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Abstract

It is shown how elastodynamic boundary integral equations (EBIE) formulated for
hounded domains are solved numerically. A detailed analysis using quadratic elements
is presented. For domains with infinite boundaries, the boundary is simply truncated
at a pre-determined value. Results for vertical and horizontal responses due to a

constant surface load over a finite width are also presented.
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1 Imtroduction

This report shows how elastodynamic boundary integral equations (EBIE) formulated
for bounded domains are solved numerically. The form of the singular integrals is
found by investigating the low- frequency behaviour of the Green’s functions. A
detailed analysis using piecewise quadratic elements is presented. Using a simple
example of ground vibration represented by a half-space, it is shown that quadratic

elements are more efficient than constant elements.

2  Boundary Integrals for Elastodynamics

A system of fixed rectangular cartesian co-ordinates is used to present the theory. The
summation convention is used, whereby a repeated sub-index implies a summation.
Quantities with one or two sub-indices denote components of a vector or of a second-
order tensor, respectively. Vectors are written in bold where appropriate.

The co-ordinate axes are denoted by z;, where j = 1,2. The displacement vector
at a point x = (21, 23) is denoted by u(x) and the stress vector by £(x).

In [1] it was shown that, for a bounded domain (! with boundary T, the following

boundary integral equation may be formulated
e (Xjup(x) + /;Tzk(Xb’) ur(y) dl{y) = /rUrk(Xl}’) t(y)dl(y), x€8, (1)

where the integrals are Cauchy Principal Value integrals and where ¢ is given by

51};, if X € Q.,
ka(X) = %61;:', if X € P, (2)
0, if xRN\,

Up(xly) and Ti(x|y) are displacements and tractions for the fundamental solution
(see [1]).

This boundary integral equation permits solving the general boundary value prob-
lem of time-harmonic elastodynamics. If displacements are known over I', (1) pro-
duces an integral equation of the first-kind. If tractions are known over the boundary,
an integral equation of the second-kind is obtained. Finally, a combination of both

types of boundary conditions results in a mixed integral equation.
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3 A numerical method for solving the BIE

A simple method for solving (1) numerically will now be described. The first step
is to divide I' into N divisions or elements I'1,T'y,..., Ty to give an approximation
I'. In the nexy section it is shown how each element is analysed using a quadratic

approximation.

3.1 Quadratic elements

Consider a curved piece of boundary and define three nodal points on the prescribed
section, two nodes at the ends and one node along the element, not necessarily in the
middle. Define also a homogeneous coordinate ¢ which varies between { = —1 and
£ = -+1 along the section of the boundary. The traction and displacement variables
are allowed to vary along the element in terms of their three nodal values and three
interpolation functions Ny, N, N3 where the interpolation functions are quadratic

polynomials in £. Each function takes the value 1 at the associated node and 0 at the

others.
M= LeE-1) M=(-6E+1); No= e+ D). 3

The BIE (1) can be written as

cpug(x) i{fr Tu{xly) us(y) dF(Y)} -

IXNE “

> { [ vwtxl) () M)} = 0 xel («

n=1
where NE is the number of elements and N is the number of nodes. (For closed
domains N =2 x NE).

Note that we have assumed that displacement is continuous over the boundary,
i.c., vertical and horizontal displacement at the left—hand node, say, of one element is
equal to vertical and horizontal displacements at the right-hand node of the adjoining
element. However, the traction variable may be discontinuous across elements, if ad-
joining elements do not share the same unit-normal vector, resulting in a non-square
system of equations. The solution to this problem is the subject of a forthcoming

report. An illustrative example follows:
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Example

Consider a square domain enclosed by a boundary discretised into four guadratic
clements, one element per-side. Thus NE = 4 and N = 8. For each element there
are three values of vertical and horizontal traction to be determined {ie. 3 x4 =12

in total). In addition vertical and horizontal displacements must also be determined

at each node, (N = 8 in total).

To proceed further let A, denote the length of I', for n =13,2,..., N and let

h = max h.,. (5)

1<n<N

Then, provided A is small enough, ui(y) and x(y), & = 1,2 vary quadratically over

each element I'.. Thus, where v,_1, ¥n, ¥ns1, denotes the left hand-side node, mid-

point and right hand-side node of T+ ul(y) = up(yno1), vi(y) = up(yn), ui(y) =

ui(¥ns1) and similarly for the tractions, then

. Tislxly )y Z [ M) Telely)dr(y) i)

[ Unlxly) tely) dr(y 2 [ N Uie(xy)r () tilyn).

The approximation (6) is the basis of the numerical method, but in fact a further

approximation has to be made. The integrals

[ M) Tixly)dD(y) and [ Ni(y)Ui(xly)ar(y) (7

n

cannot be calculated exactly and so are replaced by approximations
H“c(x, I',) and GHC(X,FR) (8)

respectively. We will discuss how H'"(x,T,) and G'*(x, ') are calculated later. Thus,

the integrals in (4) have the approximations

/Fn {Tzk(XIY) us(y) — /r,, Un(xly) ik(y)} dl(y) =
H¥x, T)ur(yn) — G¥(x,Tn)te(ya) (9)
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From (4) and (9) we deduce that

IxNE N
cu(x = S GG Tajtelya) — > H*(x,To)uelyn), x €0 (10)
n=1 n=1

provided 4 is small enough.

3.2 Collocation

Note that in particular the approximation (10) holds when x = yp,, form = 1,2, .., N.
That s,

IXNE N

Clkuk(y;'n) ~ Z GIE(YmaI"n)tk(yn) - Z Hlk(.Ym, rvz)uk(Yn)a m == 1123 R -Nr' (11)
n=1 n=1
Note that, form = 1,2,... . N ¢y = %61k.

The equations (11) are a set of linear equations which are approximately satisfied
by the 2N urknowns, ui(y..) and 3NE unknowns t4{y.) k¥ = 1,2. Since ur(y=) can

bhe written asg
Ym Z 5711:1 Uk yn (12)

the approximations {11) can be written as

3NE
ZHU{ #(¥n) Zsz b(yn), form=1,2,...,N. (13)
n=1
where
1
Hj,f_:n = 5677171 + H[k(y'm,r\n)} 7n—,n - 1, 2,...’N‘
G::;n = le(ymgl—‘n); n = }.,2,...71\{’1’]’1: 1,2,,3NE (14)

Note that equation {10) says that, once we have determined ui(y,) forn =1,2,.. ., N
and t4{y,) forn = 1,2,...,3NE we can calculate 1,(x) approximately for any value

of x € 1. An obvious approximate procedure is to :

(i) replace the & by = in (13), replace the unknown tractions or displacements
via the boundary conditions and solve these linear equations to obtain

approximate values for ui(y,) and t4(¥a).
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(ii) replace the = in (10), and use this equation to calculate an approximation

to w(x) for any x € 01

Thus what we are proposing, is to calculate an approximation ul” (x) to u;(x), this

approximation being defined by

3INE N

ka(x)uf(x) = Z le(x,rn)tf(yn} - Z H”c(x= Fn)uf(yn), x € Q, (15)
n=1 n=1
which implies that
N , 3NE _
Z H::nui\ (Y'n) =~ Z Giintf(Yn): for m = 1325--'1]\"" . (16)
n=1 n=1

Suppose that the tractions ¢;, on the boundary, are known. Hence, the computational

method 1s to :

(a) Calculate the matrices [H¥ ], [G¥ ] and the right hand-side of (16), and

mm

then solve the equations (16) to determine uf'(y,) forn=1,2,..., N.

(b) Using the values calculated in (16) and equations {15} calculate uf (x) at

any given receiver point x.

(c) From the discussion in section 3.1 note that the matrix H is a 2NV x
2N fully populated complex—valued matrix and G is a 2N x 6 NE fully
populated complex—valued matrix. Also the vectors u, of length 2N,
and t, of length 6 NE, respectively represent displacement and traction

solutions on the boundary.

In most practical situations the stress, is given as a boundary condition
{given force or stress free condition) and the given geometry is smooth.
Thus, we are permitted to argue that the given tractions at adjoining
nodes are equal, yielding a well~ posed problem (2N equations with 2V

unknowns).
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4  Evaluation of the integrals

The evaluation of the integrals contained in G* and H'* must be done numerically
to a high degree of accuracy and analytically at the singularity.

The integrals along I', need to be transformed to the homogeneous coordinates

systern £. Hence the integrals become

[ 8\ Tulxly)driy) = [ 6:6)Tulxle) 1] dé a7)
I Untxly)r(y) = [ 6:€)Un(xle) 1] d¢ (15)
where the Jacobian |J] is given by |
U= (e - 2] 4 2D+ (el - D +
{(a3 203 + 2})6 + 5(z3 — 2D HE (19)

The expressions for the fundamental solution displacements Uy and tractions Ti

were derived in [1]. The displacements are given by

1 Cdr or
Urk = 5’;}; (1#511; - @8_321;) (20)
where
B(r) = Kolksr) + ki—r (Kl(kgr)— (-Z-) ]{l(klr)> (21)
2
o) = Ky(kyr) — (Z—;) Ka(kar) (22)

and r? = z? + 2. K; are the modified Bessel functions of the second kind of order :.
The %k component of the traction on a surface whose unit external normal is n,

when a unit load is applied in the [ direction 1s given by

_ 1 [ d¢ & ar Jdr
Ty = E{E — ;} [51ka—n + Enr}
[ o o] Bear oo
r n“ax, 81,0z, 9| " Or Oz Oz On

c1\? oLl d¢ ¢} Or
@) (-2 - G )
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To take into account the possibility of having two different values of any traction
component at the nodes connecting two consecutive elements (required for corner
points), the nodal tractions are arranged in.a 6 x N £ array. The nodal displacements
are arranged in a 2 x N array with two components per node.

Notice that only two unknowns per node is acceptable. This takes place naturally
in any smooth boundary point of a well-posed problem. However at true corner points,
the unknown for a given coordinate will be the displacement, the traction before the
node, the traction after the node, or the unique traction before and after the node.
The so~called corner problem i.e., two different unknown tractions along one nodal
coodinate, is treated in a forthcoming report. In any case, such a situation s somehow
anrealistic, if one knows the displacements along the two directions going towards the
corner, the displacement derivatives and hence the strain and stress tensors can be

obtained from linear theory of the kinematic equations and constitutive relations.

4.1 Non-singular integrals

The evaluation of the matrices [H] and [G] that relate a collocation point x outside an
integration element I', is based on a ten—point Gaussian quadrature rule [2]. However,

the entries of the elements are defined as :

6= [ apnixie) V] de (25)
" = /_tl ¢ (O Tul(x)€) — Ta(x16)} |J] d¢ (26)
1= [T ae)TRxIe) 1] 1)

where T is the static fundamental solution traction temsor. Details of how the
fundamental solutions are evaluated using a low— frequency approximnation is given

in reference [3}.

For the case where the collocation point is within the integration element then a

special routine is implemented for the [G] matrix only.

4.2 Weakly—singular integrals

The matrix entries for [G], which correspond to an element when the collocation

point is one of the three in the element, are considered as weakly—singular integrals as
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the kernel has a logarithmic behaviour which require special attention. The integrals
are split into two parts: one without a singularity, which is integrated by standard
Gaussian integration formulae, and the other which contains a logarithmic singularity,

is evaluated using a special integration technique.

1. Collocation point at node (1).
The singularity of Uy is determined is of the type (see reference [1]).

1 (3 —4v)
Inr. 28
877#6”6 1) nr (28)

iU =
Using this result one can write the function

——j[)—ﬁl(] —v)+In(l +£)/2 (29)

(3 —4v)

which is non-singular and may be integrated using standard Gaussian .
quadrature.

The singular part is integrated after a change of variables = (1 + £)/2.
Using a special integration formula of the type {2]

I = fol In{n)f(n)dy = iwi'f(m)

where the shape functions and Jacobian are contained within the function
fn).
2. Collocation point at node (2).

In order to integrate the two singularities that appear on both sides of the

nodes, the mtegral 1s divides into two parts,

G o= [T N n(xle) ] o (30)
= [ N{e)UnGxlE) 171 de + (31)
[ (@) Vis(x16) 1) de (32)

and the method described for the previous case is repeated.
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5 Boundary integral representation for unbounded
domains

Details of how the method can be extended to unbounded domains are given m

reference [1]. (Note that for open domains N = 2NE +1).

6 Analysis of the horizontal and vertical responses

on the surface of a half-space

In order to use a theoretical model for ground vibration it is necessary to obtain
parameters which are valid for the ground. The Young’s moduli, Poisson’s ratio and
densities of the soil at a number of sites have been measured using p-wave and s-wave
seismic surveys. At the site used in [4] it was found that the ground can be modelled
as a half-space with the following properties : shear and compression wave speeds
in the half-space, 335 and 854 m/s, density for the half-space was found to be 1739
ke/m® Damping has been included in the model as a loss factor proportional to

frequency (0.013 at 32 Hz), {4].

6.1 Comparison of quadratic BEM model with a model us-

ing constant elements

The boundary element model using quadratic elements is compared (see Figure 1)
with a similar model using constant elements. Nodes used in the quadratic element
model numbered Ng = 109 and nodes in the constant element model numbered
Ng = 349. Although it is not shown here, the result for the quadratic element
approximation agrees with a semi-analytical solution [4] with less degrees of freedom
than the constant element approximation. In general, it is conjectured, that the error

for the quadratic element model is O(N;®) compared to O(N; %) for the constant

element model.
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[ul/a - Horizontal displacement x10(-9)

lwi/a - Vertical displacement x10(-9)

Comparison quadratic/constant elements Q=27, C=175

5 10 15 20

Solid{-} Quadratic Dash-dot (-.) Censtant (32Hz)

Distance from centre line of load {(m)

Figure 1 : Vertical and horizontal displacements due to constant load (32 Hz) of
width, 2a=1.5m, over the surface of an elastic half-space. Solid line (-) represents

quadratic element solution and dashed-dot line (-.) represents constant element
solution.
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