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ABSTRACT 
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Electronics and Computer Science 

Thesis for the degree of Doctor of Philosophy 

 

Comprehensive Review of Classification Algorithms for High Dimensional 

Datasets 

 

by Iwan Syarif 

 

Machine Learning algorithms have been widely used to solve various kinds of 

data classification problems. Classification problem especially for high 

dimensional datasets have attracted many researchers in order to find efficient 

approaches to address them. However, the classification problem has become 

very complicated and computationally expensive, especially when the number 

of possible different combinations of variables is so high. In this research, we 

evaluate the performance of four basic classifiers (naïve Bayes, k-nearest 

neighbour, decision tree and rule induction), ensemble classifiers (bagging and 

boosting) and Support Vector Machine. We also investigate two widely-used 

feature selection algorithms which are Genetic Algorithm (GA) and Particle 

Swarm Optimization (PSO). 

 

Our experiments show that feature selection algorithms especially GA and PSO 

significantly reduce the number of features needed as well as greatly reduce 

the computational cost. Furthermore, these algorithms do not severely reduce 

the classification accuracy and in some cases they can improve the accuracy as 

well. PSO has successfully reduced the number of attributes of 9 datasets to 

12.78% of original attributes on average while GA is only 30.52% on average.  

In terms of classification performance, GA is better than PSO. The datasets 

reduced by GA have better classification performance than their original ones 

on 5 of 9 datasets while the datasets reduced by PSO have their classification 

performance improved in only 3 of 9 datasets. The total running time of four 

basic classifiers (NB, kNN, DT and RI) on 9 original datasets is 68,169 seconds 

while the total running time of the same classifiers on GA-reduced datasets is 



   

3,799 seconds and on PSO-reduced dataset is only 326 seconds (more than 

209 times faster). 

 

We applied ensemble classifiers such as bagging and boosting as a 

comparison. Our experiment shows that bagging and boosting do not give a 

significant improvement. The average improvement of bagging when applied 

to nine datasets is only 0.85% while boosting average improvement is 1.14%. 

Ensemble classifiers (both bagging and boosting) outperforms single classifier 

in 6 of 9 datasets.  

 

SVM has been proven to perform much better when dealing with high 

dimensional datasets and numerical features. Although SVM work well with 

default value, the performance of SVM can be improved significantly using 

parameter optimization. Our experiment shows SVM parameter optimization 

using grid search always finds near optimal parameter combination within the 

given ranges. SVM parameter optimization using grid search is very powerful 

and it is able to improve the accuracy significantly. Unfortunately, grid search 

is very slow; therefore it is very reliable only in low dimensional dataset with 

few parameters. SVM parameter optimization using Evolutionary Algorithm (EA) 

can be used to solve the problem of grid search. EA has proven to be more 

stable than grid search. Based on average running time, EA is almost 16 times 

faster than grid search (294 seconds compare to 4680 seconds). Overall, SVM 

with parameter optimization outperforms other algorithms in 5 of 9 datasets. 

However, SVM does not perform well in datasets which have non-numerical 

attributes. 

 

Keywords: high dimensional data, feature selection, ensemble classifiers, 

Support Vector Machine, Evolutionary Algorithms, parameter optimization
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1. Introduction and Problem Statements 

 

Machine Learning algorithms have been widely used to solve various kinds of 

data classification problems. Classification problems especially for high 

dimensional datasets have attracted many researchers in order to find efficient 

approaches to address them. However, the classification problem has become 

very complicated and computationally intensive, especially when the number of 

possible different combinations of variables is so high.  

1.1 Classification of High Dimensional Data 

Classification is a supervised learning technique which learns a function from 

training data set that consists of input features/attributes and categorical 

output (Gaber et al., 2007)(Kotsiantis, 2007). This function will be used to 

predict a class label of any valid input vector. The main goal of classification is 

to apply machine learning algorithms to achieve the best prediction accuracy 

(Williams et al., 2006)(Verleysen, 2003).  

In the various applications of machine learning and data mining, the use of 

high dimensional datasets with hundreds or thousands of features is not 

unusual (Braun et al., 2012). In other words, modern data sets are very often in 

high dimensional space. Extracting knowledge from huge data requires new 

approaches. The more complex the datasets, the higher the computation time 

and the harder they are to be interpreted and analysed.  Therefore, 

classification on high dimensional data has become a recurring problem; since 

it occurs in various data mining applications for which a decision step is 

necessary. 

The problems of high dimensional data was apparently coined by Richard 

Bellman (Bellman, 1957) as “the curse of dimensionality”. These terms refer to 

various phenomena that arise when analysing and organising data in a high-

dimensional space which have hundreds or thousands of dimensions that do 

not occur in low-dimensional setting. For example, a classification algorithm 

such as decision tree has time complexity of O(nd2) where d is the number of 
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attributes and n is the number of samples (Su and Zhang, 2006). It means as d 

becomes large, the complexity increases quadratically and the number of 

samples (n) may be too small to be used as learning data to generate an 

accurate classification model. Insufficient number of training samples makes 

the classification algorithms difficult to predict the class labels of the dataset 

correctly. This condition is called overfitting. 

High dimensional data tends to have more complex problems that low-

dimensional ones and hence it is harder to make inferences. There are at least 

three serious problems caused by high dimensional data: complexity, over-

fitting and number of samples.  

The impact of high dimensionality on classification is poorly understood (Fan 

and Fan, 2008). Many datasets such as microarray, DNA, proteomics, etc. have 

thousands or more features while the sample size (number of instances) is 

typically tens or less than hundred. Most of basic classifiers break down when 

the dimensionality is high. Miller reported that there is a well-known 

phenomenon that a prediction model built from thousands of attributes (d) but 

has a relatively small sample size (n) can be quite unstable (Miller, 2002). 

Other reseacher (Fan and Fan, 2008) reported that the difficulty of high-

dimensional classification is mostly caused by the existence of many noisy 

features that do not contribute to the improvement of accuracy. 

The above problem reveals the importance of dimensionality reduction on high 

dimension data classification.  Dimensionality reduction is a process for 

reducing the number of random variables under consideration. There are some 

advantages of dimensionality reduction (Fodor, 2002): 

• Most machine learning and data mining techniques may not be effective 

for high-dimensional data 

• Query accuracy and efficiency degrade rapidly as the dimension 

increases 

• Lower computational cost 

• Help avoid over-fitting (training on highly-related features rather than 

contingent ones) 

There are two different techniques of dimensionality reduction; the first 

technique is feature selection which is a process that chooses an optimal 
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subset of features according to an objective function (Holder et al., 

2005)(Williams et al., 2006). The objectives of feature selection are to reduce 

dimensionality, to remove noise and to improve mining performance (speed of 

learning and predictive accuracy). In this technique, only partial parts of the 

original features are selected. The second technique is feature extraction which 

refers to the mapping of the original high-dimensional data onto a lower-

dimensional space. In this technique, all original features are used and the 

transformed features are linear combinations of the original features. Both 

feature selection and feature extraction algorithms reduce the number of 

features needed. 

1.2 How to improve the classification performance 

Classification problem can be viewed as optimisation problem where the goal 

is to find the best model that represents the predictive relationships in the data 

(Otero et al., 2012). In this research, we use four well-known classical machine 

learning algorithms as base classifiers which are naive Bayes (NB), decision tree 

(DT), k-nearest neighbour (kNN) and rule induction (RI). Beside rule induction, 

the other three methods were selected as the top ten algorithms in Data 

Mining (Wu and Kumar, 2009).  

Many researchers (Schapire et al., 1997)(Lee and Cho, 2010)(Graczyk et al., 

2010) have reported that ensemble classifiers (meta learning) have better 

accuracy than single classification techniques. An ensemble classifier is a 

method which uses or combines multiple classifiers to improve the 

classification performance from any of the constituent classifiers. (Gaber et al., 

2007)(Gaber and Bader-El-Den, 2012) reported that ensemble classifier can be 

used to avoid over-fitting of single classifer as well as to improve the 

robustness. In this research we apply, analyse and evaluate two ensemble 

classifier techniques called bagging and boosting. 

Another way to achieve better classification performance is using more 

sophisticated classification techniques. Other than the well-known classical 

data mining techniques, Support Vector Machine (SVM) and Evolutionary 

Algorithm (EA) have gained more attention and have been adopted in data 

classification problems in order to find a good solution. SVM which is an 

emerging data classification technique proposed by (Cortes and Vapnik, 1995), 
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has been widely adopted in various fields of classification (Lin et al., 2008). 

SVM algorithm has an advantage that it is not affected by local minima, 

furthermore it does not suffer from the curse of high dimensionality because 

of the use of support vectors (Sánchez A, 2003). SVM was also considered as 

the top ten algorithms in Data Mining (Wu and Kumar, 2009).  

Unfortunately, the SVM performance highly depends on parameter setting and 

its kernel selection. The selection quality of SVM parameters and kernel 

functions has an effect on the learning and generalization performance (Hric et 

al., 2011)(Sudheer et al., 2013). Appropriate kernel functions and their 

parameters should be selected to obtain an optimal classification performance 

(Aydin et al., 2011).  

Generally, most of machine learning algorithms will not achieve optimal results 

if their parameters are not being tuned properly. To build a high accuracy 

classification model, it is very important to choose a powerful machine learning 

algorithm as well as adjust its parameters. Parameter optimization can be very 

time consuming if done manually especially when the learning algorithm has 

many parameters (Friedrichs and Igel, 2005)(Rossi and de Carvalho, 2008). 

There are two methods to adjust the SVM parameter: grid search with cross-

validation and evolutionary algorithm (EA). Evolutionary algorithm (EA) is 

commonly used on problems which are very hard to solve in a brute force 

technique (Eiben and Smith, 2003)(Barros et al., 2012). EAs search the solution 

space (the set of all possible inputs) of a difficult problem for the best solution, 

but not naively like a brute-force or grid search method. An EA uses 

mechanisms inspired by biological evolution such as reproduction, mutation, 

recombination and selection. In this research, we analyse various model 

parameter optimization technique for SVM classification which covers grid 

search approach and Evolutionary Algorithms. 

1.3 Motivation and Problem Statements 

In this thesis, we do not propose or develop new algorithms but we investigate 

and analyze some well known classification algorithms which are able to 

handle high dimensional datasets as shown in Figure 1.1. 
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Transforming high dimensional data to improve the classification accuracy as 

well as to reduce the computational complexity is a difficult research problem 

(Braun et al., 2012). In this research, we evaluate the performance of two 

feature selection algorithms which are Genetic Algorithm (GA) and Particle 

Swarm Optimizations (PSO). We wish to find the dimensionality reduction 

algorithm that contributes to the best classification accuracy and least 

computation time.  

 

Figure 1.1 Research Outline 

This research also evaluates the state of the art classification algorithms such 

as naïve Bayes, decision tree, k-nearest neighbour and rule induction. After 

that, we consider applying more sophisticated techniques which may have 

better performance than the basic algorithms. We used ensemble classifiers 

(bagging and boosting) and Support Vector Machine (SVM) to achieve better 

classification performance.  

We also applied Support Vector Machine with four different kernels: linear, RBF, 

polynomial and sigmoid kernels. In order to get the best classification 

performance, we applied grid search and evolutionary algorithm (EA) to adjust 

the SVM parameters. 
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1.4 Objectives and Contributions of the Thesis 

The main objectives of our research are explained in Figure 1.2 and the 

research contributions are described as follows: 

• To propose the use of evolutionary algorithms for SVM parameter 

optimization to boost the performance of SVM. We would like to show 

that applying SVM with parameter optimization on GA-reduced datasets 

and PSO-reduced datasets outperforms other classification algorithms 

(basic classifiers and ensemble classifiers) which applied on both 

original datasets and reduced-datasets  

• To apply and analyse the performance of four different kernels of SVM 

which are linear, RBF, polynomial and sigmoid kernels 

• To apply ensemble classifiers which are bagging and boosting to 

improve the classification performance of four basic classifiers (naive 

Bayes, k-nearest neighbour, decision tree and rule induction)  

• To apply and analyse the performance of GA and PSO as feature 

selection algorithms that significantly reduce the number of features of 

high dimensional datasets  

• To apply and analyze the classification performance of four basic 

machine learning algorithm which are  naive Bayes, k-nearest neighbour, 

decision tree and rule induction 

The goal of this research is to answer the following questions: 

• Does the use of SVM with parameter optimization using EA on reduced-

datasets outperform other algorithms (four basic algorithms and 

ensemble classifiers) ? 

• Is the use of ensemble classifiers such as bagging and boosting able to 

improve the classification performance of basic classifiers? 

• What is the best dimensionality reduction algorithm that reduces the 

number of attributes significantly while still maintain/improve the 

accuracy as well as increase the speed? Which one better as feature 

selection algorithms, GA or PSO ? 

• What is (are) the best machine learning technique(s) to handle high 

dimensional datasets, especially datasets which have a large number of 

attributes but have very limited number of examples (instances)? 
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• Is the use of sophisticated algorithms such as Support Vector Machine 

able to boost the classification performance? Which SVM kernel is the 

best to handle high dimensional datasets? How to adjust the SVM 

parameters to get the optimal results? 

 

 

Figure 1.2 Experiments Scenario 

1.5 Outline of the Thesis 

The remainder of this thesis is structured as follows: 

Chapter 2 presents a literature review, latest issues and research challenges of 

dimensionality reduction algorithms, basic machine learning classification 

algorithms, ensemble classifiers (bagging and boosting), Support Vector 

Machine, Evolutionary Algorithms and parameter optimization. 

In Chapter 3, the design and implementation as well as performance analysis 

of two feature selection algorithms were explained in details.  We selected 

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) as feature 
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selection algorithms. These two algorithms were applied to nine high 

dimensional datasets. 

Chapter 4 described the application of ensemble classifiers to improve the 

classification accuracy. We used bagging and boosting techniques to boost the 

performance of four basic classifiers: decision tree, rule induction, naïve Bayes 

and k-nearest neighbour. 

Chapter 5 is about Support Vector Machine and its parameter optimization 

using specific techniques such as grid search and evolutionary algorithms. This 

chapter also compares the performance of all algorithms used in this research.  

Chapter 6 presents conclusions and suggest future works.  
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2. Literature Review 

 

This chapter consists of literature review of various important issues in this 

research which are dimensionality reduction, basic classification algorithms, 

meta-learning (ensemble classifiers), support vector machine, evolutionary 

algorithms and parameter optimization. 

2.1 Dimensionality Reduction 

Dimensionality reduction is the process of reducing the number of random 

variables under consideration. This technique is a very important topic in data 

mining or machine learning area and it is widely used in specific applications 

such as image processing, bio-informatics, intrusion detection, email and web 

spam analysis, text classification and pattern recognition (Braun et al., 

2012)(Fan and Fan, 2008).  

One of the problems related to the high dimensional data is the fact that 

analyzing these data becomes more difficult and requires more advanced 

techniques. There are at least three serious problems caused by high 

dimensional data: complexity, over-fitting and the number of samples. 

(Mitchell, 1998)(Braun et al., 2012). 

To build an effective classification model, dimensionality reduction is a very 

important issue because it will limit the number of input features in a classifier 

to produce a good predictive and less computationally intensive model (Huang 

and Dun, 2008). With a smaller feature subset, the rationale for the 

classification decision can be analysed and decided easier. 

There are a lot of dimensionality reduction techniques but they can be divided 

into two categories: feature extraction and feature selection which explained in 

the following section.   
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2.1.1 Feature Extraction 

In feature extraction, all available variables are used and the data is 

transformed using a linear transformation to a reduced dimension space. Its 

main goal is to replace the original variables by a smaller set of underlying 

variables (Tsai and Chan, 2007). Figure 2.1 gives an illustration about how the 

feature extraction works, x is an original data with d dimension while y is a 

new data with k dimension where k<d. 

 

Figure 2.1 Feature Extraction 

There are many feature extraction algorithms but the most popular ones is 

Principal Component Analysis (PCA). PCA can be used to reduce the 

dimensionality of a data set by finding new variables which are smaller than 

the original but still retains most of the original data set information (Fodor, 

2002)(Chen et al., 2006). PCA derives new variables that are linear 

combinations of the original variables by finding a few orthogonal linear 

combinations of the original variables with the largest variance (Dandpat and 

Meher, 2013). The new variables, called principal components (PCs), are 

uncorrelated and are in decreasing order of importance. So, the goal of PCA is 

to find a set of directions that maximizes the variances of the original data. 

2.1.2 Feature Selection 

Feature selection is a very important step in data pre-processing technique in 

data mining. It is a popular technique used to find the most important and 

optimal subset of features for building powerful learning models. An efficient 

feature selection method can eliminate irrelevant and redundant data; hence it 

can improve the classification accuracy (Oh et al., 2004)(Tjiong and Monteiro, 

2011)(Liu et al., 2006). Feature selection problems are classified into two main 

categories: finding the optimal predictive features and finding all the relevant 

features for the class attribute.  
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Feature selection is actually a search problem for finding an optimal subset of 

n features out of an original N features (Witten and Frank, 2005)(Hall, 1999). It 

consists of four important parts: 

1. Starting point 

Selection a point in the feature subset space is very crucial because it 

affects the direction of the search. There are three options; the first one is 

called forward selection, the search starts to proceed forward with no 

features and gradually add attributes. The second option is called backward 

elimination which is actually a converse of the previous one. The search 

proceeds backward through the search space, begins with all features then 

gradually removes them. The third option is for the search to begin 

somewhere in the middle and move outward from this point. 

2. Search organization 

There are some search methods; the simplest one is an exhaustive search 

which searches all possibilities within the search space. If the dataset 

consists of N features, the search space will be 2N. For large number of 

features (e.g. thousands attributes), an exhaustive search is infeasible. 

Another method is heuristic search which is more feasible than an 

exhaustive search but it can not guarantee to get the optimal results. More 

sophisticated searching techniques will be explained in more details in 

parameter optimization section.  

3. Evaluation strategy 

The evaluation strategy is a method to evaluate the effectiveness of feature 

subsets. There are two different evaluation strategies which are filter and 

wrapper. In the wrapper method, the feature subsets are evaluated based 

on classifier’s performance while in filter method the evaluation is based on 

some feature evaluation function.For example, the wrapper model 

proposed by (Kohavi & John, 1997) applies the classifier accuracy rate as 

the performance measure. Some researchers have concluded that if the 

purpose of the model is to minimize the classifier error rate, and the 

measurement cost for all the features is equal, then the classifier’s 

predictive accuracy is the most important factor. The wrapper methods are 

usually slower than filter methods but they usually have better performance 
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because they are optimized for the particular learning algorithms used (Hall 

and Holmes, 2003). 

4. Stopping criterion 

Every feature selection algorithm must have a stopping criterion which is 

used to decide when the search iteration stops. For example, a feature 

selector stops adding or removing features when the classification’s 

performance does not improve after several iterations.  

There are a lot of feature selection techniques, but in this paper we only select 

two algorithms: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). 

The GA and PSO algorithms will be discussed in more details in Sections 2.5. 

2.2 Classification Algorithms 

Classification problems have been extensively studied and it becomes one of 

the most popular research areas in data mining (Otero et al., 2012). The 

classification task consists of learning a predictive relationship between input 

features and a desired output. Each data point (or data instance) consists of a 

set of attributes and a class. The goal of classification algorithm is to create a 

model which represents the relationship between attributes values and class 

values and then use this model to predict the class label of new data. 

Classification problem can be viewed as optimisation problem where the goal 

is to find the best model that represents the predictive relationships in the data 

(Otero et al., 2012).  

Numerous factors, such as incomplete data, and the choice of values for the 

parameters of a given model, may affect classification results. Classification 

problems have previously been solved with statistical methods such as logistic 

regression or discriminate analysis. Technological advances have led to the 

development of methods for solving classification problems, including decision 

trees, back-propagation neural networks, rough set theory and support vector 

machines (SVM). SVM which is an emerging data classification technique 

proposed by Vapnik, and has been widely adopted in various fields of 

classification (Lin et al., 2008).  

The process of applying supervised machine learning algorithms to a real 

world problem is described in Figure 2.2 (Kotsiantis, 2007). 
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Figure 2.2 The process of supervised learning 

A popular method for comparing various classification algorithms is to perform 

statistical comparisons of the accuracies. Comprehensive survey of 

classification methods can be found more details in (Gaber et al., 2007)(Fan-Zi 

and Zheng-Ding, 2004). 

In this research, we use four well-known classical machine learning algorithms 

as base classifiers which are naïve Bayes, decision tree, k-nearest neighbour 

and rule induction.  

2.2.1 Nearest Neighbour 

The Nearest Neighbour (NN) algorithm was firstly introduced by J.G. Skellam 

(Skellam, 1952) where the ratio of expected and observed mean value of the 

nearest neighbour distances is used to determine if the data set is clustered. 

Even though it was invented more than seventy years ago, NN is still an active 

research area (Viswanath and Sarma, 2011). Among many supervised learning 
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algorithms, NN achieves consistently high performance (Islam et al., 

2007)(Witten and Frank, 2005).  However, this algorithm does not provide a 

model explicitly and it is also sensitive to the presence of irrelevant attributes 

(Geurts et al., 2009). 

The k-Nearest Neighbour (k-NN) is a variant of NN where the result of new 

instance query is classified based on majority of k-NN category (Viswanath and 

Sarma, 2011) . k-NN is a type of instance-based learning or lazy learning where 

the function is only approximated locally and all computation is deferred until 

classification. The purpose of this algorithm is to classify a new object based 

on attributes and training samples. k-NN is one of the most fundamental and 

simplest classification methods which can be applied when there is little or no 

prior knowledge about the distribution of the data. The classification uses 

majority voting among the classification of the K objects. k-NN algorithm uses 

neighbourhood classification as the prediction value of the new query instance 

(k is a positive integer). k-NN algorithm determines the K-nearest neighbours 

based on the minimum distance from the query instance to the training 

samples. If k=1 then the new instance (data point) is simply assigned to the 

class of its nearest neighbour. The neighbours are taken from a set of training 

data for which the correct classification is already known. 

The fundamental of k-NN algorithm has two important steps: Firstly, find the k 

instances which are nearest to the unseen data. Secondly, select the most or 

the majority of k neighbouring class (by referring label values). The pseudo-

code for a k-NN classifier is shown inAlgorithm 1 below. 

Algorithm 1 k Nearest Neighbour classifier 
1: input dataset D {(x1,c1), ... , (xn,cn)} 

2: for each instance (xi,ci) calculate d(xi,x) 

3: order d(xi,x) from lowest to highest 

4: select  the k nearest instance to x 

5: assign to x the most frequent class   

 

2.2.2 Decision Tree 

Decision tree is a supervised learning algorithm which uses a tree to classify 

instances by sorting them based on features values (Kotsiantis, 2007). The 

goal is to create a model that predicts the value of a target variable based on 

several input variables (Geurts et al., 2009)(Barros et al., 2012)(Otero et al., 
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2012)(Witten and Frank, 2005). The trees are generated by splitting on the 

values of attributes repeatedly and recursively. The main advantage of decision 

tree over many other classification techniques is that they produce a set of 

rules that are transparent, easy to understand and easily incorporated into real-

time technologies. Another advantage is it does not require users to know a lot 

of background knowledge in the learning process. Furthermore, this algorithm 

is robust to noise, low computational cost for the generation model and 

flexible in dealing with redundant attributes (Barros et al., 2012). However,  

decision tree has also some disadvantages, when the dataset has too many 

categories the classification accuracy will significantly decrease. Furthermore, 

it is difficult to find rules based on the combination of several variables. 

Decision tree algorithms begin with a set of examples and create a tree data 

structure that can be used to classify new examples. Each case is described by 

a set of attributes which can be numeric or nominal type. Each training data 

has a label which represents its class. Each internal node of this algorithm 

contains a test to decide what branch to follow from that node. The leaf nodes 

contain class labels instead of tests (Quinlan, 1993)(Kotsiantis, 2007).  

 At present there are a lot of decision tree algorithms, but C4.5 which was 

developed by Quinlan (Quinlan, 1993) is probably the most popular and the 

most frequently used among many researchers. The C4.5 algorithm uses an 

entropy-based criterion which is called the information gain ratio, in order to 

select the best attribute to create a node.  C4.5 has been successfully applied 

to a wide range of classification problems and it is popularly used as an 

evaluation comparison of new classification algorithms (Witten and Frank, 

2005). The detailed explanation of decision tree algorithms and C4.5 algorithm 

can be found in (Kohavi and Quinlan, 1999). 

2.2.3 Rule Induction 

Rule induction is a one of widely used machine learning techniques. The goal 

of rule induction is generally to induce a set of rules from data that captures all 

general knowledge within that data, and that is as small as possible at the 

same time (van den Bosch, 2000)(Witten and Frank, 2005)(Cohen, 

1995)(Kotsiantis, 2007). During the learning phase, rules are induced from the 

training sample, based on the features and class labels of the training samples. 
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The rules that are extracted during the learning phase can easily be applied 

during the classification phase when new unseen test data is classified.  

There are several advantages of rule induction. First of all, the rules that are 

extracted from the training sample are easy to understand for human beings. 

The rules are simple if-then rules. Secondly, rule learning systems outperform 

decision tree learners on many problems (Cohen, 1995). One disadvantage of 

rule induction, however, is that it scales relatively poorly with the sample size, 

particularly on noisy data.  

RIPPER is a well-known rule based algorithms which was developed by Cohen 

(Cohen, 1995). It generates rules through an iterated growing and pruning 

process. Lee and Stolfo (Lee and Stolfo, 1998) applied RIPPER to learn the 

classification model of the normal and abnormal system call sequences. This 

improved rule induction algorithm is used to discover useful patterns of 

system features that describe program and user behaviour, then apply this 

feature to recognize anomalies and known intrusions. 

2.2.4 Naïve Bayes 

The naïve Bayes classifier is a supervised learning algorithm which widely used 

in data mining tasks due to its computational efficiency and competitive 

accuracy. This method estimates conditional class probabilities by applying 

Bayes theorem under the naïve assumption that the attribute values are 

mutually independent given the class (Geurts et al., 2009)(Kotsiantis, 2007).  

The advantage of this algorithm is that it only requires a small amount of 

training data to predict the means and variances of the variables for 

classification. Because independent variables are assumed, naïve Bayes 

classifier only uses the variances of the variables of each class rather than the 

entire matrix to predict the class of new instance. Therefore, naïve Bayes 

algorithm is one of the fastest machine learning algorithms. 

2.3 Meta Learning 

An ensemble classifier is a method which uses or combines multiple classifiers 

to improve robustness as well as to achieve an improved classification 

performance from any of the constituent classifiers. Furthermore, this 
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technique is more resilient to noise compared to the use of a single classifier. 

This method uses a ‘divide and conquer approach’ where a complex problem is 

decomposed into multiple sub-problems that are easier to understand and 

solve. 

Ensemble approaches (Schapire et al., 1997)(Dong and Han, 2004) have the 

advantage that they can be made to adapt to any changes in the monitored 

data stream more accurately than single model techniques. An ensemble 

classifier has better accuracy than single classification techniques. The success 

of the ensemble approach depends on the diversity in the individual classifiers 

with respect to misclassified instances (Lee and Cho, 2010). According to 

Polikar (Polikar, 2006), there are four ways to achieve this diversity, the first is 

to use different training data to train single classifiers, the second is to use 

different training parameters, the third is to use different features to train the 

classifiers and the final one is to combine different types of classifier. 

(Dietterich, 1997) reported that there are three main reasons why an ensemble 

classifier is usually significantly better than a single classifier. Firstly, the 

training data does not always provide sufficient information for selecting a 

single accurate hypothesis. Secondly, the learning processes of the weak 

classifier might be imperfect, and thirdly, the hypothesis space being searched 

might not contain the true target function while an ensemble classifier can 

provide a good approximation. 

(Gaber and Bader-El-Den, 2012) proposed a novel ensemble classifier called 

GARF (Genetic Algorithm based Random Forests) which used genetic 

algorithms to enhance the performance of random forests. They compared the 

performance of GARF against C4.5 decision tree, SVM and AdaBoost. They 

reported that GARF has been always superior than the original random forests 

and furthermore their novel approach has outperformed other classifiers on 8 

of 15 datasets. 

In this paper we evaluate and analyze two different ensemble classifier 

techniques, called bagging and boosting using various weak classifiers, such 

as nearest neighbour, decision tree, rule induction and naïve Bayes. 
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2.3.1 Bagging 

Bagging, which means bootstrap aggregation, is one of the simplest but most 

successful ensemble methods for improving unstable classification problems. 

For example, weak classifiers, such as decision tree algorithms, can be 

unstable, especially when the position of a training point changes slightly and 

can lead to a very different tree. This method is usually applied to decision tree 

algorithms, but it also can be used with other classification algorithms such as 

naïve Bayes, nearest neighbour, rule induction, etc. The bagging technique is 

very useful for large and high-dimensional data, such as intrusion data sets, 

where finding a good model or classifier that can work in one step is 

impossible because of the complexity and scale of the problem.  

Algorithm 2 Bagging pseudo-code 
 

1: given a set of training data D{(x1,y1),....,(xm, ym)}  

2: where m=the number of datasetfor each instance  

3: for i = 1 to N 

4:      create bootstrap replicate dataset D’i 

5: D’i�  select m random examples from the training set with replacement 

6: hi� training base learning algorithm on D’i 

7: end for 

8: make a plurality vote : R(x) = majority(r1(x), ... , rN(x)) 

9: select the highest voting score R(x) as a classification result 

 

 
Bagging was first introduced by Leo Breiman (Breiman, 1996) to reduce the 

variance of a predictor. It uses multiple versions of a training set which is 

generated by a random draw with the replacement of N examples where N is 

the size of original training set. Each of these data sets is used to train a 

different model. The outputs of the models are combined by voting to create a 

single output. The bagging algorithm is explained in Algorithm 2 (Zhou, 2009). 

2.3.2 Boosting 

Boosting, which was introduced by Schapire et al. (Schapire et al., 1997), is an 

ensemble method for boosting the performance of a set of weak classifiers 

into a strong classifier. This technique can be viewed as a model averaging 

method and it was originally designed for classification, but it can also be 

applied to regression. Boosting provides sequential learning of the predictors. 

The first one learns from the whole data set, while the following learns from 

training sets based on the performance of the previous one. The misclassified 
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examples are marked and their weights increased so they will have a higher 

probability of appearing in the training set of the next predictor. It results in 

different machines being specialized in predicting different areas of the 

dataset (Graczyk et al., 2010).  

In this research, we select AdaBoost algorithm, which is one of the most widely 

used boosting techniques for constructing a strong classifier as a linear 

combination of weak classifiers. The AdaBoost algorithm was first introduced 

by Freund and Schapire (Freund and Schapire, 1997) and has been shown to 

solve many of the practical difficulties of earlier boosting algorithms, since it 

has solid theoretical foundation and produces very accurate predictions. 

Details of the boosting algorithm and its pseudo-code were given in (Zhou, 

2009). 

2.4 Support Vector Machine 

Support Vector Machine (SVM) which was firstly proposed by Vladimir Vapnik 

and Corinna Cortes (Cortes and Vapnik, 1995), is a supervised learning 

technique based on statistical learning theory that can be applied to 

classification, regression and pattern recognition. A SVM is a kind of binary 

classifiers which takes a set of input data and then classifies each input into 

two possible classes or categories. The idea is to map the n-dimensional input 

space into a higher dimensional feature space and then the new feature space 

is classified by constructing a linear classifier. In SVM, a data point is viewed as 

a p-dimensional vector and SVM will separate them with a (p-1) dimensional 

hyperplane. The SVM algorithm has an advantage that it is not affected by local 

minima, furthermore it does not suffer from the curse of high dimensionality 

because of the use of support vectors (Sánchez A, 2003).  

2.4.1 How SVM works 

Figure 2.3 shows that there are many possible hyperplanes that might separate 

two classes perfectly but we must find the best hyperplane that represents the 

largest separation between the two classes. SVM constructs a hyperplanein a 

high dimensional space which maximises the margin between the hyperplane 

and the two classes. 
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Figure 2.3 Two classes separated by hyperplanes 

In 2 dimensions, two groups can be separated by a line using ax + by ≥ c for 

the first group and ax + by≤ c for the second group.   There are a lot of 

possible solutions (hyperplanes) as shown in Figure 2.4.  

 

Figure 2.4 Possible hyperplanes and support vectors 

In order to choose the best possible hyperplane and minimize the risk of over-

fitting, it is very important to find the one with the maximal margin between 

the two classes. How to find the optimal hyperplane is an optimization 

problem which can be solved by Lagrangian formula. Once the optimal 

hyperplane is found, only the data points nearest to the hyperplane will be 

given a positive weight while others are set to zero. The data points where 

their distances are the closest to the decision surface are called support 
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vectors and they are the most critical elements of the training data. The 

position of dividing hyperplane would be changed or shifted if the support 

vectors removed. 

The distance between a data point (x
0
,y

0
) and a line ax+by+c=0 can be 

measured using Formula 2.1 below: 

 
|��� + ��� + �|
	
�� + ���  (2.1) 

We have L training data where each instance X
i
 has D attributes and has 2 

classes -1 and 1. We assume that the training data is linearly separable, 

therefore we can draw a hyperplane separating the two classes. This 

hyperplane can be described as x.w-b=0 where w is normal to the hyperplane. 

H
1
 is the hyperplane for class 1 and H

2
 is the hyperplane for class 2. H

1
: x

i
.w-b 

= 1 and H
2
: x

i
.w-b = -1. The perpendicular distance from the hyperplane to the 

origin is 

‖�‖ . All points which closest to H

1
 and H

2
 are support vectors.  

 

Figure 2.5 Finding the optimal separating hyperplane in SVM 

Based on Figure 2.5 above, we define d
1
 is the distance from H

1
 to the 

hyperplane and d
2
 from H

2
 to it. The SVM margin is the distance from H

1
 to H

2
 

which is d
1
+d

2
.  
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The distance between H0 and H1 is:  

|�.���|‖�‖  = 
�‖�‖  , hence the distance between H1 and H2 is 

�‖�‖ 

The distance between two hyperplanes (H1 and H2) could be maximized by 

minimizing the value of ‖�‖. The margin is equal to 
�‖�‖   and can be 

maximized using this following formula:  

 ���‖�‖ such	that		�!
�!. � + �� − 1 ≥ 0	∀! (2.2) 

Minimizing ‖�‖ is equivalent to minimizing 
�
� ‖�‖�  and then we can apply 

Quadratic Programming (QP) optimization. We need to 

find���	 �� ‖�‖�	such	that	�!
�!. � + �� − 1 ≥ 0	∀!.  Minimization could be proceed 

by applying Lagrange multipliers α, where (! ≥ 0	, ∀� 
 * = 12 ‖�‖� − 	α-y/
x/. w + b� − 1	, ∀�3 (2.3) 

 * = 12 ‖�‖� −4α/-y/
x/	. w + b� − 135

/6�
 (2.4) 

 * = 12 ‖�‖� −4α/y/
x/	. w + b� +4α/
5

/6�

5

/6�
 (2.5) 

From the derivates = 0, we get: 

 � = 4α/y/x/,4α/y/ = 07

/6�

7

/6�
 (2.6) 

2.4.2 Kernel Trick 

In many cases the data points are not linearly separable, in this case the input 

data can be transformed using a nonlinear mapping (φ) into another dimension 

space (Hric et al., 2011). In this new mapping, a linear boundary can be found. 

When mapping data into a higher dimension space, the computational 

complexity of the algorithm increases. To build a classification model, the 

learning process iterates through all the data points and to update the weights 

for the model, a large number of operations need to be made. Fortunately, the 
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calculation of the dot product between all instances can be calculated in the 

lower-dimension space by substituting a kernel function into the equation, this 

technique is called kernel trick. A kernel trick is a technique that depends on 

the training data only through dot-products. Kernel function can be interpreted 

as a measuring the similarity of x and x’ (Sánchez A, 2003).  

 

Figure 2.6 Moving a dataset into higher dimension1 

Suppose there are l data points (instances) x and each instance consists of a 

binary label y (-1, 1), the SVM algorithm classifies the instances based on this 

following formula: 

 �
�� = 	8�9�	 :4(!�!
;

!6!
<
�!, �� + �= (2.7) 

Where α
i
  and b are real constant and K(x

i
 ,x) is the inner product operation.  

If we assume that there are no data points between H1 and H2 then we can 

define the SVM hard margin which is only applicable to handle a linearly 

separable dataset: 

������>?�,� �
� ‖�‖� subject to : �!@�A�! + �B ≥ 1			� = 1,… , � (2.8) 

In reality, most of the data is often not linearly separable so applying the 

equation above may produce classification errors.  If the separating hyperplane 

is not possible, we can use a soft margin method which will select the 

hyperplane that split the training data as good as possible. This method 

                                           

1http://www.music.mcgill.ca/~alastair/621/porter11svm-summary.pdf 
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introduces new variables called slack variables (ξ) to allow for finding a 

hyperplane that misclassifies some of the data points because many datasets 

are not linearly separable. The slack variables measure the degree of 

misclassification for each data point.   

 

Figure 2.7 Calculate the degree of misclassification using slack variables 

The above equation will be: 

������>?�,� 12 ‖�‖� + 	D4E!
F

!6!
subjectto�!@�A�! + �B ≥ 1 − E! (2.9) 

1 ≥ E! ≥ 0 point is between margin and correct side of the hyperplane while E!> 

1 point is misclassified. 

A penalty function is added to the problem as the total of all slack variables. 

The constant C is used to control the trade-off between the margin and the 

size of the slack variables (Howley and Madden, 2005). 

Using the Langrangian multipliers we will get a dual formulation as follow: 

������>?J 4α/ −	12 4 α/
K

/,L6�

K

/6�
αLy/yLKNx/, xLO	subject	to	4�!(! = 0

P

!6�
, 0 ≤ (! ≤ D (2.10) 



Chapter 2. Literature Review 

 25  

The data points with (! > 0 are located on the margin or within the soft 

margin are support vectors. The SVM formula written in Equation2.10 depends 

on the data only through dot products which usually called kernel function. In 

Equation 2.10, the kernel function is KNx/, xLO = 〈T
�!�, TN�UO〉. The performance 

of a SVM classifier is highly dependent on the choice of a proper kernel 

function (Hussain et al., 2011)(Sánchez A, 2003) .  

2.4.3 SVM Kernels 

SVM can efficiently perform non-linear classification using the kernel trick by 

mapping their input into high-dimensional feature spaces.The most frequently 

used kernel functions are the linear, radial basis function (RBF)), sigmoid and  

polynomial kernel.  

2.4.3.1 Linear Kernel 

Linear kernel function is described below: 

 WN�!, �UO = 	 N�!A�UO + � (2.11) 

The linear kernel has only one tuneable parameter which is c.  Linear kernel 

performs very well and very fast on linearly separable datasets, unfortunately 

most real world problems are not linearly separable. 

2.4.3.2 RBF (Gaussian) Kernel 

The Gaussian or RBF kernel produces a mapping equivalent to an infinite 

dimensional Hilbert space. Therefore this function is able to map a wider 

variety of data sets.  The RBF kernel is described below: 

 WN�!, �UO = ?�X Y− 12Z� [�! − �U[\ (2.12) 

Alternatively, it could also be implemented using 

 WN�!, �UO = ?�X ]−^[�! − �U[�_ (2.13) 

The RBF is generally applied most frequently, because it can classify non-

lineary separable data, unlike a linear kernel function. Additionally, the RBF has 

fewer parameters to set than a polynomial kernel. The adjustable parameter ^ 

plays a major role in the peformance of the kernel. 
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RBF and other kernel functions have similar overall performance. 

Consequently, RBF is an effective option for kernel function. (Sánchez A, 

2003)(Mierswa, 2006)(Chang and Lin, 2011) reported that the RBF kernel 

performs well if the number of features is much larger than the size of dataset 

but it does not work well on noisy data. 

2.4.3.3 Sigmoid Kernel 

A sigmoid kernel function is equivalent to a two-layer percepton neural 

network. The sigmoid kernel comes from the neural network field where the 

sigmoid function is often used as an activation function for aritificial neurons. 

The  sigmoid kernel function is described below: 

 <N�! , �UO = 	tanh	
^�!A�U + �� (2.14) 

There are two adjustable parameters in the sigmoid kernel: c and ^ 

2.4.3.4 Polynomial Kernel 

The polynomial kernel function is described in the equation below: 

 <N�! , �UO = 	N^�!A�U + aOb , ^ > 0 (2.15) 

Compare to other SVM kernels, the polynomial kernel has more parameters 

that need to be optimized. Beside C and^ (gamma), it has at least 2 more 

important parameters: the polynomial degree d and the degree coefficient r. 

The parameter d should be set carefully, if the value of d is too large then the 

kernel values may go to infinity or zero. 

2.5 Evolutionary Algorithms 

Evolutionary algorithm (EA) is commonly used on problems which are very hard 

to solve in a brute force technique. EAs search the solution space (the set of all 

possible inputs) of a difficult problem for the best solution, but not naively like 

a brute-force or grid search. 

An EA uses mechanisms inspired by biological evolution such as reproduction, 

mutation, recombination and selection. In nature, individuals are continuously 

developing and adapting to their environment while in EA, each individual is a 

candidate solution to the target problem which is evaluated by a fitness 

function. At each generation, the best individuals have a higher probability of 
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being selected for reproduction (Barros et al., 2012). The selected individual 

then produces new offspring or a new generation through crossover and 

mutation. This process is continuously repeated until a terminating condition 

achieved. 

There are two important operators of EA, the first one is variation operators 

(recombination and mutation) which enrich the diversity as well as facilitate 

novelty. The second one is selection operator which reduces diversity and acts 

as force pushing quality. The use of both operators is able to improve the 

fitness values in consecutive populations. The fundamental of EA is explained 

in Algorithm 3 below (Eiben and Smith, 2003). 

Algorithm 3Evolutionary Algorithms pseudo-code 
 

1: CREATE an initial population (usually at random) 

2: EVALUATE each candidate 

3: REPEAT  

4: SELECT some pairs to be parents (SELECTION) 

5: COMBINE pairs of parents to create offspring (RECOMBINATION) 

6: MUTATE the offspring (MUTATION) 

7: SELECT some population members to be replaced  

8: by the new offspring (REPLACEMENT) 

9: UNTIL exit criteria is satisfied 

 

 

There are many different variants of EAs but the general concept behind all 

these methods is the same: given a population of individual, natural selection 

(survival of the fittest) and the fitness of population (Eiben and Smith, 2003).  

Most of the present implementation of EA comes from these three basic types: 

Genetic Algorithms (GA), Evolutionary Programming (EP) and Evolutionary 

Strategies (ES).These variant techniques are quite similar but different in the 

implementation details and the nature of the particular applied problem. These 

algorithms have different representations (type of internal data structure) used 

to store the individuals): genetic algorithm (GA) uses binary strings, genetic 

programming (GP) uses trees, evolution strategies (ES) uses real-valued vectors, 

evolutionary programming uses finite state machine (Eiben and Smith, 2003). 

Representation: The candidate solutions (individuals) are encoded in 

chromosomes which contain genes. Genes are usually in fixed position called 

loci and have a value. In order to find the global optimum, every feasible 

solution must be represented in genotype space. Selecting an appropriate 
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genotype representation is critical work for reducing the processing time of an 

EA.  

Evaluation (Fitness Function): is a function used to measure the quality of 

phenotype which forms the selection process. The fitness function represents 

the requirement that the population should adapt to and it is usually 

optimization or minimization problems. 

Population: the population of chromosomes is randomly initialized and it is 

representation of possible solutions. 

Parent Selection Mechanism: the parents are usually selected based on their 

finesses or high quality individuals but it could not guarantee achieve optimal 

solution. It needs a special trick to avoid getting trapped in local optima. 

Variation Operators: operators are used to generate new candidate solutions, 

they are usually divided based on number of inputs: mutation, recombination 

and crossover operator. 

Mutation: mutation is a unary operator applied on one genotype. It is very 

essential to maintain the randomness and to create the diversity. 

Recombination: used to merge information from parents into offspring. Some 

of offspring may be worse while others are the same as the parents. 

Survivor Selection: there are three methods of survival selection, the first one is 

called fitness based which ranks the parents and offspring based on their 

fitness value then take the best. The second one is age based, make offspring 

as parents and then delete all previous parents. The third one is the 

combination of both techniques which is usually called elitism.   

In this research, we only focused on GA and PSO. We used both GA and PSO for 

feature selection algorithms and we also used GA to optimize the SVM 

parameters.The use of GA in feature selection has been investigated by several 

researchers (Oh et al., 2004)(Hall and Holmes, 2003)(Roy and Bhattacharya, 

2008)(Syarif et al., 2012a).  

 

 



Chapter 2. Literature Review 

 29  

2.5.1 Genetic Algorithm (GA) 

The Genetic Algorithm (GA) technique was originally proposed by John Holland 

in the 1975 as an experiment to see if the computer programs could eveolve in 

the Darwinian sense. GA has been applied to many function optimization 

problems and has been shown to be good in finding optimal and near optimal 

solutions.  Its robustness of search in large search spaces and its domain 

independent nature motivated its applications in various fields (Krishna and 

Murty, 1999). GA can be applied to solve a variety of optimization problems 

that are not well suited for standard optimization algorithms, including 

problems in which the objective function is discontinuous, non-differentiable, 

stochastic, or highly non-linear (Malhotra et al., 2011) .  

The GA is a method for solving optimization problems that is based on natural 

selection, the process that drives biological evolution. GA repeatedly modifies 

a population of individual solutions. At each step, the GA selects individuals at 

random from the current population to be parents and uses them produce the 

children for the next generation. Over successive generations, the population 

“evolves” toward an optimal solution.  

The GA uses three main types of rules at each step to create the next 

generation from the current population: 

1. Selection rules select the fitter individuals called parents that contribute 

to the population at the next generation. 

2. Crossover rules combine two parents to form children for the next 

generation. 

3. Mutation rules apply random changes to individual parents to form 

children. 

There are two main differences betwen standard optimization algorithm and 

GA. First, classical algorithm generates a single point at each iteration where 

the sequence of points approaches an optimal solution. GA generates a 

population at each iteration where the best point in the population approaches 

an optimal solution. Second, classical algorithm selects the next point in the 

sequence by a deterministic computation while GA uses random number 

generators (Krishna and Murty, 1999). 
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The detail of GA is explained in the Algorithm 4 below (Mitchell, 1998). 

Algorithm 4Genetic Algorithm pseudo-code 
1. [Start] Generate random population of n chromosomes  

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population  

3. [New population] Create a new population by repeating following steps  

4.        A. [Selection] Select two parent chromosomes from a population according to  

5. their fitness (the better fitness, the bigger chance to be selected)  

6.        B. [Crossover] With a crossover probability cross over the parents to form  

7. a new offspring (children).  

8. If no crossover was performed, offspring is an exact copy of parents.  

9.        C. [Mutation] With a mutation probability mutate new offspring  

10. at each locus (position in chromosome).  

11.        D. [Accepting] Place new offspring in a new population  

12. [Replace] Use new generated population for a further run of algorithm  

13. [Test] If the end condition is satisfied, stop,  

14. and return the best solution in current population  

15. [Loop] Go to step 2 

 

 

2.5.2 Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) is an evolutionary computation technique 

that was first developed by Kennedy and Eberhart (1995) and is inspired by the 

behaviour of bird flocking to reach destination not completely known.  PSO is 

powerful, easy to implement and computationally efficient (Huang and Dun, 

2008).  PSO is also an effective and flexible technique to explore the search 

space of a problem (Schuh et al., 2012). Like other evolutionary algorithms, 

PSO performs searches using a population (called swarm) of individuals (called 

particles) that are updated from iteration to iteration (Tjiong and Monteiro, 

2011). To discover the optimal solution, each particle changes its searching 

direction according to two factors, its own best previous experience (called 

personal best or pbest) and the best experience of the whole swarms (called 

global best or gbest). The local best of a particle can be considered as the 

cognitive part while the global best particle is considered as the social part 

(Schuh et al., 2012)(Tjiong and Monteiro, 2011)(Korürek and Doan, 2010). 

Each particle in the swarm represents one possible solution to the problem. At 

first, the swarm of particles are given a random initial location and velocity and 

are updated based on these following equations: 
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 c!,Ud�� = ec!,Ud +��a�NX!,U − �!,Ud O + ��a�NXf,U − �!,Ud O (2.14) 

 �!,Ud�� =	�!,Ud  + c!,Ud�� (2.15) 

Where x is the position of the particle i,v is its velocity, j is the dimension, t is 

time and ω is the inertial weight which represents how much of the previous 

velocity is retained while exploring. C
1
 and c

2
 are learning factor, r

1
 and r

2
  are 

weighting parameters, p
i,j
 is local best while p

g,j
 is global best particle. For each 

iteration, the fitness of each particle is calculated then the personal best and 

global best are also updated using Equation 2.14 and 2.15. Once the 

termination criteria is achieved, PSO will have good fitness, a set number of 

generations or a convergence factor such as a threshold for minimum 

population change.  

The detail of PSO is explained in theAlgorithm 5 below (Mitchell, 

1998)(Moraglio et al., 2008). 

Algorithm 5Particle Swarm Optimization pseudo-code 
1. for all particle i do 

2. initialize position xi and velocity vi 

3. end for 

4. while stop criteria not met do 

5.      for all particle i do  

6. set personal best xi as best position found so far by the particle 

7. set global best g as best position found so far by the whole swarm 

8.      end for 

9.      for all particle i do  

10.    update velocity using: c!,Ud�� = ec!,Ud +��a�NX!,U − �!,Ud O + ��a�NXf,U − �!,Ud O 

11.           update position using: �!,Ud�� =	�!,Ud  + c!,Ud�� 

12. end for 

13.  end while 

 

2.6 Parameter Optimisation 

Generally, most of machine learning algorithms will not achieved optimal 

results if its parameters are not being tuned properly. To build a high accuracy 

classification model, it is very important to choose a powerful machine learning 

algorithm as well as adjust its parameters. Parameter optimization can be very 

time consuming if done manually especially when the learning algorithm has 

many parameters (Friedrichsand Igel, 2005)(Rossi and de Carvalho, 2008). 
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The SVM performance highly depends on parameter setting and kernel 

selection. The selection quality of SVM parameters and kernel functions has an 

effect on the learning and generalization performance. Appropriate kernel 

function and its parameters should be selected to obtain an optimal 

classification performance (Aydin et al., 2011)(Subasi, 2013). Many researchers 

showed (Hric et al., 2011)(Subasi, 2013)(Chang and Lin, 2011)(Huang and Dun, 

2008) that the SVM classification accuracy among the four most popular 

kernels (linear, RBF, polynomial, sigmoid) can vary significantly based on a 

given training dataset.  The selection of SVM parameters is actually an 

optimization problem  in which search algorithms are used to find the best 

configuration of parameters for given problem (de Miranda et al., 2012)(Gaspar 

et al., 2012). To select a proper parameter for a specific SVM kernel is an 

important research issue in the machine learning area. 

Aydin et. al. (Aydin et al., 2011) reported that there are two crucial points in 

SVM, the first one is how to choose the optimal input feature subset and the 

second one is how to set the best kernel and penalize its parameters. (Zhou 

and Chun-De, 2006) proposed a hybrid optimization selection method for SVM 

parameters and features selection using an immune algorithm. An immune 

algorithm (IA) is one of evolutionary algorithms which have abilities of 

learning, memorizing and self-adaptive control. They argued that IA can 

effectively solve the conflict between local search and global search in the 

feature selection and parameter selection process. They used IA to optimize 

the SVM kernel, to penalize its parameters and to select the most important 

features.  

(Schuh et al., 2012) argued that the SVM kernel parameters not only need to be 

optimized, but the kernel itself might also contain both implicit and explicit 

domain knowledge which requires an expert’s interpretation. They proposed to 

use Particle Swarm Optimization (PSO) and Genetic Programming (GP) as 

evolutionary approaches to find effective SVM kernel functions for various 

training data. Another researcher Subasi (Subasi, 2013) also applied PSO to 

optimize SVM parameters for electro-myography (EMG) signal classification. He 

reported that his approach achieved better performance compare to Nearest 

Neighbour algorithm, RBF classifier and a conventional SVM. 
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(de Miranda et al., 2012) used the combination of meta learning and PSO to 

optimize Ɣ and C  parameters. They used PSO to maximize the success rate 

and minimize the number of support vectors of the model and they also 

argued that meta-learning can be used to treat parameter selection as a 

supervised learning task. The parameter configuration suggested by meta-

learning is used as initial population of the search technique, hence the search 

process would converge faster and be less expensive. However, meta learning 

is very dependent on the quality of its meta examples, unfortunately the 

number of problems available for meta-example generation is very limited and 

usually contains noisy data which needs to be cleaned.  

Huang et. al. (Huang and Dun, 2008) proposed a novel PSO-SVM model to 

improve the classification accuracy by doing feature selection and SVM kernel 

parameter setting. They implemented a distributed architecture using web 

service technology to reduce the computational time. (Sudheer et al., 2013) 

also applied hybrid PSO-SVM for forecasting monthly stream flow. The PSO was 

used to optimize the SVM parameter and they reported this technique has 

successfully improved the forecasting performance. 

There are several methods to adjust the SVM parameter: grid search with cross-

validation, genetic algorithm (GA) and particle swarm optimization (PSO). Two 

major RBF parameters applied in SVM, C and Ɣ must be set appropriately. 

Parameter C represents the cost of the penalty. The choice of value for C 

influences on the classification outcome. If C is too large, then the 

classification accuracy rate is very high in the training phase, but very low in 

the testing phase. If C is too small, then the classification accuracy rate 

unsatisfactory, making the model useless. Parameter Ɣ has a much greater 

influence on classification outcomes than C, because its value affects the 

partitioning outcome in the feature space. An excessively large value for 

parameter Ɣ results in over-fitting, while a disproportionately small value leads 

to under-fitting (Pardo and Sberveglieri, 2005).  

Grid search is a computationally demanding process: by increasing the number 

of parameters and reducing the interval between discrete values, the number 

of possible combinations increases exponentially. The grid search algorithm is 

an alternative way to find the best SVM parameters. A logarithmic grid search 

method will be performed to find the best selection of C and Ɣ. We will select 
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the C and the Ɣ which produce the best average cross-validation accuracy.  

Selecting more SVM parameters will create very large combinations. For 

example there are three parameters to be optimized: C, ^	(gamma) and d 

(degree) where each has 20 steps then the number of combinations would be 

8,000 (20x20x20). This method has proven to be more effective and efficient 

than manual search, as it provides more accurate decision models in shorter 

time. The problem of a large number of calculations can be solved by parallel 

computing, or by employing the cloud computing techniques or by implement 

smarter machine learning algorithms. 

The use of evolutionary algorithm for parameter optimization is very much 

faster and often gives better results than greedy search and grid search 

(Friedrichs and Igel, 2005)(Rossi and de Carvalho, 2008). Furthermore, it is 

very useful if ranges of the parameters are not known at all. For example, it is 

very difficult to find the correct ranges of SVM parameters especially C and 

^	(gamma). 

(Sudheer et al., 2013) applied PSO to adjust the SVM parameters, other 

researchers (Schuh et al., 2012) applied GP and PSO into various SVM kernels 

on three different data sets. They reported that their approaches are feasible, 

effective and quite promising. However, finding the ranges of SVM kernel 

parameters as well as GP and PSO parameters are also difficult problems. 

Another issue is the combination of GP and PSO require very high 

computational cost. 

 

 



Chapter 3. Dimensionality Reduction Algorithms 

 35  

 

3. Dimensionality Reduction  

 

In this chapter, we applied GA and PSO into high dimensional datasets and 

analysed its affect before and after reduction based on classification accuracy 

and execution time.  

3.1 Dimensionality Reduction System Design 

(Hall and Holmes, 2003)(Syarif et al., 2012a) reported that if the data has many 

irrelevant, redundant and noisy features, the constructed model will have poor 

classification performance as well as higher computation cost. In this chapter, 

we do some experiments to find a more effective dimensionality reduction 

algorithm that produces better classification accuracy. The proposed system is 

shown in Figure 3.1 below. 

 

Figure 3.1 Dimensionality Reduction System Design 

We used GA and PSO feature selection modules from Weka, saved the results 

into different files and then tested the new datasets using four classification 

algorithms (naïve Bayes, decision tree, rule induction and nearest neighbour) 

which provided by RapidMiner.  The implementation of our proposed 

dimensionality reduction system is shown in Figure 3.2. 
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Figure 3.2 The Implementation of Dimensionality Reduction in RapidMiner 

3.2 Dimensionality Reduction Algorithms 

The following section explain how the two algorithms GA and PSO used to 

reduce the dimensionality. As described in Chapter 2 there are two types of 

feature selection methods which are filter and wrapper technique. We chose to 

apply wrapper techniques because they most often achieve better results than 

the filter techniques because they are trained and adjusted to the specific 

machine learning algorithm (Hall and Holmes, 2003)(Chen et al., 2006). In this 

research, GA and PSO are used as search algorithms to find the best features 

or subsets from original datasets as shown in Figure 3.3.   

 

Figure 3.3 Feature selection using wrapper technique 
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3.2.1 Genetic Algorithm Search 

We used GA-based feature selection developed by Mark Hall (Hall, 1999) which 

has been integrated to WEKA Data Mining Tools. A GA is used as a search 

technique to find the optimal subset. A solution is stored in fixed length binary 

string which represents a subset of original features. The value of each 

position in the string means presence for 1 and absence for 0. A new 

generation is randomly generated as an initial process then finding the optimal 

subset of original features is actually an iterative process. A generation is 

produced by applying genetic operators such as crossover and mutation to the 

member of population (current generation) in each iteration.  

Generate random initial population P

Evaluate the fitness of each member:

Apply a classification algorithm to calculate the accuracy of each subset

Select 2 subsets x and y based on their fitness

Apply crossover to x and y to produce new subsets x’ and y’

Apply mutation to x’ and y’

Insert x’ and y’ into new generation P’

is |P| < |P’| ?

Update new population P P’

Return : optimal feature subset with the best fitness value

yes

no

 

Figure 3.4 Feature selection using Genetic Algorithm 

Crossover operator combines two different subsets and then generatesa new 

pair of subset. The mutation operator changes some of values which mean 

randomly adding or removing features in subset. To produce a better 

generation, a couple of members (usually called parents) are carefully selected 
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using the fitness function.  The iteration will be stopped if there is no more 

generation to process. The flowchart of GA-based feature selection is described 

in the Figure 3.4 (Hall, 1999). 

3.2.2 Particle Swarm Optimization Search 

Beside GA, we also applied PSO algorithm for feature selection which was 

originally proposed by Moraglio et al. (Moraglio et al., 2008) and then the 

implementation in Java was written by Sebastian Luna Valero2 . PSO uses 

slightly different terms compare to GA. In PSO, a solution is called a particle 

and the population is called swarm of particles. Similar to GA, the first process 

of PSO is generation of initial swarm of particles. Unlike GA, PSO does not need 

complex operators such as crossover and mutation; it only uses simple 

mathematical operators. Furthermore, PSO has less computational cost and 

needs a small amount of memory.  

 

Figure 3.5 PSO search for feature selection 

                                           

2PSOSearch, http://www.cs.waikato.ac.nz/ml/weka/packageMetaData/PSOSearch 
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The PSO algorithm has been described in Section 2.1.2 but there is a little 

modification when it applies to feature selection problem. The flow chart of 

PSO search is explained in Figure 3.5 (Jwo and Chang, 2009). 

3.3 Performance Measurement 

The metric used to evaluate the performance of classifier is given below (Davis 

and Goadrich, 2006):  

Table 3.1 Performance metric  

 

Predicted Label 

Positive Negative 

Actual Label 

Positive 
True Positive  

(TP) 

False Negative 

 (FN) 

Negative 
False Positive  

(FP) 

True Negative  

(TN) 

 
The accuracy rate and false positive rate are measured using the following 

formulae: 

gh?	ij8�k�c?	l�k? = TPTP + FN				 , q�r8?	ij8�k�c?	l�k? = qiFP + TN	 
Many researchers use accuracy and false positive rate as performance 

measurement for classification problems, but other researchers (Davis and 

Goadrich, 2006)(Kotsiantis, 2007)(Williams et al., 2006)(Davis and Goadrich, 

2006) argue that accuracy and false positive rates are not enough and simply 

using accuracy results can be misleading. They suggest accuracy, precision, 

recall and ROC curve as better performance measurement methods.  

Precision is the percentage of positive predictions that are correct. Recall or 

sensitivity is the percentage of positive labelled instances that were predicted 

as positive. Specificity is the percentage of negative labelled instances that 

were predicted as negative. Accuracy is the percentage of correctly classified 

instances over the total number of instances. 

To evaluate the performance offeature extraction and feature selection 

algorithms, there are other measurements called balance error rate (BER), 

fraction of features (FF) and fraction of probes (FP). 
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Table 3.2 Classification performance measurement 

Measure Formula 

Precision ia?��8�j� = TPTP + FP 

Recall / 

Sensitivity 
l?��rr/t?�8�k�c�k� = TPTP + FN 

Selectivity t?r?�k�c�k� = TNFP + TN 

Accuracy u��ha���	 = TP + TNTP + TN + FP + FN 

F-Measure q −v?�8ha?	 = 2 ∗ Precision ∗ RecallPrecision + Recall  

 

Balanced Error Rate (BER) is the average of the errors on each class 

|}l = 0.5 ∗ 
 q�TP + FN +	 qiFP + TN� 
Fraction of Features (FF) is the ratio of the number of features used by the 

classifier to the total number of features in the dataset. 

Fraction of Probes (FP) is the ratio of the number of probes used to the 

number of feature used by a classifier. Probes are additional features added to 

the original datasets because of their similar distributions to the original 

features. 

Area Under Curve (AUC) is an area under the ROC curve. This area is 

equivalent to the area under the curve obtained by plotting TP/(TP+FN) against 

TN/(FP+TN) for each confidence value, starting at (0,1) and ending at (1,0). The 

area under this curve is calculated using the trapezoid method. In the case 

when no confidence values are supplied for the classification the curve is given 

by {(0,1),(TN/(FP+TN),TP/(TP+FN)),(1,0)} and AUC = 1 - BER. 

To test and evaluate various classification algorithms, we use k-fold cross 

validation (in most cases, we set k=10). In this method the dataset is divided 

into k subset and executed in k iteration. One of the k subsets is used as the 

testing data while the others are used as a training data in each iteration. The 

performance measurement is calculated across all k iterations. This technique 

can be used to analyse how well the classifiers will perform on unseen data.  
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3.4 The Datasets 

We used nine high dimensional datasets which have the number of features 

from 45 attributes (the smallest) until 20,000 attributes (the highest). There is 

no exact definition of high dimensional data and also there is no agreement 

among researchers about the limit between low and high dimensional data. 

Clarke et. al. (Clarke et al., 2008) and Verleysen (Verleysen, 2003) argued that 

the data are high dimensional if it has hundreds or thousands of features for 

each example.  

Since it is very difficult to get publicly available high dimensional datasets, we 

found 9 datasets from various websites but only 6 of them have attributes 

more than 100. We only used datasets which has 2 classes because we also 

wish to apply SVM algorithm to these datasets. The original SVM classifier is 

only able to handle two labelled classes.  The list of datasets is shown in Table 

3.16 below. 

Table 3.3 High-dimensional datasets 

 

 

From 9 datasets, there are 2 datasets (internet_ads and spambase) have 

missing values and there are 2 datasets have unbalanced data (internet_ads 

and musk). Internet_ads has 2 labelled: ad (14%) and nonad (86%), musk 

dataset also has 2 labeled: 0 (83%) and 1 (17%).  

1 Leukemia no                  72              7,130 all, aml

2 Embryonal Tumours no                  60              7,130 0,1

3 Dexter no 600               20,000            1, -1

4 Internet_ads yes 3,279            1,559             ad, nonad

5 Madelon no 2,600            501                1, -1

6 Musk no 6,598            168                0,1

7 Spambase yes 4,601            58                  0,1

8 SPECTF Heart no 80                 45                  0,1

9 Intrusion no 25,192          42                  

Dataset Name
Missing 

values

 Number of 

instances 

 Number of 

attributes 
Classes
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3.5 Experimental Results 

In the first experiment, we applied four basic classifiers into original datasets. 

After that we applied the same classifiers into datasets that have been reduced 

by GA and PSO. 

3.5.1 Experiments on Original Datasets 

We applied four basic classifiers which are naive Bayes, k-nearest neighbour, 

decision tree and rule induction using 10 fold cross validation. 

3.5.1.1 Naive Bayes 

The naive Bayes algorithm in RapidMiner has no parameter. The results of 

naive Bayes experiments on original datasets are shown in Table 3.4.  

Table 3.4 Naive Bayes algorithm results on original datasets 

 

The naive Bayes algorithm is relatively fast and it only needs a small amount of 

training data to estimate the means and variances to build a prediction model. 

It takes only around 13 second to apply 10-fold cross validation technique on 

dexter dataset which has 20,000 attributes and it needs less than one second 

to execute the same technique on leukemia and embryonal tumours datasets 

which has 7,130 attributes. And it is also quite fast to classify a dataset with a 

large number of instances such as intrusion dataset which has more than 

25,000 attributes. 

 

Execution Time

(hh:mm:ss)

Leukemia                   72             7,130 98.57% 100.00% 96.67% 98.31% 00:00:01

Embryonal Tumours                   60             7,130 68.33% 79.41% 70.00% 74.41% 00:00:01

Dexter 600               20,000         80.33% 77.79% 85.33% 81.39% 00:00:13

Internet_ads 3,279            1,559           96.86% 97.10% 99.33% 98.20% 00:00:10

Madelon 2,600            501              59.58% 59.81% 58.31% 59.05% 00:00:02

Musk 6,598            168              89.62% 96.74% 90.79% 93.67% 00:00:02

Spambase 4,601            58                81.81% 96.29% 72.78% 82.90% 00:00:01

SPECTF Heart 80                 45                75.00% 71.17% 90.00% 79.49% 00:00:01

Intrusion 25,192          42                86.34% 99.71% 70.91% 82.88% 00:00:09

Performance measurement with 10-fold cross validation
Number of 

attributes

Number of 

instances
Data set

Accuracy Precision Recall F Measure
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3.5.1.2 k Nearest Neighbour 

The k-NN algorithm in RapidMiner has 3 parameters: 

1. k: set the number of nearest data points , the default value is 1 

2. measure types: is used for selecting the type of measure to calculate the 

distance from the data point to the nearest neighbor. There are four 

options: mixed measure, nominal measure, numerical measure and 

Bregman divergences. The default value is mixed measure. 

3. mixed measures: this parameter is only available when the measure 

type=’mixed measures’. It has only one option: mixed Eucledian 

distance. 

We used the default value for all k-NN parameters. The results of kNN 

experiments are shown in Table 3.5. 

Table 3.5 k-nearest neigbour algorithm results on original datasets 

 

kNN is one of the simplest machine learning algorithms. All of the training data 

are stored in an n-dimensional space. kNN classifies a new instance by a 

majority vote of its neighbours. If k=1, the new instance is directly assigned to 

the class of its nearest neighbour. There is no explicit training phase in kNN. 

 

3.5.1.3 Decision Tree 

There are 6 parameters of decision tree algorithm in RapidMiner and we used 

the default values for all of parameters. 

Execution Time

(hh:mm:ss)

Leukemia                   72             7,130 91.61% 96.00% 84.17% 89.70% 00:00:01

Embryonal Tumours                   60             7,130 60.00% 76.00% 60.00% 67.06% 00:00:01

Dexter 600               20,000         86.33% 85.61% 87.67% 86.63% 00:00:27

Internet_ads 3,279            1,559           86.00% 96.40% 86.99% 91.45% 00:01:51

Madelon 2,600            501              65.04% 65.26% 64.54% 64.90% 00:00:24

Musk 6,598            168              95.23% 97.89% 96.43% 97.15% 00:00:59

Spambase 4,601            58                82.57% 85.73% 85.51% 85.62% 00:00:11

SPECTF Heart 80                 45                63.75% 59.83% 77.50% 67.53% 00:00:01

Intrusion 25,192          42                99.54% 99.57% 99.45% 99.51% 00:08:37

Data set
Number of 

instances

Number of 

attributes

Performance measurement with 10-fold cross validation

Accuracy Precision Recall F Measure
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1. Criterion : this parameter selects the criterion on which attributes will be 

selected for splitting. There are four options: information gain, gain 

ratio, gini index and accuracy. The default value is gain ratio. 

2. Minimal size for split :  this parameter sets the number of examples in 

its subset.  The default value is 4. 

3. Minimal leaf size : the tree is generated with every leaf node subset has 

at least the minimal leaf size number of instance. 

4. Minimal gain : higher value of this parameters affects fewer split and a 

smaller tree. The default valus is 0.1 

5. Maximal depth: set the  maximal depth of the tree,  the default value is 

20 

6. Confidence : this parameter is used to set the confidence level of 

prunning error, the default value is 0.25 

The results of decision tree experiments are explained in Table 3.6 

Table 3.6 Decision tree experiment results on original datasets 

 

Compare to naive Bayes and k-NN, decision tree is much slower. For example, 

to apply 10-fold cross validation technique on dexter which has the highest 

dimension (20,000 attributes), decision tree takes more than 8 hours while 

naive Bayes only needs 13 second and k-NN needs 27 seconds. When applied 

to intrusion dataset which has the least dimension (42 attributes) but has the 

highest number of instances (25,192 instances), decision tree needs more than 

42 minutes while naive Bayes only takes 9 seconds and kNN needs 8 minutes.   

Execution Time

(hh:mm:ss)

Leukemia                   72             7,130 82.14% 73.33% 85.00% 78.73% 00:24:44

Embryonal Tumours                   60             7,130 50.00% 64.00% 54.17% 58.68% 00:40:16

Dexter 600               20,000         84.83% 85.61% 88.00% 86.79% 08:10:14

Internet_ads 3,279            1,559           78.34% 96.11% 78.11% 86.18% 00:01:19

Madelon 2,600            501              50.00% 50.00% 90.00% 64.29% 00:00:33

Musk 6,598            168              86.34% 86.26% 99.87% 92.57% 00:00:39

Spambase 4,601            58                90.72% 89.97% 95.37% 92.59% 00:02:16

SPECTF Heart 80                 45                76.25% 75.00% 85.00% 79.69% 00:00:01

Intrusion 25,192          42                99.68% 99.67% 99.65% 99.66% 00:42:34

Data set
Number of 

instances

Number of 

attributes

Performance measurement with 10-fold cross validation

Accuracy Precision Recall F Measure
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3.5.1.4 Rule Induction 

The rule induction module in RapidMiner has four parameters as follow: 

1. Criterion: selects the criterion for attribute selection and numerical 

splits. There are 2 options which are information gain and accuracy. The 

default value is information gain. 

2. Sample ratio: sets the sample ratio of training data used for pruning, the 

default value is 0.9  

3. Pureness: specifies the pureness level, the default value is 0.9 

4. Minimal prune benefit: default value is 0.25 

We used the default values for all parameters and the results are explained in 

Table 3.7 

Table 3.7 Rule induction experiment results on original datasets 

 

Rule induction algorithm is also much slower than naive Bayes and kNN 

especialy when applied to datasets with high number of instances or high 

number of attributes such as dexter, musk and intrusion dataset. 

3.5.1.5 Basic classifiers results comparison  

We summarized the results of previous experiments in Table 3.8. We selected 

F-Measure as main performance indicator. The yellow colour means the best 

results of four methods.  

 

Execution Time

(hh:mm:ss)

Leukemia                   72             7,130 87.68% 84.33% 82.50% 83.40% 00:14:59

Embryonal Tumours                   60             7,130 60.00% 67.17% 82.50% 74.05% 00:30:33

Dexter 600               20,000         83.50% 87.12% 79.67% 83.23% 05:07:12

Internet_ads 3,279            1,559           91.00% 91.09% 99.26% 95.00% 00:05:02

Madelon 2,600            501              73.08% 72.72% 73.92% 73.32% 00:43:37

Musk 6,598            168              91.47% 91.60% 99.01% 95.16% 01:57:12

Spambase 4,601            58                91.42% 91.66% 94.48% 93.05% 00:01:51

SPECTF Heart 80                 45                60.00% 59.09% 65.00% 61.90% 00:00:01

Intrusion 25,192          42                92.21% 92.00% 91.22% 91.61% 00:00:51

Data set
Number of 

instances

Number of 

attributes

Performance measurement with 10-fold cross validation

Accuracy Precision Recall F Measure
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Table 3.8 Classification performance of original datasets 

 

Table 3.8 shows that there is no algorithm achieved the best results for all 

datasets. NB achieved the best results on 3 datasets: leukemia, embryonal 

tumour and internet_ads while other algorithms (kNN, DT and RI) achieved the 

best results in 2 datasets each.  

Table 3.9  Learning time of NB, kNN, DT and RI 

 

 

Beside classification performance, we also compare the learning time and 

execution time of four methods in Table 3.9 and Table 3.10. As explained in 

the previous section, kNN does not require explicit training step, therefore 

kNN has the fastest learning time followed by naive Bayes (0.25 seconds in 

average), decision tree (3.47 seconds in average) and rule induction (6.71 

seconds in average). 

 

 

NB kNN DT RI

Leukemia                   72             7,130 98.31% 89.70% 78.73% 83.40%

Embryonal Tumours                   60             7,130 74.41% 67.06% 58.68% 74.05%

Dexter 600               20,000         81.39% 86.63% 86.79% 83.23%

Internet_ads 3,279            1,559           98.20% 91.45% 86.18% 95.00%

Madelon 2,600            501              59.05% 64.90% 64.29% 73.32%

Musk 6,598            168              93.67% 97.15% 92.57% 95.16%

Spambase 4,601            58                82.90% 85.62% 92.59% 93.05%

SPECTF Heart 80                 45                79.49% 67.53% 79.69% 61.90%

Intrusion 25,192          42                82.88% 99.51% 99.66% 91.61%

Datasets
 Number of 

instances 

 Number of 

attributes 

Classification Performance (F Measure)

NB k-NN DT RI

Leukemia                   72               7,130 0.09               0 0.33            0.33                   

Embryonal Tumours                   60               7,130 0.08               0 0.39            0.61                   

Dexter 600                20,000            1.38               0 8.60            16.11                 

Internet_ads 3,279             1,559              0.10               0 16.78          16.99                 

Madelon 2,600             501                 0.17               0 2.40            5.99                   

Musk 6,598             168                 0.22               0 0.86            13.43                 

Spambase 4,601             58                   0.05               0 0.42            1.28                   

SPECTF Heart 80                  45                   0.10               0 0.30            0.16                   

Intrusion 25,192           42                   0.10               0 1.12            5.53                   

0.25 0 3.47 6.71Average learning time

 Number of 

instances 

 Number of 

attributes 

Learning time (second)
Dataset Name
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Even though kNN has no explicit learning phase, it does not mean that kNN is 

the fastest algorithm for classification. Table 3.10 shows that naive Bayes is 

actually faster than kNN when applied into 9 different datasets.  

Table 3.10 Execution time of 4 classifiers on original datasets 

 

Decision tree and rule induction requires much more time than naive Bayes and 

kNN, especially when they are applied to datasets with high number of 

attributes. For example, in dexter dataset which has 20,000 attributes NB 

needs 13 seconds and kNN needs 27 second to finish 10 fold cross validatian 

while RI takes more than 5 hours and DT takes more than 8 hours. 

3.5.2 The GA-based Feature Selection Experiments 

The WEKA feature selection algorithms have two important components: 

attribute evaluator and search method. ‘Attribute evaluator’ is a technique 

used to evaluate the performance of feature subsets and ‘search method’ is an 

algorithm used to search through the space of feature subsets. 

We applied GA search and attribute selector called CfsSubsetEval which is a  

method used to evaluate the performance of an attribute subset by considering 

the individual predictive ability of each attribute along with the degree of 

redundancy between them.   

We used the default parameters as follows: 

• crossoverProb: set the probability of crossover, default=0.6 

• maxGenerations: set the maximum number of generations, default=20 

NB k-NN DT RI

Leukemia 00:00:01 00:00:01 00:24:44 00:14:59

Embryonal Tumours 00:00:01 00:00:01 00:40:16 00:30:33

Dexter 00:00:13 00:00:27 08:10:14 05:07:12

Internet_ads 00:00:10 00:01:51 00:01:19 00:05:02

Madelon 00:00:02 00:00:24 00:00:33 00:43:37

Musk 00:00:02 00:00:59 00:00:33 01:57:12

Spambase 00:00:01 00:00:11 00:02:16 00:01:51

SPECTF Heart 00:00:01 00:00:01 00:00:01 00:00:01

Intrusion 00:00:09 00:08:37 00:42:34 00:00:51

Dataset Name
Execution Time using 10 fold cross validation (hh:mm:ss)
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• mutationProb: set the probability of mutation, default=0.033 

• populationSize: set the size of population, default=20 

• seed: set the random seed 

• startSet: set a start point for the search, default value=no attributes 

 

The results of feature selection using GA are shown in Table 3.11. The longest 

time to reduce the number of features was on dexter dataset where GA has 

been successfully reduced the number of features from 20,000 to 6,133 

attributes in 27 minutes 15 seconds. The other datasets only need less than 1 

minute to finish the feature selection process. 

Table 3.11 GA-based feature selection results 

 

3.5.3 The PSO-based Feature Selection Experiments 

We continue our feature selection experiment using PSO search and attribute 

selector called CfsSubsetEval. The PSO search module in Weka has more 

parameters than the GA search.The PSO search parameters are:  

• C1 default value=1.0 

• C2 default value=2.0 

• maxGeneration: set the maximal number of generation, default 

value=50 

Leukemia                  7,130               2,237 00:00:50

Embryonal Tumours                  7,130                  619 00:00:35

Dexter                20,000               6,133 00:27:15

Internet_ads                  1,559                  489 00:05:02

Madelon                     501                  142 00:00:18

Musk                     168                    66 00:00:04

Spambase                       58                    29 00:00:02

SPECTF Heart                       45                    11 00:00:01

Intrusion                       42                    16 00:00:03

Datasets

Number of 

original 

attributes

Number of 

reduced 

attributes

Time to reduce the 

number of attributes 

(hh:mm:ss)

Feature selection using GA
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• numParticles: set the population size,  default value=100 

• prune: boolean parameter, prune the subset after search to remove 

redundant features, default value=false 

• reportFrequency: set how frequently reports are generated, default 

value=50 

• seed: set the random seet, default value=1 

• Start set: default value=no attributes 

 

The parameter ‘start set = no attributes’ means this technique is to begin with 

no attributes and then it is successively add attributes. In this case, PSO search 

will proceed forward through the search space. The total of inertia weight, 

social weight and individual weight must be one and all these weights should 

be greater than or equal to zero. 

We ran PSO-based feature selection module using default paramaters and the 

results are explained in Table 3.12.  

Table 3.12  PSO-based feature selection results 

 

Table 3.12 shows that feature selection using PSO is sligthly slower than GA 

but PSO can reduce the unimportant attributes much more than GA. For 

example, in Dexter datasets GA reduced the attributes from 20,000 to 6,111 in 

27 minutes 15 seconds while PSO reduced the attributes from 20,000 to only 

279 in 41 minutes 13 seconds.  

Leukemia                  7,130 109                   00:01:17

Embryonal Tumours                  7,130 202                   00:01:08

Dexter                20,000 279                   00:41:13

Internet_ads                  1,559 302                   00:04:50

Madelon                     501 5                       00:00:15

Musk                     168 16                     00:00:03

Spambase                       58 27                     00:00:03

SPECTF Heart                       45 9                       00:00:03

Intrusion                       42 8                       00:00:01

Datasets

Number of 

original 

attributes

Number of 

reduced 

attributes

Time to reduce the 

number of attributes 

(hh:mm:ss)

Feature selection using PSO
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3.5.4 Results analysis of GA and PSO as feature selection algorithms 

To compare the performance of GA and PSO more clearly, we summarized the 

GA and PSO results in  Table 3.13. Fraction of features (FF) is the ratio of the 

number of features used by the classifier to the total number of features in the 

dataset. The average FF of GA is 31.36% while the average FF of PSO is 13.47%. 

It means that PSO reduced the number of attributes much more than GA. In 

madelon dataset, PSO reduced the number of attributes from 501 to 5 (fraction 

of features= 1%) while GA reduced to 142 (FF=28.34). In 4 of 8 datasets, PSO 

has successfully reduced the number of attributes to less than 5% of their 

original attributes (embryonal tumours 2.83%, leukemia 1.53%, dexter 1.40% 

and madelon 1.00%).  

Table 3.13 The results comparison of GA and PSO feature selection 

 

Based on the execution time, GA is slightly faster than PSO. GA takes 34 

minutes and 10 seconds to select the important features of 9 datasets while 

PSO needs 48 minutes and 53 seconds. 

However, fraction of features (FF) and execution time are not the only 

performance indicator of feature selection algorithms. The low number of FF 

Leukemia              7,130             2,237 31.37% 00:00:50 109               1.53% 00:01:17

Embryonal Tumours              7,130                619 8.68% 00:00:35 202               2.83% 00:01:08

Dexter            20,000             6,133 30.67% 00:27:15 279               1.40% 00:41:13

Internet_ads              1,559                489 31.37% 00:05:02 302               19.37% 00:04:50

Madelon                 501                142 28.34% 00:00:18 5                   1.00% 00:00:15

Musk                 168                  66 39.29% 00:00:04 16                 9.52% 00:00:03

Spambase                   58                  29 50.00% 00:00:02 27                 46.55% 00:00:03

SPECTF Heart                   45                  11 24.44% 00:00:01 9                   20.00% 00:00:03

Intrusion                   42                  16 38.10% 00:00:03 8                   19.05% 00:00:01

Average FF Total time Average FF Total time

31.36% 00:34:10 13.47% 00:48:53

Feature selection using PSO

Number of 

reduced 

attributes

Fraction of features 

(FF)

Time to reduce 

the number of 

attributes 

(hh:mm:ss)

Datasets

Number of 

original 

attributes

Feature selection using GA

Number of 

reduced 

attributes

Fraction of 

features (FF)

Time to reduce 

the number of 

attributes 

(hh:mm:ss)
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and the low number of execution time are useless if the selected subsets 

reduce the classification accuracy. Therefore, we need to find feature selection 

algorithms which can reduce the number of attributes while in the same time 

maintain or improve the accuracy. 

In the following experiment, we applied four basic classifiers to the nine 

datasets which have been reduced by GA and PSO, then compare the results to 

the classification performance of original datasets.The results are shown in 

Table 3.14 and Table 3.15. 

Table 3.14  The classification performance of GA-reduced datasets 

 

NB and RI achieved the best results on 3 of 8 datasets while k-NN and DT 

achieved the best results on 1 dataset only. Even though with much less 

attributes,4 of 8 datasets have better classification performance than using full 

attributes. In the embryonal tumours dataset, rule induction (RI) has 

successfully increased the F-measure from 74.41% to 81.00% but with less 

attributes (from 7,130 original attributes reduced to 619 attributes).  

In dexter dataset, decision tree (DT) was slightly increased the F-measure from 

86.79% to 87.16% but with 31% of original attributes (the number of attributes 

was reduced from 20,000 to 6,133). In SPECTF heart dataset, naïve Bayes (NB) 

has also significantly increased the F-measure from 79.69% to 88.50% with 25% 

attributes (the number of attributes has been reduced by GA from 45 to 11). 

Unfortunately, all four classifiers were unable to improve the classification 

performance in 4 datasets: internet_ads (slightly dropped from 98.20% to 

98.07%), madelon (from 73.32% to 68.15%), musk (from 97.15% to 96.48%) and 

spambase (from 93.05% to 92.90%).  

Reduced by GA DT

#attributes F-measure F-measure F-measure F-measure

Leukemia                    2,237 98.31% 78.55% 81.16% 82.45%

Embryonal Tumours                       619 65.42% 78.82% 58.58% 81.00%

Dexter                    6,133 73.30% 60.04% 87.16% 81.84%

Internet_ads                       489 98.07% 78.49% 88.32% 95.02%

Madelon                       142 59.35% 65.23% 64.29% 68.15%

Musk                         66 95.23% 96.48% 91.96% 95.93%

Spambase                         29 80.34% 90.33% 91.69% 92.90%

SPECTF Heart                         11 88.50% 74.57% 73.24% 73.52%

Data set
NB k-NN RI
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The Table 3.15 shows the results of four basic classifiers applied to PSO-

reduced dataset. NB achieved the best classification performance on 4 of 8 

datasets, followed by DT (3 datasets) and k-NN (1 dataset). In this experiment, 

RI was not as good as other algorithms. PSO has successfully significantly 

reduced the number of attributes to 13% on average (GA is only 31% average). 

However, it does not always improve or maintain the classification 

performance, only 3 of 8 datasets have their performance improved. The 

accuracy of embryonal tumour dataset was improved from 74.41% to 76.61% 

with only 8% attributes, musk dataset was improved from 97.15% to 99.92% 

with 39% attributes and SPECTF heart dataset was improved from 79.69% to 

85.89% with 24% attributes. The other 5 datasets (leukemia, dexter, 

internet_ads, madelon and spambase) have their classification performance 

slightly reduced from 0.13% (spambase) to 12.81% (dexter). 

Table 3.15 The classification performance of PSO-reduced datasets 

 

We compare the running time of four basic classifiers on original datasets, GA-

reduced datasets and PSO-reduced datasets in Table 3.16. Even though kNN 

has the fastest learning time but it does not guarantee it has the fastest 

running time. Based on experiments using 9 datasets, Naive Bayes was the 

fastest algorithm with 4 seconds running time in average when applied in 

original datasets, 2 seconds in average when applied to GA-reduced dataset 

and 1 second in average on PSO-reduced datasets. The second fastest running 

time was kNN algorithms with 78 seconds in average on original datasets, 8 

seconds in average on GA-reduced dataset and 4 seconds in average on PSO-

reduced datasets.  

Reduced by PSO

#attributes F-measure F-measure F-measure F-measure

Leukemia                       109 96.55% 89.10% 69.12% 70.61%

Embryonal Tumours                       202 65.40% 70.74% 76.61% 68.34%

Dexter                       279 73.13% 73.98% 44.56% 70.72%

Internet_ads                       302 97.77% 73.18% 96.96% 95.12%

Madelon                           5 60.24% 64.25% 64.29% 63.07%

Musk                         16 99.92% 96.45% 91.65% 95.29%

Spambase                         27 90.29% 90.91% 92.92% 92.25%

SPECTF Heart                           9 85.89% 81.42% 77.77% 76.82%

DT
Data set

NB k-NN RI
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Table 3.16 The running time of four basic classifiers: NB, kNN, DT and RI  

 

 

Dataset Name
Number of 

instances

Number of 

attributes
NB kNN DT RI

Leukemia                72           7,130 1         1         1,484     899         

Embryonal Tumours                60           7,130 1         1         2,416     1,833      

Dexter 600             20,000        13       27       29,414   18,432    

Internet_ads 3,279          1,559          10       60       79          302         

Madelon 2,600          501            2         24       33          2,617      

Musk 6,598          168            2         59       33          7,032      

Spambase 4,601          58              1         11       136        111         

SPECTF Heart 80               45              1         1         1            1             

Intrusion 25,192        42              9         517     2,554     51           

4         78       4,017     3,475      

40       701     36,150   31,278    

Leukemia                72 2,237                       1            1              23              15 

Embryonal Tumours                60 619                          1            1              11                3 

Dexter 600             6,133                       5            6              57         2,573 

Internet_ads 3,279          489                          2            2                4              11 

Madelon 2,600          142                          1            2                9            821 

Musk 6,598          66                            2            8              11              58 

Spambase 4,601          29                            1            1              15              14 

SPECTF Heart 80               11                            1            1                1                1 

Intrusion 25,192        16                            1          53              73                9 

2         8         23          389         

15       75       204        3,505      

Leukemia                72 109                      1 1                     1              1 

Embryonal Tumours                60 202                      1           1             2              1 

Dexter 600             279                      1           1             2 113         

Internet_ads 3,279          302                      1           1             3              6 

Madelon 2,600          5                          1           1             1 88           

Musk 6,598          16                        1           2             2            16 
Spambase 4,601          27                        1           1            14            13 
SPECTF Heart 80               9                          1           1             1              1 
Intrusion 25,192        8                          1         26            15              2 

1         4         5            27           

9         35       41          241         

Average running time

Total  running time

Running time on PSO-reduced datasets (seconds)

Average running time

Total  running time

Average running time

Total  running time

Running time on original datasets (seconds)

Running time on GA-reduced datasets (seconds)



Chapter 3. Dimensionality Reduction Algorithms 

 54

Both DT and RI were very slow compare to NB and kNN especially when they 

applied to very big datasets. The average running time of RI was 3,472 

seconds when applied to original datasets but it dropped by 27 seconds only 

when applied to PSO-reduced datasets. DT has longer average running time 

than RI when applied to original datasets, it requires 4,017 seconds to run all 

original datasets. But it became a little bit faster than RI when applied to PSO-

reduced datasets with 5 seconds average running time. 

3.6 Summary 

We summarize all of the experiments in this chapter in the Table 3.17. In terms 

of dimensionality reduction or feature selection, PSO is much better than GA. 

PSO has successfully reduced the number of attributes of 9 datasets to 13.79% 

on average while GA is only 31.19% on average. The most extreme cases were 

in dexter dataset where PSO reduced the number of attributes to 1.40% (from 

20,000 to 279 attributes), and in the madelon dataset, PSO reduced the 

number of attribute to 1% (from 501 to 5 attributes). In terms of classification 

performance, GA is better than PSO. GA-reduced datasets have better 

performance than their original ones on 5 of 9 datasets while PSO is only 3 of 9 

datasets. In SPECTH heart dataset, GA has successfully improved the accuracy 

up to 8.81% (from 79.79% to 88.50%) by using only 24.44% of original 

attributes.  

However, feature selection algorithms do not always improve the classification 

performance, there are three datasets (internet_ads, madelon and spambase) 

that both GA and PSO failed to improve the performance. Therefore, we need 

to find other strategies to solve this problem. We need to apply more powerful 

classifiers to these reduced datasets (both by GA or PSO) rather than using 

basic classifiers such as naïve Bayes, k-nearest neighbour, decision tree and 

rule induction.  We will apply two different techniques to improve the 

classification performance by using ensemble classifiers (meta-learners) and 

support vector machine which will be discussed in the next two chapters. 

In term of running time, Table 3.16 has shown that applying four basic 

classifiers into reduced datasets were much faster than applying them into 

original datasets which have much more attributes.  
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Table 3.17 Summary of dimensionality reduction algorithms 

 
 

 

 

#attrib. Algorithm F Measure #attrib. FF Algorithm F Measure + / - #attrib. FF Algorithm F Measure + / -

Leukemia 7,130       NB 98.31%          2,237 31.37% NB 98.31% 0.00%          109 1.53% NB 96.55% -1.76%

Embryonal Tumours 7,130       NB 74.41%             619 8.68% RI 81.00% 6.59%          202 2.83% DT 76.61% 2.20%

Dexter 20,000     DT 86.79%          6,133 30.67% DT 87.16% 0.37%          279 1.40% k-NN 73.98% -12.81%

Internet_ads 1,559       NB 98.20%             489 31.37% NB 98.07% -0.14%          302 19.37% NB 97.77% -0.43%

Madelon 501          RI 73.32%             142 28.34% RI 68.15% -5.17%              5 1.00% DT 64.29% -9.03%

Musk 168          k-NN 97.15%               66 39.29% k-NN 96.48% -0.68%            16 9.52% NB 99.92% 2.77%

Spambase 58            RI 93.05%               29 50.00% RI 92.90% -0.15%            27 46.55% DT 92.92% -0.13%

SPECTF Heart 45            DT 79.69%               11 24.44% NB 88.50% 8.81%              9 20.00% NB 85.89% 6.21%

Intrusion 41            DT 99.48%               15 36.59% k-NN 99.70% 0.22%              9 21.95% k-NN 99.26% -0.22%

31.19% 13.79%

Feature Selection using GA Feature Selection using PSO
Data set

Full atributes
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The average running time of rule induction algorithm was reduced from 3,475 

seconds to 27 seconds when applied to PSO-reduced datasets. In similar case, 

the average running time of decision tree was also reduced from 4,017 

seconds to 5 seconds. 

Our experiments have shown that the fastest learning time was achieved by 

kNN algorithm with 0 second in average, followed by naive Bayes (0.25 second 

in average), decision tree (3.47 seconds in average) and rule induction (6.71 

seconds in average). Even though kNN has the fastest learning time, kNN’s 

average running time (78 seconds in average) was quite slower than naive 

Bayes (4 seconds in average) but it was much faster than decision tree (4,017 

second in average) and rule induction (3,475 in average). 

The total running time of 4 basic classifiers (NB, kNN, DT and RI) when applied 

to 9 original datasets was 68,169 seconds. The total running time dropped 

significantly by 3,799 seconds when these four classifiers applied to GA-

reduced datasets and was only 326 seconds in PSO-reduced datasets.   
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4. Ensemble Classifiers 

Ensemble classifiers are one of several techniques in machine learning where 

multiple classifiers are trained to solve the same problem. This technique 

constructs a set of classification models the combine them or select the best 

one to use. In this chapter, we applied ensemble classifiers to datasets which 

features are already reduced by GA and PSO,  and then we compared the 

ensemble classifiers performance with the results of basic classifers which 

applied to the original datasets. 

We divided the experiment into three steps: 

1. First, we applied four basic machine learning algorithms (NB, kNN, DT 

and RI) on three different datasets: original datasets, GA-reduced 

datasets and PSO-reduced datasets 

2. Second, we applied bagging algorithm to the GA-reduced datasets and 

PSO-reduced datasets 

3. Third, we applied boosting algorithm to the GA-reduced datasets and 

PSO-reduced datasets.  

The goal of this experiment is to find whether bagging and boosting when 

applied to the reduced dataset which has fewer dimension is able to achieve 

better performance than the basic classifiers applied to the full-features 

dataset. 

4.1 Basic Classifiers 

We applied four basic algorithms (NB, kNN, DT and RI) to eight high dimension 

datasets with three variations: full features datasets, GA-reduced datasets and 

PSO-reduced datasets. Table 4.1 shows that the use of basic classifiers on 

reduced datasets was not only able to reduce the computation time, but also it 

was able to improve the accuracy. For example, decision tree (DT) when 

applied to the embryonal tumour dataset which has 7,130 original features, 

the F-measure value was 58.68%. But when it was applied to similar dataset 

which the number of features reduced by PSO from 7,130 into 202, the F-

measure value was significantly increased to 81.15%.  
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Table 4.1 Classification performance of NB, kNN, DT and RI 

NB, kNN, DT and RI applied to original datasets 

Dataset  #attrib NB kNN DT RI 

Leukemia     7,130  98.31% 89.70% 78.73% 83.40% 

Embryonal Tumours     7,130  74.41% 67.06% 58.68% 74.05% 

Dexter   20,000  81.39% 86.63% 86.79% 83.23% 

Internet_ads     1,559  98.20% 91.45% 86.18% 95.00% 

Madelon        501  59.05% 64.90% 64.29% 73.32% 

Musk        168  93.67% 97.15% 92.57% 95.16% 

Spambase          58  82.90% 85.62% 92.59% 93.05% 

SPECTF Heart          45  79.49% 67.53% 79.69% 61.90% 

NB, kNN, DT and RI appliedto GA-reduced datasets 

Dataset #attrib NB kNN DT RI 

Leukemia 2,237 98.31% 78.55% 81.16% 82.45% 

Embryonal Tumours 619 65.42% 78.82% 58.58% 81.00% 

Dexter 6,133 73.30% 60.04% 87.16% 81.84% 

Internet_ads 489 98.07% 78.49% 88.32% 95.02% 

Madelon 142 59.35% 65.23% 64.29% 68.15% 

Musk 66 95.23% 96.48% 91.96% 95.93% 

Spambase 29 80.34% 90.33% 91.69% 92.90% 

SPECTF Heart 11 88.50% 74.57% 73.24% 73.52% 

NB, kNN, DT and RI appliedto PSO-reduced datasets 

Dataset  #attrib NB kNN DT RI 

Leukemia        109  96.55% 89.10% 69.12% 70.61% 

Embryonal Tumours        202  65.40% 70.74% 76.61% 68.34% 

Dexter        279  73.13% 73.98% 44.56% 70.72% 

Internet_ads        302  97.77% 73.18% 96.96% 95.12% 

Madelon            5  60.24% 64.25% 64.29% 63.07% 

Musk          16  99.92% 96.45% 91.65% 95.29% 

Spambase          27  90.29% 90.91% 92.92% 92.25% 

SPECTF Heart            9  85.89% 81.42% 77.77% 76.82% 

 

Another good example, naïve Bayes (NB) when applied to the musk dataset 

which has 168 original features, the F-measure value was 93.67%. When NB 

was applied to the GA-reduced dataset, the F-measure value was slightly 

increase to 95.23% eventhough the number of features were reduced from 168 

to 66. Furthermore, when NB was applied to PSO-reduced dataset where the 

number of features was reduced from 168 to 16, the F-measure value was 

significantly improved to 99.91%. 
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The PSO-reduced dataset is not always guarantee to have better accuracy or 

better in F-measure value. There was one case where the GA-reduced dataset 

was much better than PSO-reduced dataset. Decision tree (DT) when applied to 

the dexter full features dataset, the F-measure was 86.79%. When DT was 

applied to the same dataset which the number of features was reduced by PSO 

from 20,000 to 279, the F-measure was very bad (44.45%). In this case, the 

feature selection using PSO does not run well. When DT was applied to the 

dexter dataset which the number of features reduced by GA from 20,000 to  

6,133, the F-measure was slightly better (87.16%). 

However, there are two cases that the use of reduced datasets both GA and 

PSO could not improve the F-measure value. For example, when applying NB to 

the internet_ads full features dataset, the F-measure value was 98.20%. But 

when NB was applied to internet_ads where the number of features was 

reduced by GA from 1,559 to 489, the F-measure value becomes 98.07%. And 

when NB was applied to the same dataset where the number of features was 

reduced by PSO from 1,559 to 302, the F-measure values was slightly reduced 

to 97.77%. 

4.2 Bagging Ensemble Classifier 

The bagging learning process uses a different bootstrap sample which is 

randomly retrieved from the original data. A bootstrap sample is constructed 

by sub-sampling the training data with replacement where the size of 

bootstrap data is similar with the original one. Bagging is good to be applied to 

unstable algorithms where small changes in the training data highly affect their 

performance.  

We used a bagging operator provided by RapidMiner. The bagging 

operator is used to build a better model using the weak learner selected in its 

sub process. We used four basic machine learning algorithms (naïve Bayes, 

decision tree, nearest neighbour and rule induction) as base classifiers. The 

bagging process is explained in Figure 4.1. 
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Figure 4.1. Bagging Diagram Experiment 

The bagging operator in RapidMiner has 2 parameters: 

• Sample ratio: set the number of examples to be used for training, the 

default value is 0.9  

• Iteration: set the maximum number of iterations, the default value is 10 

 

We applied bagging to a dataset four times with four different base classifiers: 

NB, kNN, DT and RI using the default parameters. The learning time of bagging 

algorithm is shown in Table 4.2 

Table 4.2 The learning time of bagging algorithm 

 

 

NB kNN DT RI

Leukemia                72             7,130 0.39                0.02 0.62                1.43                

Embryonal Tumours                60             7,130 0.45                0 2.60                3.93                

Dexter 600             20,000         15.04              0.03 118.38            285.71            

Internet_ads 3,279          1,559           0.71                0.01 122.68            112.49            

Madelon 2,600          501              2.36                0.01 50.65              134.34            

Musk 6,598          168              1.79                0.02 6.65                107.34            

Spambase 4,601          58                0.33                0 4.14                20.50              

SPECTF Heart 80               45                0.17                0.02 0.52                0.44                

Intrusion 25,192        42                1.60                0.06 17.94              81.67              

2.54 0.02 36.02 83.09Average learning time

Learning Time (second)

Dataset Name
 Number of 

instances 

 Number of 

attributes 
Bagging with base classifier NB, kNN, DT and RI
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As explained in the previous chapter, kNN algorithm does not require learning 

time, as consequence the bagging-kNN learning time is also almost zero for all 

datasets. The second fastest learning time is bagging-NB which has 2.54 

seconds in average, followed by bagging-DT in third place with 36.02 seconds 

average learning time. The slowest learning time is bagging-RI which has 83.09 

seconds in average.  

 

To analyze the performance of bagging algorithm, we conduct many 

experimentswhich divided into 2 steps; the first one we use 8 datasets which 

features has been reduced by GA algorithm while the second one was reduced 

by PSO algorithm.The results of bagging experiment are shown in Table 4.3 for 

GA-reduced datasets and in Table 4.4 for PSO-reduced datasets. In Leukemia 

dataset, the highest F-measure score was achieved by bagging-NB with F-

measure of 98.57%. This result was exactly the same as the results of naive 

Bayes as single classifier when applied to GA-reduced dataset. In this case, 

bagging did not improve the classification performance. In embryonal tumours 

dataset, the best results was achieved by bagging-DT when applied to PSO-

reduced dataset (202 attributes) where the F-measure score=81.15%. This 

result was much better than applying decision tree on original dataset (7.130 

attributes) where the F-measure=58.58%. 

 

Table 4.3 shows that the use of bagging on GA-reduced datasets is not always 

guarantee better than the use of single classifier. The bagging-NB algorithm 

when applied to the SPECTF Heart dataset which reduced by GA (consists of 11 

attributes) has achieved the best result with F-measure = 89.22%.  This result is 

slightly better than the use of NB as a single classifier which has an F-measure 

of 88.50%.  Furthermore, this result is also much better than the use of NB (as 

a single classifier) on the SPECTF Heart full-features dataset (consists of45 

attributes) which achieve F-measure of 79.49%.  

In the madelon dataset, the use of bagging-RI is also able to achieve the best 

result with F-measure=73.79% even though the number of features was 

significantly reduced by GA from 501 attributes to 142 attributes. This result is 

slightly better compare to the use of RI (as a single classifier) on full-features 

datasets (consists of 501 attributes) which has an F-measure of 73.32%. 
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Table 4.3 Classification performance of Bagging on GA-reduced datasets 

 

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

98.57% 100.00% 96.67% 87.32% 91.67% 70.00% 90.36% 92.50% 79.17% 89.11% 90.17% 84.17%

58.33% 74.17% 55.83% 66.67% 72.67% 77.50% 58.33% 67.50% 68.33% 70.00% 72.67% 89.17%

71.17% 69.75% 78.67% 72.00% 97.82% 45.00% 85.00% 84.49% 87.67% 86.33% 86.50% 86.33%

96.46% 96.85% 99.11% 68.83% 96.80% 65.92% 71.91% 95.93% 70.36% 91.22% 91.22% 99.36%

60.42% 60.92% 58.31% 66.50% 67.22% 64.38% 50.00% 50.00% 50.00% 74.38% 75.77% 71.92%

92.24% 99.05% 91.70% 93.94% 97.40% 95.38% 87.09% 86.84% 100.00% 93.33% 93.02% 99.61%

79.68% 96.84% 68.72% 88.68% 91.95% 89.13% 90.87% 89.35% 96.49% 91.68% 91.27% 95.41%

87.50% 86.17% 92.50% 71.25% 66.88% 85.00% 81.25% 84.33% 77.50% 78.75% 84.67% 75.00%

89.02% 90.65% 85.27% 99.77% 99.80% 99.69% 99.31% 99.55% 98.95% 92.21% 92.00% 91.22%

80.08%

86.41%

95.12%

73.79%

96.20%

90.52%

74.86%

99.74%

67.91%

86.05%

81.18%

50.00%

92.96%

92.78%

80.77%

99.25%

75.01%

61.64%

96.38%

93.29%

79.54%

87.88%

Datasets

Bagging -Naive Bayes

F Measure

63.71%

73.94%

97.97%

59.59%

95.23%
6

7

8

9

Musk

Spambase

SPECTF Heart

91.61%

85.32%

Bagging - Decision Tree

5

Leukemia

Embryonal Tumours

Dexter

Internet_ads

Madelon

98.31%

Bagging Nearest Neighbour

F Measure F Measure

Bagging - Rule Induction

F Measure

79.38% 87.07%

78.43%

65.77%

Intrusion

80.39%

89.22%

1

2

3

4
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Table 4.4 Classification performance of Bagging on PSO-reduced datasets 

 

 

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

98.57% 96.67% 100.00% 91.79% 91.00% 85.00% 79.11% 70.83% 67.50% 87.68% 92.67% 75.83%

60.00% 70.83% 60.83% 65.00% 75.17% 75.00% 73.33% 78.33% 84.17% 66.67% 70.83% 85.00%

75.67% 83.03% 64.67% 71.83% 72.17% 72.00% 64.33% 100.00% 28.67% 75.83% 80.31% 69.33%

96.10% 96.39% 99.18% 63.28% 97.87% 58.62% 94.75% 94.50% 99.72% 91.22% 91.22% 99.36%

60.77% 61.13% 59.00% 63.35% 63.11% 64.46% 50.00% 50.00% 50.00% 67.38% 67.77% 66.77%

99.86% 99.87% 99.96% 94.35% 96.87% 96.43% 84.59% 84.59% 100.00% 92.62% 92.61% 99.19%

88.57% 95.08% 85.58% 89.22% 91.63% 90.49% 91.52% 89.86% 96.99% 92.33% 92.19% 95.44%

86.25% 84.17% 92.50% 77.50% 73.55% 90.00% 76.25% 73.50% 85.00% 78.75% 77.17% 85.00%

86.48% 92.64% 77.14% 99.27% 99.65% 98.78% 98.63% 99.71% 97.35% 92.21% 92.00% 91.22%

91.61%
9 Intrusion

84.18% 99.21% 98.52%

93.79%

8 SPECTF Heart
88.14% 80.95% 78.83% 80.90%

7 Spambase
90.08% 91.06% 93.29%

67.27%

6 Musk
99.91% 96.65% 91.65% 95.79%

5 Madelon
60.05% 63.78% 50.00%

74.42%

4 Internet_ads
97.77% 73.32% 97.04% 95.12%

3 Dexter
72.71% 72.08% 44.56%

83.41%

2 Embryonal Tumours
65.45% 75.08% 81.15% 77.27%

1 Leukemia
98.31% 87.90% 69.12%

Bagging - Rule Induction

F Measure F Measure F Measure F Measure

Datasets

Bagging -Naive Bayes Bagging Nearest Neighbour Bagging - Decision Tree
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In GA-reduced musk dataset which has 66 attributes, the best F-measure score 

was achieved by bagging-kNN with F-measure of 96.38%. Interestingly, the 

bagging result especially bagging-naïve Bayes was much better when applied 

to PSO-reduced musk dataset which has only 16 attributes where the F-

measure score was 99.91%. 

In GA-reduced datasets, the best F-scores were achieved by bagging-RI in 4 of 

9 datasets, followed by bagging-NB (3 of 9 datasets) and bagging-kNN (2 of 9 

datasets). The bagging-DT did not perform as well as others. However, in PSO-

reduced datasets the ranking was quite different. The best F-scores were 

achieved by bagging-NB in 4 of 9 datasets, followed by bagging-RI (3 of 9 

datasets). Bagging-kNN and bagging-DT had the best results in only 1 dataset 

each. 

4.3 Boosting Ensemble Classifier  

The boosting algorithm uses a majority vote on top of the prediction of the 

base learners. Boosting consists of sequential production of classifiers where 

each classifier is dependent of the previous one; hence it trains one base 

classifier at a time. Boosting focuses on the previous classifier’s errors. 

Instances or data which are predicted incorrectly are given higher weight, so 

they will be selected more often. In contrast, instances that are predicted 

correctly will have lower weights. 

Boosting is actually a family of algorithms since there are many variants. One 

of the most popular boosting algorithms is AdaBoost which short for “Adaptive 

Boosting” (Graczyk et al., 2010)(Syarif et al., 2012c). AdaBoost is an algorithm 

for constructing a strong classifier as linear combination of simple or weak 

classifiers. This algorithm adapts weights on the base learners and training 

examples. It constructs classifier in an iterative process.In each iteration, 

AdaBoost executes a base leaner which then returns a classifier with its weight. 

The final classification will be decided based on the weight of the base 

classifiers. If the base classifier has smaller error, it will have higher weight in 

the final vote and vice versa. The AdaBoost algorithm is explained in Figure 

4.2. 
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Figure 4.2 AdaBoost Algorithm 

 
We used one of several bagging operators in RapidMiner called AdaBoost which 

only has 1 parameter called ‘iteration’. This parameter is used to set the 

maximum number of iterations, the default value is 10. We applied AdaBoost 

algorithm to each dataset four times with four different base classifiers: NB, 

kNN, DT and RI using default parameter. The diagram of boosting experiment 

is described in the Figure 4.3. 

 

 

Figure 4.3 Boosting Experiments Diagram 
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The learning time of AdaBoost algorithm is shown in Table 4.7. 

Table 4.5 The learning time of boosting algorithm 

 

 

Unlike kNN as a single classifier and kNN as base classifier of bagging 

algorithm that have almost zero learning time, AdaBosst-kNN has the slowest 

learning time. When we applied AdaBoost-kNN into 9 different datasets, the 

average learning time is 142.04 seconds which is the slowest compare other 

three boosting methods. AdaBoost-NB has the fastest learning time with 21.10 

seconds in average, followed by AdaBoost-RI in second place with 52.51 

seconds in average and then AdaBoost-DT in third place with 58.49 seconds in 

average. 

 

To analyze the classification performance of boosting algorithm, we conduct 

several experiments which divided into 2 steps; the first one we use 8 datasets 

which features has been reduced using GA algorithms while the second one 

was reduced using PSO algorithm.The results of AdaBoost experiment are 

shown in Table 4.6 for GA-reduced datasets and in Table 4.7 for PSO-reduced 

datasets. In experiments using GA-reduced datasets (Table 4.6), boosting-NB 

outperformed other algorithms in 4 of 9 datasets, followed by boosting-kNN 

which had the best results in 4 of 9 datasets. In other experiments using PSO-

reduced datasets, once again boosting-NB outperformed other algorithms in 4 

of 9 datasets, followed by boosting-RI which had the best results in 3 of 9 

datasets. 

AdaBoost 

NB

AdaBoost 

kNN

AdaBoost 

DT

AdaBoost 

RI

Leukemia                72            7,130 0.36           0.27 1.98           2.52           

Embryonal Tumours                60            7,130 1.26           0.14 2.57           2.92           

Dexter 600             20,000         143.05       61.03 143.15       262.24       

Internet_ads 3,279          1,559           18.29         133.63 301.44       75.97         

Madelon 2,600          501              9.72           20.89 60.15         31.00         

Musk 6,598          168              8.17           15.23 0.67           63.32         

Spambase 4,601          58                0.65           61.41 3.95           4.71           

SPECTF Heart 80               45                0.85           0.32 0.75           0.63           

Intrusion 25,192        42                7.58           985.47 11.79         29.26         

21.10 142.04 58.49 52.51Average learning time

Learning Time (second)

Dataset Name
 Number of 

instances 

 Number of 

attributes 

Boosting Algorithm
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Table 4.6 Classification performance of Boosting on GA-reduced datasets 

 

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

98.57% 100.00% 96.67% 90.00% 91.67% 80.00% 80.54% 72.00% 75.00% 95.71% 100.00% 85.00%

66.67% 71.00% 81.67% 71.67% 79.00% 82.50% 61.67% 69.50% 74.17% 70.00% 72.00% 86.67%

71.67% 68.95% 79.00% 71.17% 97.75% 43.43%

95.58% 97.18% 7.69% 68.86% 96.82% 65.96% 94.33% 94.18% 99.57% 90.55% 90.57% 99.40%

59.62% 59.31% 61.46% 66.38% 67.10% 64.62% 50.00% - 0.00% 65.77% 66.15% 64.69%

99.88% 99.93% 99.93% 93.97% 97.32% 95.50% 85.28% 85.22% 100.00% 97.89% 97.91% 99.64%

79.64% 96.74% 68.72% 88.63% 91.75% 89.31% 89.70% 89.54% 94.01% 93.35% 94.60% 94.44%

81.25% 91.00% 72.50% 71.25% 71.83% 80.00% 77.50% 83.00% 72.50% 72.50% 72.67% 72.50%

93.81% 92.58% 94.27% 99.73% 99.75% 99.68% 99.28% 99.39% 99.06% 99.41% 99.45% 99.29%

F Measure F Measure F Measure

1

Datasets

Boosting -Naive Bayes Boosting Nearest Neighbour Boosting - Decision Tree Boosting - Rule Induction

F Measure

Leukemia
98.31% 85.44% 73.47% 91.89%

78.66%

3 Dexter
73.63% 60.14% 0.00% 0.00%

2
Embryonal 

Tumours 75.96% 80.71% 71.76%

94.78%

5 Madelon
60.37% 65.84% 0.00% 65.41%

4 Internet_ads
14.25% 78.46% 96.80%

98.77%

7 Spambase
80.36% 90.51% 91.72% 94.52%

6 Musk
99.93% 96.40% 92.02%

72.58%

9 Intrusion
93.42% 99.71% 99.22% 99.37%

8 SPECTF Heart
80.70% 75.70% 77.40%
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Table 4.7 Classification performance of Boosting on PSO-reduced datasets 

 

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

98.57% 96.67% 100.00% 93.04% 93.00% 86.67% 84.82% 85.00% 71.67% 83.04% 83.33% 67.50%

61.67% 71.50% 69.17% 61.67% 69.33% 72.50% 60.00% 70.00% 71.67% 65.00% 72.17% 76.67%

73.67% 77.51% 69.33% 73.83% 74.18% 73.33% 62.67% 95.58% 33.00% 72.00% 76.69% 64.67%

95.88% 96.80% 98.48% 63.65% 97.90% 59.01% 94.66% 94.40% 99.72% 91.22% 91.22% 99.36%

62.04% 60.80% 67.77% 63.81% 63.70% 64.23% 50.00% - 0.00% 64.96% 65.05% 64.85%

99.95% 99.98% 99.96% 94.30% 96.81% 96.45% 84.59% 84.59% 100.00% 98.77% 98.92% 99.64%

88.87% 95.06% 86.12% 89.52% 91.74% 90.92% 90.76% 89.79% 95.66% 93.00% 94.17% 94.30%

87.50% 86.50% 90.00% 80.00% 77.50% 90.00% 82.50% 80.55% 90.00% 76.25% 78.50% 77.50%

86.75% 92.98% 77.44% 99.24% 99.61% 98.77% 98.54% 99.62% 97.23% 98.36% 98.80% 97.67%

Datasets

Boosting - Naive Bayes Boosting - Nearest Neighbour Boosting - Decision Tree Boosting - Rule Induction

F Measure F Measure F Measure F Measure

74.58%

2
Embryonal 

Tumours 70.32% 70.88% 70.83% 74.35%

1 Leukemia
98.31% 89.72% 77.77%

0.00%

4 Internet_ads
97.63% 73.64% 96.99% 95.12%

3 Dexter
73.19% 73.75% 0.00%

64.95%

6 Musk
99.97% 96.63% 91.65% 99.28%

5 Madelon
64.10% 63.96% 0.00%

98.23%
9 Intrusion

84.50% 99.19% 98.41%

94.23%

8 SPECTF Heart
88.22% 83.28% 85.01% 78.00%

7 Spambase
90.37% 91.33% 92.63%
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In musk dataset, boosting-NB achieved the best F-measure score of 99.93% 

when applied to GA-reduced dataset which has 168 attributes. Interestingly, 

boosting-NB had a better F-measure score of 99.97% when applied to PSO-

reduced dataset which has 16 attributes only. It also happened to internet_ads 

dataset, boosting-DT had F-measure score of  96.80% when applied to GA-

reduced dataset which has 1,559 attributes, but boosting-NB had better F-

measure score of 97.63 when applied to PSO-reduced dataset  which has 302 

attributes only. 

4.4 Summary 

We compare the performance of bagging and boosting based on learning time 

(time to build a classification model) and classification performance. Table 4.8 

shows that boosting was much slower than bagging. Naïve Bayes as a single 

classifier only needs learning time of 0.25 seconds in average, bagging-NB 

requires 2.54 seconds and boosting-NB needs 21.10 seconds. kNN and 

bagging-kNN have an almost zero learning time, in contrast boosting-kNN have 

the longest learning time with 142.04 seconds in average. 

Decision tree as a single classifier has the longest learning time with 6.71 

seconds in average. Among four bagging base classifiers, bagging-RI also has 

the longest learning time with 83.09 seconds in average. Overall, boosting is 

much slower than bagging in term on learning time. 

Table 4.8 shows that the feature selection algorithms work well on almost all 

(7 of 8) datasets even with fewer attributes. Only in 1 dataset (internet_ads), 

the F-measure was slightly decreased from 98.20% (with 1,559 original 

features) to 98.07% (GA-reduced dataset with 489 features) and 97.77% (PSO-

reduced dataset with 302 features). We summarized the results of all bagging 

and boosting experiments in Table 4.9. 
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Table 4.8 Learning time of single base classifier, bagging and boosting 

 

 

 

NB k-NN DT RI
Bagging 

NB

Bagging 

kNN

Bagging 

DT

Bagging 

RI

AdaBoost 

NB

AdaBoost 

kNN

AdaBoost 

DT

AdaBoost 

RI

Leukemia 0.09            0 0.33           0.33           0.39           0.02 0.62          1.43         0.36            0.27 1.98           2.52           

Embryonal Tumours 0.08            0 0.39           0.61           0.45           0 2.60          3.93         1.26            0.14 2.57           2.92           

Dexter 1.38            0 8.60           16.11         15.04         0.03 118.38      285.71     143.05        61.03 143.15        262.24       

Internet_ads 0.10            0 16.78         16.99         0.71           0.01 122.68      112.49     18.29          133.63 301.44        75.97         

Madelon 0.17            0 2.40           5.99           2.36           0.01 50.65        134.34     9.72            20.89 60.15          31.00         

Musk 0.22            0 0.86           13.43         1.79           0.02 6.65          107.34     8.17            15.23 0.67           63.32         

Spambase 0.05            0 0.42           1.28           0.33           0 4.14          20.50       0.65            61.41 3.95           4.71           

SPECTF Heart 0.10            0 0.30           0.16           0.17           0.02 0.52          0.44         0.85            0.32 0.75           0.63           

Intrusion 0.10            0 1.12           5.53           1.60           0.06 17.94        81.67       7.58            985.47 11.79          29.26         

Average learning 

time
0.25 0.00 3.47 6.71 2.54 0.02 36.02 83.09 21.10 142.04 58.49 52.51

Dataset Name

Learning Time (second)

Single Classifier Bagging Algorithm Boosting Algorithm
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Table 4.9 Summary of bagging and boosting performance  

 

NB kNN DT RI NB kNN DT RI NB kNN DT RI

Leukemia 98.31% 89.70% 78.73% 83.40% 98.31% 79.38% 85.32% 87.07% 98.31% 87.90% 69.12% 83.41%

Emb. Tumours 74.41% 67.06% 58.68% 74.05% 63.71% 75.01% 67.91% 80.08% 65.45% 75.08% 81.15% 77.27%

Dexter 81.39% 86.63% 86.79% 83.23% 73.94% 61.64% 86.05% 86.41% 72.71% - 44.56% 74.42%

Internet_ads 98.20% 91.45% 86.18% 95.00% 97.97% 78.43% 81.18% 95.12% 97.77% 73.32% 97.04% 95.12%

Madelon 59.05% 64.90% 64.29% 73.32% 59.59% 65.77% 50.00% 73.79% 60.05% 63.78% 50.00% 67.27%

Musk 93.67% 97.15% 92.57% 95.16% 95.23% 96.38% 92.96% 96.20% 99.91% 96.65% 91.65% 95.79%

Spambase 82.90% 85.62% 92.59% 93.05% 80.39% 90.52% 92.78% 93.29% 90.08% 91.06% 93.29% 93.79%

SPECTF Heart 79.49% 67.53% 79.69% 61.90% 89.22% 74.86% 80.77% 79.54% 88.14% 80.95% 78.83% 80.90%

Intrusion 89.47% 99.14% 99.47% 91.61% 87.88% 99.74% 99.25% 91.61% 84.18% 99.21% 98.52% 91.61%

NB kNN DT RI NB kNN DT RI NB kNN DT RI

Leukemia 98.31% 89.70% 78.73% 83.40% 98.31% 85.44% 73.47% 91.89% 98.31% 89.72% 77.77% 74.58%

Emb. Tumours 74.41% 67.06% 58.68% 74.05% 75.96% 80.71% 71.76% 78.66% 70.32% 70.88% 70.83% 74.35%

Dexter 81.39% 86.63% 86.79% 83.23% - - 62.07% - 73.19% 73.75% 49.06% 70.17%

Internet_ads 98.20% 91.45% 86.18% 95.00% 14.25% 78.46% 96.80% 94.78% 97.63% 73.64% 96.99% 95.12%

Madelon 59.05% 64.90% 64.29% 73.32% 60.37% 65.84% - 65.41% 64.10% 63.96% - 64.95%

Musk 93.67% 97.15% 92.57% 95.16% 99.93% 96.40% 92.02% 98.77% 99.97% 96.63% 91.65% 99.28%

Spambase 82.90% 85.62% 92.59% 93.05% 80.36% 90.51% 91.72% 94.52% 90.37% 91.33% 92.63% 94.23%

SPECTF Heart 79.49% 67.53% 79.69% 61.90% 80.70% 75.70% 77.40% 72.58% 88.22% 83.28% 85.01% 78.00%

Intrusion 89.47% 99.14% 99.47% 91.61% 93.42% 99.71% 99.22% 99.37% 84.50% 99.19% 98.41% 98.23%

Dataset
Single Classifier on original datasets

Boosting

GA-reduced datasets PSO-reduced datasets

Dataset
Single Classifier on original datasets

Bagging

GA-reduced datasets PSO-reduced datasets
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In leukemia dataset, the NB algorithm when applied to full features dataset 

with 7,130 attributes achieved 98.31% F-measure. Interestingly, the F-measure 

score is still the same (98.31%) when NB applied to the GA-reduced dataset 

with less attributes (2,237 attributes).  

The use of bagging-NB or boosting-NB to PSO-reduced dataset is successfully 

able to maintain the F-measure score (98.31%) even though with much less 

attributes (109 attributes). In the other six datasets (E. tumours, dexter, 

madelon, musk, spambase and SPECTF heart), the use of reduced-datasets is 

able to improve the classification accuracy as well as to reduce the 

computation time. 

Bagging achieved the best results on 4 of 9 datasets: emb. tumours (81.15%), 

madelon (73.79%), SPECTF heart (89.22%) and intrusion (99.74%). Boosting 

achieved the best results in only 2 of 9 datasets: musk (99.97%) and spambase 

(94.52%). Overall, ensemble classifiers (both bagging and boosting) 

outperformed single classifier in 6 of 9 datasets. 
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5. Support Vector Machine and Parameter 

Optimization 

 

This chapter focuses on the application of SVM on various high dimensional 

datasets. To build a powerful SVM model, we need to know how to pre-process 

the data, what kernel to use and most importantly is how to set the SVM 

parameters. The SVM kernels and their regularization parameters are called the 

hyper-parameters of SVM. 

We conduct several SVM experiments, first we applied SVM using default 

parameters then we investigate the effects of normalization and its affect to 

the SVM performance. After that, we implement SVM parameter optimization 

with grid search and more sophisticated technique such as evolutionary 

algorithm.  

5.1 SVM with default parameters and un-scaled data 

There are a lot of SVM variations since it was firstly developed by Vapnik 

(Cortes and Vapnik, 1995). We compared some SVM implementation such as  

mySVM3 developed by Stefan Ruping, Sequential Minimal Optimization (SMO) 

developed by John Platt (Platt, 1999) and LibSVM developed by Chang and Lin 

(Chang and Lin, 2011). Our initial experiment showed that actually all of these 

SVM applications have given satisfactory results in terms of accuracy but only 

LibSVM has an ability and stability to handle very large datasets such as dexter 

dataset (20,000 attributes), leukemia dataset (7,130 attributes), embryonal 

tumour (7,130 attributes), etc. Therefore, we decided to use LibSVM (Chang 

and Lin, 2011) for our experiments which has been integrated to Weka and 

RapidMiner data mining tools. 

                                           

3
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html 
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We used nine high-dimensional datasets and applied 10-fold crossed 

validation. In each dataset, we applied SVM with four different kernels (linear, 

RBF, polynomial and sigmoid kernel).  

Table 5.1 LibSVM default parameters 

Parameters Kernels Type Default 

C linear, RBF, sigmoid, polynomial real 0.0  ^	(gamma) RBF, sigmoid, polynomial real 0.0  

degree polynomial integer 3  

 

In LibSVM module both in RapidMinar and Weka, the linear kernel has several 

parameters but the most important is C (cost), the penalty parameter of the 

error.  The default value of C is 0. For a large value of C, a large penalty is 

assigned to margin errors while a smaller value of C allows to ignore points 

close to the boundary and increases the margin. 

The RBF kernel and sigmoid kernel have 2 important parameters: C and 

^	(gamma). The value of ^ strongly affects the classification performance of 

SVM model. The default value of ^is 0. The polynomial kernel has more 

parameters than other kernels but the most important ones are C, ^and degree 

(the default value is 3). 

In the first experiment, we applied LibSVM to 9 datasets without normalisation 

or scaling and the results are shown in Table 5.2. 

Table 5.2 The results of SVM with default parameters and un-scaled data 

 

 

Linear RBF Polynomial Sigmoid

F Measure F Measure F Measure F Measure

1 Leukemia 74.11% 84.25% 80.94% 66.67%

2 Embryonal Tumours 74.50% 76.67% 74.50% 76.67%

3 Dexter 74.92% 68.70% 63.00% 53.18%

4 Internet_ads 96.81% 92.19% 96.81% 95.08%

5 Madelon 61.45% 65.59% 60.55% 66.67%

6 Musk 91.29% 96.58% 93.03% 78.74%

7 Spambase 79.70% 84.91% 73.90% 64.84%

8 SPECTF Heart 74.11% 84.25% 80.94% 66.67%

9 Intrusion NSLKDD 26.70% 94.41% 40.03% 84.44%

SVM kernels

No
PSO-reduced 

datasets
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From nine datasets, the RBF kernel achieved the best results on 5 datasets 

(leukemia 84.25%, embryonal tumours 76.67%, spambase 84.91%, SPECTF 

heart 84.25% and intrusion 94.41). Compared to other kernels, the RBF kernel 

is able to handle un-scaled or un-normalized data much better. Linear, 

polynomial and sigmoid kernel achieved the best results in 2 datasets only. 

5.2 The effect of normalization 

In order to achieve higher accuracy rates, it is very important to do 

standarization or Z-score normalization or scaling to avoid attributes with 

greater numeric ranges dominating other attributes with smaller ranges. It is 

also useful to avoid numerical difficulties during the calculation because kernel 

values highly depend on the inner products of feature vectors, therefore large 

attribute values might cause numerical errors. In many datasets, the available 

attributes are continuous type, where each attribute is measured in a different 

scale and has a different set of possible values. In this case, scaling or 

normalization will convert all attributes into the same scale using this following 

formula: 

 > = x − 	μσ  (5.1) 

where x is a data point, μ is the mean (average), σ is the standard deviation 

from the mean and z is the value after normalization. 

We ran another experiment, similar to the previous one (Table 5.2) but now 

with scaled or normalized datasets and the results are shown in Table 5.3. In 

the previous experiment, RBF kernel achieved the best results on 5 of 9 un-

scaled datasets, but in the latest experiment with scaled/normalized datasets 

linear kernel achieved the best results on 6 of 9 datasets. RBF kernel has the 

best results on intrusion dataset only. The results comparison between before 

and after normalization is explainedin more details in Table 5.4. 

Table 5.4 shows that the linear kernel is very sensitive to the un-scaled or un-

normalized dataset. Scaling or normalization significantly improved the 

performance especially in linear kernel as well as polynomial and sigmoid 

kernel. The highest improvement of linear kernel performance is on the 
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intrusion dataset where the F-measure increased from 26.70% to 88.38% 

(61.69% improvement), followed by leukemia (24.31% improvement), SPECT 

heart (15% improvement), spambase (12.77% improvement), musk (8.57% 

improvement) and embryonal tumours (2.17% improvement).The other three 

datasets (dexter, internet_ads and madelon) did not have significant 

improvement because they are already scaled or normalized. 

Table 5.3 The SVM results on normalized data 

 

 

Overall, normalization increases the performance of linear kernel to 13.94% in 

average, polynomial kernel is 6.01% in average and sigmoid kernel is 10.89% in 

average. In contrast, normalisation could not improve the performance of RBF 

kernel. There are only 3 of 9 datasets (leukemia, internet_ads and spambase) 

that have slightly improvements, 1 dataset (dexter) has the same accuracy and 

5 other datasets (embryonal tumours, madelon, musk, SPECTF heart and 

intrusion) have worse performance. Overall the performance of RBF kernel on 

scaled data was -5.08%. Based on a report published by Li  (Li et al., 2012), RBF 

kernel is a kind of normalized kernel function, therefore this kernel does not 

need a normalization on input dataset.  

Linear RBF Polynomial Sigmoid

F Measure F Measure F Measure F Measure

1 Leukemia 98.41% 89.82% 98.41% 96.27%

2 Embryonal Tumours 76.67% 75.05% 76.67% 74.89%

3 Dexter 74.92% 68.70% 63.00% 53.18%

4 Internet_ads 97.41% 97.27% 95.88% 95.08%

5 Madelon 61.83% 57.13% 57.04% 62.04%

6 Musk 99.87% 89.73% 94.97% 99.83%

7 Spambase 92.46% 88.14% 74.48% 92.56%

8 SPECTF Heart 89.11% 82.71% 69.29% 89.11%

9 Intrusion NSLKDD 88.38% 89.33% 88.07% 88.02%

SVM kernels

No
PSO-reduced 

datasets



Chapter 5. SVM and Parameter Optimization 

 77  

 

Table 5.4 The effect of normalization to the SVM’s classification performance 

 

 

 

before after +/- before after +/- before after +/- before after +/-

1 Leukemia 74.11% 98.41% 24.31% 84.25% 89.82% 5.57% 80.94% 98.41% 17.48% 66.67% 96.27% 29.60%

2 Embryonal Tumours 74.50% 76.67% 2.17% 76.67% 75.05% -1.61% 74.50% 76.67% 2.17% 76.67% 74.89% -1.78%

3 Dexter 74.92% 74.92% 0.00% 68.70% 68.70% 0.00% 63.00% 63.00% 0.00% 53.18% 53.18% 0.00%

4 Internet_ads 96.81% 97.41% 0.60% 92.19% 97.27% 5.08% 96.81% 95.88% -0.93% 95.08% 95.08% 0.00%

5 Madelon 61.45% 61.83% 0.38% 65.59% 57.13% -8.46% 60.55% 57.04% -3.51% 66.67% 62.04% -4.63%

6 Musk 91.29% 99.87% 8.57% 96.58% 89.73% -6.85% 93.03% 94.97% 1.94% 78.74% 99.83% 21.09%

7 Spambase 79.70% 92.46% 12.77% 84.91% 88.14% 3.23% 73.90% 74.48% 0.58% 64.84% 92.56% 27.72%

8 SPECTF Heart 74.11% 89.11% 15.00% 84.25% 82.71% -1.54% 80.94% 69.29% -11.65% 66.67% 89.11% 22.44%

9 Intrusion NSLKDD 26.70% 88.38% 61.69% 94.41% 89.33% -5.08% 40.03% 88.07% 48.05% 84.44% 88.02% 3.58%

13.94% -1.07% 6.01% 10.89%

No
PSO-reduced 

datasets

Linear RBF Polynomial Sigmoid
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5.3 SVM parameter optimization 

The largest problems encountered in setting up the SVM model are how to 

select the kernel function and its parameter values. Inappropriate parameter 

settings lead to poor classification results (Keerthi & Lin, 2003). Furthermore, 

current SVM algorithm can not easily handle high dimensional datasets.  A 

standard SVM algorithm requires solving linear or quadratic program, 

Therefore, there is a need to improve this basic SVM algorithm in order to 

improve its ability to handle high dimensional datasets. 

To improve the SVM performance, we conducted various experiments where we 

independently test each kernel and tune its parameters. The design of SVM 

parameter optimization module is shown in Figure 5.1 below. 

 

Figure 5.1 The design of the SVM parameter optimization module 

The SVM parameter optimization is the problem of selecting a set of hyper-

parameters for an SVM algorithm with the goal of obtaining the best 
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generalization. The accuracy results are very sensitive to kernel parameters 

especially C and ^. To get the proper values of C and ^, we need to 

simultaneously optimize both C and ^ since optimal C typically depends on ^ 

and other parameters. 

In this research, we used grid search and evolutionary algorithms to optimize 

the SVM parameters. 

5.3.1 Grid search 

The grid search is originally an exhaustive search based on defined subset of 

the hyper-parameter space. The hyper-parameters are specified using minimal 

value (lower bound), maximal value (upper bound) and number of steps. There 

are four different scales that can be used: linear scale, quadratic scale, 

logarithmic scale and logarithmic legacy scale. The performance of every 

combination is evaluated using some performance metrics. 

Grid search optimizes the SVM parameters (C, ^, degree, etc.) using a cross 

validation (CV) technique as a performance metric. The goal is to identify good 

hyper-parameter combination so that the classifier can predict unknown data 

accurately. According to (Chang and Lin, 2011), the cross-validation technique 

can prevent the over-fitting problem. 

To choose C and ^ using k-fold CV, we first split the available data into k 

subsets (in most experiments we set k=10). One subset is used as a testing 

data and then evaluated using the remaining k-1 training subsets. Then we 

calculate the CV error using this split error for the SVM classifier using 

different values of C, ^and other parameters. Various combination of hyper-

parameters value are entered and the one with the best cross-validation 

accuracy (or the lowest CV error) is selected and used to train an SVM on the 

whole dataset. 

In linear kernel there is only one important parameter to be optimized which is 

C, in RBF kernel and sigmoid kernel there are 2 parameters: C and ^ while 

polynomial kernel has 3 parameters: C, ^ and degree. Actually there are many 

parameters than we have not yet mentioned, but selecting more parameters 

and a large number of steps (or possible values of parameters) results in a 

huge number of combinations. For example, if we choose to optimize 5 
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parameters and 25 steps for each parameter, then the total combinations 

would be 255 or 9,765,625 which requires a huge (impractical) amount of time.   

 

Figure 5.2 SVM parameter optimization using 10-fold cross validation 

One of the biggest problems of SVM parameter optimization is that there are 

no exact ranges of C and ^ values. We believe that the wider the parameter 

range is, the more possibilities the grid search method has of finding the best 

combination parameter. Therefore, in our experiment we decided to make the 

range of C and ^ from 0.001 to 10,000. 

Table 5.5 Hyper parameters range for experiments 

 

The SVM parameters used in our experiment are explained in Table 5.5. If we 

set C parameter from 0.001 (minimal) to 10,000 (maximal) with 10 steps using 

a logarithmic scale, the C value is initially 0.001 then it is increased 

logarithmically until it reaches 10,000 in the last iteration. The C values are 

0.001, 0.005, 0.025, 0.126, 0.631, 3.162, 15.849, 79.433, 398.107, 1995.262 

and 10000. If we use logarithmic legacy, the values are 5.311, 14.850, 38.813, 

99.006, 250.205, 630.002, 1584.021, 3980.431 and 10000. 

Parameters Kernel Min Max Type Steps Scale

C linear 0.001 10,000 real 10
logarithmic or 

logarithmic legacy

gamma
linear, RBF, 

sigmoid, 
0.001 10,000 real 10

logarithmic or 

logarithmic legacy

degree polynomial 1 5 integer 1 linear (1,2,3,4,5)
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The Figure 5.3 below explains how the grid search works to find the best SVM 

parameters. 

 

Figure 5.3 SVM parameter using GRID search 

The results of SVM parameter optimization using grid search are shown in the 

Table 5.6, this table shows that parameter optimization using grid search is 

very powerful and it is able to improve the accuracy significantly. In leukemia 

and musk datasets, this technique achieved 100% accuracy for all four kernels, 

these results are amazing especially as it was applied to PSO-reduced datasets 

which have many fewer attributes compare to the original ones. The 100% 

accuracy is much better than the results of 4 basic machine learning 

algorithms (decision tree, naïve Bayes, nearest neighbour and rule induction) 

applied to full attributes and 3 ensemble classifiers (bagging, boosting and 

stacking) applied to GA-reduced datasets and PSO-reduced datasets (please see 

Chapter 4).  



Chapter 5. SVM and Parameter Optimization 

 82

However, grid search has an disadvantage which is extremely slow. In Table 

5.6 we can see that the intrusion dataset (all kernels), spambase (polynomial 

and sigmoid kernel), madelon (polynomial kernel), internet_ads (polynomial 

kernel) and dexter (polynomial kernel) were failed. The program executions 

were forced to stop after running for 1 week or 2 weeks without any results.  

In this experiment, linear kernel achieved best results in 5 of 7 datasets, not 

including 2 datasets (spambase and intrusion) that grid search failed to finish. 

RBF kernel produced best results on 2 datasets (madelon and spambase) while 

sigmoid kernel achieved best results only on 1 dataset (SPECTF heart). 

Table 5.6 shows that the best SVM parameters found by grid search have 

various values. There is no clear relationship between the value of C and ^, in 

some datasets the C values are larger than ^but in other datasets it is vice 

versa. 

This experiment shows that the grid search always finds near optimal 

parameter combination within the given ranges, unfortunately it is very time 

consuming where the computation time scale is KM. If the dimension of 

datasets is quite high or the number of parameter combinations is huge, the 

grid search might be never finished. Therefore, grid search is very reliable only 

in low dimensional dataset with few parameters. 

5.3.2 Evolutionary algorithm 

Evolutionary algorithm (EA) can also be used for SVM parameter optimization. 

EAs search the best parameters but not naively like a brute-force or grid 

search. EA is very useful to be implemented when the best ranges and 

dependencies of various SVM parameters is not known at all. EA is more 

appropriate than grid search which is very time consuming because it tries too 

many combinations of parameters.  

Beside SVM parameters (C, ^, degree, etc.), there are other EA parameters that 

need to be optimized in order to achieve the best results: 

• Max generations: sets the number of generations for process 

termination, the default value is 50 

• Population size: specifies the population size or the number of 

individuals per generation, the default value is 5 
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Table 5.6 The results of parameter optimization using grid search 

 

F Measure Best parameters F Measure Best parameters F Measure Best parameters F Measure Best parameters

C = 31.622776 C=31.6228 C =7.0454 C=31.62277

gamma=0.001 gamma=250.4695 gamma=0.001

degree =1

 C=0.762 C=0.0999 C=3.082 C = 3.082

gamma=0.0999 gamma=125.072 gamma=125.072

degree=1 degree=1

C=6.9466 C=63.0957344 C=63.095734

 gamma=0.003981 gamma=0.00398

C=1.0 C=0.9965 C=1000.0

gamma=0.9956 gamma=0.000099999

C=250.3904 C=0.9965  C=1000.0 

gamma=0.9956  gamma=0.000099999 

C=0.25118864 C=63.095 C=0.00398 C=251.18864

 gamma=0.001 gamma=125.072 gamma=0.001

 degree=1

C=31.62277

gamma=0.01

C=220.499 C=63.0957 C=1.0 C=1.0

gamma=0.015848 gamma=0.0630  gamma=15.8489

 degree=1

forced to stop after 

2 weeks running

forced to stop after 

2 weeks running

forced to stop after 

2 weeks running

forced to stop after 2 

weeks running

forced to stop after 

1 week running

100.00% 100.00%

97.44% 95.60%

62.28% 66.07% 62.02%

100.00% 100.00%

84.95% 81.56% 81.61%

failed, no 

results

failed, no 

results

failed, no 

results
78.68% 75.13% 78.22%

97.54%
forced to stop after 

1 week running

forced to stop after 

1 week running

failed, no 

results

8 SPECTF Heart

9 Intrusion

94.36%
failed, no 

results

failed, no 

results

failed, no 

results

86.81% 89.97% 90.36% 91.75%

3 Dexter

4

Madelon

6 Musk

failed, no 

results

failed, no 

results

failed, no 

results

100.00% 100.00% 100.00%

Internet_ads

5

Sigmoid
No

PSO-reduced 

datasets

1 Leukemia

7 Spambase

Linear RBF Polynomial

2
Embryonal 

Tumours
76.67%

100.00%
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• Tournament fraction: specifies the fraction of the current population 

which should be used as tournament members, the default value is 0.25 

• Crossover prob: specifies the probability for an individual to be 

selected for crossover, the default value is 0.9 

• Mutation type: there are three mutation types which are Gaussian 

mutation, switching mutation and sparsity mutation. We used the 

default value: Gaussian mutation 

• Selection type: there are eight different selection types which are union, 

cut, roulette wheel, stochastic universal sampling, Bolztmann, rank and 

tournament (default value). 

The parameter optimization using EA algorithm is explained in the Figure 5.4. 

 

Figure 5.4 Parameter Optimization using Evolutionary Algorithm 
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We now optimized the SVM parameters using evolutionary algorithm which 

much faster than the grid search. We trained SVM classifiers using four 

different kernels (linear, RBF, polynomial and sigmoid) and the results are 

shown in Table 5.7. 

In the previous experiment, grid search had failed because of very long 

execution time and returned no results when applied to intrusion (all four 

kernels), spambase (linear, polynomial and sigmoid kernel), madelon 

(polynomial kernel), internet_ads (polynomial kernel) and dexter (polynomial 

kernel) datasets. In the current experiment, evolutionary search has proven to 

be more stable than grid search.  

Table 5.7 shows that evolutionary search has successfully given satisfactory 

results in almost all datasets. Linear kernel achieved the best results in 4 of 9 

datasets which are on leukemia, dexter, internet_ads and musk datasets. RBF 

kernel outperforms other kernels in spambase and intrusion datasets while the 

polynomial kernel achieved the best results in embryonal tumours and musk 

datasets. Sigmoid kernel achieved 100% accuracy in leukemia dataset and 

achieved the best results in SPECTF heart dataset. 

To compare the performance of grid search and evolutionary search, we 

summarized both experiments in Table 6.3. In leukemia and musk datasets, 

grid search achieved 100% accuracy in 4 kernels while evolutionary search 

achieved 100% accuracy in 2 kernels. From these 2 datasets results, we can see 

that linear kernel is much faster than other kernels (RBF, polynomial and 

sigmoid kernels). In embryonal tumours, dexter, internet_ads, SPECTF Heart 

and intrusion datasets, evolutionary search has slightly better accuracy but 

much faster execution time. Only in 1 dataset (spambase) grid search has 

better accuracies than the evolutionary one. 

In the madelon and the intrusion datasets evolutionary search could not 

guarantee good results for all kernels because the classification performances 

were not so good (in madelon datasets the F-measure is only 66.67% and in 

intrusion dataset the F-measure is only 61.31%).  
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Table 5.7 Parameter optimization using Evolutionary Algorithm 

 

F Measure Best parameters F Measure Best parameters F Measure Best parameters F Measure Best parameters

C=68.773 C=0.5625 C=220.5046 C=564.6153 

gamma=0.94 gamma=484.66 gamma=0.07

degree=1

C=0.5681 C=5620.701 C=0.0488 C=5646.186 

gamma=936.64 gamma=0.69 gamma=687.63

degree=1

C=69.7642 C=564.6229 C=0.59089 C=0.56692

 gamma=68.76 gamma=0.95 gamma=0.07

degree=1

C=623.381 C=182.4549 C=0.5625 C=0.5625

gamma=68.76  gamma=0.94 gamma=0.94

degree=1

C=220.505 C=0.62033 C=182.45498 C=623.38429

gamma=0.47 gamma=968.49  gamma=863.35

degree=1

C=220.504 C=220.498 c=240.516 C=182.45

gamma=68.755 gamma=0.40 gamma=968.49

degree=2

C=2205.035 C=0.562 C=0.2233 C=623.38

gamma=936.64 gamma=0.48 gamma=863.36

degree=1

C=564.62

gamma=68.763

unoptimal results, 

premature 

convergence

unoptimal results, 

premature 

convergence

77.01%

99.63% 100.00%

67.64%

93.34%

90.67%

Sigmoid

unoptimal results, 

premature 

convergence

unoptimal results, 

premature 

convergence

unoptimal results, 

premature 

convergence

unoptimal results, 

premature 

convergence

8 SPECTF Heart

9 Intrusion

84.23%

3 Dexter

4 Internet_ads

5 Madelon

6 Musk

78.88%

7 Spambase

61.31% 95.43%

87.31% 88.64%

83.42%

66.67%

94.33%

unoptimal results, 

premature 

convergence

61.31% 61.31%

81.69%

90.67%

66.67%

77.81%

Linear

73.73%

66.67%

79.56%

97.58%

100.00%

100.00%

90.31%

Polynomial

73.73% 78.50%

66.67%

98.75% 100.00%

85.33% 83.33%

RBF

21.85%

No
PSO-reduced 

datasets

1 Leukemia

2
Embryonal 

Tumours
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When we applied SVM to the madelon and intrusion datasets, the program 

executions were trapped in a local minimum and were terminated very early, 

therefore the results were not satisfactory. This problem is called premature 

convergence, the condition where a population for optimization process 

converged too early which results an un-optimal solutions.  

As shown in Table 5.6, Table 5.7 and Table 5.8, in madelon dataset SVM failed 

to give satisfactory results even with parameter optimization techniques. When 

using grid search, three kernels (linear, RBF and sigmoid) only achieved 

accuracy less than 70% (maximum accuracy was only 66.07%) and even worse 

the polynomial kernel failed to give any results due to very long program 

execution (the program execution was forced to stop after 1 week). 

Unfortunately, the evolutionary search has also failed to improve the 

performance where all four kernels (linear, RBF, polynomial and sigmoid 

kernel) have very poor results. The program executions were trapped in a local 

minimum and then terminated very early, therefore the results were not 

satisfactory.  

Similar case also happened to intrusion dataset, the grid search also failed to 

get the results in all kernels where the program executions were forced to stop 

after running for 2 weeks. In the beginning, evolutionary search also failed to 

give satisfactory results because all kernels had premature convergence which 

leads to unoptimal solutions. Then we decided to adjust some evolutionary 

algorithm parameters such as maximum generations, population size and 

mutation type with some different values and it worked very well especially on 

RBF kernel where the accuracy (or F-measure) was significantly improved from 

61.31% to 95.43%. 

We tried to adjust evolutionary search parameters to improve the SVM 

performance on madelon dataset as we have successfully done in intrusion 

dataset, unfortunately it failed. We were really curious to know about the main 

reasons why the SVM classifier failed on the madelon dataset. We decided to 

run more experiments applying various algorithms to madelon dataset only. 

The results are explained in Table 5.9. 
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Table 5.8 Grid search and evolutionary search results comparison 

 

F Measure Kernels Exec. Time (hh:mm:ss) F Measure Kernels
Exec. Time 

(hh:mm:ss)

linear 00:00:05 linear 00:00:02

RBF 00:00:34 sigmoid 00:00:03

polynomial 00:00:28

sigmoid 00:00:14

2
Embryonal 

Tumours
60 7,130 202 2.83% 84.95% linear 00:00:02 85.33% polynomial 00:00:03

3 Dexter 600 20,000 279 1.40% 78.68% linear 05:56:03 78.88% linear 00:20:05

4 Internet_ads 3,279 1,559 302 19.37% 97.54% linear 00:20:13 97.58% linear 00:16:15

RBF 00:26:32 linear 00:00:02

RBF 00:00:02

polynomial 00:00:02

sigmoid 00:00:02

linear 00:21:20 linear 00:19:32

RBF 16:31:02 polynomial 00:30:12

polynomial 00:46:59

sigmoid 04:13:21

RBF 01:37:30 linear

RBF 00:47:44

polynomial

8 SPECTF Heart 80 45 9 20.00% 91.75% sigmoid 00:00:20 93.34% sigmoid 00:00:04

linear

RBF 17:13:36

polynomial

sigmoid

9.52%

46.55%

19.05%

6,598

4,601

25192

Number of 

original 

attributes

7,130

501

168

58

42

109

5

16

27

8

Number of 

attributes after 

reduced by PSO

95.43%

SVM with evolutionary search

9 Intrusion no results
all kernels were 

failed

program was forced to 

stop after running for 2 

weeks without any results

6 Musk 100.00% 100.00%

7 Spambase 94.36% 83.42%

1

No Datasets

SVM with grid search

Leukemia 100.00%

Number of 

instances

72 1.53% 100.00%

5 Madelon 66.07% 66.67%2,600 1.00%
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Table 5.9 Experiment results on madelon dataset 

 
 

We applied various machine learning algorithms from the basic ones to 

ensemble classifiers and SVM with parameter optimization but none of them 

achieved satisfactory results.  The highest accuracy was only 73.79% which 

produced by the bagging-rule induction algorithm. In this case, the bagging 

technique hadsuccessfully improved the accuracy from 73.32% (rule induction 

Original attributes GA-reduced PSO-reduced

501 attributes 142 attributes 5 attributes

k Nearest Neighbour (kNN) 64.90% 65.23% 64.25%

Naïve Bayes (NB) 59.05% 59.35% 60.24%

Decision Tree (DT) 64.28% 64.29% 64.29%

Rule Induction (RI) 73.32% 68.15% 63.07%

Bagging-kNN - 65.77% 63.78%

Bangging-NB - 59.59% 60.05%

Bangging-DT - 50.00% 50.00%

Bangging-RI - 73.79% 67.27%

Adaboost-kNN - 65.84% 63.96%

Adabost-NB - 60.37% 64.10%

Adaboost-DT - failed failed

Adaboost-RI - 65.41% 64.95%

linear kernel 66.67% 66.67% 61.83%

RBF kernel 66.67% 66.67% 57.13%

polynomial kernel 66.67% 66.67% 57.04%

sigmoid kernel 66.67% 66.67% 62.04%

linear kernel 66.67% 66.67% 62.28%

RBF kernel 66.67% 66.67% 66.07%

polynomial kernel 66.67% 66.67% failed

sigmoid kernel 66.67% 66.67% 62.02%

linear kernel 66.67% 66.67% 66.67%

RBF kernel 66.67% 66.67% 66.67%

polynomial kernel 66.67% 66.67% 66.67%

sigmoid kernel 66.67% 66.67% 66.67%

Madelon dataset (2,600 examples)

Machine Learning Algorithms

Single classifiers

Ensemble Classifiers

Support Vector Machine (SVM)

SVM with parameter optimization using grid search

SVM with parameter optimization using evolutionary algorithm



Chapter 5. SVM and Parameter Optimization 

 90

as a single classifier) to 73.79% (bagging-RI), but this result was still less than 

our expectation. 

Actually the madelon dataset is an artificial dataset that is generated by a 

computer program which was used in the NIPS 2003 feature selection 

challenge4. The goal of this dataset is to classify random data which have 2 

classes and sparse binary input variable. We reckon that the poor classification 

performance of madelon dataset was strongly related to the feature selection 

algorithms to be used. We used GA and PSO as feature selection algorithms 

and they performed very well in almost all datasets except madelon. We 

speculate that if we use more advance feature selection techniques on madelon 

dataset, most of the classifiers will give better results. The winner of NIPS 2003 

feature selection challenge used a combination of Bayesian neural network and 

diffusion tree  (Guyon et al., 2004).  

 

                                           

4http://www.nipsfsc.ecs.soton.ac.uk/papers/NIPS2003-Datasets.pdf 
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6. Summary and Discussion 

In this chapter we would like to compare the performance of basic classifiers 

when applied to high dimensional datasets, and the performance of ensemble 

classifiers as well as SVM with parameter optimizations which applied to 

reduced datasets. 

The key question when dealing with the classification problem is not to find a 

learning algorithm which is superior to others, but  under which conditions a 

specific method can significantly  outperform others on a given application 

problem. The following sections are the summary of our experiment on basic 

machine learning algorithms, ensemble classifiers (bagging and boosting) and 

SVM with parameter optimization. 

6.1 Summary of Feature Selection Algorithms 

We summarized all feature selection algorithms experiments in Table 6.1. 

Feature selection algorithms have successfully removed irrelevant or redundant 

features as well as reduced computational cost. From 8 datasets, the GA has 

successfully reduced the number of attribute to 30.52% of the original 

attributes on average. The highest reduction rate was on embryonal tumours 

dataset where GA reduced the number of attributes from 7,130 to 619 or 

8.68% of original attributes.  PSO reduced the number of attributes much 

better than the GA with 12.78% on average. The highest reduction rate was in 

madelon dataset where PSO reduced the number of attributes from 501 to 5 or 

1.00% of original attributes. In dexter dataset, PSO also reduced the number of 

attributes from 20,000 to 279 or 1.40% while in leukemia dataset, PSO 

successfully reduced the number of attributes from 7,130 to 109 or 1.53%. 

Even though the feature selection algorithms have successfully reduced the 

number of attributes significantly, they do not always improve the 

classification performance. There are 4 of 8 datasets that when reduced by GA 

and PSO, have positive classification improvement for almost all classifiers, 

they are embryonal tumours, musk, spambase and SPECTF heart dataset. The 

highest average accuracy improvement was on SPECTH-heart PSO-reduced 

dataset with 10.05% improvement average. In embryonal tumours dataset, 
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decision tree algorithm achieved 58.68% accuracy when applied to original 

dataset, but its accuracy increased to 81.15% when applied to PSO-reduced 

dataset. It means the accuracy improvement was 22.47% which is the highest 

improvement. 

Unfortunately, the reduction of attributes both by GA and PSO has also reduced 

the classification accuracy in 4 of 8 datasets which are leukemia, dexter, 

internet_ads and madelon datasets. The worst accuracy reduction was on 

dexter dataset where in the GA-reduced dataset the classification accuracy was 

dropped by 8.93% on average and in PSO-reduced dataset, the classification 

accuracy was dropped by 19.91% on average. 

In the GA-reduced datasets, 3 of 4 classifiers achieved worse accuracy than if 

they applied to original datasets with full attributes. naïve Bayes, k-NN and 

decision tree had negative average improvement while rule induction was the 

only algorithm that has average positive improvement with 1.46% average. 

Contrarily, in PSO-reduced datasets there are three classifiers (naïve Bayes, k-

NN and rule induction) achieved average positive improvement and only one 

classifier (decision tree) had negative average improvement. 

As a conclusion, both GA and PSO as feature selection algorithms have 

successfully reduced the number of attributes significantly but they do not 

always improve the classification performance especially if basic machine 

learning algorithms such as naïve Bayes, k nearest neighbour, decision tree 

and rule induction was used as classifier. 

6.2 Summary of Ensemble Classifiers 

Table 6.2 shows that in the PSO reduced datasets, both bagging and boosting 

have slightly improved the accuracy. The average improvement varies from 

0.38% (Bagging k-NN) to 4.47% (bagging rule induction). The highest 

improvement was 13.18% where the boosting decision tree increased the 

accuracy from 58.58% to 71.76%. From four basic classifiers, only rule 

induction constantly has positive improvement, bagging rule induction has 

average improvement of 2.59% (on GA-reduced datasets) and 4.47% (on PSO-

reduced datasets) and boosting rule induction has average improvement of 

1.09% (GA-reduced datasets) and 2.31% (PSO-reduced datasets).  



Chapter 6. Summary and Discussion 

 93  

Table 6.1 Summary of feature selection algorithms performance 

attributes FF Original GA reduced Improvement Original GA reduced Improvement Original GA reduced Improvement Original GA reduced Improvement

Leukemia 7,130    2,237 31.37% 98.31% 98.31% 0.00% 89.70% 78.55% -11.15% 78.73% 81.16% 2.43% 83.40% 82.45% -0.95% 2.43% -2.42%

Emb. Tumours 7,130    619 8.68% 74.41% 65.42% -8.99% 67.06% 78.82% 11.76% 58.68% 58.58% -0.10% 74.05% 81.00% 6.95% 11.76% 2.41%

Dexter 20,000  6,133 30.67% 81.39% 73.30% -8.09% 86.63% 60.04% -26.59% 86.79% 87.16% 0.37% 83.23% 81.84% -1.39% 0.37% -8.93%

Internet_ads 1,559    489 31.37% 98.20% 98.07% -0.13% 91.45% 78.49% -12.96% 86.18% 88.32% 2.14% 95.00% 95.02% 0.02% 2.14% -2.73%

Madelon 501       142 28.34% 59.05% 59.35% 0.30% 64.90% 65.23% 0.33% 64.29% 64.29% 0.00% 73.32% 68.15% -5.17% 0.33% -1.14%

Musk 168       66 39.29% 93.67% 95.23% 1.56% 97.15% 96.48% -0.67% 92.57% 91.96% -0.61% 95.16% 95.93% 0.77% 1.56% 0.26%

Spambase 58         29 50.00% 82.90% 80.34% -2.56% 85.62% 90.33% 4.71% 92.59% 91.69% -0.90% 93.05% 92.90% -0.15% 4.71% 0.28%

SPECTF Heart 45         11 24.44% 79.49% 88.50% 9.01% 67.53% 74.57% 7.04% 79.69% 73.24% -6.45% 61.90% 73.52% 11.62% 11.62% 5.31%

-1.11% -3.44% -0.39% 1.46%

attributes FF Original PSO reduced Improvement Original PSO reduced Improvement Original PSO reduced Improvement Original PSO reduced Improvement

Leukemia 7,130    2,237 31.37% 98.31% 98.31% 0.00% 89.70% 87.90% -1.80% 78.73% 69.12% -9.61% 83.40% 83.41% 0.01% 0.01% -2.85%

Emb. Tumours 7,130    619 8.68% 74.41% 65.45% -8.96% 67.06% 75.08% 8.02% 58.68% 81.15% 22.47% 74.05% 77.27% 3.22% 22.47% 6.19%

Dexter 20,000  6,133 30.67% 81.39% 72.71% -8.68% 86.63% - - 86.79% 44.56% -42.23% 83.23% 74.42% -8.81% -8.68% -19.91%

Internet_ads 1,559    489 31.37% 98.20% 97.77% -0.43% 91.45% 73.32% -18.13% 86.18% 97.04% 10.86% 95.00% 95.12% 0.12% 10.86% -1.90%

Madelon 501       142 28.34% 59.05% 60.05% 1.00% 64.90% 63.78% -1.12% 64.29% 50.00% -14.29% 73.32% 67.27% -6.05% 1.00% -5.12%

Musk 168       66 39.29% 93.67% 99.91% 6.24% 97.15% 96.65% -0.50% 92.57% 91.65% -0.92% 95.16% 95.79% 0.63% 6.24% 1.36%

Spambase 58         29 50.00% 82.90% 90.08% 7.18% 85.62% 91.06% 5.44% 92.59% 93.29% 0.70% 93.05% 93.79% 0.74% 7.18% 3.52%

SPECTF Heart 45         11 24.44% 79.49% 88.14% 8.65% 67.53% 80.95% 13.42% 79.69% 78.83% -0.86% 61.90% 80.90% 19.00% 19.00% 10.05%

0.63% 0.76% -4.24% 1.11%

reduced by GA

reduced by PSO

Feature selection using GA

Dataset

Number of attributes Classification Performance (F-Measure)
Maximum 

Improvement

Average 

Improvement
Original 

data

Naïve Bayes k Nearest Neighbour Decision Tree Rule Induction

Maximum 

Improvement

Average 

Improvement

Feature selection using PSO

Average Improvement Average Improvement Average Improvement Average Improvement

Average Improvement Average Improvement Average Improvement Average Improvement

Rule Induction

Classification Performance (F-Measure)

Naïve Bayes k Nearest Neighbour Decision TreeDataset

Number of attributes

Original 

data



Chapter 6. Summary and Discussion 

 94

Naïve Bayes and k-NN algorithm has positive average improvement on PSO 

reduced datasets but they have negative average results on GA reduced 

datasets.  

Ensemble classifiers achieved the best classification performance on 5 of 8 

datasets. In embryonal tumours dataset, the best accuracy was 81.15%  which 

was achieved by bagging decision tree applied to PSO reduced dataset, in 

madelon dataset the best accuracy was 73.79% achieved by bagging rule 

induction applied to GA reduced dataset. In the musk dataset, the best 

accuracy was 99.97% achieved by boosting naïve Bayes. In the spambase 

dataset, the highest accuracy was 94.52% achieved by boosting rule induction 

and in SPECTF heart dataset, the best accuracy was 89.22% achieved by 

bagging naïve Bayes.  

Unfortunately, in three datasets (leukemia, dexter and internet_ads) the 

ensemble classifiers failed to improve the classification performance. In the 

leukemia dataset, the best accuracy was 98.31% achieved by naïve Bayes as a 

single classifier. Both bagging and boosting were unable to improve the 

accuracy on this dataset. In dexter, the best classification performance was 

achieved by the decision tree with 87.16% and in the internet_ads dataset, the 

best result was 98.07% achieved by naïve Bayes.  

Now we would like to compare the classification performance between single 

classifier and ensemble classifiers. Table 6.2 shows that actually bagging and 

boosting did not give significant improvement. The use of bagging on GA-

reduced datasets gave 0.64% average improvement and on PSO-reduced 

datasets bagging had an average improvement of 1.06%. So, the average 

improvement of bagging when applied to eight different datasets and four 

base classifiers is only 0.85%. 

Boosting had an average improvement of 0.70% when applied to GA-reduced 

datasets and it had an average improvement of 1.59% when applied to PSO-

reduced datasets. Overall the average improvement of boosting when applied 

to eight different datasets and four base classifiers is 1.14%. 
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Table 6.2 Summary of Ensemble Classifiers 

 

Leukemia 2,237 98.31% 98.31% 0.00% 98.31% 0.00% 78.55% 79.38% 0.83% 85.44% 6.89% 81.16% 85.32% 4.16% 73.47% -7.69% 82.45% 87.07% 4.62% 91.89% 9.44% 9.44%

Emb. Tumours 619 65.42% 63.71% -1.71% 75.96% 10.54% 78.82% 75.01% -3.81% 80.71% 1.89% 58.58% 67.91% 9.33% 71.76% 13.18% 81.00% 80.08% -0.92% 78.66% -2.34% 13.18%

Dexter 6,133 73.30% 73.94% 0.64% - - 60.04% 61.64% 1.60% - - 87.16% 86.05% -1.11% 62.07% -25.09% 81.84% 86.41% 4.57% - - 4.57%

Internet_ads 489 98.07% 97.97% -0.10% 97.43% -0.64% 78.49% 78.43% -0.06% 78.46% -0.03% 88.32% 81.18% -7.14% 97.08% 8.76% 95.02% 95.12% 0.10% 94.77% -0.25% 8.76%

Madelon 142 59.35% 59.59% 0.24% 60.37% 1.02% 65.23% 65.77% 0.54% 65.84% 0.61% 64.29% 50.00% -14.29% - - 68.15% 73.79% 5.64% 65.41% -2.74% 5.64%

Musk 66 95.23% 95.23% 0.00% 99.93% 4.70% 96.48% 96.38% -0.10% 96.40% -0.08% 91.96% 92.96% 1.00% 92.02% 0.06% 95.93% 96.20% 0.27% 98.77% 2.84% 4.70%

Spambase 29 80.34% 80.39% 0.05% 80.36% 0.02% 90.33% 90.52% 0.19% 90.51% 0.18% 91.69% 92.78% 1.09% 91.72% 0.03% 92.90% 93.29% 0.39% 94.52% 1.62% 1.62%

SPECTF Heart 11 88.50% 89.22% 0.72% 80.70% -7.80% 74.57% 74.86% 0.29% 75.70% 1.13% 73.24% 80.77% 7.53% 77.40% 4.16% 73.52% 79.54% 6.02% 72.58% -0.94% 7.53%

-0.02% 1.12% -0.07% 1.51% 0.07% -0.94% 2.59% 1.09%

Leukemia 109          96.55% 98.31% 1.76% 98.31% 1.76% 89.10% 87.90% -1.20% 89.72% 0.62% 69.12% 69.12% 0.00% 77.77% 8.65% 70.61% 83.41% 12.80% 74.58% 3.97% 12.80%

Emb. Tumours 202          65.40% 65.45% 0.05% 70.32% 4.92% 70.74% 75.08% 4.34% 70.88% 0.14% 76.61% 81.15% 4.54% 70.83% -5.78% 68.34% 77.27% 8.93% 74.35% 6.01% 8.93%

Dexter 279          73.13% 72.71% -0.42% 73.19% 0.06% 73.98% - - 73.75% -0.23% 44.56% 44.56% 0.00% 49.06% 4.50% 70.72% 74.42% 3.70% 70.17% -0.55% 4.50%

Internet_ads 302          97.77% 97.77% 0.00% 97.63% -0.14% 73.18% 73.32% 0.14% 73.64% 0.46% 96.96% 97.04% 0.08% 96.99% 0.03% 95.12% 95.12% 0.00% 95.12% 0.00% 0.46%

Madelon 5               60.24% 60.05% -0.19% 64.10% 3.86% 64.25% 63.78% -0.47% 63.96% -0.29% 64.29% 50.00% -14.29% - - 63.07% 67.27% 4.20% 64.95% 1.88% 4.20%

Musk 16            99.92% 99.91% -0.01% 99.97% 0.05% 96.45% 96.65% 0.20% 96.63% 0.18% 91.65% 91.65% 0.00% 91.65% 0.00% 95.29% 95.79% 0.50% 99.28% 3.99% 3.99%

Spambase 27            90.29% 90.08% -0.21% 90.37% 0.08% 90.91% 91.06% 0.15% 91.33% 0.42% 92.92% 93.29% 0.37% 92.63% -0.29% 92.25% 93.79% 1.54% 94.23% 1.98% 1.98%

SPECTF Heart 9               85.89% 88.14% 2.25% 88.22% 2.33% 81.42% 80.95% -0.47% 83.28% 1.86% 77.77% 78.83% 1.06% 85.01% 7.24% 76.82% 80.90% 4.08% 78.00% 1.18% 7.24%

0.40% 1.61% 0.38% 0.39% -1.03% 2.05% 4.47% 2.31%

0.85% 1.14%Average improvement of Bagging for all datasets Average improvement of Boosting for all datasets

Boosting +/-

+/-

Naïve Bayes

Dataset #attrib

k Nearest Neighbour

Single 

Classifier
Bagging +/- Boosting +/-

Single 

Classifier
Bagging +/- Boosting

+/-
Single 

Classifier
Bagging +/-

Rule Induction

Single 

Classifier
Bagging +/- Boosting +/-

Decision Tree

Single 

Classifier
Bagging +/- Boosting +/-

Highest 

Improvement

GA-reduced datasets

Average 

Improvement

PSO-reduced datasets

Average Improvement

Boosting +/-
Single 

Classifier
Bagging +/-Boosting +/-

Single 

Classifier
+/- Boosting

Average Improvement

Bagging +/-
Dataset #attrib

Naïve Bayes k Nearest Neighbour Decision Tree Rule Induction

Single 

Classifier
Bagging
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6.3 Summary of SVM Parameter optimization 

We summarized all experiments from basic classifiers, ensemble classifiers to 

SVM with parameter optimization in Table 6.3 in the following page. Table 6.3 

shows that SVM outperforms other algorithms in 5 of 9 datasets. In leukemia 

and musk datasets, SVM (either using grid search or evolutionary search as 

parameter optimization technique) obtained 100% accuracy which can not 

achieved by other algorithms. In leukemia dataset, SVM only uses 1.53% (109 

of 7,130) attributes while in musk, SVM uses 9.52% (16 of 168 attributes). 

In the embryonal tumours dataset, we applied SVM into PSO reduced dataset 

where the number of attribute is only 2.83% from its original (202 of 7130 

attributes) and the best results achieved was 85.33%. This result is much better 

than applying naive Bayes algorithms to the full dataset with 7,130 attributes 

where the F-measure was only 74.41%.  It is also quite a bit better than the use 

of bagging decision tree classifier on PSO-reduced dataset which had anF-

measure of 81.15%. 

In the dexter dataset, the SVM with parameter optimization using evolutionary 

algorithm when applied to PSO-reduced dataset has an F-measure of only 

78.88%. This result could not beat the result of decision tree algorithm when 

applied to dexter full dataset with 20,000 attributes where the F-measure was 

86.79%. Both ensemble classifiers bagging and boosting, have relatively poor 

performance on PSO-reduced dexter dataset which has 279 attributes or only 

1.40% of original attributes. But bagging and boosting have better performance 

when applied to the GA-reduced dataset which has 6,133 attributes (30.67% of 

original attributes). Bagging rule induction on GA-reduced dataset achieved 

86.41% which beats the SVM result (78.88%) but is still below the decision tree 

result (86.79%). We were curious to know how to improve the performance of 

SVM while the parameter optimization result (78.88%) was worse than basic 

algorithms such as decision tree (86.79%). We decided to apply SVM to GA-

reduced dataset which has more attributes than PSO-reduced one (6,133 

compare to 279 attributes).  

We used evolutionary algorithm to optimize the SVM parameters and used four 

different kernels but only the linear kernel achieved the best result. With the 
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linear kernel and variable C set to 562.07, the SVM achieved the best results 

for the dexter dataset with an F-measure of 89.39%.   

In this latest experiment, we can see that the classification performance of 

various algorithms on the PSO-reduced dexter dataset was slightly decreased, 

but it is very understandable because it used only 1.40% of original attributes. 

On the other hand, the GA-reduced dexter dataset has many more attributes 

than the PSO-reduced one but it provided better classification performance. 

In the internet_ads dataset, both ensemble classifiers (bagging and boosting) 

and the SVM could not improve the accuracy when they were applied to the GA-

reduced datasets and the PSO-reduced datasets. The highest F-measure was 

98.20% achieved by naïve Bayes algorithm when applied to original dataset 

with 1,559 attributes. The highest score of ensemble classifiers was 97.77% 

achieved by bagging naïve Bayes which applied to PSO-reduced dataset with 

302 attributes or 19.37% of original attributes. SVM was also unable to 

produce higher score even using an evolutionary algorithm to perform the 

parameter optimization; it achieved only 97.58% when applied to PSO-reduced 

dataset. Unfortunately, SVM could not be applied to GA-reduced dataset 

because it has nominal or categorical attributes. Even though we have done 

some pre-processing techniques to convert nominal or categorical values to 

numerical attributes, the classification performance could not be improved. 

Furthermore, this dataset has missing values, where some attributes have 

missing values in around 28% of the examples. 

As discussed in previous section, in the madelon dataset the SVM could not 

perform well, all kernels were trapped into premature converge which lead to 

suboptimal solution with 66.67% of F-measure. In contrast, ensemble 

classifiers have worked very well especially bagging rule induction which 

achieves 73.79% of F-measure with only 142 attributes or 28.34% of original 

dataset. 

In the spambase dataset, SVM with the grid search algorithm achieved 94.36% 

of F-measure. This result was slightly lower than boosting rule induction which 

had 94.25% of F-measure but much higher than rule induction results which 

was 93.05%.  
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Table 6.3 Classification performance of all methods 

 

dataset used dataset used dataset used dataset used

original dataset PSO reduced PSO reduced PSO reduced

109 109 109

1.53% 1.53% 1.53%

original dataset PSO reduced PSO reduced PSO reduced

202 202 202

2.83% 2.83% 2.83%

original dataset GA reduced PSO reduced GA reduced

6,133 279 6,133

30.67% 1.40% 30.67%

original dataset PSO reduced PSO reduced PSO reduced

302 302 302

19.37% 19.37% 19.37%

original dataset GA reduced PSO reduced PSO reduced

142 5 5

28.34% 1.00% 1.00%

original dataset PSO reduced PSO reduced PSO reduced

16 16 16

9.52% 9.52% 9.52%

original dataset GA reduced PSO reduced PSO reduced

29 27 27

50.00% 46.55% 46.55%

original dataset GA reduced PSO reduced PSO reduced

11 9 9

24.44% 20.00% 20.00%

original dataset GA reduced PSO reduced PSO reduced

16 8 8

38.10% 19.05% 19.05%

linear, sigmoid

polynomial

linear

linear

linear, RBF, sigmoid, 

polynomial

linear, polynomial

linear, RBF, sigmoid, 

polynomial

sigmoid

RBF

100%

85.33%

89.39%

97.58%

66.67%

100.00%

83.42%

93.34%

95.43%

100%

84.95%

78.68%

97.54%

66.07%

100%

94.36%

91.75%

no results

Boosting Naïve 

Bayes

Bagging 

Decision Tree

Bagging Rule 

Induction

Bagging Naïve 

Bayes

Bagging Rule 

Induction

Boosting Naïve 

Bayes

Boosting Rule 

Induction

Bagging Naïve 

Bayes

Bagging k-NN

98.31%

81.15%

86.41%

97.77%

73.79%

99.97%

94.52%

89.22%

99.74%

SVM with grid search

SVM kernels F-measure

SVM with evolutionary search

SVM kernels F-measure

8 SPECTF Heart

number of 

attributes

7,130

20,000

1,559

501

168

58

45

5 Madelon

4 Internet Ads

1

DatasetNo

Leukemia

42

number of 

attributes

number of 

attributes

number of 

attributes

F-measureAlgorithm

98.31%

74.41%

86.79%

98.20%

73.32%

naive Bayes

Rule Induction

Decision Tree

7,130

linear, RBF, sigmoid, 

polynomial

linear

linear

linear

RBF

linear, RBF, sigmoid, 

polynomial

RBF

sigmoid

failed

Base Classifiers

naive Bayes

Ensemble Classifiers

Algorithm F-measure

9 Intrusion

79.69%

99.48%

Decision Tree

Decision Tree

7 Spambase

6 Musk 97.15%

93.05%

k-Nearest 

Neighbour

Rule Induction

3 Dexter

2
Embryonal 

Tumours
naive Bayes
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The SVM was applied to PSO-reduced dataset with 27 attributes, the boosting 

rule induction algorithm was applied to GA-reduced dataset with 29 attributes 

and rule induction as basic classifier was applied to original dataset with 58 

attributes. 

In intrusion dataset, the SVM results could not be better than other algorithms 

because the GA-reduced dataset and the PSO-reduced dataset have some 

nominal values. From 16 attributes of GA-reduced dataset, there are 3 nominal 

attributes and from 8 attributes of PSO-reduced dataset, there are 2 nominal 

attributes. When we applied SVM to both PSO-reduced and GA-reduced 

datasets, we ignored these nominal attributes and just used the numerical 

ones. Therefore, the classification performances were not optimal. We have 

tried to converting these nominal attributes using ‘nominal to numerical 

function’, but it could not improve the performance. This is the reason why for 

intrusion dataset, ensemble classifiers performed better than the SVM. 

6.4 Time complexity of classification algorithms 

In this section, we compared the time complexity of all algorithms used in our 

experiments. The time complexity quantifies the amount of time required by 

an algortihm to run. The most common metric for describing time complexity 

is big O notation. The O expression is also called Landau’s symbol.  Apart from 

time complexity there is space complexity which is the number of memory 

required by an algorithm.     

The theoretical time complexity for learning a naive Bayes classifier is O(nd) 

where d is the number of attributes and n is the number of samples 

(instances). The space complexity is O(ndv) where v is the average number of 

values per attribute (Webb et al., 2005).  

kNN classifier is quite different from other classification algorithms. The 

training phase in kNN simply consists of determining k and preprocessing the 

dataset. Its time complexity is O(kn) where k is the number of nearest 

neighbour and n is the number of examples (Zhou and Chen, 2006). If we do 

not need to preprocess the dataset and we have already predefined the value 

of k, then kNN does not need any training. In our experiments, we predefined 
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the value of k to 1, therefore the learning time complexity becomes O(1). The 

other classification algorithms are more complex than kNN.  

Table 6.4 Time complexity of classification algorithms 

Algorithms Time Complexity Variables 

Naive Bayes O(nd) 
d=number of attributes, 
n=number of samples 

k Nearest Neighbour O(kn) 
k = number of nearest points 
n = number of samples 

Decision Tree O(nd2) 
d=number of attributes, 
n=number of samples 

Rule Induction O(nlog2n) n=number of samples 

Bagging O(mns) 

m=number of sample of every 
subset 
n=number of samples 
s=number of subsets 

Boosting (AdaBoost) O(bnc) 
b=number of base classifiers 
n=number of samples 
c=the complexity of base classifier 

SVM (without 
parameter 
optimization) 

O(n3) n = number of samples 

 

We used an improved decision tree algorithm called C4.5 which has O(nd2) time 

complexity where d is number of attributes and n is number of examples (Su 

and Zhang, 2006). The time complexity of original rule induction algorithm is 

O(n4) which is very high. We used an improved rule induction algorithm which 

is called Ripper that has less time complexity of O(n log2 n)(Cohen, 1995). 

The time complexity of bagging is O(mns) where m is the number of sample of 

every subset, n is the number of the whole training dataset and s is the 

number of subsets (Zheng et al., 2011). The AdaBoost algorithm is quite 

simple but its learning time complexity is high. The time complexity of 

AdaBoost is O(bnc) where b is the number of base/weak classifiers, n is the 

number of instances/examples and c is the complexity of base classifier 

(Sochman and Matas, 2003). 
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The standard SVM classifier has time complexity of O(n3) and space complexity 

of O(n2) (James et al., 2005). The time complexity is more than quadratic that 

makes SVM hard to classify a dataset which consists of more than 10,000 

instances/examples. 

We summarized the learning time of all classification methods in Table 6.5. 

This table shows that k-NN which has the simplest time complexity, had the 

fastest learning time. However, kNN average running time was 3.89 seconds 

which was slightly slower than naive Bayes (1 second), bagging-NB (1.22 

seconds) and boosting-NB (2 seconds) but it was much faster than decision 

tree (56.78 seconds), rule induction (209.33 seconds) and SVM (130.22 

seconds) as shown in Table 6.6. In term of classification performance, kNN 

could not achieve the best accuray (or F-measure) in any of 9 datasets. 

Even though naive Bayes average learning time was below kNN (0.25 seconds), 

it had the fastest average running time compare to all other methods. Naive 

Bayes only required 1 second or less when applied to 9 PSO-reduced datasets. 

This algorithm was very fast when applied to datasets which have a large 

number of attributes such as dexter (20,000 attributes) or leukemia (7,130 

attributes) and also when it was applied to datasets with high number of 

examples/instances such as intrusion dataset (25,192 instances). Based on 

classification performance, naive Bayes achieved the best result in 1 of 9 

datasets. Decision tree’s  average learning time was 3.47 seconds which was 

slower than NB and kNN but was still faster than rule induction (6.71 seconds) 

and SVM (24.70 seconds). Its running time was also slower than NB and kNN 

but faster than RI and SVM. Decision tree could not achieve the best 

classification performance in any of 9 datasets as shown in Table 6.5. 

The average learning time of rule induction was 6.71 seconds and its average 

running time was 26.78 seconds. Rule induction’s learning time and running 

time are slower than kNN, NB and DT, but faster than SVM. Like kNN and DT, 

Rule Induction could not achieve the best results in any of 9 datasets. 
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Table 6.5 Learning time of classification algorithms  

 

NB k-NN DT RI NB kNN DT RI NB kNN DT RI

Leukemia                   72               7,130 0.09        0 0.33        0.33        0.39        0.02 0.62        1.43        0.36        0.27 1.98        2.52        0.03        

Embryonal Tumours                   60               7,130 0.08        0 0.39        0.61        0.45        0 2.60        3.93        1.26        0.14 2.57        2.92        0.05        

Dexter 600                20,000            1.38        0 8.60        16.11      15.04      0.03 118.38    285.71    143.05    61.03 143.15    262.24    7.05        

Internet_ads 3,279             1,559              0.10        0 16.78      16.99      0.71        0.01 122.68    112.49    18.29      133.63 301.44    75.97      9.19        

Madelon 2,600             501                 0.17        0 2.40        5.99        2.36        0.01 50.65      134.34    9.72        20.89 60.15      31.00      26.51      

Musk 6,598             168                 0.22        0 0.86        13.43      1.79        0.02 6.65        107.34    8.17        15.23 0.67        63.32      117.39    

Spambase 4,601             58                   0.05        0 0.42        1.28        0.33        0 4.14        20.50      0.65        61.41 3.95        4.71        0.33        

SPECTF Heart 80                  45                   0.10        0 0.30        0.16        0.17        0.02 0.52        0.44        0.85        0.32 0.75        0.63        0.24        

Intrusion 25,192           42                   0.10        0 1.12        5.53        1.60        0.06 17.94      81.67      7.58        985.47 11.79      29.26      61.52      

0.25 0.00 3.47 6.71 2.54 0.02 36.02 83.09 21.10 142.04 58.49 52.51 24.70

0.43 0.00 5.65 6.99 4.75 0.02 50.43 92.75 46.11 319.29 102.68 83.36 40.17

3 1 5 6 4 2 9 12 7 13 11 10 8

Average learning time

Standard deviation

Learning time rank

Dataset Name

Learning Time Comparison,  tested on original datasets (seconds)

Single Classifier
Number of 

instances

Number of 

attributes
SVM

Bagging with a base classifier Boosting with a base classifier
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Table 6.6 The Running Time Comparison 

 

NB k-NN DT RI NB kNN DT RI NB kNN DT RI grid search
evol. 

search

Leukemia           1 1                   1           1            1            1            5            2            1            1            4            1                        1                   3                 1 

Embryonal Tumours           1           1           2           1            1            1          17          10            1            1          19            6                        1                   3                 2 

Dexter           1           1           2 113                1            2          24 886                  1            5            8 402                              1          21,363                 2 

Internet_ads           1           1           3           6            3 91                  21          56            9 238                  2 60                           390            2,479             613 

Madelon           1           1           1 88                  1            1            1 603                  1 18                    1 348                         229            6,750             602 

Musk           1           2           2         16            1 20                    4 186                  1 225                  7 1,270                      225               680          1,172 

Spambase           1           1         14         13            1 14         144       114                  1 50         16         231                            20            5,850               42 

SPECTF Heart           1           1           1           1            1            1            1            1            1            1            1            1                        2               313             189 

Intrusion           1         26         15           2            1 212       294       17                    2 763       38         458                         303 -               26 

Average running time 1.00 3.89 4.56 26.78 1.22 38.11 56.78 208.33 2.00 144.67 10.67 308.56 130.22 4680.13 294.33

Standard deviation 0.00 8.30 5.68 42.61 0.67 71.38 99.69 318.02 2.65 250.98 12.10 403.97 156.03 7247.07 413.86

Running time rank 1 4 5 7 2 8 9 12 3 11 6 14 10 15 13

Dataset Name

Running Time Comparison :  tested on PSO-reduced datasets using 10 fold cross validation (seconds)

Single Classifier Bagging with a base classifier Boosting with a base classifier
SVM with 

default 

paramater 

(linear 

kernel)

SVM with parameter 

optimization (linear 

kernel)
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The time complexity of bagging and boosting were strongly correlated with the 

selection of base classifier. The average learning time of Bagging-kNN (0.02 

seconds) and bagging-NB (2.54 seconds) were relatively fast while bagging-DT 

(36.02 seconds) and bagging-RI (83.09 seconds) were quite slow. Bagging has 

achieved the best classification performance in 2 of 9 datasets. Bagging-RI 

achieved the best result on madelon dataset with F-measure of 73.79% and 

bagging-kNN produced the best F-measure of 99.74% on intrusion dataset. 

Compare to bagging, boosting was much slower. The average learning time of 

boosting-NB was 2 seconds, boosting-kNN was 144.67 seconds, boosting-DT 

was 10.67 seconds and boosting-RI was 308.56 seconds. Boosting had the 

best classification result on only 1 of 9 dataset where boosting-RI achieved F-

measure of 94.52% on spambase dataset. 

SVM which has time complexity of O(n3), was actually not the slowest classifier. 

Based on average learning time, SVM was number 8 of 13 classifiers with kNN 

was the fastest (0 second) and boosting-kNN was the slowest (142.04 

seconds). Based on average running time, SVM (with default parameters) was 

number 10 of 15 classifiers with naïve Bayes was the fastest (1 second) and 

SVM with parameter optimization using grid search was the slowest (4680.13 

seconds). 

However, SVM with default parameters could not achieve the best classification 

performance in any of 9 datasets. The use of parameter optimization both 

using grid search and evolutionary search have been successfully improved the 

classification performance. Even though SVM parameter optimization (both 

using grid search and evolutionary algorithm) required high computation time 

as shown in Table 6.6, they have successfully improved the classification 

performance and achieved the best results in 5 of 9 datasets. 
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7. Conclusions and Future Works 

 

7.1 Conclusions 

The main questions that we attempted to answer with our research work are: 

what are the best machine learning techniques to handle high dimensional 

datasets and how to improve their classification performance.  Our 

experiments on nine high dimensional datasets show that there is no single 

classifier that always achieves the best accuracy in all domains or all 

applications, but our results show that SVM with parameter optimization is 

very powerful classifier and outperforms other algorithms in 5 of 9 datasets. 

However, SVM is only good in handling datasets with numerical attributes. This 

algorithm does not perform well on datasets which have nominal attributes. In 

this case, ensemble classifiers such as bagging and boosting can be used as an 

alternative. Their performances are slightly better than basic classifier such as 

naïve Bayes, k-Nearest Neighbour, decision tree and rule induction. 

Dimensionality reduction algorithms both GA and PSO, significantly reduces 

the number of features or attributes needed as well as greatly reduce the 

computational cost. Furthermore, these algorithms do not severely reduce the 

classification accuracy and in some cases they can improve the accuracy as 

well. We use these two algorithms to select the most important features in nine 

high dimensional datasets. It takes around 34 minutes and 10 seconds to 

finish the feature selection process on 9 datasets using GA and 48 minutes and 

53 seconds using PSO.  

The total running time of four basic classifiers (NB, kNN, DT and RI) on 9 

original datasets is 68,169 seconds while the total running time of the same 

classifiers on GA-reduced datasets is  3,799 seconds which means 17.9 times 

faster. The total running time of the same four classifiers on PSO-reduced 

datasets is only 326 seconds which is  more than 200 times faster than the 

total running time on original datasets. 
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In terms of dimensionality reduction, PSO is much better than GA. PSO has 

successfully reduced the number of attributes of 9 datasets to 12.78% of the 

original attributes on average while GA is only 30.52% on average.  In terms of 

classification performance, GA is better than PSO. GA-reduced datasets have 

better classification performance than their original ones on 5 of 9 datasets 

while PSO is better only in 3 of 9 datasets. 

We applied two ensemble classifiers called bagging and boosting. Our 

experiment shows that actually bagging and boosting did not give significant 

improvement for all basic classifiers. In some datasets, both bagging and 

boosting were able to improve the accuracy more than 10%. The average 

improvement of bagging when applied to nine different datasets is only 0.85% 

while boosting improvement is 1.14%. Ensemble classifiers (both bagging and 

boosting) outperforms single/base classifier in 7 of 8 PSO-reduced datasets 

and 4 of 8 GA-reduced datasets. 

SVM has been proven to perform much better when dealing with high 

dimensional datasets and continuous/numerical features. The performance of 

SVM highly depends on the slack variable penalty weight (C) and ^ (gamma). 

Finding the proper C and ^ value is a kind of searching for the best trade-off 

between allowing misclassification errors and generalizing the model.  

The linear kernel gives better results if the number of features is very large 

where the use of nonlinear mapping (RBF kernel, polynomial kernel and 

sigmoid kernel) does not improve the performance. The RBF does not perform 

well when the number of features is very large. If the number of feature is 

large, it is not possible to map data to a higher dimensional space. Therefore, 

the nonlinearity can not improve the classification performance, in this case 

linear kernel is the best solution. 

Although SVM work well with default value, the performance of SVM can be 

improved significantly using parameter optimization. One of the biggest 

problems of SVM parameter optimization is there is no exact ranges of C and ^ 

values. We believe that the wider the parameter range is, the more possibilities 

the grid search method finds the best combination parameter.  

Our experiment shows that the grid search always finds near optimal 

parameter combination within given ranges. SVM parameter optimization using 
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grid search is very powerful and it is able to improve the accuracy significantly. 

In leukemia and musk datasets, this technique achieved 100% accuracy for all 

four kernels (linear, RBF, polynomial and sigmoid kernel), these results are 

amazing especially it was applied to PSO-reduced datasets which have much 

less number of attributes (only 1.53% of original attributes for leukemia 

dataset and only 9.52% of original attributes for musk dataset). These results 

are much better than the performance of four basic classifiers (naïve Bayes, k-

nearest neighbour, decision tree and rule induction) which are applied to the 

original datasets and also slightly better than the performance of ensemble 

classifiers which are applied to GA-reduced and PSO-reduced datasets. 

However, grid search has several disadvantages, it is extremely slow and 

furthermore it may lead to very long execution time. For example, grid search 

has been failed in finding optimal SVM parameters for intrusion dataset which 

have a large number of instances. The process was forced to stop after 2 

weeks running. Therefore, grid search is very reliable only in low dimensional 

dataset with few parameters. To solve this problem, we use Evolutionary 

Algorithm (EA) which is very useful to be implemented when the best ranges 

and dependencies of various SVM parameters is not known at all. EA has 

proven to be more stable than grid search. When applied to 9 datasets, EA has 

an average running time of 294 seconds while grid search is around 4,680 

seconds (it does not include intrusion dataset which was failed). It means, SVM 

parameter optimization using EA is more than 15.9 times faster than using 

grid search. 

7.2 Future Work 

The parameter optimization using Evolutionary Algorithm (EA) has shown 

satisfactory results, it is more stable and much faster than the grid search but 

it has a drawback. In some datasets, SVM parameter optimization using EA did 

not achieve good results because the program executions were trapped in a 

local minimum and then terminated very early. This problem is called 

premature convergence, the condition where a population for optimization 

process converged too early which results a sub-optimal solution. In the future 

work, we would like to investigate some methods to avoid a premature 

converge problem in EA optimization.  
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