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Abstract

Current collection for electrical trains can be improved by the use of an active
pantograph. To design such a system the behaviour of both the active pantograph and
the overhead catenary system must be considered together. In this paper a two degrees
of freedom model of an active pantograph, combined with a time-varying spring
representing the catenary’s influence is employed, and its dynamic performance is
studied. Based on this model, three types of control strategies for an active pantograph
are proposed and investigated, and all these models consider the interaction of the
pantograph with the overhead wire. Two possible positions for mounting an actuator
on the pantograph are considered and compared. From these active pantograph models
the magnitude of the control force required can be estimated, and the advantages and
disadvantages are discussed. The optimal control strategy shows the best performance,
but introduces measurement difficulties because it needs full-state feedback. Classical
feedback control is the least difficult to implement, but a compromise between the

stability and the performance should be reached.
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1 Introduction

For a high speed electrical train one of the key operations is current collection. This
task is accomplished by a pantograph mounted on the roof of the locomotive and an
overhead wire system. When the train operates, the pantograph head is in contact with
the overhead wire and electric power is transferred to the train. Unfortunately, as the
operational speed of a train increases, the vibration of the pantograph and the
overhead wire also increases. It may lead to a zero contact force between the
pantograph head (panhead) and the overhead wire, and therefore, loss of contact,

arcing and wear.

The pantograph and the overhead wire is a dynamic coupled system. They affect each
other through the contact force. A main source of vibration is the stiffness variation of
the overhead wire along the span [1]. In the middle of a span the stiffness of the
overhead wire is minimum and near the support tower it is maximum. When the
pantograph moves along the overhead wire, its stiffness variation produces a periodic
excitation which leads to vibration of the pantograph and fluctuation of the contact
force. Additionally, as the panhead moves along the overhead wire it causes a flexural
wave motion in the wire. In turn, this flexural wave propagation also affects the

contact force and the motion of the pantograph.

The dynamic interaction of the pantograph and the catenary has been studied
extensively over the years. An approximate analytical solution for the contact force
has been presented by Ockendon et al. [2]. Vinayagaligam [3] studied the contact
force variation and the panhead trajectory by using the finite difference methods.
Wormley et al. [4] obtained the free vibration modes of the overhead wire system and
the contact force by using the Rayleigh-Ritz and model analysis methods respectively.
Wu [3] developed a finite element model of the pantograph-catenary system to study
the current collection problem by numerical simulation. Yagi et al. [6] investigated the
dynamic response of the pantograph-catenary system to the lateral movement of the

overhead wire due to its zigzag layout.



In general, for a passive pantograph there are probably two possible ways to avoid the
loss of contact between the panhead and the overhead wire at higher train speeds. One
is to reduce the mass of a pantograph, and the other is to reduce the stiffness
fluctuation and increase the average stiffness of an overhead wire. The latter means
the use of a compound catenary system which has high construction and maintenance
costs. Even if these methods are used, the improvement in the dynamic performance
of the pantograph-catenary system is limited. An alternative approach to solving the
problem is to use an active pantograph. This permits the use of a less complex and
hence less expensive catenary system or a higher operational train speed for a given

catenary system.

Some work has been conducted on active pantograph systems. An active pantograph
using a hydraulic servo has been proposed by Vinayagalingam [7], and Galeotti et al.
[8] have investigated some active pantograph models that use linear force motors.
Huber et al. [9] described some control strategies using a multiple degrees of freedom
pantograph model] and several different models of the catenary. Thompson and Davis
[10} employed an optimal controller using an incomplete state feedback for an active
pantograph with the goal of minimising its mechanical impedance in the low

frequency range.

The active pantograph models cited above mainly use closed-loop feedback control, in
which it is difficult to keep the contact force constant. This is due to the compromise
between the stability and the performance of a feedback control system. For an active
pantograph different control strategies will lead to different results in both
performance and stability. In addition, there is more than one position to mount an
actuator for an active pantograph. An appropriate position for the actuator should be
decided by considering the following aspects (i) the magnitude of the control force
required, (ii) the convenience of mounting an actuator and (iii) the influence of the
actuator on the dynamic performance of the pantograph. The aim of this paper is to
study these aspects comprehensively using a simple model of the pantograph-catenary

systern.



A two DOF active pantograph model combined with a time-varying spring
representing the catenary’s influence is employed, and its dynamic performance is
studied. Based on this model, open-loop, feedback and optimal control strategies with
the aim of maintaining a constant contact force are proposed and investigated, and two
possible positions for mounting an actuator are compared. From these studies the
control force required can be estimated, and the advantages and disadvantages of
various control strategies and actuator positions are discussed. For simplicity some
factors such as initial sag of the overhead wire, fundamental excitation of the
locomotive roof and aerodynamic force to the pantograph are not included in these

models.

2 Passive Pantograph and Catenary System

A picture of a real pantograph-catenary system is shown in Fig. 1 and a much
simplified two DOF dynamic model of the pantograph is shown in Fig. 2. M, and M,
represent the equivalent masses of the panhead and the frame of a pantograph
respectively, K, is the stiffness of the panhead suspension, and C, and C; are the
viscous damping coefficients of the pantograph suspension and the frame to the
ground respectively. Fc represents the contact force between the catenary and the

pantograph, and Fy, the static uplift force applied to the pantograph.

The stiffness variation of the overhead wire in a span is a primary source of the
vibration of the pantograph. A standard catenary systemn and the static stiffness of a
typical overhead wire are shown in Fig. 3 and these are taken from reference [1]. If
wave propagation in the wire is considered, dynamic rather than static stiffness should
be used. The dynamic stiffness of an overhead wire varies with the tension, the density
of the wire and the speed of the pantograph. Compared to the static stiffness, the
dynamic stiffness will dramatically change when the speed of the pantograph is close
to the wave speed in the wire, which is constant at about 400 km/h, but it is very
similar to the static stiffness if the moving speed is below eighty percent of the wave

speed {11). For simplicity only the static stiffness of the overhead wire is used in this



paper, and a pantograph-catenary model including static stiffness variation of the
catenary K(t) is shown in Fig. 4. If the high frequency component of the stiffness

fluctuation between the droppers is neglected, the timé—varying stiffness K(t) can be

wriften as
K(t)=K0(1+acos%t) (1a)
where
Ky = 5 K + Koy) (1b)
and
o~ a9

where K. and K, are the maximum and minimum stiffness of the overhead wire in
a span respectively. Ko is the average stiffness and o is the stiffness variation
coefficient in a span. For different overhead wire systems o typically varies from 0.3

to 0.6. V is the operational speed of a train, and L is the span length.

Based on the assumptions above, the equations of motion of the pantograph-catenary
system model shown in Fig. 4 can be written as
MXx +C(x —x,)+ K (x, —x,)+K(t)x, =0 (2a)
Mi, + C(x, —x)+ Cx, + K (x, —x,)= F, (2b)
The contact force Fcis given by
F. = K, (t)x, (3)
and a loss of contact between the pantograph and the catenary will occur when Fc has

a negative value.

Equations (2a,b) represent a parametrically excited system, so the stability of the
solutions should be examined first. Wu and Brennan [1] considered this for the system
discussed i this paper and showed that a practical pantograph-catenary system is
generally stable, and that the loss of contact at higher speeds is probably caused by the

normal (bounded) vibration of the system.



For a numerical solution to equations (2) and (3) the following parameters are

employed:
M;=8kg M;=12kg K1=10kN/m
C;=120Ns/m C,=30Ns/m Ky=3.6kN/m
o=0.5 L=65m F;=100N

The numerical simulation results for the panhead displacement and the contact force
are obtained by using the 4th order Runge-Kutta method. Fig. 5 shows the
displacement and the contact force in the form of peak-to-peak and maximum values

at different operational speeds.

From Fig. 5 it can be seen that there are three main peaks of the panhead displacement

and the contact force. Setting

O, =K, (M, +M,) and o=22V/L,

where ®, can be regarded as the nominally natural frequency of the pantograph-
catenary system and ¢ is the stiffness variation frequency which is related to the
train’s operational speed and the span length, then we can estimate that these peaks
appear at approximately w=w,/3, 0=0,/2, and @=w, [1]. If the peak-to-peak
displacement or contact force is greater than the maximum displacement or contact
force respectively, the loss of contact between the panhead and the overhead wire will
occur. Therefore, the first crossing point of the peak-to-peak and the maximum graphs
represents the limit of the operational speed of a train. For a pantograph-catenary
system having the parameters detailed above, the maximum speed is about 150 km/h.
When a secure margin of positive contact force is considered, the practical maximum
speed may be only 130 km/h.

It should be pointed out that if the wave propagation in the overhead wire is
considered, the results will become worse than those shown in Fig. 5 when the speed

of trains is greater than 320 km/h. This is because the dynamic stiffness fluctuation



will become larger than the static stiffness fluctuation when the speed of a train is

close to the wave speed in the overhead wire.

For a passive pantograph the only way to avoid the loss of contact at higher speed is to
reduce both the head mass and the frame mass of the pantograph, but this is limited by

the required current-carrying capacity of the pantograph.

3 An Active Pantograph

In this section three types of control strategies for an active pantograph are discussed.
All these models consider the interaction of the pantograph with the overhead wire

which is modelled as a time-varying stiffness as discussed above.

3.1 Open-Loop Control

For an active pantograph there are two convenient positions to mount an actuator, One
is between the panhead and the frame, the other between the frame and the base of the
pantograph. By considering open-loop control the magnitude of the secondary force
can be established without considering the problems of closed-loop stability. Fig. 6
shows the case, where the secondary force Fg acts between the panhead and the frame,
and the equations of motion of this system can be written as

M + C(x, — %)+ K, (x, —x,)+ K(t)x, = F; (4a)

M, +C(x,—x)+Cx, + K (x, - x))=F, ~ F (4b)

The goal of active control is to keep the contact force Fc constant, that is
F. = K(t)x, = const. 5
Now, the panhead displacement x; can be determined by combining equations (1a}

and (3) to give



Fe F,

x = = (6)
K®) g (1+0cos2™
L
and x; can be expressed in terms of the Fourier series as
X, = e ! T :—}-:-;:-Za[. Ccos @, (7a)
Ky l+ocos—t 0 i=0
L
where
: (V1o -1
a, = , i=0; a = - , 120 (7b)
1-o? o' 1o
27Vi
@, = —— Tc
== (7¢)

We can thus write the displacements of the panhead and the frame x; and x;
respectively as a sum of their DC (or static components) X;0 and Xz and their dynamic

components, which gives

X =x,+ Zx”(t) = -IJ-F-;--C—-(a0 + Za,. cos ;1) (8a)
=l 1} =1

Xy =g+ D, %5, (8) (8b)
=1
The secondary force can also be written in terms of its Fourier components as

=Y £ (8¢)

Substituting (5) and (8) into (4) and separating the equations into static and dynamic

sets, then we have

K (x)y—x,)=—F, (9a)

Ki(xyy—x4)=F (9b)
and

Mx,; + C(x,; —x,,)+ K (x);, — %)= [, (10a)

M,%,, + C (%, —%,)+ Cy X%y, + K (x; — x;) = —f,; (10b)



i=12,-,00
Equation (9) yields

F.=F, = const.

X1; can be determined from equations (7a,b,c) and then, fg and x; can be derived using

equations (10a,b). We can write the complex form of x;;, X; and f;as

x,; = X, e’ - (11a)

x,, = X, (11b)

fi=Fe'™ (11c)
where Xy, X2 and Fy; are complex amplitudes, and substitute (11) into (10) to give

(K, - 0’M, + jo,C)X, = (K, + jo,C)X, +F, (12a)

[K, - @M, + jo,C +C)IX,, =(K, + jo,C)X,,~ F, - (12b)

It can be seen from (12) that the required active control force Fs to maintain a constant
contact force is a function of the panhead displacement x;. We can obtain Fs by

combining equations (8), (11) and (12) to give

F,=F, ‘;—‘2 a, [J(l - M, [K,) +(0,C,/K,)* cos(w;t+¢,,)

0 i=1

+a),.M]\/i;$2")Cj iK(‘j:; cos(@;t + @, (13a)
where

@, =tan™ Fi)flfj}; (13b)
and

@, =tan” wf‘(—?’ +tan"! wilzdz (13¢c)

where a; and o; can be calculated using (7b) and (7c) respectively.

It can be seen from (13), the active control force Fs is proportional to the stiffness of

the panhead suspension. If K; is stiff, a large Fs is required and vice versa. Therefore,



when the actuator is placed between the panhead and the frame, a softer panhead
suspension is beneficial, as it reduces the secondary force required. Fig. 7 shows the
results of the open-loop control of the active pantograph which has the same
parameters as the passive pantograph discussed above. In general, it is sufficient to

take only the first three terms in (13) to obtain a satisfactory approximate solution.

In practice, the panhead-frame mounted actuator would have the disadvantage of
increasing the panhead mass. This would lead to a poor dynamic performance of the
pantograph so that a larger active control force would be required. The frame actuated
active pantograph may be more acceptable. Many pantographs have a pneumatic
cylinder on the base to provide the uplift force and it may be possible to modify it for

active control.

Fig. 8 shows the frame actuated active pantograph model, and the equations of motion
can be written as
M +C (- x%,)+K/(x, —x,)+ K{t)x, =0 (14a)
Mk, + C(x, - %)+ Cx, + K| (x, —x,)=F, + F§ (14b)

Applying the same procedure to (14) as to (4), we obtain the following results

F.=F, =const.

-
F =53 00 o 04, + M, +C; cos@;t+ ;)

0 i=l

(o.M M) +(MC,)*
+a)‘2 P12 1>2 .+ ) 15
4 ‘\/ K12 +(wicl)2 COS( i ¢21)] ( a)
0, =7r-tan*’--c‘— (15b)
o, (M, +M,)
@,, =—tan” 5 tan™ 28 (15¢)
oM, K

It can be seen from (15) that the active control force required increases when the

operational speed of trains increases. Fig. 9 shows the results of the frame actuated



active pantograph with the same parameters as the passive pantograph discussed
above. From Fig. 9 it can be seen that the active control force Fg is quite small,
compared with the panhead-frame actuated active pantograph. It is only about 130 N
maximum for a 100 N contact force at the speed of 300 km/h. This means that the
capacity of the pneumatic actuator would only need to be increased by about thirty

percent if it were to be used to generate the secondary force.

This analysis of an open-loop control strategy has enabled the secondary force to be
calculated for two different practical actuator configurations. However, a realistic
control system would require a closed-loop control strategy and this is discussed in the

next section.

3.2 Feedhack Control

The isolated diagram of a frame actuated active pantograph is shown in Fig. 10 where
K(t) and C; are replaced by the contact force Fc and the damping force C,x%,

respectively. The equilibrium equation can be written as

M3 +M,%, + Cy%, = F, +F, - F, (16)

If the control force is determined by

F; =M x, +M,%, +C,x%, V)]
then

F. = F, = const.
Therefore, the active control force Fg can be produced through acceleration and

velocity feedback.

Considering the stability of a feedback control system, (17) cannot be directly used for
producing the control force because it represents the critical state between stability
and instability. A compromise between the performance and the stability for a
feedback control system should be reached, so the practical control force should be

produced through

10



Fo =g MX +g,M,%, +g,Cx%, (18)
where g;, g» and gz are the feedback coefficients, and satisfy the relationship

0<g.8,.8 <1 (19)

In this case, the contact force F¢ will no longer be constant. Its fluctuation is related to
the feedback coefficients g;, g» and g;. Substituting (18) into (16) yields

F,o=F -(1-g)MZ% —(1-g, )M, —-(1-g,)C,%, ' (20)
From (20) it can be seen that if g;, g» and gz are close to 1, the fluctuation of the
contact force will be small, but the margin of the stability will also be small, so a

compromise should be considered.

Furthermore, if the whole system, that is the active pantograph combined with the
overhead wire, is taken into account, the stability problem of the system will be more
complicated. The equations of motion of the pantograph-catenary system with the
active control force using acceleration and velocity feedback can be written as
M +C 0 —x)+ K (x, —x,)+ K(f)x, =0 (21a)
(1~g )M, ~gM3x +C(x,—%)+(C, - g )%, + K (x, = x)=F, (21b)
where

K(ty=K,(l +acos~2~%‘-f-t)

Equations (21) still represent a parametrically excited system, but now there is a
control force. The boundaries of the stable and unstable areas of the solution depend
on the parameters of the pantograph-catenary system and also on the feedback
coefficients g;, g and gz. This makes it much more difficult to determine the

boundaries between stability and instability.

In practice, it is unnecessary to investigate the stability of the system separately when
the numerical calculations are carried out. If a numerical solution is divergent, it will
be clear that the system is unstable, and so these proposed feedback coefficients will

not be acceptable.

11



Fig. 11 and Fig. 12 show situations of an active pantograph using feedback control.
For simplicity, g, and g, have the same value, and the parameters of the pantograph
are the same as before. From Fig. 11 and Fig. 12 some important points of the active
pantograph using acceleration and velocity feedback control may be summarised, they

arc:

1. The goal of keeping the contact force constant cannot be achieved because there is a

compromise between the performance and the stability for a feedback control system.

2. The velocity feedback g3 is not always beneficial because it reduces the damping

which is important to keep the system stable.
3. The larger the stiffness of the panhead suspension, the better the resuits.

Another very useful point is that acceleration feed back control has the advantage of
avoiding measurement problems since accurate measurement of displacements and
velocities can be difficult to achieve directly and accelerometers readily provide

reliable measurement of accelerations.

3.3 Optimal Feedback Control

Because it is difficult to maintain a constant contact force using classical feedback
control, another way to achieve the goal of keeping the contact force constant could be

to use optimal feedback control.

For optimal control the equation of motion of the pantograph-catenary system should
be represented in state-space form [12], which is

X =ADX(O+BUQ®) 21)
where

X=[x x % 552]?

12



P 1

©=-mx -mc
1 T

B=—[0 0 0 1

U@)=F(@)

M, K and C are the system’s mass, stiffness and damping matrices respectively, and
have the form
M 0 } Kz[K(t)+Kl —K,}

C: "Cl
M = =
0 M, -K, K —C, C+C,

F(t) is the combination of the active control force and the uplift force, and the actuator

is mounted between the frame and the base, as discussed in the previous section.

The objective of providing a constant contact force using an active pantograph can be
described as the problem of designing an optimal control input to make the
pantograph to track or follow a given reference state X(t). Here only one component
of X(t)should be tracked, that is the panhead displacement x,(t) to keep the contact

force constant. X;(t) can be calculated through (7).

For an optimal tracking problem the performance measure can be defined as [12]

J= %[X(rf - X)) B[X()-X,¢)]

1% , .
5 f {[X O-X,0] O[X()-X,(1)]+U (t)RU(t)}dr 22)

In the above equation, the time interval [ty, t], where tp and t; are the beginning and
the terminal times of the optimal control respectively, is generally defined to be longer
than that of the external excitation, but this is not necessary for a periodically time-
varying system if the reference state X(t) is also periodic. H, Q and R the weighting
matrices whose magnitudes are assigned according to the relative importance attached
to the state variables and to the control forces in the minimisation procedure of the
performance measure. Becanse only the panhead displacement x,; should be tracked

and there is only one control force F(t), H, Q and R take the form

13



H= 0= R=r (23)

and

hqgr>0

Then the optimal control force U(t) for maintaining a constant contact force has the
form {13]

U(t)=—R"'B"P(t)X(1)+ R"'B"S(?) (24)
where P(t) and S(t) are the solutions of the following differential equations with their

terminal conditions

P =-ATOPH) - POAT 1)+ PO)BR'B"P(t)- Q (25a)
P(t,)=H (25b)
S =-[A" ()~ P()BR™'B"|S(1) - QX (1) (262)
S(1,) = HX,(t,) (26b)

Equations (25a,b) represent a matrix differential equation known as the Riccati

equation and equations (26a,b) represent a vector differential equation.

It can be seen from (24) that the optimal control force is derived from feedback
control (proportional to X(t)) and open-loop control (proportional to S(t)). The

optimal feedback control gain matrix has the form

G=R'B'PN)=[g,() &1 &® &®] 27
and the optimal open-loop control has the form

w(t)= R™'B7S(z) (28)
Thus the optimal control force can be written as

F(t) = -G X(t) +w(?) (30)

Fig. 13 shows simulations of the active pantograph which has the same parameters as

discussed above and uses optimal control with optimal feedback coefficients gi(t),

14



22(t), g3(t), g«(t) and the optimal open-loop control w(t). Comparing Fig. 13 (b} with
Fig. 9 (d), it can be seen that similar results for both the contact force and the control
force are achieved with both open-loop control and optimal control. Some important

conclusions for the active pantograph using optimal control may be stated as follows:

1. Because the optimal control force is partly derived from feedback, this control

strategy can resist external disturbances.

2. The optimal controller must know exactly where the panhead is in a span of the
overhead wire because the control force includes open-loop control. Also the optimal
feedback gain matrix is periodically time-varying with the same cycle as the stiffness

fluctuation of the overhead wire.

3. The optimal control is based on full-state feedback, and this introduces possible
measurement difficulties because accurate measurement of displacement and velocity

can be difficult to achieve directly.

4 Conclusion

In the paper three control strategies to achieve a relatively constant contact force
between an active pantograph and the overhead wire have been discussed. The
advantages and disadvantages of the different control strategies have been highlighted.
For the active pantograph under open-loop control there is no stability problem, but it
also cannot respond to any external disturbances. The active pantograph using
feedback control can respond to external disturbances, but it has a stability problem
which is related to the pantograph itself and to the pantograph-catenary system. Thus a
compromise between the stability and the performance has to be reached. The optimal
control strategy can also resist external disturbances, and achieves the best theoretical
performance. However, if the measurement problem is taken into account, its
realisation is the most difficult. If the active pantograph under feedback control uses

acceleration feedback alone, then it will be the least difficult to implement.
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It has been mentioned above that the influence of the wave propagation in the
overhead wire has not been included in the model. In addition, some factors such as
initial sag of the overhead wire, excitation of the pantograph by the locomotive roof

and aerodynamic forces should be investigated in the further studies.
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6 Figures

Fig.1 A pantograph-catenary system in operation.
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Fig. 2 Two DOF pantograph model.
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Fig. 4 The pantograph-catenary model considering the influence of the static

stiffness variation of the overhead wire.
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Fig. 6 The panhead-frame actuated active pantograph model.
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