LSA SAF Meteosat FRP products-Part 1: Algorithms, product contents, and analysis
LSA SAF Meteosat FRP products-Part 1: Algorithms, product contents, and analysis
Characterizing changes in landscape fire activity at better than hourly temporal resolution is achievable using thermal observations of actively burning fires made from geostationary Earth Observation (EO) satellites. Over the last decade or more, a series of research and/or operational "active fire" products have been developed from geostationary EO data, often with the aim of supporting biomass burning fuel consumption and trace gas and aerosol emission calculations. Such Fire Radiative Power (FRP) products are generated operationally from Meteosat by the Land Surface Analysis Satellite Applications Facility (LSA SAF) and are available freely every 15 min in both near-real-time and archived form. These products map the location of actively burning fires and characterize their rates of thermal radiative energy release (FRP), which is believed proportional to rates of biomass consumption and smoke emission. The FRP-PIXEL product contains the full spatio-temporal resolution FRP data set derivable from the SEVIRI (Spinning Enhanced Visible and Infrared Imager) imager onboard Meteosat at a 3 km spatial sampling distance (decreasing away from the west African sub-satellite point), whilst the FRP-GRID product is an hourly summary at 5° grid resolution that includes simple bias adjustments for meteorological cloud cover and regional underestimation of FRP caused primarily by underdetection of low FRP fires. Here we describe the enhanced geostationary Fire Thermal Anomaly (FTA) detection algorithm used to deliver these products and detail the methods used to generate the atmospherically corrected FRP and per-pixel uncertainty metrics. Using SEVIRI scene simulations and real SEVIRI data, including from a period of Meteosat-8 "special operations", we describe certain sensor and data pre-processing characteristics that influence SEVIRI's active fire detection and FRP measurement capability, and use these to specify parameters in the FTA algorithm and to make recommendations for the forthcoming Meteosat Third Generation operations in relation to active fire measures. We show that the current SEVIRI FTA algorithm is able to discriminate actively burning fires covering down to 10?4 of a pixel and that it appears more sensitive to fire than other algorithms used to generate many widely exploited active fire products. Finally, we briefly illustrate the information contained within the current Meteosat FRP-PIXEL and FRP-GRID products, providing example analyses for both individual fires and multi-year regional-scale fire activity; the companion paper (Roberts et al., 2015) provides a full product performance evaluation and a demonstration of product use within components of the Copernicus Atmosphere Monitoring Service (CAMS).
13217-13239
Wooster, M.J.
4b91034b-d585-49ec-85b2-0729f9bca9dc
Roberts, G
fa1fc728-44bf-4dc2-8a66-166034093ef2
Freeborn, P.H.
232c8991-6d80-4aaf-824a-57ee9fb1e36f
Govaerts, Y.
69a0a19d-b4f6-425a-9c5a-817386fb123e
Beeby, R.
a212a579-0b30-4967-9702-4ce2d3f3c3af
He, J.
4e574b72-f610-4522-8df2-41be455328cc
Lattanzia, A.
8d382d59-cb3a-4ef4-bf90-00fa9b528bb0
Mullen, R.
fb4e1950-543b-4e9b-8c1e-ff46404df8d9
30 November 2015
Wooster, M.J.
4b91034b-d585-49ec-85b2-0729f9bca9dc
Roberts, G
fa1fc728-44bf-4dc2-8a66-166034093ef2
Freeborn, P.H.
232c8991-6d80-4aaf-824a-57ee9fb1e36f
Govaerts, Y.
69a0a19d-b4f6-425a-9c5a-817386fb123e
Beeby, R.
a212a579-0b30-4967-9702-4ce2d3f3c3af
He, J.
4e574b72-f610-4522-8df2-41be455328cc
Lattanzia, A.
8d382d59-cb3a-4ef4-bf90-00fa9b528bb0
Mullen, R.
fb4e1950-543b-4e9b-8c1e-ff46404df8d9
Wooster, M.J., Roberts, G, Freeborn, P.H., Govaerts, Y., Beeby, R., He, J., Lattanzia, A. and Mullen, R.
(2015)
LSA SAF Meteosat FRP products-Part 1: Algorithms, product contents, and analysis.
[in special issue: Monitoring Atmospheric Composition and Climate Research of the Copernicus/GMES Atmospheric Service]
Atmospheric Chemistry and Physics, 15 (22), .
(doi:10.5194/acp-15-13217-2015).
Abstract
Characterizing changes in landscape fire activity at better than hourly temporal resolution is achievable using thermal observations of actively burning fires made from geostationary Earth Observation (EO) satellites. Over the last decade or more, a series of research and/or operational "active fire" products have been developed from geostationary EO data, often with the aim of supporting biomass burning fuel consumption and trace gas and aerosol emission calculations. Such Fire Radiative Power (FRP) products are generated operationally from Meteosat by the Land Surface Analysis Satellite Applications Facility (LSA SAF) and are available freely every 15 min in both near-real-time and archived form. These products map the location of actively burning fires and characterize their rates of thermal radiative energy release (FRP), which is believed proportional to rates of biomass consumption and smoke emission. The FRP-PIXEL product contains the full spatio-temporal resolution FRP data set derivable from the SEVIRI (Spinning Enhanced Visible and Infrared Imager) imager onboard Meteosat at a 3 km spatial sampling distance (decreasing away from the west African sub-satellite point), whilst the FRP-GRID product is an hourly summary at 5° grid resolution that includes simple bias adjustments for meteorological cloud cover and regional underestimation of FRP caused primarily by underdetection of low FRP fires. Here we describe the enhanced geostationary Fire Thermal Anomaly (FTA) detection algorithm used to deliver these products and detail the methods used to generate the atmospherically corrected FRP and per-pixel uncertainty metrics. Using SEVIRI scene simulations and real SEVIRI data, including from a period of Meteosat-8 "special operations", we describe certain sensor and data pre-processing characteristics that influence SEVIRI's active fire detection and FRP measurement capability, and use these to specify parameters in the FTA algorithm and to make recommendations for the forthcoming Meteosat Third Generation operations in relation to active fire measures. We show that the current SEVIRI FTA algorithm is able to discriminate actively burning fires covering down to 10?4 of a pixel and that it appears more sensitive to fire than other algorithms used to generate many widely exploited active fire products. Finally, we briefly illustrate the information contained within the current Meteosat FRP-PIXEL and FRP-GRID products, providing example analyses for both individual fires and multi-year regional-scale fire activity; the companion paper (Roberts et al., 2015) provides a full product performance evaluation and a demonstration of product use within components of the Copernicus Atmosphere Monitoring Service (CAMS).
Text
Wooster et al 2015_accepted.pdf
- Other
Text
__userfiles.soton.ac.uk_Users_slb1_mydesktop_acp-15-13217-2015.pdf
- Other
Available under License Other.
More information
Accepted/In Press date: 11 November 2015
Published date: 30 November 2015
Organisations:
Global Env Change & Earth Observation
Identifiers
Local EPrints ID: 379917
URI: http://eprints.soton.ac.uk/id/eprint/379917
PURE UUID: 22082af6-8a2e-4ae7-91dc-376fe54666af
Catalogue record
Date deposited: 07 Dec 2015 10:20
Last modified: 15 Mar 2024 03:39
Export record
Altmetrics
Contributors
Author:
M.J. Wooster
Author:
P.H. Freeborn
Author:
Y. Govaerts
Author:
R. Beeby
Author:
J. He
Author:
A. Lattanzia
Author:
R. Mullen
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics