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ABSTRACT 

Until recently, optimization was regarded as a discipline 
of rather theoretical interest, with limited real-life 
applicability due to the computational or experimental 
expense involved. Multiobjective optimization was 
considered as a utopia even in academic studies due to 
the multiplication of this expense. This paper discusses 
the idea of using surrogate models for multiobjective 
optimization. With recent advances in grid and parallel 
computing more companies are buying inexpensive 
computing clusters that work in parallel. This allows, for 
example, efficient fusion of surrogates and finite element 
models into a multiobjective optimization cycle. The 
research presented here demonstrates this idea using 
several response surface methods on a pre-selected set of 
test functions. It shows that a careful choice of response 
surface methods is important when carrying out surrogate 
assisted multiobjective search. 
 
1. INTRODUCTION 

In the world of real engineering design, often there are 
multiple targets which manufacturers are trying to 
achieve. For instance in the aerospace industry, a general 
problem is to minimize weight, cost and fuel consumption 
while keeping performance and safety at a maximum. 
Each of these targets might be easy to achieve 
individually. An airplane made of balsa wood would be 
very light and will have low fuel consumption, however it 
will not be structurally strong enough to perform at high 
speeds or carry useful payload. Also such an airplane 
would not be safe, i.e., robust to various weather and 
operational conditions. On the other hand, a solid body 
and a very powerful engine will make the aircraft 
structurally sound and able to fly at high speeds, but its 
cost and fuel consumption will increase enormously. So 
engineers are continuously solving the problem of making 
trade-offs and producing designs that will satisfy as many 
requirements as possible, while industry, commercial and 
ecological standards are at the same time getting ever 
tighter. 
 
Multiobjective optimization (MO) is a tool that aids 
engineers in choosing the best design in a world where 
many targets need to be satisfied. Unlike conventional 
optimization, MO will not produce a single solution, but 
rather a set of solutions, most commonly referred to as 
Pareto front (PF). By definition it will contain only non-

dominated solutions. It is up to the engineer to select a 
final design by examining this front. 
 
2. SURROGATE MODELS FOR OPTIMIZATION 

The aim of MO is to produce a well spread out set of 
optimal designs, with as few function evaluations as 
possible. There are number of methods published and 
widely used to do this – MOGA, SPEA, PAES, VEGA, 
NSGA2, etc. Some are better than others - generally the 
most popular in the literature are NSGA2 (Deb) and 
SPEA2 (Zitzler), because they are found to achieve good 
results for most problems [2-6]. The first is based on 
genetic algorithms and the second on an evolutionary 
algorithm, both of which are known to need many 
function evaluations. In real engineering problems the 
cost of evaluating a design is probably the biggest 
obstacle that prevents extensive optimization procedures. 
In the multiobjective world, the cost is multiplied, 
because there are multiple expensive results to obtain. 
Evaluating directly a finite element model can take 
several days, which makes it impossible to try hundreds 
or thousands of designs. 

 

Figure 1 – Surrogate models for optimization 
 
In the single objective world, approaches using surrogate 
models are fairly well established and have proven to 
successfully deal with the problem of computational 
expense (see Figure 1). Since their introduction, more and 
more companies have adopted surrogate assisted 
optimization techniques and some are making steps to 
incorporate this approach in their design cycle as a 
standard. The reason for this is that instead of using the 
expensive computational models during the optimization 
step, they are substituted with a much cheaper but still 
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accurate replica. This makes optimization not only 
useful, but usable and affordable.

The key idea that makes surrogate models efficient is that 
they should become more accurate in the region of 
interest as the search progresses, rather than being equally 
accurate over the entire design space, as an FE 
representation will tend to be. This is achieved by adding 
to the surrogate knowledge base only at points of interest. 
The procedure is referred to as surrogate update.

Various publications address the idea of surrogates 
models and multiobjective optimisation [10 – 19].  As one 
would expect, no approximation method is universal. 
Factors such as function modality, number of variables, 
number of objectives, constraints, computation time, etc. 
all have to be taken into account when choosing an 
approximation method.  The work presented here aims to 
demonstrate this diversity and hints at some possible 
strategies to make the best use of surrogates. 

3. MULTIOBJECTIVE OPTIMIZATION USING SURROGATES 

To illustrate the idea, the zdt2 function will be used. It is a 
good function to demonstrate the effectiveness of 
surrogate models, as it is fairly simple for response 
surface (surrogate) modelling. Figure 2 represents the 
function and the optimisation  procedure. It is a striking 
comparison, demonstrating the idea. The problem has two 
objective functions and two design variables. The pareto 
front obtained using surrogates with 40 function 
evaluations is far superior to the one without surrogates 
and the same number of function evaluations. On the 
other hand 2500 evaluations without surrogates were 
required to obtain similar quality of pareto front as in the 
case with surrogates and 40 evaluations. The difference is 
even more significant if more variables are added – see 
Table 1. 
 
Here we have chosen a set of objective functions with 
simple shapes to demonstrate the effectiveness of using 
surrogates. Both functions would be readily approximated 
using most of the methods. It is not uncommon to have 
relationships of similar simplcity even in reality, although 
external noise factors would make them look rougher.  
 
Relationships of higher order of multimodality would be 
more of a challenge for most methods, as will be 
demonstrated later. 
 

Figure 2a – Function ZDT2 
 

Figure 2b – ZDT2 – Pareto front achieved in 40 
evaluations: Diamonds – pareto front with surrogates; 

Circles – solution without surrogates 

Table 1 – Full function evaluations for  
Problem 1 – Figure 2 

Number of variables 2 5 10 
Number of function 
evaluations without 
surrogates 

2500 5000 10000 

Number of function 
evaluations with 
surrogates 

40 40 60 



4. LOCAL AND GLOBAL PARETO FRONTS 

Similar to the single objective optimization, in the 
multiobjective world, it is also possible to have local and 
global optimal solutions. This concept is demonstrated 
using the F5 test function. Figure 3 illustrates the function 
and the optimization procedure, again with and without 
surrogates. 
 

Figure 3 – Problem 2: Achieved in 100 evaluations: 
Diamonds – pareto front with surrogates; Circles – 

solution without surrogates 
 
Due to the sharp nature of the global solution it cannot be 
guaranteed that with a small number of GA evaluations, 
the correct solution will be found. Further more, since the 
surrogate is based only on sampled data, if this data does 
not contain any points in the global optimum area, then 
the surrogate will never know about its existence. 

Therefore any optimization based only on such surrogates 
will lead us to the local solution. Therefore conventional 
optimization approaches based on surrogate models rely 
on constant updating of the surrogate. A widely accepted 
technique in the single objective optimization is to update 
the surrogate with its optimal solution. In multiobjective 
terms this will translate to updating the surrogate with one 
or more points belonging to its pareto front. If the 
surrogate pareto front is local and not global, so the next 
update will also be around the local pareto front.  

 
Continuing with this procedure the surrogate model will 
become more and more accurate in the area of the local 
optimal solution, but will never know about the existence 
of the global solution. So it turns out that the success of 
multiobjective optimization based on surrogates, using 
updates at previously found optimums strongly depends 
on the initial data used to train the first surrogate before 
any updates were added. If this data happens to contain 
points around the global pareto front, then the algorithm 
will be able to quickly converge and find a nice global 
pareto front, as on Figure 3. However the odds are that the 
local pareto fronts are smoother and easier to find shapes 
and in most cases this is where the procedure will 
converge. Figure 4 illustrates the difference of the local 
and global pareto fronts for the test function considered. 
Various approaches to escape from the local solution 
exist. Some are more efficient than others: a comparison 
will be provided in a further publication. 

 

Figure 4 – Some problems may have deceptive features 
and local solutions. 

5. RESPONSE SURFACE METHODS, OPTIMIZATION 
PROCEDURE AND TEST FUNCTIONS 

Kriging is a Response Surface (RS) method, designed in 
the 60’s for geological surveys [7]. It can be a very 



efficient RS model for cases where it is expensive to 
obtain large amounts of data. A significant number of 
publications discuss the kriging procedure in detail. An 
important role for the success of the method is the tuning 
of its hyper parameters. It should be mentioned that 
researchers who have chosen correctly the training 
procedure, report positive results when using kriging, 
while publications who use basic training procedures 
reject this method. Nevertheless, the method is becoming 
increasingly popular in the world of optimization as often 
it provides a surrogate with reasonable or good accuracy. 

This method was used to build surrogates for the above 
two test cases, therefore it is useful to briefly outline its 
pros and cons: 
 
Pros:  
• can always predict with no error at sample points 
• the error in close proximity to sample points is 

minimal 
• requires small number of sample points in 

comparison to other response surface methods 
• reasonably good behaviour with high dimensional 

problems. 
 
Cons:  

for large number of data points and variables 
training of the hyper-parameters and prediction may 
become computationally very expensive  

 
Researchers should make a conscious decision when 
choosing Kriging for their RSMs. Such a decision should 
take into account the cost of a direct function evaluation 
including constraints if any, available computational 
power, and dimensionality of the problem. Sometimes it 
might be possible to use kriging for one of the objectives 
while the other is evaluated directly, or a different RSM is 
used to minimize the cost. In other cases it might be more 
feasible not to use RSMs at all, as this might be the more 
expensive solution. Discussion of other methods will be 
given in the following sections of this paper. 
 
A number of other response surface methods exist. There 
is a selection of several methods which will be considered 
in this paper that do not require initial pre-training 
procedure [1]. The following list details all 12 methods 
which will be considered in the present paper: 
 
SRSM: Shepard response surface model 
LRBF:  linear Radial Basis Function  
TPRBF: thin plate Radial Basis Function  
CSRBF:  cubic splines Radial Basis Function  
CSRBF1: cubic splines Radial Basis Function with 

regression via reduced bases  
MPRM: mean polynomial regression model 
PRM11:  first order polynomial regression model 

PRM12:  first order polynomial regression model plus 
squares  

PRM13:  first order polynomial regression model plus 
products (cross-terms)  

PRM21: second order polynomial regression model  
PRM22:  second order polynomial regression model 

plus cubes 
KRIG:  Stochastic process modelling - Kriging 
 
Other RS methods exist, such as neural networks and 
fuzzy logic, however we believe that the above set is 
representative extract of methods that can illustrate the 
idea of multiobjective optimization using surrogates. 
 
As this paper aims to overview the usage of several 
methods, the optimization procedure and its settings will 
be kept the same while the RS method used to build the 
surrogate will change. The chosen multiobjective 
algorithm is NSGA2. Other multiobjective optimizers 
might show slightly different behaviour. The procedure is 
as follows: 
 
1. Carry out 20 LPt [8] spaced initial 

direct function evaluations.  
2. Train hyper-parameters (only for 

kriging) 
3. Run NSGA2 on the RSM, population 

size 50 for 50 generations. 
4. Select 20 evenly spaced points from 

the pareto front in objective space 
as well as in parameter space, by 
using the corresponding Euclidian 
distances as a measure. 

5. Evaluate these 20 points 
6. Add results to the existing data 

pool of direct function evaluations 
7. If data pool is larger than 150 

points, choose the best 150 points 
in terms of closeness to the last 
pareto front. This measure is once 
again the average euclidian distance 
between a point being considered and 
all points on the last Pareto front. 

8. Rank the data pool and extract the 
real pareto front 

9. Repeat 20 times from point 2. 

There are several possible stopping criteria 
1. Fixed number of update iterations 
2. Stop when all update points are non-dominated 
3. Stop if the percentage of new update points that 

belong to the Pareto front falls below a pre-
defined value 

4. Stop if the percentage of old points on the 
current Pareto front rises above a pre-defined 
value 

5. Stop when there is no more improvement of the 
Pareto front quality. The quality of the Pareto 
front is a complex multiobjective problem on its 



own. The best Pareto front could be defined as 
the one being as close as possible to the origin of 
the objective function space, while having the 
best diversity, i.e. spread on all objectives and 
the points are evenly distributed. Metrics for 
assessing the quality of the Pareto front will be 
discussed also in a further publication. 

 
Four test function with various complexity have been 
chosen to carry out the overview of the RS methods for 
the purpose of multiobjective optimization. These 
functions are well known from the literature: 
 

Figure 5 – ZDT3 function 
 

ZDT2:  (Figure 2). convex shaped pareto front. The two 
objectives are very smooth with no sharp 
features. Two objectives, n variables (in the 
present study n = 2 ), no constraints. x (i) = 0 .. 1, 
i = 1, 2 [3 – page 357] 

 
F5: (Figure 3). High shape complexity – has a 

smooth and a sharp feature. The combination of 
both makes it easier for the optimization 
procedure to converge to the smooth feature, 
which represents a local Pareto front. The global 
Pareto front lies around the sharp feature which 
is harder to reach. Two objectives, x (i) = 0 .. 1, i
= 1, 2; no constraints. [3 – page 350] 

 
ZDT3: (Figure 5). Clustered and discontinued Pareto 

front. Shape complexity is moderate. Two 
objectives, n variables (in present study n = 2 ), 
no constraints. x (i) = 0 .. 1, i = 1, 2 [3 – page 
357] 

ZDT3-10: (Figure 5). Same as above, however using     n
= 10 
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6. RESULTS 

A study has been carried out using all of the above 
response surface methods. The performance quality of 
each method is measured by the distance of the members 
of the Pareto front it produced to the true solution. The 
distance of the resultant Pareto front is monitored after 
each update. The closeness measure is defined as the 
average distance from a each point on the achieved pareto 
front and the closest point on the ‘real Pareto front’. The 
latter has been obtained using 20000 direct function 
evaluations using NSGA2 (Population size of 100 and 
200 generations) 
 
Figures 6 and 7 represent the performance of the RS 
methods considered for function F5. It is interesting to 
compare them to the situation where no RSM is used. Due 
to the deceptive nature of F5, it can be observed that most 
of the methods have stopped their advance almost 



immediately. This is due to a weakness that conventional 
surrogate models exhibit. To explain this we would like to 
stress the fact that surrogate models need updating in 
order to improve their accuracy only where it is needed – 
around the area of optimal Pareto solutions. For functions 
that have no deceptive Pareto front features this is a very 
good scheme. However it fails in multimodal cases. The 
sole reason is that the points for the next update are taken 
from the previously found Pareto front. In this case – it is 
easier to find the deceptive Pareto front and this is where 
the surrogate is being updated. Due to lack of sufficient 
information about the rest of the objective surfaces, most 
of the methods see the deceptive Pareto front as the ‘best’ 
solution and take no action to explore. One can see that 
kriging, manages to utilise any information even away 
from the optimum and manages to construct a more 
representative response surface. Therefore – it is less 
influenced by this weakness and manages to advance 
towards the real pareto optimal set of solutions. 
 

Figure 6 – Closeness to the true pareto front for F5 

Figure 7 – Pareto fronts for F5 
 

Figure 8, 8a and 9 represent the performance of all 
methods, when applied to ZDT3 function. In this case 
with 2 variables.  

Figure 8 – Closeness to the true pareto front for ZDT3 
 

Figure 8a – Zoomed version of Figure 8. 
 

Figure 9 – Pareto fronts for ZDT3 
 



Figure 10 – Closeness to the true pareto front for ZDT3 – 
10 variables 

Figure 11 – Pareto fronts for ZDT3 – 10 variables 
 

It is seen that all methods rapidly achieve the optimal 
solution as the function has no deceptive features and sine 
curves are no challenge for most methods. Shepard RSM 
and Linear Radial basis functions converge with some 
delay in relation to the rest, but it is interesting to observe 
on Figure 9a that both of them get closest to the real 
pareto front. The same function can be run with 10 
variables, which changes the picture of performance. 
Figures 10 and 11 demonstrate that kriging is the best 
performing method even with 10 variables. 

Figures 12, 12a and 13 illustrate the performance of all 
methods with the very simple function ZDT2. As 
expected all methods but one, reach the true pareto front 
immediately after the first update. Shepard Response 
surface methods struggles down the way but never get as 
close as the other methods. It is interesting to mention that 
on a zoomed in scales, linear radial basis functions reach 
closest to the target, although are a bit slow at the 
beginning. 

Figure 12 – Closeness to the true pareto front for ZDT2 
 

Figure 12a – Zoomed version of figure 12 
 

Figure 13 – Pareto fronts for ZDT2 
 



7. CONCLUSIONS, CURRENT AND FUTURE WORK 

The ultimate aim of using surrogates for optimization is to 
reduce the number of function evaluations. A real life 
multiobjective optimization may have several objectives 
and several constraints, all of which need to be evaluated 
at each iteration. If some prior knowledge about the shape 
of each objective and constraint is gathered, then it is 
possible to devise a mixture of RSM methods which will 
give the best combination of accuracy and computational 
expense. Some of the constraints or objectives might be so 
simple and quick to compute, that it might be more 
feasible to evaluate them directly, while others use 
surrogates. 
 
The results obtained here show that the performance of all 
methods depends on the features of the objective 
functions being optimized. Kriging appears to perform 
well in most situations, however it is much more 
computationally expensive than the rest. It is obvious that 
a careful consideration of RSM could lead to a situation 
where all objectives in a multiobjective problems are 
modelled using different methods, in order to maintain 
high quality and reduce optimization costs.  
 
In general, the Cubic spline RBF is a good method that 
combines low cost and relatively to other methods quick 
convergence. For harder functions, Kriging appears to be 
the method to choose. Simple wave like functions can be 
approximated using Shepard functions, as it is the 
quickest RSM in the considered set. Amongst the 
polynomial methods, PRSM12 would be a good choice 
for wavy and simple feature functions. 
 

Figure 14 – ongoing and future work  
(kriging and function F5) 

 
An important weakness in the conventional surrogate 
update strategy has been discussed, causing most of the 

methods to converge around local features and thus 
missing the global solutions. Currently work is being 
carried out to investigate methods that overcome this 
difficulty. Figure 14 demonstrates a snapshot of a research 
aiming to produce the best update strategy. This work will 
be published soon as a journal publication. For the 
purpose of the current paper, it is suffice to say that the 
figure represents various update strategies, using kriging 
and function F5. It is interesting to compare some of them 
to Figure 6. It is obvious that a good strategy can 
significantly reduce the number of required function 
evaluations.  

8. ACKNOWLEDGEMENTS 

This work was funded by Rolls – Royce Plc, whose 
support is gratefully acknowledged. 
 
9. REFERENCES 

1. Keane, A. J, OPTIONS manual, 
http://www.soton.ac.uk/~ajk/options.ps

2. S. Obayashi, S. Jeong, K. Chiba, “Multi-Objective 
Design Exploration for Aerodynamic 
Configurations”, AIAA-2005-4666 

3. Deb, K., Multi-objective optimization using 
evolutionary algorithms, John Wiley & Sons, Ltd., 
New York, 2003. 

4. Zitzler et al, Comparison of multiobjective 
evolutionary algorithms: Empirical results.
Evolutionary computational journal 8(2), 125-148. 
2000 

5. Knowles, J. and Corne, D. (1999) The Pareto 
archived evolution strategy: A new baseline 
algorithm for multiobjective optimisation. 
Proceedings of the 1999 Congress on 
EvolutionaryComputation, Piscatway: New Jersey: 
IEEE Service Center, 98–105. 

6. Fonseca, C. M. and Fleming, P. J. (1998) 
Multiobjective optimization and multiple constraint 
handling with evolutionary algorithms–Part II: 
Application example. IEEE Transactions on 
Systems, Man, and Cybernetics: Part A: Systems and 
Humans. 38–47. 

7. D. R. Jones, M. Schonlau and W. J. Welch, Efficient 
global optimization of expensive black-box 
functions, Journal of Global Optimization, Vol. 13, 
pp. 455-492, 1998 

8. I.M.Sobol', V.I. Turchaninov, Yu.L. Levitan, B.V. 
Shukhman: "Quasi-Random Sequence Generators"  
Keldysh Institute of Applied Mathematics,  Russian 
Acamdey of Sciences, Moscow (1992) 

9. H. Nowacki, “Modelling of Design Decisions for 
CAD”, in Lecture notes in computer science no. 89: 
CAD modelling, systems engineering, CAD – 
systems,ed. G. Goos, J. Hartmanis, Springer-Verlag, 
Berling (1980) 

http://www.soton.ac.uk/~ajk/options.ps


10. Takayasu Kumano, et al, (Jannuary 2006), 
Multidisciplinary Design Optimization of Wing 
Shape for a Small Jet Aircraft Using Kriging Model, 
44th AIAA Aerospace Sciences Meeting and Exhibit,
pp 1 – 13 

11. Nain, P. K. S. and Deb, K (March, 2005). A multi-
objective optimization procedure with successive 
approximate models. KanGAL Report No. 2005002.

12. Andy Keane, Prasanth Nair, June 2005, 
Computational Approaches for Aerospace Design: 
The Pursuit of Excellence, ISBN: 0-470-85540-1 

13. S. Leary, A. Bhaskar, and A. J. Keane, "A derivative 
based surrogate model for approximating and 
optimizing the output of an expensive computer 
simulation," J. Global Optimization 30 pp. 39-58 
(2004) 

14. S. Leary, A. Bhaskar, and A. J. Keane, "A Constraint 
Mapping Approach to the Structural Optimization of 
an Expensive Model using Surrogates", Optimization 
and Engineering 2 pp. 385-398 (2001) 

15. M. Emmerich and B. Naujoks. Metamodel-assisted 
multiobjective optimization strategies and their 
application in airfoil design. In I. Parmee, editor, 
Proc of. Fifth Int'l. Conf. on Adaptive Design and 
Manufacture (ACDM), Bristol, UK, April 2004, 
pages 249{260, Berlin, 2004. Springer. 

16. Giotis A.P., Giannakoglou K.C. “Single- and Multi-
Objective Airfoil Design Using Genetic Algorithms 
and Artificial Intelligence”, EUROGEN 99, 
Evolutionary Algorithms in Engineering and 
Computer Science, May 1999 

17. Knowles, J and Hughes, E. J. (2005) Multiobjective 
optimization on a budget of 250 evaluations. 
Evolutionary Multi-Criterion Optimization (EMO 
2005), LNCS 3410, pp. 176-190, Springer-Verlag.  

18. Chafekar, D. et al. Multi-objective GA optimization 
using reduced models. IEEE SMCC 35(2):261-265, 
2005 

19. Nain, P. A computationally efficient multi-objective 
optimization procedure using successive function 
landscape models. Ph.D. dissertation, Department of 
Mechanical Engineering, Indian Institute of 
Technology, July 2005-12-09 

 


