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The main purpose of this work is to explore whether and how much 

multichannel signal processing strategies can be beneficial for improving the 

detection procedure for auditory late response (ALR) in clinical applications in 

comparison with single channel recording. To achieve this target, four 

multichannel noise reduction methods based on independent component analysis 

(ICA) were proposed for noise reduction for multichannel recording of ALR. The 

four alternative component selection strategies introduced in this work are: 

Magnitude Squared Coherence (MSC) [based on coherency of the ICs with an 

evoking stimulus], the maximum Signal to Noise Ratio (Max-SNR) of ICs over a 

particular interval, the kurtosis (maximum non-Gaussianity of the ICs), and 

minimum entropy of the ICs. The proposed methods are applied for the noise 

reduction of auditory late response (ALR) data captured using 63 channel EEG 

from 10 normal hearing participants. The performances of the proposed methods 

for improving signal quality were compared with each other and also with the 

single channel alternatives. All automated component selection approaches 

produced high SNR for multichannel ALR data. MSC-ICs produced significantly 

higher SNR than Max-Kurt-ICs or Min-Entropy-ICs. However the performance of 

MSC-ICs and Max-Fmp-ICs were not significantly different.  Therefore, the 

MSC-ICs approach was selected for further work. MSC-ICs were used for three 

different clinical applications: Finding hearing threshold level, exploring the 

effect of attention and exploring inter- and intra- subject variability. The results 

for MSC-ICs were compared to the single channel signal processing alternative of 

weighted averaging. The results confirm that the multichannel signal processing 

can significantly improve the detection procedure for threshold measurement and 

for measuring the effects of attention. However, no significant enhancement was 

found for detecting inter- and intra- subject variability with multichannel 

processing over single channel alternative. 

The MSC-ICs method was also used in an application for removing cardiac 

artifact from the ALR recordings and the results was compared with an existing 

artifact rejection platform based on constraint ICA (cICA). The results of this 

comparison show that the proposed method can significantly improve the quality 

of cardiac artifact rejection from ALR data.  

Finally, the use of MSC-ICs was explored for reducing the required time for 

recording ALR. Time reduction was investigated in two senses: 1. reducing the 

number of stimulus repetitions. 2. Optimizing the position and the number of the 

recording electrodes in multichannel recordings (potentially saving the time 

required to place many electrodes on the scalp). The results show that using 

multichannel processing can significantly reduce the number of stimulus 

repetitions and consequently the time of recording in comparison with the single 

channel alternative. Minimum required number of stimulus repetition (average 



over10 subjects) for having SNR equal to single channel processing at Cz was 

found to be 74 for un-weighted averaging and 85 for weighted averaging. 

Moreover, the results of optimal electrode placement procedure confirm that, the 

ALR can be recorded form the vertex (with the same SNR as when ALR is 

recorded using 63 channels) by using fewer numbers of electrodes. For the data 

set of this study (10 normal hearing adults) the same SNR as with 63 channels 

was achieved by using 40 channels. Placing 40 electrodes (instead of 63) on the 

scalp decreases the required time for recording ALR considerably, i.e. 53% 

improved. 
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Introduction  

 

Monitoring the functionality of hearing pathway has been the subject of 

much research. Even a small deficiency in hearing ability can cause big problems 

and reduce quality of life. A large number of behavioural problems can be traced 

to hearing issues that individuals faced in their childhood which might have been 

treatable if detected early (Gelfand 2007). There various strategies by which the 

functionality of different parts of hearing pathway can be checked. These methods 

are generally classified into two main groups, subjective tests and objective tests. 

Subjective tests, such as pure tone audiometry, demand a voluntary response from 

the subject (Hall 2007). On the other hand objective tests are those that do not 

need a subject’s voluntary contribution. Objective tests are used for cases in 

which the subject is hard to test, e.g. they are too young to respond to behavioural 

audiometry, or to provide differential diagnosis of specific dysfunctions in the 

hearing system (Luck 2005, Hall 2007). The hearing system consists of two main 

parts, i.e. peripheral (outer ear, middle ear, inner ear) and central (brain and spinal 

cord) (Gelfand 2007) which need to be evaluated using testing strategies. 

Basically in all the objective methods, the response of the brain to a 

repetitive stimulus, in this thesis an acoustic stimulus, is recorded for further 

analysis and investigation (Kurtzberg 1989, Luck 2005). An Auditory Evoked 

Response (AER) is a terminology for a group of objective tests that analyse the 

response of the brain to an acoustic stimulus and can be recorded from the scalp 

using electroencephalograph (EEG). These responses can be captured by either 

single or multichannel recording strategies. Since the responses are generated in 

the brain but are recorded from the scalp, their amplitude is small in comparison 

with spontaneous, on-going EEG activity and may also be contaminated with 
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noise from other sources. For the purposes of this thesis, any activity which is not 

a response of the brain to the acoustic stimulus is considered as noise. Signal 

processing methods by which the noise is reduced, and consequently the signal 

quality is enhanced, are needed.  There are various signal processing methods to 

improve signal quality and the most appropriate choice depends on the recording 

approach. 

The main purpose of this work is to explore whether and how much 

multichannel signal processing can be beneficial for improving the quality of and 

AERs and consequently improve their diagnostic analysis. Various algorithms for 

single and multichannel signal processing are explained in detail in the first 

chapter. Blind source separation (BSS) is one of the most popular methods which 

can be used in multichannel signal processing algorithms (Goldstein 1984, Comon 

1994, Makeig, Jung et al. 1997, James and Hesse 2005). However, all the BSS 

based noise reduction algorithms have a common drawback, which is how to 

select or reject a component. Component selection is usually carried out by visual 

inspection. Although, some semi or fully automatic methods have been proposed 

and can be found in the literature, component selection is an issue which is still 

unresolved in this application.    

The main contribution of this study is to develop a multichannel signal 

enhancement strategy based on automatic component selection in BSS based 

noise reduction methods and to explore whether using multichannel processing is 

beneficial compared to using single channel processing. 

Generally, analysis of large data with prolonged recording procedures are 

limitations in objective hearing assessment which limits its use in clinical 

applications (Dun 2008). Specially, in multichannel recording placing a large 

number of electrodes, e.g. 32, 64, 128 and etc. is a time consuming procedure and 

may be unacceptable in some cases, e.g. with elderly participants or small 

children. Therefore, one aim of this project is to explore if the introduced method 

can be helpful for reducing the time required for AER recording.  

First chapter of this work is a literature review which provides information 

about the structure and function of the auditory system and alternative methods 

for assessing functionality of hearing pathways. Conventional methods for AER 

recording are also explained in the first chapter. This is followed by explanations 

about single and multichannel recordings of AERs. In addition, two well 
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established methods for quantifying signal quality are explained. Independent 

Component Analysis (ICA) and Principal Component Analysis (PCA) are 

outlined as they are used for solving the source separation problem to provide a 

method for signal quality enhancement and noise reduction in multichannel 

recordings in the third chapter.  

Second chapter is devoted to the design of an experimental protocol to 

acquire data from normal hearing subjects, using Electroencephalogram (EEG) 

and AERs. In this work the focus is on auditory late response (ALR).  

In chapter 3, four novel methods of component selection for an ICA based 

noise reduction methods are proposed. The performances of the proposed methods 

for multichannel signal enhancement are compared with each other and with PCA 

on simulated data. 

In chapter 4, the multichannel noise reduction methods proposed in the 

third chapter are applied to recorded data, i.e. captured form normal hearing 

subjects by using the protocol which was described in chapter two. Additionally, 

two well established single channel noise reduction methods, un-weighted and 

weighted averaging, are employed for noise reduction. The performance of the 

methods (both single and multichannel) for noise reduction in terms of SNR 

improvement are compared, to assess the significance of any benefit. The method 

which offers the best performance between multichannel methods in terms of 

SNR enhancement is selected for further assessment in the fifth chapter. 

In the fifth chapter, this multichannel processing method is used in three 

applications relevant in the clinical context:  measuring the hearing threshold, 

exploring the effect of attention on AER, and inter and intra subject variability in 

the ALR. Performance of multichannel processing is compared with a 

conventional single channel method (weighted averaging) to explore if 

multichannel signal processing provides significant improvement in ALR 

analysis. In other words, in aforementioned applications, is multichannel 

processing helpful to find the hearing threshold level of normal hearing 

individuals closer to zero dB nHL in comparison with when single channel is 

used; or, is multichannel processing advantageous over single channel processing 

for detecting the effect of attention or inter/intra subject variability on the ALR. 
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In the sixth chapter, an alternative application of the proposed approach is 

investigated, namely its use for cardiac artifact rejection from EEG signals. The 

results is compared with that for established methods. 

In the seventh chapter the impact of the proposed method for reducing the 

recording time required for ALR assessments is investigated, as is optimal 

electrode placement. Time reduction can be achieved in two ways: 1. reducing the 

number of stimulus repetitions. 2. Optimizing the position and the number of the 

recording electrodes in multichannel recordings, thus saving on time required to 

place many electrodes on the scalp. Since the aim of this work is to know if 

multichannel signal processing is beneficial over single channel alternatives, the 

point of reference is a single channel recording.  
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Chapter 1 

Background 
 

1.1. Introduction   

Hearing is one of the five senses by which humans and other vertebrates 

can communicate with each other and sense the environment. Hearing impairment 

can cause problems and reduce the quality of life. For example the risk of crossing 

the road for a person who cannot properly hear the sounds from vehicles 

increases. According to statistics provided by Action on hearing loss, one in six of 

the UK population are suffering from hearing impairment, ranging from mild to 

profound. This equates to 10 million people in 2011 and it is predicted to be 14.5 

million people by 2031∗ . Moreover, according to Deafness Research UK∗∗ , 

annually 840 babies are born with hearing problem in both ears in the UK 

(Mandal 2011). A large group of behavioural problems can be traced to hearing 

problems, which are treatable if recognised early (Gelfand 2007). The importance 

of hearing to human wellbeing motivates the current work. This chapter consist of 

two main parts. The first part covers the anatomical and physiological background 

in which the structure and function of the hearing system is briefly explained. The 

second part covers technical background, in which includes various methods by 

which the hearing system is assessed, are reviewed. In brief, the objective of this 

chapter is to provide information about the hearing pathway and explain methods 

of assessing the functionality of hearing pathways. 

*
http://www.actiononhearingloss.org.uk/your-hearing/about-deafness-and-hearing loss/statistics.aspx 

** 
Deafness Research UK is the only national medical research charity dedicated to helping people 

with deafness, tinnitus or other hearing problems.                                                                              
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1.2. Physiological Background 

1.2.1. Auditory system  

The auditory system can be conceptualised into two main parts, the ear and 

the central auditory system. The ear consists of three main parts, outer ear, middle ear 

and inner ear which are shown in Figure 1.1. The outer ear contains the folds of 

cartilage surrounding the ear canal called the pinna and external auditory canal and 

ends to the tympanic membrane which is the beginning of the middle ear. The region 

from the tympanic membrane to the cochlea is called the middle ear. The inner ear 

can be divided into three main parts: the cochlea, the vestibular system and semi-

circular canals (Gelfand 2007). 

 

Figure1.1 : Different parts of the ear. Picture is taken from (Pearson 2009). 

Sound waves are collected, reflected and attenuated by the pinna and after 

passing the external auditory canal reach the tympanic membrane. The tympanic 

membrane is vibrated by the waves and this excites the small bones called malleus, 

incus and stapes. The tympanic membrane moves the malleus; and this movement is 

transferred to the incus and from there to the stapes. Stapes movement excites the 

cochlea via the oval window and generates a travelling wave on the basilar 

membrane. The basilar membrane is a layer that separates two liquid-filled tubes, the 
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scala media and the scala tympani, within the coil of the cochlea. A simple schematic 

uncoiled cutaway cochlea is shown in Figure 1.2. As it is illustrated by the figure, 

different regions of the basilar membrane can be excited by different frequencies.  

 

Figure 1.2: Uncoiled cutaway cochlea and frequency dispersion of the basilar membrane. 

Low frequency sounds excite the apex and high frequency sounds excite the base (Kern, Heid 

et al. 2008) 

The vibration on the basilar membrane moves the hair cells. An electric signal 

is generated from this movement and transferred to the  brainstem and the midbrain 

auditory system via auditory nerves attached to the cochlea (Hyman 1992). The 

information eventually reaches the thalamus, and from the thalamus it travels to the 

cerebral cortex. In the human brain, the primary auditory cortex is located in the 

temporal lobe (Dun 2008). This sequence is shown in Figure 1.3. Even a small defect 

in one of the mentioned parts of the auditory system can be the cause of a hearing 

problem. For example a person who suffers from deafness may have a completely 

functional outer, middle and inner ear, with impairment further along the hearing 

pathway. 
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Figure1.3: Auditory pathway from the cochlea and through the brain (Butler and Lomber 

2013). 

1.3. Assessing the hearing system 

There exist various strategies by which the functionality of the hearing system 

can be examined. These methods can be classified into two main groups. The first 

group is known as behavioural testing, which requires a response from the 

participant; and second group is made of objective tests which do not need a 

voluntary (and hence subjective) response from the participant. Conventional pure 

tone audiometry is an example of a behavioural method for checking the hearing 

system and cerebral electro-physiological recordings are examples for the objective 

assessment of hearing system functionality. Audiometry refers to a group of tests of 

the function of the hearing system. This includes tests of mechanical sound 

transmission (middle ear function), neural sound transmission (cochlear function), 

and speech discrimination ability (central integration). A complete evaluation of a 

patient's hearing must be done by trained personnel using instruments designed 

specifically for this purpose (Walker et al. 1990) 

Behavioural tests are most commonly used and can help in diagnosing hearing 

problems effectively when the subject is able to participate in the audiometry test. For 
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the cases in which the subject is not able to take part in the test, e.g. a subject in coma 

or too young/old to respond reliably to behavioural audiometry, and also for the cases 

in which the part of the hearing system that needs to be assessed is not easily 

accessible. Objective methods are also used in differential diagnosis of hearing 

impairments (Hall 2007). Auditory evoked responses (AERs) are the best known 

group of objective tests for checking hearing pathway and are explained in the next 

subsection (Coats 1978; Goldstein 1984; Hall 2007). 

1.3.1. Auditory Evoked Responses (AERs) 

Auditory evoked response (AER) is a term used for a group of signals which 

reflect the function of different parts of the auditory system. They are obtained as a 

response of the auditory system to the presentation of an acoustic stimulus (Burkard 

2006, Hall 2007). The first observation of an AER was carried out by Charls W. Bary 

and Ernest Glen Waver in 1930 by placing an electrode on a cat’s auditory nerve 

close to the medulla. A ground electrode was located on the body and the action 

current lead through an amplifier to a telephone receiver. They found that the sound 

which was presented to the animal’s ear was reproduced in the receiver with a high 

fidelity.  They termed this Auditory Nerve Impulses (Hall 2007).  

There are many microelectrode studies available on the electrical activity of 

the cochlea and auditory nerve (Davis, Fernandez et al. 1950). However, there was 

little research on auditory evoked potentials until the development of the averager 

(Dawson 1954). The electronic averager extracts auditory evoked responses from the 

much larger EEG recordings, by averaging the responses to many stimuli, given the 

assumption that the response is invariant between successive stimuli.  

In the early to mid 1980s, methods using multichannel time series 

measurements became popular. Consequently, multichannel analysis tools like 

independent component analysis opened a new trend in biomedical signal recordings 

and analysis (James and Hesse 2005).  

AERs can be captured by using single or multichannel recording methods and 

which is preferred, depends on the application (Hall 2007). Based on latencies of the 

peaks in the recorded waveform, auditory evoked responses can be categorised into 

three main groups. The first group are the short latency responses which occur within 

10ms after stimulus, and include Electrocochleography (ECochG) and the Auditory 
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Brainstem Response (ABR). It is worth mentioning that the AERs can also be 

classified based on the region in which the response is generated. For example, ABR 

is a terminology for the wave which is mainly generated in the brain stem. The 

Auditory Middle Latency Response (AMLR) arise between 10 ms to 50 ms following 

stimulation and the Auditory Late Response (ALR) appears after 50 ms (Burkard 

2006; Hall 2007). There are other types of AERs, such as Auditory Steady State 

Response (ASSR) and P300, which are not the subject of this study and hence will 

not be further discussed. Selecting a suitable AER test depends on the application. 

Clinically, the AMLR is mostly used for diagnosis and investigating the functionality 

of auditory pathways and for evaluating auditory sensitivity (Roeser et al. 2000; Hall 

2007). Additionally, it is helpful in studying central auditory function in patients with 

language, speech and learning disabilities and with Auditory Processing Disorder 

(APD). On the other hand, it has been reported (Thornton et al. 2007) that attention 

has a greater effect on the ALR than on earlier responses. Moreover, the ALR is a 

better option for hearing threshold measurement as it has a larger amplitude than 

short latency responses (Lightfoot 2006), making it easier to detect reliably. As one 

of the objectives of the project is to explore the effect of attention on the AERs and 

also measuring the hearing threshold through objective methods, the focus of this 

work will be on the ALR. 

1.3.2. The Auditory Late response (ALR)  

The ALR is generated in the cerebral cortex and can be reliably recorded 

through a non-inverting electrode located in the frontal portion of the scalp of the 

head. The maximum amplitude of the responses can be recorded by electrodes close 

to the vertex (Hall 2007). Since the late responses change with changes in the 

psychological significance of the stimuli they are particularly employed for cognitive 

neuroscience (Scherg et al. 1989).  

A typical waveform of the ALR is shown in Figure 1.4. The first negative 

voltage component (N1) occurs in the range from 90 ms to 150 ms after stimulus 

onset. The amplitude of this trough is usually in the range 4 µV to 8 µV.  The second 

major component of the ALR is a positive component (P2) which arises between   

160 ms to 200 ms after stimulus onset. This peak amplitude is usually in the range of 

3 µV to 6 µV. There also exists an earlier positive component (P1) that is seen around 



Chapter1: Background 

11 

 

40 ms to 50 ms after the stimulus onset. P1 occurs less consistently than N1 and P2 

and has an amplitude range of 0.5 µV to 2 µV. (Roeser et al. 2000, Hall 2007).  

 

Figure1. 4: The major peaks and latencies of the ALR recorded from the vertex. This picture 

is adapted from (Durrant, Tlumak et al. 2012).  

Stimulus parameters -Various types of stimuli can be used for recording the ALR. 

Depending on the application, speech e.g. full sentence or phonemes such as /da/ and 

/pa/ (Naatanen and Picton 1987, Kurtzberg 1989, Sussman, Ceponiene et al. 2001, 

Hall 2007), clicks (Ventura et al. 2009), tone bursts (Roeser et al. 2000) and others 

can be used as the stimulus. It has been reported (Hall 2007) that the amplitude of the 

major peaks N1 and P2 are larger for speech stimuli than single frequency tone 

bursts. However, the latencies of the peaks are earlier when a tone burst is used. 

Typically a suitable stimulus for ALR recording is a 500 Hz or 1 kHz tone burst with 

rise/fall times greater than 10 ms and long plateau of about 50 ms (Hall 2007). 

Intensity around 70 dB nHL is suitable for conventional ALR recording. The 

amplitudes of N1 and P2 components are larger when the stimulus rate is rather slow. 

For example 0.7 stimuli per second (0.7 s
-1

)  is a suitable choice for ALR recording 

(Hall 2007). Typically, 150 to 200 epochs are used for ALR recording (Roeser et al. 

2000).  

Acquisition parameters-The analysis time should be typically selected long enough 

to encompass the later components of the ALR. Analysis time for ALR is about 

500ms from the stimulus onset (Roeser et al. 2000, Hall 2007). Since the ALR is 

generated in the brain but recorded from the scalp, the amplitude of the recorded 

signal is very small. Hence, the data is amplified, typically by factor of 50000-75000, 
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during the recording. This number can be lower for larger responses (Roeser et al. 

2000, Hall 2007). ALR is a low frequency wave and a band pass filter with pass band 

from 0.1 Hz to 100 Hz is used for ALR recordings. Furthermore, supraaural 

earphones can be used for ALR recording. For longer AERs recording sessions, insert 

earphones such as ER-3As are more comfortable. Insert earphones also attenuate the 

background sound in the test setting (Hall 2007). 

Unlike the early AERs such as ECochG, ABR and AMLR which are 

remarkably consistent from one subject to the next and within subjects for variations 

of stimulus characteristics, the ALR waveform strongly depends on subject factors 

such as state of arousal or attention. Therefore, depending on the conditions in which 

the subject is tested, two recorded ALR waves from one subject could be quite 

different (Scherg and Voncramon 1985, Hall 2007).  

There are important factors influencing AERs recordings which can be 

categorised into three main groups.  

1) Subject factors such as age, gender, state of arousal affects the amplitude and 

latencies of the major components in AER waveforms. For example, the more the 

subject pays attention to the test the larger the wave (amplitude) that is recordable 

(Hall 2007, Thornton et al. 2007). In the middle latency response sex effects the 

latency of the first  peak which is longer in male subjects than in female subjects and 

also age has statistically significant effects on the amplitude of the first trough 

(Amenedo and Diaz 1998).  

2) Stimulus parameters which should be selected accurately as they have a large 

effect on the AER waveforms. For example the optimal stimulus rate for an AER is 

directly related to the latency of the response. Therefore, for recording short latency 

responses a higher stimulus rate is possible, than for slower responses. In addition, as 

a general principal, AER latency decreases and amplitude increases as the stimulus 

intensity increases (Hall 2007).  

3) Acquisition factors also have a great impact on AER recordings quality. The 

quality of the recorded signal, in terms of signal to noise ratio (SNR), can be 

enhanced by selecting suitable filters, amplifier gain, electrode placement methods 

etc. For instance in recording slow responses high frequency components of brain 

activities do not carry any useful information. By filtering the undesired frequency 

content from the AER signal during the recording, the captured signal will be clearer 
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(Hall 2007). Clearly the higher the quality of the recordings, the more accurate the 

diagnosis is.  

The quality of the AER recordings can be improved by selecting suitable 

stimulus parameters and acquisition factors.  However, there are limitations that make 

these methods inefficient. For instance exposing a participant to a high intensity 

stimulus for a long time can be uncomfortable and potentially harmful. The excessive 

duration of recordings can lead to habituation (reduction in signal amplitude due to 

the stimulus repetition) and also loss of signal quality, as patients become fatigued or 

restless. Signal processing methods which can improve the quality of the AER 

recordings are thus used for signal quality enhancement and some of these will be 

explained in the next section.  

1.4. Response Detection  

Response detection is an essential pre-processing stage to many of data 

processing algorithm. When comparing the results of applying two or more 

processing methods on the same data set, a response is needed for a meaningful 

comparison. Even if one of the methods is significantly better than the other, this 

significance cannot be confirmed if there is no response present. Multichannel 

recording of AERs will return an output which may or may not contain a response in 

some of the channels. A channel may not contain the brain response for many 

reasons. For instance weak stimuli elicit small responses. Absence of the neural 

activity in some regions of the brain can indicate disease or injury. Also, technical 

problems such as poor quality of recording electrodes on the scalp, broken wires etc. 

can be other reasons for the absence of the response in one or more channels. 

Therefore, methods that can identify the presence of the response in the recorded data 

are needed. 

-Magnitude squared coherence (MSC): The MSC is a function of frequency that 

estimates how well a signal, e.g. an AER, linearly relates to another signal, e.g. an 

EEG to an acoustic stimulus, and is selective by frequency. For a linear system, the 

MSC is an estimate of the fraction of power in the output that can be explained by the 

input. MSC denoted as  𝛾𝑠𝑑
2 (𝑓) in the equation (1.1) is a normalized cross-spectral 

density function and measures the strength of association and relative linearity 

between two stationary stochastic processes on a scale from zero to one. When the 
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processes are independent, the coherence is zero (Barkat 1991, Dun 2008), but zero 

coherence does not necessarily imply that processes are independent. An estimated 

coherence value between the EEG and stimulus above the appropriate critical value 

provides a statistical criterion for concluding that a response is present (Simpson et al. 

2007; Santamaria et al. 2007; Ramirez et al. 2008). 

          𝛾𝑠𝑑
2 (𝑓) =

|𝑆𝑠𝑑(𝑓)|
2

𝑆𝑠𝑠(𝑓)𝑆𝑑𝑑(𝑓)
                      (1.1) 

where, 𝑆𝑠𝑠(𝑓), 𝑆𝑑𝑑(𝑓) are the auto spectra of stimulus s and response d, and 𝑆𝑠𝑑(𝑓) is 

the cross power spectrum of s and d. Averaged periodogram is used to estimate 

𝑆𝑠𝑠(𝑓) as follows:  

         𝑆𝑠𝑠(𝑓) =
1

𝑁
∑ |𝑆𝑖(𝑓)|

2𝑁
𝑖=1                          (1.2) 

            In which 𝑆𝑖(𝑓) is the Fourier transform of the i
th

 epoch and N is the number of 

the epochs. Moreover, the cross power spectra can be calculated from (1 .3). 

             𝑆𝑠𝑑(𝑓) =
1

𝑁
∑ 𝑆𝑖(𝑓)

∗. 𝐷𝑖(𝑓)
𝑁
𝑖=1              (1.3) 

 Where, 𝐷𝑖(𝑓) is the Fourier transform of i
th

 epoch of signal d. When the input 

is an acoustic stimulus and the output is the recorded EEG, if the recorded signal is 

coherent with that stimulus, it means that the signal can be considered as a response 

of the brain to the stimulus, unless there is noise that is also coherent with the 

stimulus. The MSC uses both phase and magnitude information of the signal (by 

using the complex components of the DFT). To determine whether or not a response 

is present in a recorded data set, the coherence calculated by (1.1) will be compare to 

a predefined threshold, provided by statistical analysis. One possible way of 

estimating this threshold will be presented in chapter 4.  

-Phase coherence (Pc):  In contrast with the MSC which uses both magnitude and 

phase information of the signal, the Pc only takes the phase information (𝜃𝑖) of each 

epoch into account. Higher values of phase coherence imply that the phase of the 

signal was changing less randomly over N epochs (Picton et al. 2001). 

        𝑅𝜃(𝑓) =
1

𝑁
√(∑ cos ( 𝜃𝑖(𝑓))

𝑁
𝑖=1

2
+ (∑ sin (𝜃𝑖(𝑓))

𝑁
𝑖=1

2
             (1.4) 
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 It has been shown by Dobie and Wilson 1994, 1996 that these methods of 

response detection have essentially the same performance. Simpson et al. (2001) 

claimed that the MSC improves the signal detection in comparison with the phase 

coherence. However this improvement was reported to be small.  

There exists other methods for detecting the evoked response such as F-test, t-

test and Hotelling T
2
 test which can be found in the literature (Dobie and Wilson 

1996; Picton 2003). Depending on the data (observed), there exist simpler methods 

for checking the presence of the response. For instance, for the cases that the response 

is repetitive, its presence can be confirmed by comparing the average over the first 

half of the data with the average over the second half of the data. The response is 

presented in the data if the two aforementioned averages are highly correlated. 

1.5. Noise Reduction and Signal Enhancement 

Noise reduction strategies are mainly dependent on the protocol under which 

the AERs are recorded. AERs can be recorded by using either single channel or 

multichannel methods. Since the signals are generated in the brain but recorded from 

the scalp, i.e. though hair, skin, the skull and a layer of cerebrospinal fluid and brain 

matter surrounding the electrical source, their amplitudes are small and consequently, 

the evoked response recordings are highly contaminated by noise, i.e. the SNR can be 

as poor as -5dB (Aydin 2005). In this case, noise refers to any undesired signals such 

as muscle activities and also spontaneous brain activities in the measurements. The 

latter are activities that the brain normally carries out, which are not the response of 

the brain to the acoustic stimuli. Eye blinks, heart beats and environmental noise (e.g. 

electrical interference from mains or other electrical devices) are other contaminating 

factors that can disturb the signal severely. These signals are called artifacts and they 

have different waveforms from auditory responses and may have different frequency 

content. They generally have large amplitudes (larger than the response amplitude by 

several orders of magnitude) and even if their distribution in the recorded EEG is 

sparse, they can bias analysis methods which are sensitive to outliers, e.g. coherent 

un-weighted averaging and kurtosis based methods (Delorme et al. 2001). Kurtosis 

and coherent averaging based signal processing methods are explained in detail in the 

subsequent sections. It is generally accepted that this noise is not white and more 
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importantly, it is not coherent with the stimulus (Hall 2007). This is the key feature 

exploited in removing it from the AER.  

Therefore, methods which improve the signal quality and make the signal 

clearer for diagnostic analysis are needed. Signal quality enhancement can be carried 

out through either increasing the power of the signal or reducing the power of the 

noise. Selecting suitable stimulus parameters, i.e. intensity, rate etc., can elicit larger 

responses (higher signal power) which improves the SNR (Hall 2007). Moreover, 

acquisition settings such as amplification, filtering, (removing undesired frequency 

components from the signal), fixed artifact rejection algorithms (removing the blocks 

which contain artifacts), can be helpful in reducing the noise power and consequently 

obtaining signals with higher quality. However, apart from acquisition factors, there 

are various signal processing techniques by which the SNR is improved by reducing 

the power of noise.  

Noise reduction methods are strongly depending on the strategy under which 

the AERs are recorded. Moreover, noise reduction methods can also be classified into 

closed form and real-time. In closed form strategies, first the data is recorded and 

then signal processing methods are performed on the data in a separate session. On 

the other hand, online noise reduction methods, i.e. it is also called real time noise 

reduction, are the methods in which the noise is removed from the ALR simultaneous 

with recording (Rongen et al. 2006, Breuer et al. 2014). In this work, real-time 

implementation and their challenges are beyond the need and scope of the current 

work. In the next sections, single and multichannel methods of ALR recording and 

processing are outlined. 

1.5.1 Single Channel Recording and Pre-processing 

As illustrated in Figure 1.5, a single channel system for recording AERs 

requires firstly a stimulus generator able to produce stimulus corresponding to the 

type of the AER. This device contains a sound card with audio bandwidth. The 

stimulus is then presented to subject’s ear via an insert earphone. The AER as 

response of the brain to the acoustic stimuli (and noise and background EEG activity) 

are recorded via electrodes placed on the scalp (for electrode positioning, see next 

section). Electrodes placed in pairs on the scalp can pick up variations in electrical 

potential that derive from this underlying cortical or sub cortical activity. One further 
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electrode is connected to the scalp as the reference ground, and voltages are measured 

with respect to this point which is usually on the forehead or nose. In Figure 1.5, the 

difference between the voltage of the electrode placed at the vertex and the reference 

is amplified by the differential amplifier. The signal is then filtered and amplified and 

then displayed in the monitoring unit (Larsby et al. 2000). The A/D and the filter unit 

have not been shown in the figure for simplicity. 

 

Figure 1.5: Electrode placement for ALR recording. The ground is set on the forehead and 

the electrode placed on the nose shows the reference. Stimuli are presented to the ear of the 

subject using an insert earphone. Voltages between vertex and the reference are amplified via 

the operational amplifier and can be monitored through the monitoring unit.  

1.5.1.1. Signal Enhancement for Single Channel Recording 

There exist various methods for reducing the noise in single channel 

recordings. Traditionally, noise is reduced in single channel AER recording by 

ensemble averaging over a large number of epochs (Aunon et al. 1981; Hoke et al. 

1984; Elberling and Wahlgreen 1985; Davila and Srebro 2000). In this method all the 

epochs have the same contribution to the final average signal. Averaging can also be 

carried out by assigning smaller weights to the epochs which are highly contaminated 

by noise (Hoke et al. 1984; Elberling and Wahlgreen 1985; Davila and Mobin 1992; 

John et al. 2001). Artifact rejection is an alternative method of signal quality 

enhancement in which the epochs which are highly contaminated by noise are 

removed from the data in prior to averaging stage. Artifact rejection can be 

considered an extreme form of weighted averaging with zero weight given to the 

epochs with large amount of noise. However, it has been reported that weighted 
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averaging is a better choice over un-weighted averaging or artifact rejection for SNR 

improvement for evoked response recordings (Dobie and Wilson 1994; John, 

Dimitrijevic et al. 2001). Other alternative methods such as adaptive filtering (Laguna 

et al. 1992; Tang and Norcia 1995; Beigi et al. 1998), Wiener filtering (Doyle 1977; 

Cichocki et al. 2001; Paul et al. 2001), independent component analysis (ICA) based 

methods (James and Hesse 2005; Davies and James 2007) and wavelet based 

methods (Heinrich et al. 1999; Effern et al. 2000; Bradley and Wilson 2004) are also 

used for noise reduction for single channel recordings. Conventionally, un-weighted 

averaging and weighted averaging the most frequently used methods for noise 

reduction for single channel recording of AERs in clinical applications.  

Un-Weighted Averaging: the main assumptions for using un-weighted averaging for 

noise reduction are: 1. the evoked response to the acoustic stimulus is unchanged 

across the epochs and the noise is stationary and independent between epochs. 2. The 

signal and noise are uncorrelated. 3. Noise is zero mean with constant variance. 

Under these assumptions, the  average over M epochs for the noise (Dawson 1951; 

Dawson 1954; Hall 2007) , 𝑁𝑎𝑣𝑒(𝑛), can be written as:  

            𝑁𝑎𝑣𝑒(𝑛) =
1

𝑀
∑ 𝐿𝑖
𝑀
𝑖=1                                    (1.5) 

where, n is the sample number (within each epoch) and M is the number of epochs, L 

is the time series data from each epoch and 𝑁𝑎𝑣𝑒 is averaged noise over M epochs. 

Assuming that the 𝑁𝑎𝑣𝑒(𝑛) is zero mean, its variance is:  

    𝑣𝑎𝑟{𝑁𝑎𝑣𝑒(𝑛)} = 𝐸{𝑁𝑎𝑣𝑒(𝑛)
2}             (1.6) 

where 𝐸{. } is expectation operator. Equation (1.6), can be re-written as: 

              𝑣𝑎𝑟(𝑁𝑎𝑣𝑒(𝑛)) = 𝐸 {(
1

𝑀
∑ 𝐿𝑖)
𝑀
𝑖=1

2
}             (1.7)           

Since expectation is a linear operator (1.7) can be written in form of (1.8) 

            
1

𝑀2
∑ 𝐸((𝐿𝑖)

2)⏟    
𝑣𝑎𝑟(𝐿𝑖)

𝑀
𝑖=1                   (1.8) 

Since the noise is stationary 𝑣𝑎𝑟(𝐿𝑖) = 𝑣𝑎𝑟(𝐿𝑗) = 𝑣𝑎𝑟(𝑁). Therefore, the equation 

(1.8) is equal to: 
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1

𝑀2
(𝑀 × 𝑣𝑎𝑟(𝐿𝑖)) =  

𝑣𝑎𝑟(𝑁)

𝑀
                      (1.9) 

Thus, un-weighted averaging over the epochs reduces the noise variance (power) by a 

factor of 
1

𝑀
 . As a result, the SNR is improved by factor of M (Dawson 1954; Burkard 

2006). However, this approach has some restrictions. In this approach, the response is 

assumed to be unchanged over the epochs and also phase locked to the stimulus; the 

noise is considered to be stationary with no phase locking to the stimulus. 

Furthermore, it is assumed that the amount of noise is equal over the epochs. In 

working with recorded data however, due to the participant’s change in position and 

due to artifacts, the level of noise is higher in some of the epochs, but this is not taken 

into account in the averaging process. This drawback can be addressed by using 

weighted averaging (Hoke, Ross et al. 1984).   

-Weighted Averaging: in this approach, epochs which are highly contaminated by 

noise have smaller contribution in the averaging than epochs which are less noisy 

(Davila and Mobin 1992). The epochs are weighted according to their variance prior 

to summation and then divided by the sum of the weights. The epochs can be 

weighted using the method proposed by (Ross et al. 1984). By using the formula for 

weighted averaging we have:  

            𝑆𝑎𝑣𝑒(𝑛) =
∑ 𝑤𝑗𝐿𝑗(𝑛)
𝑀
𝑗=1

∑ 𝑤𝑗
𝑀
𝑗=1

                       (1.10) 

where, 𝑆𝑎𝑣𝑒(𝑛)is the weighted average waveform, M is the number of the epochs 

being summed together and 𝑤𝑗 is the weighting factor for the j
th 

epoch. 𝑤𝑗 is defined 

as the inverse of the variance of each epoch. It should be noted that other ways of 

weighting the epochs exist such as percentage-rejection and noise weighting (Dobie 

and Wilson, 1994) which can be found in the literature (Dimitrijevic et al. 2001). 

Moreover, weighted averaging can be carried out by weighting the sweeps (blocks of 

epochs). In this method, each epoch is divided by the variance of the sweep which the 

epoch belongs to (Silva 2009).    



Chapter1: Background 

20 

 

1.5.2 Multichannel Recording of AERs and Pre-processing 

The strength of the response in each recording is a function of the distance of 

the recording electrode to the actual position of the generating source in the brain, i.e. 

the shorter the distance the stronger the signal. Although, in single channel recording 

of ALR, highest SNR can be usually obtained from the vertex (Hall 2007), the 

electrode position which produces the highest SNR is subject dependent (Hall 2007, 

Breuer, Dammers et al. 2014). Since the number and the position of generator sources 

are unknown and subject dependent, spreading the electrodes on the scalp increases 

the chance of one electrode being close to the actual position of the sources. 

Consequently, the chance of recording a strong response is increased. Therefore, it 

can be predicted that, by multichannel recording of AERs as an alternative to single 

channel AER recording, the quality of the AERs may be improved. The number of 

recording channels depends on the study. Multiple electrodes are usually placed on 

the head using a scalp cap, as illustrated in Figure 1.6. For electrode placement 

usually either the  10-20 or equidistant systems are used (Saunders 1990).   

 

Figure 1.6: Multichannel recording of ALR using 10-20 electrode placement. In this case the 

reference is set on the nose and the stimulus is presented in the right ear. Signals are 

amplified by using SynAmps RT, Neuroscan System.  

As was mentioned before, auditory evoked signals are not usually 

recognizable in the raw data. To facilitate the diagnostic analysis of the evoked 

signals, the noise of the recorded signals should be removed. However removing the 

noise completely is not achievable but it can be reduced considerably.  
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Multichannel signal processing algorithms have been the topic of much 

research. Various methods such as adaptive filtering (Yuexian et al. 2011; Acinodotr 

2013; Acir 2013), wavelet analysis (Borodina and Aliev 2013; Lee et al. 2013; Yong 

et al. 2013), spectral analysis (Valenti et al. 2002; Cao et al. 2014; Teng et al. 2014) 

and blind source separation (BSS) methods (James and Lowe 2003; James and Hesse 

2005; Davies and James 2007; Wang et al. 2012; Yuan and Zhang 2014) can be 

employed in multichannel processing algorithms to reduce the noise from the ALR 

recordings and improve the signal quality in the terms of increasing the SNR. Among 

the multichannel processing the BSS methods Principal Component Analysis (PCA) 

and especially Independent Component Analysis (ICA) have become the most 

popular (James and Hesse 2005) and are at the core of the current work. The next two 

sections are therefore devoted to explaining these algorithms.  

1.6. Blind Source Separation (BSS) and Noise Reduction 

Assuming that the response of the brain to the acoustic stimulus is generated 

in distinct centres of the brain (sources), it can be said that the recorded signal from 

each channel, i.e. the output signal of each electrode, would be a combination of 

signals generated by these sources. Suppose that source i generates signal  𝑺𝑖 as 

illustrated in Figure 1.7. In this case it is assumed that the spreading of sources is 

instantaneous, an assumption considered reasonable when the spreading is due to 

physical effects of conducting layers, rather than any spread of activity due to 

neuronal communication.  

 

 

 

 

 

Figure 1.7: Observed output from each channel consists of 𝑺1…𝑺5 which are generated in 

the five given sources. 𝑎𝑖𝑗 are the coefficients which indicate the contribution of a source in 

an observation 



Chapter1: Background 

22 

 

The distance between source i and the 𝑗𝑡ℎ recording electrode, and the 

physical properties of the medium determine the coefficients 𝑎𝑖𝑗 . The longer the 

distance, the smaller the coefficient (Hyvärinen et al. 2001; Bylund 2001).  The 

fundamental principle of noise reduction with PCA and ICA is that some of the 

sources represent the desired signal, and some noise. By removing the contribution of 

the noise sources, the signal quality is then improved. It may also be noted that this 

process corresponds to data compression, since the signals are now approximated by 

a smaller number of sources. For the case in which it is assumed that the number of 

channels is equal to the number of underlying generator sources (k sources and k 

channels), the relation between observed signals and source signals can be written in 

matrix form as follows: 

 

(

𝒙1
⋮
𝒙𝑘
) = [

𝑎11 ⋯ 𝑎1𝑘
⋮ ⋱ ⋮
𝑎𝑘1 ⋯ 𝑎𝑘𝑘

]
⏟          

                       𝑨

(

𝒔1
⋮
𝒔𝑘
) 

               𝑿 = 𝑨𝑺             (1.11) 

where, matrix X is the observation matrix. Rows of this matrix are recordings from 

the electrodes. Moreover, A is the mixing matrix and S is the matrix of generator 

sources, i.e. each row is a source.  The aim is to determine how much each of the 

sources contributes in the observed signals, i.e. finding the coefficients (𝑎𝑖𝑗 ) in 

equation (1.11). From these, it is possible to find the inverse of matrix A, from which 

the sources can be calculated:  

      𝑺 = 𝑨−𝟏𝑿             (1.12) 

Where 𝑨−𝟏 is the inverse of A. Cases in which the generating sources of a 

recorded signal are to be found without prior information about these sources, are 

known as blind source separation (BSS) problems. Independent component analysis 

(ICA) and principal component analysis (PCA) are two methods that give a solution 

to the BSS problem. Given a set of multivariate measurements, the purpose is to find 

a smaller set of variables (sources S) with less redundancy that provide a good 

approximation to the recorded signals (X). In PCA the redundancy is measured by 

correlations between variables (S), while in ICA stronger concept of independence is 
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used, and in ICA the reduction of the number of variables is given less emphasis 

(Hyvärinen et al. 2001). Using only the correlations as in PCA has the advantage that 

the analysis can be based on second-order statistics only. In connection with ICA, 

PCA is a useful pre-processing step.  

1.6.1. PCA and Noise Reduction 

Assume random matrix X with m elements (rows), corresponding to each of m 

observations. The available samples are 𝑥𝑖(1), 𝑥𝑖(2),… , 𝑥𝑖(𝑇) for i
th

 row. No explicit 

assumptions on the probability density of the vectors are made in PCA, as long as the 

first-and second order statistics are known or can be estimated from the data 

(Hyvärinen et al. 2001).  

In the PCA, the matrix X is first centred by subtracting its mean. Next, X is 

linearly transformed to another vector Y with m rows, m<k, so that the redundancy 

induced by the correlations is removed. This is done by finding a rotated orthogonal 

coordinate system such that the elements of X in the new coordinates become 

uncorrelated (Hyvärinen and E. Oja 2000; Hyvärinen et al. 2001). At the same time, 

the variances of the projections of X on the new coordinate axes are maximized so 

that the first axis has maximal variance; the second axis corresponds to the maximal 

variance in a direction orthogonal to the first axis, and so on. For example, assume s1 

and s2 are two independent and uniformly distributed vectors. By mixing s1 and s2 

using mixing matrix A=(
5 2
2 5

) , two correlated vectors x1 and x2 are obtained. 

Figure1.8 depicts how PCA rotates the data in the direction in which the variance is 

maximal. Rotation of the axes can be interpreted as rotation of the data in a new 

directions (Hyvärinen et al. 2001).    



Chapter1: Background 

24 

 

-1000 -500 0 500

-150

-100

-50

0

50

100

150

Lag

C
ro

s
s
 C

o
rr

e
la

ti
o

n

-4 -3 -2 -1 0 1 2 3 4
-5

-4

-3

-2

-1

0

1

2

3

4

5

x1,x'1

x
2
,x

'2

  

Figure 1.8: Left, x1 and x2 are the original axes and   is the standard deviation along the 𝛌

latter. x
’
1 and x

’
2 are the rotated axes, and   is the standard deviation in the new axes. Note 𝛌’

that  is larger than . Right, rotation of the axes is equivalent to rotation of data. 𝛌’  𝛌

Rotation applied by PCA eliminates the correlation information between x1 

and x2. The rotated data are called the principal components of the original data. This 

fact is illustrated in Figure 1.9. 

 

Figure 1.9: Left, cross correlation between x1 and x2 before PCA applied. Right, cross 

correlation between principal components (data after rotation). 

Moreover, correlation coefficient between the two correlated signal x1 and x2 

was found to be 0.68 with p-value = 0. This implies a significant correlation between 

x1 and x2, since the null hypothesis for data being uncorrelated is rejected with p-

value <0.05. Whereas, this values found to be 0 with p-value=1 for the principal 

components which confirms that the two rotated data are uncorrelated. By fitting a 

line to the scatter diagram of x1 and x2, the linear relationship between correlated data 

can be illustrated. Whereas, fitting a line to the scatter diagram of two un-correlated 
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data shows that there is no linear relationship between the two un-correlated data. 

This fact is illustrated in 1.10.  

 

Figure 1.10: left, correlated data and linear curve fitting. Right, un-correlated data and linear 

curve fitting. Linear relation between data is eliminated by de-correlating the data by 

applying PCA.  

As it can be seen in Figure 1.10, although the linear relation between data is 

removed by un-correlatedness, there still exists a nonlinear relation between the data. 

For instance, selecting x1 close to its maximum value restricts the choice for x2.  In 

addition to achieving uncorrelated components, In most practical applications the 

variances of the components (projections) are very different, and a considerable 

number of the variances so small that the corresponding components can be discarded 

altogether. Those components that are left constitute the vector y which is made up of 

the main components of x. PCA is a linear technique, so computing y from x is not 

computationally heavy, which  makes real time processing possible (Hyvärinen and 

Oja 2000). There are different methods for finding the principal components from a 

set of measurements. Maximization of the variance and minimization of the mean 

square error are two famous methods which are explained in the next subsection.  

1.6.1.1 PCA by Variance Maximization 

The aim is to find a matrix, W (𝑨−1 in equation 1.12), such that the product of 

this matrix and the data matrix provides the principal components of the original 

matrix so the variance of each component is maximally large. 

𝑺 = 𝑾𝑿                                                      (1.13) 
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So the first principal component can be calculated as: 

𝒔𝟏 = ∑ 𝑤𝑘1 𝑥𝑘
𝑛
𝑘=1 = 𝒘𝟏

𝑇𝑿                       (1.14) 

Where 𝒔𝟏 is the first principal component, 𝑥𝑘  with (𝑘 = 1,2, … , 𝑛 ) are n 

elements of matrix X, and 𝑤𝑘1 denotes the coefficients (weights) of the n elements of 

vector x. 𝒘1
𝑇is the transposed vector of weights for the first principal component. 

Since the variance of 𝒔1  depends on both the norm and orientation of the weight 

vector 𝒘1 and grows without limits as the norm grows, a constraint that the norm of 

𝒘1  is constant (equal to 1) is imposed. For zero mean data the variance can be 

calculated using equation (1.15). 

 𝑣𝑎𝑟(𝒚1) = 𝐸[𝒚1𝒚1
𝑻] = 𝐸[𝒘1

𝑻𝑿𝑿𝑻𝒘1] = 𝒘1
𝑇𝐸[𝑿𝑿𝑻]𝒘1 = 𝒘1

𝑻𝑪𝒙𝒘1 (1.15) 

If 𝒔1  is one of the principal components (PCs), it should satisfy the maximum 

variance condition. Therefore, w1 should be found maximizing the equation (1.15) 

with the constraint ||w1||=1. In equation (1.15) 𝑪𝒙 is the 𝑛 × 𝑛 covariance matrix for 

zero mean data X (Original data).  

According to basic linear algebra the W which maximizes equation (1.15), is 

given in terms of the unit-length eigenvectors 𝒆1… 𝒆𝑛 of covariance matrix 𝑪𝑥 (see 

Appendix I). Therefore,  𝒘𝑘 = 𝒆𝑘  and the k
th

 principal component is given by     

𝒚𝑘 = 𝒆𝑘
𝑇𝒙𝑘 (Hyvärinen and E. Oja 2000; Hyvärinen et al. 2001). In brief, it can be 

stated that the columns of W are the eigenvectors of the covariance matrix of X. 

1.6.1.2. PCA by Minimum Mean-Square Error Compression 

In this method, the target is to find a set of n orthonormal basis vectors to 

linearly project X into 𝑿̂, such that the mean square error between X and its projection 

on the subspace 𝑿̂ is minimal. Denoting the m vectors 𝒘1…𝒘𝑚 , projection of X 

would be: 

𝑀𝑆𝐸 = 𝐸[‖𝑿 − 𝑿̂‖
2
] = 𝐸[||𝑿 − ∑ (𝒘𝑖

𝑇𝑿)𝒘𝑖
𝑚
𝑖=1 ||2]                  (1.16) 

It can be shown (see Hyvärinen and Oja 2000 ) that (1. 16) is equal to: 

      𝑡𝑟𝑎𝑐𝑒(𝑪𝑥) − ∑ 𝒘𝑖
𝑇𝑪𝑥𝒘𝑖

𝑚
𝑖=1                                         (1.17) 



Chapter1: Background 

27 

 

By taking the orthonormality condition into account, the minimum of 

equation (1.17) is given by any orthonormal basis of the PCA, i.e. the m first 

eigenvectors  𝒆1…𝒆𝑚 . However, the criterion does not specify the basis of this 

subspace at all, i.e. any m dimensional vector can be considered as a basis of the 

subspace. This can be considered as a disadvantage of this method. It is worthwhile to 

say that there are some methods by which a certain basis in the PCA subspace is to be 

preferred over others (Hyvärinen and Oja 2000; Hyvärinen et al. 2001). More 

information about selecting subspace in PCA is provided in the third chapter. 

1.6.1.3. How to Reduce Noise Using PCA 

According to the results in 1.6.1.2, the principal components of observation 

matrix, 𝑿, are the eigenvectors of its covariance matrix , 𝑪𝒙 . Since 𝒘𝑘 = 𝒆𝑘  from 

equation (1.15) each principal component has the variance which follows that 

𝐸[𝒚𝑚𝒚𝑚
𝑇] = 𝐸[𝒆𝑚

𝑇 𝑿𝑿𝑇𝒆𝑚] = 𝒆𝑚
𝑇 𝑪𝑥𝒆𝑚 = 𝑑𝑚               (1.18) 

where 𝒚𝒎  is m
th

 principal component 𝒆𝑚  is the m
th

 eigenvector and 𝑑𝑚  is the 

variance of m
th

 principal component. From (1.18) it can be seen that the variances of 

the principal components are thus directly given by the eigenvalues of 𝑪𝑥. Since the 

principal components have zero means, a small eigenvalue (a small variance) 𝑑𝑚 

indicates that the value of the corresponding principal component 𝒚𝑚 is mostly close 

to zero. The eigenvalue sequence of a covariance matrix for real-world measurements 

data usually sharply decreases, and it is possible to set a limit below which the 

eigenvalues, hence principal components, are insignificantly small. This limit 

determines how many principal components are used and the remaining components 

can be considered as noise. For the signal-noise model given by equation (1.19): 

   𝑿 = ∑ 𝑎𝑖
𝑛
𝑖=1 𝒔𝑖 +𝑵                                             (1.19)                                                                                 

where 𝑎𝒊  are some fixed coefficients, 𝑺𝑖  are uncorrelated vectors which have zero 

mean and N is the noise for which 𝐸[𝑵𝑵𝑇] = 𝜎2𝑰 . By assuming that noise is not 

correlated to the signal, the covariance of X can be calculated from: 

      𝐶𝑥 = 𝐸[𝑿𝑿
𝑇] = 𝐸[∑ 𝑎𝑖𝒔𝑖𝒔𝑖

𝑇𝑎𝑖
𝑇 + 𝑎𝑖𝒔𝑖𝑵

𝑇 +𝑵𝒔𝑖
𝑇𝑎𝑖

𝑇 +𝑵𝑵𝑇𝑛
𝑖=1 ] = 
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      ∑ 𝑎𝑖 𝐸[𝒔𝑖𝒔𝑖
𝑇]⏟    

𝑰

𝑎𝑖
𝑇 + 𝑎𝑖𝐸[𝒔𝑖𝑵

𝑇]⏟      
0

+ 𝐸[𝑵𝒔𝑖
𝑇]𝑎𝑖

𝑇
⏟      

0

+ 𝐸[𝑵𝑵𝑇]⏟    
𝜎2𝐼

𝑛
𝑖=1 = 

∑ 𝑎𝑖𝑎𝑖
𝑇 + 𝜎2𝑰𝑛

𝑖=1               (1.20) 

When the eigenvalues of  𝑪𝑥  are computed, the first m form a decreasing 

sequence and the rest are small constants, around 𝜎2  noise variance; These m 

eigenvalues span an m dimensional subspace, Y, which contains principal 

components of X. The remaining part can be considered as noise and be discarded.  If 

the original signals are reconstructed using only the main components, the noise 

components do not contribute in signal reconstruction, and thus we expect to have 

cleaner signals (Hyvärinen and Oja 2000; Hyvärinen et al. 2001).  

1.6.2. Whitening  

A zero mean random vector z=(z1,z2,…,zn) is called white, if its elements are 

uncorrelated and it is further assumed to have unit variance (Hyvärinen and Oja 2000; 

Hyvärinen et al. 2001). Basically whitening is the same as PCA with an extra step, 

i.e. make the data unit variance. In terms of covariance matrix whitened data means 

𝐸[𝒛𝒛𝑇] = 𝑰 with I the unit matrix. This is illustrated in Figure 1.11. 

 

Figure 1.11: Left, un-correlated data by PCA. Right, whitened data. Whitened data are 

uncorrelated and have unit variance.  

In brief, whitening can be interpreted as linearly transform an observed matrix 

(X) into another matrix such that the rows of the new matrix are uncorrelated and also 

have unit variance. Matrix equation for whitening is shown by equation (1.21). 
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    Z=VX                                                     (1.21) 

Where, Z is the whitened data, V is whitening matrix and X is the observation matrix 

(correlated data). Although, data is uncorrelated and centred by whitening, whitening 

is not enough for finding for independent components. For any orthogonal matrix U, 

the product of UZ is also a white matrix. Covariance matrix UZ can be written as: 

  𝐸{𝑼𝒁𝒁𝑻𝑼𝑻} = 𝑼𝐸{𝒁𝒁𝑻}𝑼𝑻 = 𝑼𝑰𝑼𝑻 = 𝑰           (1.22) 

Therefore, it is not possible to tell if the independent components are given by Z or 

UZ and further processing is needed to find the ICs. However, whitening is useful as 

a pre-processing stage for ICA (Hyvärinen and  Oja 2000, Hyvärinen et al. 2001).  

1.6.3. Independent Component Analysis and Noise Reduction 

Using independence instead of un-correlatedness provides a more powerful 

solution for the source separation problem (Hyvärinen et al. 2001). When two signals 

are uncorrelated, it means that there is no linear relation between these two signals; 

but there, possibly, exists a non-linear function which can explain the relationship 

between them. When two signals are independent, there is neither a linear or non-

linear relation between two signals. In the other words, for two independent signals A 

and B, signal A does not give any information about signal B and vice versa 

(Hyvärinen et al. 2001). In mathematical terms, two signals are uncorrelated if the 

covariance between them equals to zero: 

    𝑪𝑥𝑦 = 𝐸[(𝒙 − 𝜇𝑥)(𝒚 − 𝜇𝑦)
𝑇
] = 0           (1.23) 

In which 𝜇𝑥 is the mean of x and 𝜇𝑦 is the mean of y . 

Equivalently, two signals are uncorrelated if their cross correlation is:  

           𝑹𝑥𝑦 = 𝐸[(𝒙)(𝒚)
𝑇] = 𝐸[𝒙]𝐸[𝒚𝑇]           (1.24) 

where,  𝑹𝑥𝑦 denotes the cross correlation between variables x and y. Obviously for 

zero mean variables the right side of equation (1.24) will be 0. Equation (1.24) 

confirms the expression which says there is no linear relation between two variables. 

Moreover, statistical independence is defined as: 
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       𝑝𝑥,𝑦(𝒙, 𝒚) = 𝑝𝑥(𝒙)𝑝𝑦(𝒚)           (1.25) 

Where 𝑝𝑥,𝑦(𝒙, 𝒚) is joint probability density function of variables x and y, 𝑝𝑥(𝑥) and 

𝑝𝑦(𝒚)  are the probability density functions of x and y respectively. Equation (1.25) 

can be written in a more general form: 

       𝐸[ℎ(𝑥)𝑔(𝑦)] = 𝐸[ℎ(𝑥)]𝐸[𝑔(𝑦)]           (1.26) 

In which h and g are any absolutely integrable functions of x and y respectively 

(Soong 2004). This fact is illustrated through an example in Figure 1.12. In this 

example three independent and uniformly distributed signals s1, s2 and s3 were mixed 

using mixing matrix A given by equation (1.27) and return observation matrix X with 

x1, x2 and x3 as rows of the matrix. 

A=(
5 2 0.5
2 5 0.03
0.5 0.03 7

)            (1.27) 

As was mentioned in the previous section, for both cases un-correlated and 

whitened data, selecting the data close to the maximum value of one of the variables 

limits the selection for the other variables. However, as it can be seen from the figure, 

for independent components, having information about one of the independent 

components, e.g. s1=IC1, does not provide any information about the other two 

components (s2=IC2 and s3=IC3).  
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Figure 1.12: Top, three correlated variables (x1, x2 and x3) made from s1, s2 and s3 by using 

mixing matrix A. Down-left, uncorrelated data (PCA). Down-middle, whitened data. Down-

Right, independent data (ICA).  

Figure 1.12 and equation (1.26) reveal that statistical independence is a much 

stronger property than un-correlatedness and provides a stronger tool for finding the 

main components of a signal and source separation (Soong 2004). It is worth 

mentioning that, for variables with Gaussian distribution, un-correlatedness is 

equivalent to independence. However, uncorrelated non-Gaussian variables are not 

necessarily independent from each other (Hyvärinen et al. 2001). From the equation 

(1.11), for the case of ALR recording an observation (i
th

 row of matrix X) can be can 

be written in the form: 

                                                         𝒙𝑖 = ∑ 𝑎𝑖𝑗𝒔𝑖
𝑛
𝑗=1              (1.28) 

where, 𝒙𝑖  is i
th

 observation and 𝑎𝑖𝑗  are coefficients and 𝑆𝑖  are sources. If we find 

(estimate)𝑎𝑖𝑗  and 𝒔𝑖  𝑖 = 1,… , 𝑛  (𝒔𝑖  are rows of matrix S), in a way that 𝒔𝑖  are 

mutually independent, it can be said that we have separated the observed signal into 

generator components. In other words, we are looking for matrix W in equation (1.13) 

in a way that the product of W and X provides independent components (ICs) of X.  
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ICA can be interpreted as a further rotation to whitened data which makes the 

data independent.  

1.6.3.1. Ambiguities of ICA   

One of the ambiguities in ICA is that the variances (or powers), of the 

components are not clearly defined, which is in contrast to PCA. Both matrices A and 

S are unknown, and any scalar multiplier in one of the sources 𝒔𝑖  could always be 

cancelled by dividing the corresponding column 𝑎𝑖 𝑜𝑓 𝑨 by the same scalar. 

According to (Hyvärinen et al. 2001) the most conventional way of addressing this 

ambiguity is to normalise the sources to have unit variance. The columns of the 

mixing matrix A indicate the power of each component across the measurement 

space. ICs can be normalized by dividing the columns of mixing matrix by its norm. 

This fixes the problem of variances but still leaves an ambiguity of the sign, i.e. 

multiplying an IC by -1 does not affect the model. 

Another issue of using ICA is determining the order of the independent 

components. Since S and A are unknown, correct determination of the number of 

sources is a problem in using ICA. The order of the ICs can freely change and any of 

the independent components can be called the first one (Hyvärinen et al. 2001). It is 

possible to calculate quantities such as rms power for each source from the columns 

of the mixing matrix which will then allow ranking of the sources according to their 

rms power. Adapting the formula from (James and Hesse 2005) the rms power for 

each source can be calculated from:  

    𝑝𝑗 = √
1

𝑚
∑ (𝑎𝑖

𝑗
)2𝑚

𝑖=1             (1.29) 

where, p is the rms power for the j
th

 source, m is the number of coefficient and 𝑎𝑖 is 

the corresponding column to the source in the mixing matrix.  

This issue is more problematic especially when the number of channels exceeds 

the number of sources, as is the case in many biomedical applications such as high 

density EEG/MEG. Knowing how many sources to estimate can have major impact 

on the quality and accuracy of the ICA solution. Using PCA is one of the common 

approaches to estimate the number of underlying sources in the data. In the simplest 

case, the number of sources is equal to the number of dominant eigenvalues.  Number 
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of dominant eigenvalues is defined to be the number of eigenvalues which account 

for high proportion of the total observed variance (e.g. 95% or 99%). Alternatively, it 

can be the number of eigenvalues whose individual contribution to the total variance 

is greater than some minimum amount (e.g.  5% or 1%) (James and Hesse 2005). 

This approach has many drawbacks which makes is inefficient for many applications. 

There is no a priori reason to suppose that the sources of interest are contained in the 

signal subspace spanned by the dominant principal components (e.g. if there is a lot 

of noise, or the sources of interest are relatively weak compared with other artifactual 

sources). Moreover, the variance proportion threshold for considering a source as a 

response is quite arbitrary. In addition, in the presence of noise (especially Gaussian), 

the number of sources that will be estimated using a cumulative variance criterion 

varies with the number of sensors, since the proportion of total variance due to the 

sensor noise increases with the number of sensors. This results in overestimation of 

the number of sources, which in turn can lead to over-fitting (James and Hesse 

2005).There are a number of source enumeration methods which use statistical or 

information theoretic measures to determine the number of underlying sources which 

are explained in the third chapter. 

1.6.3.2. Restrictions of ICA  

There are some basic assumptions in using ICA which facilitate the 

implementation in different applications. It is worth noting that without making these 

assumptions, the BSS problem remains intractable. In addition to linear mixing, i.e. 

the observations are a linear mixture of the underlying which was mentioned before 

sources, for simplicity it is assumed that the mixing matrix is square. However, there 

exist methods for finding ICs for the cases in which the number of ICs is less than the 

number of observations, i.e. mixing matrix is not square, (Hyvärinen and  Oja 2000) 

but such methods are not the subjects of this study. 

1.6.3.3. ICA Approaches 

Blind separation of statistically independent sources are commonly based on 

techniques involving higher-order statistics (HOS) and several such implementations 

can be found in the literature (Bell and Sejnowski 1995; Hyvarinen and Oja 1997; 

Makeig et al. 1997; Lee et al. 1999; James and Hesse 2005). In this implementation 
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the observed signal (recorded via sensor) is assumed to be a linear mixture of 

statistically independent sources. With the assumption that independent components 

are not normally distributed (this is a valid assumption in many applications such as 

biomedical data) one practical approaches for estimating the independent 

components, is to make the estimates as non-Gaussian as possible (Hyvärinen et al. 

2001; James and Hesse 2005). This approach is explained in detail in the next section. 

There also exist alternative strategies for ICA implementation that are valid for 

separating ICs regardless of their distributions based on their temporal structure 

(James and Hesse 2005). In this approach the assumption of the independence of the 

sources has a very important and useful consequence. The source waveforms have no 

spatial temporal or spatial time–frequency correlations (Ziehe and Muller 1998; 

James and Hesse 2005). This approach is not the focus of the current work. In the 

current work, an implementation based on non-Gaussianity of the components is 

selected for BSS. Two of the most famous ICA implementations by finding 

maximum non-Gaussianity are explained in the next sections. 

1.6.3.4. ICA by Non-Gaussianity  

According to the central limit theorem (CLT), the sum of sufficiently large 

number of independent random variables, even with different distributions which 

have finite mean and variance, will be approximately normally distributed (Hyvärinen  

et al. 2001; Soong 2004). Obviously, the central limit theorem is also applies for 

variables with a Gaussian distribution. Therefore, 𝒙𝑖 in (1.17) which is a mixture of 

non-Gaussian signals 𝒔𝑖 has a distribution closer to Gaussian than the source signals.  

Since we assumed the ICs have non-Gaussian distribution in (1.17) we can select the 

components with maximum non-Gaussianity as ICs. Central limit theorem is not 

useful if ICs have a Gaussian distribution. For a signal such as 𝑦 = 𝑎1𝒔1 + 𝑎2𝒔2, 

assuming 𝑎1
2 + 𝑎2

2 = 1 and considering the properties of kurtosis it can be shown that 

absolute value of Kurt(y) will reach its maximum, when 𝒚 = ±𝒔𝑖  (for proof see 

A.Hyvärinen and E. Oja 2000).   

1.6.3.5. Non-Gaussianity by Kurtosis 

Kurtosis is the name given to the fourth-order cumulant of a random variable 

(Ding and Nguyen 2000, A. Hyvärinen, J. Karhunen  et al. 2001). Cumulant of a 
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random variable can be calculated from the second characteristic function of the 

variable as following: 

                                                    𝐾𝑖 = (−𝑗)
𝑖 𝑑

𝑖(∅(𝜔))

𝑑𝜔𝑘 
⌋
𝜔=0

                   (1.30) 

𝐾𝑖  is the i
th

 cumulant, ∅(𝜔)  is the second characteristic function of the random 

variable 𝜔 which is calculated as: 

                                                        ∅(𝜔) = ln𝜑(𝜔)                       (1.31) 

𝜑(𝜔) is the first characteristic function and can be calculated from (1.31). 

                                                 𝜑(𝜔) = ∫ 𝑒𝑗𝜔𝑥𝑝𝑥(𝑥)𝑑𝑥
+∞

−∞
                                  (1.32) 

From (1.30), (1.31) and (1.32) and for a zero mean variable, kurtosis can be 

formulated as: 

                                              𝐾𝑢𝑟𝑡(𝑥) = 𝐸[𝑥4] − 3(𝐸[𝑥2]2)                       (1.33) 

The second term of the right side of (1.33) is a function of the variance of the variable 

and if we assume that the variance equals to one, (1.33) can be rewritten as: 

                                               𝐾𝑢𝑟𝑡(𝑥) = 𝐸[𝑥4] − 3                                             (1.34) 

For Gaussian variables, 𝐾𝑢𝑟𝑡(𝑥) = 0. Variables with 𝐾𝑢𝑟𝑡(𝑥)>0 are called 

super-Gaussian, e.g. the Cauchy distribution, and variables with 𝐾𝑢𝑟𝑡(𝑥)<0 are 

called sub-Gaussian, e.g. the uniform distribution. Typically non-Gaussianity is 

measured by the absolute value of the kurtosis in which case by maximizing the 

absolute value of 𝐾𝑢𝑟𝑡(𝑥) we can find the independent components. Two different 

methods for maximizing kurtosis are explained in the next subsection (Soong 2004). 

1. Maximizing kurtosis by Gradient ascent: gradient of a function is a direction in 

which the function is growing most strongly. By taking this fact into account, the 

maximum of a cost function is computed iteratively by starting from some initial 

point w, calculating the gradient of the cost function at this point and then moving in 

the direction of the gradient with a suitable step size. In maximizing the cost function 

J(w) by gradient ascent the initial point is updated by the new point iteratively. The 

update rule is given by equation (1.36). 
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                                       𝑤𝑛 = 𝑤𝑛−1 + 𝛼(𝑡)
𝜕𝐽(𝑤)

𝜕𝑤
 |𝑤=𝑤𝑛−1                   (1.35) 

In which, 𝛼 is the step size which is usually a function of time and n=2,3,… , 𝑤𝑛 is 

the new point which is computed from previous point 𝑤𝑛−1 via the update rule given 

in equation (1.35). The term 
𝜕𝐽(𝑤)

𝜕𝑤
 |𝑤=𝑤𝑛−1 is the gradient of the cost function J(w) at 

point 𝑤𝑛−1. The iteration is continued until the new point converges to the optimum 

(maximum in this case) point.  In practice, convergence is when the Euclidean 

distance between 𝑤𝑛and 𝑤𝑛−1is below a specific value (Hyvärinen and Oja 2000; 

Hyvärinen et al. 2001). Equation (1.35) can be re-written as: 

           ∆𝑤 = 𝑤𝑛 − 𝑤𝑛−1 = 𝛼(𝑡)
𝜕𝐽(𝑤)

𝜕𝑤
 |𝑤=𝑤𝑛−1                   (1.36) 

Where ∆𝑤 indicates the change in w. Therefore,  

         ∆𝑤 ∝  
𝜕𝐽(𝑤)

𝜕𝑤
 |𝑤=𝑤𝑛−1              (1.37) 

Equation (1.37) shows that the change in w is proportional to the gradient direction. 

Hence, in optimization by gradient descent we are only interested in gradient 

direction. Similar fashion is employed for maximizing a cost function for vectors.  

According to equation (1.21) in order to find the independent component, the 

whitened data (matrix Z) is linearly transformed to another matrix (Y) by multiplying 

it with matrix (𝑾); with rows of matrix Y to be the independent components, i.e. Z is 

whitened data, so the product of 𝑾 and Z provides Y which matrix of ICs. Therefore, 

matrix W should be estimated in a way that product of W and Z results in a matrix 

that the kurtosis of its rows are maximum. For one of the independent components y 

(one row of matrix Y), start from a vector “w” (w is one column of matrix W given by 

(1.21)) and calculate the 𝒚 = 𝒘𝑇𝒁  in the direction that kurtosis is growing most 

strongly. Therefore, first we need to find the gradient of the absolute value of the 

kurtosis, then by moving in this direction maximum absolute value of kurtosis will be 

found.  

Gradient of the absolute kurtosis can be calculated as follows:  

From the equation (1.33) and also considering that for whitened data 

𝐸[(𝒘𝑇𝒁)2]=‖𝒘‖2, the gradient of absolute kurtosis is given by (1.38).   
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𝜕|𝑘𝑢𝑟𝑡(𝒘𝑇𝒛)|

𝜕𝑤
= 4𝑠𝑖𝑔𝑛(𝐾𝑢𝑟𝑡(𝒘𝑇𝒁))[𝐸[𝒛(𝒘𝑇𝒁)3] − 3𝒘‖𝒘‖2]       (1.38) 

Since the function is optimized on unit sphere ‖𝒘‖2=1, w should be normalised 

(divided by its norm) after every step. Since 3𝒘‖𝒘‖2 in (1.35) is only changing the 

norm of the w, the latter term in brackets in (1.38) can be omitted and change in w 

can be written as (1.39). 

 ∆𝑤 ∝ 𝑠𝑖𝑔𝑛(𝐾𝑢𝑟𝑡(𝒘𝑇𝒁))𝐸[𝒛(𝒘𝑇𝒁)3]           

𝒘 ←
𝒘

‖𝒘‖
                                                      (1.39) 

In equation (1.39), the expression 𝒘 ←
𝒘

‖𝒘‖
 indicates that in every step the w is 

substituted by its normalised version. An advantage of using this method is that 

maximizing by gradient ascent is easy to implement. A drawback, however, is that 

the convergence is slow, and depends on a good choice of the step size. Moreover, for 

the cases in which the cost function is not simple, there is a chance that gradient 

algorithm points at a local extrema instead of the global extrema. Therefore, selecting 

good initial values have an important effect on the algorithm performance (Hyvärinen 

et al. 2001) 

Fast-fixed point algorithm using kurtosis: this method is an alternative methods for 

maximizing kurtosis and makes the learning radically faster and more reliable 

(Hyvarinen and Oja 1997). In this method the problem of slow convergence is solved 

by selecting the initial vector in the gradient direction.  

Therefore we will have: 

                                               𝒘 ∝ 𝐸[𝒛(𝒘𝑇𝒛)3] − 3𝒘‖𝒘‖2}                      (1.40) 

This equation suggests a fixed-point algorithm. Initially, the right-hand side of the 

equation (1.40) is computed, and the value is given to w: 

                                                   𝒘𝑛 = 𝐸[𝒛(𝒘𝑛−1
𝑇 𝒛)3] − 3𝒘𝑛−1                      (1.41) 

where, n= (2, 3, 4,…), 𝒘𝑛 is the new vector which is computed from 𝒘𝑛−1via the 

equation (1.41) and z is the whitened. Similar to gradient ascent, to apply the 

constraint ||w||=1 after any fixed-point iteration, w is normalized by its norm. The 

final vector w gives one of the independent components as the linear combination 
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𝒘𝑇𝒛  (Hyvarinen and Oja 1997; Hyvarinen 1999; Hyvärinen et al. 2001). Note that in 

equation (1.40) expectation is estimated by an average over large sample of z and 

convergence happens when the old and new values of w point in the same direction, 

i.e., if |𝒘𝑛
𝑇𝒘𝑛−1| is close to one. This algorithm is called Fast ICA. It has been shown 

by (Hyvarinen and Oja 1997) that such an algorithm converges very quickly and 

faster than gradient ascent algorithm. Moreover, contrary to gradient-based 

algorithms, there is no step size or other adjustable parameters in the algorithm, 

which makes it easy to use, and more reliable. (Hyvarinen and Oja 1997; Hyvarinen 

1999; Hyvärinen and Oja 2000). 

The main problem of using kurtosis is it is sensitive to outliers. This means 

that large observations in the tail, i.e. large samples which occur infrequently in the 

distribution can affect the kurtosis considerably. Therefore kurtosis is not a robust 

measurement for non-Gaussianity (Hyvärinen et al. 2001). Alternatively, non-

Gaussianity can be quantified by negentropy which is the topic of the next subsection. 

1.6.3.6. Non-Gaussianity by Negentropy  

As a solution for the drawback of kurtosis in non Gaussianity measurement, 

negentropy which is more robust than kurtosis can be employed. But negentropy is 

computationally complicated. In information theory and statistics, negentropy is used 

as a measure of distance to normality (A. Hyvärinen, J. Karhunen  et al. 2001). The 

entropy of a random variable is related to the information that the observation of the 

variable gives. Entropy can be considered as a measurement of randomness of a 

signal. The higher the signal’s randomness the larger its entropy. Entropy for a 

discrete random variable x is given by equation (1.42). 

𝐻(𝒙) = −∑ 𝑃(𝑥 = 𝑎𝑖)𝑖 log (𝑃(𝑥 = 𝑎𝑖))            (1.42) 

 Entropy for continuous random variable x with pdf (probability density 

function) 𝑝𝑥 is often called differential entropy and it is defined as: 

                            𝐻(𝑥) = −∫𝑝𝑥 log(𝑝𝑥) 𝑑𝑥 = ∫𝑓(𝑝𝑥) 𝑑𝑥                          (1.43) 

In which  

                                                        𝑓(𝑝) = −𝑝 log 𝑝               (1.44) 



Chapter1: Background 

39 

 

Since 𝑝𝑥 can be larger than one, the differential entropy can be negative. However, 

for discrete variables entropy is positive, since the probabilities necessarily stay in 

interval [0,1]. Hence, “small differential entropy”, may be a negative number and 

have a large absolute value. Signals whose probability densities take large values 

have small entropy, since these give strong negative contributions to the integral in 

(1.43). High values of 𝑝𝑥  implies that certain intervals are quite probable. Using 

(1.43), it can be shown that for a given mean and standard deviation, the maximum 

entropy occurs for a Gaussian distribution (Hyvärinen et al. 2001). This means that 

entropy could be used as a measure of non-Gaussianity. It can be shown that 

differential entropy is small for the variables which are concentrated on particular 

intervals. Considering the fact that the Gaussian distribution has maximum entropy 

among all distributions with a given covariance matrix, negentropy can be defined as 

a measure that is zero for a Gaussian variable and it is always nonnegative for other 

kinds of distributions. Negentropy J for vector x can be simply obtained from 

differential entropy as follows: 

                                               𝐽(𝒙) = 𝐻(𝒙𝑔𝑎𝑢𝑠𝑠) − 𝐻(𝒙)                                     (1.44) 

𝒙𝑔𝑎𝑢𝑠𝑠 is a Gaussian random vector of the same correlation (and covariance) 

matrix as x. The advantage of using negentropy is that the negentropy is the optimal 

estimator of non-Gaussianity (Hyvärinen and Oja 2000; Hyvärinen et al. 2001). The 

problem of using negentropy is, however, that it is computationally very difficult and 

can only be approximated for practical applications. Conventionally negentropy is 

approximated by using higher order cumulants. Equation (1.46) gives an 

approximation of negentropy by higher order cumulants (Hyvärinen et al. 2001).  

                                            𝐽(𝒙) ≈
1

12
𝐸{𝒙3}2 +

1

48
 𝐾𝑢𝑟𝑡(𝒙)2                      (1.45) 

The random variable x is assumed to be of zero mean and unit variance. For a 

zero mean random variable x which is symmetrically distributed the first term of the 

right hand side in equation (1.45) is zero (skewness is zero). For such cases, 

maximizing J(x) will be the same as maximizing the square of kurtosis. It is evident 

that, maximizing the square of the kurtosis is equivalent to maximizing the absolute 

of kurtosis. Therefore, the approximation (1.45) suffers from the same non-robustness 
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problem of the maximizing the absolute kurtosis. It has been shown by (Hyvärinen 

and Oja 2000; Hyvärinen et al. 2001) that a better approximation of negentropy is 

given by equation (1.46). 

                                            𝐽(𝑥) ≈ ∑ 𝑐𝑖[𝐸[𝐺𝑖(𝒙)] − 𝐸[𝐺𝑖(𝝊)]]
2𝑛

𝑖=1                      (1.46) 

where, 𝑐𝑖  are scalar coefficients, 𝝊  is a zero mean and unit variance Gaussian 

distributed variable, and n is the number of 𝐺𝑖 which are non-quadratic examples of 

which are: 

 𝐺1(𝑢) =
1

𝑎1
𝑙𝑜𝑔 𝑐𝑜𝑠ℎ 𝑎1𝑢      𝐺2(𝑢) = −𝑒𝑥𝑝 (−𝑢

2/2)                (1.47) 

where 1 ≤ 𝑎1 ≤ 2 is some suitable constant. For the case in which, only one non-

quadratic function is used equation (1.47) can be written as: 

     𝐽(𝑥) ≈ 𝑐[𝐸{𝐺(𝒙)} − 𝐸{𝐺(𝝊)} ]2            (1.48) 

This approximation is computationally simple, fast and robust. To maximize 

negentropy given by equation (1.48) gradient ascent can be employed in a similar 

fashion as was used for kurtosis. Using gradient ascent algorithm for maximizing 

negentropy as a measurement of non-Gaussianity gives: 

∆𝒘 ∝ 𝛾𝐸[𝒛𝑔(𝒘𝑇𝒛)] 

𝒘 ←
𝒘

‖𝒘‖
                                   (1.49) 

and 𝛾 = 𝐸[𝐺(𝒘𝑇𝒛)] − 𝐸[𝐺(𝝊)] , z is whitened data, g is derivative of the non-

quadratic function G and w is the vectors that  𝒘𝑇𝒛 gives an IC.  

Maximizing negentropy can also be carried out by using fast-fixed point 

algorithm. It is shown by (Hyvärinen and Oja 2000; Hyvärinen et al. 2001) that a 

fixed point iteration given by equation (1.50) can be used for maximizing negentropy. 

       𝒘 ← 𝐸[𝒛𝑔(𝒘𝑇𝒛)] − 𝐸[𝑔′(𝒘𝑇𝒛)]𝒘           (1.50) 

In which, g and g’ are the first and second derivatives of non-quadratic function G 

given by equation (1.47) and can be calculated from (1.51). 

 𝑔′1(𝑥) = 𝑎1(1 − 𝑡𝑎𝑛ℎ
2(𝑎1𝑥)) 
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  𝑔′2(𝑥) = (1 − 𝑥
2)𝑒𝑥𝑝(−

𝑥2

2
)                      (1.51)   

It is worth mentioning that the expectations in formulas above are estimated in 

practice as an average over the available data samples. What was explained about 

ICA by non-Gaussianity has been summarized in figure below. 

 

 

 

 

 

 

 

Figure 1.13: Two different methods of finding ICs based on maximum non-Gaussianity 

To sum up, for an 𝑚 × 𝑇 observed matrix X, PCA and ICA are the methods 

which find another matrix, with different dimensions𝐿 × 𝑇  , 𝐿 < 𝑚 , which only 

contains the main components of the original matrix from which the original matrix 

could be reconstructed. For cases in which data have Gaussian distribution, whitening 

has the same performance as ICA for separating the independent components, since 

for data with Gaussian distribution un-correlatedness implies independence. But for 

the data with other distributions, ICA is stronger than PCA for decomposing the data 

into its main components.  

In reality the mixing matrix is not necessarily linear. Moreover, in most of 

recorded bio-signals the noise is not negligible. Thus, the BSS model for the 

observation signal can be rewritten as: 

      𝑿(𝑡) = 𝑓{𝑺(𝑡)} + 𝒏            (1.52) 

In which X(t) is one observation matrix, S(t) is the matrix of independent 

components,  f is any (linear or non-linear) function of S(t) and n is additive noise. 

ICA by  

Non-Gaussianity 

Maximizing 

Kurtosis 

Fixed Point 

Algorithm 

(Fast ICA) 

Gradient 

Ascent 

Negentropy 

Fixed Point 

Algorithm 

(Fast ICA) 

Gradient 

Ascent 



Chapter1: Background 

42 

 

Noise is generally assumed to be independent and identically distributed (i.i.d.), 

spatially and temporally.  

In ICA and PCA methods for noise reduction the general idea is to classify the 

main components of the observed data into signal of interest and noise parts. Then, by 

discarding the noise part and reconstructing the signal using only the response 

components a clearer signal will be obtained, i.e. with a higher SNR.  

ICA can also be used in artifact rejection by identifying ICs as either signal or 

noise components; and then reconstructing the signal with only good components.  

Existing noise/artifact identification methods using ICA mostly follow two 

conventional algorithms, i.e. by visual inspection or alternatively by constraint ICA 

(cICA). Firstly, undesired ICs are identified following visual analysis and usually 

using spatial distribution of the components. Using the information obtained from 

spatial distribution allows incorporation of additional prior knowledge into the 

artifact rejection problem. It indicates the region on the head where the IC originate, 

which can aid in deciding if the ICA represents an artefact or not. Alternatively,  in 

some cases constraint ICA (cICA) (James and Hesse 2005) can be used. In cICA, 

independent components are found by satisfying the constraint of being close, e.g. 

mean square error, to a reference signal that is linked to the artefact, e.g. the heart-

beat as observed from the ECG, or an eye-blink as observed from electrodes around 

the eye. This makes the algorithm able to look for a particular component, which is 

likely to be an artifact component.  The artifact component is subtracted from the 

signal after being projected to the measurement space (James and Hesse 2005; 

Rajapakse and Wei 2006).  

For the case of ALR recording, considering the fact that if the recording 

electrode is placed close to the response generator sources in the brain, the amplitude 

of the response will generally be larger and the recorded signal would be less noisy. 

Increasing the number of electrodes increases the chance of being close to the 

generator sources. However, if we use too many electrodes, i.e. if the distance 

between the electrodes is not bigger than a minimum value, neighbouring electrodes 

will record (almost) the same signal which would not be useful in analysis. This 

would increase the number of electrodes, and hence the time needed in putting on the 

scalp cap. Highly redundant recordings may also lead to less robust calculation of the 

independent components. According to empirical evidence, for the case of 
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multichannel recording conventional electrode placement, i.e. spreading the 

electrodes on the scalp rather than concentrating the electrodes on a particular part of 

the brain will provide the largest signal amplitude for evoked potentials. Moreover, 

for the cases in which we are interested in investigating the contribution of the 

different regions of the cortex in an event related brain response, e.g. does the frontal 

part of the brain contribute in auditory late responses or not, multichannel recording 

will be a stronger tool than single channel recording. Signal components should be 

selected carefully. If the signal component is discarded by mistake or alternatively if 

the noise component kept as the response the quality of the reconstructed signal will 

be poor and it can be said that the noise reduction method is not reliable. Different 

methods of component selection are explained and compared in the third and fourth 

chapter. 

1.7. SNR Calculation 

SNR as a measure of quality of the signal can be selected as a criterion for 

comparing the performance of noise reduction from different methods. There are 

different methods available for calculating the SNR. In the next section two well 

established methods for calculating SNR are explained. 

1.7.1. SNR estimation using fixed-single-point (Fsp) 

For a signal model of: 

                                                           X=S+N                                                       (1.53) 

Where X is matrix output signal, i.e. rows of the matrix are observed signal on 

each electrode, S is matrix of independent components and N is background noise. 

For averaged signal, since S is assumed to be deterministic, i.e. does not change in 

amplitude, latency and morphology over M epochs, equation (1.53) can be re-written 

in the form shown in equation (1.54).  

                                                            𝑿̅=S+𝑵̅                                               (1.54) 

Where 𝑿̅  is the averaged observed signal, 𝑵̅  is the averaged noise and S is the 

averaged response. From (1.52) SNR can be formulated:  
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                                                     𝑆𝑁𝑅 =
𝑟𝑚𝑠(𝑺)

𝑟𝑚𝑠(𝑵̅)
  

        𝑆𝑁𝑅2 ≡
𝑣𝑎𝑟(𝑺)

𝑣𝑎𝑟(𝑵̅)
                                   (1.55) 

where rms denotes root mean square of the signal and var denotes the variance. 

Calculating the variance of both side of (1.54) we have: 

                                    𝑣𝑎𝑟(𝑿̅) = 𝑣𝑎𝑟(𝑺) + 𝑣𝑎𝑟(𝑵̅) + 2𝑐𝑜𝑣(𝑺, 𝑵̅)                     (1.56) 

Equation (1.56) can be written as: 

 

                                 𝑣𝑎𝑟(𝑿̅) = [
𝑣𝑎𝑟(𝑺)

𝑣𝑎𝑟(𝑵̅)
+
𝑣𝑎𝑟(𝑵̅)

𝑣𝑎𝑟(𝑵̅)
+
2𝑐𝑜𝑣(𝑺,𝑵̅)

𝑣𝑎𝑟(𝑵̅)
] 𝑣𝑎𝑟(𝑵̅)          (1.57) 

Assuming that the noise and signal are uncorrelated, the third term in equation 

(1.56) is zero. This method (Fsp) with the assumption of having single noise source, 

suggests that the background noise distribution can be approximated by collecting the 

values in one single point of each individual epoch. With increasing number of 

epochs the sample of single point values converges to the distribution of the real 

background noise. After a few hundred epochs, the variance of the single point 

samples,  𝑣𝑎𝑟(𝑆𝑃) , will be a rather accurate measure of the variance of the true 

background noise, 𝑣𝑎𝑟(𝑁)  (Elberling and Don 1984). It has been shown by 

(Elberling and Don 1984) that the value of Fsp is estimated by equation (1.58). 

𝐹𝑠𝑝 =
𝑣𝑎𝑟(𝑺̅)

𝑣𝑎𝑟(𝑺𝑷̅̅ ̅̅ )
             (1.58) 

where, 𝑣𝑎𝑟(𝑺̅)  denotes variance of the averaged signal and 𝑣𝑎𝑟(𝑆𝑃̅̅̅̅ )  denotes the 

variance of the single points selected in each epoch. It is worth noting that the Fsp is 

the an abbreviation of F-ratio single point (Hood 1998). 

1.7.2. SNR Calculation by Fixed multiple points (Fmp)  

Alternatively, by assuming that the noise has  multiple generating sources, 

SNR as a measure of signal quality and for the zero mean data can be estimated by 

adopting the formula from (Silva 2009): 

𝑆𝑁𝑅 =
𝜎𝑆𝑖𝑔𝑛𝑎𝑙
2

𝜎𝑁𝑟𝑒𝑠
2 =

𝜎𝑆𝑎𝑣𝑒
2

𝜎𝑁𝑟𝑒𝑠
2⏟
𝐹𝑚𝑝

− 1            (1.59) 
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where 𝜎𝑆𝑎𝑣𝑒
2 is the variance of the averaged trials and 𝜎𝑁𝑟𝑒𝑠

2  is the residual noise 

power. 𝜎𝑁𝑟𝑒𝑠
2 , in equation (1.59) can be estimated by segmenting the trials into 

stationary regions and estimating noise variances within the regions. The noise 

variance can be estimated by selecting L fixed points with respect to the stimulus 

onset and measuring the variability of these points across M trials. By using the 

formula suggested by (Elberling and Don 1984), the locally stationary noise source 

power 𝜎𝜂𝑖
2  can be estimated as:  

𝜎𝜂𝑖
2 =

1

𝐿
∑

1

𝑀𝑖−1
 ∑ (𝑥(𝑛,𝑚) − 𝑥(𝑛)̅̅ ̅̅ ̅̅ )

2𝑀𝑖
𝑚=1

𝐿−1
𝑛=0            (1.60) 

Where, L is the number of the fixed points, 𝜎𝜂𝑖
2  is the noise source power and 𝑥(𝑛)̅̅ ̅̅ ̅̅  is 

the average of a fixed point over M trials and 𝑀𝑖 is the i
th

 epoch. Therefore, 𝜎𝑁𝑟𝑒𝑠
2  can 

be calculated in the averaged signal from: 

    𝜎𝑁𝑟𝑒𝑠
2 =

1

𝑀2
∑ 𝑀𝑖𝜎𝜂𝑖

2𝑚
𝑖=1  with ∑ 𝑀𝑖

𝑁
𝑖=1 = 𝑀                 (1.61) 

Computer simulations of averaging under non-stationary noise sources done 

by (Silva 2009) showed that Fsp has a higher mean square error (MSE) than Fmp for 

estimating residual noise, i.e. MSE increases as the number of noise sources decrease.
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Chapter 2 

Test Protocol and Data 

Acquisition 
 

2.1. Introduction 

 There is a misperception that by following a fixed test protocol any tester, 

even with minimal technical skills, can obtain reliable, valid and clinically useful 

AERs. Test protocols are strongly dependent on applications and often need to be 

modified during testing, i.e. reason for the assessment and unpredictable 

environmental and subject variables. Therefore, it is not possible to design and follow 

a fixed and inflexible protocol and assess many patients effectively and efficiently. A 

clinician is frequently required to revise his or her strategy (Hall 2007).  

 This chapter describes the design of a test protocol for recording brain 

auditory late response (ALR) using 63 channels of EEG for three clinical 

applications. Exploring the effect of attention on the ALR waveform, measuring 

inter/intra subject variability and measuring hearing threshold sensitivity. A key 

question is whether multichannel signal processing can be more sensitive compared 

to single channel signal processing alternatives and find a  the hearing threshold 

closer to 0 dB nHL in normal hearing participants. By definition, on average a 

stimulus can be heard at 0 dB nHL (Gelfand 2007), but it elicits a brain response at 
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low level (small amplitude), and so may not be detected with evoked potentials 

(Beagley 1967). 

The main objective of this research work is to explore whether and by how 

much, multichannel signal processing strategies can improve the quality of the AER 

signals, and consequently their diagnostic utility for different clinical applications. In 

this work signal to noise ratio (SNR) is used as a measure of signal quality and it is 

measured by using Fixed-multiple-point (Fmp) (Silva 2009). In addition, we want to 

see whether we can reduce acquisition time as we may be able to achieve a given 

SNR in less time using multichannel analysis. 

In the first part of this chapter, a method of selecting adequate number of 

participants is explained. Afterward, subject preparation for multichannel recording 

of ALR and calibration of stimulus presenter are explained. Eventually, testing 

protocol (including stimulus factor and recording settings) for multichannel recording 

of ALR is presented along with a brief explanation of data acquisition for three 

clinical applications (hearing threshold measurement, monitoring the effect of 

attention and inter/intra subject variability). For the lab work risk assessments were 

carried out and ethic approval obtained (Ethics approval number: 1204). 

2.2. Subject Selection  

 When planning an experimental trial, it is very important to consider how 

many participants are needed to reliably answer the clinical questions. Too many 

participants are a needless waste of resources and too few participants will not 

produce a precise, reliable and definitive answer. Both cases are considered unethical. 

Under this common scenario, patients might be denied a useful treatment because the 

trials were underpowered (i.e. too small to detect a treatment effect) – this can also 

result in further studies being cancelled without good reason (Woodward 2005). The 

objective of sample size calculation is to calculate and fix a sample size which is 

adequate for it to be highly probable that the study will detect a real effect as 

statistically significant. Conversely, there must be adequate confidence that this effect 

is genuinely absent if it is not detected in the study (Röhrig 2010). The sample size 

can be estimated by using prediction of the means of SNRs calculated for each of the 

methods (single channel versus multichannel) with the assumption of having equal 

variances from both methods.  
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 IBM SPSS Sample power 3 was employed to estimate the sample size. In this 

calculation the first important step is to know how big of a difference is expected to 

be observed. This can be calculated from pilot studies, previous works or an educated 

guess.  From the results of pilot studies, multichannel processing improved SNR by 

factor 2.75 in comparison with single channel processing. For a significance level 

α=0.05 and power level 95% the adequate number subjects was found to be 10 

people. But, as each of the channels in multichannel recording is itself a single 

channel recording of data each of the channels of multichannel recording can be used 

as the single channel sample for each subject. Note that the test is a repeated measure 

design in which single channel data quality is compared to multichannel data quality 

in the same group of subjects.  

2.3. Subject Preparation  

To make sure that the subjects had normal middle ear function, the audiometric 

tests of tympanometry and audiometry were performed. Tympanometry is a measure 

of how well sound is transmitted by the eardrum when negative or positive pressure is 

applied to the eardrum. A small rubber tip placed in the ear to seal the ear canal and a 

pump alters pressure. At the same time sound is emitted and the return signal is 

measured. As the eardrum stiffens it is pushed in or out. The eardrum acts like a 

reflector sending the echo back to the tympanometer. The degree of compliance 

(transmission of sound through the eardrum) against the pressure applied is measured 

and the result is what is shown as a tympanogram. Lack of movement of the eardrum 

can indicate a build-up of fluid behind the middle ear. This can be caused by an 

infection or it may indicate blockage of the eustachian tube. If these conditions exist, 

a flat tympanogram score appears on the report. If tympanometry did not show any 

hearing problem with the subjects, a pure tone audiometry test was then performed 

for finding hearing range threshold level in the frequencies, 1 kHz, 2 kHz, 4 kHz,      

8 kHz, 500 Hz and 250 Hz (Gelfand 2007).The normal hearing range in adults is from 

0 dB hearing level to 20 dB hearing level.  

 An audiogram is a graph that shows the audible threshold for standardized 

frequencies as measured by an audiometer. The Y axis represents intensity measured 

in decibels and the X axis represents frequency measured in Hertz (Gelfand 2007). 

Most audiograms cover a limited range of frequencies from typically 100 Hz to 8 kHz, 
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because this range includes the main frequencies of sounds in speech. The threshold 

of hearing is plotted relative to a standardized curve that represents 'normal' hearing, 

in dB hearing level (HL). An Audiogram for a normal hearing person is shown in 

Figure 2.1. 

 

Figure 2.1: Audiogram for a normal hearing subject. Hearing threshold at each frequency is 

shown by circle for the right ear and cross for the left ear. People with hearing thresholds 

within the range of -10 to 20 dB HL are considered as normal hearing subjects. 

 For recording AERs, a scalp cap of 63 channels was applied. In order to have 

good electrode contact with the skin and have the recorded signal as clean as possible, 

chemicals such as hair gels and hair mousses should be washed from the hair (e.g. 

with warm water and baby shampoo) to remove any possible layer which might 

prevent the connection between electrodes of the scalp cap and head skin. Following 

this the scalp cap is put on the subject’s head. In this work the 10-20 electrode system 

is used for electrode placement. The electrode positions are constructed by dividing 

the line between the nasion and inion into 10% or 20% intervals. The line between 

the preauricular points is divided similarly (Teplan 2002). The 10-20 electrode 

placement system schematic is shown in Figure 2.2. 
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Figure 2.2: 10-20 electrode placement system. 

 Since the signals generated in the cortex but recorded from the scalp, the 

signal has to pass through skull, skin and hair. This pathway has an impedance that 

causes a drop in the signal amplitude. The impedance between the brain and the scalp 

is not controllable but the impedance between the electrode and the scalp can be 

controlled and should be as small as possible, i.e. usually less than 5 kΩ . A 

conductive gel should be injected to the electro cups (i.e. the syringe should be 

prepared with Abralyt HiCl gel, avoiding the introduction of air bubbles in to the 

syringe; a big bubble of air introduced in an electro cup usually results in poor 

impedance) which allows a continuous contact between the skin and the electrodes, 

despite the small movements of the subject. Putting on a scalp cap with 63 electrodes 

and reducing the impedances, between electrode and scalp, takes about 45 to 60 

minutes (Tyner et al. 1989; Teplan 2002). These steps prepare the subject for testing.  

2.4. Calibration and Finding Zero dB nHL  

 The reference for the decibel used to express deviation from normal hearing 

sensitivity for nonstandard AEP stimuli, such as clicks, is dB nHL (dB normal 

Hearing Level) (for standard pure tones the dB HL scale can be applied). According 

to (Gelfand 2007), the ear is not equally sensitive to all frequencies, i.e. hearing 

sensitivity changes as a function of the frequency of the sound; therefore 0 dB nHL 

represents normal hearing level at each frequency. For example 25 dB nHL is 25 dB 

above the threshold for a group of normal hearing people at that frequency. 

Audiometric zero dB can be established by testing a group of normal hearing people, 

18 to 30 year olds as the reference. For this study, five persons (ten ears) were tested 
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to find 0 dB nHL for 1 kHz. For this group of five normal hearing subjects the zero 

was found at 15 dB SPL.  

 Since the stimulus is presented through a stimulus generator (REM Fireface 

400 sound card) the stimulus generator needs to be calibrated to make sure that the 

sound card generates the stimulus at different levels accurately. To calibrate the 

sound card, a sound generator which produces a pure tone at 94 dB SPL was used as 

a reference for the calibration. The calibrator was used to calibrate an occluded ear 

simulator which contains a microphone that converts pressure to voltage. The peak 

value of the sound was measured to be 0.37 V by using an oscilloscope. The peak 

equivalent of the stimulus without any attenuation was also measured and it was 

found to be 8.32 V. The intensity of the stimulus in dB Peak equivalent Sound Pressure 

Level can be calculated form: 

               94 + 20 log(
𝑉𝑆𝑡

𝑉𝑟𝑒𝑓
)  = 94 + 20 log(

8.32

0.37
) = 121.04 ≈ 121 𝑑𝐵 𝑝𝑒 𝑆𝑃𝐿    (2.1) 

where, 𝑉𝑆𝑡 is peak value of the stimulus and 𝑉𝑟𝑒𝑓 is the peak value of the reference.   

 To make sure that any decrement in the stimulus intensity applied by the 

sound card can be precisely transfer to the earphones, the intensity of the stimulus 

was decreased by 10, 20 and 40 dB steps via the sound card; and the peak of the 

sound signal was measured using the oscilloscope at the output. Then peak equivalent 

sound pressure level (pe SPL) was measured at each stage using equation (2.1). Table 

2.1 shows the calibration procedure for the reference 0.37V. 

 Without Attenuation 10dB Attention 20dB Attention 40dB Attention 

Peak 

Volt 

dB pe SPL Peak 

Volt 

dB pe 

SPL 

Peak 

Volt 

dB pe 

SPL 

Peak 

Volt 

dB pe 

SPL 

ALR 

Stimulus
*
 

8.32 V 121 dB 2.48 V 110 dB 0.48 V 98 dB 60m V 79 dB 

*  
Suitable stimulus for ALR extraction is explained in the next section. 

Table 2.1: Calibration table for the ALR stimulus for the reference voltage equal to 0.37V.  

 It can be seen form Table 2.1 that any attenuation applied by the sound card 

can be observed through the measurement. For the ideal case any change in the input 

should be transmitted to the output without any change. For this case, calibration 

curve given in Figure 2.3 shows that, 10 dB attenuation in the input (via the sound 
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card) results almost 10 dB attenuation at the output (earphone). Mean squared error 

for this calibration was found to be 2.38 dB. 

 

Figure 2.3: Calibration curve for calibrating the equipment for frequency 1 kHz. Any 

attenuation in input is transmitted to the output and the mean square error of the calibration is 

equal to 2.38 dB. 

2.5. Test Protocol for ALR Recording 

 Ten normal hearing subjects (5 male, 5 female) aged between 18 and 30 years 

old volunteered to participate in to this study. All the subjects were checked to have 

normal hearing, i.e. normal results on tympanometry and behavioural pure tone 

audiometry. Moreover, the testing procedure was explained to the subjects and a 

consent form was signed by each of them. As was suggested in (Hall 2007), the 

stimulus for recording the ALR was selected to be a 1 kHz tone burst of 70 ms 

duration, with a 10 ms rise/fall time which was generated by a PC through a REM 

Fireface 400 soundcard by using software called “Presentation 14.0.1”. The stimulus 

was presented 160 times at 60 dB nHL through an insert earphone to the right ear of 

the participants. This is a moderately loud sound which should elicit good quality 

signals. The EEG was recorded from the participants’ scalp though a 63 channels 

scalp cap and an EEG system called Neuroscan system (scan 4) with the reference set 

on the nose. Since the ALR signal has low frequency content, it is low pass filtered 

by 100 Hz at the recording stage (Hall 2007). In addition, two more electrodes were 

placed on the chest and the cheek of each subject to record the heart beat and eye 

blink signals, respectively. The time required for recording the ALR was 4 min; 
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additionally, a 4 min period of no-stimulus resting EEG was also recorded. The 

resting EEG (without stimulation) was recorded for estimating the noise distribution.   

 The ALR was recorded from the participant’s brain by using stimulus factors 

given in Table 2.2. This data set was used for three clinical applications hearing 

sensitivity threshold measurement, checking the effect of attention and inter/intra 

subject variability) in the chapter 5. Data acquisition strategies for the aforementioned 

applications are briefly presented here, but they are explained in more details in 

chapter 5. 

Stimulus parameter:  Acquisition Factors 

Type: tone burst Amplification:×75,000  

Duration:70 ms, (rise/fall 10 ms, plateau 50 ms) Number of sweeps:160 

Rate: 0.7/sec  Analysis period:250ms 

Intensity: 60 dB nHL  Polarity: rarefaction  

Frequency: 1 kHz Transducer: insert, ER-3A  

 

 Filter setting:{

1 − 100 Hz
slope: 48 dB/octave
sampling rate: 4 kHz

 

 Recording time: 55-60 min 

Table 2.2: Stimulus parameters and acquisition factors of recording ALR (Hall 2007).  

This experiment is divided into 3 phases as following:  

Threshold measurement: For hearing threshold measurement first the 

stimulus given by Table 2.2, is performed at intensity of 60 dB nHL and then reduced 

to 0 dB nHL in eight steps. In the first step, the intensity is reduced from 60 dB nHL 

to 40 dB nHL and then reduce to 30 dB nHL, 20 dB nHL, 15 dB nHL, 10 dB nHL,    

5 dB nHL and 0  dB nHL (Hall 2007, Lightfoot 2010). Recording the ALR at each 

intensity level takes approximately 4 minutes (160 stimuli, 0.7 stimuli/s), resulting in 

a total testing time of 32 minutes.  

 Inter/Intra subject variability: To measure inter/intra subject variability the 

ALR is recorded three times at the intensity of 60 dB nHL for each subject. Thus, 

required time for this part is 12 min.  

 Attention condition: for this the subject is asked to count the number of 

stimuli. Recording time required for this task is about 4 minutes. 

Ignore condition: that subjects are asked to read something and not pay attention to 

the test. Recording time required for this task was also 4 minutes. This is a 

conventional method for ignoring the stimulus which has been used by many research 

(Hillyard, Hink et al. 1973, Picton and Hillyard 1974, Thornton, Harmer et al. 2007).  
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 The overall required time for ALR testing was 52 min. Moreover, a 4 minutes 

EEG without stimulation was also recorded for noise estimation. Therefore, the 

overall recording time for the test was around 1 hour. Including the time for putting 

the scalp cap into account, the total time needed for a session was 2 hours. All the 

steps of the test are summarized in Table 2.3. 

 
Finding Hearing threshold Attention Effect Inter/Intra subject variability 

60 dB nHL 60 dB nHL (Counting stimulus  60 dB nHL 

40 dB nHL for attention condition) 60 dB nHL 

30 dB nHL 60 dB nHL (Reading a text  60 dB nHL 

20 dB nHL book to ignore the stimulus)  

15 dB nHL   

10 dB nHL   

5 dB nHL   

0 dB nHL   

No Stimulus EEG   

Table 2.3: Entire test protocol for the ALR recording for clinical applications, hearing 

threshold measurement, effect of attention and inter/intra subject variability.   

 Since the amplitude of the response is very small in comparison with the 

amplitude of undesired factors, a group of signal processing methods is needed to 

extract the response from the noise. Different signal processing strategies for noise 

reduction for multichannel signal recording are demonstrated in the next chapter. 

2.6. Summary 

 In this chapter the test protocol for recording ALR was presented. Power 

calculation, subject preparation and equipment calibration were also explained. In 

addition, test design for recording the ALR for three clinical applications was briefly 

explained. 
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Chapter 3 

Signal Processing Methods 
 

3.1. Introduction 

 As was mentioned in the first chapter, there exist various approaches to 

improve the signal to noise ratio (SNR) in AER recordings such as increasing the 

intensity of the stimulus and amplifying, filtering etc. (Hall 2007).  However, the 

limitations that these methods have make them inefficient. For example the intensity 

of the stimulus cannot be increased in an unlimited way. Sounds with intensities 

above a specific value (usually above 85 to 95 dB nHL) are irritating for the subjects 

(Hall 2007). Exposing the subjects to high intensity stimuli for long time may cause 

damage in their hearing system (Gelfand 2007; Hall 2007). Therefore, an efficient 

noise reduction method is essential for extracting information from the recorded raw 

signals. 

 In this chapter, four novel automatic ICA component selection strategies for 

noise reduction in the special case of event related activities are proposed and 

preliminary tests are presented using illustrative data. Furthermore, to explore the 

impact of ICA on the quality of noise reduction for biomedical signals, results are 

compared with equivalent procedures using PCA using simulated data. In the next 

chapter, the proposed methods are used for noise reduction in the multichannel 

recording of the ALR, captured from 10 normal hearing subjects, with the aim of 
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assessing the ability of these methods to improve the quality of the estimated evoked 

response. The performances of the new algorithms will be compared with each other 

and also to that of single channel estimates of the ALR, for both weighted and un-

weighted averaging.  

3.2. Algorithms and Simulation 

To model an event related activity in the brain, two signals x and y are used as 

shown in Figure 3.4. It is assumed that the signal r is the response of the brain to the 

acoustic stimulus x, n is noise (spontaneous background EEG activities and other 

undesired signals) and y is observed signal at each electrode: 

 

         

Figure 3.1: Model for an event related activity. Signal x is the input to the system and signal 

r is the response of the system to the input which is contaminated by noise, n, and y is the 

observed (recorded) signal. 

This model is used for simulating the evoked potentials throughout this chapter. 

Two type of algorithms are presented in this section. The first two which are based on 

kurtosis and entropy respectively, are designed for situations in which there is no 

prior information available about the recorded signal. Whereas, for the second two 

methods which are based on SNR of the ICs and coherence of the ICs with a stimulus 

respectively, the onset time of the stimulus repetitions is needed as a prior 

information.  Hence, two different sets of simulated data were used for testing the 

performance of the algorithms. However, to be able to compare the performance of 

the methods, all the four methods were also applied on the same data set.  

3.2.1. Component Selection by Maximum Kurtosis of ICs (Max-

Kurt-ICs) 

 It was shown in chapter 1, that the absolute kurtosis of each component can be 

used as the measure of non-Gaussianity of the component. For a random variable x 

kurtosis can be calculated by using the formula given in equation (1.34). Equation 

(1.34) can be modified and written in the form of equation (3.1).  

n 

r 
x y AEP impulse 

response 
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    𝑘 = |(
𝐸[(𝒙−𝜇)4]

(𝐸[(𝒙−𝜇)2])2
− 3)|                                     (3.1) 

where, 𝜇 is the mean of the signal x , i.e. ICs for this case.  (Hyvärinen et al. 2001). 

An observed signal can be conceptualised as a linear mixture of the activity of many 

sources (response and noise) in the brain. It has been shown by (Mauricio et al. 

2009) that that distribution of background EEG (noise) is closer to Gaussian than the 

distribution of evoked potentials. Therefore, large non-Gaussianity of an IC may 

imply that the IC is not noise.  

In this method, first absolute kurtosis was calculated for all the ICs by using 

equation (3.1). The expectation operator in equation (3.1) was estimated by an 

average over the data. Components whose absolute kurtosis is below a predefined 

value (threshold) are considered to be noise components and should be discarded. 

Selecting this threshold has an important impact on the quality of noise reduction and 

should be carried out carefully. If the value is selected too large, response 

components will be rejected as noise, i.e. components with absolute kurtosis below 

the threshold will be rejected, and selecting the value too small will include noise 

components and will lead to a noise reconstruction. In practice, this value is usually 

estimated through pilot studies and extra measurements. One methods of estimating 

this value via extra measurement is explained in the next chapter. The main drawback 

of this method is that the kurtosis is sensitive to outliers. For instance in a case that 

the response is not present in the signal and the signal is almost normally distributed, 

a large peak, e.g. due to muscle activity, can affect kurtosis considerably; and the IC 

can then erroneously be selected as a response IC. Considering that spiky signals 

have large kurtosis, the kurtosis method cannot thus be a suitable choice for 

component selection. Also it is worth noting that there exist distributions that have 

zero kurtosis while being far from Gaussian (Karlisnikov 2013).  

To illustrate how the method works an example was run using simulated data. 

In this simulation, four signals whose distributions are not normal were used to 

evaluate the performance of the kurtosis method in solving the automatic component 

selection problem of the ICA.  Moreover, the condition under which the kurtosis 

method is not a suitable choice for component selection is also illustrated. The four 

signals which are used in this example are shown in the Figure 3.2 left. A sine wave 

and an impulse train were used to simulate the response signals; and the other two 
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signals represent the noise factors which are random signals with non-normal 

distributions. In this simulation, the signals which are generated by different sources 

in the brain were modelled by the sine wave and the impulse train. In working with 

recorded data from the brain it is possible that one of the electrodes has been placed 

in a wrong position or it has not been fixed on the scalp properly. Consequently, the 

electrode either does not record a brain response to the acoustic stimulus or records a 

rather weak signal; while it records the other stronger signals such as muscle activity 

or the heart beats. Therefore, the recorded data will only contain the muscle activity 

or the heart beat and practically does not contain any useful information about the 

brain response to the acoustic stimulus. Thus, the main activity (IC) in such signals 

will be the muscle activity or the heart beat which both have large kurtosis, and will 

be selected as response component erroneously. To simulate this condition one of the 

noise signals is designed to have large amplitude at only one of its samples. The four 

signals in Figure 3.1 left are combined by using a 4×4 mixing matrix, A, given by 

equation (3.2), and applied to the signals as given in equation (3.3). 

    𝑨 = (

2 0.5
0.4 20

    
10 1
0.7 3

15 5
0.1 5

    
0.8 0.2
0.6 14

)                                   (3.2)           

             𝒀 = 𝑨𝑿                        (3.3) 

where, Y (Observed signals) is a matrix that contains the linear mixture of the 

response signals  X (Sources) whose rows are the signals shown on the left in Figure 

3.1.  

 

 

 

 

 

 

 

 



Chapter3: Signal Processing Methods  

60 

 

0 1 2 3 4 5

-1

0

1

 

 

0 1 2 3 4 5
-0.5

0
0.5

1
1.5

 

 

0 1 2 3 4 5

0

20

40

 

 

0 1 2 3 4 5
-1

0

1

2

Time (s)

A
m

p
li
tu

d
e
 (

 V

)

 

 

0 1 2 3 4 5
-500

0

500

 

 

0 1 2 3 4 5
-40
-20

0
20
40

 

 

0 1 2 3 4 5
-50

0

50

A
m

p
li
tu

d
e
 (

 V

)

 

 

0 1 2 3 4 5
-10

0
10
20
30

Time (s)

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Left: The source signals which are a sine wave, an impulse train (of the same 

period as the sine-wave), a random signal with a large value at only one of its samples (high 

kurtosis) and a random signal which is uniformly distributed. Right: the mixture of the four 

signals using the mixing matrix A. 

 The mixture of the signals is shown on the right in the Figure 3.1. The mixing 

matrix A was designed to make one signal dominant at each observation. For example 

the third signal is dominant in the first observation and the second signal is dominant 

in the second observation. The aim of this simulation was to explore if this method 

was able to recover the response signals (the sine wave and the impulse train).  

A MATLAB implementation of FastICA (Hyvärinen et al. 2005) was used to 

separate the main components of the mixed signals. Considering that the observed 

signals are mixtures of the sine wave, pulse train and the two noise signals, it is 

known a prior that two of the ICs should be discarded, i.e. there are only two noise 

factors. Following the Max-Kurt-ICs method algorithm, the two ICs whose kurtosis 

are largest will be kept as the signal ICs and the other two ICs will be discarded as 

noise. Then the signals will be reconstructed by only using the response components. 

This attempted signal reconstruction is shown on the left in the Figure 3.3. The single 

sample with large amplitude, in the third signal from the top in Figure 3.2 left, 

increases the kurtosis of the corresponding IC. The absolute kurtosis of the sine wave 

was 1.5 and the kurtosis of the noise and the signal with one large sample were 1.2 

and 2.98 respectively. Consequently, the noise (the fourth signal from the top in 

Figure 3.1 left) and the sine wave were removed as noise components. Additionally, 

to show the noise less condition, the sine wave and the impulse train were combined 
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and the result is shown on the right in the Figure 3.3. This illustrates the situation in 

which the noise is completely removed from the observed signals (ideal noise 

reduction).  

 

 

 

 

 

  

 

 

 

Figure 3.3: Left, reconstruction after discarding the ICs with small kurtosis. Right, ideal 

noise reduction by excluding the noise components in the mixtures. 

 As can be seen in Figure 3.3, this method does not appear to be an effective 

noise reduction method as the reconstructed signal was quite different from the ideal 

noise reduced signal. The signal to noise ratio (SNR) can be calculated for each 

reconstructed signal using the equation (3.4).  

     𝑆𝑁𝑅 =
𝜎𝑆𝑖𝑔𝑛𝑎𝑙
2

𝜎𝑁𝑜𝑖𝑠𝑒
2              (3.4) 

where, 𝜎𝑠𝑖𝑔𝑛𝑎𝑙𝑠
2  is the variance obtained, when excluding the noise (setting the last 

two columns of A in equation (3.2) to zero). Thus, the noise can be obtained by 

subtracting the signals which are shown on the right side of Figure 3.2 from the 

reconstructed signals (Figure 3.3 left). The SNRs for the reconstructed signals shown 

in the Figure 3.3 left (from the top) were found 0.002, 5.61, 0.97 and 1.66 – 

confirming the poor SNR visually evident. This result illustrates that even though the 

Max-Kurt-ICs has the potential to recover the signals from the noisy mixture, it fails 

when the contaminating component has a larger kurtosis than the component of 

interest.   
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3.2.2.  Component Selection Using Minimum Entropy (Min-

Entropy-ICs) 

In chapter 1 the entropy of a random variable is related to the information that 

the observation of the variable conveys (Hyvärinen and Oja 2000). Entropy can be 

considered as a measurement of randomness of a signal, i.e. the more signal 

randomness the larger its entropy.  

 In this method, entropies are calculated for all the ICs by using equation 

(1.43) in which the expectations in the formula are approximated by averaging. ICs 

with small entropies are kept as the response part and the rest are discarded as the 

noise components. For this synthetic example the number of undesired signals is 

already known (two noise signals). Therefore, the two components with the largest 

entropies are discarded and the data are reconstructed only using the response 

components. However, in working with recorded data number of underlying 

components is unknown and for discarding the undesired components a threshold is 

needed. In practice, finding this threshold is not simple and should be estimated. One 

method of estimating this threshold for working with real data will be explained in 

the next chapter. Since the Min-Entropy-ICs method classifies the ICs based on the 

randomness, i.e. how random the signal is distributed, it is less sensitive to outliers. 

This method of IC selection thus addresses the major drawback of outliers for 

kurtosis based methods. For instance, in the previous example for the case of the 

signal with a single large sample, the kurtosis of the IC is increased due to the large 

sample; while, the signal’s randomness is still large and consequently the IC will be 

discarded as noise.     

 In order to illustrate how the Min-Entropy-ICs method can address the 

drawback of using the Max-Kurt-ICs for noise reduction for data with outlier, the 

same illustrative data set (the same signals and mixing matrix) that were used in the 

previous section were processed using the Min-Entropy-ICs method.  The results are 

shown on the left in Figure 3.4. By comparing these results with the results of ideal 

noise reduction which is shown in the Figure 3.4 on the right, it can be seen that the 

drawback of the Max-Kurt-ICs approach is addressed. 
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Figure 3.4: Left, noise reduction by using Min-Entropy-ICs for component selection. Right, 

ideal noise reduction by excluding the noise signals (the noise signals (X) in equation 3.7) in 

the mixture. 

 To compare the signals obtained from Min-Entropy-ICs reconstruction and 

the ideal noise reduction, the SNRs were calculated for each of signals. The SNR 

values for the signals shown in Figure 3.4 (from the top) were found to be 2.89, 

562.85, 1055 and 7.35, respectively, for the four reconstructed signals, which are 

considerably higher than the SNRs obtained by the Max-Kurt-ICs. It may be noted 

that the SNR is poor for the first signal, which is dominated by noise while the other 

channels especially channels 2 and 3 (see mixing matrix A in equation 3.2) are 

dominated by signal components. 

3.2.3. Component Selection by Max-Fmp of ICs (Max-Fmp-ICs) 

 A priori information about a signal can be helpful in noise reduction. For 

instance, if the signal of interest is an event related signal, this can be exploited. Two 

novel methods which are based on using a prior information, are proposed in the next 

two subsections.  

 Depending on the length of the response (r), the time interval over which 

search for the response should be carried out can be selected. For instance, if r occurs 

within 100 ms after stimulus (x) onset, we can use the onset as a reference moment 

and investigate100 ms after that onset in the signal to assess the response.  Therefore 

the problem has been changed into signal detection in particular time intervals. High 
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SNR over intervals related to the input implies the response is present over the 

interval.  

 In this method ICs that have large SNRs over the defined intervals following 

the stimulus, will be selected as signal components and the rest are discarded as noise 

components. By setting a threshold for minimum acceptable SNR the signal 

components can be separated from the noise components, i.e. ICs whose SNR are 

above the threshold will be kept and the rest will be discarded. For simulating this 

condition, an impulse train as given by equation (3.6) was selected as the stimulus.  

    𝐹(𝑛) = ∑ 𝛿(𝑛 − 𝑀𝑘)𝐿
𝑘=0             (3.6) 

where, δ(.) is the Kronecker delta function, n are samples, M is the delay between 

impulses, and k identifies each impulse (L+1 in total). In the current simulation, 

M=100 and L=10. Additionally, four periodic signals P(n), Q(n),R(n) and S(n), which 

are described by equations (3.7) to (3.10) and also a random signal with uniform 

distribution (to simulate the noise) were used in this simulation. The signals Q(n) and 

R(n) are selected to be periodic with the same period as the stimulus, given by the 

equation (3.6), to model the activities which are synchronized with the stimulus; 

while P(n) and S(n) were used to model the other components  which are periodic but 

they are not the response to the stimulus, e.g. eye-blink or hear beats. These signals 

are shown on the left hand side of Figure 3.5  

  𝑝(𝑛) = {
𝑥1(𝑛)      0 ≤ 𝑛 < 200

 
0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑃(𝑛) = ∑𝑝(𝑛). 𝛿(𝑛 − 200𝑘)

4

𝑘=0

 

𝑞(𝑛) = {
𝑥2(𝑛)      0 ≤ 𝑛 < 100

 
0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑄(𝑛) = ∑𝑞(𝑛). 𝛿(𝑛 − 100𝑘)

9

𝑘=0

 

𝑟(𝑛) = {
𝑥3(𝑛)      0 ≤ 𝑛 < 100

 
0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3.7) 

(3.8) 

(3.9) 
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𝑅(𝑛) = ∑ 𝑟(𝑛). 𝛿(𝑛 − 100𝑘)

9

𝑘=0

 

𝑠(𝑛) = {
𝑥4(𝑛)      0 ≤ 𝑛 < 127

 
0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑆(𝑛) = ∑𝑠(𝑛). 𝛿(𝑛 − 127𝑘)

7

𝑘=0

 

 It can be deduced from the equations (3.8) and (3.9) that Q(n) and R(n) are 

periodic with a period of 100 samples; while from (3.7) and (3.10), it can be seen that 

the P(n) and S(n) are periodic with periods of  200 and 127 samples respectively. 

Using the mixing matrix A given by the equation (3.11) the four signals and noise in 

Figure 3.5 (left) are mixed and the result is shown in Figure 3.5 (right).   

         𝑨 =

(

 
 

15 0.2 1
0.3 12 2
0.7 3. 10

    
0.6 3
2 4
1.5 2

0.2 0.5 0.75    13 3.5
1 1.5 2.9        3  17 )

 
 

           (3.11) 

This mixture can be written in the matrix form as:     

      𝒀 = 𝑨𝑿             (3.12) 

 where A is the mixing matrix, Y is a matrix which includes the signals and the noise 

(source matrix) and the X is a matrix which contains the linear mixture of the signals 

and noise (observation matrix). It can be seen in equation (3.11), that the elements of 

the rows of the mixing matrix A are selected in a way that one signal is dominant, i.e. 

it has larger weight, in the mixture at each time. For instance in the first row of the 

matrix Y, the first signal has weigh 15 and it is dominant in that mixture.  

 

 

 

 

 

 

 

(3.10) 
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Figure 3.5: Left, four signals P(n),Q(n), R(n) and S(n), given by equations (3.9) to (3.12) 

plus noise. Notice that the P(n) is periodic with 200 samples, Q(n) and R(n) are periodic with 

100 samples and the S(n) is periodic with 127. Right, linear mixture of the signals using the 

mixing matrix A 

 FastICA was employed to find the main components (ICs) of the matrix X. 

According to the event related activity model presented in Figure 3.1, the response is 

expected to occur over the interval between two successive stimuli.  

The SNR of each IC is calculated by using Fmp  which was explained in 

section 1.7.2. To calculate SNR via Fmp for each IC, first the IC is segmented into 

trials (epochs) with length of 100 samples (period of the stimulus). Then, by selection 

on 5 fixed points, i.e. for this simulation the 10
th

, 30
th

, 50
th

, 70
th

 and 90
th

 sample, in 

the trials and computing variation of the signal across the trials for these points and 

then calculating the mean over the variations, Fmp is calculated for each IC. 

Independent components whose Fmp values are higher than a critical threshold are 

deemed to contain the response and should be kept. If the method works perfectly, 

only Q(n) and R(n) will be used in reconstruction. The data was reconstructed by only 

using the response components and the result is shown in Figure 3.6 (left). Moreover, 

Figure 3.6 (right) shows the mixture of the response signals, i.e. only mixing the Q(n) 

and the R(n). In another words, the Figure 3.6 (right) shows the mixture of the signals 

without any undesired factors (noise or the activities which are not following the 

stimulus). Considering that the SNR calculation is constrained to intervals between 

each two successive stimuli, the signals that are periodic with a different period will 
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have small SNR and cannot be considered as response components and will be 

rejected as an undesired component.  

For this simulation it was already known that just two of the signals follow the 

stimulus, and thus component rejection was easy, i.e. the first two signals with the 

largest Fmp values were selected as response components. This issue is not simple for 

real-world recorded cases such as the EEG in which there is no certain information 

about the exact number of underlying sources. Having a priori information about the 

signal can be helpful to estimate this threshold. One method for finding this threshold 

is explained in the next chapter. 

 

  

 

 

 

 

 

 

Figure 3.6: Left, reconstructed data only using signal components (the noise components are 

discarded). Right, mixing only the response signals, the signals which are synchronised with 

the stimulus, ideal noise reduction 

 The SNRs were calculated for the reconstructed data. These values were 

found 0.004, 53.153 162.28 and 4.25 respectively (from the top). In the next 

subsection, an alternative method of component selection for event related activities 

based on coherence of the signals and the stimulus is proposed. 

3.2.4. Component Selection Using Magnitude Squared 

Coherence (MSC) of ICs (MSC-ICs) 

 This method is also designed for noise reduction for event related activity 

cases. The key idea in this method is to use the coherence between the stimulus and 

the IC as a criterion for the presence of a response in the IC. If an IC is significantly 

coherent with the stimulus, the IC is selected as a response component. Otherwise it 
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will be rejected as a noise component. Magnitude squared coherence (MSC), given 

by equation (1.1), is used as a measure of coherence between the ICs and the 

stimulus. For two signals, s (the stimulus) and d (IC), the equation (1.1) can be 

rewritten as:  

   𝛾𝑠𝑑
2 (𝑓) =

|𝑆𝑠𝑑(𝑓)|
2

𝑆𝑠𝑠(𝑓)𝑆𝑑𝑑(𝑓)
= 

|∑ 𝐷𝑖(𝑓)𝑆𝑖
∗(𝑓)𝑀

𝑖=1 |2

∑ |𝐷𝑖(𝑓)|
2 𝑀

𝑖=1 ∑ |𝑆𝑖(𝑓)|
2 𝑀

𝑖=1

          (3.13) 

Where, 𝑆𝑠𝑑(𝑓) is cross power spectra between s and d and 𝑆𝑠𝑠(𝑓)  and 𝑆𝑑𝑑(𝑓) 

are auto spectra of signals s and d respectively. In right hand side of equation (3.13), 

𝐷𝑖(𝑓) and 𝑆𝑖(𝑓) are the samples of the Fourier transform of s and d and “*” equation 

denotes conjugate operator. Since the stimulus is constant, i.e. identical for all the 

epochs, (3.13) will be written as: 

    𝛾𝑠𝑑
2 (𝑓) =

|𝑆∗(𝑓)|2|∑ 𝐷𝑖(𝑓)
𝑀
𝑖=1 |

2

𝑀|𝑆(𝑓)|2∑ |𝐷𝑖(𝑓)|
2 𝑀

𝑖=1

          (3.14) 

Therefore for a constant stimulus MSC can be calculated as following.  

        𝛾𝑠𝑑
2 (𝑓) =

| ∑ 𝐷𝑖(𝑓)
𝑀
𝑖=1 |2

𝑀∑ |𝐷𝑖(𝑓)|
2 𝑀

𝑖=1

                                 (3.15) 

It should be noted that the actual stimulus function S(f) is irrelevant, as it cancels in 

the equation (3.14). Equation (3.15) shows that when the stimulus is constant and the 

response is phase locked to the stimulus, the coherence can be calculated by 

segmenting signal according to the stimulus onsets and then the equation (3.14) can 

be simplified to equation (3.15).  In order to apply a statistical test for the presence of 

a response in an IC, the null hypothesis is that the IC and the stimulus are not 

coherent. The null hypothesis is rejected if the p-value of the estimated MSC is 

smaller than a user-selected value (typically α=5%), and the IC is then considered as 

statistically significant. In statistical hypothesis testing, the p-value is 

the probability of obtaining a test statistic at least as extreme as the one that was 

actually observed, assuming that the null hypothesis is true. One often "rejects the 

null hypothesis" when the p-value is less than the significance level α, which is often 

0.05 or 0.01. The p-value can be calculated for the MSC based on the F-statistic. 



Chapter3: Signal Processing Methods  

69 

 

0 1 2 3 4 5
-5

0

5

0 1 2 3 4 5
-10

0

10

0 1 2 3 4 5
-5

0

5

0 1 2 3 4 5
-5

0

5

0 1 2 3 4 5
-5

0

5

Time (s)

A
m

p
li
tu

d
e
 (

 V

)

0 1 2 3 4 5
-5

0

5

0 1 2 3 4 5
-10

0

10

0 1 2 3 4 5
-5

0

5

0 1 2 3 4 5
-5

0

5

0 1 2 3 4 5
-5

0

5

Time (s)

A
m

p
li
tu

d
e
 (

 V

)

According to (Simpson et al. 2000) coherence estimates for zero coherence between 

signals s and d follow an F-distribution after the following transformation:  

     
(𝑀−1)𝛾𝑠𝑑

2 (𝑓)

1−𝛾𝑠𝑑
2 (𝑓)

~𝐹2,2(𝑀−1)         (3.16) 

where N is the number of the epochs, the 𝛾𝑠𝑑
2 (𝑓) is the magnitude squared coherence, 

‘~’ denotes ‘is distributed as’ and 𝐹2,2(𝑀−1) is the F-distribution with 2 and 2(M-1) 

degrees of freedom. Setting an optimal threshold for the p-value is not a trivial issue: 

too low will remove too many ICs, some of which may include a weak response. 

Setting the significance value α too high will lead to the inclusion of too many ICs, 

including some dominated by noise. Both these extremes will reduce the final SNR of 

the estimated responses. The MSC method was employed for noise reduction in the 

same signals as used in the section 3.2.3 and the results are shown in Figure 3.7.  

 

 

 

 

 

 

 

 

Figure 3.7: Left, de-noised data using the MSC-ICs for component selection.  Right, ideal 

noise reduction (by only mixing Q(n) and R(n)). 

 For this example, the threshold for p-value was selected as 0.05. ICs which 

are significantly coherent with the input (p-value < 0.05) are kept as signal 

components and the rest are removed as noise components. As a measure of signal 

quality, SNR was calculated for each of the reconstructed signals shown on the left in 

Figure 3.7. These values were found 0.0046, 157.86, 283.57 and 5.621 (from the top).  

The performance of the proposed methods for noise reduction and SNR 

improvement are compared by applying all four suggested methods on a same set of 

data. The results of this comparison are shown in Figure 3.8. 
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Figure 3.8: Comparing Fmps (as a measure of SNR) obtained by the proposed methods. The 

Max-Fmp- ICs and the MSC-ICs produce signals with higher Fmps (SNRs) than the Max-

Kurt-ICs and Min-Entropy-ICs. For this example MCS-ICs and Max-Fmp-ICs have the same 

performance (the graphs are overlapping). 

 It can be stated from the results of Figure 3.8 that in this example the MSC-

ICs and the Max-Fmp-ICs have identical performance in noise reduction (the graphs 

are overlapping). Moreover, it can be seen that for this set of data, the MSC-ICs and 

the Max-Fmp-ICs provide higher SNRs than the other two methods (Max-Kurt-ICs 

and Min-Entropy-ICs).  

3.2.5. PCA versus ICA for Source Separation 

 As discussed in section 1.4, when the signal of interest is highly contaminated 

by noise and the power of signal is small compared to the noise power, PCA cannot 

entirely separate the signal components from the noise components. Signal sets given 

by equations (3.17) to (3.18) and three uniformly distributed random signals (noise) 

were used to demonstrate the drawbacks of PCA based noise reduction methods.  

𝑠1(𝑡) = {
𝑠𝑖𝑛(0.5𝜋𝑡)      0 < 𝑡 < 100

 
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑆1(𝑡) = ∑𝑠1(𝑡). 𝛿(𝑡 − 100𝑘)

9

𝑘=0

 

𝑠2(𝑡) = {
𝑠𝑖𝑛(0.3𝜋𝑡)      0 < 𝑡 < 100

 
0                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝑆2(𝑡) = ∑𝑠1(𝑡). 𝛿(𝑡 − 100𝑘)

9

𝑘=0

 

𝑠3(𝑡) = {
𝑠𝑖𝑛(0.2𝜋𝑡)      0 < 𝑡 < 100

 
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑆3(𝑡) = ∑𝑠1(𝑡). 𝛿(𝑡 − 100𝑘)

9

𝑘=0

 

𝑠4(𝑡) = {
𝑠𝑖𝑛(𝜋𝑡)      0 < 𝑡 < 100

 
0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑆4(𝑡) = ∑𝑠1(𝑡). 𝛿(𝑡 − 100𝑘)

9

𝑘=0

 

The signal set and three noise signals were mixed using mixing matrix A given by 

equation (3.21) and provide the observation signals.  

   𝑨 =

(

 
 
 

15
0.3
0.7
0.2
1
2
4

0.2
12
3
0.5  
1.5
2.5
1.1

1
2
10
  0.75

 
2.9
4.9
1.9

0.6
2
1.5
13
3
2
3

 3
 4
 2
   3.5

 
17
0.3
5

1
1
0.4
1.5
0.3
25
0.9

0.5
1
2
2
2.4
2.4
15)

 
 
 

                (3.21) 

 Matrix A was selected in a similar way as the corresponding matrix A in the 

previous example to produce signals with one dominant component dominant at each 

time for each observation. In this simulation, for PCA components with highest 

variances were selected as the components of interest and MSC-ICs were used for 

selecting the ICs for ICA. The results of using PCA in noise reduction algorithm was 

compared with ICA based alternative. Moreover, un-weighted averaging was used as 

a reference for comparing the performances of the two methods in noise reduction. 

This comparison was carried out for when the level of noise was increased by the 

factor of 100 in three stages, i.e. for this example noise variance was changed from 

0.483 to 48.3.  Initially the noise variance was selected equal to signal variance and 

then it was increased to 100 times larger than the signal’s variance in three stages. 

The performance of PCA for separating the main components (signal components 

from noise components) was compared with ICA by comparing the components 

(3.19) 

(3.20) 
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found through each of the method form the signal set given by equation (3.17) to 

(3.18) and the noise signals. The signal set along with the noise signals and also the 

mixture of the signals (mixing by matrix A) for noise variance equal to the signal’s 

variance (0.438) are shown in Figure 3.9.  

 

 

 

 

 

 

Figure 3.9: Left, Signal set given by equations (3.17) to (3.20) along with the noise signals. 

Noise signals have equal variances (0.483). Right, signals and noise are mixed by using 

mixing matrix A. 

  

 

 

 

 

 

 

 

 

 

Figure 3.10: Left, main components found from the mixture by PCA. Right, Main 

component found form the mixture by ICA. 

 Since the signal and noise have equal powers, as can be seen from the left of 

Figure 3.10, PCA was not able to find the main components precisely; while, the 

main components found by ICA were more similar to the actual signals.  In this 

example, PCA fails to find the main components when variance of noise is in the 

range of signals variance. This result is in accordance with the fact that PCA 

decompose the data into the components whose variances are maximally large, i.e. 
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since the noise and the signal have the same variance, the PCA algorithm select noise 

as a principal component. The time domain de-noised signals were reconstructed by 

only using the components 1, 2, 3 and 5 shown on the left of Figure 3.9. The 

ensemble average of the reconstructed signals and also the raw data (Figure 3.9, right) 

is shown in Figure 3.11. It can be seen from Figure 3.11 that using ICA in noise 

reduction algorithms has a considerably better performance than the PCA alternative 

and un-weighted averaging, i.e. signal looks less noisy.  These results were confirmed 

by calculating the SNR of each de-noised signal (using Fmp) produced by each of the 

methods. These SNRs are shown in Table 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: SNR improvement using PCA, ICA and un-weighted averaging. Noise variance 

is equal to signal variance. 

 

Methods 

Signal to Noise Ratio(Fmp) 

Sig.1 Sig.2 Sig.3 Sig.4 

Un-weighted Ave 2.27 × 103 0.82 × 103 1.45 × 103 103 

PCA 0.052 × 103 1.77 × 103 0.80 × 103 103 

ICA 3.25 × 106 1.30 × 107 5.53 × 106 6.21 × 107 

Table 3.1: SNR improvement comparison between PCA, ICA and un-weighted averaging 

when noise variance is equal to signal variance.  

 This procedure was repeated when the noise level is ten times larger than the 

signal level and the result is shown in Figure 3.12.  
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Figure 3.12: SNR improvement comparison between PCA, ICA and un-weighted averaging. 

The noise variance is now ten times larger than signal variance. 

 Figure 3.12 illustrates that PCA is able to reduce the noise considerably better 

than simple un-weighted averaging. Moreover, Table 3.2 shows the SNRs of the 

noise reduced signals produced by PCA, ICA and un-weighted averaging for the case 

in which noise variance is ten times larger than signal variance.   

 

Methods 

Signal to Noise Ratio(Fmp) 

Sig.1 Sig.2 Sig.3 Sig.4 

Un-weighted Ave 218.81 78.36 134.46 92.33 

PCA 1.47 × 104 1.39 × 104 8.21 × 103 1.06 × 104 

ICA 8.32 × 106 5.89 × 106 6.11 × 105 6.99 × 106 

Table 3.2: SNR improvement comparison between PCA, ICA and un-weighted averaging 

when noise variance is ten times larger than signal variance. 

 Finally the noise level was selected to be 100 times greater than the signal 

level. It is shown in Figure 3.13 that PCA had a better performance than un-weighted 

averaging for noise reduction. However, Table 3.3 shows that ICA still has a better 

performance than PCA in terms of SNR improvement.  
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Figure 3.13: SNR improvement using PCA, ICA and un-weighted averaging. Noise variance 

is ten times larger than signal’s variance. 

 

Methods 

Signal to Noise Ratio(Fmp) 

Sig.1 Sig.2 Sig.3 Sig.4 

Un-weighted Ave 218.81 78.36 134.46 92.33 

PCA 1.47 × 104 1.39 × 104 8.21 × 103 1.06 × 104 

ICA 8.32 × 106 5.89 × 106 6.11 × 105 6.99 × 106 

Table 3.3: SNR improvement comparison between PCA, ICA and simple averaging when 

noise variance is hundred times larger than signal variance.  

 Form the results presented by Figures 3.10 to 3.13 and also Tables 3.1 to 3.3, 

for this example, it can be concluded that the component separation by PCA is 

susceptible by noise level. Also it was shown that ICA based noise reduction has 

better performance in noise reduction compared with PCA and un-weighted 

averaging. 

 When PCA is employed for source separation in noise reduction algorithms, if 

the noise variance is smaller than the signal variance of the components with larger 

variances should be kept as signal components; while for the cases in which noise 

variance is larger than signal’s variance components with large variances should be 

discarded. This dependency on noise level for component selection is problematic for 

cases in which there is no information available about the noise level. This fact 

suggests that MSC may be advantageous for automatic component selection for PCA 

based noise reduction algorithms in a similar fashion as ICA based noise reduction 

methods. The ensemble average for noise components found by PCA and ICA when 
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the noise variance was ten times larger than the signal variance are shown in Figure 

3.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Ensemble average over noise components found by PCA (left) and ICA (right). 

Signal pattern can be seen though the noise found by PCA. 

 In Figure 3.14(left) the signal pattern is clearly visible in the noise 

components found by PCA; while the noise components found by ICA do not seem to 

contain any signal. For this example, it can be deduced from the result that PCA is 

not able to separate the signal components from noise components entirely. Due to 

the presence of the signal in the noise, all the components even the noise components 

are found to be significantly coherent. Consequently, the noise components will be 

kept as signal components and the reconstruction will be noisy. Although, this 

example shows that it is unlikely that MSC will be helpful in automatic component 

selection for PCA based noise reduction algorithms, this issue needs more 

investigation. Hence, in the next chapter MSC is used for component selection for 

PCA and ICA when real data is analysed. It is worth noting that, this pattern is also 

visible when the noise level is hundred times larger than the signal level but noise 

variance ten times larger than signal’s variance has been selected here for simplicity. 

3.3. Discussion and Conclusion 

For the four noise reduction methods presented for selecting ICA components, 

it was demonstrated that all the methods are able to reconstruct the response form the 

noisy signal. Moreover, the results of applying all the four methods on the same set of 

data show that for this example, the MSC-ICs and the Max-Fmp-ICA have better 
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performance in terms of SNR improvement than the other two methods. However, in 

order to show that this improvement is significant, methods should be tested on real 

data followed by statistical analysis. Statistical comparison of the proposed methods 

is carried out and explained in detail in the next chapter.  

 For using the MSC-ICs and the Max-Fmp-ICs, extra information about the 

signal is needed, including crucially stimulus onsets; while the Max-Kurt-ICs and the 

Min-Entropy-ICs do not need this prior information. However, the Max-Kurt-ICs is 

sensitive to the outliers and it is not a suitable choice for the cases in which the 

undesired signal has large positive kurtosis (super Gaussian distribution). Setting a 

suitable threshold for rejecting or accepting an IC is another difficulty of the 

introduced methods.  

 In biomedical data the variance of the noise is much higher than the variance 

of the signal of interest, it can be predicted that PCA might be able to enhance the 

signal quality, i.e. in terms of SNR improvement. However, according to the results 

of the simulation presented in this chapter, ICA may have a better performance in 

SNR improvement. Moreover, due to the signal residue in noise components, MSC 

may not be a suitable method for component selection for PCA based noise reduction 

methods. 

3.4. Summary 

 In this chapter four novel methods for automatic component selection for ICA 

based noise reduction algorithms were proposed and tested by using simulated data. 

Moreover, the performances of the suggested methods were compared in terms of 

signal to noise ratio improvement. The results showed that the MSC-ICs and Max-

Fpm-ICs seem to have a better performance than the other two methods. 

 Furthermore, the idea of employing PCA instead of ICA in noise reduction 

algorithms was explored. The results of simulation confirmed that PCA can also be 

used in multichannel noise reduction algorithms. However, ICA provides signals with 

higher qualities (larger SNRs). Moreover, it was shown that MSC cannot be 

beneficial for component selection when PCA is employed as component separation 

methods in multichannel noise reduction algorithms. However, comparison between 

the methods should be carried out through statistical analysis over more set of data 
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and real data. In the next chapter these methods will be statistically compared with 

each other and also the alternatives. 
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Chapter 4 

A Comparison of Different Noise 

Reduction Approaches on 

Recorded Data  
 

4.1. Introduction 

 The main goals of this chapter are: 1. to quantitatively compare the noise 

reduction methods proposed in chapter 3 (ICA and PCA based methods) on data 

recorded on patients in order to assess which of the methods is the best choice for 

noise reduction (SNR improvement) in multichannel ALR recordings. 2. to explore 

whether, and to what extent, using multichannel signal processing can be beneficial 

for SNR improvement in ALR recording in comparison with single channel 

processing.  

 In this chapter the four proposed ICA component selection methods described 

in chapter 3 (Max-Kurt-ICs, Min-Entropy-ICs, Max-Fmp-ICs and MSC-ICs) are used 

for signal quality enhancement for 63 channel ALRs recorded from 10 normal 

hearing subjects. The performance of the methods are compared with each other and 

also with single channel processing alternatives (un-weighted and weighted averaging 

which are explained in chapter one) in terms of SNR improvement. This comparison 
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is carried out with regard to two aspects: the highest SNR produced by each method 

and also the number of the channels that each method provides with an SNR above a 

predefined critical value. The reason for being interested in having more channels 

with high SNR is that, in some clinical applications the signal of interest should be 

extracted from some specific regions of the scalp, e.g. frontal or lateral scalp regions. 

Therefore, a method which can give a consistently high SNR across several channels 

may be useful. Furthermore, the performance of the best proposed method is 

compared with two PCA based multichannel noise reduction alternatives. In the first 

instance the principal components (PCs) are ordered by eigenvalues of the covariance 

matrix (Hyvärinen and Oja 2000) and in the second the MSC is used for component 

selection. At the end statistical comparison between all the alternative noise reduction 

methods is carried out and the best method in terms of SNR improvement is selected 

and will be applied to different clinical ALR applications in chapter 5.    

4.2. Noise Reduction Methods 

4.2.1. Single Channel Processing Methods  

In chapter one, single channel recording and the effect of un-weighted coherent 

averaging was explained. It was highlighted that, noise reduction strategies are 

depending on the protocol under which the AERs are recorded. The ALR is either 

recorded by single or multichannel strategies. There exist various noise reduction 

methods when the ALR is recorded using single channel protocol. Conventional un-

weighted coherent averaging and weighted averaging are two methods which are used 

frequently in clinical applications (Ross et al. 1984; Elberling and Wahlgreen 1985; 

Davila and Mobin 1992; Dimitrijevic et al. 2001).  

For this work, the ALR was recorded using the testing protocol explained in 

section 2.5 with 155 stimulus repetitions. Recall that, the ALR occurs over 250 ms 

after stimulus onset. Hence, although inter stimulus interval is 1499 samples we are 

only interested in 250 samples after each stimulus onset, i.e. 250 samples is 

equivalent to 250 ms when sampling rate is 1 kHz. Therefore, the recorded signal is 

segmented in to 155 epochs each of length 250 samples. It is worth mentioning that, 

this segmentation is used throughout this work. Hence, whenever the term epoch is 

used, it means a segment of 250 samples after the stimulus onset; unless it is 
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specifically stated otherwise.  Un-weighted averaging was simply implemented by 

using the equation (1.5). In other words, the epochs were added to each other and 

divided by 155. For implementing the weighted averaging given by equation (1.10) in 

this work, the weights were calculated by taking every five epochs as a sweep and 

calculating the variation of the signal over each sweep by using Fmp. In this 

implementation, for calculating the variation of the signal over each sweep, sample 

points (10, 30, 50, 70, 90, 110, 130, 140, 160,  180, 200, 220 and 240) were selected 

in each epochs; and variation of each sample point across the five epochs were 

calculated. Mean value of signal variation over the aforementioned points was 

calculated as the weight of each sweep. Then, the epochs were weighted by dividing 

each epoch by the weight of the sweep that the epoch belonged to. The weighted 

average ALR was obtained by adding the weighted epochs and dividing the results by 

addition of all the weights, as in (1.10). 

4.2.2.  Multichannel Processing Methods 

 In chapter 3, the general approach for multichannel BSS based noise reduction 

methods was described as consisting of three steps:  

1. Decomposing the recorded signals into its main components, here defined to be 

independent components (ICs) or principal components (PCs).  

2. Classify the main components into two main groups: response components and 

noise components.  

3. Reconstruction the data using only the response components. Stage 2 is often the 

most challenging, and frequently carried out based on visual inspection and the 

spatial distribution of components.  

In this section, the implementation of the four component selection methods 

which were introduced in the third chapter are explained. Similar to the single 

channel processing methods, as a pre-processing step, the data was segmented, i.e. 

250 samples after each stimulus onset were kept. Afterwards, FastICA was applied on 

the segmented data to find the ICs. In the Max-Kurt-ICs method, to automate the 

component selection, kurtosis of each IC was calculated using equation (1.23). The 

expectation operator in equation (1.23) was estimated by averaging over data. In the 

next step, the critical value below which the ICs should be rejected as noise 

components was found from the 4 min no-stimulus EEG (resting EEG) and a 
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Bootstrap method. Bootstrap was used to estimate distribution of noise kurtosis. For 

this estimation, kurtosis was calculated for 155 epochs which were randomly selected 

from the no-stimulus EEG recorded from the vertex and this procedure was repeated 

200 times. Then, 95
th

 percentile of the noise kurtosis distribution gives the value 

above which the signal deemed to be significantly different from noise. Since the 

heart beat component has also a large kurtosis, in order to not to include the heart beat 

component in signal reconstruction, the component with largest kurtosis should also 

be removed. In other words, if an IC has kurtosis above the threshold value and less 

than the largest kurtosis value, the IC will be kept as the response components and 

otherwise will be discarded as noise component.  

 In Min-Entropy-ICs method, entropy of each IC was calculated by using the 

equation (1.29). In practice, in order to use the equation (1.29), the pdf was 

approximated by histogram and 256 bins (implemented in a MATLAB function). 

Setting the threshold for component selection, was carried out in a similar fashion 

with the previous section but slightly different. Distribution of noise entropy was 

estimated by bootstrapping; and lower 95
th

 percentile of the distribution was selected 

as the threshold. ICs with entropy values above this value should be discarded as 

noise components. 

 For component selection by Max-Fmp-ICs, Fmp of each IC was calculated by 

selecting 13 points (10, 30, 50, 70, 90, 110, 130, 140, 160, 180, 200, 220 and 240) in 

each epoch and calculating the mean value of variation of the signal over these points 

across 155 epochs. This value was compared with the threshold value obtained from 

rest EEG and bootstrapping. Here, the 95
th

 percentile was selected as the critical 

value and ICs with Fmp above the threshold were selected as response components 

and the rest were discarded as noise components.  

 MSC-ICs was also used for selecting response components. MSC was 

calculated for each IC by following equation (3.15). Since, the ALR waveform is 

similar to a sinewave over epochs with length 250 samples, highest signal power is 

expected to be observed at the first harmonic. For the null hypothesis of zero 

coherence between stimulus and EEG, distribution of (3.15) is given by equation 

(3.16). For each IC, p-value was calculated from the MSC distribution. An IC was 

selected to be a response component, if the IC was significantly (p-value< 0.05) 

coherent with the stimulus at the first harmonic. After selecting the components, for 
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each of the methods, the data was reconstructed using the mixing matrix (calculated 

by FastICA) and also assigning the undesired components to zero (the rows of the IC 

matrix corresponding to undesired components were assigned to zero) and after 

reconstructing the data, an un-weighted average was taken over 155 epochs. 

4.3. Comparison of Methods 

 SNR as a measure of signal quality was calculated using Fmp which produces 

an estimate of the SNR. To compare the performance of multichannel noise reduction 

with single channel alternatives, the highest SNR that each method can provide in 

each subject were compared. Moreover, the number of channels with SNR higher 

than a critical value for each subject is another criterion for comparing the 

performances of the methods. In the current work, the threshold Fmp value (section 

1.7.2) above which a response was deemed present was obtained from the 95
th

 

percentile of the Fmp distribution of the 63 channels recorded at rest (with no 

auditory stimulation) by the bootstrap method. The Fmp was calculated for each 

method in an identical manner to the data with stimulation, i.e. the noise reduction 

methods were applied on resting EEG and then Fmps were calculated. Since there is 

no stimulus present in the resting EEG signal, there will be no response present, and 

the resulting distribution represents the null-hypothesis. The distributions of the Fmps 

were obtained for all the noise reduction methods by the Bootstrap method (Simpson 

et al. 2007; Chernick 2008), by repeatedly (200 times) choosing 155 epochs from the 

recorded resting EEG at Cz (situated at the vertex), with random starting points. The 

procedure of finding Fmp distribution for noise reduced data was carried out for all 

ten subjects and the mean value of the thresholds found in each method was selected 

as the threshold for the corresponding method. Signals with Fmp higher than the 

threshold are thus considered as high quality signals and the channels with SNR 

lower than this threshold are considered as channels with poor quality signals, and 

either the response is not present or not detectable. The significance of the noise 

reduction methods is checked by applying a parametric or non-parametric statistical 

tests, i.e. depending on the distribution of the data; results with p-value <0.05 are 

deemed statistically significant.  



Chapter4: A Comparison of Different Noise Reduction Approaches on Recorded Data  

84 

 

4.4. Statistical Analysis and Results  

 The result of applying un-weighted and weighted averaging on the ALR 

recorded form the Cz channel for one of the subjects is shown in the Figure 4.1.  

 

Figure 4.1: The ALR waveform obtained by un-weighted (dashed line) and weighted 

averaging (solid line).  

Fmp threshold found calculated by only using Cz channel was found to be 

similar with when all 63 channels were used. For un-weighted averaging, mean value 

of Fmp threshold across all ten subjects found to be 1.25 (standard deviation 0.02) 

when only Cz was used and 1.24 (standard deviation 0.03) when all 63 channels were 

used. The distribution of the Fmps and the critical values obtained from Cz are shown 

in Figure 4.2. Signals with Fmp above these thresholds are deemed to contain a 

response.   

 
Figure 4.2:  Distribution of Fmp for the resting EEG for one of the normal hearing 

participants over the Cz channel, estimated using the bootstrap method for no stimulation 

data. The dashed lines show the 95% cut offs for un-weighted and weighted averaging. 

Channels with an Fmp above these thresholds can be considered as showing a significant 

response to auditory stimulation. 
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 The Fmp threshold was found at Cz for all ten subjects using the same 

procedure. The average value of the thresholds found by the un-weighted and 

weighted averaging were 1.25 and 1.29 with a standard deviation of 0.013 and 0.012 

respectively. Therefore, 1.25 and 1.29 are selected as the Fmp threshold for these 

methods. The outcomes of the methods for un-weighted and weighted averaging in 

all 63 channels (for the same, typical, subject) are shown in Figure 4.3. For this 

subject the highest SNR found by the weighted averaging was 7.93 while this value 

found to be 7.19 for the un-weighted averaging. Moreover, numbers of channels that 

each method could find above their thresholds (1.25 and 1.29) were 43 and 46 for un-

weighted and weighted coherent averaging respectively.  

 
 

 

 

 

 

 

 

 

 

Figure 4.3: The cumulative histogram of the Fmp calculated in one subject for both the un-

weighted and weighted averaging methods using stimulus. The vertical lines show the critical 

values of Fmp=1.25 and Fmp=1.29, for the Coherent averaging and weighted averaging 

respectively. 

 This procedure was carried out for all 10 subjects. The highest SNRs and also 

number of channels above the critical values (1.25 for coherent averaging and 1.29 

for weighted averaging) were calculated for each method for each subject. Applying a 

Shapiro-Wilk test for normality showed that the distribution of the highest SNRs, i.e. 

a vector which contains maximum SNR in each subject, was not normal. Whereas, 

the numbers of channels above the predefined thresholds, i.e. a vector consisting of 

the number of channels above the critical value for each method in each subject, was 

normally distributed. Therefore, to compare highest SNRs found by the two methods 
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for the 10 subjects, a Wilcoxon signed rank test was employed. Moreover, a 

dependent paired t-test was employed for comparing the number of the channels that 

each method can find above its critical value as the data was normally distributed. 

The results show that the SNR was found to be significantly higher when weighted 

averaging was employed instead of coherent averaging for ALR single channel noise 

reduction (p-value<0.04). However, the number of the channels that each method can 

provide with SNR above its threshold was not significantly different between the two 

methods. For the data with a non-normal distribution a boxplot (Figure 4.4) shows the 

results of Fmp for the two approaches. In Figure 4.4, the median (middle line), 75
th

, 

25
th

 percentiles (the edges), maximum, minimum (whiskers) and outliers (stars) are 

shown. 

 
Figure 4.4: Comparing the Fmp of weighted averaging with un-weighted averaging for 

providing higher SNR over 10 normal hearing subjects. In each boxplot, the middle line 

shows the median, the edges of the boxes show 75
th
 and 25

th
 percentiles, whiskers show the 

maximum and minimum values and the stars show outliers.  

 The comparison between the weighted and un-weighted averaging regarding 

the number of the channels found above the critical values of Fmp is shown in Figure 

4.5.  
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Figure 4.5: Comparing weighted averaging with un-weighted coherent averaging for the 

number of channels above the critical values of Fmp, for 10 normal hearing subjects. The 

mean value (edge), data scatter (markers) and standard error (error bar), are shown for each 

bar in the graph. 

 It can be seen in Figure 4.4 that, although weighted averaging significantly 

improves the SNR of the ALR in comparison with coherent averaging, this 

improvement is small, i.e. the median of the highest SNR in ten subjects were found 

5.17 for coherent averaging and 6.15 for weighted averaging.  

The critical value that ICs are kept/reject respect to, was found for each of the 

method. According to the result, ICs with absolute kurtosis above 2 should be kept as 

response. Alternatively, ICs whose entropy are larger than 4.5 are response 

components. Moreover, critical value for Max-Fmp-ICs was fond to be 1.32.  

The 95
th

 percentiles (critical values) were also found for Fmp distribution for 

the four methods introduced in chapter 3, by employing the same aforementioned 

procedure used in weighted and un-weighted averaging for finding the critical Fmp 

values. These results are summarized in Table 4.1. The critical value for each method 

is calculated by averaging over the ten values obtained from resting EEG in each 

subject. The small variances given in the table implies that the critical values are 

found almost the same in each subject. 
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Methods Average of Critical FmpValues 

over 10 Subjects 

Standard deviation of Critical 

Values over 10 Subjects  

MSC-ICs 1.32 0.015 

Max-Kurt-ICs 1.32 0.019 

Max-Fmp-ICs 1.32 0.015 

Min-Entropy-ICs 1.32 0.016 

Un-weighted Ave 1.25 0.013 

Weighted Ave 1.29 0.012 

Table 4.1: Average and variance of Fmp thresholds found by each of the methods at the Cz 

for 10 participants. In each method channels with SNR above the given values are considered 

as high quality channels. 

For each method, channels with SNR above the given value are deemed to 

have the response present. By applying all the methods on no stimulation EEG and 

calculating the Fmp in each of the channels, it can be shown that none of the methods 

bias Fmp values, i.e. as they all produce low Fmp values when there is no stimulus 

present and consequently there is no response present in the recorded signal.  This 

fact is shown in Figure 4.6.  

 
Figure 4.6: Applying the all the noise reduction methods on the no stimulation EEG shows 

none of the methods is biased to the method of Fmp calculation, i.e. all the methods provide 

signals with low Fmps when there is no response present in the recorded signal. Since none 

of the ICs are rejected in either of the MSC-ICs and Max-Fmp-ICs method, their graph is 

averaging with un-weighted averaging graph. 
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Since the data reconstruction was carried out only if the number of ICs was 

greater than 4, for the case shown in Figure 4.6 all the SNRs are found below the 

critical values given in Table 4.1, i.e. there are no false positives. It is worth 

mentioning that, in MSC-ICs and Max-Fmp-ICs, since none of the components were 

kept as response components, data reconstruction was carried out by including all the 

ICs (no change in the original data). Therefore, their graphs are overlapping with un-

weighted averaging’s graph in Figure 4.6. It can be seen from Figure 4.6 that the 

graphs are slightly different. However, since these differences are small (even in 

comparison with what is considered as the minimum Fmp value above which the 

signal considered to have the response present), it can approximately be stated that 

the methods have similar behaviour in absence of the response. 

The performance of the methods (single and multichannel noise reduction 

methods) for SNR improvement in one subject are compared and shown in Figure 

4.7. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Performance of the methods in SNR improvement in 63 EEG channels from one 

subject using stimulus presented at 60 dB nHL. The dashed lines identify the Fmp thresholds 

value above which the channel can be considered to show a response. 

 In Figure 4.7, for this subject the highest Fmp found by the MSC-ICs was 

22.17; and also 56 channels were found to have an Fmp higher than 1.32. For Max-

Fmp-ICs these values were 10.13 and 61 respectively, i.e. 61 channels with Fmp 

above 1.32. For the Max-Kurt-ICs and the Min-Entropy-ICs methods the highest Fmp 

and the number of the channels with Fmp above the threshold were 17.37 and 16.27 
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for the highest SNR, with 48 and 50 for channels above 1.32. In order to investigate 

significant differences, these values were calculated for all ten subjects.  

 The result of comparing the performance of the methods for providing a 

higher SNR over the ten subjects are shown in Figure 4.8. The boxplot and median 

has been used for demonstrating the results as the data was not normally distributed. 

The hypothesis of the data being normally distributed was rejected following a 

Shapiro-Wilk test. Therefore, the significance of the methods effect was investigated 

by applying a Friedman test, which gave p-value<0.005. To examine where the 

differences actually occur, separate Wilcoxon signed-rank tests on the different 

combinations of methods (on every possible pair) is needed. The results of applying 

Wilcoxon signed-rank on pair methods are given in Table 4.2. p-values <0.05 shows 

a significant difference between each pair.   

 
Figure 4.8: Comparison of the methods for providing higher SNR over 10 normal hearing 

subjects. In each boxplot, the middle line shows the median, the edges show 75th and 25th 

percentiles, whiskers show the maximum and minimum values and the stars show the 

outliers. 
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Methods 

Un-weighted 

Ave 

 Weighted 

Ave 

MSC-

ICs 

 Max-

Kurt-ICs 

Max-Fmp-

ICs 

Min-

Entropy-

ICs 

Un-weighted 

Ave 

-  0.047 0.007  0.005 0.005  0.037 

Weighted Ave 0.047  - 0.009  0.007 0.013  NS 

MSC-ICs 0.007  0.009 -  0.022 NS  0.017 

Max-Kurt-ICs 0.005  0.007 0.022  - NS  NS 

Max-Fmp-ICs 0.005  0.013 NS  NS -  NS 

Min-Entropy-

ICs 

0.037  NS 0.017  NS NS  - 

* 
NS: Not Significant (p-value>0.05) 

**
Numbers are p-values from a Wilcoxon signed-rank test 

Table 4.2: Comparison of single and multichannel noise reduction methods. Results of 

applying a Wilcoxon signed-rank test on the maximum SNRs, obtained by the methods from 

the ten subjects a p-value <0.05 implies significant difference between the methods. Prior 

Friedman tests showed significant differences (p-value <0.005) across all methods.  

 It can be seen in Table 4.2, that all the four proposed multichannel noise 

reduction methods are significantly better than coherent averaging for producing 

higher SNR. However, the results did not show any significant difference between 

Min-Entropy-ICs and the weighted averaging. Moreover, comparing the multichannel 

strategies, MSC-ICs shows a better performance than Max-Kurt-ICs and Min-

Entropy-ICs while it is not significantly different from Max-Fmp-ICs. 

 Additionally, this comparison has been carried out for the number of the 

channels that each method can provide above the critical Fmp values given in Table 

4.1.  Results are given in Figure 4.9. 
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Figure 4.9: Number of channels with Fmp above the calculated Fmp thresholds given in 

Table 4.1 by each method for ten participants.  

 A Friedman test was applied on the obtained data, following a Shapiro-Wilks 

test indicating that the data was not normally distributed. The result showed a 

significant difference between the methods (p-value<0.033). To explore which 

methods differed, Wilcoxon signed-rank tests were applied across all the possible 

pairs and the results is summarized in Table 4.3.   

According to the results given in Table 4.3, all the multichannel noise 

reduction methods except the Min-Entropy-ICs showed better performance than un-

weighted averaging with respect to finding the number of channels above their 

predefined thresholds. Furthermore, only MSC-ICs and Max-Fmp-ICs were found to 

be significantly better than weighted averaging. To summarize, by using the 

information in Table 4.2 and 4.3 it can be stated that, between the ICA based 

multichannel noise reduction strategies, the MSC-ICs is better than the alternatives 

for noise reduction of ALR from the recorded EEG. The results of Table 4.3 show 

that the multichannel noise reduction methods can significantly improve signal 

quality (SNR) in comparison with when single channel alternatives are employed. 
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Methods Un-

weighted 

Ave 

 Weighted 

Ave 

MSC-

ICs 

 Max-

Kurt-ICs 

Max-Fmp-

ICs 

Min-

Entropy-

ICs 

Un-weighted 

Ave 

-  NS 0.012  0.024 0.017  NS 

Weighted Ave NS  - 0.020  NS 0.019  NS 

MSC-ICs 0.012  0.020 -  NS NS  0.034 

Max-Kurt-ICs 0.024  NS NS  - NS  NS 

Max-Fmp-ICs 0.017  0.019 NS  NS -  0.035 

Min-Entropy-

ICs 

NS  NS 0.017  NS 0.035  - 

* 
NS: Not Significant (p-value>0.05) 

**
Numbers are p-values from a Wilcoxon signed-rank test 

Table 4.3: Wilcoxon signed-rank test results for comparison of single and multichannel noise 

reduction methods for the number of channel that each method can find above its critical 

value. P-value <0.05 signifies a significant difference between the methods.  

 As an alternative to ICA, PCA based noise reduction methods can be 

employed for noise reduction for ALR.  As discussed in section 1.6, the common 

problem that BSS based methods face, is how to select the components such that 

maximum signal quality (SNR) can be obtained. To automate the component 

selection for PCA based noise reduction methods, all the four proposed methods used 

above on ICA can be employed. However, since the results showed that, here, the 

MSC-ICs had the best performance between the ICA based component selection 

methods, only this method is employed for component selection in PCA based noise 

reduction methods. To be consistent to the terminology used in this work this method 

is called (MSC-PCs).  

This differs from the usual PCA noise-reduction method, where eigenvalue 

ordering (Hyvärinen and Oja 2000) is usually used. PCA de-correlates the data and 

orders the components from the highest eigenvalue to the lowest one. For zero mean 

data, each eigenvalue represents the power (variance) of each component (Hesse 

2008). In the case that the variance of the noise is larger than the variance of the 

signal of interest, components with larger variances are thus likely to be noise and 

should be discarded.  

To compare the PCA based noise reduction methods with the aforementioned 

noise reduction alternatives, the 95
th

 percentile of the Fmp distribution was found 

using the same procedure used above. For the eigenvalue ordering case this value was 
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found 1.30 (average over the ten subjects), with a variance of 0.012 and for MSC-PCs 

this value was found 1.34 with a variance of 0.021. The performance of the PCA 

based methods for finding the highest SNR over ten subjects is compared with the 

weighted averaging. A Shapiro-Wilk test indicated that the data was not normally 

distributed. For non-normal data a box-plot is preferable. Therefore, boxplot has been 

used to illustrate the results in Figure 4.10. Result of applying a Friedman test on the 

highest SNRs obtained by the methods shows a significant different between the 

methods (p-value<0.001). To explore where exactly this difference occurs, a 

Wilcoxon signed-rank test was applied on each pair of methods. The results show that 

PCA-Eigenvalue ordering is significantly better both un-weighted (p-value<0.009) 

and MSC-PCs (p-value<0.007); while it was not found to be significantly different 

with weighted averaging. Moreover, using MSC for source selection in PCA based 

noise reduction methods was not found to be significantly different from un-weighted 

averaging. This result is in accordance with the simulation results in section 3.2.5, 

where it was found that when PCA was employed for source separation, signal and 

noise were not entirely separated; and due to the signal residue, all the ICs (including 

noise components) were found to be significantly coherent with the stimulus. 

 
Figure 4.10: Comparison of weighted and un-weighted averaging with PCA based 

(Eigenvalue ordering and MSC-PCs) for highest SNR provided by each method.  

 Furthermore, the methods are compared regarding the number of channels 

that each method provides above that critical Fmp value and the result is shown in 
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Figure 4.11. Since the data (number of the channels found above the critical Fmp 

value by each method across the subjects) were normally distributed a repeated 

measure ANOVA was employed to explore if there is any significant effect of 

method. The result showed significant effects between the methods (p-value< 0.006). 

Additionally, paired-sample t-test were also applied on each pair of methods to 

understand between which of the pairs the difference were evident. The results 

showed that PCA-Eigenvalue ordering had significantly better performance than un-

weighted averaging (p-value< 0.006), weighted averaging (p-value<0.02) and MSC-

PCs (p-value<0.01) for providing more channels above the critical Fmp value.  

 
Figure 4.11: Comparison of weighted and un-weighted averaging with PCA based 

(Eigenvalue ordering and MSC-PCs) for the number of the channels that each of the methods 

can find above its critical value. In each bar, the edge is the mean, the whisker is standard 

error and the markers are data scatter. 

The last part of this section compares two ICA base noise reduction methods, 

i.e. when MSC is employed for component selection and also when the components 

are ordered by their variances (Var-ICs). The result of applying the two noise 

reduction methods on the ALR recorded from ten normal hearing subjects for 

obtaining highest SNR is illustrated in Figure 4.12. Bar chart and means have been 

selected for this comparison as the data have normal distribution.  
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Figure 4.12: Comparing the MSC-ICs with the Var-ICs for providing higher SNR in10 

normal hearing subjects. The mean value (edge), data scatter (markers) and standard error 

(error bar), are shown for each bar in the graph. 

 Moreover, this comparison is carried out for the number of channels that each 

method can find above its critical value. The box plot in Figure 4.13 depicts this 

comparison. The critical value for the Var-ICs was found to be 1.30 with a standard 

deviation of 0.017 through the same procedure explained in part 4.3.  

 
Figure 4.13: Comparison of the MSC-ICs with the Var-ICs for the number of the channels 

that each of the methods can find above its critical value.  

 The result of applying a dependent paired sample t-test on the high SNRs 

obtained by the methods (shown in Figure 4.12) shows that MSC-ICs is significantly 

better than the Var-ICs (p-vale<0.007) in providing higher SNRs. Moreover, the 
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MSC-ICs found have a better performance in finding more channel above the critical 

value than the Var-ICs (p-value<0.03). 

4.5. Discussion and Conclusion  

 From the results it can be stated that weighted averaging significantly 

improves the SNR for the ALR recording in comparison to coherent averaging. This 

result is in accordance with (Ross et al. 1984) who showed weighted averaging 

significantly improved the quality of auditory steady state response (ASSR) signal. 

According to the results given by Figure 4.10 and 4.11, although PCA-eigenvalue 

ordering was not found to be significantly different with weighted averaging in 

providing high SNRs, it can be stated that PCA-Eigenvalue ordering has a somewhat 

better performance than the weighted averaging since it provides more channels 

above the critical value. However, as was predicted from the results of the simulation 

in chapter 3, MSC is not helpful in automatic selection of components when PCA is 

employed as a source separation tool.  

 According to the results presented in this chapter, MSC-ICs and MaxFmp-ICs 

showed the best performance among BSS based multichannel noise reduction 

methods, and was also to be better than the single-channel methods. Although Figures 

4.8 and 4.9 showed difference between MSC-ICs and Max-Fmp-ICs, this difference 

was not found to be significant. It may be possible to see significance between these 

two methods for a larger sample size. However, a difference that needs a very large 

sample size to be detected is probably not of great practical importance, in this case.  

Additionally, results showed that the MSC-ICs is a better solution to the IC ordering 

problem than the Var-ICs for ICA based multichannel noise reduction for the ALR.  

Although, all of the proposed methods are able to address the automatic 

selection issue in ICA based noise reduction methods, there still exist drawbacks that 

make these methods imperfect. For instance, the thresholds for discarding/accepting 

an IC in each method were estimated from extra recordings (resting EEG). Moreover, 

ICA is computationally complex and for large data the noise reduction procedure is 

time consuming. Furthermore, in MSC-ICs only one harmonic was considered, i.e. 

ICs in which the coherence is strong in other harmonics will be rejected by this 

method. 
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 Consistent with previous work (Dobie and Wilson 1996; Dimitrijevic et al. 

2001), weighted averaging is significantly better for SNR improvement than artifact 

rejection, i.e. removing the artifact from the data before averaging. On the other hand 

it has been shown in the current work that the MSC-ICs and Max-Fmp-ICs are 

significantly better than weighted averaging for both outcomes (obtaining highest 

SNR and also the number of channels that each method can find above the critical 

value). Therefore, it can be concluded that they are also better than artifact rejection.  

 To conclude, according to the results shown it can be stated that multichannel 

processing of the ALR is significantly a better option than singe channel processing 

alternatives. Nevertheless, taking the time required for subject preparation and also 

the noise reduction procedure in to account, single channel processing may still be 

considerably faster and more practical than multichannel.   For the cases in which the 

signal quality has the first priority, multichannel recording is a better option.   In 

chapter 7 we will discuss ways to obtain a more efficient compromise, using a 

smaller number of channels.  

4.6. Summary 

 In this chapter first two single channel processing methods for noise reduction 

of the ALR were presented. The results showed that weighted averaging was a better 

choice than conventional coherent averaging for extracting the ALR from the noisy 

recorded signal. Furthermore, the four proposed multichannel noise reduction 

methods introduced in chapter 3 (MSC-ICs, Max-Fmp-ICs, Max-Kurt-ICs and Min-

Entropy-ICs) along with the PCA based noise reduction methods (eigenvalue 

ordering and MSC-PCs) were applied on the same set of data. The results showed 

that the MSC-ICs and Max-Fmp-ICs had the best performance and the MSC-PCA 

had the worst performance in noise reduction of the ALR.  
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Chapter 5 

Benefits of Multichannel Signal 

Processing for Applications of the ALR 
 

5.1. Introduction  

 The main purpose of this chapter is to explore whether and how much 

multichannel signal processing strategies can be advantageous for improving the 

analysis procedure for applications of auditory late responses (ALR) in comparison 

with the single channel alternative methods. To achieve this target, the MSC-ICs has 

been employed as multichannel processing tool and the results were compared with 

single channel weighted averaging.  It was shown in chapter 4 that by using the MSC-

ICs as the multichannel noise reduction method, a better signal quality, i.e. higher 

signal to noise ratio (SNR), can be obtained in comparison with the single channel 

alternative. Since the quality of the signal is improved and a clearer signal is 

acquired, an enhancement in detection and diagnostic analysis is expected.  

 In this chapter, both single and multichannel signal processing strategies are 

applied on the ALR waveform to investigate the advantages of using multichannel 

signal processing over single channel in three applications. For each of the 

applications background, data acquisition and processing strategy are explained.  
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The first application is using the signal processing methods (single and 

multiple channel processing) to detect the hearing threshold level from the ALR 

waveform in ten normal hearing subjects. The aim is to determine if the multichannel 

processing can find the hearing threshold level, for normal hearing subjects, closer to 

0 dB nHL (the threshold measured by pure tone audiometry) than the single channel 

method. In addition, since the amplitude of evoked response decreases with respect to 

decrement of stimulus intensity (Beagley and Knight 1967, Hall 2007), by decreasing 

the stimulus intensity, response detection becomes more difficult. The key question is 

whether the ICs found in the higher stimulus intensities can be used for noise 

reduction in lower stimulus intensities or not.  In the second case study, the 

performance of multichannel processing for exploring the effect of inter-intra subject 

variability on the ALR waveform is compared with single channel alternative. A 

relative question is to explore the effect of habituation, i.e. the response decrement 

following repetitive presentation of stimulation (Muenssinger, Stingl et al. 2013), on 

the ALR amplitude.  Finally, the effect of attention on the ALR waveform has also 

been investigated as the third application using multi and single channel strategies.  

5.2. Hearing Threshold Estimation  

5.2.1 Background  

 Although objective diagnostic methods are quite popular in modern medical 

science, behavioural pure-tone audiometry (PTA) remains the golden standard for 

identifying hearing threshold levels. Since the 1980’s, high quality identification of 

hearing thresholds within the range of speech frequencies has been achieved by 

various methods of auditory evoked potentials (Laukli 1988). Using objective 

methods has made the determination of hearing thresholds much easier for  patients in 

whom PTA cannot be employed, such as infants and those unable or unwilling to 

participate in traditional behavioural tests. The most commonly used ‘objective’ 

clinical method for detecting hearing threshold  is auditory brainstem response (ABR) 

characterized by high wave reproducibility and responses that do not depend on the 

state of consciousness. Dagna, Canale et al. (2014) used ABR to find the hearing 

threshold of four different ABR tones at 1 kHz. For normal hearing participants they 

found the hearing threshold with a mean of 16dB above that of the behaviourally 
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acquired pure tone threshold. Alternatively, Picton et al. (2003) showed that 

recording human steady state response at different stimulus intensities can provide an 

objective assessment of audiometric threshold. Also, Komazec, Lemajic-Komazec et 

al. (2010) used Auditory Steady State Response (ASSR) to find the hearing threshold 

at different frequencies, specifically 0.5 1, 2 and 4 kHz. The thresholds measured by 

ASSR were found to be different with PTA with 4.1, 2.5, 4.4, and 4.2 dB nHL at 0.5 

1, 2 and 4 kHz respectively. Moreover, Lightfoot (2006 and 2010) used ALR, N1 

(first trough in the ALR waveform) to P2 (second peak in the ALR waveform), 

waveforms to measure the hearing threshold at 4 kHz. They found the hearing 

threshold with a mean of 25 dB above the pure tone threshold.  Therefore, it can be 

said that the methods by which Komazecet al. (2010) measured the hearing threshold 

was superior to the method that Lightfoot (2010) used since the threshold value found 

by Komazec et al. (2010) was closer to 0 dB nHL at 4 kHz. However, it should be 

noted that they used different testing strategies (ASSR and ALR). The main purpose 

of this part is to explore that if multichannel signal processing can find the hearing 

threshold closer to 0 dB nHL when ALR is used for measuring the hearing threshold 

level.  

5.2.2. Data Acquisition   

 Ten normal hearing subjects (5 M, 5 F) aged between 18 and 30 years old 

were asked to participate in to this study. All the subjects had been examined to 

verify normal hearing, using tympanometry and behavioral pure tone audiometry, 

before the test started. The test was explained and written informed consent was 

obtained. The stimulus was a 1 kHz tone burst of 70 ms duration with 10 ms rise/fall 

time, which was applied to the right ear of the subjects. The test was performed in 8 

different levels of stimulus intensity started from 60 dB above the normal hearing 

threshold (60 dB nHL), down to 0 dB nHL with the following steps: 60 dB, 40 dB, 30 

dB, 20 dB, 15 dB, 10 dB, 5 dB and 0 dB. The 0 dB level was found by averaging 

over the hearing threshold level of 5 normal hearing subjects (different subjects), 10 

ears, obtained by behavioral pure tone audiometry. The ALR wave form was 

recorded from the participants using a 63 channel EEG scalp cap and a sampling rate 

of 1 kHz with by using Neuroscan system (Scan 4.03). Moreover, the data was low-

pass filtered at 100 Hz at the recording stage, since. The ALR wave has mainly low 



Chapter5: Benefits of Multichannel Signal Processing for Applications of the ALR  

101 

 

frequencies and removing the high frequency components is helpful for recording 

signal with high quality. Two more electrodes were placed on the chest and the cheek 

of each subject to record heart beat and eye blinks respectively. The ALR recording 

was 4 min at each level of intensity; plus 4 min of no stimulus EEG recording, i.e. 

rest EEG, which makes the overall required time for the test 37 to 40 min.   

5.2.3. Data Analysis  

 Both single and multichannel processing strategies were employed for 

extracting the ALR waveform from the recorded EEG. Weighted averaging over 155 

sweeps was used for single channel processing and the MSC-ICs was employed for 

multichannel signal processing. As discussed in section 1.5, the ALR waveform has 

the best quality (highest SNR) at the vertex (Cz channel) (Hall 2007), so the Cz 

channel was selected for hearing threshold measurement. The last level of stimulus 

intensity in which the ALR response is present was used as the estimate of the 

hearing threshold for each subject. In this work, the critical values given by Table 2 in 

chapter 4 was used as the values below which the recorded signal was not considered 

as containing the response. In other words, for each subject the first level of stimulus 

intensity at which the Fmp of the recorded signal in Cz is below 1.32 is considered as 

the hearing threshold for the subject.  

 The performance of the multichannel processing and single channel 

processing were compared to see which of the methods is able to find the hearing 

threshold closest to 0 dB nHL. As the subjects are normal hearing, the thresholds 

closest to zero implies a more accurate outcome. Depending on the distribution of the 

obtained data, a parametric (paired sample t-test) or a non-parametric (Wilcoxon 

signed rank) statistical test is employed to test the significant difference between the 

methods. 

 A further investigation was carried out with the aim of increasing 

computational efficiency of the method. A study was carried out to test if the mixing 

matrix found in the ALR recorded at 60 dB nHL can be used for noise reduction in 

the ALR recorded at lower stimulus intensities. The reason for using the spatial 

distribution of the ICs instead of order of ICs is that the order of ICs changes in each 

execution; while the spatial distribution of the ICs is assumed to be unchanged. For 

example, in two successive executions of FastICA on a set of data, assume the order 
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of response ICs is 1, 2, 6, 9, 30 and 41. In the second execution this ordering must be 

like 3, 6, 18, 29, 37 and 39. Thus in the matrix representation of the signal model 

given by the equation (3.7), the columns of the mixing matrix A give information 

about the spatial distribution of the ICs. Hence, the inverse of the mixing matrix, A, 

found by FastICA from the ALR recorded at 60 dB nHL was multiplied to the both 

sides of the equation (3.7) for all the EEGs (ALRs) recorded at lower stimulus 

intensities as follows: 

 𝐀−𝟏𝐘 = 𝐀−𝟏𝐀𝐗 

                                                              𝐀−𝟏𝐘 = 𝐗                         (5.1) 

where, X is the matrix of independent components (row of X are independent 

components) and Y is the observation matrix (rows of Y are ALR recording at each 

electrode). Then, the ICs which were significantly coherent with the stimulus (p-

value<0.05) were kept as the response ICs and the data was reconstructed by only 

using the response ICs, as described previously (in section 4.3). The result of 

calculating the mixing matrix A only at 60 dB and of repeating the calculation for all 

intensity levels were compared, and assessed based on a Wilcoxon test.  

5.3 Inter and Intra Subject Variability  

5.3.1. Background  

 Intra-subject and inter subject variability has been the topic of much research 

in brain pathology, brain function and cognitive control (Corr 2008, Leue, Klein et al. 

2013). Inter /intra subject variability is generally measured through two main 

approaches: 1) A performance tests, i.e. analysing the performance of subjects doing 

an identical task. 2) Event related potentials (ERP) (Leue, Klein et al. 2013). 

Measuring inter/intra subject variability is helpful when ERP is used to monitor the 

brain functionality under a particular condition, e.g. following the use of medicines, 

assessing the state of attention, anaesthesia, etc. Inter-subject variability can be a 

confounding factor in many studies, including in the effect of attention. Moreover, the 

performance variability has been reported as a common feature in disorders of frontal 

and putatively frontal pathology such as Traumatic Brain Injury (TBI), schizophrenia 

and attention deficit hyperactivity disorder (ADHD) (Bellgrove et al. 2004). 

Therefore, detecting this variability can be vital for early detection of many disorders. 
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It has been reported by (Foster, Stevens et al. 2013) that the auditory steady state 

response (ASSR) changes over the trials. The reason can be the failure of the brain in 

responding to some of the stimuli. This fact brings up a similar question about the 

ALR that deserves an answer.  

Effect of habituation on auditory late response has been subject of much research 

(Dorman 1973; Polich 1988; Rosburg 2002; Ritter 2004; Rosburg 2006).  The main 

goal of this section is to compare the performance of multichannel and the single 

channel processing for detecting the inter/intra subject variability for the ALR. The 

aim is to address the following questions:  

1. Do the ALRs recorded from a subject in different recording sessions change? If so, 

is multichannel processing advantageous to see this difference?  

2. Are the ALR signals the same between different subjects? If not, is multichannel 

processing beneficial over single channel processing to detect the difference?  

3. Does multichannel processing alleviate the problem of habituation, known to affect 

the ALR? 

5.3.2. Data Acquisition 

 For this application the ALR were acquired under the similar setting as the 

previous application, i.e. 63 channels EEG, 100Hz low-pass filtering at the recording 

stage and the same stimulus (1 kHz tone burst of 70 ms length and 10 ms rise/fall 

time). In contrast with the previous recording protocol, for each subject the ALR was 

recorded three times (recorded in the same session) at 60 dB nHL stimulus intensity 

level. 

 Additionally, for inspecting the effect of habituation on the ALR waveform, a 

long ALR with 465 stimuli (the same stimulus as in section 5.2) was also acquired. 

Moreover, a 4min resting EEG without stimulation was recorded for noise estimation. 

5.3.3. Data Analysis  

 In a similar fashion as the previous part, initially both single and multichannel 

processing methods (MSC-ICs and weighted averaging) were employed for noise 

reduction for the recorded ALR. After the noise reduction step, since the data 

recorded from the vertex (Cz) is expected to have the best quality (Hall 2007), the 

variability of the ALR in different recordings (between subjects or repeated 
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recordings within a subject) was measured by determining the latency and amplitude 

of the major peaks of the ALR at Cz in each recording.  

 To investigate the variability of the ALR over different recording session in 

one subject, 100 epochs were randomly selected from 155 epochs from each 

recording and the ensemble average was calculated over the 100 epochs. Then the 

amplitude of P1, N1 and P2 were measured; and this procedure was repeated ten 

times for each subject for each session. The measured values of each peak were 

compared with the values obtained from the other recordings from the same subject. 

Depending on the distribution of the data this comparison was carried out by applying 

a parametric or non-parametric statistical test. A similar strategy was employed for 

measuring the variability of the ALR across the subjects. This time the comparison 

was carried out between the peaks amplitudes obtained from different subjects.  

 For inspecting the habituation effect on the ALR waveform recorded from the 

ten subjects, the aim was to explore if the amplitude of the major peaks (P1, N1, P2 

and N2) decreases over time as the stimulus is repeated. Hence, the ALR signal was 

divided into three parts and the ensemble average was calculated over each part; then 

the amplitudes of major peaks were measured in each ensemble averaged signal and 

compared with each other. The maximum value of the averaged ALR wave form over 

interval 1 to 100 ms, minimum value over 50 ms to 200 and maximum value over 

100 ms to 250 ms  after stimulus onset gives the amplitudes of P1, N1 and P2 

respectively. If a significant decrement in the peaks observed it can be interpreted as a 

habituation effect. Moreover, the long ALR (465 epochs) was used in a similar 

fashion to explore if the habituation effect is detectable when stimulation with more 

repetition is used, i.e. when longer data is recorded. 

5.4. Effect of Attention 

5.4.1 Background  

 There exist various methods for investigating the effect of attention on the 

human auditory system such as a dichotic listening test which is a psychological test 

commonly used to investigate selective attention within the auditory system and is a 

subtopic of cognitive psychology and neuroscience. During a standard dichotic 

listening test, a participant is presented with two different auditory stimuli 
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simultaneously (usually speech). The different stimuli are directed into different ears 

over headphones. Research participants are instructed to repeat aloud the words they 

heard in one ear while a different message is presented to the other ear. A wide range 

of attention tests are designed based on Dichotic listening test (Hillyard, Hink et al. 

1973, Naatanen, Gaillard et al. 1978, Maatta, Paakkonen et al. 2005, Garell, Neelon et 

al. 2006, Thornton, Harmer et al. 2007)  

 Alternatively auditory evoked responses can be employed to see the effect of 

attention on the auditory system. Davis (1964) described the effect of attention on 

evoked responses as an increase in the N1-P2 peak to peak in the late latency evokes 

responses. His test was a simple design, and consisted of two sections: reading a book 

when ignoring the stimuli and counting the stimuli when attending. Davis used 

bipolar leads and small tone pips as the stimulus. Davis’s results (enhancement of 

evoked responses due to attention) confirmed the results reported by Davis, 

Fernandez et al. (1950) while they used clicks as the stimulus. It has been reported by 

(Picton et al. 1971; Picton and Hillyard 1974) that there is no significant effect as 

function of attention on short latency evoked responses, ABR or AMLR. The effect 

of attention is expected to be observed in the major peaks and troughs of the ALR: at 

100 ms after the stimulus onset, in an enhancement in N1 (Hillyard et al. 1973; 

Naatanen et al. 1978; Maatta et al. 2005; Garell et al. 2006; Thornton et al. 2007), at 

200 ms, with a larger P2 peak (Garell et al. 2006), and at 300 ms, with a deeper N3 

trough  (Sanders et al. 2006). Alternatively, the N1 to P2 and also P2 to N3 peak to 

peak amplitude can be investigated to see the effect of the attention on the ALR. It is 

worthwhile to say that attention does not have a significant effect on the latency of 

the major components of the ALR waveform (Maatta et al. 2005; Thornton et al. 

2007). However, the underlying neural mechanisms of selective attention are still 

poorly understood (Petkov et al. 2004). In a review, Kreiter (2001) suggested that 

synchronization of neural populations could be such a mechanism. In ERP terms this 

would mean that with attention, the individual unit responses would be better 

synchronised to the stimulus. Thus there would be less latency jitter between single 

trials, leading to an increase in N1 amplitude in the average of the trials (Thornton et 

al. 2007). 
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5.4.2 Data Acquisition 

 The test consisted of two main parts, attend and ignore. In the ignore part the 

participants were asked to ignore the stimulus and read a novel, while in the attending 

part they were asked to count the number of stimuli presented. The stimulus, for both 

attend and ignore section, was a 1 kHz tone burst which was presented 155 times in 

their right ear for each subject. The ALR was captured from 10 normal hearing 

subjects   (5 M, 5 F) same subjects and the same system setting as in the previous 

sections.  

Both single channel and multichannel signal processing strategies, i.e. 

weighted averaging and the MSC-ICs, were employed for noise reduction and ALR 

detection in the captured signals. The main objective of this section is to explore 

whether and how much multichannel processing can be advantageous over single 

channel processing methods for investigating the effect of attention on the ALR 

waveform.  

5.4.3. Data Analysis 

 The main purpose of this section is compare the performance of multichannel 

signal processing (MSC-ICs) and single channel processing (weighted averaging) to 

explore the effect of attention on the ALR. Both MSC-ICs and weighted averaging 

noise reduction methods were applied on the ALR waveforms captured under attend 

and ignore conditions. Then, amplitudes of the major peaks of the ALR waveform 

captured under attention were compared with the peaks of the ALR recorded when 

instructed to ignore them. Furthermore, N1 to P2 and P2 to N3 peak to peak 

amplitudes were compared in the attend and the ignore ALR.  In order to compare the 

results from the ignore and attend conditions in both single and multichannel 

processing, depending on the distribution of the data, a parametric or a non-

parametric statistical test were used to investigate significant change in the ALR 

waveform. 

5.5. Results and Statistical Analysis  

 Hearing threshold measurement-By using the results presented in the Table 

4.1, the critical value of Fmp, i.e. the Fmp value above which a signal is deemed to 
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contain the response, was selected as 1.32 for the MSC-ICs and 1.29 for weighted 

averaging.  

 
Figure 5.1: Hearing threshold found in ten normal hearing subjects using weighted averaging 

and the MSC-ICs at Cz. In each boxplot, the middle line shows the median, the edges show 

75
th
 and 25

th
 percentiles and the stars show the outliers.  

 It can be seen from Figure 5.1 that the median of the hearing thresholds found 

by weighted averaging across the 10 subjects was 12.5 dB nHL while this value was 

2.5 dB nHL when MSC-ICs was used for threshold estimation. Results of applying a 

Wilcoxon signed rank test on the thresholds obtained by the methods shows that the 

MSC-ICs significantly improves the hearing level detection (p-value< 0.04). 

 In addition to employing the MSC-ICs to estimate the hearing threshold, the 

spatial distribution information of ICs (mixing matrix) of the ALR recorded at         

60 dB nHL stimulus intensity was used for component separation in the ALR signals 

recorded at lower levels of stimulus intensity, i.e. 40 dB nHL, 30 dB nHL 20 dB 

nHL, 15 dB nHL, 10 dB nHL, 5 dB nHL and 0 dB nHL. The SNRs were measured 

for both methods (MSC-ICs and MSC-Spatial Distribution) at each level of stimulus 

intensity. The results of applying a Wilcoxon signed rank test on the SNRs produced 

by the two methods (for each participants) showed no significant difference between 

the methods. Since the Wilcoxon test was applied on SNR pairs for each subject (ten 

subjects in total) to correct the false positive rate of repeating a statistical test the 

significance value was set to α=0.005. Furthermore, the hearing thresholds were 

measured from both methods and the results were compared with each other using the 
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boxplot in Figure 5.2. The median of the hearing thresholds for ten subjects were 2.5 

dB nHL and 0 dB nHL for MSC-ICs and MSC-Spatial distribution respectively.  

 
Figure 5.2: MSC-ICs and MSC-Spatial distribution used for finding hearing level thresholds 

from the ALR recorded at the Cz. In MSC-Spatial distribution the spatial distribution 

information of the ICs (mixing matrix) recorded at the highest stimulus level was used for the 

calculation of components in the ALR recorded at lower stimulus levels.  

 Although in this case the hearing threshold was found to be closer to 0 dB 

nHL when MSC-Spatial distribution was applied on the ALR, this improvement was 

not found to be significant – presumably due to the wide scatter of results observed in 

Figure 5.2. Nevertheless, the MSC-Spatial distribution may be considered a better 

method for finding hearing threshold, as it is considerably faster than the MSC-ICs 

which need ICA to be performed on the signals recorded at each level of stimulation. 

 Inter/Intra subject variability-After applying both MSC-ICs and weighted 

averaging noise reduction methods on the ALRs recorded from the subjects (three 

ALR for each subject), the amplitudes of the major peaks (P1, N1 and P2) of the 

ALRs in different recording sessions from each subject (intra subject variability) were 

computed as was explained in section 5.3.3. These values are shown for one subject 

in Figure 5.3 and 5.4 for both methods. 
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Figure 5.3: Amplitude of P1, N1 and P2 for three recording of ALR for one subject. Values 

are obtained as explained in section 5.3.3 after noise reduction by weighted averaging. 

 

Figure 5.4: Amplitude of P1,N1 and P2 for three recording of ALR for one subject. Values 

are obtained as explained in section (5.3.3) after noise reduction by MSC-ICs. 

Friedman’s test was applied on the amplitudes of each major peak measured 

in different sessions, i.e. three Friedman’s test for each subject. The amplitudes of the 

major peaks of the ALRs recorded form each subject in three different sessions were 

found to be significantly different (p-value <0.05) for all the subjects. This 

significance was observed in the results of both weighted averaging and the MSC-ICs 
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methods. Comparison of the amplitude of major peaks of the ALR was also carried 

out for the ALRs captured from different subjects (inter subject variability). Results 

of applying a Friedman test on the measured amplitudes also showed a significant 

difference between the ALRs recorded form different subjects. Analogous to intra 

subject variability results, this significance was reported by both the results of both 

weighted averaging and the MSC-ICs. Note that the positions of the major peaks 

(latency of the peaks) were not found to be significantly different for inter and intra 

subject variability. Furthermore the effect of habituation was investigated for both 

155 epoch ALR and 465 epoch ALR in ten subjects for both MSC-ICs and weighted 

averaging noise reduction methods. The amplitudes of the major peaks in the 1
st
, 2

nd
 

and 3
rd

 third of the ALR for both case 155 and 456 epoch ALR were measured. The 

results from neither of the methods confirmed a consistent decrement in the major 

peaks or SNR in neither of the recordings (155 and 465 epochs) in any of the 

subjects. The amplitudes of the major peaks in the 1
st
, 2

nd
 and 3

rd
 third of the ALR 

(for 155 epochs ALR) for one subject, after noise reduction by using weighted 

averaging and MSC-ICs, are shown in Figure 5.5. 

 
Figure 5.5: Habituation effect on the ALR waveform for one of the subjects. Upper, major 

peaks amplitude obtained from the in 1
st
, 2

nd
 and 3

rd
 third of the de-noised ALR by using 

MSC-ICs. Lower, the major peaks when weighted averaging was used for noise reduction. 

No significant decrement can be observed in the major peaks obtained by either of the 

methods.  
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 According to the results presented in previous part, no consistent decrement 

can be seen in any of the peaks obtained by either of the methods. Moreover, the 

SNRs were calculated over these intervals for the same subject. As it is shown in 

Figure 5.6, no consistent decrement in SNR was detected in any of the subjects 

through any of the methods. These results hold true also for the case in which the 450 

epochs of ALR were used. Figure 5.6 shows the SNR over 1
st
, 2

nd
 and 3

rd
 third of the 

ALR (155) epochs for one of the subjects.  

 
Figure 5.6: The SNRs calculated over the 1

st
, 2

nd
 and 3

rd
 third of the ALR waveform to 

investigate the habituation effect. Left, when MSC-ICs was employed for noise reduction. 

Right, noise reduced by weighted averaging. 

 Effect of Attention-The effect of attention on amplitudes of the major peaks 

was investigated in the ALR waves produced by both weighted averaging and MSC-

ICs. The ALR waves recorded from one subject under attend and ignore protocols are 

shown in Figure 5.7. An increment in the amplitude can be observed in the major 

peaks of the ALR due to the attention.  Effect of attention was also investigated on 

the latency of the major peaks of the ALR and the results did not show a significant 

change in the peaks latencies due to the attention. 
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Figure 5.7: The noise reduced ALR by weighted averaging and MSC-ICs for one subject 

under both attend and ignore conditions. The attention effect is observed as an increment in 

the amplitude of the major peaks in the ALR. 

  This comparison was carried out for all the ten participants for both single and 

multichannel processing methods. The results are shown in Figure 5.8 and 5.9 for 

weighted averaging and MSC-ICs respectively. 

 

Figure 5.8: Effect of attention on amplitudes of major peaks of the ALR waveform found by 

weighted averaging. Except N1 the amplitudes of the major peaks become larger. Middle line 

shows the median, the edges show 25
th
 and 75

th
 percentiles and the whiskers indicate the 

maximum and minimum extremes. 
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Figure 5.9:  Effect of attention on the major peaks of ALR in ten normal hearing subjects 

found by MSC-ICs. For ten subjects an increment can be seen in all the major peaks. Middle 

line shows the median, the edges show 25
th
 and 75

th
 percentiles, the whiskers indicate the 

maximum and minimum extremes and the stars are outliers. 

 In order to test if the peak enhancement due to attention is significant at each 

peak, a Wilcoxon signed rank test was applied on each pair of the peak amplitudes 

shown in Figure 5.6 and 5.7. The results implied a significant enhancement in P2 for 

both noise reduction methods. In addition, when the MSC-ICs was employed, N2 was 

found to be significantly enhanced due to the attention. This increment was not found 

to be significant for the weighted averaging alternative. Although N1 was found to be 

larger under attention when MSC-ICs was used, there was no significant 

enhancement detected at N1 by either of the methods. 

5.6. Discussion and Conclusion  

 Although pure tone audiometry is more sensitive than subjective methods, 

cortical hearing threshold measurement can be useful for the cases in which the 

subjects are not able to attend to the behavioural audiometry test, e.g. when the 

subject is in coma. The results presented here show that multichannel signal 

processing considerably improves the sensitivity of hearing threshold measurement in 

comparison with the single channel alternative. However, the required time for 

subject preparation in multichannel recording is much longer than for the single 

channel set up, and computational time is much greater, as it requires ICA to be 
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carried out at each stimulus intensity. In regard to the latter, the results suggest that 

the spatial distribution information of the ICs obtained from the ALR recorded at     

60 dB nHL can be used for noise reduction and response detection for the ALRs 

recoded at lower levels of stimulus intensities. This indicates that one ICA at the 

highest intensity is sufficient and this computationally expensive step need not be 

repeated. Although the hearing threshold was estimated closer to 0 dB nHL when the 

MSC-Spatial dist. was employed instead of MSC-ICs, the results of statistical 

comparison did not confirm any significant different between the outcomes of the two 

methods. Significant improvement might have been observed with a larger sample 

size – such as study is suggested for the continuation of the current work. 

Nevertheless, it can be stated that the MSC-Spatial distribution might be preferred in 

finding the hearing threshold level since it is much faster than the MSC-ICs method. 

The average hearing threshold level found by MSC-ICs and MSC-Spatial dist. for the 

normal hearing subjects were found 4 dB nHL and 2.5 dB nHL above the pure tone 

audiometry. This is considerably better than what Lightfoot (2010) reported (25 dB 

nHL) when ALR was used for hearing threshold measurement. 

 Both weighted averaging and MSC-ICs found a significant difference in the 

amplitude of the ALR wave in different recording sessions for a subject and also 

across the subjects. The results showed that single channel processing can detect the 

inter and intra subject variability as well as the multichannel alternative and for this 

application multichannel recording was not appear to be any better than single 

weighted averaging. However, it is worth noting that this variability can be due to 

poor signal quality and not because of variability of the ALR. Therefore, it can be 

stated that for this work multichannel processing was not beneficiary in comparison 

with single channel processing.  

Moreover, the habituation effect was not observed through either of the 

methods since no consistent decrement was observed in the SNR or amplitudes of the 

major peaks of the ALR over 1
st
, 2

nd
 and 3

rd
 third of the ALR waveform. The reason 

can be traced in the length of the recorded signals, quality of the recorded signals or 

the method by which the habituation effect was tested. By using better recording 

equipment or a different testing protocol such the one used by (Zhang 2009), it may 

be possible to see the effect of habituation on the recorded data.   
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 Both weighted averaging and the MSC-ICs method were applied on the ALR 

recorded form the normal hearing subjects under attend and ignore conditions and the 

effect of attention was investigated by comparing the amplitude of the major peaks of 

the ALR captured under attention and ignore circumstances. Both of the methods 

showed a significant enhancement in P2 due to the attention. The amplitude of N2 

was also found to be significantly increased when MSC-ICs was employed. Contrary 

to the results reported by (Picton and Hillyard 1974; Thornton et al. 2007), no 

significant enhancement was observed at the N1. It is worth mentioning that the 

common factor between all the previous researches was selective attention, whilst in 

this work attention was not selective. A significant enhancement could be observed at 

N1, if the data was collected under selective attention (Thornton et al. 2007). Since 

the results of investigating habituation effect on the ALR did not confirm any 

significant trend in the amplitudes of the major peaks, the observed significant 

enhancement in P2 and N2 are due to attention, i.e. this enhancement is not due to 

inter/intra subject variability as inter and intra subject variability does not follow a 

consistent increment.  Form the results presented in this chapter it can be concluded 

that detecting the effect of attention on the ALR can be significantly improved by 

using multichannel processing rather than the single channel alternative. 

5.7. Summary 

 The main objective of this chapter was to compare the performance of a 

multichannel signal processing tool (MSC-ICs), with the single channel processing 

alternative (weighted averaging) for three clinical applications (hearing threshold 

measurement, inter/intra subject variability and effect of attention) of the ALR. The 

main aim was to explore if the use of multichannel signal processing is advantageous 

over single channel processing in clinical applications. According to the results, 

multichannel signal processing is significantly better than single channel processing 

for hearing threshold measurement and investigating the effect of attention. However, 

there was no significant difference observed between multichannel and single channel 

processing for assessing inter/ intra subject variability. Although using multichannel 

processing improves the quality of technical analysis, more extensive subject 

preparation with the need to apply many more electrodes limits its clinical use. This 

limitation will be addressed in chapter 7. 
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Chapter 6 

Multichannel Artifact Rejection  
 

6.1. Introduction 

Generally the EEG recorded from individuals during auditory stimulation 

consists of a mixture of brain response and noise. Artifact is a general terminology to 

a group of undesired signals originating from eye movement (ocular artifact), muscle 

activity, heartbeat, environmental noise and other sources. The amplitude of the 

artifacts are usually several orders larger than the amplitude of the signal of interest 

(Breuer, Dammers et al. 2014). Therefore, artifact rejection from the data as a prior 

step to analysis is essential. It has been shown, for example, that artifact rejection 

prior to source localization can considerably improve the quality of the localization 

(Breuer, Dammers et al. 2014). Biological artifact can be classified into two 

categories, repetitive and non-repetitive artifacts. For instance heart beat and eye 

movement are repetitive artifacts and muscle activity is a non-repetitive artifact, i.e. 

eye-blink is approximately deterministic, in the sense that each repetition of artifacts 

has approximately the same shape, whereas the EMG is a random burst, which is 

always different in details. The focus of this chapter is on removing the heartbeat 

artifact from the ALR wave, but the approach could also be applied to other 

deterministic artifacts. 
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Various methods of artifact removal have been proposed (Barbati et al. 2004; 

Krishnaveni et al. 2006; Dammers et al. 2008; Kelly et al. 2011). For the particular 

case of heart beat artifact rejection, two different approaches are widely used. In the 

first approach which is called template matching, the heart beat artifact can be 

rejected by subtracting a reference signal form the recorded signal. This reference is 

estimated by calculating the average cardiac activity around the R-peak at each heart 

beat cycle (Allen et al. 1998; Sijbers et al. 2000). In this method the brain responses 

which are synchronized to the heart beats, i.e. occur at the same time with the heart 

beats, are likely to be distorted by this subtraction. In the second approach cardiac 

activity is removed by using ICA. In ICA-based artifact rejection methods first the 

data is decomposed in to its independent components; and then artifact rejection is 

performed discarding the component representing cardiac activity and reconstructing 

the data from the remaining components. If the signal separation and component 

selection are properly applied, the ICA-based methods do not distort the signal of 

interest (Dammers et al. 2008; Breuer et al. 2014).  

The major challenge for all kind of ICA based artifact rejection methods is 

component selection. In ICA based cardiac artifact rejection methods, cardiac 

component selection stage is carried out either by visual inspection (Jung et al. 2000; 

Iriarte et al. 2003) or automatic selection (Dammers et al. 2008). When working with 

high dimensional data, visual inspection become difficult and time consuming 

(Breuer et al. 2014). 

There are various methods to automate the ICA-based artifact rejection 

algorithms.  Croft and colleagues, for example, investigated different regression 

techniques (Hamalainen et al. 1993; Barbati et al. 2004), with the major drawback 

that the proposed method can be applied for ocular artifact (OA) removal only. 

Additionally there are other approaches in which adaptive filter techniques (Escudero 

et al. 2007; Dammers et al. 2008) including Kalman-filter-based methods 

(Krishnaveni et al. 2006; Kelly et al. 2011) are employed for artifact rejection, 

however, all are designed for specific types of artifacts only. 

 Higher order statistics such as variance, kurtosis, and skewness were 

employed to identify the artifact components by (Delorme et al. 2001; Barbati, et al. 

2004; Dammers et al. 2008; Klados et al. 2010). Also, Shannon’s and Ranyi’s 

entropy have been also used to automatically remove the artifact components from 
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the EEG recording (Greco et al. 2005). However, all amplitude-based methods are 

limited and less sensitive in cases where the strength of the IC is weak, thus, 

exhibiting a low signal to noise ratio (Rongen et al. 2006; Dammers et al. 2008). It 

has also been reported that Renyi’s entropy is computationally costly for high-

dimensional data due to the kernel density estimation necessary for each component 

(Dammers et al. 2008). 

As an alternative, constrained independent component analysis (cICA) has 

also been used for artifact rejection from EEG recordings (James and Hesse 2005; 

Rajapakse and Wei 2006; Chawla 2011; Breuer et al. 2014). In cICA a priori 

information of the underlying source signal is used as a reference to optimize signal 

decomposition. In brief, cICA returns a component which is the closest component to 

the reference signal (Rajapakse and Wei 2006). This method is limited where the 

artifact signal has more than one component. For example, the decomposition of 

signals containing heart beats artifact often shows multiple ICs (Sander et al. 2002) 

whose activity is clearly related to heart beats. Since second and third cardiac 

components usually have small peak amplitudes, they may be identified by visual 

inspection, but are more difficult to find from its statistical properties though 

amplitude based methods. This limits the use of amplitude based methods. However, 

applying cICA in more than one iteration may address this drawback. cICA and 

artifact rejection is explained in more detail in the next section.  There are alternative 

methods such as wavelets (Kelly et al. 2011) have been used for automatic artifact 

rejection which are not the main concern of this work and can be found in the 

literature (Krishnaveni et al. 2006; Hamaneh et al. 2014). 

 In this chapter cardiac artifact removal from EEG and the ALR is performed 

by using cICA and a novel artifact rejection method based on the MSC-ICs method 

which was introduced and explained in the previous chapters. The performance of 

this artifact rejection methods for removing cardiac artifact is then compared with 

cICA. 

6.2. Cardiac Artifact Rejection 

In order to perform and compare cardiac artifact rejection methods (MSC-ICs 

based and cICA based), the ALR data recorded from 10 normal hearing participants 

was used. Data acquisition and testing protocol was described in section 2.5. Artifact 
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rejection methods should be compared in two senses. 1) How much artifact has been 

removed from the signal 2) How well has the signal of interest been preserved.  

6.2.1. Artifact Rejection by Using cICA  

The cICA algorithm proposed by Lu and Rajapakse (2000) incorporates prior 

knowledge of the underlying expected signal in the internal cost function, to perform 

optimal signal decomposition. This constraint points the ICA algorithm in the 

direction of finding a particular solution which is optimally close to the reference 

signal (James and Lowe 2003). Different measures such as mean squared error (MSE) 

or correlation can be used to measure closeness (Lu and Rajapakse 2000; James and 

Lowe 2003). In this work MSE is used as the measure of closeness between the 

component and the reference signal. More information about the constrained 

optimization in cICA algorithm can be found in (Lu 2005). Heart beat artifact 

rejection from the ALR by using cICA can be summarized as follows:  

1) Generating the reference signal.  

2) Estimating the de-mixing matrix that provides the component which is optimally 

close to the reference. For the matrix form given by equation (6.1). 

           𝒚 = 𝑨𝑿                          (6.1) 

A is the de-mixing matrix which if multiplied to the observation matrix X, the 

output y would be the component (one component) which is optimally close to the 

reference signal.  

3) Projecting the component to the measurement domain and subtracting it from the 

original signal. This stage removes the contribution of the, artifact component from 

all the channels.  

In this work an extra step has also been added to the aforementioned steps which is 

repeating the procedure in more iterations until a desired quality of artifact rejection 

is achieved, i.e. the artifact rejection algorithm was applied on the data repeatedly. 

In each repetition a new artifact component (closest to the reference) was found and 

the data was reconstructed without including the artifact components. Assessing the 

quality of artifact rejection will be explained in the next sections. 
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The same data set that were used in the chapters 4 and 5 are also used for 

artifact rejection in this chapter. The reference signal is simply generated from the 

ECG signal (which is recorded via an electrode placed on the participant’s chests) by 

setting a threshold. Here, the R-peak in the heart beat signal is selected for generating 

the reference signal, i.e. a threshold is set so that the R-wave peak exceeds it and the 

rest of the signal is below it and therefore set to zero. Therefore, the reference signal 

will be an impulse train which is synchronous with the R-Peaks of the heart beats. In 

this work, a toolbox implemented in MATLAB (Zhang 2008 version 1.0) was used 

for cICA.  

6.2.2. Artifact Rejection by Using MSC-ICs 

The MSC-ICs method was used for artifact rejection in a similar fashion to 

the previous chapter. The only difference in this case is that instead of keeping the 

ICs based on coherency of the ICs with the stimulus and discarding the rest, ICs 

which are significantly coherent with the heart beat are discarded and the data is 

reconstructed from the remaining ICs. Since the MSC uses coherence of the ICs and 

the heart beats, rather than amplitude information (PDF of amplitudes) of the ICs, it 

can be predicted that this method will not have the drawback of the amplitude based 

artifact rejection methods. Coherence of an IC with the heart beats is independent of 

amplitude and it only depends on the behaviour of the signal. MSC between an IC 

and the heart beats can be calculated by using equation (3.13).   However, since the 

heart beats (R-peak or Q-peak) do not always happen exactly at the same onset, i.e. 

the heart beat signal is not exactly periodic; and the interval between two successive 

heart beats may vary. Hence, (3.13) cannot be simplified to (3.15). An example of 

three successive heartbeats is shown in Figure. 6.1, illustrating the differing time-

intervals between successive heart-beats.  

To be able to use the equation (3.13) for calculating the coherence between an 

IC and the heart beats, first the Q-peaks of the heart beat were found and the data was 

segmented into blocks of 650 samples, i.e. from 35 samples before the onsets of the 

Q-peak and 615 samples after. This segmentation is shown for one segment in Figure 

6.2.Then equation (3.15) was used to calculate the coherence of the ICs and heart 

beats. Afterward, ICs which are significantly coherent with the heart beats (p-value 
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<0.05) are discarded as cardiac artifact components and the rest are projected to 

measurement domain for the reconstruction of the signal with our artefacts. 

 

Figure 6.1: Heart beats signal recorded form one participant’s chest. Position of Q-peak, 

onset of heartbeats, the distance between two randomly selected heart beat onsets are shown 

in the figure.     

 
Figure 6.2: Major peaks of a heartbeat along with the onset of the segment. ICs are 

segmented to blocks with 650 samples.  

6.2.3. Quality Measurement for Artifact Rejection  

In order to compare the performance of artifact rejection by two methods, the 

rejection performance quantity Rp, as proposed by (Dammers et al. 2008) given by 

equation (6.2), was employed. 

                        𝑅𝑝 =
𝑟(𝒙𝑜𝑟𝑖𝑔−𝒙𝑎𝑟𝑡_𝑟𝑒𝑚)

𝑟(𝒙𝑜𝑟𝑖𝑔)
   where 𝑟 =

1

𝑁
∑ √

1

𝑇
∑ (𝒙(𝑡))2𝑡

𝑁
𝑖=1              (6.2) 
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where, 𝒙𝑜𝑟𝑖𝑔  represents the signal before artifact rejection, 𝒙𝑎𝑟𝑡_𝑟𝑒𝑚  represents the 

artifact removed signal, r represents the average root mean square (rms) value across 

N channels of the EEG recordings.  Thus, 𝑟(𝒙𝑜𝑟𝑖𝑔) expresses the mean (rms) value 

before the artifact rejection and 𝑟(𝒙𝑜𝑟𝑖𝑔 −𝒙𝑎𝑟𝑡_𝑟𝑒𝑚) represents the mean rms value of 

the difference signal between the signal before (𝒙𝑜𝑟𝑖𝑔) and after (𝒙𝑎𝑟𝑡_𝑟𝑒𝑚) the artifact 

rejection respectively. With respect to cardiac artifact rejection, Rp → 0 can be 

interpreted as a complete failure of the rejection process. For Rp being close to 1, 

artifact rejection is maximal. However, this value just shows much data has been 

rejected by the method and does not say if the artifact rejection has been carried out 

correctly. For example, if all the components are rejected by mistake, the Rp value 

will be 1.  

For the case of auditory event related activities, the Fmp of the artifact 

removed signal can be considered as a measure of how well the evoked response has 

been preserved. In brief, a good artifact rejection method is the one which provides Rp 

close to one and also a signal with high Fmp. However, a drawback of this method is 

that the method is not able to identify which artifact has been removed. For example, 

if the goal is to remove heartbeats artifact but ocular artifact has been rejected by 

mistake, the Fmp of the artifact signal will still be improved. In order to show that the 

artifact which was removed by the artifact rejection methods was the heartbeat 

artifact, the cross correlations of the artifact removed signal with the original signal 

and also the reference signal which was generated in section 6.2.1 were calculated. 

High quality artifact rejection is obtained if the correlation between the artifact 

removed signal and the reference signal is small while correlation between the 

original signal and artifact removed signal is large.  

A simulation was carried out to demonstrate the difference between the 

artifact rejection quality measurement methods. Four signals (D1, D2, D3 and D4) 

were used in this simulation and they are shown in Figure 6.3. Signal D1 (a sine 

wave) was selected to simulate the signal of interest and D2 (square wave) was used 

to simulate the heartbeat artifact. In addition, signals D3 and D4 were used to simulate 

muscle artifact and background noise respectively.  

This simulation consists of two different scenarios. In the first case the artifact 

rejection was carried out correctly and only D2 (the square wave which denotes the 
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heartbeat artifact) was rejected and signals were mixed excluding the square wave. In 

the second case, D3 and D4 and 75% of D2 were removed. In other words, in the 

second case the heartbeat artifact was partially removed along with the noise and 

other artifacts, i.e. anything else than heartbeat like eye blink. Two case of artifact 

rejection are shown in Figure 6.4. 

   

 

 

 

 
 

Figure 6.3: left, from the top D1, D2, D3 and D4 simulating signal, heartbeat artifact, muscle 

artifact and background noise respectively. Right, signal mixture 

Signal to noise ratio (Fmp) was calculated for the signal mixture shown in the 

left side in Figure 6.3 and it was found to be 2.41  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Left, correct artifact rejection in which the only removed component is D2 (the 

square wave which denotes the heartbeats). Right, wrong artifact rejection in which muscle 

artifact D3 and background noise D4 are rejected and heartbeat artifact is not rejected. 

Both Fmp and Rp were calculated for the signals shown in Figure 6.4. For the 

signal which simulates the incorrect artifact rejection and it is shown in the right side 

of Figure 6.4. Rp and Fmp were found to be 0.63 and 4.89 respectively. These values 
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were found 0.25 and 3.2 for the case in which the artifact rejection was carried out 

correctly.  

On the other hand, correlation coefficient was calculated between the signal 

mixture on the right side of Figure 6.3 and D2 (second signal from the top in Figure 

6.3 right side) and it was found to be 0.40. Moreover, for the both signals shown in 

Figure 6.4, correlation coefficient was calculated between the artifact removed 

signals and signal D2. In addition, correlation coefficients between the artifact 

removed signals and the signal mixture shown in the left side of Figure 6.3 were 

calculated. For the correct artifact rejection the correlation coefficient between the 

artifact removed signal (Figure 6.4 on the left side) and D2 was found to be 0.08 

while this value found to be 0.15 for the incorrect artifact rejection. Moreover, 

correlation coefficient between the signal shown on the left side of Figure 6.4 (correct 

artifact rejection) and right side of Figure 6.3 was found to be 0.96 while this value 

found to be 0.78 for the incorrect artifact rejection. These results implies that after 

artifact rejection, in the case of correct artifact rejection the contribution of D2 in the 

signal mixture has been reduced more than the incorrect artifact rejection as the 

correlation coefficient between the artifact removed signal and D2 (artifact signal) is 

lower than the other case. Higher correlation coefficient between artifact removed 

signal and the signal mixture for the correct artifact rejection case implies that the 

signal is preserved better. Note that the main purpose of this artifact rejection is only 

removing D2. 

6.3. Results  

The result of applying the MSC-ICs method for removing the heart beat 

artifact from EEG (ALR) for one of the subjects is shown in Figure 6.5. In this figure, 

the channel which was highly contaminated by the cardiac artifact (channel 59) was 

selected to illustrate the performance of MSC-ICs for artifact rejection. For the 

subject whose EEG is shown in Figure 6.5, MSC-ICs found 3 components 

significantly coherent with the heart beat channel (p-value<0.01). Data was 

reconstructed after discarding 3 components. It can be seen form Figure 6.3 that the 

artifact is largely removed from the ALR signal. Moreover Figure 6.6 shows that the 

signal is mostly kept and only heart beat artifact has been removed. By using 
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equation (6.2), artifact removal quality indicator for this subject was found to be Rp 

=0.45.  

 
Figure 6.5: Cardiac artifact removal from the ALR signal by using MSC-ICs for one of the 

subjects. Original data (before artifact rejection), is shown by dashed line and the solid line is 

the ALR signal after artifact rejection.  

Moreover, Fmp was calculated for channel 59 for both original signal (signal 

before artifact rejection) and the artifact corrected signal. For this subject, Fmp values 

were found to be 0.46 and 0.57 for the original data and artifact corrected data 

respectively. The small improvement in this channel can be explained by the small 

Fmp of the signal. As discussed in section 4.4, channels with Fmp below 1.25 are 

considered as channels with poor signal quality (response is either not present or it 

has a very small amplitude).  

The correlation coefficient between the artifact removed signal and the 

reference signal (calculated in section 6.2.1) was calculated when MSC-ICs was 

employed for artifact rejection and the result showed that the artifact removed signal 

has a very small correlation with the heartbeat reference signal (correlation 

coefficient= 0.002). Furthermore, the correlation coefficient was also calculated 

between the artifact removed signal and the original data and the results show that the 

artifact removed signal and the original signal are highly correlated (correlation 

coefficient=0.95). These results imply that (for this subject and this channel) the 

heartbeat artifact has been removed and the rest of the signal is well preserved. This 

result is in accordance with the graphs shown in Figure 6.7, i.e. heartbeats are 

removed and the artifact removed signal follows the original signal.  

36 36.5 37 37.5 38 38.5 39 39.5 40

-40

-20

0

20

40

60

Time(ms)

A
m

p
li
tu

d
e
 (


V
)

 

 

Original Data 

Artifact removed data 



Chapter6: Multichannel Artifact Rejection  

127 

 

Additionally, for the channels with Fmp above 1.25 (when the response is 

present) comparing the Fmps of the signal before and after the artifact rejection via a 

paired sample t-test shows the quality of the signals are significantly improved due to 

artifact rejection. The Fmps of the signal before and after artifact rejection for the 

channels above 1.25 for this subject is given in Figure 6.7. 

 

Figure 6.6: Artifact corrected signal is shown by dashed line and data before artifact 

rejection is shown by solid line. Artifact corrected signal follows the original signal except 

the heart beat is removed from the signal. 

 
Figure 6.7: Channels with Fmp above 1.25 before and after artifact rejection for the same 

subject. Fmp of signal after artifact rejection is always greater or equal to the Fmp of signal 

before artifact rejection. Results of applying a paired sample t-test shows a significant 

improvement (p-value <0.001), shown by star, due to artifact rejection. 
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Alternatively, cICA was employed for cardiac artifact removal from the same 

data set. Figure 6.8, shows the results of artifact rejection by applying cICA on the 

same subject and in the same channel (channel 59) along with the original signal 

(before artifact rejection). 

 

Figure 6.8: Cardiac artifact removal from the ALR signal by using cICA for one of the 

subjects. Solid line identifies the original data (before artifact rejection) and dashed line 

shows artifact corrected data for the same data set as the previous part. 

 

Quality of the artifact rejection was measured for this recording. The results 

showed that using cICA can remove the cardiac artifact with Rp=52% and improve 

the Fmp of the signal (channel 59) from 0.46 to 0.6. Moreover, cICA was employed 

in 13 iterations for this subject and the results showed that after the first iteration, 

change in the rejection ratio (Rp) was small (for 13
th

 iteration Rp=55%).  

Correlation coefficients were also calculated between the pairs of artifact 

removed signal and the heartbeats reference, and between artifact removed signal and 

original data for this subject in channel 59. The result showed that the artifact 

corrected signal by cICA was still correlated with the signal (correlation coefficient -

0.035). Correlation coefficient between the artifact removed signal by cICA and the 

original data was found to be 0.45. These values are in accordance with the signal 

shown in Figure 6.8, i.e. heartbeats are not entirely removed from the signal.    

As in the previous section, Fmp was calculated for the channels with Fmp 

above 1.25 and summarized in Figure 6.9. Results of applying a paired sample t-test 

on the data obtained from this subject showed that Fmp was significantly (p-value 

<0.001) improved due to artifact rejection by cICA for both one and thirteen 
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iterations. However, no significant improvement in Fmp was found due to increasing 

the number of iterations (from one to thirteen). Artifact rejection (for the same subject 

and in the same channel) by cICA is shown in Figure 6.10 for 13 iterations. After the 

1
st
 iteration, change in the signals is small.  

 

Figure 6.9: Channels with Fmp above 1.25 before and after artifact rejection for the same 

subject. Results of applying a paired sample t-test shows a significant improvement (p-value 

<0.001) due to artifact rejection. No significant improvement was found in Fmp from one 

iteration to thirteen iterations. In the figure NS means not significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Cardiac artifact rejection from ALR by employing cICA in one to thirteen 

iterations. Change in the signal after the 1
st
 iteration is small. 
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The whole procedure of artifact rejection was carried out for all the 10 

subjects. The results showed that in using MSC-ICs for cardiac artifact rejection, the 

average number of the components which were significantly coherent with the heart 

beats across the ten subjects was found to be 5.  

The quality of the artifact rejection was also measured for the artifact rejection 

methods for each of the ten participants and the median value of Rp was found to be 

53.14% for artifact rejection by using MSC-ICs and 67.05% for when cICA was 

employed for cardiac artifact rejection (with one iteration). This result is shown in 

Figure 6.9. Result of applying a Wilcoxon test showed that rejection ratio is 

significantly (p-value =0.007) higher when cICA is employed for artifact rejection. 

 

Figure 6.11: Comparing the rejection ratio for two artifact rejection methods. Rejection is 

significantly higher when cICA is employed. 

Furthermore, for each subject the Fmp was calculated for the channels above 

1.25 before and after artifact rejection (for both artifact rejection methods) and the 

results were compared via a paired sample t-test. In all the ten subjects a significant 

improvement (p-value<0.05) in Fmp was observed due to artifact rejection (for both 

cICA based and MSC-ICs based methods).  

Correlation coefficients between artifact removed signal and the heartbeat 

reference were calculated for both artifact rejection methods for all the ten subjects 

for the channel which was most contaminated by heartbeats artifact. For artifact 

rejection using MSC-ICs, artifact removed signal was found to be uncorrelated with 

the heartbeat reference signal for all the ten subjects; while for artifact rejection using 

cICA, artifact removed signal was found to be correlated to the heartbeat reference 
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for 4 of the subjects. These results are summarized in Figure 6.5 and 6.7 for artifact 

rejection using MSC-ICs and cICA respectively.  

 
Figure 6.12: Correlation coefficient between artifact removed signal and the heartbeat 

reference for all the ten subjects for the most contaminated signal by heartbeat artifact for 

both artifact rejection methods. Correlation between artifact removed signal and heartbeat 

reference is significantly lower when MSC-ICs was used. 

 
Figure 6.13: Correlation coefficient between artifact removed signal and the original signal 

for all the ten subjects for the most contaminated signal by heartbeat artifact for both artifact 

rejection methods. Correlation between artifact removed signal and original signal is 

significantly higher when MSC-ICs was employed.  
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Additionally, in order to illustrate that artifact removal by using either of the 

methods (cICA and MSC-ICs) does not disturb the ALR signal, un-weighted coherent 

average over 155 epochs was calculated at Cz for one subject and the result is shown 

in Figure 6.12. The original data, artifact removed signal using MSC-ICs and artifact 

removed signals using one and thirteen iterations of cICA are shown in Figure 6.12. 

For this subject, signals from one and thirteen iterations are overlapping since the 

change in the signal is small after the first iteration. 

  

Figure 6.14: Un-weighted averaging over 155 epochs at Cz for one subject before and after 

cardiac artifact removal. Artifact rejection by using either of the methods does not have a 

large effect on the quality of the signal at Cz. The averaged ALR from one and thirteen 

iterations are overlapping. 

6.4. Discussion and Conclusion 

According to the results which were presented in the chapter, using MSC-ICs 

can significantly improve the cardiac artifact removal from the ALR recordings in 

comparison with the existing cICA based method. The average number of cardiac 

components found by MSC-ICs were 4; while this number was found to be 1 for the 

cICA based methods. However, possibly by dynamically changing some of the 

optimization parameters in the cICA artifact rejection algorithm such as the closeness 

or learning rate, this value and consequently the artifact rejection quality will 

increase. However, adjusting the parameters during the artifact rejection procedure 

de-automates the method. Since MSC-ICs removes all the cardiac components at 
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once, the artifact rejection by this method was considerably faster than going through 

cICA iterations. Furthermore, the need for selecting optimization parameters and the 

closeness criterion in cICA based artifact rejection method, is a major drawback of 

this method.  

According to Figure 6.9, for cardiac artifact rejection the rejection ratio (Rp) 

was found to be significantly (p-value<0.05) higher when cICA was used in 

comparison with when MSC-ICs was employed. However, by comparing these 

results with those in Figures 6.10 and 6.11 it can be concluded that, in cICA cardiac 

artifact is not the only undesired component which was discarded. What has been 

discarded by cICA from the signal was partly heartbeats and partly other components. 

From the results presented in Figures 6.12 and 6.13 for this set of data, it can be 

stated that, using MSC-ICs is a better choice than cICA for cardiac artifact rejection 

from ECG, i.e. in both senses of removing the heart beat artifact and preserving the 

signal of interest. 

As was mentioned before, using MSC for artifact component selection does 

not have the drawbacks of amplitude based methods used by (Delorme et al. 2001; 

Barbati et al. 2004; Dammers et al. 2008; Klados et al. 2010). In addition, the MSC-

ICs method can be employed for any type of repetitive artifact, e.g. eye-blink 

heartbeat. However, the need for a time reference and also setting a suitable threshold 

for selecting/discarding the components still remains as a drawback for the MSC-ICs 

method. 

According to the results presented in this chapter, artifact rejection had a 

major impact on signal quality when the artefact was strong. However, in many 

channels the artifact was weak and the final impact of removing artifact or not on the 

coherent average was only small. In the current work the focus is on auditory evoked 

potentials, but the method of artefact rejection has much wider application, for 

example in spontaneous EEG or separating the maternal ECG from fatal ECG  

6.5. Summary 

In this chapter a novel ICA based artifact rejection method for cardiac artifact 

removal from the ALR was introduced. The performance of the proposed method was 

compared with an alternative method based on constrained ICA. The results of this 

comparison showed that the novel method was significantly better than the existing 
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method in terms of speed, time required for the processing procedure, and accuracy 

(quality of the artifact rejection). 
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Chapter 7  

Time Reduction for the ALR 

Recording 
 

7.1. Introduction 

Increasing the efficiency of AER detection by means of multichannel EEG 

recordings has been the subject of much research (Reijden et al. 2004; Van Dun et al. 

2009; James et al. 2005). As was explained in section 1.6, AERs are assumed to be 

the outcome of contributions from many sources in the brain in response to a 

repetitive stimulus. The position of these response generators is not known and may 

be different from subject to subject. Moreover, the strength of AER signal at each 

electrode is a function of distance of the generator source to the recording electrode 

(Bharadwaj 2014). It thus follows that by using an electrode array it is more likely 

that some electrodes are close to the generator sources and this allows an increase in 

the efficiency of detecting a response. A multichannel array can also be used to find 

the electrode configuration which offers the highest SNR values (Dun 2009). 

Placing a high density electrode array, e.g. 64, 128 or 256, on the scalp of  

subjects is one of the most time consuming parts of multichannel recording of AERs 

(ALR in this case). Experience has shown that placing 64 electrodes on the scalp 

takes about an hour for a trained technician. Therefore, finding a method by which 
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the ALR can be recorded with fewer electrodes without a significant decrement in 

SNR would be highly beneficial for practical applications.  

Many research studies have focused on reducing the required time for 

auditory steady state response (ASSR) measurements by optimizing the ASSR 

detection. Improvement in detecting ASSR can be achieved via changing the stimulus 

type (John et al. 2001b; Stürzebecher et al. 2001; John et al. 2002; John et al. 2003; 

Riquelme et al. 2006; Stürzebecher et al. 2006) or alternatively increasing the 

efficiency of ASSR detection by using multichannel recordings of ASSR (van der 

Reijden et al. 2004; Van Dun et al. 2007a, 2007b). A number of authors (John et al., 

2001a; Lins and Picton, 1995; Luts and Wouters, 2005) have shown that the average 

hearing threshold level measured by ASSR for normal hearing adults is lowest, i.e. 

closest to 0 dB nHL, if the derivation of electrodes is chosen well, typically Cz-Oz or 

Cz-neck. However, the electrode derivation which produces the highest SNR is 

subject dependent and cannot be predicted in advance. Hence, using multichannel 

recording, combined with appropriate multi-channel signal processing, would seem a 

promising approach to select the “best” channel or combination of channels for as 

many subjects as possible.  

Dun (2009) employed a multichannel ASSR detection strategy based on a 

statistical method to find the optimal configuration of the electrodes for recoding 

ASSR with the highest SNR. In their work they used an array of 8 electrodes and 

calculated the SNR obtained by all the possible configurations. For multichannel 

recording the highest SNR was achieved when the electrodes were placed on both 

mastoids and the back of the head. However, the SNR which was achieved by placing 

a single channel on the back of the head (with weighted averaging as a processing 

tool) produced the highest SNR and no significant improvement was reported due to 

multichannel recording. A drawback of Dun’s method is that for a high density 

electrode array the number of possible configurations and consequently number of 

calculations is very large.  

In contrast with the results reported by Dun (2009), Bharadwaj (2014) used 32 

channels ASSR and showed that the SNR of ASSR measured at Cz increases by 

increasing the number of channels. The increment in SNR was reported to be steep at 

the beginning and then plateaued. The observed plateau in SNR increment can be 

explained by the incremented number of electrodes: by increasing the number of 
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electrodes the distance between two adjacent electrodes decreases and two electrodes 

may carry the same information. Moreover, for the case in which one channel has a 

good sensitivity to the auditory stimulus (strong response) while another has a poor 

sensitivity (weak response), when these two channels are combined with similar 

weights, though the noise may be partially cancelled, the signal may also be 

diminished by the inclusion of the channel with poor sensitivity. The sensitivity of 

different channels to the signal also depends on the choice of the reference and the 

tissue geometry of individual subjects (Bharadwaj 2014). Although Bharadwaj (2014) 

showed that the SNR increases by increasing the number of the channels, no optimal 

electrode placement was suggested. 

 To the best of our knowledge, time reduction for ALR using a multichannel 

approach has not been investigated previously. Therefore, in this chapter, a 

multichannel signal processing method is employed for reducing the recording time 

for the ALR. The same data set used in previous chapters is also used for this 

application. Time reduction can be carried out in two main senses:  1. reducing the 

number of stimulus repetitions. 2. reducing the set up time by optimizing the position 

and the number of the recording electrodes (within a limited region) in multichannel 

recording. Since the aim is to know if multichannel signal processing is beneficial 

over single channel alternative, the point of reference is single channel recording. In 

previous chapters the benefit of multi-channel recordings with 64 channels over 

single-channel recordings (Cz) was shown. The current chapter will extend this to 

assess the impact of using fewer channels on the result.  Hence, for finding the 

optimum number of stimulus repetitions for multichannel AER recording, the number 

of the repetition will be reduced till the same SNR as single channel is obtained at 

vertex (Cz channel). In similar fashion as previous chapters Fmp was used to 

calculate SNR. On the other hand for optimizing the number and positions of 

electrodes, the target is to have the same Fmp at the Cz as when all 64 channels are 

used, but with fewer electrodes.  The goal is to find an optimal ALR recording 

protocol, including optimal electrode placement and optimum number of stimulus 

repetitions. The latter goal will be addressed first.  
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7.2. Time Reduction by Reducing the Number of Epochs 

Chapter 2 detailed how the ALR is generally recorded from 155 stimulus 

repetitions for a single channel recording. A similar number of stimulus repetitions 

(155) (at 60dB nHL) was used for multichannel recording of the ALR in each of the 

10 subjects. The main goal of this section is to reduce the time of multichannel 

recording of ALR. In this part the single channel data (Cz) was de-noised by 

employing un-weighted averaging and weighted averaging methods and the Fmp 

were calculated for each of these methods. The value of Fmp at Cz calculated by un-

weighted averaging was used as a point of reference for comparison within the 

multichannel analysis. The epoch reduction procedure (reducing the number of 

epochs and assessing the change in Fmp with progressively lower numbers of epochs) 

was started with full length data (155 epochs) and reduced to 1 epoch in 154 

iterations. In each iteration the MSC-ICs method (which was explained in section 

3.2.4) was used for multichannel noise reduction and the Fmp was calculated at Cz. 

The aim was to determine the minimum number of epochs by which the Fmp at Cz 

was found to be identical to the one calculated by un-weighted averaging using all 

155 epochs. This procedure was carried out for all the ten normal hearing subjects. 

The minimum number of epochs was found for each subject for having Fmp equal to 

single channel processing at Cz. To encompass all the possible situations for this data 

set, the largest number (worst case) was selected as the optimum required number of 

epochs for multichannel recording of the ALR. Since applying ICA in each step (154 

times in total) is very time consuming, the ICs in each step were found through an 

alternative way. With the assumption that the spatial distribution of the sources 

(positions of the sources) is unchanged over the scalp, the mixing matrix which was 

found from applying ICA over all data from each subject (155 epochs) was used for 

finding the ICs in the next steps. After finding the ICs using this mixing matrix, 

MSC-ICs was used for in the same fashion as previous chapters and ICs which were 

significantly (p-value <0.05) coherent with the stimulus were kept as response ICs 

and the rest were discarded as noise. Data was reconstructed using only the response 

components. This procedure was carried out for all ten subjects and the minimum 

number of epochs was calculated for each subject. Finally the largest value (of the 

minimum epoch numbers calculated for each subject) across the ten subjects was 
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considered the required number of epochs by which multichannel processing 

produces signal with the same Fmp as single channel processing at Cz when155 

epochs are used. 

7.3. Time Reduction by Optimal Electrode Placement 

 The aim of this section is to optimize the number and location of the 

electrodes in multichannel recording of ALR. The procedure of reducing the number 

of recording electrodes was carried out in a way that that gives the same result as the 

single channel approach. The main question of this section is to find the minimum 

number of channels and their location that achieves the same Fmp as single channel 

weighted averaging at Cz. In this method, first the ALR data captured from the 10 

subjects was decomposed into the ICs. Then the response components were selected 

by using the MSC-ICs method (explained in detail in chapters 3 and 4) for all the 

subjects. As was mentioned in section 1.6 the ALR observed at each electrode is a 

linear mixture of independent sources (response and noise) in the brain. In equation 

(1.12), the un-mixing matrix shows the position of the electrodes which have the 

main contribution in each IC. Hence, from the un-mixing matrix the electrodes which 

were the main contributors in response ICs (selected by MSC-ICs) were found for 

each subject (Jung et al. 2001; Makeig et al. 2002; Zhukov et al. 2000). The spatial 

distributions of the ICs (selected by MSC-ICs) were found by using the topographic 

map. In this work a MATLAB toolbox EEGLAB 11-0-0-0b was used for producing 

the topographic maps. Since the positions of the response sources are subject 

dependent, it is not possible to suggest a unique electrode placement which can be 

used for all the subjects. However, it is possible to find a common area of the scalp 

from which the response components mostly come. For each individual the average 

over the spatial distribution of the response ICs was calculated. This provides a map 

from which the response components mostly come from for each subject. Then, the 

average over the spatial distributions (obtained from the individuals) can be 

considered as the common area from which the response ICs come from. If the 

electrodes are placed on the scalp areas best associated with each IC. Response ICs 

will be the dominant ICs in recordings from these areas, making a reduction of these 

redundant electrodes possible. In the next stage, first the Fmp at Cz for the case in 

which all 64 channels were used was selected as a basis for comparison for each 
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subject. Then, the Fmp was calculated at Cz for the case in which only the reduced 

number of channels were placed on the area found in the previous part. Then to 

explore any significant difference between the Fmps (obtained at Cz) by different 

electrode placement strategies (optimal electrode placement vs. placing all 64 

electrodes), the results were compared with each other using a statistical test.  

7.4. Results  

Initially, the Fmp was calculated at Cz for both un-weighted and weighted 

averaging methods for 155 epochs for all the subjects. The result of applying the 

epoch reduction procedure on all the ALRs captured from the subjects showed that on 

average, the minimum required number of stimulus repetitions that produce an Fmp 

equal to single channel processing at Cz was found to be 70 (with standard deviation 

equal to 5) for un-weighted averaging and 84 (with variance equal to 4) for weighted 

averaging. The higher value for the latter reflects the increased SNR and hence Fmp 

expected when using weighted averaging. It may therefore be concluded that by using 

multichannel processing the required time for recording ALR is reduced by 45% 

when compared with weighted averaging and 55% for un-weighted averaging in 

order to achieve the same Fmp. In chapter 2, it was stated that recording ALR takes 4 

minutes for 155 epochs which can thus be reduced to 2 minutes and 12 seconds, and 

1 minute and 48 seconds, respectively, with multichannel. Variation of Fmp with 

number of epochs for one of the subjects is shown in Figure 7.1. In this figure, the 

Fmp values calculated at Cz for both un-weighted an weighted averaging using all 

155 epochs are also shown. For this subject, the Fmp at Cz produced by MSC-ICs 

was found to be equal to the Fmp after 81 epochs and for un-weighted averaging this 

occurred after 76 epochs. Note that the MSC-IC line may cross the threshold 

repeatedly, but the number of epochs considered was the value above which the plot 

consistently remained above the threshold.  
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Figure 7.1: Fmp at Cz calculated by MSC-ICs (recalculated with increasing number of 

epochs), un-weighted (calculated for 155 epochs) and weighted (calculated for 155 epochs) 

averaging for one subject. MSC-ICs produced a signal with the same quality as un-weighted 

and weighted averaging at Cz with 81 and 75 epochs less respectively.  

The averaged ALRs produced by single channel (un-weighted and weighted 

averaging) and multichannel (MSC-ICs) at Cz for the same subject are shown in 

Figure 7.2. As it can be deduced from the figure, by using MSC-ICs the ALR can be 

recovered from noisy recordings at Cz by 81 epochs instead of 155 epochs.      

 

Figure 7.2: Averaged ALR at Cz produced by MSC-ICs (81 epochs) and un-weighted and 

weighted averaging (155 epochs).    

As was mentioned before, the number and position of the response generators 

is subject dependent. The number of significant (according to the MSC criterion) ICs 

were found for all the ten subjects and the largest number was 40.  
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Furthermore, in order to find the areas of the cortex from which the response 

components come, the spatial distributions of the independent components over the 

scalp were investigated for all the 10 subjects and shown by a scalp topographic map 

with the corresponding coherent average (155 epochs) for that IC (Figure 7.4 shows 

one example). The MSC-ICs was employed and ICS which were significantly 

coherent with the stimulus (response components) were identified.  

The average over spatial distributions of the response ICs selected by MSC-

ICs for each individual is shown in Figure 7.3. 

   

 

 

 

 

Figure 7.3: The average of spatial distribution of the response ICs selected by MSC-

ICs for all the ten subjects 

The results of averaging over un-mixing matrices obtained from the subjects 

showed that, the response components mostly come from the back and top of the 

head. This result is shown for the channel locations shown in Figure 7.4.  
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Figure 7.4: Left, the average over spatial distribution of the response ICs obtained from ten 

subjects. On average for the 10 subjects, the response components mostly come from the 

back and top of the head (highlighted area on the right).  

Forty electrodes were placed on the highlighted area of the scalp shown in 

Figure 7.4 and the MSC-ICs method was employed using multichannel processing. 

For optimal electrode placement the Fmps were calculated at Cz for all the subjects 

and compared to the Fmp values obtained when all 64 channel were used. This 

comparison is shown in Figure 7.5.   

 

Figure7.5: The Fmp at Cz obtained by MSC-ICs for optimally placing 40 channels and when 

all 64 channels were used.  

Although, the Fmp seems to be increased by using optimal electrode 

placement, the result of applying a t-test showed that the difference between Fmps 

obtained at Cz through the different electrode placement strategies was not significant 
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(p-value > 0.05). However, reducing the number of electrodes from 64 to 40 (37.5%) 

can considerably reduce the time required for placing electrodes on subjects’ scalps.  

7.5. Discussion and Conclusion 

Reducing the time of recording for ASSR has been the subject of some 

researches (John et al. 2001b; John et al. 2002; John et al. 2003; Stürzebecher et al. 

2001; Riquelme et al. 2006; Stürzebecher et al. 2006). Despite the methods by which 

the recording time for ASSR was reduced, the stimulus stayed unchanged in this 

work. The results of this chapter illustrated that the required time for recording ALR 

is considerably reduced (without a change in Fmp), if multi-channel recording and 

MSC-ICs are employed. On average, 85 stimuli less were required for the same 

signal quality (Fmp) with multichannel processing compared to un-weighted 

averaging and 74 less, when comparing with weighted averaging, when for the latter 

two used 155 epochs.  This corresponds to a 55% reduction in time required for 

recording the ALR. However, placing 64 electrodes on a subjects head is a 

demanding procedure that adds about an hour to the recording session. Clearly, using 

multichannel recordings to improve the Fmp at Cz will only be effective in terms of 

time spent on assessment, if the recording sessions are quite long.  

Despite previously reported results (Dun 2009) that multichannel recording 

was not helpful for reducing the time of recording for the ASSR, the results of 

optimal electrode placement for the ALR showed that by placing 40 electrodes on the 

area given by Figure 7.4, the Fmp at Cz will stay unchanged in comparison with 

when all the 64 electrodes were used, but fewer electrodes are needed.  According to 

Bharadwaj (2014) Fmp increases by increasing the number of channels. It is worth 

noting that the by reducing the number of channel form 64 to 40, the Fmp was 

slightly increased. However, for this data set this increment was not found to be 

significant. Given that the selected electrodes were the ones deemed to contribute 

most strongly to the ALR, the channels removed are probably ones with a weak or 

absent response, which contribute primarily noise to the analysis (Bharadwaj 2014).  
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7.6. Summary 

The focus of this chapter was reducing the ALR recording time. The time 

reduction was carried out in two forms: 1) Reducing the number of stimulus 

repetition required for recording ALR. 2) Reducing the number of recording 

electrodes in order to reduce the time for subject preparation. Results showed that, by 

using multichannel processing, the ALR can be recorded from the vertex without loss 

in signal quality 55% faster (fewer stimulus repetitions) in comparison with the single 

channel alternatives. Moreover, an optimal electrode configuration was suggested for 

multichannel recording of ALR. By using the suggested electrode configuration the 

number of electrodes needed can be reduced by 37.5%, thus reducing time in subject 

preparation. 
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Chapter 8 

Discussion and Conclusion  

 

For the four noise reduction methods presented based on selecting ICA 

components, it was demonstrated that all the methods are able to reconstruct the 

response form the noisy signal. For the data set used in this work the results applying 

the methods on both simulated data and real data showed that the MSC-ICs and the 

Max-Fmp-ICs have a significantly better performance than the Max-Kurt-ICs and 

Min-Entropy-ICs in SNR improvement, which are the more conventional approaches. 

According to the results, MSC-ICs and Max-Fmp-ICs were not found to be 

significantly different in terms of SNR improvement. It may be possible to see 

significance between these two methods with a larger sample size. However, a 

difference that needs a very large sample size to be detected is probably not of great 

practical importance, in this case.  For using the MSC-ICs and the Max-Fmp-ICs, 

extra information about the signal is needed, including crucially stimulus onsets; 

while the Max-Kurt-ICs and the Min-Entropy-ICs do not need this prior information. 

This additional information included with the former methods is probably the key 

factor in achieving the improved performance. All amplitude based methods for 

component selection have the problem that when the response amplitude is small 

response detection will be either difficult or impossible; while MSC can detect the 

consistent is less sensitive to the amplitude of the response. Moreover, the Max-Kurt 
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is sensitive to the outliers and it is not a suitable choice for the cases in which the 

undesired signal has large kurtosis (Super Gaussian distribution). Setting a suitable 

threshold for rejecting or accepting an IC is another difficulty of the all the introduced 

methods.  

 Since, in biomedical data (especially for brain data) the variance of the noise 

is usually much higher than the variance of the signal of interest, it can be predicted 

that PCA might be able to enhance the signal quality, i.e. in terms of SNR 

improvement. Although PCA is computationally less complex than ICA (and 

consequently faster), the results of applying PCA on both simulated data and real data 

showed that for this case ICA based noise reduction method have a better 

performance than PCA based alternative in SNR improvement.  

Moreover, the MSC was not found to be helpful in automatic selection of 

components when PCA is employed as a source separation tool. In the simulation 

even the noise signals were found to be significantly coherent with the stimulus. The 

reason can be the signal residue in noise components (showed via simulation in 

chapter 3). The results of employing PCA (instead of ICA) showed that the 

performance of MSC-PCs was poorer than single channel processing (weighted 

averaging). The results given by Figure 4.10 and 4.11 showed, PCA-eigenvalue 

ordering was not found to be significantly different with weighted averaging in 

providing high Fmps. However, it can be stated that PCA-Eigenvalue ordering has a 

somewhat better performance than the weighted averaging since it provides more 

channels above the critical value.  

According to the results shown it can be stated that multichannel processing of 

the ALR is a significantly better option than singe channel processing alternatives. 

Nevertheless, taking the time required for subject preparation and also the noise 

reduction procedure into account, single channel processing may still be considerably 

faster and more practical than multichannel alternatives.   For the cases in which the 

signal quality has the first priority, multichannel recording is a better option. It is 

worth mentioning that, as was shown in previous works (Dobie and Wilson 1996; 

Dimitrijevic et al. 2001), weighted averaging is significantly better for SNR 

improvement than artifact rejection, i.e. removing the epochs which are highly 

contaminated by noise from the data before averaging. Furthermore it has been shown 

in the current work that the MSC-ICs and Max-Fmp-ICs are significantly better than 
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weighted averaging both in obtaining highest SNR and a higher number of the 

channels above the critical value. Therefore, it can be concluded that they are also 

better than artifact rejection.  

While the benefits of the methods have been clearly shown, there are a number 

of unresolved issues remaining. For instance, in three of the methods (Max-Fmp-ICs, 

Min-Entropy-ICs and Max-Kurt-ICs) the thresholds for discarding/accepting an IC in 

each method were estimated from additional recordings (resting EEG). Moreover, 

ICA is computationally complex and for large data the noise reduction procedure is 

time consuming.  Additionally, the required time for subject preparation in 

multichannel recording is much longer than for the single channel set up, and this is 

probably the main issue limiting the performance of the multichannel method.  

Although the pure tone audiometry is more sensitive than cortical audiometry, 

cortical hearing threshold measurement can be useful for the cases in which the 

subjects are not able to attend to the behavioural audiometry test, e.g. when the 

subject is in coma. The results presented in this work showed that multichannel signal 

processing considerably improves the sensitivity of hearing threshold measurement in 

comparison with the single channel alternative.  

The results suggest that the spatial distribution information of the ICs 

obtained from the ALR recorded at 60 dB nHL can be used for nose reduction and 

response detection for the ALRs recoded at lower levels of stimulus intensity. This 

indicates that ICA carried out once at the highest intensity is sufficient (for providing 

de-mixing matrix) and this computationally expensive step need not be repeated. 

Although the hearing threshold was estimated closer to 0 dB nHL when the MSC-

Spatial dist. method was employed instead of MSC-ICs, the results of statistical 

comparison did not confirm any significant different between the outcomes of the two 

methods. Significant improvement might have been observed with a larger sample 

size – such as the study is suggested below for the continuation of the current work. 

Nevertheless, it can be stated that the MSC-Spatial distribution might be preferred in 

finding the hearing threshold level since it is much faster than the MSC-ICs method. 

The average hearing threshold level found by MSC-ICs and MSC-Spatial dist. for the 

normal hearing subjects were found 4 dB nHL and 2.5 dB nHL above the pure tone 

audiometry. This is considerably better than the 25 dB nHL reported by others 

(Lightfoot 2010) when ALR was used for hearing threshold measurement. 
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Inter and intra subject variability were detected by multichannel processing as 

well as the single channel alternative. However, no evidence was found which 

implies that the variability observed by the methods was because of variability in the 

ALR waveform i.e. the variability can be because of poor signal quality and too much 

noise.  

 Both weighted averaging and MSC-ICs found a significant difference in the 

amplitude of the ALR wave in different recording sessions for a subject and also 

across the subjects. Therefore, it can be stated that for this work multichannel 

processing was not advantageous in comparison with single channel processing.  

Moreover, the habituation effect was not observed through either of the 

methods since no consistent decrement was observed in the Fmp or amplitudes of the 

major peaks of the ALR over 1
st
, 2

nd
 and 3

rd
 third of the ALR waveform. The reason 

can be traced in the length of the recorded signals, quality of the recorded signals or 

the method by which the habituation was tested. By using better recording equipment 

or a different data testing strategy, e.g. used by (Zhang 2009), it may be possible to 

see the effect of habituation on the recorded data. The reason that Zhang testing 

strategy (or generally methods similar to Zhang’s method) was not employed for this 

work was that we wanted to explore if MSC-ICs is able to detect the habituation 

effect via simple testing strategies (conventional ALR recording).  

Both weighted averaging and the MSC-ICs method were applied on the ALR 

recorded form the normal hearing subjects under attend and ignore conditions and the 

effect of attention was investigated by comparing the amplitude of the major peaks of 

the ALR captured under attention and ignore circumstances. Both of the methods 

showed a significant enhancement in P2 due to the attention. The Amplitude of N2 

was also found to be significantly increased when MSC-ICs was employed. Contrary 

to the results reported by others (Picton and Hillyard 1974; Thornton et al. 2007), no 

significant enhancement was observed in N1. It is worth mentioning that one 

common factor in all these studies was the use of selective attention, while in this 

work attention was not selective. A significant enhancement was observed in N1, 

when the data was collected under selective attention (Thornton et al. 2007).  

Since the results of investigating habituation effect on the ALR did not confirm 

any consistent trend in the amplitudes of the major peaks, the observed significant 

enhancement in P2 and N2 are due to the attention, i.e. this enhancement is not due to 
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inter/intra subject variability as inter and intra subject variability does not follow a 

consistent increment.  Form the results presented in this chapter it can be concluded 

that detecting the effect of attention on the ALR can be significantly improved by 

using multichannel processing rather than the single channel alternative. 

According to the results, using MSC-ICs can significantly improve the cardiac 

artifact removal from the ALR recordings in comparison with the existing cICA 

based method. The average number of cardiac components found by MSC-ICs were 

4; while this number was found to be 1 for the cICA based methods. However, 

possibly by dynamically changing some of the optimization parameters in the cICA 

artifact rejection algorithm such as the closeness or learning rate, this value and 

consequently the artifact rejection quality will increase. However, adjusting the 

parameters during the artifact rejection procedure de-automates the method. Since 

MSC-ICs removes all the cardiac components at once, the artifact rejection by this 

method was considerably faster than going through cICA iterations. Furthermore, the 

need for selecting optimization parameters and the closeness criterion in cICA based 

artifact rejection method, is a major drawback of that method.  

The artifact rejection ratio (Rp) was found to be significantly (p-value<0.05) 

higher for cICA in comparison with MSC-IC. However, by comparing these results 

with those in Figures 6.12 and 6.13 it can be concluded that in cICA cardiac artifact is 

not the only undesired component which was discarded. What has been discarded by 

cICA from the signal was partly heartbeats and partly other components. From the 

results presented in Figures 6.12 and 6.13 for this set of data, it can be stated that 

using MSC-ICs is a better choice than cICA for cardiac artifact rejection from ECG, 

i.e. in both senses of removing the heart beat artifact and preserving the signal of 

interest. Using MSC for artifact component selection does not have the drawbacks of 

amplitude based methods used by others (Delorme et al. 2001; Barbati et al. 2004; 

Dammers et al. 2008; Klados et al. 2010). In addition, the MSC-ICs method can be 

employed for any type of repetitive artifact. However, the need for a time reference 

and also setting a suitable threshold for selecting/discarding the components still 

remains a drawback for the MSC-ICs method. Artifact rejection had a major impact 

on signal quality when the artefact was strong. However, in the current study, in 

many channels the artifact was weak and the final impact of removing artifact or not 

on the coherent average was only small.  
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Considering that when MSC-ICs is employed as noise reduction method for 

the assessment of evoked potentials, all the ICs which are not significantly coherent 

with the stimulus(including  heartbeat components), will be discarded,  there is no 

need for an additional step specifically aimed at rejecting ICs strongly linked to the 

heart-beats. However, the method of artefact rejection has much wider application in 

biomedical signal processing, when artefacts specifically linked to a time-marker 

should be removed, for example separating the maternal ECG from fatal ECG, or in 

removing eye-movement artefacts in the EEG (based on time-markers from the 

electrooculogram). 

Reducing the time of recording for ASSR has been the subject of some 

research (John et al. 2001b; John et al. 2002; John et al. 2003; Stürzebecher et al. 

2001; Riquelme et al. 2006; Stürzebecher et al. 2006). Despite the methods by which 

the recording time for ASSR was reduced, the stimulus stayed unchanged in this 

work. The results illustrated that the required time for recording ALR (including the 

recording the time for putting the scalp cap on) is considerably reduced (without a 

change in Fmp), if multi-channel recording and MSC-ICs are employed in 

comparison with single channel processing. On average, 85 stimuli less were required 

for the same signal quality (Fmp) with multichannel processing compared to un-

weighted averaging and 74 less, when comparing with weighted averaging, when for 

the latter two used 155 epochs.  This corresponds to a 55% reduction in time required 

for recording the ALR. However, placing 64 electrodes on a subjects head is a 

demanding procedure that adds about an hour to the recording session. Clearly, using 

multichannel recordings to improve the Fmp at Cz will only be effective in terms of 

time spent on assessment, if the recording sessions are quite long.  

In addition, it was shown that by reducing the number of channels form 64 to 

40 and placing the electrode on the area given in chapter 7, the Fmp remained 

unchanged. Given that the selected electrodes were the ones deemed to contribute 

most strongly to the ALR, the channels removed are probably ones with a weak or 

absent response, and thus contributed primarily noise to the analysis (Bharadwaj 

2014).  Although the results of this work showed that by placing the electrodes on the 

highlighted area of the scalp (shown in chapter 7 Figure 7.4)   same Fmp at Cz can be 

obtained, the minimum number electrodes and their exact positions in the area was 

not specified and should be the subject of future work. 
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Chapter 9 

Further Research Suggestions 

 

This chapter presents several suggestions for further research concerning 

multichannel processing of auditory evoked potentials (AER).  

9.1. Finding the Optimal p-value for Rejecting/Keeping the ICs in 

MSC-ICs 

In this work, the p-value for significant coherence between an IC and the 

stimulus was selected to be 0.05. However, this is not necessarily the optimal value 

which should be used for all the data sets recorded form every individual.  In order to 

make the MSC-ICs more practical the best p-value should be calculated or 

alternatively a complimentary method which can calculate the optimal p-vale for each 

data set should be added to the method. 

9.2. Comparing the MSC-ICs with Alternative AER Processing 

Methods 

The performance of MSC-ICs for SNR improvement for AER recordings 

should be compared with other alternative methods of AER detection such as the t-

test, T
2
 Hotelling (for time domain based methods), or frequency based methods like 
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empirical mode decomposition or wavelets (Quiroga et al. 2001; Bradly and Wilson 

2004; Cek et al 2010; Kelly et al. 2011).  

9.3. Measuring the Hearing Threshold in Other Frequencies  

In this work the hearing threshold was measured for a tone burst at 1 kHz. The 

validity of the MSC-ICs can be evaluated for other frequencies, i.e. 250, 500, 2 kHz, 

4 kHz and 8 kHz.  

9.4. Using MSC-ICs to Detect the Effect of Selective Attention on 

the ALR 

As was pointed out in the previous chapters, in this work the increment of the 

N1 peak due to the attention was not detected by the MSC-ICs method. However, 

applying the MSC-ICs on the data recorded under selective attention condition might 

detect the effect of attention in N1 as well as P2 and N2.  

9.5. Optimizing the Electrode Placement 

Further time reduction by reducing the time required for electrode placement. 

This can be carried out by finding the minimum number of electrodes and their exact 

positions on the scalp area suggested in chapter 7.  

9.6. Evaluating the MSC-ICs for Different AERs  

The MSC-ICs was only applied on the ALR. However, the performance of 

MSC-ICs can be evaluated for other AERs such as auditory middle latency response 

(AMLR) and confirm whether the benefits of the method observed for ALR can also 

be seen in other AERs. 

9.7. Evaluating the MSC-ICs on the data recorded from the 

patients  

All the proposed methods in this work were only applied on the data recorded 

from normal hearing subjects. To make the MSC-ICs more practical for clinical 

applications, it should also be evaluated by being applied on data recorded form 

subjects with hearing impairment.  
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9.8. Separating Fetal and Maternal Heartbeats 

The artifact rejection method based on the MSC-ICs (proposed in chapter 6) 

can be employed to separate the maternal heartbeat from fetal heartbeats. In this case 

the data (which is a mixture of fetal and maternal heartbeats and noise) can be 

recorded via an array of abdominal electrodes. The maternal heartbeat signal can be 

selected as the reference. The ICs which are significantly coherent with the reference 

should be discarded and the data will be reconstructed by using the rest of the ICs.  
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Lagrange optimization method can be employed to maximize a function like 

f(w), here 𝒘1
𝑻𝑪𝒙𝒘1, with the constraint g(w)=c (here g(w)= ||𝒘𝟏||

2and c=1). Note 

that ||𝒘𝟏||
2=𝒘1

𝑇𝒘𝟏. By re-arranging the constraint equation in form of g(w)-c=0 and 

selecting Lagrange multiplier 𝜆 , the objective function Lagrange equation can be 

written as following: 

                             𝐿(𝑊, 𝜆) = 𝑓(𝑊) − 𝜆(𝑔(𝑊) − 𝑐)                           (A1.1) 

To maximize equation (A1.1), differentiation of the objective function is calculated 

respect to both arguments (W and  ) and the derivatives are set to zero. 

  
𝜕𝑢

𝜕𝑊
= 0 =

𝜕𝑓

𝜕𝑤
− 𝜆

𝜕𝑔

𝜕𝑊
                                      (A1.2) 

  
𝜕𝑢

𝜕𝜆
= 0 = −(𝑔(𝑤) − 𝑐)                        (A1.3) 

Equation (A1.3) gives back the constraint equation.  

For this problem we have:  

𝐿(𝑊, 𝜆) = 𝒘1
𝑻𝑪𝒙𝒘1 − 𝜆(𝒘1

𝑇𝒘𝟏 − 𝑐)                 (A1.4) 

𝜕𝑢

𝜕𝑊
= 2𝑪𝒙𝒘1 − 𝟐𝜆𝒘1 = 0                                 (A1.5) 

𝑪𝒙𝒘1 =  𝜆𝒘1                                            (A1.6) 

The desired vector 𝒘𝟏  is an eigenvalue of the covariance matrix 𝑪𝒙  and the 

maximizing vector will be the one associated with the largest eigenvalue. 
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