
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Faculty of Physical Sciences and Engineering

Electronics and Computer Science

Comprehensive Review of Classification Algorithms for High

Dimensional Datasets

by

Iwan Syarif

Thesis for the degree of Doctor of Philosophy

March 2014

UNIVERSITY OF SOUTHAMPTON

ABSTRACT
FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Thesis for the degree of Doctor of Philosophy

Comprehensive Review of Classification Algorithms for High Dimensional

Datasets

by Iwan Syarif

Machine Learning algorithms have been widely used to solve various kinds of

data classification problems. Classification problem especially for high

dimensional datasets have attracted many researchers in order to find efficient

approaches to address them. However, the classification problem has become

very complicated and computationally expensive, especially when the number

of possible different combinations of variables is so high. In this research, we

evaluate the performance of four basic classifiers (naïve Bayes, k-nearest

neighbour, decision tree and rule induction), ensemble classifiers (bagging and

boosting) and Support Vector Machine. We also investigate two widely-used

feature selection algorithms which are Genetic Algorithm (GA) and Particle

Swarm Optimization (PSO).

Our experiments show that feature selection algorithms especially GA and PSO

significantly reduce the number of features needed as well as greatly reduce

the computational cost. Furthermore, these algorithms do not severely reduce

the classification accuracy and in some cases they can improve the accuracy as

well. PSO has successfully reduced the number of attributes of 9 datasets to

12.78% of original attributes on average while GA is only 30.52% on average.

In terms of classification performance, GA is better than PSO. The datasets

reduced by GA have better classification performance than their original ones

on 5 of 9 datasets while the datasets reduced by PSO have their classification

performance improved in only 3 of 9 datasets. The total running time of four

basic classifiers (NB, kNN, DT and RI) on 9 original datasets is 68,169 seconds

while the total running time of the same classifiers on GA-reduced datasets is

3,799 seconds and on PSO-reduced dataset is only 326 seconds (more than

209 times faster).

We applied ensemble classifiers such as bagging and boosting as a

comparison. Our experiment shows that bagging and boosting do not give a

significant improvement. The average improvement of bagging when applied

to nine datasets is only 0.85% while boosting average improvement is 1.14%.

Ensemble classifiers (both bagging and boosting) outperforms single classifier

in 6 of 9 datasets.

SVM has been proven to perform much better when dealing with high

dimensional datasets and numerical features. Although SVM work well with

default value, the performance of SVM can be improved significantly using

parameter optimization. Our experiment shows SVM parameter optimization

using grid search always finds near optimal parameter combination within the

given ranges. SVM parameter optimization using grid search is very powerful

and it is able to improve the accuracy significantly. Unfortunately, grid search

is very slow; therefore it is very reliable only in low dimensional dataset with

few parameters. SVM parameter optimization using Evolutionary Algorithm (EA)

can be used to solve the problem of grid search. EA has proven to be more

stable than grid search. Based on average running time, EA is almost 16 times

faster than grid search (294 seconds compare to 4680 seconds). Overall, SVM

with parameter optimization outperforms other algorithms in 5 of 9 datasets.

However, SVM does not perform well in datasets which have non-numerical

attributes.

Keywords: high dimensional data, feature selection, ensemble classifiers,

Support Vector Machine, Evolutionary Algorithms, parameter optimization

 i

Contents

ABSTRACT ... ii

Contents ... i

List of Tables .. v

List of Figures ... vii

Declaration of Authorship ...ix

Acknowledgements ..xi

1. Introduction and Problem Statements .. 1

1.1 Classification of High Dimensional Data .. 1

1.2 How to improve the classification performance 3

1.3 Motivation and Problem Statements .. 4

1.4 Objectives and Contributions of the Thesis ... 6

1.5 Outline of the Thesis .. 7

2. Literature Review .. 9

2.1 Dimensionality Reduction ... 9

2.1.1 Feature Extraction .. 10

2.1.2 Feature Selection .. 10

2.2 Classification Algorithms .. 12

2.2.1 Nearest Neighbour ... 13

2.2.2 Decision Tree ... 14

2.2.3 Rule Induction .. 15

2.2.4 Naïve Bayes .. 16

2.3 Meta Learning ... 16

2.3.1 Bagging .. 18

2.3.2 Boosting ... 18

2.4 Support Vector Machine .. 19

2.4.1 How SVM works .. 19

2.4.2 Kernel Trick .. 22

2.4.3 SVM Kernels ... 25

2.4.3.1 Linear Kernel .. 25

 ii

2.4.3.2 RBF (Gaussian) Kernel ... 25

2.4.3.3 Sigmoid Kernel ... 26

2.4.3.4 Polynomial Kernel... 26

2.5 Evolutionary Algorithms .. 26

2.5.1 Genetic Algorithm (GA) ... 29

2.5.2 Particle Swarm Optimization (PSO) .. 30

2.6 Parameter Optimisation .. 31

3. Dimensionality Reduction ... 35

3.1 Dimensionality Reduction System Design .. 35

3.2 Dimensionality Reduction Algorithms .. 36

3.2.1 Genetic Algorithm Search ... 37

3.2.2 Particle Swarm Optimization Search .. 38

3.3 Performance Measurement .. 39

3.4 The Datasets ... 41

3.5 Experimental Results .. 42

3.5.1 Experiments on Original Datasets ... 42

3.5.1.1 Naive Bayes .. 42

3.5.1.2 k Nearest Neighbour .. 43

3.5.1.3 Decision Tree ... 43

3.5.1.4 Rule Induction .. 45

3.5.1.5 Basic classifiers results comparison 45

3.5.2 The GA-based Feature Selection Experiments 47

3.5.3 The PSO-based Feature Selection Experiments 48

3.5.4 Results analysis of GA and PSO as feature selection algorithms ... 50

3.6 Summary .. 54

4. Ensemble Classifiers .. 57

4.1 Basic Classifiers .. 57

4.2 Bagging Ensemble Classifier ... 59

4.3 Boosting Ensemble Classifier .. 64

4.4 Summary .. 69

5. Support Vector Machine and Parameter Optimization 73

5.1 SVM with default parameters and un-scaled data 73

5.2 The effect of normalization ... 75

5.3 SVM parameter optimization ... 78

5.3.1 Grid search ... 79

5.3.2 Evolutionary algorithm .. 82

 iii

6. Summary and Discussion .. 91

6.1 Summary of Feature Selection Algorithms ... 91

6.2 Summary of Ensemble Classifiers .. 92

6.3 Summary of SVM Parameter optimization.. 96

6.4 Time complexity of classification algorithms 99

7. Conclusions and Future Works ... 105

7.1 Conclusions .. 105

7.2 Future Work .. 107

Bibliography .. 109

 v

List of Tables

Table 3.1 Performance metric .. 39

Table 3.2 Classification performance measurement 40

Table 3.3 High-dimensional datasets ... 41

Table 3.4 Naive Bayes algorithm results on original datasets 42

Table 3.5 k nearest neigbour algorithm results on original datasets 43

Table 3.6 Decision tree experiment results on original datasets 44

Table 3.7 Rule induction experiment results on original datasets 45

Table 3.8 Classification performance of original datasets 46

Table 3.9 Learning time of NB, kNN, DT and RI ... 46

Table 3.10 Execution time of 4 classifiers on original datasets 47

Table 3.11 GA-based feature selection results ... 48

Table 3.12 PSO-based feature selection results ... 49

Table 3.13 The results comparison of GA and PSO feature selection 50

Table 3.14 The classification performance of GA-reduced datasets 51

Table 3.15 The classification performance of PSO-reduced datasets 52

Table 3.16 The running time of four basic classifiers: NB, kNN, DT and RI 53

Table 3.17 Summary of dimensionality reduction algorithms 55

Table 4.1 Classification performance of NB, kNN, DT and RI 58

Table 4.2 The learning time of bagging algorithm ... 60

Table 4.3 Classification performance of Bagging on GA-reduced datasets 62

Table 4.4 Classification performance of Bagging on PSO-reduced datasets 63

Table 4.5 The learning time of boosting algorithm .. 66

 vi

Table 4.6 Classification performance of Boosting on GA-reduced datasets 67

Table 4.7 Classification performance of Boosting on PSO-reduced datasets ... 68

Table 4.8 Learning time of single base classifier, bagging and boosting 70

Table 4.9 Summary of bagging and boosting performance 71

Table 5.1 LibSVM default parameters ... 74

Table 5.2 The results of SVM with default parameters and un-scaled data 74

Table 5.3 The SVM results on normalized data .. 76

Table 5.4 The effect of normalization to the SVM classification performance . 77

Table 5.5 Hyper parameters range for experiments 80

Table 5.6 The results of parameter optimization using grid search 83

Table 5.7 Parameter optimization using Evolutionary Algorithm 86

Table 5.8 Grid search and evolutionary search results comparison 88

Table 5.9 Experiment results on madelon dataset .. 89

Table 6.1 Summary of feature selection algorithms performance 93

Table 6.2 Summary of Ensemble Classifiers ... 95

Table 6.3 Classification performance of all methods 98

Table 6.4 Time complexity of classification algorithms 100

Table 6.5 Learning time of classification algorithms 102

Table 6.6 The Running Time Comparison .. 103

 vii

List of Figures

Figure 1.1 Research Outline .. 5

Figure 1.2 Experiments Scenario ... 7

Figure 2.1 Feature Extraction .. 10

Figure 2.2 The process of supervised learning ... 13

Figure 2.3 Two classes separated by hyperplanes .. 20

Figure 2.4 Possible hyperplanes and support vectors..................................... 20

Figure 2.5 Finding the optimal separating hyperplane in SVM 21

Figure 2.6 Moving a dataset into higher dimension 23

Figure 2.7 Calculate the degree of misclassification using slack variables 24

Figure 3.1 Dimensionality Reduction System Design 35

Figure 3.2 The Implementation of Dimensionality Reduction in RapidMiner ... 36

Figure 3.3 Feature selection using wrapper technique 36

Figure 3.4 Feature selection using Genetic Algorithm 37

Figure 3.5 PSO search for feature selection.. 38

Figure 4.1. Bagging Diagram Experiment... 60

Figure 4.2 AdaBoost Algorithm .. 65

Figure 4.3 Boosting Experiments Diagram ... 65

Figure 5.1 The design of the SVM parameter optimization module 78

Figure 5.2 SVM parameter optimization using 10-fold cross validation 80

Figure 5.3 SVM parameter using GRID search .. 81

Figure 5.4 Parameter Optimization using Evolutionary Algorithm 84

 ix

Declaration of Authorship

I, Iwan Syarif, declare that the thesis entitled Comprehensive Review of

Classification Algorithms for High Dimensional Datasets, the work presented in

the thesis are both my own, and have been generated by me as the result of

my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research

degree at this University;

• where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated;

• where I have consulted the published work of others, this is always clearly

attributed;

• where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself;

• parts of this work have been published as: (Syarif et al., 2012c)(Syarif et al.,

2012b)(Syarif et al., 2012a)

Signed:

Date: 23rd February 2015

 xi

Acknowledgements

First of all, I would like to express my gratitude to my supervisor, Dr. Adam

Prugel-Bennett and my advisor, Dr. Gary Wills for their excellent and continued

supports, guidance and patience during my study and towards the completion

of this thesis.

I would like to thank my external examiner Dr. Mohamed Gaber and my

internal examiner Dr. Richard A. Watson for their excellent advises, detailed

review and revision during and after the viva.

I gratefully acknowledge the funding sources that supported my PhD. I was

fully funded by the Ministry of Information and Communication Technology,

the Republic of Indonesia for the four years scholarship and was supported by

the Ministry of Education, the Republic of Indonesia for the six months

extension.

My time at Southampton University was really enjoyable due to the many

friends especially PhD students in Building 32 ECS that became a part of my

life. Thanks to my lab mates: Betty, Tas, Alper, Vangelis, Mark, Adil, Gunawan,

Saad, Victor, etc. Special thanks to my best friend Agus Djunaedy who helped

me printing the thesis, PPI Soton friends : Dwi, Gunawan Ariyanto, Gunawan

Budi, Husni, Didiek, Niken, Fikri, Betty,

I would not have finished this thesis if not for my parents, Bapak Ir. Hanafi

Pratomo and Ibu Dr. Supartini Hanafi who raised me with never ending love

and prayed days and nights for the success of their son. This thesis would also

not be possible without the love and patience of my beautiful wife, Dr. Tessy

Badriyah and my beloved children Daisy, Defita and Pascal. Being with you, life

seems so beautiful ☺

Iwan Syarif

Southampton University

March 2014

Chapter 1 Introduction and Problem Statements

 1

1. Introduction and Problem Statements

Machine Learning algorithms have been widely used to solve various kinds of

data classification problems. Classification problems especially for high

dimensional datasets have attracted many researchers in order to find efficient

approaches to address them. However, the classification problem has become

very complicated and computationally intensive, especially when the number of

possible different combinations of variables is so high.

1.1 Classification of High Dimensional Data

Classification is a supervised learning technique which learns a function from

training data set that consists of input features/attributes and categorical

output (Gaber et al., 2007)(Kotsiantis, 2007). This function will be used to

predict a class label of any valid input vector. The main goal of classification is

to apply machine learning algorithms to achieve the best prediction accuracy

(Williams et al., 2006)(Verleysen, 2003).

In the various applications of machine learning and data mining, the use of

high dimensional datasets with hundreds or thousands of features is not

unusual (Braun et al., 2012). In other words, modern data sets are very often in

high dimensional space. Extracting knowledge from huge data requires new

approaches. The more complex the datasets, the higher the computation time

and the harder they are to be interpreted and analysed. Therefore,

classification on high dimensional data has become a recurring problem; since

it occurs in various data mining applications for which a decision step is

necessary.

The problems of high dimensional data was apparently coined by Richard

Bellman (Bellman, 1957) as “the curse of dimensionality”. These terms refer to

various phenomena that arise when analysing and organising data in a high-

dimensional space which have hundreds or thousands of dimensions that do

not occur in low-dimensional setting. For example, a classification algorithm

such as decision tree has time complexity of O(nd2) where d is the number of

Chapter 1 Introduction and Problem Statements

 2

attributes and n is the number of samples (Su and Zhang, 2006). It means as d

becomes large, the complexity increases quadratically and the number of

samples (n) may be too small to be used as learning data to generate an

accurate classification model. Insufficient number of training samples makes

the classification algorithms difficult to predict the class labels of the dataset

correctly. This condition is called overfitting.

High dimensional data tends to have more complex problems that low-

dimensional ones and hence it is harder to make inferences. There are at least

three serious problems caused by high dimensional data: complexity, over-

fitting and number of samples.

The impact of high dimensionality on classification is poorly understood (Fan

and Fan, 2008). Many datasets such as microarray, DNA, proteomics, etc. have

thousands or more features while the sample size (number of instances) is

typically tens or less than hundred. Most of basic classifiers break down when

the dimensionality is high. Miller reported that there is a well-known

phenomenon that a prediction model built from thousands of attributes (d) but

has a relatively small sample size (n) can be quite unstable (Miller, 2002).

Other reseacher (Fan and Fan, 2008) reported that the difficulty of high-

dimensional classification is mostly caused by the existence of many noisy

features that do not contribute to the improvement of accuracy.

The above problem reveals the importance of dimensionality reduction on high

dimension data classification. Dimensionality reduction is a process for

reducing the number of random variables under consideration. There are some

advantages of dimensionality reduction (Fodor, 2002):

• Most machine learning and data mining techniques may not be effective

for high-dimensional data

• Query accuracy and efficiency degrade rapidly as the dimension

increases

• Lower computational cost

• Help avoid over-fitting (training on highly-related features rather than

contingent ones)

There are two different techniques of dimensionality reduction; the first

technique is feature selection which is a process that chooses an optimal

Chapter 1 Introduction and Problem Statements

 3

subset of features according to an objective function (Holder et al.,

2005)(Williams et al., 2006). The objectives of feature selection are to reduce

dimensionality, to remove noise and to improve mining performance (speed of

learning and predictive accuracy). In this technique, only partial parts of the

original features are selected. The second technique is feature extraction which

refers to the mapping of the original high-dimensional data onto a lower-

dimensional space. In this technique, all original features are used and the

transformed features are linear combinations of the original features. Both

feature selection and feature extraction algorithms reduce the number of

features needed.

1.2 How to improve the classification performance

Classification problem can be viewed as optimisation problem where the goal

is to find the best model that represents the predictive relationships in the data

(Otero et al., 2012). In this research, we use four well-known classical machine

learning algorithms as base classifiers which are naive Bayes (NB), decision tree

(DT), k-nearest neighbour (kNN) and rule induction (RI). Beside rule induction,

the other three methods were selected as the top ten algorithms in Data

Mining (Wu and Kumar, 2009).

Many researchers (Schapire et al., 1997)(Lee and Cho, 2010)(Graczyk et al.,

2010) have reported that ensemble classifiers (meta learning) have better

accuracy than single classification techniques. An ensemble classifier is a

method which uses or combines multiple classifiers to improve the

classification performance from any of the constituent classifiers. (Gaber et al.,

2007)(Gaber and Bader-El-Den, 2012) reported that ensemble classifier can be

used to avoid over-fitting of single classifer as well as to improve the

robustness. In this research we apply, analyse and evaluate two ensemble

classifier techniques called bagging and boosting.

Another way to achieve better classification performance is using more

sophisticated classification techniques. Other than the well-known classical

data mining techniques, Support Vector Machine (SVM) and Evolutionary

Algorithm (EA) have gained more attention and have been adopted in data

classification problems in order to find a good solution. SVM which is an

emerging data classification technique proposed by (Cortes and Vapnik, 1995),

Chapter 1 Introduction and Problem Statements

 4

has been widely adopted in various fields of classification (Lin et al., 2008).

SVM algorithm has an advantage that it is not affected by local minima,

furthermore it does not suffer from the curse of high dimensionality because

of the use of support vectors (Sánchez A, 2003). SVM was also considered as

the top ten algorithms in Data Mining (Wu and Kumar, 2009).

Unfortunately, the SVM performance highly depends on parameter setting and

its kernel selection. The selection quality of SVM parameters and kernel

functions has an effect on the learning and generalization performance (Hric et

al., 2011)(Sudheer et al., 2013). Appropriate kernel functions and their

parameters should be selected to obtain an optimal classification performance

(Aydin et al., 2011).

Generally, most of machine learning algorithms will not achieve optimal results

if their parameters are not being tuned properly. To build a high accuracy

classification model, it is very important to choose a powerful machine learning

algorithm as well as adjust its parameters. Parameter optimization can be very

time consuming if done manually especially when the learning algorithm has

many parameters (Friedrichs and Igel, 2005)(Rossi and de Carvalho, 2008).

There are two methods to adjust the SVM parameter: grid search with cross-

validation and evolutionary algorithm (EA). Evolutionary algorithm (EA) is

commonly used on problems which are very hard to solve in a brute force

technique (Eiben and Smith, 2003)(Barros et al., 2012). EAs search the solution

space (the set of all possible inputs) of a difficult problem for the best solution,

but not naively like a brute-force or grid search method. An EA uses

mechanisms inspired by biological evolution such as reproduction, mutation,

recombination and selection. In this research, we analyse various model

parameter optimization technique for SVM classification which covers grid

search approach and Evolutionary Algorithms.

1.3 Motivation and Problem Statements

In this thesis, we do not propose or develop new algorithms but we investigate

and analyze some well known classification algorithms which are able to

handle high dimensional datasets as shown in Figure 1.1.

Chapter 1 Introduction and Problem Statements

 5

Transforming high dimensional data to improve the classification accuracy as

well as to reduce the computational complexity is a difficult research problem

(Braun et al., 2012). In this research, we evaluate the performance of two

feature selection algorithms which are Genetic Algorithm (GA) and Particle

Swarm Optimizations (PSO). We wish to find the dimensionality reduction

algorithm that contributes to the best classification accuracy and least

computation time.

Figure 1.1 Research Outline

This research also evaluates the state of the art classification algorithms such

as naïve Bayes, decision tree, k-nearest neighbour and rule induction. After

that, we consider applying more sophisticated techniques which may have

better performance than the basic algorithms. We used ensemble classifiers

(bagging and boosting) and Support Vector Machine (SVM) to achieve better

classification performance.

We also applied Support Vector Machine with four different kernels: linear, RBF,

polynomial and sigmoid kernels. In order to get the best classification

performance, we applied grid search and evolutionary algorithm (EA) to adjust

the SVM parameters.

Chapter 1 Introduction and Problem Statements

 6

1.4 Objectives and Contributions of the Thesis

The main objectives of our research are explained in Figure 1.2 and the

research contributions are described as follows:

• To propose the use of evolutionary algorithms for SVM parameter

optimization to boost the performance of SVM. We would like to show

that applying SVM with parameter optimization on GA-reduced datasets

and PSO-reduced datasets outperforms other classification algorithms

(basic classifiers and ensemble classifiers) which applied on both

original datasets and reduced-datasets

• To apply and analyse the performance of four different kernels of SVM

which are linear, RBF, polynomial and sigmoid kernels

• To apply ensemble classifiers which are bagging and boosting to

improve the classification performance of four basic classifiers (naive

Bayes, k-nearest neighbour, decision tree and rule induction)

• To apply and analyse the performance of GA and PSO as feature

selection algorithms that significantly reduce the number of features of

high dimensional datasets

• To apply and analyze the classification performance of four basic

machine learning algorithm which are naive Bayes, k-nearest neighbour,

decision tree and rule induction

The goal of this research is to answer the following questions:

• Does the use of SVM with parameter optimization using EA on reduced-

datasets outperform other algorithms (four basic algorithms and

ensemble classifiers) ?

• Is the use of ensemble classifiers such as bagging and boosting able to

improve the classification performance of basic classifiers?

• What is the best dimensionality reduction algorithm that reduces the

number of attributes significantly while still maintain/improve the

accuracy as well as increase the speed? Which one better as feature

selection algorithms, GA or PSO ?

• What is (are) the best machine learning technique(s) to handle high

dimensional datasets, especially datasets which have a large number of

attributes but have very limited number of examples (instances)?

Chapter 1 Introduction and Problem Statements

 7

• Is the use of sophisticated algorithms such as Support Vector Machine

able to boost the classification performance? Which SVM kernel is the

best to handle high dimensional datasets? How to adjust the SVM

parameters to get the optimal results?

Figure 1.2 Experiments Scenario

1.5 Outline of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2 presents a literature review, latest issues and research challenges of

dimensionality reduction algorithms, basic machine learning classification

algorithms, ensemble classifiers (bagging and boosting), Support Vector

Machine, Evolutionary Algorithms and parameter optimization.

In Chapter 3, the design and implementation as well as performance analysis

of two feature selection algorithms were explained in details. We selected

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) as feature

Chapter 1 Introduction and Problem Statements

 8

selection algorithms. These two algorithms were applied to nine high

dimensional datasets.

Chapter 4 described the application of ensemble classifiers to improve the

classification accuracy. We used bagging and boosting techniques to boost the

performance of four basic classifiers: decision tree, rule induction, naïve Bayes

and k-nearest neighbour.

Chapter 5 is about Support Vector Machine and its parameter optimization

using specific techniques such as grid search and evolutionary algorithms. This

chapter also compares the performance of all algorithms used in this research.

Chapter 6 presents conclusions and suggest future works.

List of Publications

Papers based on this work include:

• Syarif, Iwan, Prugel-Bennett, Adam and Wills, Gary (2012) Data mining

approaches for network intrusion detection: from dimensionality

reduction to misuse and anomaly detection. Journal of Information

Technology Review, 3, (2), 70-83.

• Syarif, Iwan, Prugel-Bennett, Adam and Wills, Gary

B. (2012) Unsupervised clustering approach for network anomaly

detection. In, Fourth International Conference on Networked Digital

Technologies (NDT 2012), Dubai, UAE, 24 - 26 Apr 2012. 11pp.

• Syarif, Iwan, Zaluska, Ed, Prugel-Bennett, Adam and Wills,

Gary (2012) Application of bagging, boosting and stacking to intrusion

detection. In, MLDM 2012: 8th International Conference on Machine

Learning and Data Mining, Berlin, Germany, 13 - 20 Jul 2012. 10pp

Chapter 2. Literature Review

 9

2. Literature Review

This chapter consists of literature review of various important issues in this

research which are dimensionality reduction, basic classification algorithms,

meta-learning (ensemble classifiers), support vector machine, evolutionary

algorithms and parameter optimization.

2.1 Dimensionality Reduction

Dimensionality reduction is the process of reducing the number of random

variables under consideration. This technique is a very important topic in data

mining or machine learning area and it is widely used in specific applications

such as image processing, bio-informatics, intrusion detection, email and web

spam analysis, text classification and pattern recognition (Braun et al.,

2012)(Fan and Fan, 2008).

One of the problems related to the high dimensional data is the fact that

analyzing these data becomes more difficult and requires more advanced

techniques. There are at least three serious problems caused by high

dimensional data: complexity, over-fitting and the number of samples.

(Mitchell, 1998)(Braun et al., 2012).

To build an effective classification model, dimensionality reduction is a very

important issue because it will limit the number of input features in a classifier

to produce a good predictive and less computationally intensive model (Huang

and Dun, 2008). With a smaller feature subset, the rationale for the

classification decision can be analysed and decided easier.

There are a lot of dimensionality reduction techniques but they can be divided

into two categories: feature extraction and feature selection which explained in

the following section.

Chapter 2. Literature Review

 10

2.1.1 Feature Extraction

In feature extraction, all available variables are used and the data is

transformed using a linear transformation to a reduced dimension space. Its

main goal is to replace the original variables by a smaller set of underlying

variables (Tsai and Chan, 2007). Figure 2.1 gives an illustration about how the

feature extraction works, x is an original data with d dimension while y is a

new data with k dimension where k<d.

Figure 2.1 Feature Extraction

There are many feature extraction algorithms but the most popular ones is

Principal Component Analysis (PCA). PCA can be used to reduce the

dimensionality of a data set by finding new variables which are smaller than

the original but still retains most of the original data set information (Fodor,

2002)(Chen et al., 2006). PCA derives new variables that are linear

combinations of the original variables by finding a few orthogonal linear

combinations of the original variables with the largest variance (Dandpat and

Meher, 2013). The new variables, called principal components (PCs), are

uncorrelated and are in decreasing order of importance. So, the goal of PCA is

to find a set of directions that maximizes the variances of the original data.

2.1.2 Feature Selection

Feature selection is a very important step in data pre-processing technique in

data mining. It is a popular technique used to find the most important and

optimal subset of features for building powerful learning models. An efficient

feature selection method can eliminate irrelevant and redundant data; hence it

can improve the classification accuracy (Oh et al., 2004)(Tjiong and Monteiro,

2011)(Liu et al., 2006). Feature selection problems are classified into two main

categories: finding the optimal predictive features and finding all the relevant

features for the class attribute.

Chapter 2. Literature Review

 11

Feature selection is actually a search problem for finding an optimal subset of

n features out of an original N features (Witten and Frank, 2005)(Hall, 1999). It

consists of four important parts:

1. Starting point

Selection a point in the feature subset space is very crucial because it

affects the direction of the search. There are three options; the first one is

called forward selection, the search starts to proceed forward with no

features and gradually add attributes. The second option is called backward

elimination which is actually a converse of the previous one. The search

proceeds backward through the search space, begins with all features then

gradually removes them. The third option is for the search to begin

somewhere in the middle and move outward from this point.

2. Search organization

There are some search methods; the simplest one is an exhaustive search

which searches all possibilities within the search space. If the dataset

consists of N features, the search space will be 2N. For large number of

features (e.g. thousands attributes), an exhaustive search is infeasible.

Another method is heuristic search which is more feasible than an

exhaustive search but it can not guarantee to get the optimal results. More

sophisticated searching techniques will be explained in more details in

parameter optimization section.

3. Evaluation strategy

The evaluation strategy is a method to evaluate the effectiveness of feature

subsets. There are two different evaluation strategies which are filter and

wrapper. In the wrapper method, the feature subsets are evaluated based

on classifier’s performance while in filter method the evaluation is based on

some feature evaluation function.For example, the wrapper model

proposed by (Kohavi & John, 1997) applies the classifier accuracy rate as

the performance measure. Some researchers have concluded that if the

purpose of the model is to minimize the classifier error rate, and the

measurement cost for all the features is equal, then the classifier’s

predictive accuracy is the most important factor. The wrapper methods are

usually slower than filter methods but they usually have better performance

Chapter 2. Literature Review

 12

because they are optimized for the particular learning algorithms used (Hall

and Holmes, 2003).

4. Stopping criterion

Every feature selection algorithm must have a stopping criterion which is

used to decide when the search iteration stops. For example, a feature

selector stops adding or removing features when the classification’s

performance does not improve after several iterations.

There are a lot of feature selection techniques, but in this paper we only select

two algorithms: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).

The GA and PSO algorithms will be discussed in more details in Sections 2.5.

2.2 Classification Algorithms

Classification problems have been extensively studied and it becomes one of

the most popular research areas in data mining (Otero et al., 2012). The

classification task consists of learning a predictive relationship between input

features and a desired output. Each data point (or data instance) consists of a

set of attributes and a class. The goal of classification algorithm is to create a

model which represents the relationship between attributes values and class

values and then use this model to predict the class label of new data.

Classification problem can be viewed as optimisation problem where the goal

is to find the best model that represents the predictive relationships in the data

(Otero et al., 2012).

Numerous factors, such as incomplete data, and the choice of values for the

parameters of a given model, may affect classification results. Classification

problems have previously been solved with statistical methods such as logistic

regression or discriminate analysis. Technological advances have led to the

development of methods for solving classification problems, including decision

trees, back-propagation neural networks, rough set theory and support vector

machines (SVM). SVM which is an emerging data classification technique

proposed by Vapnik, and has been widely adopted in various fields of

classification (Lin et al., 2008).

The process of applying supervised machine learning algorithms to a real

world problem is described in Figure 2.2 (Kotsiantis, 2007).

Chapter 2. Literature Review

 13

Figure 2.2 The process of supervised learning

A popular method for comparing various classification algorithms is to perform

statistical comparisons of the accuracies. Comprehensive survey of

classification methods can be found more details in (Gaber et al., 2007)(Fan-Zi

and Zheng-Ding, 2004).

In this research, we use four well-known classical machine learning algorithms

as base classifiers which are naïve Bayes, decision tree, k-nearest neighbour

and rule induction.

2.2.1 Nearest Neighbour

The Nearest Neighbour (NN) algorithm was firstly introduced by J.G. Skellam

(Skellam, 1952) where the ratio of expected and observed mean value of the

nearest neighbour distances is used to determine if the data set is clustered.

Even though it was invented more than seventy years ago, NN is still an active

research area (Viswanath and Sarma, 2011). Among many supervised learning

Chapter 2. Literature Review

 14

algorithms, NN achieves consistently high performance (Islam et al.,

2007)(Witten and Frank, 2005). However, this algorithm does not provide a

model explicitly and it is also sensitive to the presence of irrelevant attributes

(Geurts et al., 2009).

The k-Nearest Neighbour (k-NN) is a variant of NN where the result of new

instance query is classified based on majority of k-NN category (Viswanath and

Sarma, 2011) . k-NN is a type of instance-based learning or lazy learning where

the function is only approximated locally and all computation is deferred until

classification. The purpose of this algorithm is to classify a new object based

on attributes and training samples. k-NN is one of the most fundamental and

simplest classification methods which can be applied when there is little or no

prior knowledge about the distribution of the data. The classification uses

majority voting among the classification of the K objects. k-NN algorithm uses

neighbourhood classification as the prediction value of the new query instance

(k is a positive integer). k-NN algorithm determines the K-nearest neighbours

based on the minimum distance from the query instance to the training

samples. If k=1 then the new instance (data point) is simply assigned to the

class of its nearest neighbour. The neighbours are taken from a set of training

data for which the correct classification is already known.

The fundamental of k-NN algorithm has two important steps: Firstly, find the k

instances which are nearest to the unseen data. Secondly, select the most or

the majority of k neighbouring class (by referring label values). The pseudo-

code for a k-NN classifier is shown inAlgorithm 1 below.

Algorithm 1 k Nearest Neighbour classifier
1: input dataset D {(x1,c1), ... , (xn,cn)}

2: for each instance (xi,ci) calculate d(xi,x)

3: order d(xi,x) from lowest to highest

4: select the k nearest instance to x

5: assign to x the most frequent class

2.2.2 Decision Tree

Decision tree is a supervised learning algorithm which uses a tree to classify

instances by sorting them based on features values (Kotsiantis, 2007). The

goal is to create a model that predicts the value of a target variable based on

several input variables (Geurts et al., 2009)(Barros et al., 2012)(Otero et al.,

Chapter 2. Literature Review

 15

2012)(Witten and Frank, 2005). The trees are generated by splitting on the

values of attributes repeatedly and recursively. The main advantage of decision

tree over many other classification techniques is that they produce a set of

rules that are transparent, easy to understand and easily incorporated into real-

time technologies. Another advantage is it does not require users to know a lot

of background knowledge in the learning process. Furthermore, this algorithm

is robust to noise, low computational cost for the generation model and

flexible in dealing with redundant attributes (Barros et al., 2012). However,

decision tree has also some disadvantages, when the dataset has too many

categories the classification accuracy will significantly decrease. Furthermore,

it is difficult to find rules based on the combination of several variables.

Decision tree algorithms begin with a set of examples and create a tree data

structure that can be used to classify new examples. Each case is described by

a set of attributes which can be numeric or nominal type. Each training data

has a label which represents its class. Each internal node of this algorithm

contains a test to decide what branch to follow from that node. The leaf nodes

contain class labels instead of tests (Quinlan, 1993)(Kotsiantis, 2007).

 At present there are a lot of decision tree algorithms, but C4.5 which was

developed by Quinlan (Quinlan, 1993) is probably the most popular and the

most frequently used among many researchers. The C4.5 algorithm uses an

entropy-based criterion which is called the information gain ratio, in order to

select the best attribute to create a node. C4.5 has been successfully applied

to a wide range of classification problems and it is popularly used as an

evaluation comparison of new classification algorithms (Witten and Frank,

2005). The detailed explanation of decision tree algorithms and C4.5 algorithm

can be found in (Kohavi and Quinlan, 1999).

2.2.3 Rule Induction

Rule induction is a one of widely used machine learning techniques. The goal

of rule induction is generally to induce a set of rules from data that captures all

general knowledge within that data, and that is as small as possible at the

same time (van den Bosch, 2000)(Witten and Frank, 2005)(Cohen,

1995)(Kotsiantis, 2007). During the learning phase, rules are induced from the

training sample, based on the features and class labels of the training samples.

Chapter 2. Literature Review

 16

The rules that are extracted during the learning phase can easily be applied

during the classification phase when new unseen test data is classified.

There are several advantages of rule induction. First of all, the rules that are

extracted from the training sample are easy to understand for human beings.

The rules are simple if-then rules. Secondly, rule learning systems outperform

decision tree learners on many problems (Cohen, 1995). One disadvantage of

rule induction, however, is that it scales relatively poorly with the sample size,

particularly on noisy data.

RIPPER is a well-known rule based algorithms which was developed by Cohen

(Cohen, 1995). It generates rules through an iterated growing and pruning

process. Lee and Stolfo (Lee and Stolfo, 1998) applied RIPPER to learn the

classification model of the normal and abnormal system call sequences. This

improved rule induction algorithm is used to discover useful patterns of

system features that describe program and user behaviour, then apply this

feature to recognize anomalies and known intrusions.

2.2.4 Naïve Bayes

The naïve Bayes classifier is a supervised learning algorithm which widely used

in data mining tasks due to its computational efficiency and competitive

accuracy. This method estimates conditional class probabilities by applying

Bayes theorem under the naïve assumption that the attribute values are

mutually independent given the class (Geurts et al., 2009)(Kotsiantis, 2007).

The advantage of this algorithm is that it only requires a small amount of

training data to predict the means and variances of the variables for

classification. Because independent variables are assumed, naïve Bayes

classifier only uses the variances of the variables of each class rather than the

entire matrix to predict the class of new instance. Therefore, naïve Bayes

algorithm is one of the fastest machine learning algorithms.

2.3 Meta Learning

An ensemble classifier is a method which uses or combines multiple classifiers

to improve robustness as well as to achieve an improved classification

performance from any of the constituent classifiers. Furthermore, this

Chapter 2. Literature Review

 17

technique is more resilient to noise compared to the use of a single classifier.

This method uses a ‘divide and conquer approach’ where a complex problem is

decomposed into multiple sub-problems that are easier to understand and

solve.

Ensemble approaches (Schapire et al., 1997)(Dong and Han, 2004) have the

advantage that they can be made to adapt to any changes in the monitored

data stream more accurately than single model techniques. An ensemble

classifier has better accuracy than single classification techniques. The success

of the ensemble approach depends on the diversity in the individual classifiers

with respect to misclassified instances (Lee and Cho, 2010). According to

Polikar (Polikar, 2006), there are four ways to achieve this diversity, the first is

to use different training data to train single classifiers, the second is to use

different training parameters, the third is to use different features to train the

classifiers and the final one is to combine different types of classifier.

(Dietterich, 1997) reported that there are three main reasons why an ensemble

classifier is usually significantly better than a single classifier. Firstly, the

training data does not always provide sufficient information for selecting a

single accurate hypothesis. Secondly, the learning processes of the weak

classifier might be imperfect, and thirdly, the hypothesis space being searched

might not contain the true target function while an ensemble classifier can

provide a good approximation.

(Gaber and Bader-El-Den, 2012) proposed a novel ensemble classifier called

GARF (Genetic Algorithm based Random Forests) which used genetic

algorithms to enhance the performance of random forests. They compared the

performance of GARF against C4.5 decision tree, SVM and AdaBoost. They

reported that GARF has been always superior than the original random forests

and furthermore their novel approach has outperformed other classifiers on 8

of 15 datasets.

In this paper we evaluate and analyze two different ensemble classifier

techniques, called bagging and boosting using various weak classifiers, such

as nearest neighbour, decision tree, rule induction and naïve Bayes.

Chapter 2. Literature Review

 18

2.3.1 Bagging

Bagging, which means bootstrap aggregation, is one of the simplest but most

successful ensemble methods for improving unstable classification problems.

For example, weak classifiers, such as decision tree algorithms, can be

unstable, especially when the position of a training point changes slightly and

can lead to a very different tree. This method is usually applied to decision tree

algorithms, but it also can be used with other classification algorithms such as

naïve Bayes, nearest neighbour, rule induction, etc. The bagging technique is

very useful for large and high-dimensional data, such as intrusion data sets,

where finding a good model or classifier that can work in one step is

impossible because of the complexity and scale of the problem.

Algorithm 2 Bagging pseudo-code

1: given a set of training data D{(x1,y1),....,(xm, ym)}

2: where m=the number of datasetfor each instance

3: for i = 1 to N

4: create bootstrap replicate dataset D’i

5: D’i� select m random examples from the training set with replacement

6: hi� training base learning algorithm on D’i

7: end for

8: make a plurality vote : R(x) = majority(r1(x), ... , rN(x))

9: select the highest voting score R(x) as a classification result

Bagging was first introduced by Leo Breiman (Breiman, 1996) to reduce the

variance of a predictor. It uses multiple versions of a training set which is

generated by a random draw with the replacement of N examples where N is

the size of original training set. Each of these data sets is used to train a

different model. The outputs of the models are combined by voting to create a

single output. The bagging algorithm is explained in Algorithm 2 (Zhou, 2009).

2.3.2 Boosting

Boosting, which was introduced by Schapire et al. (Schapire et al., 1997), is an

ensemble method for boosting the performance of a set of weak classifiers

into a strong classifier. This technique can be viewed as a model averaging

method and it was originally designed for classification, but it can also be

applied to regression. Boosting provides sequential learning of the predictors.

The first one learns from the whole data set, while the following learns from

training sets based on the performance of the previous one. The misclassified

Chapter 2. Literature Review

 19

examples are marked and their weights increased so they will have a higher

probability of appearing in the training set of the next predictor. It results in

different machines being specialized in predicting different areas of the

dataset (Graczyk et al., 2010).

In this research, we select AdaBoost algorithm, which is one of the most widely

used boosting techniques for constructing a strong classifier as a linear

combination of weak classifiers. The AdaBoost algorithm was first introduced

by Freund and Schapire (Freund and Schapire, 1997) and has been shown to

solve many of the practical difficulties of earlier boosting algorithms, since it

has solid theoretical foundation and produces very accurate predictions.

Details of the boosting algorithm and its pseudo-code were given in (Zhou,

2009).

2.4 Support Vector Machine

Support Vector Machine (SVM) which was firstly proposed by Vladimir Vapnik

and Corinna Cortes (Cortes and Vapnik, 1995), is a supervised learning

technique based on statistical learning theory that can be applied to

classification, regression and pattern recognition. A SVM is a kind of binary

classifiers which takes a set of input data and then classifies each input into

two possible classes or categories. The idea is to map the n-dimensional input

space into a higher dimensional feature space and then the new feature space

is classified by constructing a linear classifier. In SVM, a data point is viewed as

a p-dimensional vector and SVM will separate them with a (p-1) dimensional

hyperplane. The SVM algorithm has an advantage that it is not affected by local

minima, furthermore it does not suffer from the curse of high dimensionality

because of the use of support vectors (Sánchez A, 2003).

2.4.1 How SVM works

Figure 2.3 shows that there are many possible hyperplanes that might separate

two classes perfectly but we must find the best hyperplane that represents the

largest separation between the two classes. SVM constructs a hyperplanein a

high dimensional space which maximises the margin between the hyperplane

and the two classes.

Chapter 2. Literature Review

 20

Figure 2.3 Two classes separated by hyperplanes

In 2 dimensions, two groups can be separated by a line using ax + by ≥ c for

the first group and ax + by≤ c for the second group. There are a lot of

possible solutions (hyperplanes) as shown in Figure 2.4.

Figure 2.4 Possible hyperplanes and support vectors

In order to choose the best possible hyperplane and minimize the risk of over-

fitting, it is very important to find the one with the maximal margin between

the two classes. How to find the optimal hyperplane is an optimization

problem which can be solved by Lagrangian formula. Once the optimal

hyperplane is found, only the data points nearest to the hyperplane will be

given a positive weight while others are set to zero. The data points where

their distances are the closest to the decision surface are called support

Chapter 2. Literature Review

 21

vectors and they are the most critical elements of the training data. The

position of dividing hyperplane would be changed or shifted if the support

vectors removed.

The distance between a data point (x
0
,y

0
) and a line ax+by+c=0 can be

measured using Formula 2.1 below:

|��� + ��� + �|
	
�� + ��� (2.1)

We have L training data where each instance X
i
 has D attributes and has 2

classes -1 and 1. We assume that the training data is linearly separable,

therefore we can draw a hyperplane separating the two classes. This

hyperplane can be described as x.w-b=0 where w is normal to the hyperplane.

H
1
 is the hyperplane for class 1 and H

2
 is the hyperplane for class 2. H

1
: x

i
.w-b

= 1 and H
2
: x

i
.w-b = -1. The perpendicular distance from the hyperplane to the

origin is

‖�‖ . All points which closest to H

1
 and H

2
 are support vectors.

Figure 2.5 Finding the optimal separating hyperplane in SVM

Based on Figure 2.5 above, we define d
1
 is the distance from H

1
 to the

hyperplane and d
2
 from H

2
 to it. The SVM margin is the distance from H

1
 to H

2

which is d
1
+d

2
.

Chapter 2. Literature Review

 22

The distance between H0 and H1 is:

|�.���|‖�‖ =
�‖�‖ , hence the distance between H1 and H2 is

�‖�‖

The distance between two hyperplanes (H1 and H2) could be maximized by

minimizing the value of ‖�‖. The margin is equal to
�‖�‖ and can be

maximized using this following formula:

 ���‖�‖ such	that		�!
�!. � + �� − 1 ≥ 0	∀! (2.2)

Minimizing ‖�‖ is equivalent to minimizing
�
� ‖�‖� and then we can apply

Quadratic Programming (QP) optimization. We need to

find���	 �� ‖�‖�	such	that	�!
�!. � + �� − 1 ≥ 0	∀!. Minimization could be proceed

by applying Lagrange multipliers α, where (! ≥ 0	, ∀�
 * = 12 ‖�‖� − 	α-y/
x/. w + b� − 1	, ∀�3 (2.3)

 * = 12 ‖�‖� −4α/-y/
x/	. w + b� − 135

/6�
 (2.4)

 * = 12 ‖�‖� −4α/y/
x/	. w + b� +4α/
5

/6�

5

/6�
 (2.5)

From the derivates = 0, we get:

 � = 4α/y/x/,4α/y/ = 07

/6�

7

/6�
 (2.6)

2.4.2 Kernel Trick

In many cases the data points are not linearly separable, in this case the input

data can be transformed using a nonlinear mapping (φ) into another dimension

space (Hric et al., 2011). In this new mapping, a linear boundary can be found.

When mapping data into a higher dimension space, the computational

complexity of the algorithm increases. To build a classification model, the

learning process iterates through all the data points and to update the weights

for the model, a large number of operations need to be made. Fortunately, the

Chapter 2. Literature Review

 23

calculation of the dot product between all instances can be calculated in the

lower-dimension space by substituting a kernel function into the equation, this

technique is called kernel trick. A kernel trick is a technique that depends on

the training data only through dot-products. Kernel function can be interpreted

as a measuring the similarity of x and x’ (Sánchez A, 2003).

Figure 2.6 Moving a dataset into higher dimension1

Suppose there are l data points (instances) x and each instance consists of a

binary label y (-1, 1), the SVM algorithm classifies the instances based on this

following formula:

 �
�� = 	8�9�	 :4(!�!
;

!6!
<
�!, �� + �= (2.7)

Where α
i
 and b are real constant and K(x

i
 ,x) is the inner product operation.

If we assume that there are no data points between H1 and H2 then we can

define the SVM hard margin which is only applicable to handle a linearly

separable dataset:

������>?�,� �
� ‖�‖� subject to : �!@�A�! + �B ≥ 1			� = 1,… , � (2.8)

In reality, most of the data is often not linearly separable so applying the

equation above may produce classification errors. If the separating hyperplane

is not possible, we can use a soft margin method which will select the

hyperplane that split the training data as good as possible. This method

1http://www.music.mcgill.ca/~alastair/621/porter11svm-summary.pdf

Chapter 2. Literature Review

 24

introduces new variables called slack variables (ξ) to allow for finding a

hyperplane that misclassifies some of the data points because many datasets

are not linearly separable. The slack variables measure the degree of

misclassification for each data point.

Figure 2.7 Calculate the degree of misclassification using slack variables

The above equation will be:

������>?�,� 12 ‖�‖� + 	D4E!
F

!6!
subjectto�!@�A�! + �B ≥ 1 − E! (2.9)

1 ≥ E! ≥ 0 point is between margin and correct side of the hyperplane while E!>

1 point is misclassified.

A penalty function is added to the problem as the total of all slack variables.

The constant C is used to control the trade-off between the margin and the

size of the slack variables (Howley and Madden, 2005).

Using the Langrangian multipliers we will get a dual formulation as follow:

������>?J 4α/ −	12 4 α/
K

/,L6�

K

/6�
αLy/yLKNx/, xLO	subject	to	4�!(! = 0

P

!6�
, 0 ≤ (! ≤ D (2.10)

Chapter 2. Literature Review

 25

The data points with (! > 0 are located on the margin or within the soft

margin are support vectors. The SVM formula written in Equation2.10 depends

on the data only through dot products which usually called kernel function. In

Equation 2.10, the kernel function is KNx/, xLO = 〈T
�!�, TN�UO〉. The performance

of a SVM classifier is highly dependent on the choice of a proper kernel

function (Hussain et al., 2011)(Sánchez A, 2003) .

2.4.3 SVM Kernels

SVM can efficiently perform non-linear classification using the kernel trick by

mapping their input into high-dimensional feature spaces.The most frequently

used kernel functions are the linear, radial basis function (RBF)), sigmoid and

polynomial kernel.

2.4.3.1 Linear Kernel

Linear kernel function is described below:

 WN�!, �UO = 	 N�!A�UO + � (2.11)

The linear kernel has only one tuneable parameter which is c. Linear kernel

performs very well and very fast on linearly separable datasets, unfortunately

most real world problems are not linearly separable.

2.4.3.2 RBF (Gaussian) Kernel

The Gaussian or RBF kernel produces a mapping equivalent to an infinite

dimensional Hilbert space. Therefore this function is able to map a wider

variety of data sets. The RBF kernel is described below:

 WN�!, �UO = ?�X Y− 12Z� [�! − �U[\ (2.12)

Alternatively, it could also be implemented using

 WN�!, �UO = ?�X]−^[�! − �U[�_ (2.13)

The RBF is generally applied most frequently, because it can classify non-

lineary separable data, unlike a linear kernel function. Additionally, the RBF has

fewer parameters to set than a polynomial kernel. The adjustable parameter ^

plays a major role in the peformance of the kernel.

Chapter 2. Literature Review

 26

RBF and other kernel functions have similar overall performance.

Consequently, RBF is an effective option for kernel function. (Sánchez A,

2003)(Mierswa, 2006)(Chang and Lin, 2011) reported that the RBF kernel

performs well if the number of features is much larger than the size of dataset

but it does not work well on noisy data.

2.4.3.3 Sigmoid Kernel

A sigmoid kernel function is equivalent to a two-layer percepton neural

network. The sigmoid kernel comes from the neural network field where the

sigmoid function is often used as an activation function for aritificial neurons.

The sigmoid kernel function is described below:

 <N�! , �UO = 	tanh	
^�!A�U + �� (2.14)

There are two adjustable parameters in the sigmoid kernel: c and ^

2.4.3.4 Polynomial Kernel

The polynomial kernel function is described in the equation below:

 <N�! , �UO = 	N^�!A�U + aOb , ^ > 0 (2.15)

Compare to other SVM kernels, the polynomial kernel has more parameters

that need to be optimized. Beside C and^ (gamma), it has at least 2 more

important parameters: the polynomial degree d and the degree coefficient r.

The parameter d should be set carefully, if the value of d is too large then the

kernel values may go to infinity or zero.

2.5 Evolutionary Algorithms

Evolutionary algorithm (EA) is commonly used on problems which are very hard

to solve in a brute force technique. EAs search the solution space (the set of all

possible inputs) of a difficult problem for the best solution, but not naively like

a brute-force or grid search.

An EA uses mechanisms inspired by biological evolution such as reproduction,

mutation, recombination and selection. In nature, individuals are continuously

developing and adapting to their environment while in EA, each individual is a

candidate solution to the target problem which is evaluated by a fitness

function. At each generation, the best individuals have a higher probability of

Chapter 2. Literature Review

 27

being selected for reproduction (Barros et al., 2012). The selected individual

then produces new offspring or a new generation through crossover and

mutation. This process is continuously repeated until a terminating condition

achieved.

There are two important operators of EA, the first one is variation operators

(recombination and mutation) which enrich the diversity as well as facilitate

novelty. The second one is selection operator which reduces diversity and acts

as force pushing quality. The use of both operators is able to improve the

fitness values in consecutive populations. The fundamental of EA is explained

in Algorithm 3 below (Eiben and Smith, 2003).

Algorithm 3Evolutionary Algorithms pseudo-code

1: CREATE an initial population (usually at random)

2: EVALUATE each candidate

3: REPEAT

4: SELECT some pairs to be parents (SELECTION)

5: COMBINE pairs of parents to create offspring (RECOMBINATION)

6: MUTATE the offspring (MUTATION)

7: SELECT some population members to be replaced

8: by the new offspring (REPLACEMENT)

9: UNTIL exit criteria is satisfied

There are many different variants of EAs but the general concept behind all

these methods is the same: given a population of individual, natural selection

(survival of the fittest) and the fitness of population (Eiben and Smith, 2003).

Most of the present implementation of EA comes from these three basic types:

Genetic Algorithms (GA), Evolutionary Programming (EP) and Evolutionary

Strategies (ES).These variant techniques are quite similar but different in the

implementation details and the nature of the particular applied problem. These

algorithms have different representations (type of internal data structure) used

to store the individuals): genetic algorithm (GA) uses binary strings, genetic

programming (GP) uses trees, evolution strategies (ES) uses real-valued vectors,

evolutionary programming uses finite state machine (Eiben and Smith, 2003).

Representation: The candidate solutions (individuals) are encoded in

chromosomes which contain genes. Genes are usually in fixed position called

loci and have a value. In order to find the global optimum, every feasible

solution must be represented in genotype space. Selecting an appropriate

Chapter 2. Literature Review

 28

genotype representation is critical work for reducing the processing time of an

EA.

Evaluation (Fitness Function): is a function used to measure the quality of

phenotype which forms the selection process. The fitness function represents

the requirement that the population should adapt to and it is usually

optimization or minimization problems.

Population: the population of chromosomes is randomly initialized and it is

representation of possible solutions.

Parent Selection Mechanism: the parents are usually selected based on their

finesses or high quality individuals but it could not guarantee achieve optimal

solution. It needs a special trick to avoid getting trapped in local optima.

Variation Operators: operators are used to generate new candidate solutions,

they are usually divided based on number of inputs: mutation, recombination

and crossover operator.

Mutation: mutation is a unary operator applied on one genotype. It is very

essential to maintain the randomness and to create the diversity.

Recombination: used to merge information from parents into offspring. Some

of offspring may be worse while others are the same as the parents.

Survivor Selection: there are three methods of survival selection, the first one is

called fitness based which ranks the parents and offspring based on their

fitness value then take the best. The second one is age based, make offspring

as parents and then delete all previous parents. The third one is the

combination of both techniques which is usually called elitism.

In this research, we only focused on GA and PSO. We used both GA and PSO for

feature selection algorithms and we also used GA to optimize the SVM

parameters.The use of GA in feature selection has been investigated by several

researchers (Oh et al., 2004)(Hall and Holmes, 2003)(Roy and Bhattacharya,

2008)(Syarif et al., 2012a).

Chapter 2. Literature Review

 29

2.5.1 Genetic Algorithm (GA)

The Genetic Algorithm (GA) technique was originally proposed by John Holland

in the 1975 as an experiment to see if the computer programs could eveolve in

the Darwinian sense. GA has been applied to many function optimization

problems and has been shown to be good in finding optimal and near optimal

solutions. Its robustness of search in large search spaces and its domain

independent nature motivated its applications in various fields (Krishna and

Murty, 1999). GA can be applied to solve a variety of optimization problems

that are not well suited for standard optimization algorithms, including

problems in which the objective function is discontinuous, non-differentiable,

stochastic, or highly non-linear (Malhotra et al., 2011) .

The GA is a method for solving optimization problems that is based on natural

selection, the process that drives biological evolution. GA repeatedly modifies

a population of individual solutions. At each step, the GA selects individuals at

random from the current population to be parents and uses them produce the

children for the next generation. Over successive generations, the population

“evolves” toward an optimal solution.

The GA uses three main types of rules at each step to create the next

generation from the current population:

1. Selection rules select the fitter individuals called parents that contribute

to the population at the next generation.

2. Crossover rules combine two parents to form children for the next

generation.

3. Mutation rules apply random changes to individual parents to form

children.

There are two main differences betwen standard optimization algorithm and

GA. First, classical algorithm generates a single point at each iteration where

the sequence of points approaches an optimal solution. GA generates a

population at each iteration where the best point in the population approaches

an optimal solution. Second, classical algorithm selects the next point in the

sequence by a deterministic computation while GA uses random number

generators (Krishna and Murty, 1999).

Chapter 2. Literature Review

 30

The detail of GA is explained in the Algorithm 4 below (Mitchell, 1998).

Algorithm 4Genetic Algorithm pseudo-code
1. [Start] Generate random population of n chromosomes

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population

3. [New population] Create a new population by repeating following steps

4. A. [Selection] Select two parent chromosomes from a population according to

5. their fitness (the better fitness, the bigger chance to be selected)

6. B. [Crossover] With a crossover probability cross over the parents to form

7. a new offspring (children).

8. If no crossover was performed, offspring is an exact copy of parents.

9. C. [Mutation] With a mutation probability mutate new offspring

10. at each locus (position in chromosome).

11. D. [Accepting] Place new offspring in a new population

12. [Replace] Use new generated population for a further run of algorithm

13. [Test] If the end condition is satisfied, stop,

14. and return the best solution in current population

15. [Loop] Go to step 2

2.5.2 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is an evolutionary computation technique

that was first developed by Kennedy and Eberhart (1995) and is inspired by the

behaviour of bird flocking to reach destination not completely known. PSO is

powerful, easy to implement and computationally efficient (Huang and Dun,

2008). PSO is also an effective and flexible technique to explore the search

space of a problem (Schuh et al., 2012). Like other evolutionary algorithms,

PSO performs searches using a population (called swarm) of individuals (called

particles) that are updated from iteration to iteration (Tjiong and Monteiro,

2011). To discover the optimal solution, each particle changes its searching

direction according to two factors, its own best previous experience (called

personal best or pbest) and the best experience of the whole swarms (called

global best or gbest). The local best of a particle can be considered as the

cognitive part while the global best particle is considered as the social part

(Schuh et al., 2012)(Tjiong and Monteiro, 2011)(Korürek and Doan, 2010).

Each particle in the swarm represents one possible solution to the problem. At

first, the swarm of particles are given a random initial location and velocity and

are updated based on these following equations:

Chapter 2. Literature Review

 31

 c!,Ud�� = ec!,Ud +��a�NX!,U − �!,Ud O + ��a�NXf,U − �!,Ud O (2.14)

 �!,Ud�� =	�!,Ud + c!,Ud�� (2.15)

Where x is the position of the particle i,v is its velocity, j is the dimension, t is

time and ω is the inertial weight which represents how much of the previous

velocity is retained while exploring. C
1
 and c

2
 are learning factor, r

1
 and r

2
 are

weighting parameters, p
i,j
 is local best while p

g,j
 is global best particle. For each

iteration, the fitness of each particle is calculated then the personal best and

global best are also updated using Equation 2.14 and 2.15. Once the

termination criteria is achieved, PSO will have good fitness, a set number of

generations or a convergence factor such as a threshold for minimum

population change.

The detail of PSO is explained in theAlgorithm 5 below (Mitchell,

1998)(Moraglio et al., 2008).

Algorithm 5Particle Swarm Optimization pseudo-code
1. for all particle i do

2. initialize position xi and velocity vi

3. end for

4. while stop criteria not met do

5. for all particle i do

6. set personal best xi as best position found so far by the particle

7. set global best g as best position found so far by the whole swarm

8. end for

9. for all particle i do

10. update velocity using: c!,Ud�� = ec!,Ud +��a�NX!,U − �!,Ud O + ��a�NXf,U − �!,Ud O

11. update position using: �!,Ud�� =	�!,Ud + c!,Ud��

12. end for

13. end while

2.6 Parameter Optimisation

Generally, most of machine learning algorithms will not achieved optimal

results if its parameters are not being tuned properly. To build a high accuracy

classification model, it is very important to choose a powerful machine learning

algorithm as well as adjust its parameters. Parameter optimization can be very

time consuming if done manually especially when the learning algorithm has

many parameters (Friedrichsand Igel, 2005)(Rossi and de Carvalho, 2008).

Chapter 2. Literature Review

 32

The SVM performance highly depends on parameter setting and kernel

selection. The selection quality of SVM parameters and kernel functions has an

effect on the learning and generalization performance. Appropriate kernel

function and its parameters should be selected to obtain an optimal

classification performance (Aydin et al., 2011)(Subasi, 2013). Many researchers

showed (Hric et al., 2011)(Subasi, 2013)(Chang and Lin, 2011)(Huang and Dun,

2008) that the SVM classification accuracy among the four most popular

kernels (linear, RBF, polynomial, sigmoid) can vary significantly based on a

given training dataset. The selection of SVM parameters is actually an

optimization problem in which search algorithms are used to find the best

configuration of parameters for given problem (de Miranda et al., 2012)(Gaspar

et al., 2012). To select a proper parameter for a specific SVM kernel is an

important research issue in the machine learning area.

Aydin et. al. (Aydin et al., 2011) reported that there are two crucial points in

SVM, the first one is how to choose the optimal input feature subset and the

second one is how to set the best kernel and penalize its parameters. (Zhou

and Chun-De, 2006) proposed a hybrid optimization selection method for SVM

parameters and features selection using an immune algorithm. An immune

algorithm (IA) is one of evolutionary algorithms which have abilities of

learning, memorizing and self-adaptive control. They argued that IA can

effectively solve the conflict between local search and global search in the

feature selection and parameter selection process. They used IA to optimize

the SVM kernel, to penalize its parameters and to select the most important

features.

(Schuh et al., 2012) argued that the SVM kernel parameters not only need to be

optimized, but the kernel itself might also contain both implicit and explicit

domain knowledge which requires an expert’s interpretation. They proposed to

use Particle Swarm Optimization (PSO) and Genetic Programming (GP) as

evolutionary approaches to find effective SVM kernel functions for various

training data. Another researcher Subasi (Subasi, 2013) also applied PSO to

optimize SVM parameters for electro-myography (EMG) signal classification. He

reported that his approach achieved better performance compare to Nearest

Neighbour algorithm, RBF classifier and a conventional SVM.

Chapter 2. Literature Review

 33

(de Miranda et al., 2012) used the combination of meta learning and PSO to

optimize Ɣ and C parameters. They used PSO to maximize the success rate

and minimize the number of support vectors of the model and they also

argued that meta-learning can be used to treat parameter selection as a

supervised learning task. The parameter configuration suggested by meta-

learning is used as initial population of the search technique, hence the search

process would converge faster and be less expensive. However, meta learning

is very dependent on the quality of its meta examples, unfortunately the

number of problems available for meta-example generation is very limited and

usually contains noisy data which needs to be cleaned.

Huang et. al. (Huang and Dun, 2008) proposed a novel PSO-SVM model to

improve the classification accuracy by doing feature selection and SVM kernel

parameter setting. They implemented a distributed architecture using web

service technology to reduce the computational time. (Sudheer et al., 2013)

also applied hybrid PSO-SVM for forecasting monthly stream flow. The PSO was

used to optimize the SVM parameter and they reported this technique has

successfully improved the forecasting performance.

There are several methods to adjust the SVM parameter: grid search with cross-

validation, genetic algorithm (GA) and particle swarm optimization (PSO). Two

major RBF parameters applied in SVM, C and Ɣ must be set appropriately.

Parameter C represents the cost of the penalty. The choice of value for C

influences on the classification outcome. If C is too large, then the

classification accuracy rate is very high in the training phase, but very low in

the testing phase. If C is too small, then the classification accuracy rate

unsatisfactory, making the model useless. Parameter Ɣ has a much greater

influence on classification outcomes than C, because its value affects the

partitioning outcome in the feature space. An excessively large value for

parameter Ɣ results in over-fitting, while a disproportionately small value leads

to under-fitting (Pardo and Sberveglieri, 2005).

Grid search is a computationally demanding process: by increasing the number

of parameters and reducing the interval between discrete values, the number

of possible combinations increases exponentially. The grid search algorithm is

an alternative way to find the best SVM parameters. A logarithmic grid search

method will be performed to find the best selection of C and Ɣ. We will select

Chapter 2. Literature Review

 34

the C and the Ɣ which produce the best average cross-validation accuracy.

Selecting more SVM parameters will create very large combinations. For

example there are three parameters to be optimized: C, ^	(gamma) and d

(degree) where each has 20 steps then the number of combinations would be

8,000 (20x20x20). This method has proven to be more effective and efficient

than manual search, as it provides more accurate decision models in shorter

time. The problem of a large number of calculations can be solved by parallel

computing, or by employing the cloud computing techniques or by implement

smarter machine learning algorithms.

The use of evolutionary algorithm for parameter optimization is very much

faster and often gives better results than greedy search and grid search

(Friedrichs and Igel, 2005)(Rossi and de Carvalho, 2008). Furthermore, it is

very useful if ranges of the parameters are not known at all. For example, it is

very difficult to find the correct ranges of SVM parameters especially C and

^	(gamma).

(Sudheer et al., 2013) applied PSO to adjust the SVM parameters, other

researchers (Schuh et al., 2012) applied GP and PSO into various SVM kernels

on three different data sets. They reported that their approaches are feasible,

effective and quite promising. However, finding the ranges of SVM kernel

parameters as well as GP and PSO parameters are also difficult problems.

Another issue is the combination of GP and PSO require very high

computational cost.

Chapter 3. Dimensionality Reduction Algorithms

 35

3. Dimensionality Reduction

In this chapter, we applied GA and PSO into high dimensional datasets and

analysed its affect before and after reduction based on classification accuracy

and execution time.

3.1 Dimensionality Reduction System Design

(Hall and Holmes, 2003)(Syarif et al., 2012a) reported that if the data has many

irrelevant, redundant and noisy features, the constructed model will have poor

classification performance as well as higher computation cost. In this chapter,

we do some experiments to find a more effective dimensionality reduction

algorithm that produces better classification accuracy. The proposed system is

shown in Figure 3.1 below.

Figure 3.1 Dimensionality Reduction System Design

We used GA and PSO feature selection modules from Weka, saved the results

into different files and then tested the new datasets using four classification

algorithms (naïve Bayes, decision tree, rule induction and nearest neighbour)

which provided by RapidMiner. The implementation of our proposed

dimensionality reduction system is shown in Figure 3.2.

Chapter 3. Dimensionality Reduction Algorithms

 36

Figure 3.2 The Implementation of Dimensionality Reduction in RapidMiner

3.2 Dimensionality Reduction Algorithms

The following section explain how the two algorithms GA and PSO used to

reduce the dimensionality. As described in Chapter 2 there are two types of

feature selection methods which are filter and wrapper technique. We chose to

apply wrapper techniques because they most often achieve better results than

the filter techniques because they are trained and adjusted to the specific

machine learning algorithm (Hall and Holmes, 2003)(Chen et al., 2006). In this

research, GA and PSO are used as search algorithms to find the best features

or subsets from original datasets as shown in Figure 3.3.

Figure 3.3 Feature selection using wrapper technique

Chapter 3. Dimensionality Reduction Algorithms

 37

3.2.1 Genetic Algorithm Search

We used GA-based feature selection developed by Mark Hall (Hall, 1999) which

has been integrated to WEKA Data Mining Tools. A GA is used as a search

technique to find the optimal subset. A solution is stored in fixed length binary

string which represents a subset of original features. The value of each

position in the string means presence for 1 and absence for 0. A new

generation is randomly generated as an initial process then finding the optimal

subset of original features is actually an iterative process. A generation is

produced by applying genetic operators such as crossover and mutation to the

member of population (current generation) in each iteration.

Generate random initial population P

Evaluate the fitness of each member:

Apply a classification algorithm to calculate the accuracy of each subset

Select 2 subsets x and y based on their fitness

Apply crossover to x and y to produce new subsets x’ and y’

Apply mutation to x’ and y’

Insert x’ and y’ into new generation P’

is |P| < |P’| ?

Update new population P P’

Return : optimal feature subset with the best fitness value

yes

no

Figure 3.4 Feature selection using Genetic Algorithm

Crossover operator combines two different subsets and then generatesa new

pair of subset. The mutation operator changes some of values which mean

randomly adding or removing features in subset. To produce a better

generation, a couple of members (usually called parents) are carefully selected

Chapter 3. Dimensionality Reduction Algorithms

 38

using the fitness function. The iteration will be stopped if there is no more

generation to process. The flowchart of GA-based feature selection is described

in the Figure 3.4 (Hall, 1999).

3.2.2 Particle Swarm Optimization Search

Beside GA, we also applied PSO algorithm for feature selection which was

originally proposed by Moraglio et al. (Moraglio et al., 2008) and then the

implementation in Java was written by Sebastian Luna Valero2 . PSO uses

slightly different terms compare to GA. In PSO, a solution is called a particle

and the population is called swarm of particles. Similar to GA, the first process

of PSO is generation of initial swarm of particles. Unlike GA, PSO does not need

complex operators such as crossover and mutation; it only uses simple

mathematical operators. Furthermore, PSO has less computational cost and

needs a small amount of memory.

Figure 3.5 PSO search for feature selection

2PSOSearch, http://www.cs.waikato.ac.nz/ml/weka/packageMetaData/PSOSearch

Chapter 3. Dimensionality Reduction Algorithms

 39

The PSO algorithm has been described in Section 2.1.2 but there is a little

modification when it applies to feature selection problem. The flow chart of

PSO search is explained in Figure 3.5 (Jwo and Chang, 2009).

3.3 Performance Measurement

The metric used to evaluate the performance of classifier is given below (Davis

and Goadrich, 2006):

Table 3.1 Performance metric

Predicted Label

Positive Negative

Actual Label

Positive
True Positive

(TP)

False Negative

 (FN)

Negative
False Positive

(FP)

True Negative

(TN)

The accuracy rate and false positive rate are measured using the following

formulae:

gh?	ij8�k�c?	l�k? = TPTP + FN				 , q�r8?	ij8�k�c?	l�k? = qiFP + TN	
Many researchers use accuracy and false positive rate as performance

measurement for classification problems, but other researchers (Davis and

Goadrich, 2006)(Kotsiantis, 2007)(Williams et al., 2006)(Davis and Goadrich,

2006) argue that accuracy and false positive rates are not enough and simply

using accuracy results can be misleading. They suggest accuracy, precision,

recall and ROC curve as better performance measurement methods.

Precision is the percentage of positive predictions that are correct. Recall or

sensitivity is the percentage of positive labelled instances that were predicted

as positive. Specificity is the percentage of negative labelled instances that

were predicted as negative. Accuracy is the percentage of correctly classified

instances over the total number of instances.

To evaluate the performance offeature extraction and feature selection

algorithms, there are other measurements called balance error rate (BER),

fraction of features (FF) and fraction of probes (FP).

Chapter 3. Dimensionality Reduction Algorithms

 40

Table 3.2 Classification performance measurement

Measure Formula

Precision ia?��8�j� = TPTP + FP

Recall /

Sensitivity
l?��rr/t?�8�k�c�k� = TPTP + FN

Selectivity t?r?�k�c�k� = TNFP + TN

Accuracy u��ha���	 = TP + TNTP + TN + FP + FN

F-Measure q −v?�8ha?	 = 2 ∗ Precision ∗ RecallPrecision + Recall

Balanced Error Rate (BER) is the average of the errors on each class

|}l = 0.5 ∗
 q�TP + FN +	 qiFP + TN�
Fraction of Features (FF) is the ratio of the number of features used by the

classifier to the total number of features in the dataset.

Fraction of Probes (FP) is the ratio of the number of probes used to the

number of feature used by a classifier. Probes are additional features added to

the original datasets because of their similar distributions to the original

features.

Area Under Curve (AUC) is an area under the ROC curve. This area is

equivalent to the area under the curve obtained by plotting TP/(TP+FN) against

TN/(FP+TN) for each confidence value, starting at (0,1) and ending at (1,0). The

area under this curve is calculated using the trapezoid method. In the case

when no confidence values are supplied for the classification the curve is given

by {(0,1),(TN/(FP+TN),TP/(TP+FN)),(1,0)} and AUC = 1 - BER.

To test and evaluate various classification algorithms, we use k-fold cross

validation (in most cases, we set k=10). In this method the dataset is divided

into k subset and executed in k iteration. One of the k subsets is used as the

testing data while the others are used as a training data in each iteration. The

performance measurement is calculated across all k iterations. This technique

can be used to analyse how well the classifiers will perform on unseen data.

Chapter 3. Dimensionality Reduction Algorithms

 41

3.4 The Datasets

We used nine high dimensional datasets which have the number of features

from 45 attributes (the smallest) until 20,000 attributes (the highest). There is

no exact definition of high dimensional data and also there is no agreement

among researchers about the limit between low and high dimensional data.

Clarke et. al. (Clarke et al., 2008) and Verleysen (Verleysen, 2003) argued that

the data are high dimensional if it has hundreds or thousands of features for

each example.

Since it is very difficult to get publicly available high dimensional datasets, we

found 9 datasets from various websites but only 6 of them have attributes

more than 100. We only used datasets which has 2 classes because we also

wish to apply SVM algorithm to these datasets. The original SVM classifier is

only able to handle two labelled classes. The list of datasets is shown in Table

3.16 below.

Table 3.3 High-dimensional datasets

From 9 datasets, there are 2 datasets (internet_ads and spambase) have

missing values and there are 2 datasets have unbalanced data (internet_ads

and musk). Internet_ads has 2 labelled: ad (14%) and nonad (86%), musk

dataset also has 2 labeled: 0 (83%) and 1 (17%).

1 Leukemia no 72 7,130 all, aml

2 Embryonal Tumours no 60 7,130 0,1

3 Dexter no 600 20,000 1, -1

4 Internet_ads yes 3,279 1,559 ad, nonad

5 Madelon no 2,600 501 1, -1

6 Musk no 6,598 168 0,1

7 Spambase yes 4,601 58 0,1

8 SPECTF Heart no 80 45 0,1

9 Intrusion no 25,192 42

Dataset Name
Missing

values

 Number of

instances

 Number of

attributes
Classes

Chapter 3. Dimensionality Reduction Algorithms

 42

3.5 Experimental Results

In the first experiment, we applied four basic classifiers into original datasets.

After that we applied the same classifiers into datasets that have been reduced

by GA and PSO.

3.5.1 Experiments on Original Datasets

We applied four basic classifiers which are naive Bayes, k-nearest neighbour,

decision tree and rule induction using 10 fold cross validation.

3.5.1.1 Naive Bayes

The naive Bayes algorithm in RapidMiner has no parameter. The results of

naive Bayes experiments on original datasets are shown in Table 3.4.

Table 3.4 Naive Bayes algorithm results on original datasets

The naive Bayes algorithm is relatively fast and it only needs a small amount of

training data to estimate the means and variances to build a prediction model.

It takes only around 13 second to apply 10-fold cross validation technique on

dexter dataset which has 20,000 attributes and it needs less than one second

to execute the same technique on leukemia and embryonal tumours datasets

which has 7,130 attributes. And it is also quite fast to classify a dataset with a

large number of instances such as intrusion dataset which has more than

25,000 attributes.

Execution Time

(hh:mm:ss)

Leukemia 72 7,130 98.57% 100.00% 96.67% 98.31% 00:00:01

Embryonal Tumours 60 7,130 68.33% 79.41% 70.00% 74.41% 00:00:01

Dexter 600 20,000 80.33% 77.79% 85.33% 81.39% 00:00:13

Internet_ads 3,279 1,559 96.86% 97.10% 99.33% 98.20% 00:00:10

Madelon 2,600 501 59.58% 59.81% 58.31% 59.05% 00:00:02

Musk 6,598 168 89.62% 96.74% 90.79% 93.67% 00:00:02

Spambase 4,601 58 81.81% 96.29% 72.78% 82.90% 00:00:01

SPECTF Heart 80 45 75.00% 71.17% 90.00% 79.49% 00:00:01

Intrusion 25,192 42 86.34% 99.71% 70.91% 82.88% 00:00:09

Performance measurement with 10-fold cross validation
Number of

attributes

Number of

instances
Data set

Accuracy Precision Recall F Measure

Chapter 3. Dimensionality Reduction Algorithms

 43

3.5.1.2 k Nearest Neighbour

The k-NN algorithm in RapidMiner has 3 parameters:

1. k: set the number of nearest data points , the default value is 1

2. measure types: is used for selecting the type of measure to calculate the

distance from the data point to the nearest neighbor. There are four

options: mixed measure, nominal measure, numerical measure and

Bregman divergences. The default value is mixed measure.

3. mixed measures: this parameter is only available when the measure

type=’mixed measures’. It has only one option: mixed Eucledian

distance.

We used the default value for all k-NN parameters. The results of kNN

experiments are shown in Table 3.5.

Table 3.5 k-nearest neigbour algorithm results on original datasets

kNN is one of the simplest machine learning algorithms. All of the training data

are stored in an n-dimensional space. kNN classifies a new instance by a

majority vote of its neighbours. If k=1, the new instance is directly assigned to

the class of its nearest neighbour. There is no explicit training phase in kNN.

3.5.1.3 Decision Tree

There are 6 parameters of decision tree algorithm in RapidMiner and we used

the default values for all of parameters.

Execution Time

(hh:mm:ss)

Leukemia 72 7,130 91.61% 96.00% 84.17% 89.70% 00:00:01

Embryonal Tumours 60 7,130 60.00% 76.00% 60.00% 67.06% 00:00:01

Dexter 600 20,000 86.33% 85.61% 87.67% 86.63% 00:00:27

Internet_ads 3,279 1,559 86.00% 96.40% 86.99% 91.45% 00:01:51

Madelon 2,600 501 65.04% 65.26% 64.54% 64.90% 00:00:24

Musk 6,598 168 95.23% 97.89% 96.43% 97.15% 00:00:59

Spambase 4,601 58 82.57% 85.73% 85.51% 85.62% 00:00:11

SPECTF Heart 80 45 63.75% 59.83% 77.50% 67.53% 00:00:01

Intrusion 25,192 42 99.54% 99.57% 99.45% 99.51% 00:08:37

Data set
Number of

instances

Number of

attributes

Performance measurement with 10-fold cross validation

Accuracy Precision Recall F Measure

Chapter 3. Dimensionality Reduction Algorithms

 44

1. Criterion : this parameter selects the criterion on which attributes will be

selected for splitting. There are four options: information gain, gain

ratio, gini index and accuracy. The default value is gain ratio.

2. Minimal size for split : this parameter sets the number of examples in

its subset. The default value is 4.

3. Minimal leaf size : the tree is generated with every leaf node subset has

at least the minimal leaf size number of instance.

4. Minimal gain : higher value of this parameters affects fewer split and a

smaller tree. The default valus is 0.1

5. Maximal depth: set the maximal depth of the tree, the default value is

20

6. Confidence : this parameter is used to set the confidence level of

prunning error, the default value is 0.25

The results of decision tree experiments are explained in Table 3.6

Table 3.6 Decision tree experiment results on original datasets

Compare to naive Bayes and k-NN, decision tree is much slower. For example,

to apply 10-fold cross validation technique on dexter which has the highest

dimension (20,000 attributes), decision tree takes more than 8 hours while

naive Bayes only needs 13 second and k-NN needs 27 seconds. When applied

to intrusion dataset which has the least dimension (42 attributes) but has the

highest number of instances (25,192 instances), decision tree needs more than

42 minutes while naive Bayes only takes 9 seconds and kNN needs 8 minutes.

Execution Time

(hh:mm:ss)

Leukemia 72 7,130 82.14% 73.33% 85.00% 78.73% 00:24:44

Embryonal Tumours 60 7,130 50.00% 64.00% 54.17% 58.68% 00:40:16

Dexter 600 20,000 84.83% 85.61% 88.00% 86.79% 08:10:14

Internet_ads 3,279 1,559 78.34% 96.11% 78.11% 86.18% 00:01:19

Madelon 2,600 501 50.00% 50.00% 90.00% 64.29% 00:00:33

Musk 6,598 168 86.34% 86.26% 99.87% 92.57% 00:00:39

Spambase 4,601 58 90.72% 89.97% 95.37% 92.59% 00:02:16

SPECTF Heart 80 45 76.25% 75.00% 85.00% 79.69% 00:00:01

Intrusion 25,192 42 99.68% 99.67% 99.65% 99.66% 00:42:34

Data set
Number of

instances

Number of

attributes

Performance measurement with 10-fold cross validation

Accuracy Precision Recall F Measure

Chapter 3. Dimensionality Reduction Algorithms

 45

3.5.1.4 Rule Induction

The rule induction module in RapidMiner has four parameters as follow:

1. Criterion: selects the criterion for attribute selection and numerical

splits. There are 2 options which are information gain and accuracy. The

default value is information gain.

2. Sample ratio: sets the sample ratio of training data used for pruning, the

default value is 0.9

3. Pureness: specifies the pureness level, the default value is 0.9

4. Minimal prune benefit: default value is 0.25

We used the default values for all parameters and the results are explained in

Table 3.7

Table 3.7 Rule induction experiment results on original datasets

Rule induction algorithm is also much slower than naive Bayes and kNN

especialy when applied to datasets with high number of instances or high

number of attributes such as dexter, musk and intrusion dataset.

3.5.1.5 Basic classifiers results comparison

We summarized the results of previous experiments in Table 3.8. We selected

F-Measure as main performance indicator. The yellow colour means the best

results of four methods.

Execution Time

(hh:mm:ss)

Leukemia 72 7,130 87.68% 84.33% 82.50% 83.40% 00:14:59

Embryonal Tumours 60 7,130 60.00% 67.17% 82.50% 74.05% 00:30:33

Dexter 600 20,000 83.50% 87.12% 79.67% 83.23% 05:07:12

Internet_ads 3,279 1,559 91.00% 91.09% 99.26% 95.00% 00:05:02

Madelon 2,600 501 73.08% 72.72% 73.92% 73.32% 00:43:37

Musk 6,598 168 91.47% 91.60% 99.01% 95.16% 01:57:12

Spambase 4,601 58 91.42% 91.66% 94.48% 93.05% 00:01:51

SPECTF Heart 80 45 60.00% 59.09% 65.00% 61.90% 00:00:01

Intrusion 25,192 42 92.21% 92.00% 91.22% 91.61% 00:00:51

Data set
Number of

instances

Number of

attributes

Performance measurement with 10-fold cross validation

Accuracy Precision Recall F Measure

Chapter 3. Dimensionality Reduction Algorithms

 46

Table 3.8 Classification performance of original datasets

Table 3.8 shows that there is no algorithm achieved the best results for all

datasets. NB achieved the best results on 3 datasets: leukemia, embryonal

tumour and internet_ads while other algorithms (kNN, DT and RI) achieved the

best results in 2 datasets each.

Table 3.9 Learning time of NB, kNN, DT and RI

Beside classification performance, we also compare the learning time and

execution time of four methods in Table 3.9 and Table 3.10. As explained in

the previous section, kNN does not require explicit training step, therefore

kNN has the fastest learning time followed by naive Bayes (0.25 seconds in

average), decision tree (3.47 seconds in average) and rule induction (6.71

seconds in average).

NB kNN DT RI

Leukemia 72 7,130 98.31% 89.70% 78.73% 83.40%

Embryonal Tumours 60 7,130 74.41% 67.06% 58.68% 74.05%

Dexter 600 20,000 81.39% 86.63% 86.79% 83.23%

Internet_ads 3,279 1,559 98.20% 91.45% 86.18% 95.00%

Madelon 2,600 501 59.05% 64.90% 64.29% 73.32%

Musk 6,598 168 93.67% 97.15% 92.57% 95.16%

Spambase 4,601 58 82.90% 85.62% 92.59% 93.05%

SPECTF Heart 80 45 79.49% 67.53% 79.69% 61.90%

Intrusion 25,192 42 82.88% 99.51% 99.66% 91.61%

Datasets
 Number of

instances

 Number of

attributes

Classification Performance (F Measure)

NB k-NN DT RI

Leukemia 72 7,130 0.09 0 0.33 0.33

Embryonal Tumours 60 7,130 0.08 0 0.39 0.61

Dexter 600 20,000 1.38 0 8.60 16.11

Internet_ads 3,279 1,559 0.10 0 16.78 16.99

Madelon 2,600 501 0.17 0 2.40 5.99

Musk 6,598 168 0.22 0 0.86 13.43

Spambase 4,601 58 0.05 0 0.42 1.28

SPECTF Heart 80 45 0.10 0 0.30 0.16

Intrusion 25,192 42 0.10 0 1.12 5.53

0.25 0 3.47 6.71Average learning time

 Number of

instances

 Number of

attributes

Learning time (second)
Dataset Name

Chapter 3. Dimensionality Reduction Algorithms

 47

Even though kNN has no explicit learning phase, it does not mean that kNN is

the fastest algorithm for classification. Table 3.10 shows that naive Bayes is

actually faster than kNN when applied into 9 different datasets.

Table 3.10 Execution time of 4 classifiers on original datasets

Decision tree and rule induction requires much more time than naive Bayes and

kNN, especially when they are applied to datasets with high number of

attributes. For example, in dexter dataset which has 20,000 attributes NB

needs 13 seconds and kNN needs 27 second to finish 10 fold cross validatian

while RI takes more than 5 hours and DT takes more than 8 hours.

3.5.2 The GA-based Feature Selection Experiments

The WEKA feature selection algorithms have two important components:

attribute evaluator and search method. ‘Attribute evaluator’ is a technique

used to evaluate the performance of feature subsets and ‘search method’ is an

algorithm used to search through the space of feature subsets.

We applied GA search and attribute selector called CfsSubsetEval which is a

method used to evaluate the performance of an attribute subset by considering

the individual predictive ability of each attribute along with the degree of

redundancy between them.

We used the default parameters as follows:

• crossoverProb: set the probability of crossover, default=0.6

• maxGenerations: set the maximum number of generations, default=20

NB k-NN DT RI

Leukemia 00:00:01 00:00:01 00:24:44 00:14:59

Embryonal Tumours 00:00:01 00:00:01 00:40:16 00:30:33

Dexter 00:00:13 00:00:27 08:10:14 05:07:12

Internet_ads 00:00:10 00:01:51 00:01:19 00:05:02

Madelon 00:00:02 00:00:24 00:00:33 00:43:37

Musk 00:00:02 00:00:59 00:00:33 01:57:12

Spambase 00:00:01 00:00:11 00:02:16 00:01:51

SPECTF Heart 00:00:01 00:00:01 00:00:01 00:00:01

Intrusion 00:00:09 00:08:37 00:42:34 00:00:51

Dataset Name
Execution Time using 10 fold cross validation (hh:mm:ss)

Chapter 3. Dimensionality Reduction Algorithms

 48

• mutationProb: set the probability of mutation, default=0.033

• populationSize: set the size of population, default=20

• seed: set the random seed

• startSet: set a start point for the search, default value=no attributes

The results of feature selection using GA are shown in Table 3.11. The longest

time to reduce the number of features was on dexter dataset where GA has

been successfully reduced the number of features from 20,000 to 6,133

attributes in 27 minutes 15 seconds. The other datasets only need less than 1

minute to finish the feature selection process.

Table 3.11 GA-based feature selection results

3.5.3 The PSO-based Feature Selection Experiments

We continue our feature selection experiment using PSO search and attribute

selector called CfsSubsetEval. The PSO search module in Weka has more

parameters than the GA search.The PSO search parameters are:

• C1 default value=1.0

• C2 default value=2.0

• maxGeneration: set the maximal number of generation, default

value=50

Leukemia 7,130 2,237 00:00:50

Embryonal Tumours 7,130 619 00:00:35

Dexter 20,000 6,133 00:27:15

Internet_ads 1,559 489 00:05:02

Madelon 501 142 00:00:18

Musk 168 66 00:00:04

Spambase 58 29 00:00:02

SPECTF Heart 45 11 00:00:01

Intrusion 42 16 00:00:03

Datasets

Number of

original

attributes

Number of

reduced

attributes

Time to reduce the

number of attributes

(hh:mm:ss)

Feature selection using GA

Chapter 3. Dimensionality Reduction Algorithms

 49

• numParticles: set the population size, default value=100

• prune: boolean parameter, prune the subset after search to remove

redundant features, default value=false

• reportFrequency: set how frequently reports are generated, default

value=50

• seed: set the random seet, default value=1

• Start set: default value=no attributes

The parameter ‘start set = no attributes’ means this technique is to begin with

no attributes and then it is successively add attributes. In this case, PSO search

will proceed forward through the search space. The total of inertia weight,

social weight and individual weight must be one and all these weights should

be greater than or equal to zero.

We ran PSO-based feature selection module using default paramaters and the

results are explained in Table 3.12.

Table 3.12 PSO-based feature selection results

Table 3.12 shows that feature selection using PSO is sligthly slower than GA

but PSO can reduce the unimportant attributes much more than GA. For

example, in Dexter datasets GA reduced the attributes from 20,000 to 6,111 in

27 minutes 15 seconds while PSO reduced the attributes from 20,000 to only

279 in 41 minutes 13 seconds.

Leukemia 7,130 109 00:01:17

Embryonal Tumours 7,130 202 00:01:08

Dexter 20,000 279 00:41:13

Internet_ads 1,559 302 00:04:50

Madelon 501 5 00:00:15

Musk 168 16 00:00:03

Spambase 58 27 00:00:03

SPECTF Heart 45 9 00:00:03

Intrusion 42 8 00:00:01

Datasets

Number of

original

attributes

Number of

reduced

attributes

Time to reduce the

number of attributes

(hh:mm:ss)

Feature selection using PSO

Chapter 3. Dimensionality Reduction Algorithms

 50

3.5.4 Results analysis of GA and PSO as feature selection algorithms

To compare the performance of GA and PSO more clearly, we summarized the

GA and PSO results in Table 3.13. Fraction of features (FF) is the ratio of the

number of features used by the classifier to the total number of features in the

dataset. The average FF of GA is 31.36% while the average FF of PSO is 13.47%.

It means that PSO reduced the number of attributes much more than GA. In

madelon dataset, PSO reduced the number of attributes from 501 to 5 (fraction

of features= 1%) while GA reduced to 142 (FF=28.34). In 4 of 8 datasets, PSO

has successfully reduced the number of attributes to less than 5% of their

original attributes (embryonal tumours 2.83%, leukemia 1.53%, dexter 1.40%

and madelon 1.00%).

Table 3.13 The results comparison of GA and PSO feature selection

Based on the execution time, GA is slightly faster than PSO. GA takes 34

minutes and 10 seconds to select the important features of 9 datasets while

PSO needs 48 minutes and 53 seconds.

However, fraction of features (FF) and execution time are not the only

performance indicator of feature selection algorithms. The low number of FF

Leukemia 7,130 2,237 31.37% 00:00:50 109 1.53% 00:01:17

Embryonal Tumours 7,130 619 8.68% 00:00:35 202 2.83% 00:01:08

Dexter 20,000 6,133 30.67% 00:27:15 279 1.40% 00:41:13

Internet_ads 1,559 489 31.37% 00:05:02 302 19.37% 00:04:50

Madelon 501 142 28.34% 00:00:18 5 1.00% 00:00:15

Musk 168 66 39.29% 00:00:04 16 9.52% 00:00:03

Spambase 58 29 50.00% 00:00:02 27 46.55% 00:00:03

SPECTF Heart 45 11 24.44% 00:00:01 9 20.00% 00:00:03

Intrusion 42 16 38.10% 00:00:03 8 19.05% 00:00:01

Average FF Total time Average FF Total time

31.36% 00:34:10 13.47% 00:48:53

Feature selection using PSO

Number of

reduced

attributes

Fraction of features

(FF)

Time to reduce

the number of

attributes

(hh:mm:ss)

Datasets

Number of

original

attributes

Feature selection using GA

Number of

reduced

attributes

Fraction of

features (FF)

Time to reduce

the number of

attributes

(hh:mm:ss)

Chapter 3. Dimensionality Reduction Algorithms

 51

and the low number of execution time are useless if the selected subsets

reduce the classification accuracy. Therefore, we need to find feature selection

algorithms which can reduce the number of attributes while in the same time

maintain or improve the accuracy.

In the following experiment, we applied four basic classifiers to the nine

datasets which have been reduced by GA and PSO, then compare the results to

the classification performance of original datasets.The results are shown in

Table 3.14 and Table 3.15.

Table 3.14 The classification performance of GA-reduced datasets

NB and RI achieved the best results on 3 of 8 datasets while k-NN and DT

achieved the best results on 1 dataset only. Even though with much less

attributes,4 of 8 datasets have better classification performance than using full

attributes. In the embryonal tumours dataset, rule induction (RI) has

successfully increased the F-measure from 74.41% to 81.00% but with less

attributes (from 7,130 original attributes reduced to 619 attributes).

In dexter dataset, decision tree (DT) was slightly increased the F-measure from

86.79% to 87.16% but with 31% of original attributes (the number of attributes

was reduced from 20,000 to 6,133). In SPECTF heart dataset, naïve Bayes (NB)

has also significantly increased the F-measure from 79.69% to 88.50% with 25%

attributes (the number of attributes has been reduced by GA from 45 to 11).

Unfortunately, all four classifiers were unable to improve the classification

performance in 4 datasets: internet_ads (slightly dropped from 98.20% to

98.07%), madelon (from 73.32% to 68.15%), musk (from 97.15% to 96.48%) and

spambase (from 93.05% to 92.90%).

Reduced by GA DT

#attributes F-measure F-measure F-measure F-measure

Leukemia 2,237 98.31% 78.55% 81.16% 82.45%

Embryonal Tumours 619 65.42% 78.82% 58.58% 81.00%

Dexter 6,133 73.30% 60.04% 87.16% 81.84%

Internet_ads 489 98.07% 78.49% 88.32% 95.02%

Madelon 142 59.35% 65.23% 64.29% 68.15%

Musk 66 95.23% 96.48% 91.96% 95.93%

Spambase 29 80.34% 90.33% 91.69% 92.90%

SPECTF Heart 11 88.50% 74.57% 73.24% 73.52%

Data set
NB k-NN RI

Chapter 3. Dimensionality Reduction Algorithms

 52

The Table 3.15 shows the results of four basic classifiers applied to PSO-

reduced dataset. NB achieved the best classification performance on 4 of 8

datasets, followed by DT (3 datasets) and k-NN (1 dataset). In this experiment,

RI was not as good as other algorithms. PSO has successfully significantly

reduced the number of attributes to 13% on average (GA is only 31% average).

However, it does not always improve or maintain the classification

performance, only 3 of 8 datasets have their performance improved. The

accuracy of embryonal tumour dataset was improved from 74.41% to 76.61%

with only 8% attributes, musk dataset was improved from 97.15% to 99.92%

with 39% attributes and SPECTF heart dataset was improved from 79.69% to

85.89% with 24% attributes. The other 5 datasets (leukemia, dexter,

internet_ads, madelon and spambase) have their classification performance

slightly reduced from 0.13% (spambase) to 12.81% (dexter).

Table 3.15 The classification performance of PSO-reduced datasets

We compare the running time of four basic classifiers on original datasets, GA-

reduced datasets and PSO-reduced datasets in Table 3.16. Even though kNN

has the fastest learning time but it does not guarantee it has the fastest

running time. Based on experiments using 9 datasets, Naive Bayes was the

fastest algorithm with 4 seconds running time in average when applied in

original datasets, 2 seconds in average when applied to GA-reduced dataset

and 1 second in average on PSO-reduced datasets. The second fastest running

time was kNN algorithms with 78 seconds in average on original datasets, 8

seconds in average on GA-reduced dataset and 4 seconds in average on PSO-

reduced datasets.

Reduced by PSO

#attributes F-measure F-measure F-measure F-measure

Leukemia 109 96.55% 89.10% 69.12% 70.61%

Embryonal Tumours 202 65.40% 70.74% 76.61% 68.34%

Dexter 279 73.13% 73.98% 44.56% 70.72%

Internet_ads 302 97.77% 73.18% 96.96% 95.12%

Madelon 5 60.24% 64.25% 64.29% 63.07%

Musk 16 99.92% 96.45% 91.65% 95.29%

Spambase 27 90.29% 90.91% 92.92% 92.25%

SPECTF Heart 9 85.89% 81.42% 77.77% 76.82%

DT
Data set

NB k-NN RI

Chapter 3. Dimensionality Reduction Algorithms

 53

Table 3.16 The running time of four basic classifiers: NB, kNN, DT and RI

Dataset Name
Number of

instances

Number of

attributes
NB kNN DT RI

Leukemia 72 7,130 1 1 1,484 899

Embryonal Tumours 60 7,130 1 1 2,416 1,833

Dexter 600 20,000 13 27 29,414 18,432

Internet_ads 3,279 1,559 10 60 79 302

Madelon 2,600 501 2 24 33 2,617

Musk 6,598 168 2 59 33 7,032

Spambase 4,601 58 1 11 136 111

SPECTF Heart 80 45 1 1 1 1

Intrusion 25,192 42 9 517 2,554 51

4 78 4,017 3,475

40 701 36,150 31,278

Leukemia 72 2,237 1 1 23 15

Embryonal Tumours 60 619 1 1 11 3

Dexter 600 6,133 5 6 57 2,573

Internet_ads 3,279 489 2 2 4 11

Madelon 2,600 142 1 2 9 821

Musk 6,598 66 2 8 11 58

Spambase 4,601 29 1 1 15 14

SPECTF Heart 80 11 1 1 1 1

Intrusion 25,192 16 1 53 73 9

2 8 23 389

15 75 204 3,505

Leukemia 72 109 1 1 1 1

Embryonal Tumours 60 202 1 1 2 1

Dexter 600 279 1 1 2 113

Internet_ads 3,279 302 1 1 3 6

Madelon 2,600 5 1 1 1 88

Musk 6,598 16 1 2 2 16
Spambase 4,601 27 1 1 14 13
SPECTF Heart 80 9 1 1 1 1
Intrusion 25,192 8 1 26 15 2

1 4 5 27

9 35 41 241

Average running time

Total running time

Running time on PSO-reduced datasets (seconds)

Average running time

Total running time

Average running time

Total running time

Running time on original datasets (seconds)

Running time on GA-reduced datasets (seconds)

Chapter 3. Dimensionality Reduction Algorithms

 54

Both DT and RI were very slow compare to NB and kNN especially when they

applied to very big datasets. The average running time of RI was 3,472

seconds when applied to original datasets but it dropped by 27 seconds only

when applied to PSO-reduced datasets. DT has longer average running time

than RI when applied to original datasets, it requires 4,017 seconds to run all

original datasets. But it became a little bit faster than RI when applied to PSO-

reduced datasets with 5 seconds average running time.

3.6 Summary

We summarize all of the experiments in this chapter in the Table 3.17. In terms

of dimensionality reduction or feature selection, PSO is much better than GA.

PSO has successfully reduced the number of attributes of 9 datasets to 13.79%

on average while GA is only 31.19% on average. The most extreme cases were

in dexter dataset where PSO reduced the number of attributes to 1.40% (from

20,000 to 279 attributes), and in the madelon dataset, PSO reduced the

number of attribute to 1% (from 501 to 5 attributes). In terms of classification

performance, GA is better than PSO. GA-reduced datasets have better

performance than their original ones on 5 of 9 datasets while PSO is only 3 of 9

datasets. In SPECTH heart dataset, GA has successfully improved the accuracy

up to 8.81% (from 79.79% to 88.50%) by using only 24.44% of original

attributes.

However, feature selection algorithms do not always improve the classification

performance, there are three datasets (internet_ads, madelon and spambase)

that both GA and PSO failed to improve the performance. Therefore, we need

to find other strategies to solve this problem. We need to apply more powerful

classifiers to these reduced datasets (both by GA or PSO) rather than using

basic classifiers such as naïve Bayes, k-nearest neighbour, decision tree and

rule induction. We will apply two different techniques to improve the

classification performance by using ensemble classifiers (meta-learners) and

support vector machine which will be discussed in the next two chapters.

In term of running time, Table 3.16 has shown that applying four basic

classifiers into reduced datasets were much faster than applying them into

original datasets which have much more attributes.

Chapter 3. Dimensionality Reduction Algorithms

 55

Table 3.17 Summary of dimensionality reduction algorithms

#attrib. Algorithm F Measure #attrib. FF Algorithm F Measure + / - #attrib. FF Algorithm F Measure + / -

Leukemia 7,130 NB 98.31% 2,237 31.37% NB 98.31% 0.00% 109 1.53% NB 96.55% -1.76%

Embryonal Tumours 7,130 NB 74.41% 619 8.68% RI 81.00% 6.59% 202 2.83% DT 76.61% 2.20%

Dexter 20,000 DT 86.79% 6,133 30.67% DT 87.16% 0.37% 279 1.40% k-NN 73.98% -12.81%

Internet_ads 1,559 NB 98.20% 489 31.37% NB 98.07% -0.14% 302 19.37% NB 97.77% -0.43%

Madelon 501 RI 73.32% 142 28.34% RI 68.15% -5.17% 5 1.00% DT 64.29% -9.03%

Musk 168 k-NN 97.15% 66 39.29% k-NN 96.48% -0.68% 16 9.52% NB 99.92% 2.77%

Spambase 58 RI 93.05% 29 50.00% RI 92.90% -0.15% 27 46.55% DT 92.92% -0.13%

SPECTF Heart 45 DT 79.69% 11 24.44% NB 88.50% 8.81% 9 20.00% NB 85.89% 6.21%

Intrusion 41 DT 99.48% 15 36.59% k-NN 99.70% 0.22% 9 21.95% k-NN 99.26% -0.22%

31.19% 13.79%

Feature Selection using GA Feature Selection using PSO
Data set

Full atributes

Chapter 3. Dimensionality Reduction Algorithms

 56

The average running time of rule induction algorithm was reduced from 3,475

seconds to 27 seconds when applied to PSO-reduced datasets. In similar case,

the average running time of decision tree was also reduced from 4,017

seconds to 5 seconds.

Our experiments have shown that the fastest learning time was achieved by

kNN algorithm with 0 second in average, followed by naive Bayes (0.25 second

in average), decision tree (3.47 seconds in average) and rule induction (6.71

seconds in average). Even though kNN has the fastest learning time, kNN’s

average running time (78 seconds in average) was quite slower than naive

Bayes (4 seconds in average) but it was much faster than decision tree (4,017

second in average) and rule induction (3,475 in average).

The total running time of 4 basic classifiers (NB, kNN, DT and RI) when applied

to 9 original datasets was 68,169 seconds. The total running time dropped

significantly by 3,799 seconds when these four classifiers applied to GA-

reduced datasets and was only 326 seconds in PSO-reduced datasets.

Chapter 4. Ensemble Classifiers

 57

4. Ensemble Classifiers

Ensemble classifiers are one of several techniques in machine learning where

multiple classifiers are trained to solve the same problem. This technique

constructs a set of classification models the combine them or select the best

one to use. In this chapter, we applied ensemble classifiers to datasets which

features are already reduced by GA and PSO, and then we compared the

ensemble classifiers performance with the results of basic classifers which

applied to the original datasets.

We divided the experiment into three steps:

1. First, we applied four basic machine learning algorithms (NB, kNN, DT

and RI) on three different datasets: original datasets, GA-reduced

datasets and PSO-reduced datasets

2. Second, we applied bagging algorithm to the GA-reduced datasets and

PSO-reduced datasets

3. Third, we applied boosting algorithm to the GA-reduced datasets and

PSO-reduced datasets.

The goal of this experiment is to find whether bagging and boosting when

applied to the reduced dataset which has fewer dimension is able to achieve

better performance than the basic classifiers applied to the full-features

dataset.

4.1 Basic Classifiers

We applied four basic algorithms (NB, kNN, DT and RI) to eight high dimension

datasets with three variations: full features datasets, GA-reduced datasets and

PSO-reduced datasets. Table 4.1 shows that the use of basic classifiers on

reduced datasets was not only able to reduce the computation time, but also it

was able to improve the accuracy. For example, decision tree (DT) when

applied to the embryonal tumour dataset which has 7,130 original features,

the F-measure value was 58.68%. But when it was applied to similar dataset

which the number of features reduced by PSO from 7,130 into 202, the F-

measure value was significantly increased to 81.15%.

Chapter 4. Ensemble Classifiers

 58

Table 4.1 Classification performance of NB, kNN, DT and RI

NB, kNN, DT and RI applied to original datasets

Dataset #attrib NB kNN DT RI

Leukemia 7,130 98.31% 89.70% 78.73% 83.40%

Embryonal Tumours 7,130 74.41% 67.06% 58.68% 74.05%

Dexter 20,000 81.39% 86.63% 86.79% 83.23%

Internet_ads 1,559 98.20% 91.45% 86.18% 95.00%

Madelon 501 59.05% 64.90% 64.29% 73.32%

Musk 168 93.67% 97.15% 92.57% 95.16%

Spambase 58 82.90% 85.62% 92.59% 93.05%

SPECTF Heart 45 79.49% 67.53% 79.69% 61.90%

NB, kNN, DT and RI appliedto GA-reduced datasets

Dataset #attrib NB kNN DT RI

Leukemia 2,237 98.31% 78.55% 81.16% 82.45%

Embryonal Tumours 619 65.42% 78.82% 58.58% 81.00%

Dexter 6,133 73.30% 60.04% 87.16% 81.84%

Internet_ads 489 98.07% 78.49% 88.32% 95.02%

Madelon 142 59.35% 65.23% 64.29% 68.15%

Musk 66 95.23% 96.48% 91.96% 95.93%

Spambase 29 80.34% 90.33% 91.69% 92.90%

SPECTF Heart 11 88.50% 74.57% 73.24% 73.52%

NB, kNN, DT and RI appliedto PSO-reduced datasets

Dataset #attrib NB kNN DT RI

Leukemia 109 96.55% 89.10% 69.12% 70.61%

Embryonal Tumours 202 65.40% 70.74% 76.61% 68.34%

Dexter 279 73.13% 73.98% 44.56% 70.72%

Internet_ads 302 97.77% 73.18% 96.96% 95.12%

Madelon 5 60.24% 64.25% 64.29% 63.07%

Musk 16 99.92% 96.45% 91.65% 95.29%

Spambase 27 90.29% 90.91% 92.92% 92.25%

SPECTF Heart 9 85.89% 81.42% 77.77% 76.82%

Another good example, naïve Bayes (NB) when applied to the musk dataset

which has 168 original features, the F-measure value was 93.67%. When NB

was applied to the GA-reduced dataset, the F-measure value was slightly

increase to 95.23% eventhough the number of features were reduced from 168

to 66. Furthermore, when NB was applied to PSO-reduced dataset where the

number of features was reduced from 168 to 16, the F-measure value was

significantly improved to 99.91%.

Chapter 4. Ensemble Classifiers

 59

The PSO-reduced dataset is not always guarantee to have better accuracy or

better in F-measure value. There was one case where the GA-reduced dataset

was much better than PSO-reduced dataset. Decision tree (DT) when applied to

the dexter full features dataset, the F-measure was 86.79%. When DT was

applied to the same dataset which the number of features was reduced by PSO

from 20,000 to 279, the F-measure was very bad (44.45%). In this case, the

feature selection using PSO does not run well. When DT was applied to the

dexter dataset which the number of features reduced by GA from 20,000 to

6,133, the F-measure was slightly better (87.16%).

However, there are two cases that the use of reduced datasets both GA and

PSO could not improve the F-measure value. For example, when applying NB to

the internet_ads full features dataset, the F-measure value was 98.20%. But

when NB was applied to internet_ads where the number of features was

reduced by GA from 1,559 to 489, the F-measure value becomes 98.07%. And

when NB was applied to the same dataset where the number of features was

reduced by PSO from 1,559 to 302, the F-measure values was slightly reduced

to 97.77%.

4.2 Bagging Ensemble Classifier

The bagging learning process uses a different bootstrap sample which is

randomly retrieved from the original data. A bootstrap sample is constructed

by sub-sampling the training data with replacement where the size of

bootstrap data is similar with the original one. Bagging is good to be applied to

unstable algorithms where small changes in the training data highly affect their

performance.

We used a bagging operator provided by RapidMiner. The bagging

operator is used to build a better model using the weak learner selected in its

sub process. We used four basic machine learning algorithms (naïve Bayes,

decision tree, nearest neighbour and rule induction) as base classifiers. The

bagging process is explained in Figure 4.1.

Chapter 4. Ensemble Classifiers

 60

Figure 4.1. Bagging Diagram Experiment

The bagging operator in RapidMiner has 2 parameters:

• Sample ratio: set the number of examples to be used for training, the

default value is 0.9

• Iteration: set the maximum number of iterations, the default value is 10

We applied bagging to a dataset four times with four different base classifiers:

NB, kNN, DT and RI using the default parameters. The learning time of bagging

algorithm is shown in Table 4.2

Table 4.2 The learning time of bagging algorithm

NB kNN DT RI

Leukemia 72 7,130 0.39 0.02 0.62 1.43

Embryonal Tumours 60 7,130 0.45 0 2.60 3.93

Dexter 600 20,000 15.04 0.03 118.38 285.71

Internet_ads 3,279 1,559 0.71 0.01 122.68 112.49

Madelon 2,600 501 2.36 0.01 50.65 134.34

Musk 6,598 168 1.79 0.02 6.65 107.34

Spambase 4,601 58 0.33 0 4.14 20.50

SPECTF Heart 80 45 0.17 0.02 0.52 0.44

Intrusion 25,192 42 1.60 0.06 17.94 81.67

2.54 0.02 36.02 83.09Average learning time

Learning Time (second)

Dataset Name
 Number of

instances

 Number of

attributes
Bagging with base classifier NB, kNN, DT and RI

Chapter 4. Ensemble Classifiers

 61

As explained in the previous chapter, kNN algorithm does not require learning

time, as consequence the bagging-kNN learning time is also almost zero for all

datasets. The second fastest learning time is bagging-NB which has 2.54

seconds in average, followed by bagging-DT in third place with 36.02 seconds

average learning time. The slowest learning time is bagging-RI which has 83.09

seconds in average.

To analyze the performance of bagging algorithm, we conduct many

experimentswhich divided into 2 steps; the first one we use 8 datasets which

features has been reduced by GA algorithm while the second one was reduced

by PSO algorithm.The results of bagging experiment are shown in Table 4.3 for

GA-reduced datasets and in Table 4.4 for PSO-reduced datasets. In Leukemia

dataset, the highest F-measure score was achieved by bagging-NB with F-

measure of 98.57%. This result was exactly the same as the results of naive

Bayes as single classifier when applied to GA-reduced dataset. In this case,

bagging did not improve the classification performance. In embryonal tumours

dataset, the best results was achieved by bagging-DT when applied to PSO-

reduced dataset (202 attributes) where the F-measure score=81.15%. This

result was much better than applying decision tree on original dataset (7.130

attributes) where the F-measure=58.58%.

Table 4.3 shows that the use of bagging on GA-reduced datasets is not always

guarantee better than the use of single classifier. The bagging-NB algorithm

when applied to the SPECTF Heart dataset which reduced by GA (consists of 11

attributes) has achieved the best result with F-measure = 89.22%. This result is

slightly better than the use of NB as a single classifier which has an F-measure

of 88.50%. Furthermore, this result is also much better than the use of NB (as

a single classifier) on the SPECTF Heart full-features dataset (consists of45

attributes) which achieve F-measure of 79.49%.

In the madelon dataset, the use of bagging-RI is also able to achieve the best

result with F-measure=73.79% even though the number of features was

significantly reduced by GA from 501 attributes to 142 attributes. This result is

slightly better compare to the use of RI (as a single classifier) on full-features

datasets (consists of 501 attributes) which has an F-measure of 73.32%.

Chapter 4. Ensemble Classifiers

 62

Table 4.3 Classification performance of Bagging on GA-reduced datasets

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

98.57% 100.00% 96.67% 87.32% 91.67% 70.00% 90.36% 92.50% 79.17% 89.11% 90.17% 84.17%

58.33% 74.17% 55.83% 66.67% 72.67% 77.50% 58.33% 67.50% 68.33% 70.00% 72.67% 89.17%

71.17% 69.75% 78.67% 72.00% 97.82% 45.00% 85.00% 84.49% 87.67% 86.33% 86.50% 86.33%

96.46% 96.85% 99.11% 68.83% 96.80% 65.92% 71.91% 95.93% 70.36% 91.22% 91.22% 99.36%

60.42% 60.92% 58.31% 66.50% 67.22% 64.38% 50.00% 50.00% 50.00% 74.38% 75.77% 71.92%

92.24% 99.05% 91.70% 93.94% 97.40% 95.38% 87.09% 86.84% 100.00% 93.33% 93.02% 99.61%

79.68% 96.84% 68.72% 88.68% 91.95% 89.13% 90.87% 89.35% 96.49% 91.68% 91.27% 95.41%

87.50% 86.17% 92.50% 71.25% 66.88% 85.00% 81.25% 84.33% 77.50% 78.75% 84.67% 75.00%

89.02% 90.65% 85.27% 99.77% 99.80% 99.69% 99.31% 99.55% 98.95% 92.21% 92.00% 91.22%

80.08%

86.41%

95.12%

73.79%

96.20%

90.52%

74.86%

99.74%

67.91%

86.05%

81.18%

50.00%

92.96%

92.78%

80.77%

99.25%

75.01%

61.64%

96.38%

93.29%

79.54%

87.88%

Datasets

Bagging -Naive Bayes

F Measure

63.71%

73.94%

97.97%

59.59%

95.23%
6

7

8

9

Musk

Spambase

SPECTF Heart

91.61%

85.32%

Bagging - Decision Tree

5

Leukemia

Embryonal Tumours

Dexter

Internet_ads

Madelon

98.31%

Bagging Nearest Neighbour

F Measure F Measure

Bagging - Rule Induction

F Measure

79.38% 87.07%

78.43%

65.77%

Intrusion

80.39%

89.22%

1

2

3

4

Chapter 4. Ensemble Classifiers

 63

Table 4.4 Classification performance of Bagging on PSO-reduced datasets

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

98.57% 96.67% 100.00% 91.79% 91.00% 85.00% 79.11% 70.83% 67.50% 87.68% 92.67% 75.83%

60.00% 70.83% 60.83% 65.00% 75.17% 75.00% 73.33% 78.33% 84.17% 66.67% 70.83% 85.00%

75.67% 83.03% 64.67% 71.83% 72.17% 72.00% 64.33% 100.00% 28.67% 75.83% 80.31% 69.33%

96.10% 96.39% 99.18% 63.28% 97.87% 58.62% 94.75% 94.50% 99.72% 91.22% 91.22% 99.36%

60.77% 61.13% 59.00% 63.35% 63.11% 64.46% 50.00% 50.00% 50.00% 67.38% 67.77% 66.77%

99.86% 99.87% 99.96% 94.35% 96.87% 96.43% 84.59% 84.59% 100.00% 92.62% 92.61% 99.19%

88.57% 95.08% 85.58% 89.22% 91.63% 90.49% 91.52% 89.86% 96.99% 92.33% 92.19% 95.44%

86.25% 84.17% 92.50% 77.50% 73.55% 90.00% 76.25% 73.50% 85.00% 78.75% 77.17% 85.00%

86.48% 92.64% 77.14% 99.27% 99.65% 98.78% 98.63% 99.71% 97.35% 92.21% 92.00% 91.22%

91.61%
9 Intrusion

84.18% 99.21% 98.52%

93.79%

8 SPECTF Heart
88.14% 80.95% 78.83% 80.90%

7 Spambase
90.08% 91.06% 93.29%

67.27%

6 Musk
99.91% 96.65% 91.65% 95.79%

5 Madelon
60.05% 63.78% 50.00%

74.42%

4 Internet_ads
97.77% 73.32% 97.04% 95.12%

3 Dexter
72.71% 72.08% 44.56%

83.41%

2 Embryonal Tumours
65.45% 75.08% 81.15% 77.27%

1 Leukemia
98.31% 87.90% 69.12%

Bagging - Rule Induction

F Measure F Measure F Measure F Measure

Datasets

Bagging -Naive Bayes Bagging Nearest Neighbour Bagging - Decision Tree

Chapter 4. Ensemble Classifiers

 64

In GA-reduced musk dataset which has 66 attributes, the best F-measure score

was achieved by bagging-kNN with F-measure of 96.38%. Interestingly, the

bagging result especially bagging-naïve Bayes was much better when applied

to PSO-reduced musk dataset which has only 16 attributes where the F-

measure score was 99.91%.

In GA-reduced datasets, the best F-scores were achieved by bagging-RI in 4 of

9 datasets, followed by bagging-NB (3 of 9 datasets) and bagging-kNN (2 of 9

datasets). The bagging-DT did not perform as well as others. However, in PSO-

reduced datasets the ranking was quite different. The best F-scores were

achieved by bagging-NB in 4 of 9 datasets, followed by bagging-RI (3 of 9

datasets). Bagging-kNN and bagging-DT had the best results in only 1 dataset

each.

4.3 Boosting Ensemble Classifier

The boosting algorithm uses a majority vote on top of the prediction of the

base learners. Boosting consists of sequential production of classifiers where

each classifier is dependent of the previous one; hence it trains one base

classifier at a time. Boosting focuses on the previous classifier’s errors.

Instances or data which are predicted incorrectly are given higher weight, so

they will be selected more often. In contrast, instances that are predicted

correctly will have lower weights.

Boosting is actually a family of algorithms since there are many variants. One

of the most popular boosting algorithms is AdaBoost which short for “Adaptive

Boosting” (Graczyk et al., 2010)(Syarif et al., 2012c). AdaBoost is an algorithm

for constructing a strong classifier as linear combination of simple or weak

classifiers. This algorithm adapts weights on the base learners and training

examples. It constructs classifier in an iterative process.In each iteration,

AdaBoost executes a base leaner which then returns a classifier with its weight.

The final classification will be decided based on the weight of the base

classifiers. If the base classifier has smaller error, it will have higher weight in

the final vote and vice versa. The AdaBoost algorithm is explained in Figure

4.2.

Chapter 4. Ensemble Classifiers

 65

Figure 4.2 AdaBoost Algorithm

We used one of several bagging operators in RapidMiner called AdaBoost which

only has 1 parameter called ‘iteration’. This parameter is used to set the

maximum number of iterations, the default value is 10. We applied AdaBoost

algorithm to each dataset four times with four different base classifiers: NB,

kNN, DT and RI using default parameter. The diagram of boosting experiment

is described in the Figure 4.3.

Figure 4.3 Boosting Experiments Diagram

Chapter 4. Ensemble Classifiers

 66

The learning time of AdaBoost algorithm is shown in Table 4.7.

Table 4.5 The learning time of boosting algorithm

Unlike kNN as a single classifier and kNN as base classifier of bagging

algorithm that have almost zero learning time, AdaBosst-kNN has the slowest

learning time. When we applied AdaBoost-kNN into 9 different datasets, the

average learning time is 142.04 seconds which is the slowest compare other

three boosting methods. AdaBoost-NB has the fastest learning time with 21.10

seconds in average, followed by AdaBoost-RI in second place with 52.51

seconds in average and then AdaBoost-DT in third place with 58.49 seconds in

average.

To analyze the classification performance of boosting algorithm, we conduct

several experiments which divided into 2 steps; the first one we use 8 datasets

which features has been reduced using GA algorithms while the second one

was reduced using PSO algorithm.The results of AdaBoost experiment are

shown in Table 4.6 for GA-reduced datasets and in Table 4.7 for PSO-reduced

datasets. In experiments using GA-reduced datasets (Table 4.6), boosting-NB

outperformed other algorithms in 4 of 9 datasets, followed by boosting-kNN

which had the best results in 4 of 9 datasets. In other experiments using PSO-

reduced datasets, once again boosting-NB outperformed other algorithms in 4

of 9 datasets, followed by boosting-RI which had the best results in 3 of 9

datasets.

AdaBoost

NB

AdaBoost

kNN

AdaBoost

DT

AdaBoost

RI

Leukemia 72 7,130 0.36 0.27 1.98 2.52

Embryonal Tumours 60 7,130 1.26 0.14 2.57 2.92

Dexter 600 20,000 143.05 61.03 143.15 262.24

Internet_ads 3,279 1,559 18.29 133.63 301.44 75.97

Madelon 2,600 501 9.72 20.89 60.15 31.00

Musk 6,598 168 8.17 15.23 0.67 63.32

Spambase 4,601 58 0.65 61.41 3.95 4.71

SPECTF Heart 80 45 0.85 0.32 0.75 0.63

Intrusion 25,192 42 7.58 985.47 11.79 29.26

21.10 142.04 58.49 52.51Average learning time

Learning Time (second)

Dataset Name
 Number of

instances

 Number of

attributes

Boosting Algorithm

Chapter 4. Ensemble Classifiers

 67

Table 4.6 Classification performance of Boosting on GA-reduced datasets

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

98.57% 100.00% 96.67% 90.00% 91.67% 80.00% 80.54% 72.00% 75.00% 95.71% 100.00% 85.00%

66.67% 71.00% 81.67% 71.67% 79.00% 82.50% 61.67% 69.50% 74.17% 70.00% 72.00% 86.67%

71.67% 68.95% 79.00% 71.17% 97.75% 43.43%

95.58% 97.18% 7.69% 68.86% 96.82% 65.96% 94.33% 94.18% 99.57% 90.55% 90.57% 99.40%

59.62% 59.31% 61.46% 66.38% 67.10% 64.62% 50.00% - 0.00% 65.77% 66.15% 64.69%

99.88% 99.93% 99.93% 93.97% 97.32% 95.50% 85.28% 85.22% 100.00% 97.89% 97.91% 99.64%

79.64% 96.74% 68.72% 88.63% 91.75% 89.31% 89.70% 89.54% 94.01% 93.35% 94.60% 94.44%

81.25% 91.00% 72.50% 71.25% 71.83% 80.00% 77.50% 83.00% 72.50% 72.50% 72.67% 72.50%

93.81% 92.58% 94.27% 99.73% 99.75% 99.68% 99.28% 99.39% 99.06% 99.41% 99.45% 99.29%

F Measure F Measure F Measure

1

Datasets

Boosting -Naive Bayes Boosting Nearest Neighbour Boosting - Decision Tree Boosting - Rule Induction

F Measure

Leukemia
98.31% 85.44% 73.47% 91.89%

78.66%

3 Dexter
73.63% 60.14% 0.00% 0.00%

2
Embryonal

Tumours 75.96% 80.71% 71.76%

94.78%

5 Madelon
60.37% 65.84% 0.00% 65.41%

4 Internet_ads
14.25% 78.46% 96.80%

98.77%

7 Spambase
80.36% 90.51% 91.72% 94.52%

6 Musk
99.93% 96.40% 92.02%

72.58%

9 Intrusion
93.42% 99.71% 99.22% 99.37%

8 SPECTF Heart
80.70% 75.70% 77.40%

Chapter 4. Ensemble Classifiers

 68

Table 4.7 Classification performance of Boosting on PSO-reduced datasets

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

98.57% 96.67% 100.00% 93.04% 93.00% 86.67% 84.82% 85.00% 71.67% 83.04% 83.33% 67.50%

61.67% 71.50% 69.17% 61.67% 69.33% 72.50% 60.00% 70.00% 71.67% 65.00% 72.17% 76.67%

73.67% 77.51% 69.33% 73.83% 74.18% 73.33% 62.67% 95.58% 33.00% 72.00% 76.69% 64.67%

95.88% 96.80% 98.48% 63.65% 97.90% 59.01% 94.66% 94.40% 99.72% 91.22% 91.22% 99.36%

62.04% 60.80% 67.77% 63.81% 63.70% 64.23% 50.00% - 0.00% 64.96% 65.05% 64.85%

99.95% 99.98% 99.96% 94.30% 96.81% 96.45% 84.59% 84.59% 100.00% 98.77% 98.92% 99.64%

88.87% 95.06% 86.12% 89.52% 91.74% 90.92% 90.76% 89.79% 95.66% 93.00% 94.17% 94.30%

87.50% 86.50% 90.00% 80.00% 77.50% 90.00% 82.50% 80.55% 90.00% 76.25% 78.50% 77.50%

86.75% 92.98% 77.44% 99.24% 99.61% 98.77% 98.54% 99.62% 97.23% 98.36% 98.80% 97.67%

Datasets

Boosting - Naive Bayes Boosting - Nearest Neighbour Boosting - Decision Tree Boosting - Rule Induction

F Measure F Measure F Measure F Measure

74.58%

2
Embryonal

Tumours 70.32% 70.88% 70.83% 74.35%

1 Leukemia
98.31% 89.72% 77.77%

0.00%

4 Internet_ads
97.63% 73.64% 96.99% 95.12%

3 Dexter
73.19% 73.75% 0.00%

64.95%

6 Musk
99.97% 96.63% 91.65% 99.28%

5 Madelon
64.10% 63.96% 0.00%

98.23%
9 Intrusion

84.50% 99.19% 98.41%

94.23%

8 SPECTF Heart
88.22% 83.28% 85.01% 78.00%

7 Spambase
90.37% 91.33% 92.63%

Chapter 4. Ensemble Classifiers

 69

In musk dataset, boosting-NB achieved the best F-measure score of 99.93%

when applied to GA-reduced dataset which has 168 attributes. Interestingly,

boosting-NB had a better F-measure score of 99.97% when applied to PSO-

reduced dataset which has 16 attributes only. It also happened to internet_ads

dataset, boosting-DT had F-measure score of 96.80% when applied to GA-

reduced dataset which has 1,559 attributes, but boosting-NB had better F-

measure score of 97.63 when applied to PSO-reduced dataset which has 302

attributes only.

4.4 Summary

We compare the performance of bagging and boosting based on learning time

(time to build a classification model) and classification performance. Table 4.8

shows that boosting was much slower than bagging. Naïve Bayes as a single

classifier only needs learning time of 0.25 seconds in average, bagging-NB

requires 2.54 seconds and boosting-NB needs 21.10 seconds. kNN and

bagging-kNN have an almost zero learning time, in contrast boosting-kNN have

the longest learning time with 142.04 seconds in average.

Decision tree as a single classifier has the longest learning time with 6.71

seconds in average. Among four bagging base classifiers, bagging-RI also has

the longest learning time with 83.09 seconds in average. Overall, boosting is

much slower than bagging in term on learning time.

Table 4.8 shows that the feature selection algorithms work well on almost all

(7 of 8) datasets even with fewer attributes. Only in 1 dataset (internet_ads),

the F-measure was slightly decreased from 98.20% (with 1,559 original

features) to 98.07% (GA-reduced dataset with 489 features) and 97.77% (PSO-

reduced dataset with 302 features). We summarized the results of all bagging

and boosting experiments in Table 4.9.

Chapter 4. Ensemble Classifiers

 70

Table 4.8 Learning time of single base classifier, bagging and boosting

NB k-NN DT RI
Bagging

NB

Bagging

kNN

Bagging

DT

Bagging

RI

AdaBoost

NB

AdaBoost

kNN

AdaBoost

DT

AdaBoost

RI

Leukemia 0.09 0 0.33 0.33 0.39 0.02 0.62 1.43 0.36 0.27 1.98 2.52

Embryonal Tumours 0.08 0 0.39 0.61 0.45 0 2.60 3.93 1.26 0.14 2.57 2.92

Dexter 1.38 0 8.60 16.11 15.04 0.03 118.38 285.71 143.05 61.03 143.15 262.24

Internet_ads 0.10 0 16.78 16.99 0.71 0.01 122.68 112.49 18.29 133.63 301.44 75.97

Madelon 0.17 0 2.40 5.99 2.36 0.01 50.65 134.34 9.72 20.89 60.15 31.00

Musk 0.22 0 0.86 13.43 1.79 0.02 6.65 107.34 8.17 15.23 0.67 63.32

Spambase 0.05 0 0.42 1.28 0.33 0 4.14 20.50 0.65 61.41 3.95 4.71

SPECTF Heart 0.10 0 0.30 0.16 0.17 0.02 0.52 0.44 0.85 0.32 0.75 0.63

Intrusion 0.10 0 1.12 5.53 1.60 0.06 17.94 81.67 7.58 985.47 11.79 29.26

Average learning

time
0.25 0.00 3.47 6.71 2.54 0.02 36.02 83.09 21.10 142.04 58.49 52.51

Dataset Name

Learning Time (second)

Single Classifier Bagging Algorithm Boosting Algorithm

Chapter 4. Ensemble Classifiers

 71

Table 4.9 Summary of bagging and boosting performance

NB kNN DT RI NB kNN DT RI NB kNN DT RI

Leukemia 98.31% 89.70% 78.73% 83.40% 98.31% 79.38% 85.32% 87.07% 98.31% 87.90% 69.12% 83.41%

Emb. Tumours 74.41% 67.06% 58.68% 74.05% 63.71% 75.01% 67.91% 80.08% 65.45% 75.08% 81.15% 77.27%

Dexter 81.39% 86.63% 86.79% 83.23% 73.94% 61.64% 86.05% 86.41% 72.71% - 44.56% 74.42%

Internet_ads 98.20% 91.45% 86.18% 95.00% 97.97% 78.43% 81.18% 95.12% 97.77% 73.32% 97.04% 95.12%

Madelon 59.05% 64.90% 64.29% 73.32% 59.59% 65.77% 50.00% 73.79% 60.05% 63.78% 50.00% 67.27%

Musk 93.67% 97.15% 92.57% 95.16% 95.23% 96.38% 92.96% 96.20% 99.91% 96.65% 91.65% 95.79%

Spambase 82.90% 85.62% 92.59% 93.05% 80.39% 90.52% 92.78% 93.29% 90.08% 91.06% 93.29% 93.79%

SPECTF Heart 79.49% 67.53% 79.69% 61.90% 89.22% 74.86% 80.77% 79.54% 88.14% 80.95% 78.83% 80.90%

Intrusion 89.47% 99.14% 99.47% 91.61% 87.88% 99.74% 99.25% 91.61% 84.18% 99.21% 98.52% 91.61%

NB kNN DT RI NB kNN DT RI NB kNN DT RI

Leukemia 98.31% 89.70% 78.73% 83.40% 98.31% 85.44% 73.47% 91.89% 98.31% 89.72% 77.77% 74.58%

Emb. Tumours 74.41% 67.06% 58.68% 74.05% 75.96% 80.71% 71.76% 78.66% 70.32% 70.88% 70.83% 74.35%

Dexter 81.39% 86.63% 86.79% 83.23% - - 62.07% - 73.19% 73.75% 49.06% 70.17%

Internet_ads 98.20% 91.45% 86.18% 95.00% 14.25% 78.46% 96.80% 94.78% 97.63% 73.64% 96.99% 95.12%

Madelon 59.05% 64.90% 64.29% 73.32% 60.37% 65.84% - 65.41% 64.10% 63.96% - 64.95%

Musk 93.67% 97.15% 92.57% 95.16% 99.93% 96.40% 92.02% 98.77% 99.97% 96.63% 91.65% 99.28%

Spambase 82.90% 85.62% 92.59% 93.05% 80.36% 90.51% 91.72% 94.52% 90.37% 91.33% 92.63% 94.23%

SPECTF Heart 79.49% 67.53% 79.69% 61.90% 80.70% 75.70% 77.40% 72.58% 88.22% 83.28% 85.01% 78.00%

Intrusion 89.47% 99.14% 99.47% 91.61% 93.42% 99.71% 99.22% 99.37% 84.50% 99.19% 98.41% 98.23%

Dataset
Single Classifier on original datasets

Boosting

GA-reduced datasets PSO-reduced datasets

Dataset
Single Classifier on original datasets

Bagging

GA-reduced datasets PSO-reduced datasets

Chapter 4. Ensemble Classifiers

 72

In leukemia dataset, the NB algorithm when applied to full features dataset

with 7,130 attributes achieved 98.31% F-measure. Interestingly, the F-measure

score is still the same (98.31%) when NB applied to the GA-reduced dataset

with less attributes (2,237 attributes).

The use of bagging-NB or boosting-NB to PSO-reduced dataset is successfully

able to maintain the F-measure score (98.31%) even though with much less

attributes (109 attributes). In the other six datasets (E. tumours, dexter,

madelon, musk, spambase and SPECTF heart), the use of reduced-datasets is

able to improve the classification accuracy as well as to reduce the

computation time.

Bagging achieved the best results on 4 of 9 datasets: emb. tumours (81.15%),

madelon (73.79%), SPECTF heart (89.22%) and intrusion (99.74%). Boosting

achieved the best results in only 2 of 9 datasets: musk (99.97%) and spambase

(94.52%). Overall, ensemble classifiers (both bagging and boosting)

outperformed single classifier in 6 of 9 datasets.

Chapter 5. SVM and Parameter Optimization

 73

5. Support Vector Machine and Parameter

Optimization

This chapter focuses on the application of SVM on various high dimensional

datasets. To build a powerful SVM model, we need to know how to pre-process

the data, what kernel to use and most importantly is how to set the SVM

parameters. The SVM kernels and their regularization parameters are called the

hyper-parameters of SVM.

We conduct several SVM experiments, first we applied SVM using default

parameters then we investigate the effects of normalization and its affect to

the SVM performance. After that, we implement SVM parameter optimization

with grid search and more sophisticated technique such as evolutionary

algorithm.

5.1 SVM with default parameters and un-scaled data

There are a lot of SVM variations since it was firstly developed by Vapnik

(Cortes and Vapnik, 1995). We compared some SVM implementation such as

mySVM3 developed by Stefan Ruping, Sequential Minimal Optimization (SMO)

developed by John Platt (Platt, 1999) and LibSVM developed by Chang and Lin

(Chang and Lin, 2011). Our initial experiment showed that actually all of these

SVM applications have given satisfactory results in terms of accuracy but only

LibSVM has an ability and stability to handle very large datasets such as dexter

dataset (20,000 attributes), leukemia dataset (7,130 attributes), embryonal

tumour (7,130 attributes), etc. Therefore, we decided to use LibSVM (Chang

and Lin, 2011) for our experiments which has been integrated to Weka and

RapidMiner data mining tools.

3
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html

Chapter 5. SVM and Parameter Optimization

 74

We used nine high-dimensional datasets and applied 10-fold crossed

validation. In each dataset, we applied SVM with four different kernels (linear,

RBF, polynomial and sigmoid kernel).

Table 5.1 LibSVM default parameters

Parameters Kernels Type Default

C linear, RBF, sigmoid, polynomial real 0.0 ^	(gamma) RBF, sigmoid, polynomial real 0.0

degree polynomial integer 3

In LibSVM module both in RapidMinar and Weka, the linear kernel has several

parameters but the most important is C (cost), the penalty parameter of the

error. The default value of C is 0. For a large value of C, a large penalty is

assigned to margin errors while a smaller value of C allows to ignore points

close to the boundary and increases the margin.

The RBF kernel and sigmoid kernel have 2 important parameters: C and

^	(gamma). The value of ^ strongly affects the classification performance of

SVM model. The default value of ^is 0. The polynomial kernel has more

parameters than other kernels but the most important ones are C, ^and degree

(the default value is 3).

In the first experiment, we applied LibSVM to 9 datasets without normalisation

or scaling and the results are shown in Table 5.2.

Table 5.2 The results of SVM with default parameters and un-scaled data

Linear RBF Polynomial Sigmoid

F Measure F Measure F Measure F Measure

1 Leukemia 74.11% 84.25% 80.94% 66.67%

2 Embryonal Tumours 74.50% 76.67% 74.50% 76.67%

3 Dexter 74.92% 68.70% 63.00% 53.18%

4 Internet_ads 96.81% 92.19% 96.81% 95.08%

5 Madelon 61.45% 65.59% 60.55% 66.67%

6 Musk 91.29% 96.58% 93.03% 78.74%

7 Spambase 79.70% 84.91% 73.90% 64.84%

8 SPECTF Heart 74.11% 84.25% 80.94% 66.67%

9 Intrusion NSLKDD 26.70% 94.41% 40.03% 84.44%

SVM kernels

No
PSO-reduced

datasets

Chapter 5. SVM and Parameter Optimization

 75

From nine datasets, the RBF kernel achieved the best results on 5 datasets

(leukemia 84.25%, embryonal tumours 76.67%, spambase 84.91%, SPECTF

heart 84.25% and intrusion 94.41). Compared to other kernels, the RBF kernel

is able to handle un-scaled or un-normalized data much better. Linear,

polynomial and sigmoid kernel achieved the best results in 2 datasets only.

5.2 The effect of normalization

In order to achieve higher accuracy rates, it is very important to do

standarization or Z-score normalization or scaling to avoid attributes with

greater numeric ranges dominating other attributes with smaller ranges. It is

also useful to avoid numerical difficulties during the calculation because kernel

values highly depend on the inner products of feature vectors, therefore large

attribute values might cause numerical errors. In many datasets, the available

attributes are continuous type, where each attribute is measured in a different

scale and has a different set of possible values. In this case, scaling or

normalization will convert all attributes into the same scale using this following

formula:

 > = x − 	μσ (5.1)

where x is a data point, μ is the mean (average), σ is the standard deviation

from the mean and z is the value after normalization.

We ran another experiment, similar to the previous one (Table 5.2) but now

with scaled or normalized datasets and the results are shown in Table 5.3. In

the previous experiment, RBF kernel achieved the best results on 5 of 9 un-

scaled datasets, but in the latest experiment with scaled/normalized datasets

linear kernel achieved the best results on 6 of 9 datasets. RBF kernel has the

best results on intrusion dataset only. The results comparison between before

and after normalization is explainedin more details in Table 5.4.

Table 5.4 shows that the linear kernel is very sensitive to the un-scaled or un-

normalized dataset. Scaling or normalization significantly improved the

performance especially in linear kernel as well as polynomial and sigmoid

kernel. The highest improvement of linear kernel performance is on the

Chapter 5. SVM and Parameter Optimization

 76

intrusion dataset where the F-measure increased from 26.70% to 88.38%

(61.69% improvement), followed by leukemia (24.31% improvement), SPECT

heart (15% improvement), spambase (12.77% improvement), musk (8.57%

improvement) and embryonal tumours (2.17% improvement).The other three

datasets (dexter, internet_ads and madelon) did not have significant

improvement because they are already scaled or normalized.

Table 5.3 The SVM results on normalized data

Overall, normalization increases the performance of linear kernel to 13.94% in

average, polynomial kernel is 6.01% in average and sigmoid kernel is 10.89% in

average. In contrast, normalisation could not improve the performance of RBF

kernel. There are only 3 of 9 datasets (leukemia, internet_ads and spambase)

that have slightly improvements, 1 dataset (dexter) has the same accuracy and

5 other datasets (embryonal tumours, madelon, musk, SPECTF heart and

intrusion) have worse performance. Overall the performance of RBF kernel on

scaled data was -5.08%. Based on a report published by Li (Li et al., 2012), RBF

kernel is a kind of normalized kernel function, therefore this kernel does not

need a normalization on input dataset.

Linear RBF Polynomial Sigmoid

F Measure F Measure F Measure F Measure

1 Leukemia 98.41% 89.82% 98.41% 96.27%

2 Embryonal Tumours 76.67% 75.05% 76.67% 74.89%

3 Dexter 74.92% 68.70% 63.00% 53.18%

4 Internet_ads 97.41% 97.27% 95.88% 95.08%

5 Madelon 61.83% 57.13% 57.04% 62.04%

6 Musk 99.87% 89.73% 94.97% 99.83%

7 Spambase 92.46% 88.14% 74.48% 92.56%

8 SPECTF Heart 89.11% 82.71% 69.29% 89.11%

9 Intrusion NSLKDD 88.38% 89.33% 88.07% 88.02%

SVM kernels

No
PSO-reduced

datasets

Chapter 5. SVM and Parameter Optimization

 77

Table 5.4 The effect of normalization to the SVM’s classification performance

before after +/- before after +/- before after +/- before after +/-

1 Leukemia 74.11% 98.41% 24.31% 84.25% 89.82% 5.57% 80.94% 98.41% 17.48% 66.67% 96.27% 29.60%

2 Embryonal Tumours 74.50% 76.67% 2.17% 76.67% 75.05% -1.61% 74.50% 76.67% 2.17% 76.67% 74.89% -1.78%

3 Dexter 74.92% 74.92% 0.00% 68.70% 68.70% 0.00% 63.00% 63.00% 0.00% 53.18% 53.18% 0.00%

4 Internet_ads 96.81% 97.41% 0.60% 92.19% 97.27% 5.08% 96.81% 95.88% -0.93% 95.08% 95.08% 0.00%

5 Madelon 61.45% 61.83% 0.38% 65.59% 57.13% -8.46% 60.55% 57.04% -3.51% 66.67% 62.04% -4.63%

6 Musk 91.29% 99.87% 8.57% 96.58% 89.73% -6.85% 93.03% 94.97% 1.94% 78.74% 99.83% 21.09%

7 Spambase 79.70% 92.46% 12.77% 84.91% 88.14% 3.23% 73.90% 74.48% 0.58% 64.84% 92.56% 27.72%

8 SPECTF Heart 74.11% 89.11% 15.00% 84.25% 82.71% -1.54% 80.94% 69.29% -11.65% 66.67% 89.11% 22.44%

9 Intrusion NSLKDD 26.70% 88.38% 61.69% 94.41% 89.33% -5.08% 40.03% 88.07% 48.05% 84.44% 88.02% 3.58%

13.94% -1.07% 6.01% 10.89%

No
PSO-reduced

datasets

Linear RBF Polynomial Sigmoid

Chapter 5. SVM and Parameter Optimization

 78

5.3 SVM parameter optimization

The largest problems encountered in setting up the SVM model are how to

select the kernel function and its parameter values. Inappropriate parameter

settings lead to poor classification results (Keerthi & Lin, 2003). Furthermore,

current SVM algorithm can not easily handle high dimensional datasets. A

standard SVM algorithm requires solving linear or quadratic program,

Therefore, there is a need to improve this basic SVM algorithm in order to

improve its ability to handle high dimensional datasets.

To improve the SVM performance, we conducted various experiments where we

independently test each kernel and tune its parameters. The design of SVM

parameter optimization module is shown in Figure 5.1 below.

Figure 5.1 The design of the SVM parameter optimization module

The SVM parameter optimization is the problem of selecting a set of hyper-

parameters for an SVM algorithm with the goal of obtaining the best

Chapter 5. SVM and Parameter Optimization

 79

generalization. The accuracy results are very sensitive to kernel parameters

especially C and ^. To get the proper values of C and ^, we need to

simultaneously optimize both C and ^ since optimal C typically depends on ^

and other parameters.

In this research, we used grid search and evolutionary algorithms to optimize

the SVM parameters.

5.3.1 Grid search

The grid search is originally an exhaustive search based on defined subset of

the hyper-parameter space. The hyper-parameters are specified using minimal

value (lower bound), maximal value (upper bound) and number of steps. There

are four different scales that can be used: linear scale, quadratic scale,

logarithmic scale and logarithmic legacy scale. The performance of every

combination is evaluated using some performance metrics.

Grid search optimizes the SVM parameters (C, ^, degree, etc.) using a cross

validation (CV) technique as a performance metric. The goal is to identify good

hyper-parameter combination so that the classifier can predict unknown data

accurately. According to (Chang and Lin, 2011), the cross-validation technique

can prevent the over-fitting problem.

To choose C and ^ using k-fold CV, we first split the available data into k

subsets (in most experiments we set k=10). One subset is used as a testing

data and then evaluated using the remaining k-1 training subsets. Then we

calculate the CV error using this split error for the SVM classifier using

different values of C, ^and other parameters. Various combination of hyper-

parameters value are entered and the one with the best cross-validation

accuracy (or the lowest CV error) is selected and used to train an SVM on the

whole dataset.

In linear kernel there is only one important parameter to be optimized which is

C, in RBF kernel and sigmoid kernel there are 2 parameters: C and ^ while

polynomial kernel has 3 parameters: C, ^ and degree. Actually there are many

parameters than we have not yet mentioned, but selecting more parameters

and a large number of steps (or possible values of parameters) results in a

huge number of combinations. For example, if we choose to optimize 5

Chapter 5. SVM and Parameter Optimization

 80

parameters and 25 steps for each parameter, then the total combinations

would be 255 or 9,765,625 which requires a huge (impractical) amount of time.

Figure 5.2 SVM parameter optimization using 10-fold cross validation

One of the biggest problems of SVM parameter optimization is that there are

no exact ranges of C and ^ values. We believe that the wider the parameter

range is, the more possibilities the grid search method has of finding the best

combination parameter. Therefore, in our experiment we decided to make the

range of C and ^ from 0.001 to 10,000.

Table 5.5 Hyper parameters range for experiments

The SVM parameters used in our experiment are explained in Table 5.5. If we

set C parameter from 0.001 (minimal) to 10,000 (maximal) with 10 steps using

a logarithmic scale, the C value is initially 0.001 then it is increased

logarithmically until it reaches 10,000 in the last iteration. The C values are

0.001, 0.005, 0.025, 0.126, 0.631, 3.162, 15.849, 79.433, 398.107, 1995.262

and 10000. If we use logarithmic legacy, the values are 5.311, 14.850, 38.813,

99.006, 250.205, 630.002, 1584.021, 3980.431 and 10000.

Parameters Kernel Min Max Type Steps Scale

C linear 0.001 10,000 real 10
logarithmic or

logarithmic legacy

gamma
linear, RBF,

sigmoid,
0.001 10,000 real 10

logarithmic or

logarithmic legacy

degree polynomial 1 5 integer 1 linear (1,2,3,4,5)

Chapter 5. SVM and Parameter Optimization

 81

The Figure 5.3 below explains how the grid search works to find the best SVM

parameters.

Figure 5.3 SVM parameter using GRID search

The results of SVM parameter optimization using grid search are shown in the

Table 5.6, this table shows that parameter optimization using grid search is

very powerful and it is able to improve the accuracy significantly. In leukemia

and musk datasets, this technique achieved 100% accuracy for all four kernels,

these results are amazing especially as it was applied to PSO-reduced datasets

which have many fewer attributes compare to the original ones. The 100%

accuracy is much better than the results of 4 basic machine learning

algorithms (decision tree, naïve Bayes, nearest neighbour and rule induction)

applied to full attributes and 3 ensemble classifiers (bagging, boosting and

stacking) applied to GA-reduced datasets and PSO-reduced datasets (please see

Chapter 4).

Chapter 5. SVM and Parameter Optimization

 82

However, grid search has an disadvantage which is extremely slow. In Table

5.6 we can see that the intrusion dataset (all kernels), spambase (polynomial

and sigmoid kernel), madelon (polynomial kernel), internet_ads (polynomial

kernel) and dexter (polynomial kernel) were failed. The program executions

were forced to stop after running for 1 week or 2 weeks without any results.

In this experiment, linear kernel achieved best results in 5 of 7 datasets, not

including 2 datasets (spambase and intrusion) that grid search failed to finish.

RBF kernel produced best results on 2 datasets (madelon and spambase) while

sigmoid kernel achieved best results only on 1 dataset (SPECTF heart).

Table 5.6 shows that the best SVM parameters found by grid search have

various values. There is no clear relationship between the value of C and ^, in

some datasets the C values are larger than ^but in other datasets it is vice

versa.

This experiment shows that the grid search always finds near optimal

parameter combination within the given ranges, unfortunately it is very time

consuming where the computation time scale is KM. If the dimension of

datasets is quite high or the number of parameter combinations is huge, the

grid search might be never finished. Therefore, grid search is very reliable only

in low dimensional dataset with few parameters.

5.3.2 Evolutionary algorithm

Evolutionary algorithm (EA) can also be used for SVM parameter optimization.

EAs search the best parameters but not naively like a brute-force or grid

search. EA is very useful to be implemented when the best ranges and

dependencies of various SVM parameters is not known at all. EA is more

appropriate than grid search which is very time consuming because it tries too

many combinations of parameters.

Beside SVM parameters (C, ^, degree, etc.), there are other EA parameters that

need to be optimized in order to achieve the best results:

• Max generations: sets the number of generations for process

termination, the default value is 50

• Population size: specifies the population size or the number of

individuals per generation, the default value is 5

Chapter 5. SVM and Parameter Optimization

 83

Table 5.6 The results of parameter optimization using grid search

F Measure Best parameters F Measure Best parameters F Measure Best parameters F Measure Best parameters

C = 31.622776 C=31.6228 C =7.0454 C=31.62277

gamma=0.001 gamma=250.4695 gamma=0.001

degree =1

 C=0.762 C=0.0999 C=3.082 C = 3.082

gamma=0.0999 gamma=125.072 gamma=125.072

degree=1 degree=1

C=6.9466 C=63.0957344 C=63.095734

 gamma=0.003981 gamma=0.00398

C=1.0 C=0.9965 C=1000.0

gamma=0.9956 gamma=0.000099999

C=250.3904 C=0.9965 C=1000.0

gamma=0.9956 gamma=0.000099999

C=0.25118864 C=63.095 C=0.00398 C=251.18864

 gamma=0.001 gamma=125.072 gamma=0.001

 degree=1

C=31.62277

gamma=0.01

C=220.499 C=63.0957 C=1.0 C=1.0

gamma=0.015848 gamma=0.0630 gamma=15.8489

 degree=1

forced to stop after

2 weeks running

forced to stop after

2 weeks running

forced to stop after

2 weeks running

forced to stop after 2

weeks running

forced to stop after

1 week running

100.00% 100.00%

97.44% 95.60%

62.28% 66.07% 62.02%

100.00% 100.00%

84.95% 81.56% 81.61%

failed, no

results

failed, no

results

failed, no

results
78.68% 75.13% 78.22%

97.54%
forced to stop after

1 week running

forced to stop after

1 week running

failed, no

results

8 SPECTF Heart

9 Intrusion

94.36%
failed, no

results

failed, no

results

failed, no

results

86.81% 89.97% 90.36% 91.75%

3 Dexter

4

Madelon

6 Musk

failed, no

results

failed, no

results

failed, no

results

100.00% 100.00% 100.00%

Internet_ads

5

Sigmoid
No

PSO-reduced

datasets

1 Leukemia

7 Spambase

Linear RBF Polynomial

2
Embryonal

Tumours
76.67%

100.00%

Chapter 5. SVM and Parameter Optimization

 84

• Tournament fraction: specifies the fraction of the current population

which should be used as tournament members, the default value is 0.25

• Crossover prob: specifies the probability for an individual to be

selected for crossover, the default value is 0.9

• Mutation type: there are three mutation types which are Gaussian

mutation, switching mutation and sparsity mutation. We used the

default value: Gaussian mutation

• Selection type: there are eight different selection types which are union,

cut, roulette wheel, stochastic universal sampling, Bolztmann, rank and

tournament (default value).

The parameter optimization using EA algorithm is explained in the Figure 5.4.

Figure 5.4 Parameter Optimization using Evolutionary Algorithm

Chapter 5. SVM and Parameter Optimization

 85

We now optimized the SVM parameters using evolutionary algorithm which

much faster than the grid search. We trained SVM classifiers using four

different kernels (linear, RBF, polynomial and sigmoid) and the results are

shown in Table 5.7.

In the previous experiment, grid search had failed because of very long

execution time and returned no results when applied to intrusion (all four

kernels), spambase (linear, polynomial and sigmoid kernel), madelon

(polynomial kernel), internet_ads (polynomial kernel) and dexter (polynomial

kernel) datasets. In the current experiment, evolutionary search has proven to

be more stable than grid search.

Table 5.7 shows that evolutionary search has successfully given satisfactory

results in almost all datasets. Linear kernel achieved the best results in 4 of 9

datasets which are on leukemia, dexter, internet_ads and musk datasets. RBF

kernel outperforms other kernels in spambase and intrusion datasets while the

polynomial kernel achieved the best results in embryonal tumours and musk

datasets. Sigmoid kernel achieved 100% accuracy in leukemia dataset and

achieved the best results in SPECTF heart dataset.

To compare the performance of grid search and evolutionary search, we

summarized both experiments in Table 6.3. In leukemia and musk datasets,

grid search achieved 100% accuracy in 4 kernels while evolutionary search

achieved 100% accuracy in 2 kernels. From these 2 datasets results, we can see

that linear kernel is much faster than other kernels (RBF, polynomial and

sigmoid kernels). In embryonal tumours, dexter, internet_ads, SPECTF Heart

and intrusion datasets, evolutionary search has slightly better accuracy but

much faster execution time. Only in 1 dataset (spambase) grid search has

better accuracies than the evolutionary one.

In the madelon and the intrusion datasets evolutionary search could not

guarantee good results for all kernels because the classification performances

were not so good (in madelon datasets the F-measure is only 66.67% and in

intrusion dataset the F-measure is only 61.31%).

Chapter 5. SVM and Parameter Optimization

 86

Table 5.7 Parameter optimization using Evolutionary Algorithm

F Measure Best parameters F Measure Best parameters F Measure Best parameters F Measure Best parameters

C=68.773 C=0.5625 C=220.5046 C=564.6153

gamma=0.94 gamma=484.66 gamma=0.07

degree=1

C=0.5681 C=5620.701 C=0.0488 C=5646.186

gamma=936.64 gamma=0.69 gamma=687.63

degree=1

C=69.7642 C=564.6229 C=0.59089 C=0.56692

 gamma=68.76 gamma=0.95 gamma=0.07

degree=1

C=623.381 C=182.4549 C=0.5625 C=0.5625

gamma=68.76 gamma=0.94 gamma=0.94

degree=1

C=220.505 C=0.62033 C=182.45498 C=623.38429

gamma=0.47 gamma=968.49 gamma=863.35

degree=1

C=220.504 C=220.498 c=240.516 C=182.45

gamma=68.755 gamma=0.40 gamma=968.49

degree=2

C=2205.035 C=0.562 C=0.2233 C=623.38

gamma=936.64 gamma=0.48 gamma=863.36

degree=1

C=564.62

gamma=68.763

unoptimal results,

premature

convergence

unoptimal results,

premature

convergence

77.01%

99.63% 100.00%

67.64%

93.34%

90.67%

Sigmoid

unoptimal results,

premature

convergence

unoptimal results,

premature

convergence

unoptimal results,

premature

convergence

unoptimal results,

premature

convergence

8 SPECTF Heart

9 Intrusion

84.23%

3 Dexter

4 Internet_ads

5 Madelon

6 Musk

78.88%

7 Spambase

61.31% 95.43%

87.31% 88.64%

83.42%

66.67%

94.33%

unoptimal results,

premature

convergence

61.31% 61.31%

81.69%

90.67%

66.67%

77.81%

Linear

73.73%

66.67%

79.56%

97.58%

100.00%

100.00%

90.31%

Polynomial

73.73% 78.50%

66.67%

98.75% 100.00%

85.33% 83.33%

RBF

21.85%

No
PSO-reduced

datasets

1 Leukemia

2
Embryonal

Tumours

Chapter 5. SVM and Parameter Optimization

 87

When we applied SVM to the madelon and intrusion datasets, the program

executions were trapped in a local minimum and were terminated very early,

therefore the results were not satisfactory. This problem is called premature

convergence, the condition where a population for optimization process

converged too early which results an un-optimal solutions.

As shown in Table 5.6, Table 5.7 and Table 5.8, in madelon dataset SVM failed

to give satisfactory results even with parameter optimization techniques. When

using grid search, three kernels (linear, RBF and sigmoid) only achieved

accuracy less than 70% (maximum accuracy was only 66.07%) and even worse

the polynomial kernel failed to give any results due to very long program

execution (the program execution was forced to stop after 1 week).

Unfortunately, the evolutionary search has also failed to improve the

performance where all four kernels (linear, RBF, polynomial and sigmoid

kernel) have very poor results. The program executions were trapped in a local

minimum and then terminated very early, therefore the results were not

satisfactory.

Similar case also happened to intrusion dataset, the grid search also failed to

get the results in all kernels where the program executions were forced to stop

after running for 2 weeks. In the beginning, evolutionary search also failed to

give satisfactory results because all kernels had premature convergence which

leads to unoptimal solutions. Then we decided to adjust some evolutionary

algorithm parameters such as maximum generations, population size and

mutation type with some different values and it worked very well especially on

RBF kernel where the accuracy (or F-measure) was significantly improved from

61.31% to 95.43%.

We tried to adjust evolutionary search parameters to improve the SVM

performance on madelon dataset as we have successfully done in intrusion

dataset, unfortunately it failed. We were really curious to know about the main

reasons why the SVM classifier failed on the madelon dataset. We decided to

run more experiments applying various algorithms to madelon dataset only.

The results are explained in Table 5.9.

Chapter 5. SVM and Parameter Optimization

 88

Table 5.8 Grid search and evolutionary search results comparison

F Measure Kernels Exec. Time (hh:mm:ss) F Measure Kernels
Exec. Time

(hh:mm:ss)

linear 00:00:05 linear 00:00:02

RBF 00:00:34 sigmoid 00:00:03

polynomial 00:00:28

sigmoid 00:00:14

2
Embryonal

Tumours
60 7,130 202 2.83% 84.95% linear 00:00:02 85.33% polynomial 00:00:03

3 Dexter 600 20,000 279 1.40% 78.68% linear 05:56:03 78.88% linear 00:20:05

4 Internet_ads 3,279 1,559 302 19.37% 97.54% linear 00:20:13 97.58% linear 00:16:15

RBF 00:26:32 linear 00:00:02

RBF 00:00:02

polynomial 00:00:02

sigmoid 00:00:02

linear 00:21:20 linear 00:19:32

RBF 16:31:02 polynomial 00:30:12

polynomial 00:46:59

sigmoid 04:13:21

RBF 01:37:30 linear

RBF 00:47:44

polynomial

8 SPECTF Heart 80 45 9 20.00% 91.75% sigmoid 00:00:20 93.34% sigmoid 00:00:04

linear

RBF 17:13:36

polynomial

sigmoid

9.52%

46.55%

19.05%

6,598

4,601

25192

Number of

original

attributes

7,130

501

168

58

42

109

5

16

27

8

Number of

attributes after

reduced by PSO

95.43%

SVM with evolutionary search

9 Intrusion no results
all kernels were

failed

program was forced to

stop after running for 2

weeks without any results

6 Musk 100.00% 100.00%

7 Spambase 94.36% 83.42%

1

No Datasets

SVM with grid search

Leukemia 100.00%

Number of

instances

72 1.53% 100.00%

5 Madelon 66.07% 66.67%2,600 1.00%

Chapter 5. SVM and Parameter Optimization

 89

Table 5.9 Experiment results on madelon dataset

We applied various machine learning algorithms from the basic ones to

ensemble classifiers and SVM with parameter optimization but none of them

achieved satisfactory results. The highest accuracy was only 73.79% which

produced by the bagging-rule induction algorithm. In this case, the bagging

technique hadsuccessfully improved the accuracy from 73.32% (rule induction

Original attributes GA-reduced PSO-reduced

501 attributes 142 attributes 5 attributes

k Nearest Neighbour (kNN) 64.90% 65.23% 64.25%

Naïve Bayes (NB) 59.05% 59.35% 60.24%

Decision Tree (DT) 64.28% 64.29% 64.29%

Rule Induction (RI) 73.32% 68.15% 63.07%

Bagging-kNN - 65.77% 63.78%

Bangging-NB - 59.59% 60.05%

Bangging-DT - 50.00% 50.00%

Bangging-RI - 73.79% 67.27%

Adaboost-kNN - 65.84% 63.96%

Adabost-NB - 60.37% 64.10%

Adaboost-DT - failed failed

Adaboost-RI - 65.41% 64.95%

linear kernel 66.67% 66.67% 61.83%

RBF kernel 66.67% 66.67% 57.13%

polynomial kernel 66.67% 66.67% 57.04%

sigmoid kernel 66.67% 66.67% 62.04%

linear kernel 66.67% 66.67% 62.28%

RBF kernel 66.67% 66.67% 66.07%

polynomial kernel 66.67% 66.67% failed

sigmoid kernel 66.67% 66.67% 62.02%

linear kernel 66.67% 66.67% 66.67%

RBF kernel 66.67% 66.67% 66.67%

polynomial kernel 66.67% 66.67% 66.67%

sigmoid kernel 66.67% 66.67% 66.67%

Madelon dataset (2,600 examples)

Machine Learning Algorithms

Single classifiers

Ensemble Classifiers

Support Vector Machine (SVM)

SVM with parameter optimization using grid search

SVM with parameter optimization using evolutionary algorithm

Chapter 5. SVM and Parameter Optimization

 90

as a single classifier) to 73.79% (bagging-RI), but this result was still less than

our expectation.

Actually the madelon dataset is an artificial dataset that is generated by a

computer program which was used in the NIPS 2003 feature selection

challenge4. The goal of this dataset is to classify random data which have 2

classes and sparse binary input variable. We reckon that the poor classification

performance of madelon dataset was strongly related to the feature selection

algorithms to be used. We used GA and PSO as feature selection algorithms

and they performed very well in almost all datasets except madelon. We

speculate that if we use more advance feature selection techniques on madelon

dataset, most of the classifiers will give better results. The winner of NIPS 2003

feature selection challenge used a combination of Bayesian neural network and

diffusion tree (Guyon et al., 2004).

4http://www.nipsfsc.ecs.soton.ac.uk/papers/NIPS2003-Datasets.pdf

Chapter 6. Summary and Discussion

 91

6. Summary and Discussion

In this chapter we would like to compare the performance of basic classifiers

when applied to high dimensional datasets, and the performance of ensemble

classifiers as well as SVM with parameter optimizations which applied to

reduced datasets.

The key question when dealing with the classification problem is not to find a

learning algorithm which is superior to others, but under which conditions a

specific method can significantly outperform others on a given application

problem. The following sections are the summary of our experiment on basic

machine learning algorithms, ensemble classifiers (bagging and boosting) and

SVM with parameter optimization.

6.1 Summary of Feature Selection Algorithms

We summarized all feature selection algorithms experiments in Table 6.1.

Feature selection algorithms have successfully removed irrelevant or redundant

features as well as reduced computational cost. From 8 datasets, the GA has

successfully reduced the number of attribute to 30.52% of the original

attributes on average. The highest reduction rate was on embryonal tumours

dataset where GA reduced the number of attributes from 7,130 to 619 or

8.68% of original attributes. PSO reduced the number of attributes much

better than the GA with 12.78% on average. The highest reduction rate was in

madelon dataset where PSO reduced the number of attributes from 501 to 5 or

1.00% of original attributes. In dexter dataset, PSO also reduced the number of

attributes from 20,000 to 279 or 1.40% while in leukemia dataset, PSO

successfully reduced the number of attributes from 7,130 to 109 or 1.53%.

Even though the feature selection algorithms have successfully reduced the

number of attributes significantly, they do not always improve the

classification performance. There are 4 of 8 datasets that when reduced by GA

and PSO, have positive classification improvement for almost all classifiers,

they are embryonal tumours, musk, spambase and SPECTF heart dataset. The

highest average accuracy improvement was on SPECTH-heart PSO-reduced

dataset with 10.05% improvement average. In embryonal tumours dataset,

Chapter 6. Summary and Discussion

 92

decision tree algorithm achieved 58.68% accuracy when applied to original

dataset, but its accuracy increased to 81.15% when applied to PSO-reduced

dataset. It means the accuracy improvement was 22.47% which is the highest

improvement.

Unfortunately, the reduction of attributes both by GA and PSO has also reduced

the classification accuracy in 4 of 8 datasets which are leukemia, dexter,

internet_ads and madelon datasets. The worst accuracy reduction was on

dexter dataset where in the GA-reduced dataset the classification accuracy was

dropped by 8.93% on average and in PSO-reduced dataset, the classification

accuracy was dropped by 19.91% on average.

In the GA-reduced datasets, 3 of 4 classifiers achieved worse accuracy than if

they applied to original datasets with full attributes. naïve Bayes, k-NN and

decision tree had negative average improvement while rule induction was the

only algorithm that has average positive improvement with 1.46% average.

Contrarily, in PSO-reduced datasets there are three classifiers (naïve Bayes, k-

NN and rule induction) achieved average positive improvement and only one

classifier (decision tree) had negative average improvement.

As a conclusion, both GA and PSO as feature selection algorithms have

successfully reduced the number of attributes significantly but they do not

always improve the classification performance especially if basic machine

learning algorithms such as naïve Bayes, k nearest neighbour, decision tree

and rule induction was used as classifier.

6.2 Summary of Ensemble Classifiers

Table 6.2 shows that in the PSO reduced datasets, both bagging and boosting

have slightly improved the accuracy. The average improvement varies from

0.38% (Bagging k-NN) to 4.47% (bagging rule induction). The highest

improvement was 13.18% where the boosting decision tree increased the

accuracy from 58.58% to 71.76%. From four basic classifiers, only rule

induction constantly has positive improvement, bagging rule induction has

average improvement of 2.59% (on GA-reduced datasets) and 4.47% (on PSO-

reduced datasets) and boosting rule induction has average improvement of

1.09% (GA-reduced datasets) and 2.31% (PSO-reduced datasets).

Chapter 6. Summary and Discussion

 93

Table 6.1 Summary of feature selection algorithms performance

attributes FF Original GA reduced Improvement Original GA reduced Improvement Original GA reduced Improvement Original GA reduced Improvement

Leukemia 7,130 2,237 31.37% 98.31% 98.31% 0.00% 89.70% 78.55% -11.15% 78.73% 81.16% 2.43% 83.40% 82.45% -0.95% 2.43% -2.42%

Emb. Tumours 7,130 619 8.68% 74.41% 65.42% -8.99% 67.06% 78.82% 11.76% 58.68% 58.58% -0.10% 74.05% 81.00% 6.95% 11.76% 2.41%

Dexter 20,000 6,133 30.67% 81.39% 73.30% -8.09% 86.63% 60.04% -26.59% 86.79% 87.16% 0.37% 83.23% 81.84% -1.39% 0.37% -8.93%

Internet_ads 1,559 489 31.37% 98.20% 98.07% -0.13% 91.45% 78.49% -12.96% 86.18% 88.32% 2.14% 95.00% 95.02% 0.02% 2.14% -2.73%

Madelon 501 142 28.34% 59.05% 59.35% 0.30% 64.90% 65.23% 0.33% 64.29% 64.29% 0.00% 73.32% 68.15% -5.17% 0.33% -1.14%

Musk 168 66 39.29% 93.67% 95.23% 1.56% 97.15% 96.48% -0.67% 92.57% 91.96% -0.61% 95.16% 95.93% 0.77% 1.56% 0.26%

Spambase 58 29 50.00% 82.90% 80.34% -2.56% 85.62% 90.33% 4.71% 92.59% 91.69% -0.90% 93.05% 92.90% -0.15% 4.71% 0.28%

SPECTF Heart 45 11 24.44% 79.49% 88.50% 9.01% 67.53% 74.57% 7.04% 79.69% 73.24% -6.45% 61.90% 73.52% 11.62% 11.62% 5.31%

-1.11% -3.44% -0.39% 1.46%

attributes FF Original PSO reduced Improvement Original PSO reduced Improvement Original PSO reduced Improvement Original PSO reduced Improvement

Leukemia 7,130 2,237 31.37% 98.31% 98.31% 0.00% 89.70% 87.90% -1.80% 78.73% 69.12% -9.61% 83.40% 83.41% 0.01% 0.01% -2.85%

Emb. Tumours 7,130 619 8.68% 74.41% 65.45% -8.96% 67.06% 75.08% 8.02% 58.68% 81.15% 22.47% 74.05% 77.27% 3.22% 22.47% 6.19%

Dexter 20,000 6,133 30.67% 81.39% 72.71% -8.68% 86.63% - - 86.79% 44.56% -42.23% 83.23% 74.42% -8.81% -8.68% -19.91%

Internet_ads 1,559 489 31.37% 98.20% 97.77% -0.43% 91.45% 73.32% -18.13% 86.18% 97.04% 10.86% 95.00% 95.12% 0.12% 10.86% -1.90%

Madelon 501 142 28.34% 59.05% 60.05% 1.00% 64.90% 63.78% -1.12% 64.29% 50.00% -14.29% 73.32% 67.27% -6.05% 1.00% -5.12%

Musk 168 66 39.29% 93.67% 99.91% 6.24% 97.15% 96.65% -0.50% 92.57% 91.65% -0.92% 95.16% 95.79% 0.63% 6.24% 1.36%

Spambase 58 29 50.00% 82.90% 90.08% 7.18% 85.62% 91.06% 5.44% 92.59% 93.29% 0.70% 93.05% 93.79% 0.74% 7.18% 3.52%

SPECTF Heart 45 11 24.44% 79.49% 88.14% 8.65% 67.53% 80.95% 13.42% 79.69% 78.83% -0.86% 61.90% 80.90% 19.00% 19.00% 10.05%

0.63% 0.76% -4.24% 1.11%

reduced by GA

reduced by PSO

Feature selection using GA

Dataset

Number of attributes Classification Performance (F-Measure)
Maximum

Improvement

Average

Improvement
Original

data

Naïve Bayes k Nearest Neighbour Decision Tree Rule Induction

Maximum

Improvement

Average

Improvement

Feature selection using PSO

Average Improvement Average Improvement Average Improvement Average Improvement

Average Improvement Average Improvement Average Improvement Average Improvement

Rule Induction

Classification Performance (F-Measure)

Naïve Bayes k Nearest Neighbour Decision TreeDataset

Number of attributes

Original

data

Chapter 6. Summary and Discussion

 94

Naïve Bayes and k-NN algorithm has positive average improvement on PSO

reduced datasets but they have negative average results on GA reduced

datasets.

Ensemble classifiers achieved the best classification performance on 5 of 8

datasets. In embryonal tumours dataset, the best accuracy was 81.15% which

was achieved by bagging decision tree applied to PSO reduced dataset, in

madelon dataset the best accuracy was 73.79% achieved by bagging rule

induction applied to GA reduced dataset. In the musk dataset, the best

accuracy was 99.97% achieved by boosting naïve Bayes. In the spambase

dataset, the highest accuracy was 94.52% achieved by boosting rule induction

and in SPECTF heart dataset, the best accuracy was 89.22% achieved by

bagging naïve Bayes.

Unfortunately, in three datasets (leukemia, dexter and internet_ads) the

ensemble classifiers failed to improve the classification performance. In the

leukemia dataset, the best accuracy was 98.31% achieved by naïve Bayes as a

single classifier. Both bagging and boosting were unable to improve the

accuracy on this dataset. In dexter, the best classification performance was

achieved by the decision tree with 87.16% and in the internet_ads dataset, the

best result was 98.07% achieved by naïve Bayes.

Now we would like to compare the classification performance between single

classifier and ensemble classifiers. Table 6.2 shows that actually bagging and

boosting did not give significant improvement. The use of bagging on GA-

reduced datasets gave 0.64% average improvement and on PSO-reduced

datasets bagging had an average improvement of 1.06%. So, the average

improvement of bagging when applied to eight different datasets and four

base classifiers is only 0.85%.

Boosting had an average improvement of 0.70% when applied to GA-reduced

datasets and it had an average improvement of 1.59% when applied to PSO-

reduced datasets. Overall the average improvement of boosting when applied

to eight different datasets and four base classifiers is 1.14%.

Chapter 6. Summary and Discussion

 95

Table 6.2 Summary of Ensemble Classifiers

Leukemia 2,237 98.31% 98.31% 0.00% 98.31% 0.00% 78.55% 79.38% 0.83% 85.44% 6.89% 81.16% 85.32% 4.16% 73.47% -7.69% 82.45% 87.07% 4.62% 91.89% 9.44% 9.44%

Emb. Tumours 619 65.42% 63.71% -1.71% 75.96% 10.54% 78.82% 75.01% -3.81% 80.71% 1.89% 58.58% 67.91% 9.33% 71.76% 13.18% 81.00% 80.08% -0.92% 78.66% -2.34% 13.18%

Dexter 6,133 73.30% 73.94% 0.64% - - 60.04% 61.64% 1.60% - - 87.16% 86.05% -1.11% 62.07% -25.09% 81.84% 86.41% 4.57% - - 4.57%

Internet_ads 489 98.07% 97.97% -0.10% 97.43% -0.64% 78.49% 78.43% -0.06% 78.46% -0.03% 88.32% 81.18% -7.14% 97.08% 8.76% 95.02% 95.12% 0.10% 94.77% -0.25% 8.76%

Madelon 142 59.35% 59.59% 0.24% 60.37% 1.02% 65.23% 65.77% 0.54% 65.84% 0.61% 64.29% 50.00% -14.29% - - 68.15% 73.79% 5.64% 65.41% -2.74% 5.64%

Musk 66 95.23% 95.23% 0.00% 99.93% 4.70% 96.48% 96.38% -0.10% 96.40% -0.08% 91.96% 92.96% 1.00% 92.02% 0.06% 95.93% 96.20% 0.27% 98.77% 2.84% 4.70%

Spambase 29 80.34% 80.39% 0.05% 80.36% 0.02% 90.33% 90.52% 0.19% 90.51% 0.18% 91.69% 92.78% 1.09% 91.72% 0.03% 92.90% 93.29% 0.39% 94.52% 1.62% 1.62%

SPECTF Heart 11 88.50% 89.22% 0.72% 80.70% -7.80% 74.57% 74.86% 0.29% 75.70% 1.13% 73.24% 80.77% 7.53% 77.40% 4.16% 73.52% 79.54% 6.02% 72.58% -0.94% 7.53%

-0.02% 1.12% -0.07% 1.51% 0.07% -0.94% 2.59% 1.09%

Leukemia 109 96.55% 98.31% 1.76% 98.31% 1.76% 89.10% 87.90% -1.20% 89.72% 0.62% 69.12% 69.12% 0.00% 77.77% 8.65% 70.61% 83.41% 12.80% 74.58% 3.97% 12.80%

Emb. Tumours 202 65.40% 65.45% 0.05% 70.32% 4.92% 70.74% 75.08% 4.34% 70.88% 0.14% 76.61% 81.15% 4.54% 70.83% -5.78% 68.34% 77.27% 8.93% 74.35% 6.01% 8.93%

Dexter 279 73.13% 72.71% -0.42% 73.19% 0.06% 73.98% - - 73.75% -0.23% 44.56% 44.56% 0.00% 49.06% 4.50% 70.72% 74.42% 3.70% 70.17% -0.55% 4.50%

Internet_ads 302 97.77% 97.77% 0.00% 97.63% -0.14% 73.18% 73.32% 0.14% 73.64% 0.46% 96.96% 97.04% 0.08% 96.99% 0.03% 95.12% 95.12% 0.00% 95.12% 0.00% 0.46%

Madelon 5 60.24% 60.05% -0.19% 64.10% 3.86% 64.25% 63.78% -0.47% 63.96% -0.29% 64.29% 50.00% -14.29% - - 63.07% 67.27% 4.20% 64.95% 1.88% 4.20%

Musk 16 99.92% 99.91% -0.01% 99.97% 0.05% 96.45% 96.65% 0.20% 96.63% 0.18% 91.65% 91.65% 0.00% 91.65% 0.00% 95.29% 95.79% 0.50% 99.28% 3.99% 3.99%

Spambase 27 90.29% 90.08% -0.21% 90.37% 0.08% 90.91% 91.06% 0.15% 91.33% 0.42% 92.92% 93.29% 0.37% 92.63% -0.29% 92.25% 93.79% 1.54% 94.23% 1.98% 1.98%

SPECTF Heart 9 85.89% 88.14% 2.25% 88.22% 2.33% 81.42% 80.95% -0.47% 83.28% 1.86% 77.77% 78.83% 1.06% 85.01% 7.24% 76.82% 80.90% 4.08% 78.00% 1.18% 7.24%

0.40% 1.61% 0.38% 0.39% -1.03% 2.05% 4.47% 2.31%

0.85% 1.14%Average improvement of Bagging for all datasets Average improvement of Boosting for all datasets

Boosting +/-

+/-

Naïve Bayes

Dataset #attrib

k Nearest Neighbour

Single

Classifier
Bagging +/- Boosting +/-

Single

Classifier
Bagging +/- Boosting

+/-
Single

Classifier
Bagging +/-

Rule Induction

Single

Classifier
Bagging +/- Boosting +/-

Decision Tree

Single

Classifier
Bagging +/- Boosting +/-

Highest

Improvement

GA-reduced datasets

Average

Improvement

PSO-reduced datasets

Average Improvement

Boosting +/-
Single

Classifier
Bagging +/-Boosting +/-

Single

Classifier
+/- Boosting

Average Improvement

Bagging +/-
Dataset #attrib

Naïve Bayes k Nearest Neighbour Decision Tree Rule Induction

Single

Classifier
Bagging

Chapter 6. Summary and Discussion

 96

6.3 Summary of SVM Parameter optimization

We summarized all experiments from basic classifiers, ensemble classifiers to

SVM with parameter optimization in Table 6.3 in the following page. Table 6.3

shows that SVM outperforms other algorithms in 5 of 9 datasets. In leukemia

and musk datasets, SVM (either using grid search or evolutionary search as

parameter optimization technique) obtained 100% accuracy which can not

achieved by other algorithms. In leukemia dataset, SVM only uses 1.53% (109

of 7,130) attributes while in musk, SVM uses 9.52% (16 of 168 attributes).

In the embryonal tumours dataset, we applied SVM into PSO reduced dataset

where the number of attribute is only 2.83% from its original (202 of 7130

attributes) and the best results achieved was 85.33%. This result is much better

than applying naive Bayes algorithms to the full dataset with 7,130 attributes

where the F-measure was only 74.41%. It is also quite a bit better than the use

of bagging decision tree classifier on PSO-reduced dataset which had anF-

measure of 81.15%.

In the dexter dataset, the SVM with parameter optimization using evolutionary

algorithm when applied to PSO-reduced dataset has an F-measure of only

78.88%. This result could not beat the result of decision tree algorithm when

applied to dexter full dataset with 20,000 attributes where the F-measure was

86.79%. Both ensemble classifiers bagging and boosting, have relatively poor

performance on PSO-reduced dexter dataset which has 279 attributes or only

1.40% of original attributes. But bagging and boosting have better performance

when applied to the GA-reduced dataset which has 6,133 attributes (30.67% of

original attributes). Bagging rule induction on GA-reduced dataset achieved

86.41% which beats the SVM result (78.88%) but is still below the decision tree

result (86.79%). We were curious to know how to improve the performance of

SVM while the parameter optimization result (78.88%) was worse than basic

algorithms such as decision tree (86.79%). We decided to apply SVM to GA-

reduced dataset which has more attributes than PSO-reduced one (6,133

compare to 279 attributes).

We used evolutionary algorithm to optimize the SVM parameters and used four

different kernels but only the linear kernel achieved the best result. With the

Chapter 6. Summary and Discussion

 97

linear kernel and variable C set to 562.07, the SVM achieved the best results

for the dexter dataset with an F-measure of 89.39%.

In this latest experiment, we can see that the classification performance of

various algorithms on the PSO-reduced dexter dataset was slightly decreased,

but it is very understandable because it used only 1.40% of original attributes.

On the other hand, the GA-reduced dexter dataset has many more attributes

than the PSO-reduced one but it provided better classification performance.

In the internet_ads dataset, both ensemble classifiers (bagging and boosting)

and the SVM could not improve the accuracy when they were applied to the GA-

reduced datasets and the PSO-reduced datasets. The highest F-measure was

98.20% achieved by naïve Bayes algorithm when applied to original dataset

with 1,559 attributes. The highest score of ensemble classifiers was 97.77%

achieved by bagging naïve Bayes which applied to PSO-reduced dataset with

302 attributes or 19.37% of original attributes. SVM was also unable to

produce higher score even using an evolutionary algorithm to perform the

parameter optimization; it achieved only 97.58% when applied to PSO-reduced

dataset. Unfortunately, SVM could not be applied to GA-reduced dataset

because it has nominal or categorical attributes. Even though we have done

some pre-processing techniques to convert nominal or categorical values to

numerical attributes, the classification performance could not be improved.

Furthermore, this dataset has missing values, where some attributes have

missing values in around 28% of the examples.

As discussed in previous section, in the madelon dataset the SVM could not

perform well, all kernels were trapped into premature converge which lead to

suboptimal solution with 66.67% of F-measure. In contrast, ensemble

classifiers have worked very well especially bagging rule induction which

achieves 73.79% of F-measure with only 142 attributes or 28.34% of original

dataset.

In the spambase dataset, SVM with the grid search algorithm achieved 94.36%

of F-measure. This result was slightly lower than boosting rule induction which

had 94.25% of F-measure but much higher than rule induction results which

was 93.05%.

Chapter 6. Summary and Discussion

 98

Table 6.3 Classification performance of all methods

dataset used dataset used dataset used dataset used

original dataset PSO reduced PSO reduced PSO reduced

109 109 109

1.53% 1.53% 1.53%

original dataset PSO reduced PSO reduced PSO reduced

202 202 202

2.83% 2.83% 2.83%

original dataset GA reduced PSO reduced GA reduced

6,133 279 6,133

30.67% 1.40% 30.67%

original dataset PSO reduced PSO reduced PSO reduced

302 302 302

19.37% 19.37% 19.37%

original dataset GA reduced PSO reduced PSO reduced

142 5 5

28.34% 1.00% 1.00%

original dataset PSO reduced PSO reduced PSO reduced

16 16 16

9.52% 9.52% 9.52%

original dataset GA reduced PSO reduced PSO reduced

29 27 27

50.00% 46.55% 46.55%

original dataset GA reduced PSO reduced PSO reduced

11 9 9

24.44% 20.00% 20.00%

original dataset GA reduced PSO reduced PSO reduced

16 8 8

38.10% 19.05% 19.05%

linear, sigmoid

polynomial

linear

linear

linear, RBF, sigmoid,

polynomial

linear, polynomial

linear, RBF, sigmoid,

polynomial

sigmoid

RBF

100%

85.33%

89.39%

97.58%

66.67%

100.00%

83.42%

93.34%

95.43%

100%

84.95%

78.68%

97.54%

66.07%

100%

94.36%

91.75%

no results

Boosting Naïve

Bayes

Bagging

Decision Tree

Bagging Rule

Induction

Bagging Naïve

Bayes

Bagging Rule

Induction

Boosting Naïve

Bayes

Boosting Rule

Induction

Bagging Naïve

Bayes

Bagging k-NN

98.31%

81.15%

86.41%

97.77%

73.79%

99.97%

94.52%

89.22%

99.74%

SVM with grid search

SVM kernels F-measure

SVM with evolutionary search

SVM kernels F-measure

8 SPECTF Heart

number of

attributes

7,130

20,000

1,559

501

168

58

45

5 Madelon

4 Internet Ads

1

DatasetNo

Leukemia

42

number of

attributes

number of

attributes

number of

attributes

F-measureAlgorithm

98.31%

74.41%

86.79%

98.20%

73.32%

naive Bayes

Rule Induction

Decision Tree

7,130

linear, RBF, sigmoid,

polynomial

linear

linear

linear

RBF

linear, RBF, sigmoid,

polynomial

RBF

sigmoid

failed

Base Classifiers

naive Bayes

Ensemble Classifiers

Algorithm F-measure

9 Intrusion

79.69%

99.48%

Decision Tree

Decision Tree

7 Spambase

6 Musk 97.15%

93.05%

k-Nearest

Neighbour

Rule Induction

3 Dexter

2
Embryonal

Tumours
naive Bayes

Chapter 6. Summary and Discussion

 99

The SVM was applied to PSO-reduced dataset with 27 attributes, the boosting

rule induction algorithm was applied to GA-reduced dataset with 29 attributes

and rule induction as basic classifier was applied to original dataset with 58

attributes.

In intrusion dataset, the SVM results could not be better than other algorithms

because the GA-reduced dataset and the PSO-reduced dataset have some

nominal values. From 16 attributes of GA-reduced dataset, there are 3 nominal

attributes and from 8 attributes of PSO-reduced dataset, there are 2 nominal

attributes. When we applied SVM to both PSO-reduced and GA-reduced

datasets, we ignored these nominal attributes and just used the numerical

ones. Therefore, the classification performances were not optimal. We have

tried to converting these nominal attributes using ‘nominal to numerical

function’, but it could not improve the performance. This is the reason why for

intrusion dataset, ensemble classifiers performed better than the SVM.

6.4 Time complexity of classification algorithms

In this section, we compared the time complexity of all algorithms used in our

experiments. The time complexity quantifies the amount of time required by

an algortihm to run. The most common metric for describing time complexity

is big O notation. The O expression is also called Landau’s symbol. Apart from

time complexity there is space complexity which is the number of memory

required by an algorithm.

The theoretical time complexity for learning a naive Bayes classifier is O(nd)

where d is the number of attributes and n is the number of samples

(instances). The space complexity is O(ndv) where v is the average number of

values per attribute (Webb et al., 2005).

kNN classifier is quite different from other classification algorithms. The

training phase in kNN simply consists of determining k and preprocessing the

dataset. Its time complexity is O(kn) where k is the number of nearest

neighbour and n is the number of examples (Zhou and Chen, 2006). If we do

not need to preprocess the dataset and we have already predefined the value

of k, then kNN does not need any training. In our experiments, we predefined

Chapter 6. Summary and Discussion

 100

the value of k to 1, therefore the learning time complexity becomes O(1). The

other classification algorithms are more complex than kNN.

Table 6.4 Time complexity of classification algorithms

Algorithms Time Complexity Variables

Naive Bayes O(nd)
d=number of attributes,
n=number of samples

k Nearest Neighbour O(kn)
k = number of nearest points
n = number of samples

Decision Tree O(nd2)
d=number of attributes,
n=number of samples

Rule Induction O(nlog2n) n=number of samples

Bagging O(mns)

m=number of sample of every
subset
n=number of samples
s=number of subsets

Boosting (AdaBoost) O(bnc)
b=number of base classifiers
n=number of samples
c=the complexity of base classifier

SVM (without
parameter
optimization)

O(n3) n = number of samples

We used an improved decision tree algorithm called C4.5 which has O(nd2) time

complexity where d is number of attributes and n is number of examples (Su

and Zhang, 2006). The time complexity of original rule induction algorithm is

O(n4) which is very high. We used an improved rule induction algorithm which

is called Ripper that has less time complexity of O(n log2 n)(Cohen, 1995).

The time complexity of bagging is O(mns) where m is the number of sample of

every subset, n is the number of the whole training dataset and s is the

number of subsets (Zheng et al., 2011). The AdaBoost algorithm is quite

simple but its learning time complexity is high. The time complexity of

AdaBoost is O(bnc) where b is the number of base/weak classifiers, n is the

number of instances/examples and c is the complexity of base classifier

(Sochman and Matas, 2003).

Chapter 6. Summary and Discussion

 101

The standard SVM classifier has time complexity of O(n3) and space complexity

of O(n2) (James et al., 2005). The time complexity is more than quadratic that

makes SVM hard to classify a dataset which consists of more than 10,000

instances/examples.

We summarized the learning time of all classification methods in Table 6.5.

This table shows that k-NN which has the simplest time complexity, had the

fastest learning time. However, kNN average running time was 3.89 seconds

which was slightly slower than naive Bayes (1 second), bagging-NB (1.22

seconds) and boosting-NB (2 seconds) but it was much faster than decision

tree (56.78 seconds), rule induction (209.33 seconds) and SVM (130.22

seconds) as shown in Table 6.6. In term of classification performance, kNN

could not achieve the best accuray (or F-measure) in any of 9 datasets.

Even though naive Bayes average learning time was below kNN (0.25 seconds),

it had the fastest average running time compare to all other methods. Naive

Bayes only required 1 second or less when applied to 9 PSO-reduced datasets.

This algorithm was very fast when applied to datasets which have a large

number of attributes such as dexter (20,000 attributes) or leukemia (7,130

attributes) and also when it was applied to datasets with high number of

examples/instances such as intrusion dataset (25,192 instances). Based on

classification performance, naive Bayes achieved the best result in 1 of 9

datasets. Decision tree’s average learning time was 3.47 seconds which was

slower than NB and kNN but was still faster than rule induction (6.71 seconds)

and SVM (24.70 seconds). Its running time was also slower than NB and kNN

but faster than RI and SVM. Decision tree could not achieve the best

classification performance in any of 9 datasets as shown in Table 6.5.

The average learning time of rule induction was 6.71 seconds and its average

running time was 26.78 seconds. Rule induction’s learning time and running

time are slower than kNN, NB and DT, but faster than SVM. Like kNN and DT,

Rule Induction could not achieve the best results in any of 9 datasets.

Chapter 6. Summary and Discussion

 102

Table 6.5 Learning time of classification algorithms

NB k-NN DT RI NB kNN DT RI NB kNN DT RI

Leukemia 72 7,130 0.09 0 0.33 0.33 0.39 0.02 0.62 1.43 0.36 0.27 1.98 2.52 0.03

Embryonal Tumours 60 7,130 0.08 0 0.39 0.61 0.45 0 2.60 3.93 1.26 0.14 2.57 2.92 0.05

Dexter 600 20,000 1.38 0 8.60 16.11 15.04 0.03 118.38 285.71 143.05 61.03 143.15 262.24 7.05

Internet_ads 3,279 1,559 0.10 0 16.78 16.99 0.71 0.01 122.68 112.49 18.29 133.63 301.44 75.97 9.19

Madelon 2,600 501 0.17 0 2.40 5.99 2.36 0.01 50.65 134.34 9.72 20.89 60.15 31.00 26.51

Musk 6,598 168 0.22 0 0.86 13.43 1.79 0.02 6.65 107.34 8.17 15.23 0.67 63.32 117.39

Spambase 4,601 58 0.05 0 0.42 1.28 0.33 0 4.14 20.50 0.65 61.41 3.95 4.71 0.33

SPECTF Heart 80 45 0.10 0 0.30 0.16 0.17 0.02 0.52 0.44 0.85 0.32 0.75 0.63 0.24

Intrusion 25,192 42 0.10 0 1.12 5.53 1.60 0.06 17.94 81.67 7.58 985.47 11.79 29.26 61.52

0.25 0.00 3.47 6.71 2.54 0.02 36.02 83.09 21.10 142.04 58.49 52.51 24.70

0.43 0.00 5.65 6.99 4.75 0.02 50.43 92.75 46.11 319.29 102.68 83.36 40.17

3 1 5 6 4 2 9 12 7 13 11 10 8

Average learning time

Standard deviation

Learning time rank

Dataset Name

Learning Time Comparison, tested on original datasets (seconds)

Single Classifier
Number of

instances

Number of

attributes
SVM

Bagging with a base classifier Boosting with a base classifier

Chapter 6. Summary and Discussion

 103

Table 6.6 The Running Time Comparison

NB k-NN DT RI NB kNN DT RI NB kNN DT RI grid search
evol.

search

Leukemia 1 1 1 1 1 1 5 2 1 1 4 1 1 3 1

Embryonal Tumours 1 1 2 1 1 1 17 10 1 1 19 6 1 3 2

Dexter 1 1 2 113 1 2 24 886 1 5 8 402 1 21,363 2

Internet_ads 1 1 3 6 3 91 21 56 9 238 2 60 390 2,479 613

Madelon 1 1 1 88 1 1 1 603 1 18 1 348 229 6,750 602

Musk 1 2 2 16 1 20 4 186 1 225 7 1,270 225 680 1,172

Spambase 1 1 14 13 1 14 144 114 1 50 16 231 20 5,850 42

SPECTF Heart 1 1 1 1 1 1 1 1 1 1 1 1 2 313 189

Intrusion 1 26 15 2 1 212 294 17 2 763 38 458 303 - 26

Average running time 1.00 3.89 4.56 26.78 1.22 38.11 56.78 208.33 2.00 144.67 10.67 308.56 130.22 4680.13 294.33

Standard deviation 0.00 8.30 5.68 42.61 0.67 71.38 99.69 318.02 2.65 250.98 12.10 403.97 156.03 7247.07 413.86

Running time rank 1 4 5 7 2 8 9 12 3 11 6 14 10 15 13

Dataset Name

Running Time Comparison : tested on PSO-reduced datasets using 10 fold cross validation (seconds)

Single Classifier Bagging with a base classifier Boosting with a base classifier
SVM with

default

paramater

(linear

kernel)

SVM with parameter

optimization (linear

kernel)

Chapter 6. Summary and Discussion

 104

The time complexity of bagging and boosting were strongly correlated with the

selection of base classifier. The average learning time of Bagging-kNN (0.02

seconds) and bagging-NB (2.54 seconds) were relatively fast while bagging-DT

(36.02 seconds) and bagging-RI (83.09 seconds) were quite slow. Bagging has

achieved the best classification performance in 2 of 9 datasets. Bagging-RI

achieved the best result on madelon dataset with F-measure of 73.79% and

bagging-kNN produced the best F-measure of 99.74% on intrusion dataset.

Compare to bagging, boosting was much slower. The average learning time of

boosting-NB was 2 seconds, boosting-kNN was 144.67 seconds, boosting-DT

was 10.67 seconds and boosting-RI was 308.56 seconds. Boosting had the

best classification result on only 1 of 9 dataset where boosting-RI achieved F-

measure of 94.52% on spambase dataset.

SVM which has time complexity of O(n3), was actually not the slowest classifier.

Based on average learning time, SVM was number 8 of 13 classifiers with kNN

was the fastest (0 second) and boosting-kNN was the slowest (142.04

seconds). Based on average running time, SVM (with default parameters) was

number 10 of 15 classifiers with naïve Bayes was the fastest (1 second) and

SVM with parameter optimization using grid search was the slowest (4680.13

seconds).

However, SVM with default parameters could not achieve the best classification

performance in any of 9 datasets. The use of parameter optimization both

using grid search and evolutionary search have been successfully improved the

classification performance. Even though SVM parameter optimization (both

using grid search and evolutionary algorithm) required high computation time

as shown in Table 6.6, they have successfully improved the classification

performance and achieved the best results in 5 of 9 datasets.

Chapter 7. Conclusions and Future Works

 105

7. Conclusions and Future Works

7.1 Conclusions

The main questions that we attempted to answer with our research work are:

what are the best machine learning techniques to handle high dimensional

datasets and how to improve their classification performance. Our

experiments on nine high dimensional datasets show that there is no single

classifier that always achieves the best accuracy in all domains or all

applications, but our results show that SVM with parameter optimization is

very powerful classifier and outperforms other algorithms in 5 of 9 datasets.

However, SVM is only good in handling datasets with numerical attributes. This

algorithm does not perform well on datasets which have nominal attributes. In

this case, ensemble classifiers such as bagging and boosting can be used as an

alternative. Their performances are slightly better than basic classifier such as

naïve Bayes, k-Nearest Neighbour, decision tree and rule induction.

Dimensionality reduction algorithms both GA and PSO, significantly reduces

the number of features or attributes needed as well as greatly reduce the

computational cost. Furthermore, these algorithms do not severely reduce the

classification accuracy and in some cases they can improve the accuracy as

well. We use these two algorithms to select the most important features in nine

high dimensional datasets. It takes around 34 minutes and 10 seconds to

finish the feature selection process on 9 datasets using GA and 48 minutes and

53 seconds using PSO.

The total running time of four basic classifiers (NB, kNN, DT and RI) on 9

original datasets is 68,169 seconds while the total running time of the same

classifiers on GA-reduced datasets is 3,799 seconds which means 17.9 times

faster. The total running time of the same four classifiers on PSO-reduced

datasets is only 326 seconds which is more than 200 times faster than the

total running time on original datasets.

Chapter 7. Conclusions and Future Works

 106

In terms of dimensionality reduction, PSO is much better than GA. PSO has

successfully reduced the number of attributes of 9 datasets to 12.78% of the

original attributes on average while GA is only 30.52% on average. In terms of

classification performance, GA is better than PSO. GA-reduced datasets have

better classification performance than their original ones on 5 of 9 datasets

while PSO is better only in 3 of 9 datasets.

We applied two ensemble classifiers called bagging and boosting. Our

experiment shows that actually bagging and boosting did not give significant

improvement for all basic classifiers. In some datasets, both bagging and

boosting were able to improve the accuracy more than 10%. The average

improvement of bagging when applied to nine different datasets is only 0.85%

while boosting improvement is 1.14%. Ensemble classifiers (both bagging and

boosting) outperforms single/base classifier in 7 of 8 PSO-reduced datasets

and 4 of 8 GA-reduced datasets.

SVM has been proven to perform much better when dealing with high

dimensional datasets and continuous/numerical features. The performance of

SVM highly depends on the slack variable penalty weight (C) and ^ (gamma).

Finding the proper C and ^ value is a kind of searching for the best trade-off

between allowing misclassification errors and generalizing the model.

The linear kernel gives better results if the number of features is very large

where the use of nonlinear mapping (RBF kernel, polynomial kernel and

sigmoid kernel) does not improve the performance. The RBF does not perform

well when the number of features is very large. If the number of feature is

large, it is not possible to map data to a higher dimensional space. Therefore,

the nonlinearity can not improve the classification performance, in this case

linear kernel is the best solution.

Although SVM work well with default value, the performance of SVM can be

improved significantly using parameter optimization. One of the biggest

problems of SVM parameter optimization is there is no exact ranges of C and ^

values. We believe that the wider the parameter range is, the more possibilities

the grid search method finds the best combination parameter.

Our experiment shows that the grid search always finds near optimal

parameter combination within given ranges. SVM parameter optimization using

Chapter 7. Conclusions and Future Works

 107

grid search is very powerful and it is able to improve the accuracy significantly.

In leukemia and musk datasets, this technique achieved 100% accuracy for all

four kernels (linear, RBF, polynomial and sigmoid kernel), these results are

amazing especially it was applied to PSO-reduced datasets which have much

less number of attributes (only 1.53% of original attributes for leukemia

dataset and only 9.52% of original attributes for musk dataset). These results

are much better than the performance of four basic classifiers (naïve Bayes, k-

nearest neighbour, decision tree and rule induction) which are applied to the

original datasets and also slightly better than the performance of ensemble

classifiers which are applied to GA-reduced and PSO-reduced datasets.

However, grid search has several disadvantages, it is extremely slow and

furthermore it may lead to very long execution time. For example, grid search

has been failed in finding optimal SVM parameters for intrusion dataset which

have a large number of instances. The process was forced to stop after 2

weeks running. Therefore, grid search is very reliable only in low dimensional

dataset with few parameters. To solve this problem, we use Evolutionary

Algorithm (EA) which is very useful to be implemented when the best ranges

and dependencies of various SVM parameters is not known at all. EA has

proven to be more stable than grid search. When applied to 9 datasets, EA has

an average running time of 294 seconds while grid search is around 4,680

seconds (it does not include intrusion dataset which was failed). It means, SVM

parameter optimization using EA is more than 15.9 times faster than using

grid search.

7.2 Future Work

The parameter optimization using Evolutionary Algorithm (EA) has shown

satisfactory results, it is more stable and much faster than the grid search but

it has a drawback. In some datasets, SVM parameter optimization using EA did

not achieve good results because the program executions were trapped in a

local minimum and then terminated very early. This problem is called

premature convergence, the condition where a population for optimization

process converged too early which results a sub-optimal solution. In the future

work, we would like to investigate some methods to avoid a premature

converge problem in EA optimization.

 Bibliography

 109

Bibliography

Aydin, I., Karakose, M., Akin, E., 2011. A multi-objective artificial immune
algorithm for parameter optimization in support vector machine.
Applied Soft Computing 11, 120–129.

Barros, R.C., Basgalupp, M.P., De Carvalho, A.C.P.L.F., Freitas, A.A., 2012. A
Survey of Evolutionary Algorithms for Decision-Tree Induction. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews 42, 291–312.

Bellman, R., 1957. Dynamic Programming. Princeton University Press.

Braun, A.C., Weidner, U., Hinz, S., 2012. Classification in High-Dimensional
Feature Spaces #x2014;Assessment Using SVM, IVM and RVM With
Focus on Simulated EnMAP Data. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing 5, 436 –443.

Breiman, L., 1996. Bagging predictors. Machine Learning Journal 24, 123–140.

Chang, C.-C., Lin, C.-J., 2011. LIBSVM: A library for support vector machines.
ACM Trans. Intell. System Technology 2, 27:1–27:27.

Chen, Y., Li, Y., Cheng, X.-Q., Guo, L., 2006. Survey and taxonomy of feature
selection algorithms in intrusion detection system, in: Proceedings of
the Second SKLOIS Conference on Information Security and Cryptology,
Inscrypt’06. Springer-Verlag, Berlin, Heidelberg, pp. 153–167.

Clarke, R., Ressom, H.W., Wang, A., Xuan, J., Liu, M.C., Gehan, E.A., Wang, Y.,
2008. The properties of high-dimensional data spaces: implications for
exploring gene and protein expression data. Nat Rev Cancer 8, 37–49.
doi:10.1038/nrc2294

Cohen, W.W., 1995. Fast Effective Rule Induction, in: In Proceedings of the
Twelfth International Conference on Machine Learning. Morgan
Kaufmann, pp. 115–123.

Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Machine Learning 20,
273–297.

Dandpat, S.K., Meher, S., 2013. Performance improvement for face recognition
using PCA and two-dimensional PCA, in: 2013 International Conference
on Computer Communication and Informatics (ICCCI). Presented at the
2013 International Conference on Computer Communication and
Informatics (ICCCI), pp. 1–5.

Davis, J., Goadrich, M., 2006. The relationship between Precision-Recall and
ROC curves, in: Proceedings of the 23rd International Conference on
Machine Learning, ICML ’06. ACM, New York, NY, USA, pp. 233–240.

De Miranda, P.B.C., Prudencio, R.B.C., Carvalho, A.C.P.L.F., Soares, C., 2012.
Combining a multi-objective optimization approach with meta-learning
for SVM parameter selection, in: 2012 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). Presented at the 2012 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), pp.
2909–2914.

Bibliography

 110

Dietterich, T.G., 1997. Machine Learning Research: Four Current Directions. AI
Magazine Vol 18, pp. 97-136.

Dong, Y.-S., Han, K.-S., 2004. A comparison of several ensemble methods for
text categorization, in: 2004 IEEE International Conference on Services
Computing, 2004. (SCC 2004). Proceedings. Presented at the 2004 IEEE
International Conference on Services Computing, 2004. (SCC 2004).
Proceedings, pp. 419–422.

Eiben, A.E., Smith, J.E., 2003. Introduction to Evolutionary Computing.
SpringerVerlag.

Fan, J., Fan, Y., 2008. High dimensional classification using features annealed
independence rules. Ann. Statist.

Fan-Zi, Z., Zheng-Ding, Q., 2004. A survey of classification learning algorithm,
in: 2004 7th International Conference on Signal Processing, 2004.
Proceedings. ICSP ’04. Presented at the 2004 7th International
Conference on Signal Processing, 2004. Proceedings. ICSP ’04, pp.
1500–1504 vol.2.

Fodor, I., 2002. A Survey of Dimension Reduction Techniques.

Freund, Y., Schapire, R.E., 1997. A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting. Journal of Computer and
System Sciences 55, 119–139.

Friedrichs, F., Igel, C., 2005. Evolutionary tuning of multiple SVM parameters.
Neurocomputing 64, 107–117.

Gaber, M.M., Bader-El-Den, M.B., 2012. Optimisation of Ensemble Classifiers
using Genetic Algorithm, in: Graña, M., Toro, C., Posada, J., Howlett, R.J.,
Jain, L.C. (Eds.), Advances in Knowledge-Based and Intelligent
Information and Engineering Systems - 16th Annual KES Conference, San
Sebastian, Spain, 10-12 September 2012, Frontiers in Artificial
Intelligence and Applications. IOS Press, pp. 39–48.

Gaber, M., Zaslavsky, A., Krishnaswamy, S., 2007. A Survey of Classification
Methods in Data Streams, in: Aggarwal, C. (Ed.), Data Streams, Advances
in Database Systems. Springer US, pp. 39–59.

Gaspar, P., Carbonell, J., Oliveira, J.L., 2012. On the parameter optimization of
Support Vector Machines for binary classification. J Integr Bioinform 9,
201.

Geurts, P., Irrthum, A., Wehenkel, L., 2009. Supervised learning with decision
tree-based methods in computational and systems biology. Mol Biosyst
5, 1593–1605.

Graczyk, M., Lasota, T., Trawiski, B., Trawiski, K., 2010. Comparison of
Bagging, Boosting and Stacking Ensembles Applied to Real Estate
Appraisal, in: Nguyen, N., Le, M., Swiatek, J. (Eds.), Intelligent
Information and Database Systems, Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, pp. 340–350.

Guyon, I., Hur, A.B., Gunn, S., Dror, G., 2004. Result analysis of the NIPS 2003
feature selection challenge, in: Advances in Neural Information
Processing Systems 17. MIT Press, pp. 545–552.

Haddadi, F., Khanchi, S., Shetabi, M., Derhami, V., 2010. Intrusion Detection
and Attack Classification Using Feed-Forward Neural Network, in: 2010

 Bibliography

 111

Second International Conference on Computer and Network Technology
(ICCNT). Presented at the 2010 Second International Conference on
Computer and Network Technology (ICCNT), pp. 262–266.

Hall, M.A., 1999. Correlation-based Feature Selection for Machine Learning.

Hall, M.A., Holmes, G., 2003. Benchmarking attribute selection techniques for
discrete class data mining. IEEE Transactions on Knowledge and Data
Engineering 15, 1437–1447.

Holder, L.B., Russell, I., Markov, Z., Pipe, A.G., Carse, B., 2005. CURRENT AND
FUTURE TRENDS IN FEATURE SELECTION AND EXTRACTION FOR
CLASSIFICATION PROBLEMS. International Journal of Pattern Recognition
and Artificial Intelligence 19, 133–142.

Howley, T., Madden, M.G., 2005. The Genetic Kernel Support Vector Machine:
Description and Evaluation. Artificial Intelligence Review 24, 379–395.

Hric, M., Chmulik, M., Jarina, R., 2011. Model parameters selection for SVM
classification using Particle Swarm Optimization, in: Radioelektronika
(RADIOELEKTRONIKA), 2011 21st International Conference. Presented at
the Radioelektronika (RADIOELEKTRONIKA), 2011 21st International
Conference, pp. 1–4.

Huang, C.-L., Dun, J.-F., 2008. A distributed PSO–SVM hybrid system with
feature selection and parameter optimization. Applied Soft Computing
8, 1381–1391.

Hussain, M., Wajid, S.K., Elzaart, A., Berbar, M., 2011. A Comparison of SVM
Kernel Functions for Breast Cancer Detection, in: 2011 Eighth
International Conference on Computer Graphics, Imaging and
Visualization (CGIV). Presented at the 2011 Eighth International
Conference on Computer Graphics, Imaging and Visualization (CGIV),
pp. 145 –150.

Islam, M.J., Wu, Q.M.J., Ahmadi, M., Sid-Ahmed, M.A., 2007. Investigating the
Performance of Naive- Bayes Classifiers and K- Nearest Neighbor
Classifiers, in: International Conference on Convergence Information
Technology, 2007. Presented at the International Conference on
Convergence Information Technology, 2007, pp. 1541–1546.

James, I.T., Kwok, J.T., Bay, C.W., 2005. Very Large SVM Training using Core
Vector Machines, in: In Proc. 10th Int. Workshop Artif. Intell. Stat. pp.
349–356.

Jwo, D.-J., Chang, S.-C., 2009. Particle swarm optimization for GPS navigation
Kalman filter adaptation. Aircraft Engineering and Aerospace
Technology 81, 343–352.

Kohavi, R., Quinlan, R., 1999. Decision Tree Discovery, in: IN HANDBOOK OF
DATA MINING AND KNOWLEDGE DISCOVERY. University Press, pp. 267–
276.

Korürek, M., Doan, B., 2010. ECG beat classification using particle swarm
optimization and radial basis function neural network. Expert Systems
with Applications 37, 7563–7569.

Kotsiantis, S.B., 2007. Supervised Machine Learning: A Review of Classification
Techniques, in: Proceedings of the 2007 Conference on Emerging
Artificial Intelligence Applications in Computer Engineering: Real Word

Bibliography

 112

AI Systems with Applications in eHealth, HCI, Information Retrieval and
Pervasive Technologies. IOS Press, Amsterdam, The Netherlands, The
Netherlands, pp. 3–24.

Krishna, K., Murty, M.N., 1999. Genetic K-means algorithm. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics 29, 433–439.

Lee, K.C., Cho, H., 2010. Performance of Ensemble Classifier for Location
Prediction Task: Emphasis on Markov Blanket Perspective. . International
Journal of u- and e- Service, Science and Technology 3.

Lee, W., Stolfo, S.J., 1998. Data mining approaches for intrusion detection, in:
Proceedings of the 7th Conference on USENIX Security Symposium -
Volume 7, SSYM’98. USENIX Association, Berkeley, CA, USA, pp. 6–6.

Li, C.-H., Ho, H.-H., Liu, Y.-L., Lin, C.-T., Kuo, B.-C., Taur, J.-S., 2012. An
Automatic Method for Selecting the Parameter of the Normalized
Kernel Function to Support Vector Machines. J. Inf. Sci. Eng. 28, 1–15.

Lin, S.-W., Ying, K.-C., Chen, S.-C., Lee, Z.-J., 2008. Particle swarm optimization
for parameter determination and feature selection of support vector
machines. Expert Systems with Applications 35, 1817–1824.

Liu, Y., Wang, G., Chen, H., Dong, H., Zhu, X., Wang, S., 2006. An Improved
Particle Swarm Optimization for Feature Selection. Engineering 8, 924–
928.

Malhotra, R., Singh, N., Singh, Y., 2011. Genetic Algorithms: Concepts, Design
for Optimization of Process Controllers. Computer and Information
Science 4, p39.

Mierswa, I., 2006. Evolutionary Learning with Kernels: A Generic Solution for
Large Margin Problems. Proceeding of the 8th annual conference on
Genetic and Evolutionary Computation, pp. 1553-1560

Miller, A.J., 2002. Subset selection in regression. Chapman & Hall/CRC, Boca
Raton.

Mitchell, M., 1998. An introduction to genetic algorithms. MIT Press,
Cambridge, Mass.

Moraglio, A., Chio, C.D., Togelius, J., Poli, R., 2008. Geometric Particle Swarm
Optimization.

Mukkamala, S., Sung, A.H., Abraham, A., 2005. Intrusion detection using an
ensemble of intelligent paradigms. J. Network and Computer
Applications 28, 167–182.

Oh, I.-S., Lee, J.-S., Moon, B.-R., 2004. Hybrid genetic algorithms for feature
selection. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 26, 1424 –1437.

Otero, F.E.B., Freitas, A.A., Johnson, C.G., 2012. Inducing decision trees with an
ant colony optimization algorithm. Applied Soft Computing 12, 3615–
3626.

Pardo, M., Sberveglieri, G., 2005. Classification of electronic nose data with
support vector machines. Sensors and Actuators B: Chemical 107, 730–
737.

Platt, J.C., 1999. Advances in kernel methods, in: Schölkopf, B., Burges, C.J.C.,
Smola, A.J. (Eds.), . MIT Press, Cambridge, MA, USA, pp. 185–208.

 Bibliography

 113

Polikar, R., 2006. Ensemble based systems in decision making. IEEE Circuits
and Systems Magazine 6, 21–45.

Quinlan, J.R., 1993. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Rossi, A.L.D., de Carvalho, A.C.P., 2008. Bio-inspired Optimization Techniques
for SVM Parameter Tuning, in: 10th Brazilian Symposium on Neural
Networks, 2008. SBRN ’08. Presented at the 10th Brazilian Symposium
on Neural Networks, 2008. SBRN ’08, pp. 57–62.

Roy, K., Bhattacharya, P., 2008. Improving Features Subset Selection Using
Genetic Algorithms for Iris Recognition, in: Prevost, L., Marinai, S.,
Schwenker, F. (Eds.), Artificial Neural Networks in Pattern Recognition,
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 292–
304.

Sánchez A, V.D., 2003. Advanced support vector machines and kernel
methods. Neurocomputing 55, 5–20.

Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S., 1997. Boosting the Margin: A
New Explanation for the Effectiveness of Voting Methods.

Schuh, M.A., Angryk, R.A., Sheppard, J., 2012. Evolving Kernel Functions with
Particle Swarms and Genetic Programming, in: Youngblood, G.M.,
McCarthy, P.M. (Eds.), Proceedings of the Twenty-Fifth International
Florida Artificial Intelligence Research Society Conference, 2012. AAAI
Press, Marco Island, Florida, pp. 80–85.

Skellam, J.G., 1952. Studies in Statistical Ecology Spatial Pattern. Biometrika 39,
346–362.

Sochman, J., Matas, J., 2003. AdaBoost and Face Detection (Version 1.0).

Subasi, A., 2013. Classification of EMG signals using PSO optimized SVM for
diagnosis of neuromuscular disorders. Computers in Biology and
Medicine.

Sudheer, C., Maheswaran, R., Panigrahi, B.K., Mathur, S., 2013. A hybrid SVM-
PSO model for forecasting monthly streamflow. Neural Computing and
Applications.

Su, J., Zhang, H., 2006. A Fast Decision Tree Learning Algorithm, in:
Proceedings of the 21st National Conference on Artificial Intelligence -
Volume 1, AAAI’06. AAAI Press, Boston, Massachusetts, pp. 500–505.

Syarif, I., Prugel-Bennett, A., Wills, G., 2012a. Data mining approaches for
network intrusion detection: from dimensionality reduction to misuse
and anomaly detection. Journal of Information Technology Review 3, pp.
70–83.

Syarif, I., Prugel-Bennett, A., Wills, G.B., 2012b. Unsupervised clustering
approach for network anomaly detection. Fourth International
Conference on Networked Digital Technologies (NDT) 2012. 11 pages.

Syarif, I., Zaluska, E., Prugel-Bennett, A., Wills, G., 2012c. Application of
bagging, boosting and stacking to intrusion detection. Presented at the
MLDM 2012: 8th International Conference on Machine Learning and
Data Mining. 10 pages.

Bibliography

 114

Tjiong, A.S.J., Monteiro, S.T., 2011. Feature selection with PSO and kernel
methods for hyperspectral classification, in: 2011 IEEE Congress on
Evolutionary Computation (CEC). Presented at the 2011 IEEE Congress
on Evolutionary Computation (CEC), pp. 1762 –1769.

Tsai, F.S., Chan, K.-L., 2007. Dimensionality reduction techniques for data
exploration, in: 2007 6th International Conference on Information,
Communications Signal Processing. Presented at the 2007 6th
International Conference on Information, Communications Signal
Processing, pp. 1–5.

Van den Bosch, A., 2000. Using induced rules as complex features in memory-
based language learning, in: Proceedings of the 2nd Workshop on
Learning Language in Logic and the 4th Conference on Computational
Natural Language Learning - Volume 7, ConLL ’00. Association for
Computational Linguistics, Stroudsburg, PA, USA, pp. 73–78.

Verleysen, M., 2003. Learning High-Dimensional Data, in: Limitations and
Future Trends in Neural Computation 186. IOS Press, pp. 141–162.

Viswanath, P., Sarma, T.H., 2011. An improvement to k-nearest neighbor
classifier, in: 2011 IEEE Recent Advances in Intelligent Computational
Systems (RAICS). Presented at the 2011 IEEE Recent Advances in
Intelligent Computational Systems (RAICS), pp. 227–231.

Webb, G.I., Boughton, J.R., Wang, Z., 2005. Not So Naive Bayes: Aggregating
One-Dependence Estimators. Mach Learn 58, 5–24.

Williams, N., Z, S., Armitage, G., 2006. A Preliminary Performance Comparison
of Five Machine Learning Algorithms for Practical IP Traffic Flow
Classification. Computer Communication Review 30.

Witten, I.H., Frank, E., 2005. Data mining: practical machine learning tools and
techniques. Morgan Kaufman, Amsterdam; Boston, MA.

Wu, X., Kumar, V. (Eds.), 2009. The Top Ten Algorithms in Data Mining, 1
edition. ed. Chapman and Hall/CRC, Boca Raton.

Zheng, Y., Sun, C., Li, J., Yang, Q., Chen, W., 2011. Entropy-Based Bagging for
Fault Prediction of Transformers Using Oil-Dissolved Gas Data. Energies
4, 1138–1147.

Zhou, C.Y., Chen, Y.Q., 2006. Improving nearest neighbor classification with
cam weighted distance. Pattern Recognition, Graph-based
Representations 39, 635–645.

Zhou, H.-G., Chun-De, Y., 2006. Using Immune Algorithm to Optimize Anomaly
Detection Based on SVM, in: 2006 International Conference on Machine
Learning and Cybernetics. Presented at the 2006 International
Conference on Machine Learning and Cybernetics, pp. 4257–4261.

Zhou, Z.-H., 2009. Ensemble Learning, in: Li, S.Z., Jain, A. (Eds.), Encyclopedia
of Biometrics. Springer US, pp. 270–273.

