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Introduction

Ultrafast photonic switching using third-order optical non-
linearities has been reported in dual-guide nonlinear direction-
al couplerslr2 (NDC’s) and in a unique rocking-filter fibre
switch3. In the second device, the two modes of a highly bi-
refringent fibre are coupled together by a periodic distortion
that is induced during the pulling process by rocking the pre-
form at the birefringent beat period. Nonlinear effects dephase
the resonant condition, and switch the device. 1In this paper a
somewhat analogous device is proposed and analysed. This is a
periodically perturbed NDC that may be hundreds of coupling
lengths L. long.

Uniform directional couplers (DC’s) have been of interest
for some time as linear vehicles for nonlinear switching4. Those
NDC’'s so far reported are 1xL. long, so that for nonlinear
switching their linear "coupling index" (the difference in guid-
ed index between the odd and even normal modes) has to be of the
same order as the "nonlinear index" (the change in index due to
the optical nonlinearity). Under these circumstances the trans-
verse profiles of the normal modes are significantly distorted
by the nonlinearity. In the case of dual-cored fibre couplers,
the obtainable nonlinear index is very small, so that Lg’s of
the order of a metre are necessary to observe optical switching;
this renders the linear behaviour undesirably sensitive to
environmental disturbance.

By contrast, in the device proposed here the coupling index
is taken to be much greater than the nonlinear index (easily
arranged in dual-cored fibres with Lc’s of a few mm). In much
the same way that unwanted scattering of power between orthogon-
ally polarized modes of an optical fibre can be minimized by
making the fibre birefringent (and thus placing them far apart
in a wavevector sense), this increase in coupling strength means
that unwanted scattering of power between the odd and even modes
of the directional coupler is suppressed.

In common with, e.g., Bragg diffraction, optical super-
lattice coupling4, and the rocking-filter switch?, power can be
scattered from one normal mode of a DC into the other one by a
suitable periodic perturbation whose period A equals 2Lc; the
resulting grating vector K=2x/A causes a Bragg-like resonance
between the odd and even modes, and can i) switch power between
output ports in a velocity-matched coupler and ii) phase-match
a highly mismatched DC. These effects may then be dephased by
the nonlinear index, and cause the NDC to switch. We develop a
theory of this phenomenon based on coupling between the odd and
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even normal modes of the DC. The validity of this approach rests
on the assumption that the transverse profiles of the two normal
modes are only negligibly perturbed by the optical nonlinearity,
i.e., the nonlinear index (at a power level that would switch
the weak coupler) is substantially less than the coupling index
of the strong coupler.

Derivation of scalar normal-mode coupling equations

The NDC is taken to support one even and one odd guided
mode (propagation constants Bg and Bp). Their fields can be
expressed in the dimensionless form:

= - - w .C. 1
B (€,2,t) = eg(€)exp(-3(Byz - wt)] * c.c (1)

where g=o (odd) or e (even). w is the angular optical frequency
and ¢ is a coordinate normal to the propagation coordinate z in
the plane containing the two guide axes. Orthogonality of the
normal modes is expressed as follows:

_mj_mj ep(6) og(6) dedn = A (2)

where 7 is the third cartesian coordinate in the problem (the
scalar assumption gives 3/3n = 0). The dimensionless field prof-
iles eg(¢) and eg(¢) are scaled to make Age=Ago 2 unit of area,
and mode orthogonality means that Age=Reo=0. In general neither
ec(€¢), eo(¢) nor the guide properties will be symmetrical.

The periodicity and the optical nonlinearity will cause
either i) exchange of power, or ii) cross-and self-phase modul-
ation between the even and odd modes. A suitable Ansatz for
these interactions is:

E(,z,t) = ) (2B A B VOE(6%it) (3)
g=o0,e

where p the magnetic permeability in vacuo, Pt the total power
and Vg and Vo are dimensionless variables proportional to the
even and odd field amplitudes; the constant under the square-
root ensures that |Ve|2+|Vg|2 = 1 if power is  conserved.

Coupled normal-mode equations may be derived for Vo and Ve
thus: assume that x(1)(¢,z) = xo¥1)(5) + xm(1)(¢)cos(Kz)
describes the dual-guide and the linear periodic perturbation;
put E(¢,z,t) into the nonlinear wave equation; neglect second
order derivatives of Vg and Vg; collect the coefficients of
exp[-3(Boz-wt)] and exp[-Jj(Bez-wt)], multiply them by ep(¢) and
ec(¢) respectively, integrate them over the whole transverse
cross-section and equate the resulting expressions to zero. The
following pair of equations results:

av
._E v + + [ (3) 2 + 2 (3) v 2]V 5
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where [p,q] = [e,0] or [o,e], the -ve sign is adopted when p=e
and the parameter §=K-(Bo-Be) describes dephasing from resonant
coupling. The linear coupling constant x is given by:

= = [orarmgsaag] [T [l ey ere e rdean ()

and the nonlinear coupling constants npq(3) by:

(3) _ 2 1% (3) 2 2
I [3kvwﬂpt/npﬁquAq] INE (§)ep(€)ea(¢) dedn  (7)

00 =—C0

plex conjugate, one arrives at the result d/dz{|v [Vel?} = 0,
necessary for power conservation.

Notice that, due to mode orthogonality, x is zero unless
the periodic perturbation Xm(l is non-symmetrical in the plane
containing the two guide axes; coupling of power between the odd
and even modes can be optimised by arranging Xm(l) to be anti-
symmetrical in this plane. No such restriction applies to the
npq( )'s, however, for the integrands are positive-definite. In
a non-velocity-matched coupler, €e({) and eg(¢) are asymmetric,
and xge(3) will be significantly smaller than xoo(3) or kee(3).
Notice the interesting possibility of choosing materials so as
to make x(3) itself a function of €; this could potentially
lead to reductions in the coupler switching threshold.

where k, is the vacuum wavevector. By adding (5 xV?; to its com-
+
o

Switching in a uniform NDC

In this case, xp(l) = 0, and Eqs(5) simplify to show that
there is no exchange of power between the normal modes of the
coupler; only their phase velocities are affected. The distribu-
tion of power at the output ports depends on the number of coup-
ling lengths Lc over the device length L. If Lc is changed suf-
ficiently by the nonlinearity, power will switch from one output
port to the other. This condition is expressed mathematically:

3 3 2 3 3 2
[”éo) - 2”ée)]|vo| - [”ée) - 2néo)]|ve| = tax/L . (8)

[Vol2 and |[Ve|2 are set by the condition that just one guide of
the DC is excited at z=0; thus only in a symmetrical DC will
they be equal. A detailed analysis of Eq(8) reveals that as the
geometry becomes more sgmmetrical and the coupling weaker,
ee?(£)-e02(¢), xoo(3) ree(3) and |Vo[2+|Ve|2. 1In the limit, the
LH side of Eq(8) is zero, showing that perfectl symmetrical

uniform weakly-coupled NDC’s will not switch. Nonlinear switch-
ing 1is only possible in strongly-coupled symmetrical guides (at
high threshold powers), or in asymmetrical guides, when however
only a small proportion of the power can be switched.

Switching in a periodic NDC
The situation is much more attractive in periodic NDC's,

182



FC2-4

and although the full solutions of Eqs(5) are beyond the scope
of this paper (we plan to present them elsewhere), it is of
interest to explore briefly their linear behaviour. At least
two different switching arrangements can be envisaged, according
as whether the nonlinearity dephases or rephases the grating
resonance. Taking the first case, and assuming the linear DC to
be highly velocity-mismatched, the introduction of a periodic
perturbation A=2L, rephases the mismatch, and at xL=x/2 yields
~100% conversion (see Fig.l). If now dephasing ¢L>0 is introd-
uced (by changing the wavelength or stretching the fibre), the
grating resonance is violated and the conversion efficiency
drops to a small value (Fig.2). The effect of optical nonlin-
earity will be similar; a coupler at resonance will be switched
by the nonlinear changes in the refractive index.
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DC. The power in guide 2 is plot- somewhat similar effect.

ted for excitation of guide 1 at
2=0. The number of L s over the
device length L is reduced for
schematic clarity; in a dual-cored
fibre it would be of the order of
a few hundreds,
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