derived for the special case of =0 in this equation, so that the

temporal auto-correlation of the acoustic signal in the diffuse sound field becomes:

= 15
R(O,T)=—?:1; JSO(w)efmdszO(r) (>

This result clearly shows that the temporal correlation of the signal in the diffuse sound
field is identical to the temporal correlation of the signal carried by the individual plane
waves composing the diffuse field. This result suggests that Ro(T) in equation (11) can
be replaced by R(0,1) which is the temporal auto-correlation of the acoustic signal in the

diffuse field.

lil. Examples

A. Pure tone diffuse field

Some special cases can be calculated from the integral equation for the spatial

correlation as derived above. For example, if the pressure signal of the plane waves



composing the diffuse field is a pure tone at frequency ®, with a normalised temporal

auto-correlation function given by R,(t)=cos(wz), the spatial-temporal correlation of

the sound in the diffuse field is calculated using equation (11) as:

#0512 footorh= = e w02 e |

C C
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where k=y/c. This result is widely known and has been previously derived for a pure
tone diffuse field [1],141,[5]. A plot of this correlation function for 7=0 as a function of

kr is presented in Figure 3 (dashed curve).

B. Narrow-band diffuse field
A narrow-band random noise is considered next, with a power spectral density of
21 /(w, — @, ) at a frequency range between @, and @, . For simplicity, T is set to zero,

and the spatial correlation can be computed using equation (14) as:

K (17)

— J‘sinc(kr)da)

2 1 g

R(r0)= Zlgr_ jf S, (@ )sinc(kr o =

A similar result and some suggestions for solutions were reported in [2] and [4].
Extending this result to include temporal variations, the corresponding spatial-temporal

correlation function can be expressed using equation (14) as:

o, 18
R(r,’t)=m 1 Jsinc(kr)ej“”da) (19
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C. Broad-band diffuse field

The formulation derived in this paper provides the means to calculate the spatial-
temporal correlation for other pressure signals than pure tone or narrow band noise.
Consider a diffuse field composed of plane waves carrying a signal__with a power
spectral density of a white noise, which is filtered by a low-pass filter with a single pole
at @, and hence has a frequency response of @,/ (e, + jeo). The power spectral density
of the signal when normalised to a unit power is then given by 2,/ (a)g + a)z) i6]. The
auto-correlation, which is the inverse Fourier transform of the power spectral density is
then given by R, (’L‘):e"”"lrl [6]. For simplicity, only the spatial dependence of the

correlation function is considered, which is:

; : (19)
R(F,O) - r e—a},,Mdt - Ej;e_m"!df _ (1 - e-ﬂJnr/c) (1 _ e—k,,r)

2r 7, ry m,rfe kor

(5

where ko=ox/c. Since a normalised signal was used, the value of R(0), found using
L Hopital’s rule [8], is unity in this case. Figure 4 shows the power spectral density of

the low-pass filtered plane wave signal as a function of the normalised frequency w/a, ,

and Figure 3 shows the spatial correlation of the diffuse field in this case (solid curve).

This is also compared to the correlation of a pure tone diffuse field at a frequency .

The correlation of the diffuse field for other types of signals can be examined using the
analysis of the low-pass filtered signal. For example, increasing the cut-off frequency o
to infinity can approximate a white-noise signal. In this case kor will be infinitely large
for any value of r>0, with a corresponding infinitesimally small value for the
correlation. The correlation is therefore unity for =0 and zero elsewhere, making the

field spatially uncorrelated for any r>0.

10



IV. Simulations

Diffuse field simulations were performed to verify the theoretical results obtained for
the spatial correlation. A diffuse field model was used as in equatio-n' ('1) where a
number of spatially uniformly distributed plane wave were superimposed to simulate the
diffuse field. Overall 1145 plane waves were used to compose the diffuse field, where
plane waves arriving from different directions were designed to be uncorrelated, as
detailed below. Spherical co-ordinates were used to generate the diffuse field, as
detailed in the Appendik. Each plane wave carried a signal that was constructed in the
time domain as a sampled sequence, using a sampling frequency of 100kHz to allow for
accuraie time resolution. The propagation delay of the plane waves was then simulated
by shifting the signal an appropriate number of samples. As in the theoretical analysis,
the spatial correlation along direction r for 8=0 was chosen for simplicity. The spatial
correlation was calculated using equation (2), for =0, normalised by the power of the
signals, where the expectation operation was approximated by averaging 10,000

samples of different diffuse fields.

In the first simulation a pure tone diffuse field was constructed, with the individual
plane waves having pure tone waveforms at 500Hz, each with a complex amplitude
generated by two independent normally distributed random variables corresponding to
the real and imaginary parts of the complex magnitude [5],[7]. Figure 5 shows the
theoretical and simulated spatial correlation as a function of the distance in wavelengths.

The simulation results follows well the theoretical sinc(kr) function.

In the second simulation each plane wave carried a time domain signal generated by

filtering normally distributed white noise with a low-pass filter having a single pole at

11



®y=2m500 rad/sec, and a frequency response function @,/ (w, + jo). Since each plane
wave was generated using a different random variable, the plane waves were all
uncorellated. The auto-correlation of the plane waves, however, is decaying
exponentially with time, with R, (T):e'w"]", as suggested above. Figure 6 shows the
spatial correlation calculated theoretically, as in equation (19) (dashed -curve) and the

correlation obtained using the simulation. The simulation results follows the theoretical

1—e™® : . . _—
T function accurately, which supports the theoretical derivation presented above.
v

o}
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Conclusions

A derivation for the spatial-temporal correlation of a sound signal with arbitrary power
spectral density in a diffuse field was developed in this paper. This is calculated as the
integral over the temporal correlation or the power spectral density of the Signal exiting
the diffuse field. The formulation is therefore general and can be used for sound signals
with any given spectrum. Experimental verification of the theoretical results for
broadband diffuse fields, and the use of this formulation in applications involving
diffuse sound fields such as reverbrant room measurements and active sound control,

are suggested for future study.
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Appendix

The diffuse field in this study was simulated by N planes waves arriving from uniformly
distributed directions in space. Spherical co-ordinates were used, as in [5] (see Figure
1). to represent the diffuse field as a double summation over the angles 6; and ¢, as

follows:

3 (20)

. 1 ¢
P(’istl):}rﬂﬁzzpn,{(ﬁvﬁ)

=l j=Il

where [ is the integer value of JE?‘ , and J is the integer value of 2/sin@,, such that

the plane wave p;; arrives from the direction:

_(im 2jm @n
(Bi’¢j)—( I ) Jr ]

Using this formulation, the plane waves are spatially uniformly distributed. The semi-
circle over the angle 8 will have I waves, while the full circle over ¢ for 6=0 will have
2] waves, and a number decreasing by sin@ to account for the smaller diameter of the

circles around ¢ for smaller values of 6. In this case a total number of ¥ waves compose

the diffuse field.

15



It should be noted that the formulation with I being the integer value of VN, and J the

2

integer value of %sm 8., as suggested in [5], will result in a slightly higher density of

waves in the O direction compared to the ¢ direction. The resulting waves will therefore
not be completely uniformly distributed in space. This, however, did not_ affect the final

spatial correlation result as presented in [5].

Equations (14) and (15} were used to generate the diffuse fields in the simulations

above, with /=30, so that a total of N=1145 plane waves composed the diffuse field.
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Figure captions
Figure 1 The spherical co-ordinates system
Figure 2 Incident plane wave arriving at positions r; and r; distance r apart.

Figure 3 The spatial correlation of the diffuse field composed of plane waves carrying a
low-pass filtered random noise (solid curve), and plane waves carrying tonal signal at

the same frequency as the low-pass filter cut-off frequency (dashed curve).

Figure 4 The power spectral density of the low-pass filtered signal carried by the plane

waves as a function of the normalised frequency o/ ay.

Figure 5 The spatial correlation of the diffuse field for pure tone excitation, theoretical

result (dashed curve) and simulated result (solid curve).

Figure 6 The spatial correlation of the diffuse field for low-pass filtered random

excitation, theoretical result (dashed curve)} and simulated result (solid curve).
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