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SUMMARY

In this paper, a more efficient and analytical method to calculate the Fourier transformed
stationary and moving dynamic flexibility matrices of a layered ground is proposed. These
flexibility matrices will lead to significant advances in the investigation of a viariety of
radiation, scattering and interaction problems associated with stationary and moving
disturbances in a layered ground. The properties of these matrices are discussed and the
reciprocity relations which are well known in the stationary case are extended to the moving

case.



The Fourier transformed stationary and moving dynamic flexibility
matrices of a layered ground

1 Introduction

For many applications, the relationships between the Fourier transfromed displacemnets
and stresses at both sides of a layer in a layered ground subject to stationary (Loads act at a
fixed point) or moving (Loads move in a fixed direction) harmonic loads are necessary. In the
stationary case, several forms of these relationships are available. One relates the
displacements and stresses at one side of the layer to the corresponding variables at the other
side of the layer. This formulation is generally known as Haskell-Thomson technique
(Thomson 1950, Haskell 1953) in the fields of soil dynamics, earthquake engineering and
geophysics. An alternative is to relate the displacements at both sides of the layer to the
tractions at both sides of the layer, resulting in direct or exact dynamic stiffness matrix (Kausel
and Roesset 1981, Wolf 1985). The two aforementioned methods all use the analytical
solution of the wave equation in a displacement formulation. When, alternatively, the exact
solution of the wave equation is maintained in the horizontal direction, while a polynomial
expansion is used in the vertical direction, a so-called thin layer formulation is obtained
(Lysmer and Waas 1972, Waas 1972, Kausel and Peek 1982, Tassoulas and Kausel 1983,
Kausel 1986). To avoid computational difficulties due to the exponential terms for large
thickness of the layers in the dynamic stiffness matrix, the ground layers are divided into thin
sub-layers and a global dynamic stiffness matrix constructed from the sub-layers’s dynamic
stiffness matrices is used (Jones and Petyt 1997, 1998), which increases greatly the scale of the
problem.

In the moving case, making use of an exact factorization of the displacement and stress
ficlds in terms of generlised transmission and reflection coefficients, Barros and Luco (1994)
propose a procedure to obtain the steady state displacements and stresses within a layered
ground generated by a buried or surface load moving with constant speed parallel to the
ground surface. This procedure seems being too complicated.

Rather than use either the exact or discretized dynamic stiffness matrix techniques, it has
been found by the present authors that improved computational efficiency can be achieved by
using the dynamic flexibility matrix approach (similar to Haskell-Thomson technique) in which
all the matrices being manipulated are of order less than or equal to 6. The definition of
dynamic flexibility matrix in the stationary case is given in Section 2. The derivation of this
flexility matrix for a three-dimensional ground layer is described for a Cartesian co-ordinate

system in Section 3. With some mathematical treatment and making use of some properties of
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the matr'i;x described in Section 4, numerical difficulties that occur in a number of previous
work are avoided, and explicit analytical expressions of the formulae are obtained. In Section
5, the formulae developed for the stationary case are extended to include the case when
harmonic loads move uniformly along a direction parallel to the ground surface, and
reciprocity relations are then proved. And lastly, Section 6 gives example calculations for
comparsion with other methods.

The ground consists of a number, », of parallel layers of different materials. The nth layer
overlies a half space or a rigid foundation, which is identified as ‘layer’ number (n+1). For the
jth layer the material constants are: elastic modulus, Ej;, Poisson ratio, v;; density, p;; loss
factor, 1; and layer thickness, A;. If the (r+1)th layer is a half space, its material constants are
Evi1, Va1, Paet @and Masq. In the coordinate system Oxyz, the plane Oxy stands for the ground

surface, and z-axle is downward in the ground.

2 Definition of dynamic flexibility matrix

The steady state vibrational displacement amplitudes of the point R(x,y) on the top side

of the lgth (1<, <n+1)layer of the ground in x,y,z directions, due to a unit harmonic load

™, where i =+/—1,@ is angular frequency, acting at the point P(0,0) on the top side of the
Ipth (1<, £n+1) layer in the x direction, are denoted by Qi(x,y), Gxu(x,y), Ounx,y),
respectively; when the unit harmonic load acts at P in the y direction, the amplitudes are
denoted by Q12(x,y),022(x,¥),Q32(x,¥); and Q13(x,y), Qz(x,y), Os3(x,y) when the unit load is in z
direction. A matrix, [Q(x,v}], can be defined as

0,(%y) Quxyy Oslxy)
[Cx,)]=| O (x3) 0n(xy) On(xy) (D

05 (x,y) On(x.y) Cns(x,y)
This is called the stationary dynamic flexibility matrix of Ig to lp (meaning that, the unit
harmonic loads act at the origin point of the top plane of /sth layer and the displacements are
for the top side of Ixth layer), or simply, stationary dynamic flexibility matrix. In general the
Qs are complex, and alternatively called displacement Green’s functions.

Now suppose that, in the top side of [ith layer, the harmonic load

distributions p, (x,y)e™, p, (x, y)e™, p,(x,y)e’ actinx, y, z directions respectively. The total

steady state vibration amplitudes of the point R(x,y) in x, y, z directions, denoted by

ugko(xsy),ugﬂo(X,Y),W;RO(I,Y) * are



”zko(xv}’) Upo p.(7,5)
V(5 =30, 4 ¢ = _L _L [Q(x —ny=S)Kp,(r,s) drds (2)

W o (X, ) W p,(r,s)
Equation (2) is a convolution integration. Using the Fourier transform pairs
F®) =] fexe™an, FO) =3[ F(Bre™ap o
FB=[_ [ feye ™ ddy, foey) = [ [ FBy)e ™ dpay

to transform equation (2) into the domain of the wavenumbers B in the x direction and 7y in

the y direction, yields

IZIRO(B”Y) 5_}:([397)
0 Bs7) p =[OB.YIK B, (B.Y) p =[OB. 7 )UBB.Y)) 4)
ﬁ’txo(ﬁf\’) p.B.y)

where, i, ,(B,Y) stands for the Fourier transform of u; o(x,y), etc. The matrix [Q(B,’y)] is

called the Fourier transformed stationary dynamic flexibility matrix of I to Ip, or simply the
Fourier tranformed stationary dynamic flexibility matrix. The derivation of an exact

expression for this matrix is dealt with below in Section 3.

3 Derivation of the Fourier transformed dynamic flexibility matrix
3.1 Analysis for a single (jth) layer (j=1,2,...,n)

The steady-state displacements at the point (x, y, z) (where z&(0,};)) are denoted by
u,(x,y,z)e" ot . where ufx,y,z) and etc. are generally complex

(0,206, w (x, ¥, 2)e

numbers and their Fourier transforms are denoted by #;(B,v,2),9,(B,v,2),w,(B,¥,2). The
three components of stresses in x, y, z directions on the top of the jth layer are
T (x,5,00e 1 o (51,00, (x,y,00e™, and those at the bottom  are
T (63.0)e™ 1 L (x,0,h)e™ T (x,y,h)e®. The Fourier transforms of the stress

amplititutes are denoted by
:EXZJ (B:Y ,0),%)@ (B"Y :O)S;EZU (BvY:O)a:Esz (B!Y!hJ )’:Eyz; (B7'Y,hj ),;Ew(B:‘Y-;hJ)

Put



{a}jo = (EJ(B’Y ’0)76j(l3;yv0)1 ﬁ;J(Ba’Y 30))T
{T}, = @By 0T, (BY007 5 (B7.0)"

.-l

{ﬁ}ji = (ﬁj(ﬁay’hj)’ﬁj(ﬁ’q{’hj)’wf(B’Y’hi))T
{t}, = @By )T By ) E (B )

5=l

~

"

(5)

(6)

where {S" }.0 is the (Fourier transformed) displacement and stress vector for the top interface
7

of the jth layer, and {S" }-1 for the bottom. One can derive the relation between {§ }_D and
) i

1,

Because all displacements are harmonic, the Lamé equation for jth layer can be written as

5

A, + 1 )5+, Vo, =—p 0y,

(?\, +!~l)a}j+u Vi __pjmzuj

;)T VoW, =—p 0w,

. > (=1,2,..,n)
A, ==sb+5t+55
i ox Y z
?\, __ V;E;(1+in;sgn(®))
J (v (1-2v))

Ej(1+in;sgn(m)}
2(1+v ;)

M, =

Fourier transforming equation (7) gives

@
A = B, +iyo, + -

(B +y

dzZ
L~ 2% 020, o~
A, + 1 )IVA, + 1 [ +y? - 40,1=0

dz

(A, + B DIBA, + 1

(o + 1 )G+, = (B 477 -

From equations (8) and (9) results in

2__“)2P} ~ ]
K )uf]—.o

olp; . ~
S20y,1=0 |

- (j=1,2,...n+1)

@

®

)



.
~2)A, =0 (10)

jl

where, if the compression and shear wave speeds of the jth layer are denoted by

e =T o= 5T an
respectively, and
Cai=0/c,0,=0/cy, {12)
are the compression wave number and shear wave number.

The general solution to equation (10) for A ;» and then to equation (9) for #; 0 jand
w can be obtained by the characteristic root method of solving ordinary differential equations.

Substituting the solutions to equations (9) and (10) into the Fourier transform of the stress-

strain relation of the material, i.e.

’sz,- = uj(iBﬁ}j +diij /dz)

T, =Wy, +dV; [ dz) (13)
T, = A, +2u,d, 1 d7)

givesT . and etc. All the results may be expressed in matrix forms as

{5}, =411}, (14)
[ iy

{S}jl = ¢ [A],, {b}, (15)

where {b} € C® are integration constants, and [Aly, [A]; are 6x6 matrices dependent on
j g J k P

wave numbers B and v, frequency ® and material parameters. When [ =0, the detailed
expressions for [A]jo and [A];are given in the Appendix, with
=Pr v’ ~Lh, 0f =By -0 (16)
The combination of equations (14) and (15) links the Fourier transformed displacements

and the stresses at the bottom of the layer with those at the top:

{s }ﬂ = "™ [A], [T, {8 },-0 | (amn

3.2 For the half space (n+ Ith layer, if it’s not rigid)
Putting

{#},0 = Eon(B.Y.00.8 .1 (B.Y 01,7, (B,Y.0)

T hno = Eann(Bry ,0),%',,3,,1“(6,7,0),%%“(B,Y,O))T}



similar to equation (17), it can be shown that
{iz}nﬂ,o = [R] [S]_l {:E}n+l,0 (1 8)

where [R] and [S] are 3x3 matrices, the elements of which are shown in Appendix.

3.3 For the layered ground

The continuity of displacements and the balance of stresses at each interface of the layers
i §1 =8V (j=12.mj=l, 1,5 g 51
imply that {S}j1 -{ }H'O(j-l, N - ),{ }1,,—1,1 = {S}z,,o -t—{S} . where
{§}P =(0,0,0,7,.p,,5,)" - From equation (17) yields

{g}nl = e—i;;.pajlkf [A],, [A];(ll {A]H_L1 [A ;11’0 e [A]lPI [A}z_:o {S:’}IPO

icx”hj — P
=™ AL, [ATGIAL AT o - [AL AL ST -5
iaﬂhj | —
= AL [AT AL, (AT o - [A] [AT {5} -
-zn"a“hj 1 -1 a3
—e™  [AlL[ALG[AL L [A], 1o '{A]zpl [A]z,,o {S}
Putting
_-[T}u [T]w, _ -1 -1 -1
1= 7, [T]J-[Al,ﬂ[AJ,,(,[AL,-,,JAJ,,_LO [A],,[Al; (19)
IFl, [Fl, , ’ s
Fl= =[A],,[AL AL IAT, ,---[A],[A 20
71| (py. [F]J [A] [AL5[A], , [AT. -+ [A], [AT, (20)

where [T]11, [Fi; and etc. are 3x3 matrices, one get

{ii}nl =e§af‘kjl:[T]11 [T112:| {ﬁ}lo _e;;‘,a“hjli{F]u [F]u:t{o } @1)
£} [Ty [T || {7}, [Fl, [F), [|{P}

If the n+1th layer is a half space, then {#} .  ={#} {7} .  =1{F}, - From equations

(18) and (21) and noticing {T} =0, yields

1p-1

- 2oty

@}, =—e ™ (RUSI[TL, —IT),) " ([Fl, = RIST' [F1,,){P} (22)

If the n+1th layer is a rigid foundation, meaning that{#}, ={#} =0, from equation

n

(21) yields



ip-1
— N

{ii}, =e . 71, [Fl.{P} (23)
Equations (22) and (23) are the relationships between the Fourier transformed
displacement vector on the ground surface and the Fourier transformed load vector on the top
side of Ipth layer. If [, =1 and the ground is just a half space (in this case, n=0), equation (18)

applies.

3.4 The Fourier transformed dynamic flexibility matrix

For the responses of the top surface of the Iz th layer, three cases should be accounted for:
(1) When Iz <ip
Equation (17) yields

{S"}w = egfuj,hf [A]zR-I.I{A];{l—LO "'[A]ll{AL—é {E}lo

Putting

(Gl (G,
G =
] LG]M (61,

where [G];; and ect. are 3x3 matrices. Equation (22) then yields

} . [A]t,;—m [A]z_;-l,o ' "[A]::[A]:_(; (24)

ip-1

- 2ot
fi},, =—e ™ [GL,(RIST[T]y ~[T),) ™ ([F], ~ [RILST " [F1, P} (25)
(2) When Ig>lp
{81, =™ Al AL, - TAL AT S ] -
:iz:,l“nhj » =17

—e”™  [Al LAl e 1AL [A]IPO{S}
Putting

_[tHY, [H,] _— B
[H]—[{H]ﬂ [H}n]—{ALR_,_I[ALR_LO [A),.[AL) (26)
equation (22) yields
fi,=—e™ (Gl (RIST [TT, ~ (7)) (LFL, ~ (RIS [Fy) + [H, P}

@7

(3) When Iz=Ip
{#}, , = -[G1, ((RILST[T],, ~[T1,,)" (LFY, — [RIST ' (F1, {5 } (28)



Comﬁaring equations (23), (27) and (28) with (4), result in that

ip-1
- Yol

[GB.v)]=—¢ ™ 161, (RUST' (1T, ~[T1,) " (F), ~[RIST'[Fly)  (a<lp) (29)

g1

- 2k
[CB.1)]==¢ " (GY, ARSI [TY,, ~ (70, (F, ~ [RIUST'[F1) +[HL,) (leoly)
(30)
8B v)]=—G1, (ARSI [T, — (73,0 (FY, ~ [RIST'[Fl)  (le=le) (31)

4 Some properties of [O(B,y)]

It is worth noting some properties of [Q(B,'y)]that lead to efficiencies in the
calculation. These are

(O é13([3,7) , éal( B.y) are odd functions of B, and even functions of v .
(2) Q23( B.,Y), QSZ(B,y) are even functions of [}, and odd functions of 7 .
3) 0,(B.v). 0, (B.7), 0, (B.¥) are even functions of B and vy .

4 le(B,y) ,0,,(B,v) are odd functions of Band 7y .

(5) by putting B =pcos(®),y = psin(@)(-. p =B’ +y>,¢ =tan™ L), then

sing cos¢ O sing —cosp O
[Q(ﬁ,’y)]: —cosd sing 0 [Q(O,p) cos¢p sing O (32)
0 0 1 0 0 1

Because Q13(0,p) = Ql(O,p) = élz(O,p) = Qzl(,p) =0, equation (32) becomes

Qu3(B.Y) = 0,(0,p)cosd

0, (B.7)=0,,(0,p)sing

0s,(B.7)=03,(0,p)

Qs,(B.Y) =0, (0,p)cosd

0y, (B.v)=0,,(0,p)sing

0, (By)=0,,(0,p)sin> ¢ + 0, (0,p)cos”
Op(B.1)=0,,(0,p)cos? 0 +0,,(0,p)sin’
0,,(BY) =0y (B.Y) =(05,(0,p)~ G,,(0,p))sind cosé

b (33)




The fifth property is very useful, because it reduces the calculation of matrix [Q]from a

plane to an axis. On the other hand, from equations (29) to (31) in order to calculate [é] it is

first necessary to calculate the matrices [T, [G] and [H], while the calculations of [T], [G] and
[H] require calculating the inverse of the matrices [Alp (=1,2,...,n). When [ =0, from the
Appendix one can see that there are many zero elements in the matrices [A]p, resulting in the
fact that the inverse of [A], can be easily expressed analytically (omitted in this paper). As for
the calculation of the inverse matrix in equations (29-31), it also can be easily expressed

analytically because the matrix to be inverted is of order 3.

(6) If the Fourier transformed dynamic flexibility matrix of Iz to Ip is denoted by [O( B.Y)1.

and that of Ip to Iz by [g (B,Y)], from the Betti reciprocity theorem and the axisymmetry of the

problem, it can be shown that
Ql 1 QIZ Qi3 § 11
O O» gzz =

§21
2 O
Q31 Q32 Q33 _8:3 —623

_§31

-3, (34)

533

This property can be used to avoid numerical difficulties in the calculation of the Fourier
transformed dynamic flexibility matrix of Iz to I when Ig>lp. Examination of equations (29)

and (31) and the Appendix shows that, when [zg<Ip, no terms involve exponents of which the

real parts are larger than zero, resulting in that no numerical difficulties are encountered for
ig-1
20
large layer thickness. However, when Ig>Ip, due to the item of ¢  in equation (30), this
formula is inappropriate for numerical calculation. In this case, one may calculate the Fourier
transformed dynamic flexibility matrix of /p to I instead, and get the flexibility matrix of I; to
[p through equation (34).

If Iz=lp, from equation (34) result in

0,(B.y) =0, (B.y)
0, (B.v)=-0u(B.Y) (35)
éZ_’i(Bs’Y) = _éj;z(B"Y)

5. Fourier transformed moving dynamic flexibility matrix of I; to I»

Now suppose that, in the top side of Isth layer, the harmonic load

distributions p, (x, y)e', py(x, y)e‘n‘,pz (x,y)e™ act in x, y, z directions respectively, but all

move in x direction at speed ¢. Then the Navier’s equation for the ground is

10



A+ WB+puVia=pLe-8(z—2z,)p,(x—ct,y)e™
A+ )R +uV™ = pL2-8(z—2z,)p,(x—ct,y)e™ (36)

2w i

A+ L +pViw=pLe_5(z-2z,)p,(x—ct,y)e

where zp is the depth of the top side of the Ipth layer, and 8(.) is the Dirac-8 function. The

Fourier transform of equation (36) is

Cho BB B (B 47 ) =p 3E - e 2B, Bae ™
(A -+ piYA+P[LE —(B? +77 0] = p 4F -8(2-2,)B,(B.7)e ™ (37)

(bt )4+ PIZE - (B +7 7)W= pTE =82 2,)P.(B.1)e ™™

where p.(B.v),p,(B.v).P.(B,y)arc Fourier transforms of p,(x,y),p,(x.y).p,(x.y). Now

the steady state solution to equation (37) may be written as

A = Zei(ﬂ—ﬂc)r ]
7= ﬁei(Q—BC)t
s (38)
T = ,b—ei(fkﬂc)r
W= e @Box

Equation (38) means that, if ' (x,y,z)is the inverse Fourier transform of #(pB,y,z), the
actual longitudinal displacement of point (x,yz) in the ground is given by
u(x,y,z,0) =1 (x—ct,y,2)e"".
With the substitution of equation (38) into equation (37) yeilds,
A+ WIBA + UILE - (B +7 )] = —p(Q—Pe)’ & —8(z—2,)P,(B.Y)
L+ WA+ UL — (B2 +72)D]=—p(Q— Be)*B~8(z—2,)B, (B.Y) (39)
A+ W)L+ p[LE — (B2 +77)W] = —p(Q—Bc)’ W -8(z~2,)P,(B.Y)
This equation is the same as equation (9) if put
®=Q~Pc (40)

therefore for the top side of Igth layer comes

i, (8.1 B.(B.1)
T, o (B.¥)  =[O0B.Y)K 5, (B.Y) (41)
WIRO(B!’Y) ﬁz(BsY)

and from equation (38) the time varying Fourier transformed displacements on the top side of
the Izth layer are obtained by mutiplying the factor e"@ P

The matrix [Q(B,'y )] is called Fourier transfromed along x-axle moving dynamic flexibility
matrix of Ig to Ip (meaning that, the unit harmonic load moving along x-axle on the top side of

11



Ipth layer and the displacements are for the top side of /rth layer), or simply, Fourier
transformed moving dynamic flexibility matrix. The caulation of this matrix is exactly the

same as described in section 3 if put @ =Q - fc.

This matrix may be denoted by [Q(B,Y,Q—Bc)] to emphasise its dependence on

® = Q— fc. It can be shown that,

(1) by putting B = p cos(d),y = psin(@)(.. p =+/p> +y2,6 =tan™ ) then

sing cos¢ O sing —cos¢p O
[OB.Y,Q2-Be)l=| —cosp sing O [[Q(0,p,Q—Pc)] cosd  sind O (42)
0 0 1 0 0o 1

(2) If the matrix of I to [r is denoted by [Q(B,"{,Q—Bc)], and that of Ip to Iz by

[g(B,ﬂ{,Q— Be) ], it can be shown that

éu Qu é:s §11 §21 §31

o8 sz st =|d 12 3 2 _~8 32 (43)
0., 0, O 5, -5, &

;) Q32 s (By.0pe) 13 23 B L py.0po

where the item in the round brackets indicates that each elememt of the matrices is a function
of B,y and Q~Bc.
(3) Reciprocity relations
Suppose at time /=0 a vertical (in z direction ) unit harmonic load moving in the

positive x-direction acts at the point (r,s) on the top side of Ipth layer, i.e.
p.=0.p,=0,p,=3(x-r,y—s),and p,=0,5,=0,p, =™ *** then the longitudinal (in x-

direction) displacement of point (p,q) on the top side of Ixth layer comes from equations (38)

and {(41) as follows

Uy o (P.q, 1) = MLZJ:J: O (B,y, Q2 — Be)e 000 o Ber=n i16a=5) g8 g ()

Now let the source-observer configuration be interchanged, i.e. at time /=0 a longitidinal

unit harmonic load moving in the negative x-direction acts at the point (p,q) on the top side of
the Ixth layer, ie. p,=8(x—p,y—g),p,=0,p,=0, and p = ®", 5 =0,p, =0, then

the vertical displacement of point (r,s) on the top side of Ipth layer comes from equations (38)

and (41)

wo (s )=k [ [ 8,,(B.v.Q+ Bo)e PP gy (b)

12



From equation (43), (b) becomes
Wy o(r,5,1) = —‘m%r r 0,:(B,y7,Q+ Bo)e' @By Bt =0 yg gy

which, due to Q,,(~B.—y,Q—Pe) = —0,,(B,y,Q—PBc), can be written as

Woo(rs, =g [ [~ 0By, Q- Bo)e @ e apay (©
Equations (a) and (b) show that ulRD( p.q.f) = Wi o (r,s,8). It can be further conclude that:

The displacement of point A in direction 1 due to a unit harmonic load acting in direction 2
and moving at speed ¢ along a line parallel to the ground surface and passing through point B
(called line B, at =0, the load acts at point B), is equal to the displacement of point B in
direction 2 due to a unit harmonic load of same frequency acting in direction 1 and moving
inversely at speed ¢ along line A which passes point A and is parallel] to line B (at =0, the load
acts at point A).

Barros and Luco (1994, section 4.3) have noticed the reciprocity relations for a special

case, i.e. r=p, s=q, through numerical test other than a proof.

6 Example calculations for comparison with the previous work

To validate the theory developed in this paper, several examples used by other researchers
have been calculated using the dynamic flexibility matrix approach. The first example is a
ground comprising of one layer of 7m which overlies a rigid foundation (D.V. Jones and M.
Petyt 1997) subject to a unit rectangular harmonic load of 64 Hz on the ground surface. The
parameters for the gound are listed in Table 1. Now p, = 0, p, = 0 for all points and p, =
Pyi4ab when -a £x <g and -b <y < b, where a=b=0.3m and Py=1IN, and p,= 0 at other

nd sinPa sin ‘(b

points. This gives p, =0,p,=0,p, === F,, and substituting them into equation (4)

yields,
o (B.y)= 0,(B, vyt p
B,,0(B.¥) = 0y (B.Y) 5L P, (42)

#,0(B,Y) = Op B,y ) S S22 Py

Figure 1 shows the amplitude of Fourier transformed vertical displacement of the ground
surface, which, if divided by 4m?, is exact the same as that obtained by D.V. Jones and M.
Petyt (Jones and Petyt 1997, Figure 3) by dividing the 7m layer into 7 sublayers. Figures 2 and
3 show the amplitude of the Fourier transformed vertical displacement and the amplitude of

the actual longintudinal (in x-direction) displacement of the horizontal plane of 3m depth in the
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ground. As to the amplitude of the actual longitudinal displacement of the ground surface,

this is shown in Figure 4.

TABLE 1
The parameters for the ground
layer depth Young’s  Pgssion Density  Loss P-wave  S-wave  Rayleigh-
(m) mmoz:)lus ratio (kg/m’y  factor speed speed ::;S peed
(m/s) (m/s}
1 7 269 0.257 1550 0.1 459.43 262.14 242.01
half space 1076 0.257 2000 0.1

For the second example, instead of the rigid foundation, the same ground layer overlies an
elastic half space (D.V. Jones and M. Petyt 1998) subject to the same rectangular harmonic
load on the ground surface. The parameters for the half space are listed in Table 1. Figure 5
shows the amplitude of vertical displacements along y-axis on the ground surface, which is
exact the same as that obtained by D.V. Jones and M. Petyt (Jones and Petyt 1998, Figure 5).

Figure 6 shows the overall vertical displacements of the ground surface.

The third example comes from the paper by F.C.P. de Barros and J.E.Luco (1994). The
ground is a uniform half space with Young’s modulus 5000Mpa, Possion ratio 0.25, density
2000kg/m’ (P-wave speed=1732m/s, S-wave speed=1000m/s), loss factor 0.002, subject to a
unit load of OHz acting downward on the ground surface and moving along the x-axis at speed
¢=700m/s. Figures 7 and 8 show the vertical and longitudinal displacemets on a horizontal
plane of 10m depth, from which the curve of the dimensionless vertical displacement(=real
displacement times 2 10'°) against dimensionless time(=real time multiplied by 100, the range
of real time =range of distance in figure 7 divided by load speed) and the curve of dimesionless
longitudinal displacement versus dimesionless time of the point (0,0,10), can be obtained as
shown in Figures 9 and 10, which are very close to that obtained by F.C.P. de Barros and J.E.

Luco (Figure 6 in their paper).

7 Conclusions

In this paper, a more efficient and analytical method is proposed to calculate the Fourier
transformed stationary dynamic flexibility matrix which is constructed from the steady state
displacements due to unit stationary harmonic load, and the Fourier transformed moving

dynamic flexibility matrix comprising of the steady state displacements due to unit harmonic
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load mO\}ing uniformly along a line parallel to the ground surface. The source and obsever may
be located on the ground surface or at any depth in the ground. Example calculations are made
to compare with other methods and to validate the present approach. These flexibility matrices
will lead to significant advances in the investigation of a viariety of radiation, scattering and
interaction problems associated with stationary and moving disturbances in a layered ground,
such as surface trains and underground trains. The reciprocity relations which are well known
in the stationary case are extended to the moving case: The displacement of point A in
direction 1 due to a unit harmonic load acting in direction 2 and moving at speed c along a line
parallel to the ground surface and passing through point B (called line B, at =0, the load acts
at pomt B}, is equal to the displacement of point B in direction 2 due to a unit harmonic load
of the same frequency acting in direction 1 and moving inversely at speed ¢ along line A which

passes point A and is parallel to line B (at =0, the load acts at point A).

15



REFERENCES
Apsel , R. and Luco, J. (1983). On the Green’s functions for a layered half-space. Part II,
Bulletin of the Seismological Society of America 73: 931-951.

Barros, F. and Luco, J. (1994). Response of a layered viscoelasic half-space to a moving
point load, Wave Motion 19: 189-210.

Jones, D.V. and Petyt, M. (1997). Ground vibration in the vicinity of a rectangular load
acting on a viscoelastic layer over a rigid foundation, Journal of Sound and
Vibration 203(2): 307-319.

Jones, D.V. and Petyt, M. (1998). Ground vibration due to a rectangular harmonic load.
Journal of Sound and Vibration 212(1): 61-74.

Haskell, N.(1953). The dispersion of surface waves on multilayered medium, Bulletin of
the Seismological Society of America 73: 17-43

Kausel, E. (1986). Wave propagation in anisotropic layered media, Infernational Journal

Jor Numerical Methods in Engineering 23: 1567-1578.
Kausel, E. and Peek, R. (1982). Dynamic loads in the interior of a layered stratum: an
explicit solution, Bulletin of the Seismological Society of America 72(5): 1469-1481.

Kausel, E. and Roesset, J. (1981). Stiffness matrices for a layered soils, Bulletin of the
Seismological Society of America T1(6): 1743-1761.

Luco, J. and Apsel, R. (1983). On the Green’s functions for a layered half space. Part I,
Bulletin of the Seismological Society of America 4: 909-929,

Lysmer, J. and Waas, G. (1972). Shear waves in plane infinite structure, Journal of the
Engineering Mechanics Division, Proceedings of the ASCE 98 (EM1): 85-105.

Tassoulas, J. and Kausel, E. (1983). Elements for the numerical analysis of wave motion in
layered strata, International Journal for Numerical Methods in Engineering 19(7):
1005-1032.

Thomson, W. (1950). Transmission of elastic waves though a stratified solid medium,
Journal of Applied Physics 21: 89-93,

Waas, G. (1972). Linear two-dimensional analysis of soil dynamic problems in semi-

16



infinite layer medium, PhD thesis, Department of Civil Engineering, University of
California, Berkeley.
Wolf, 1. (1985). Dynamics soil-structure interaction, Prentice-Hall, Englewood Gliffs,

New Jersey.

17



APPENDIX

Putting

C,-; =0/c;,5,=w/cy

=B Y =L, =By -0,
then
Al When B =0,and o =0
Al.1 Matrix [Ap =(aw) (k,[=1,2,..6; j=1,2,..,n)
a,=La,=la,=La,=1,
ay =—iy 105, a4, = ay,
gy = =00, 180 0y ==Y 10,0y, = —ay,, Gy = —ay,

Gy =Wty a4 =~y

Y 2 _ 2 _ —
=20 0 Y /le>a53 =W 0 0, ),y = —dyy, Ggg =

Qg = _“'j(c + za;z)lcﬂsass —2IL Y, gy = gy, g = Ay
other @’s are zero.

Al.2 Matrix [A]; (=1.2,..,n)
[A]jl = [A]jO[D]j

where [D]; is a diagonal matrix with the elements of

(03 =0 1 “20,k;
dy=ldy=e"" """ dy=dydy=e"
—(0' R IR
dss=e " dgg = dg
Al.3 Matrix [R] and [S]
;m-l 1
n+1 1
Cn+1 1 "1-2
R @2 0
Z’uuﬂuuﬂ ¥ _ un+1(‘:'1+0€.2,+1,z)
[S]_ ‘:rn»l 1 0 anH.Z
al, .
2'l'l"n+1 ez :: 0 _2111;1“'}’
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A2When B =0,and @ =0
A2.1 Matrix [Alp =(aw) (k1=1,2,..6; j=1,2,..,n)
ap =la,=1a,=1a,=1
ay = (A, + 30,1200 15,055 = —iY 1 O, @y = =05, 5 = 0y,
Qg =0l 5, Qs = —0y,
=iy /0, a, =1, (v? TO s, +0,), Gy = =05, 56 = —As;
o = A 20, d = =20 Y, Gy = g, Ggg = gy
other a’s are zero.
A2.2 Matrix [A]; (=1,2,...n)
[4], =[AT,[D),
where [D); is a diagonal matrix with the elements of
dy =1,dy, =" dyy =dydyy ="

i CHR L —
ds=e s s = dss
and [A'],, = (a'k,)(k,l =12,...,6; j =1,2,...,n) are 6x6 matrices the elements of which are

the same as that of [A],, except for the elements in the first and fourth columns:

o o B+ )Ry ' _lj+3p.j Aty
a, =0,a, =— 2o, 2% = Taan, I h

a5y = i lgh— O T Lag = (A + 1 )W, —ayhy)

f ' ' }\.+3}l ?\- G
) - — My TR
Ay = 0,85 = =ay,054 = (3 P TP h;)

a,, =0,a,, = z'y[ ~+ (A W ags = (A, +0,)(1; +ayhy)

A2.3 Matrix [R] and [3]

0 1 0
[RI=| 0 0 1
0 “Hai® o2 0
[S]= _ gm% 0 _ !»ln+1(;j:i3+1,2)
lnﬂ +20,, 0 ~2il Y
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Figure 1 Amplitude of the Fourier transformed vertical displacement
of the ground surface due to asurface unit rectangular
harmonic load of 64Hz. The ground parameters are listed

. in Table 1 with a 7m layer overlying a rigid foundation.
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Figure 3 Amplitude of the longitudinal displacement of the horizontal
plane of 3m depth in the ground due to a surface unit
rectangular harmonic load of 64Hz. Ground parameters are
listed in Table 1 with a 7m layer overlying a rigid foundation.
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Figure 4 Amplitude of the longitudinal displacement of the ground
surface due to a surface unit rectangular harmonic load of

64Hz. the ground parameters are listed in Table 1 with a
7m layer overlying a rigid foundation.
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Figure 5 Amplitude of the vertical displacement along y-axis on the
the ground surface due to a surface unit rectangular harmonic
load of 64Hz. the ground parameters are listed in Table 1 with

a 7m layer overlying a half space.
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Figure 6 Amplitude of the vertical displaéérﬁér;f--of the ground surface
due to a surface unit rectangular harmonic load of 64Hz.
The ground parameters are listed in Table 1 with a 7m layer

overlying a half space.
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Figure 7 The vertical displacement of the horizontal

in the ground due to a unit constant point load moving at speed

¢=700m/s-along the positive x-direction over the surface of a
uniform: viscoelastic half-space.

plane of 10m depth
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Figure 8 The longitudinal displacement of the horizontal plane of 10m
depth in the ground due to a unit constant point load moving
at speed ¢=700m/s along the positive x-direction over the
surface of a uniform viscoelastic half-space.
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Figure 9 The non- dimensional vertical displacement of an observation
point (0,0, 10m) in the ground due to a unit constant point load
moving with ¢=700m/s along the positive x-direction over the
surface of a uniform viscoelastic half-space.
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Figure 10 The non-dimensional longitudinal displacement of an observation
point (0, 0, 10m) in the ground due to 2 unit constant point load
moving at speed ¢=700m/s along the positive x-direction over the
surface of a uniform viscoelastic half-space.
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