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FEATURE EXTRACTION IN VOLUMETRIC IMAGES 

Thamer Alathari 

The increased interest in volumetric images in recent years requires new 

feature extraction methods for 3D image interpretation. The aim of this study 

is to provide algorithms that aid the process of detecting and segmenting 

geometrical objects from volumetric images. Due to high computational 

expense, such methods have yet to be established in the volumetric space. 

Only few have tackled this problem using shape descriptors and key-points of a 

specific shape; those techniques can detect complex shapes rather than simple 

geometric shapes due to the well-defined key-points. 

Simplifying the data in the volumetric image using a surface detector and 

surface curvature estimation preserves the important information about the 

shapes at the same time reducing the computational expense. Whilst the 

literature describes only the template of the three-dimensional Sobel operator 

and not its basis, we present an extended version of the Sobel operator, which 

considers the gradients of all directions to extract an object’s surface, and with 

clear basis that allows for development of larger operators. Surface curvature 

descriptors are usually based on geometrical properties of a segmented object 

rather than on the change in image intensity. In this work, a new approach is 

described to estimate the surface curvature of objects using local changes of 

image intensity. The new methods have shown reliable results on both 

synthetic and on real volumetric images. 

The curvature and edge data are then processed in two new techniques for 

evidence gathering to extract a geometrical shape’s main axis or centre point. 

The accumulated data are taken directly from voxels’ geometrical locations 

rather than the surface normals as proposed in literature. The new approaches 



have been applied to detect a cylinder’s axis and spherical shapes. A new 3D 

line detection based on origin shifting has also been introduced. Accumulating, 

at every voxel, the angles resulting from a coordinate transform of a Cartesian 

to spherical system successfully indicates the existence of a 3D line in the 

volumetric image. 

A novel method based on using an analogy to pressure is introduced to allow 

analysis/ visualisation of objects as though they have been separated, when 

they were actually touching in the original volumetric images. The approach 

provides a new domain highlighting the connected areas between multiple 

touching objects. A mask is formed to detach the interconnected objects and 

remarkable results are achieved.  This is applied successfully to isolate coins 

within an image of a Roman hoard of coins, and other objects. The approach 

can fail to isolate objects when the space between them appears to be of 

similar density to the objects themselves. This motivated development of an 

operator extended by high-pass filtering and morphological operations. This 

led to more accurate extraction of coins within the Roman hoard, and to 

successful isolation of femurs in a database of scanned body images enabling 

better isolation of hip components in replacement therapy. 
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Chapter 1: Background 

 

1.1 Context 

     The use of automatic detection of geometric objects in two-dimensional 

space (2D) has been given much attention in the recent years due to the rapid 

increase in computer power, availability of high performance sensors and the 

low cost of memory. On the other hand, the three-dimensional (3D) space lacks 

such techniques. The current increase of interest in the 3D imaging systems 

heightened the need for these techniques. In recent years, there has been 

much development on them especially the computed tomography scanners 

(CT) in fields such as health, national safety, archaeology and industrial 

sectors.   

There is a dedicated centre for CT scanning services called Muvis (Muvis, 2014) 

at the University of Southampton, which is available to support the multiple 

disciplines offered by the university. The centre is an example for the current 

popularity due to the valuable information provided by such modality. In Figure 

1.1, a CT scanned jar full with ancient Roman coins (Franklin, 2012) is derived 

from  collaborative work between the Muvis centre and the archaeology 

department by giving researchers the ability to identify findings using a non-

destructive imaging method. 

The major benefit of using CT scanners resides in the increased amount of the 

qualitative and quantitative information provided compared to standard 2D 

sectional images (Russ, 2006). Such information could be valuable for the 

current advances in science applications such as 3D printing of organs or 

choosing a properly sized implant. However, the scanners produce intensity 

volumetric images that are large in terms of memory size and suffer from 

noise and some variant artefacts. The images require pre-processing to 

prepare them for object extraction. Another major problem in the volumetric 

images is the large amount of orientation and location possibilities for the 



Chapter 1- Background 

2 

object in 3D space. Figure 1.1 gives an excellent example of a complex case 

where many objects exist in the scene with different orientations.  

Figure 1.1 CT scan of a jar filled with ancient roman coins 

Much current research focuses on finding objects in 2.5D data, given the 

proliferation of Kinect devices and laser scanners providing point cloud images 

(Rabbani & Heuvel, 2005; Camurri, Vezzani, & Cucchiara, 2014). The 

availability of such devices at a low cost made them popular in the in past few 

years. Those devices provide a view of the surface whereas a volumetric image 

shows can reveal internal content. Some research has tended to focus on the 

automatic extraction of objects from volumetric images (Krcah, Szekely, & 

Blanc, 2011a; Wang, Gillibert, Flin, & Coeurjolly, 2012).  

Beyond the techniques already described, there appears little work in the 

extension of planar image operators to volumetric images. This is noted in one 

recent work (Gregory Flitton, Breckon, & Megherbi, 2010), which extends the 

SIFT operator to volumetric images and (Knopp, Prasad, Willems, Timofte, & 

Van Gool, 2010), which also extends the Speeded Up Robust Features (SURF) 

detection to 3D in conjunction with Hough transform to classify 3D shapes. 

The absence of available technique might arise due to the fact that many 

expositions of planar images omit a theoretical basis for the techniques 

whereas the basis is actually available (M. Nixon & Aguado, 2012) as will be 

discussed in the next chapter. It is of note that this applies to the Sobel edge 
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detection operator, though the Wikipedia entry (Wikipedia, 2012) describes the 

Sobel as a volumetric operator, this is little  found in the literature (Y. J. Zhang, 

1993; Wählby & SINTORN, 2004; Palu, He, & Lu, 2006; Avinash, 2009) and 

these works only describe a 3x3x3 operator, without further details. The same 

is also correct in the case of 3D curvature extraction based on light intensity, 

which is essential for making use of the information provided by the image 

scanner instead of relying on a surface provided by edge or segmentation 

method. 

More modern approaches to image analysis deploy interest point detection 

with machine learning, especially for tasks such as image retrieval and 

recognition by image content (Greg Flitton, Mouton, & Breckon, 2015). 

Volumetric scans are principally used in the area of engineering sciences and 

thus often deployed for measurement purposes. The modern approaches to 

image analysis appear less suited to implementation in this manner given not 

only the volume of the data, but also the reliance on databases for analysis of 

performance. Currently, 3D volumetric scanning has only just reached a point 

where automated scanning of multiple objects can be achieved. The difficulty 

of segmenting and identifying multiple geometrical shapes increases with 

change in their parameters, location and orientation in the volumetric image. A 

more established image interpretation approach appears suitable, using 

properties that can be directly attributed to image content and directly related 

to the underlying nature and arrangement of the shapes contained within the 

volumetric scan, and which can address and reduce the data storage and 

processing consistent with volumetric scanning. 

This thesis will describe new approaches to low-level and high-level 3D 

volumetric image interpretation. The low-level operations concern surface 

detection and surface curvature estimation; the high-level operations concern 

shape detection and shape analysis. Since there is not yet a plethora of 

established work in each of these fields, we shall describe the prior work to 

each in tandem with the new approaches, rather than consolidate the material 

here. 



Chapter 1- Background 

4 

1.2 Contributions 

The main contributions of this thesis are: 

i. A method for 3D volumetric-image edge extraction based on extension

of the Sobel operator to three dimensions.

ii. Estimation of curvature again by extension of a standard 2D approach to

three dimensions in volumetric images.

iii. Development of evidence gathering methods based on Hough transform

to detect lines, spheres and cylindrical objects based on voxel

information rather than surface normals.

iv. A new approach to separate touching objects in volumetric scans. This

is based on using an analogy to pressure as an image operator, which

appears totally new to image analysis.

The Sobel edge detector is simple and efficient, which makes it an ideal 

candidate for surface detection. By extending 2D theory (M. Nixon & Aguado, 

2012; Sobel, 2014a), we can achieve a new 3D approach. The new Sobel 

templates address the increase in dimensionality by taking into account 

the gradient value and direction of every dimension of the three dimensions 

for every voxel. As a result, the proposed templates have reliably extracted the 

surface of the objects in the volumetric images. 

The calculated gradients from the new Sobel operator are later employed in a 

new method for curvature estimation based on (Kass, Witkin, & Terzopoulos, 

1988). The new curvature estimation is based on the set of surface gradients 

rather than faces and vertices resulted from thresholded edge operator and 

marching cube algorithm. The curvature outcome can be used to add more 

detail into the object description to help minimise the information to be 

processed by removing undesirable data within the volume.  

Three new evidence-gathering techniques based on Hough transform are 

presented to overcome the dependence on surface normal (Bhattacharya, Liu, 

Rosenfeld, & Thompson, 2000; Rabbani & Heuvel, 2005; Ogundana, Coggrave, 

Burguete, & Huntley, 2007). The first technique is called a template searcher 
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that uses a spherical template to look for evidence of existence of a cylinder 

axis or a sphere. The other technique is called point-sphere searcher, which is 

an extension of an earlier Hough transform for detecting circles (Illingworth & 

Kittler, 1987). A comparison is made between the two techniques in terms of 

speed and accuracy. The last technique is a new line detection algorithm based 

on origin shifting. The new method is similar to (Bhattacharya et al., 2000) but 

with a new approach where voxel perspective is changed to describe lines in 

volumetric images including the length parameter with tolerance to gaps. The 

literature lacks such technique even though it is very well established in the 2D 

image world (Duda & Hart, 1972; Illingworth & Kittler, 1987).   

Finally, a novel approach to separate touching objects in 3D space is 

elucidated. A physical analogy similar to the proposed in (Mark S Nixon, Liu, 

Direko, & Hurley, 2009) has been used to liken a small cubic of the volumetric 

image background to a cube filled with ideal gas. The ideal gas would exert a 

pressure on the object of interest with an inverse relation with the volume of 

the background, which helps in creating a new domain called the pressure 

domain, which is used to form a mask that is employed to separate connected 

objects. Using mapping and edge information to achieve improved results has 

enhanced the method. The results have been compared with the manually 

segmented data and full analysis on the results has been presented.   

The structure of this thesis is to expose these areas of contributions in 

separate chapters. As each of these chapters covers a major area of 

contribution, the literature review material is to be found in each chapter, 

rather than collated as a single literature review. This research has already led 

to one workshop and two conference papers listed below and some papers that 

are in preparation. 

• Anas Abuzaina, Thamer Alathari, Mark S. Nixon, Detecting Moving
Spheres in 3D Point Clouds via the 3D Velocity Hough, 11th IEEE IVMSP
Workshop: 3D Image/Video Technologies and Applications, June 2013.

• Thamer Alathari, Mark S. Nixon, Segmenting Objects in 3D Images by
Volumetric Analysis, Proc. ISVC 2013, LNCS, 8033, September 2013.

• Thamer Alathari, Mamadou Bah, Mark S. Nixon, Femur Bone
Segmentation using a Pressure Analogy, 22nd International Conference
on Pattern Recognition, August 2014.





Chapter 2: Low Level Feature 

Extraction 

2.1 Surface Detection 

Edge detection is a fundamental image processing operation, which extracts 

valuable information hidden within the borders of an object. The process is 

conventionally formulated in two-dimensional space to analyse planar images. 

It delivers simplified analysis of images by dramatically reducing the amount of 

data to be processed.  The strength of detected edges is represented by the 

rate of change in image intensity between a pixel and its surrounding window. 

The gradients are calculated in every dimension by a specific template or 

equation describing the rate of change of intensity. Edge detection does not 

require prior knowledge about the shape and depends mainly on the local 

features. 

There are many standard edge detection operators such as Prewitt, Sobel and 

Canny (Russ, 2006). The Sobel operator (Sobel, 1970, 2014b) is now in routine 

use in image analysis, though its development appears obscure. As such this 

Chapter repeats some basic material, which appears standard in 2D image 

analysis and then extends it for use in 3D image analysis, to make clear the 

precise nature of the operators used as a basis for later developments. 

Two-dimensional operators have been applied to three-dimensional volumetric 

images without consideration for the third dimension, since the approximation 

appeared to yield satisfactory results (Zhu, Cochoff, & Sukalac, 2012). The 

problem with this approximation is the omission of the information that can be 

derived from a volume rather than from a plane (Yu-Qian, Wei-Hua, Zhen-

Cheng, Jing-Tian, & Ling-Yun, 2005). A 3D operation considers edges to be 

surfaces whereas a 2D approximation depends on its plane of action; surface 

detection is independent of the direction and can give more reliable 

information for later processing. 
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There are several edge detectors in literature, which deal with surface 

detection using different approaches such as deformable model (Ma, Tavares, 

Jorge, & Mascarenhas, 2010), contour reconstruction (Cong & Parvin, 2001) 

and 3D edge operators (Brejl & Sonka, 2000). The most frequently used are the 

3D edge operators due to their relative balance between memory demand and 

accuracy. Some of the operators provided by literature (Palu et al., 2006; 

Avinash, 2009; Itk.org, 2014) lack the rationale underlying the selection of the 

template coefficients.  

This section extends the basics of the 2D Sobel edge operator to deliver a new 

3D surface operator that is simple, non-recursive and less demanding in terms 

of memory. Later in this chapter we also extend an established curvature 

operator to provide a new 3D operator, which is again an extension of 2D 

material to precisely define the 3D operator, which is used later in this thesis. 

2.1.1 Sobel Operator 

Sobel is a first-order edge detection operator, which consists of two template 

masks to calculate the vertical and the horizontal gradients (Figure 2.1). The 

creation of the templates is based on smoothing in one direction and 

differencing in the other, usually given as: 

൥
1 0 −1
2 0 −2
1 0 −1

൩ ൥
1 2 1
0 0 0
−1 −2 −1

൩ 

(a) (b) 

Figure 2.1 Sobel 3x3 templates (a) Horizontal Gradient Template and (b) Vertical 

Gradient Template. 

Pascal’s triangle forms a basis for calculating of the template coefficients for 

smoothing and differencing (M. Nixon & Aguado, 2012). For a window size of 

3, Pascal’s triangle results in two vectors: one for smoothing (Eqn. 2.1) and 

another for differencing (Eqn. 2.2). 

࢘࢕࢚ࢉࢋࢂ	ࢍ࢔࢏ࢎ࢚࢕࢕࢓ࡿ = [૚ ૛ ૚] 2.1 

࢘࢕࢚ࢉࢋࢂ	ࢍ࢔࢏ࢉ࢔ࢋ࢘ࢋࢌࢌ࢏ࡰ = [૚ ૙ −૚] 2.2 
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Larger operators can be derived in this way. The templates in Figure 2.1 have 

been created using the two vectors in equations Eqn. 2.1 and Eqn. 2.2. The 

horizontal gradient template creation takes place by smoothing the vertical 

direction perpendicular to the derivative direction and difference in the 

derivative direction and vice versa for the vertical template Figure 2.2.    

 Horizontal Template (x-axis)= Smooth y * difference x 

 =൥
1
2
1
൩ ∗ [1 0 −1] = ൥

1 0 −1
2 0 −2
1 0 −1

൩  (a) 

Vertical Template (y-axis)= difference y * smooth x 

 =൥
1
0
−1

൩ ∗ [1 2 1] = ൥
1 2 1
0 0 0
−1 −2 −1

൩  (b) 

Figure 2.2 Creating Sobel templates (a) Horizontal Template [x-axis] , (b) 

Vertical Template [y-axis] 

The templates are then convolved with the image to give two components at 

every pixel: gradient in the vertical direction ࢟ࡳ and gradient in the horizontal 

direction	࢞ࡳ . Those gradients are then used to calculate the gradient vector 

magnitude Eqn. 2.3 and its direction Eqn. 2.4 as in Figure 2.3 

Figure 2.3 Vector notation of the 2D gradient vector 

ࡳ = ටࡳ૛࢞ +  2.3 ࢋࢊ࢛࢚࢏࢔ࢍࢇ࢓	࢚࢔ࢋ࢏ࢊࢇ࢘ࢍ	ࢋࢎ࢚	࢙࢏	ࡳ	܍ܚ܍ܐܟ   ૛࢟ࡳ

ࣂ = ૚ି࢔ࢇ࢚ ൬࢞ࡳ࢟ࡳ
൰  2.4 ࢔࢕࢏࢚ࢉࢋ࢘࢏ࢊ	࢚࢔ࢋ࢏ࢊࢇ࢘ࢍ	ࢋࢎ࢚	࢙࢏	ࣂ	܍ܚ܍ܐܟ						
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2.1.1 Surface Operator 

The Sobel operator can be extended to three dimensions to operate on voxel 

data. Voxel data is a stack of cross-sectional image slices taken using a CT 

scan of a scene, or object. The creation of the volume template is derived from 

smoothing and differencing operations with the consideration of the new 

additional dimension. The main concept remains the same, difference the 

investigated dimension and smooth the other two (as shown in Figure 2.5), 

resulting in three templates.  

The templates are then convolved with the three dimensional data at each 

voxel. The gradient vector magnitude and angles are then calculated as shown 

in Figure 2.4 using Eqn. 2.5 and Eqn. 2.6 

Figure 2.4 Vector notation of the 3D gradient vector 

۵ = ට۵ܠ૛ + ૛ܡ۵ +  ૛ 2.5ܢ۵

ࢼ = ૚ି࢔ࢇ࢚ ൬ࢠࡳ࢞ࡳ
൰ ; ࢽ = ૚ି࢔ࢇ࢚ ቆ࢟ࡳࢠࡳ

ቇ ; ࢻ = ૚ି࢔ࢇ࢚ ൬࢞ࡳ࢟ࡳ
൰ 2.6 

As with the planar Sobel operator, larger volumetric Sobel operators can be 

derived by extension of Pascal’s triangle in the manner of Eqn. 2.1 and 2.2. 
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a) The gradient in the x-direction
௫ܩ	 = ℎ௬ݐ݋݋݉ܵ ∙ ௫݁ܿ݊݁ݎ݂݂݁݅ܦ ∙  ℎ௭ݐ݋݋݉ܵ

	= ൥
1
2
1
൩ . [−1 0 1]. ൥

1
2
1
൩ = ൥

−1 0 1
−2 0 2
−1 0 1

൩ . ൥
1
2
1
൩ Å z-direction scalar 

	൥
−1 0 1
−2 0 2
−1 0 1

൩ ∗ 1 → ൥
−1 0 1
−2 0 2
−1 0 1

൩ 

	= 	 	 ൥
−1 0 1
−2 0 2
−1 0 1

൩ 	∗ 2 → ൥
−2 0 2
−4 0 4
−2 0 2

൩ 

	൥
−1 0 1
−2 0 2
−1 0 1

൩ ∗ 1 → ൥
−1 0 1
−2 0 2
−1 0 1

൩ 

b) The gradient in the y-direction
௬ܩ = ௬ᇱ݁ܿ݊݁ݎ݂݂݁݅ܦ ℎ௫ݐ݋݋݉ܵ. . ℎ௭ᇱݐ݋݋݉ܵ

c) The gradient in the z-direction
௭ܩ = ℎ௬ᇱݐ݋݋݉ܵ ℎ௫ݐ݋݋݉ܵ.  ௭ᇱ݁ܿ݊݁ݎ݂݂݁݅ܦ.

Figure 2.5 Sobel operator templates used to calculate gradient in (a) x-direction, (b) y-

direction, and (c) z-direction. 

The resulting template for calculating ܩ௫

 The resulting template for calculating ܩ௬

The resulting template for calculating ܩ௭
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z=1 z=2 z=3 

z=4 z=5 z=6 

z=7 z=8 z=9 

(a) (b) 

Figure 2.6 Synthetic cube (a) Rendered cube, (b) The first 9 image slices through the 

cube volume 

2.1.2 Application 

The 2D Sobel operator does not take into account the change or the gradient 

in the direction normal to the plane where the 2D Sobel is applied. On the 

other hand, using the operator described above, all the dimensions were 

considered in the process of gradient calculation and proper description for 

the edge information was calculated. Consider the synthetic cube in Figure 2.6 

that would be an ideal simple example to validate the proposed method. 

Applying the 2D operator to the cube would result in slices in Figure 2.7a that 

have omitted the top surface. On the other hand, the volumetric operator 

preserves the top surface as in Figure 2.7b, which implies that the 3D Sobel 

operator correctly preserves object surfaces. 

A CT scanned engine block (Figure 2.8) has been examined to show the validity 

of the proposed operator on a CT volumetric image. The results were 

compared to the 2D Sobel operator, as mentioned earlier the proposed method 

considered the effect of increased dimensionality by preserving the top plane 

of the engine as in Figure 2.9. Please note the 2D Sobel result have been 

processed with skeletonization to obtain thin edges, on the other hand, the 

same can not be done for the 3D Sobel operator due to the effect of 

skeletonization in 3D space. 
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z=1 z=2 z=3 z=1 z=2 z=3 

z=4 z=5 z=6 z=4 z=5 z=6 

z=7 z=8 z=9  z=7 z=8 z=9 
(a) (b)

Figure 2.7 Nine slices through the synthetic cube edge data (a) via 2D Sobel operator 

and (b) via 3D surface operator. 

z=3 z=13 z=23 

z=33 z=43 z=53 

z=63 z=73 z=83 
(a) (b) 

Figure 2.8 CT scan of block engine  (a) 3D render, (b) Nine slices through the block 

engine volume 
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z=3 z=13 z=23 z=3 z=13 z=23 

z=33 z=43 z=53 z=33 z=43 z=53 

z=63 z=73 z=83 z=63 z=73 z=83 
(a) (b) 

Figure 2.9 Nine slices through the block engine edge data (a) via 2D Sobel operator 

and (b) via 3D surface operator 

By this, a new 3D Sobel operator, suited to application on volumetric images 

and which has a basis consistent with the formulation of the original 2D 

operator, which successfully detects surfaces rather than edge. 

2.2 On Deriving Estimates of Curvature from 

Image and Volume Data 

Curvature is another important property that helps to reveal important 

information about a shape, especially in images of the built environment, and 

has seen much development in literature. The most popular methods rely on 

geometrical analysis of shape surface to give every vertex a curvature value 

(M. P. Do Carmo, 1976; Stevens, 1981). The curvature components in this 

relation are mainly based on the projections of the segmented object in 3D 

space.  

In order for those approaches to work, a prior segmentation is required. 

Usually two steps have to be performed on the CT image; surface detection 
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and marching cubes. The curvature values are extracted geometrically based 

on the faces and vertices rather than local change in image intensity gradients 

(Gao, Wu, Mao, & Wang, 2014).  The use of the gradients would provide direct 

curvature estimation but the lack of curvature descriptor based on the 

gradients presents an obstacle. 

Here we extend a basic approach, which derives planar curvature from 2D 

image data similar to the one introduced by (Kass et al., 1988), to provide a 

new approach, which derives curvature by a 3D volumetric operator, so that 

corners can be detected in surfaces. Unlike previous works that estimate 

curvature from projected range image (Colombo et al. 2006) or from the 

geometric properties, the new operator is applied directly to the 3D volume. 

The simplest definition of curvature is the ratio of the change of tangential 

angle ݀߮(ݐ)	to the change in arc length ݀(ݐ)ݏ. 

࢑(࢚) =
(࢚)࣐ࢊ
(࢚)࢙ࢊ

2.7 

To study the curvature definition more closely, let the parametric equation of a 

point in an image be represented by the following location vector: 

࢙(࢚) = ࢞(࢚) + ࢟(࢚)   where  ܠ and ܡ present location at time 2.8 ܜ 

Consider that this point is moving in the image then the change in the position 

is: 

(࢚)࢙ࢊ
࢚ࢊ =

(࢚)࢞ࢊ
࢚ࢊ +

(࢚)࢟ࢊ
࢚ࢊ 2.9 

The magnitude of this change in location is given by: 

ฯ࢙ࢊ(࢚)
࢚ࢊ ฯ = ඨ࢞ࢊ(࢚)

࢚ࢊ
૛

+
(࢚)࢟ࢊ
࢚ࢊ

૛
= ට		࢞′	૛ + ࢟ᇱ	૛ 2.10 

The angle of the location vector is given by: 

࣐(࢚) = ૚ିܖ܉ܜ ቆ࢟ࢊ(࢚)
ቇ(࢚)࢞ࢊ = ૚ିܖ܉ܜ ቆ࢟

ᇱ

࢞ᇱቇ 2.11 

And 



Chapter 2 Low Level Segmentation 

16 

(࢚)࣐ࢊ
࢚ࢊ = 	 ࢞

ᇱ࢟ᇱᇱ + 	࢟ᇱ࢞ᇱᇱ
࢞ᇱ૛ + ࢟ᇱ૛ 2.12 

By substituting Eqn. 2.10 and Eqn. 2.12 into Eqn. 2.7, the following definition 

for the curvature ݇ is obtained: 

࢑(࢚) =
࢞ᇱ࢟ᇱᇱ + 	࢟ᇱ࢞ᇱᇱ

൫࢞ᇱ૛ + ࢟ᇱ૛൯
૜
૛

2.13 

2.2.1 Planar curvature detection from image intensity 

Curvature detection using image intensity values is based on detecting the 

angular changes in the image. Representing a curve as 

࢞(࢚) = ࢞ + ࢚ ൫࣐(࢞,࢟)൯ܛܗ܋ ; ࢟(࢚) = ࢟ + ࢚ 		൫࣐(࢞,࢟)൯ܖܑܛ

where  ࢞ and ࢟ present location at time ࢚		

2.14 

The change in direction in relation to the magnitude 

࢑(࢚) =
(࢟,࢞)࣐ࢊ
(࢟,࢞)࢙ࢊ = ቆ࣐ࢊ(࢞,࢟)

࢞ࢊ ∙ (࢞)࢞ࢊ
࢚ࢊ +

(࢟,࢞)࣐ࢊ
࢟ࢊ ∙ (࢚)࢟ࢊ

࢚ࢊ ቇ ቆ࢙ࢊ(࢞,࢟)
࢞ࢊ ∙ (࢞)࢞ࢊ

࢚ࢊ +
(࢟,࢞)࢙ࢊ
࢟ࢊ ∙ (࢚)࢟ࢊ

࢚ࢊ ቇ൘ 		 2.15 

And 

࢞(࢚)− ࢞
࢚ = ൫࣐(࢞,࢟)൯࢙࢕ࢉ ;

࢟(࢚)−࢟
࢚ = 		൫࣐(࢞,࢟)൯࢔࢏࢙ 2.16 

By substituting Eqn. 2.16 in Eqn.  2.15. 

࢑(࢞,࢟) =
൬࣐ࢊ(࢞,࢟)

࢞ࢊ ൫࣐(࢞,࢟)൯ܛܗ܋ + (࢟,࢞)࣐ࢊ
࢟ࢊ ൫࣐(࢞,࢟)൯൰ܖܑܛ

൬࢙ࢊ(࢞,࢟)
࢞ࢊ ൫࣐(࢞,࢟)൯ܛܗ܋ + (࢟,࢞)࢙ࢊ

࢟ࢊ ൫࣐(࢞,࢟)൯൰ܖܑܛ

2.17 

Using the gradients: 

൫࣐(࢞,࢟)൯ܛܗ܋ =
࢟ࡹ−

ඥ࢞ࡹ૛ ૛࢟ࡹ+
; ൫࣐(࢞,࢟)൯ܖܑܛ =

࢞ࡹ
ඥ࢞ࡹ૛ ૛࢟ࡹ+

2.18 
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Where ࢞ࡹ is the gradient in the x-axis direction 

Where ࢟ࡹ is the gradient in the y-axis direction 

Then 

ࢊ
࢞ࢊ ൫࣐(࢞,࢟)൯࢔ࢇ࢚ = .	૛൫࣐(࢞,࢟)൯ࢉࢋ࢙ ࢞ࢊࢊ 	࣐(࢞,࢟)		 2.19 

So 

ࢊ
࢟ࢊ 	࣐(࢞,࢟) = 	

࢟ࢊ࢞ࡹࢊ࢟ࡹ− ࢟ࢊ࢟ࡹࢊ࢞ࡹ+
૛࢟ࡹ ૛࢞ࡹ+

2.20 

By substitution, 

࢑(࢞,࢟) =

૚
૛࢟ࡹ) (૛࢞ࡹ+

૜
૛

. ൤࢟ࡹ૛ ࢞ࢊ࢞ࡹࢊ ࢞ࢊ࢟ࡹࢊ࢟ࡹ࢞ࡹ+ ࢟ࢊ࢞ࡹࢊ࢞ࡹ࢟ࡹ− + ࢟ࢊ࢟ࡹࢊ૛࢞ࡹ ൨

ඨቆ ࢟ࡹ−
ඥ࢞ࡹ૛ ૛ቇ࢟ࡹ+

૛
+ ቆ ࢞ࡹ

ඥ࢞ࡹ૛ ૛ቇ࢟ࡹ+
૛ 2.21 

Eqn. 2.21 defines the curvature using image gradients extracted from intensity 

image (M. Nixon & Aguado, 2012). 

2.2.2 Surface curvature detection from volumetric data 

For 3D, we have three plane projections for every point. 

For the x-y plane: (ݐ)ݔ = ݔ + ݐ ;൯(ݕ,ݔ)൫߮ݏ݋ܿ (ݐ)ݕ = ݕ + ݐ  ൯(ݕ,ݔ)൫߮݊݅ݏ

For the x-z plane: (ݐ)ݔ = ݔ + ݐ ,ݔ)൫߮ݏ݋ܿ ;൯(ݖ (ݐ)ݖ = ݖ + ݐ ,ݔ)൫߮݊݅ݏ  ൯(ݖ

For the z-y plane: (ݐ)ݖ = ݖ + ݐ cos൫߮(ݕ,ݖ)൯ ; (ݐ)ݕ = ݕ + ݐ sin൫߮(ݕ,ݖ)൯ 

The three dimensional curvature can be found using the following equations: 
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࢑(࢞,࢟) =

૚
૛࢟ࡹ) (૛࢞ࡹ+

૜
૛

. ൤࢟ࡹ૛ ࢞ࢊ࢞ࡹࢊ ࢞ࢊ࢟ࡹࢊ࢟ࡹ࢞ࡹ+ ࢟ࢊ࢞ࡹࢊ࢞ࡹ࢟ࡹ− + ࢟ࢊ࢟ࡹࢊ૛࢞ࡹ ൨

ඨቆ ࢟ࡹ−
ඥ࢞ࡹ૛ + ૛ቇ࢟ࡹ

૛
+ ቆ ࢞ࡹ

ඥ࢞ࡹ૛ + ૛ቇ࢟ࡹ
૛

2.22 

(ࢠ,࢞)࢑ =

૚
૛ࢠࡹ) (૛࢞ࡹ+

૜
૛

. ቂࢠࡹ૛ ࢞ࢊ࢞ࡹࢊ ࢞ࢊࢠࡹࢊࢠࡹ࢞ࡹ+ ࢠࢊ࢞ࡹࢊ࢞ࡹࢠࡹ− ࢠࢊࢠࡹࢊ૛࢞ࡹ+ ቃ

ඨ൬ ࢠࡹ−
૛࢞ࡹ√ ૛൰ࢠࡹ+

૛
+ ൬ ࢞ࡹ

૛࢞ࡹ√ ૛൰ࢠࡹ+
૛ 2.23 

(࢟,ࢠ)࢑ =

૚
૛࢟ࡹ) + (૛ࢠࡹ

૜
૛

. ൤࢟ࡹ૛ ࢠࢊࢠࡹࢊ ࢠࢊ࢟ࡹࢊ࢟ࡹࢠࡹ+ ࢟ࢊࢠࡹࢊࢠࡹ࢟ࡹ− ࢟ࢊ࢟ࡹࢊ૛ࢠࡹ+ ൨

ඨቆ ࢟ࡹ−
ඥࢠࡹ૛ + ૛ቇ࢟ࡹ

૛
+ ቆ ࢠࡹ

ඥࢠࡹ૛ ૛ቇ࢟ࡹ+
૛

2.24 

 The final magnitude of the curvature has been as a Euclidean sum: 

	ࢋ࢛࢚࢘ࢇ࢛࢜࢘࡯ = ඥ݇(ݕ,ݔ)ଶ + ,ݔ)݇ ଶ(ݖ +  ଶ 2.25(ݕ,ݖ)݇

The curvature in this context is defined by the rate of change in the angular 

movement of a voxel to the rate of change in speed in that same direction for 

every projection as illustrated in Figure 2.10  

Figure 2.10 The curvature magnitude and the curvature components ,(࢟,࢞)࢑	(ࢠ,࢞)࢑  and 

 .projected on planes (࢟,ࢠ)࢑
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2.2.3 Application of the 3D surface curvature detection 

The effectiveness of 3D curvature can be visualized by application to the 

synthetic cube of Figure 2.6. The result of applying curvature detection is 

shown in Figure 2.11a, this figure shows all the resulted curvature values. The 

window in which the gradients were measured introduced smaller curvature 

values around the sharp edges of the cube. A histogram of normalized 

curvature values is created to investigate the curvature strengths (the higher 

values mean higher curvature) Figure 2.11b. In Figure 2.11c, the corners of the 

cube were extracted successfully by choosing a proper threshold value using 

the histogram. 

(a)  (b)  (c)  

Figure 2.11 Curvature detection method on synthetic cube in Figure 2.6, (a) Direct 

result from the curvature, (b) Histogram shows the curvature occurrences according to 

strength and (c) After thresholding. 

As the curvature extracted from the image gradient and the change of the 

gradient, the curvature values will be mainly be controlled by the image 

intensity. The part of the image where the change of intensity is high will get 

high curvature value as it will be identified as higher priority and will be 

assigned a higher curvature values than another part of the image with lower 

change values.  

The components of the curvature magnitude, ݇(ݕ,ݔ),	 ݇(ݔ, ,ݕ)݇ and (ݖ  of four	(ݖ

slices of the coin data of Figure 1.1 are shown in Figure 2.12, each shows the 
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curvature estimation on one plane out of the three in 3D space. The 

thresholded results Figure 2.13 were able to identify the surface areas where 

the coins are curved, which is an abstract description of the coin that is also 

the desired outcome to prepare the data for later processing.  
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(a) Curvature 

Magnitude 

(b)  ࢑(࢞,࢟) (c) (d) (ࢠ,࢞)࢑   (ࢠ,࢟)࢑ 

Figure 2.12 Four slices through the coins in Figure 1.1 showing the curvature 

magnitude (a) and the curvature components ࢑(࢞,࢟),	 (ࢠ,࢞)࢑   and (ࢠ,࢟)࢑  (b-d) 

respectively, for each slice. 
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z 

y 

x 

Figure 2.13 Thresholded curvature using the proposed curvature estimation of the data 

in Figure 1.1, showing the surface areas where the coins are curved. 

Analysis of the effect of random noise is presented in Figure 2.14. The noise 

has been generated by random number from a normal distribution with a mean 

of 0.5 and standard deviations ranging from .05 to 0.2 with an increment of 

.05. It is then added to the image of (Figure 2.8) and normalized. The 

curvature magnitude is then calculated to study the effect of noise on the 

curvature data; a single slice from the volume is shown in Figure 2.14. In order 

to quantify the analysis, the curvature volumes were thresholded at the same 

level and the number of voxels is calculated versus the standard deviation of 

the noise level (Figure 2.15). The proposed method depends on the voxel 

intensity change as the noise variation increased the number of false curvature 

values introduced increased. 
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(a) 

(b) (c) 

(d) (e) 

Figure 2.14 The effect of adding random normally distributed noise on the CT scan of 

an engine block (Figure 2.8), (a) Slice 52 without noise (left) and the corresponding 

curvature (right), (b) Slice 52 after adding noise on the volume with a mean of 0.5 and 

standard deviation 0.05 (left) and the corresponding curvature (right), (c) Slice 52 after 

adding noise on the volume with a mean of 0.5 and standard deviation 0.1 (left) and 

the corresponding curvature (right), (d) Slice 52 after adding noise on the volume with 

a mean of 0.5 and standard deviation 0.15 (left) and the corresponding curvature 

(right) and (e) Slice 52 after adding noise on the volume with a mean of 0.5 (left) and 

standard deviation 0.2 and the corresponding curvature (right) 
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Figure 2.15 The variation in the number of curvature voxels with the change of noise 

standard deviation at the same threshold value. 

2.3 Conclusions 

The presented surface detection and surface curvature estimation methods are 

intuitive extensions to well-established methods in the literature. Providing the 

basis of extension provides a better understanding of the low level features of 

the volumetric image. The proposed surface operator is an extended version of 

Sobel operator (Sobel, 2014) but can expanded to a different window size 

using weights provided Pascal triangle rather than the intuitive choice as in 

(Palu et al., 2006; Avinash, 2009). The gradients calculated are used to 

calculate the curvature estimation from the image intensity as in (Kass et al., 

1988) rather than from the geometric location of a mesh vertex (M. Do Carmo, 

1976; Stevens, 1981). Several projected curvature values on planar projection 

are combined to address curvature based on intensity change. The results of 

the proposed methods provide primary phase for the later feature extraction 

techniques described in the following chapters to minimize the computational 

expense, save memory and processing times. The techniques enjoy a clear 

analytic formulation that is readily extendable to larger operators, including 

increased smoothing. 



Chapter 3: Evidence Gathering 

Based on Hough Transform 

3.1 Introduction 

The Hough transform (HT) introduced in (Hough, 1962) is an evidence 

gathering method for shape detection. In its early days, it was introduced to 

detect simple shapes such as lines and circles in 2D images and it was later 

extended to more complex shapes (Duda & Hart, 1972; Kimme, Ballard, & 

Sklansky, 1975). It is applied to the edge data of the image, to reduce the 

computational load. The main advantage of using the Hough transform is 

revealing shapes of interest automatically determining properties of those 

shapes such as their centre location and the radius of a circle (Illingworth & 

Kittler, 1987). 

In volumetric space, little attention has been given to the Hough transform due 

to the large amount of computation needed. In fact, a recent paper notes “Very 

few attempts at HT for 3D data have been presented in the literature” (Camurri 

et al., 2014). The current attention for volumetric imagery requires an 

automatic shape detection method using evidence gathering. The main 

problems facing this extension are the complexity of those volumetric images 

and that they suffer from noise, clutter and artefacts for which the ability of 

the Hough transform is well known. We seek to identify geometrical shapes in 

cluttered volumetric image from their properties using an evidence-gathering 

method based on the Hough transform, which proved to be robust and 

reliable. 

In this chapter, we are interested in detecting lines, spherical and cylindrical 

shapes in volumetric space from their Cartesian voxel locations, since these 

abound in the built environment. The volumetric image may contain structures 

within the object, which may encompass geometrical shapes of interest rather 

than mesh surfaces where the normal would be sufficient to collect evidence. 
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(Rabbani & Heuvel, 2005; Su & Bethel, 2010) proposed a practical solution 

based on the fact that surface normals would create a great circle on the 

Gaussian sphere shaped votes accumulator hence the ability to decompose the 

problem of cylinder detection into multi-stage Hough transform. (Ogundana et 

al., 2007) also proposed another method for sphere detection, which is also 

based on the surface normals.  

The literature falls short of methods for detecting simple geometrical shapes 

directly from the voxel information rather than the normals of the faces. In 

volumetric images, the normals depend significantly on the result of the 

segmentation and the method used to convert the voxels into mesh. In this 

work, we present different methods for detecting lines, cylinders and spheres 

directly from the voxel information. 

3.2 Cylinder and sphere detection 

The problem of detecting a cylindrical shape in 3D volumetric space is 

analogous to detecting a circular shape in the same space, since the cylinder 

consists of a stack of 2D circles. A cylinder in 3D space is defined by the 

following parameters: height, radius, centre location and two direction angles. 

A 7D Hough transform is required to detect a cylinder. Processing data in 

multiple stages would decrease the computational expense and makes the 

Hough transform more viable (Rabbani & Heuvel, 2005). In this section, we 

propose finding the cylinder axis, as first stage would provide good evidence 

about the radius of the cylinder. The second stage to process the axis would 

determine the length, the two directional angles and the centre location 

(presented by an end point within the detected axis line) that will be discussed 

in Section 3.3. Here we present two new vote collection techniques to 

determine the cylinders’ major axis, it is followed by principal component 

analysis on thresholded votes accumulator to determine the direction accuracy 

of the detected axis. The resulted direction vector is transformed to spherical 

coordinates to yield the Azimuth and Elevation angles as in Figure 3.1. 
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Figure 3.1 The definition of Azimuth (Az) and Elevation (El) angles for a vector to 

provide better understanding of the directional vector resulted from PCA analysis on 

detected cylinder axis. 

3.2.1 Technique 1: Template Searcher 

Convolving a spherical template with the curvature data at every voxel yields 

the number of points on the surface of the sphere, which are considered as the 

number of votes at that voxel. In Figure 3.2 a diagram that illustrates the 

movement of sphere template within a cylinder to collect votes at the central 

point of the template (presented by a dot) where a set of those votes would 

present a cylinder axis.  

Figure 3.2 A diagram illustrates the proposed template searcher method to collect 

votes. 

The spherical template embedded in a cubic shaped volume with each side 

determined by Eqn. 3.1. 
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࢘࢕࢚ࢉࢇࢌ	ࢋࢠ࢏ࡿ	ࢋ࢚ࢇ࢒࢖࢓ࢋࢀ = ૛࢘ + ૚	

࢛࢏ࢊࢇ࢘	ࢊࢋ࢘࢏࢙ࢋࢊ	ࢋࢎ࢚	࢙࢏	࢘	ࢋ࢘ࢋࢎ࢝	  ࢙

3.1 

The locations in which the template ݔ)ݐ௜ ௜ݕ, ௜) is set to true to present a sphereݖ,

are given by Eqn. 3.2, Eqn. 3.3 and Eqn. 3.4. 

࢏࢞ = ࢉࢄ +  3.2 ࢻ࢙࢕ࢉࣂ࢙࢕ࢉ࢘

࢏࢟ = ࢉࢅ + ࣂ࢙࢕ࢉ࢘  3.3 ࢻ࢔࢏࢙

࢏ࢠ  = ࢉࢆ +  3.4 ࣂ࢔࢏࢙࢘

Where (ܺ௖ , ௖ܻ ,ܼ௖) represents the central location of the template, ߠ and ߙ
represent the Azimuth and the Elevations angles. 

The template is then convolved with zero padded logical volume at every voxel. 

The number of votes at each voxel is then calculated using Eqn. 3.5. 

ݏ݁ݐ݋ݒ	݂݋	ݎܾ݁݉ݑܰ = 	 ෍ (݊)ݐ 	 · (݊)݁݉ݑ݈݋ݒ	
(ଶ௥ାଵ)య

௡ୀଵ
 3.5 

The number of votes is then placed into accumulating volume (ACC), which is 

the same size as the original volume, at the same location as the voxel.  

3.2.1.1 Implementation 

An upright synthetic cylinder has been created with the following dimensions 

40x40x80. The central point of the cylinder was chosen to be in the x-y plane 

(21, 21) and a radius of 18 voxels. The exact dimensions were noted to 

compare the result of the proposed method on the synthetic data. Pre-

processing the volume with surface detection and curvature detection are 

shown in Figure 3.3. 
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 x z=7 z=8 z=9 z=7 z=8 z=9 

(a) (b) (c) 

Figure 3.3 Upright synthetic solid cylinder used to assess the methodologies presented 

in Chapter 3, (a) 3D render of the upright cylinder, (b) Edge detected data using 

surface operator described in Chapter 2, and (c) Curvature data from the method 

defined in Chapter 2. 

The result of applying the template searcher with radius equal to 18 voxels to 

the cylinder of Figure 3.3a is shown in Figure 3.4. The Principal components 

analysis (PCA) has been applied to the thresholded accumulator and it has 

revealed that the central axis detected is located at the same point defined, 

(21, 21), and revealed a directional vector of [0, 0, 1] and an angle pair (Az=0°, 

El=90°). 

Another synthetic cylinder has been created with radius of 18 voxels. It has 

been tilted with an angle of 30o in the y-direction using rotation matrix. The 

volume has been Pre-processed with surface detection and curvature detection 

as shown in Figure 3.5. Again, the template searcher has been applied with 

radius 18 voxels. The PCA on the thresholded accumulator Figure 3.6 showed 

a directional vector of [0, 0.49, 0.86] and an angle pair (Az=90°, El=60°), which 

yields an angle of 30o away from the z-axis towards the y-axis. 
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z 

Az=0°, El=90° 

y 

x 

Direction Vector = [0, 0, 1] 

(a) (b) 
Figure 3.4 Analysis of the thresholded votes accumulator resulted from Template 

Searcher applied to the upright cylinder in Figure 3.3 (a) Principal components analysis 

applied to the thresholded accumulator with the resulted directional vector [0, 0, 1], 

and (b) The angle presenting the directional vector (cylinder axis) with an Azimuth 

angle of 0° and an Elevation angle of 90° 

y  x 

z z=1 z=2 z=3 z=1 z=2 z=3 

z=4 z=5 z=6 z=4 z=5 z=6 

z=7 z=8 z=9 z=7 z=8 z=9 

(a) (b) (c) 

Figure 3.5 Tilted synthetic cylinder by 30o   from the z-axis towards the y-axis, (a) 3D 

render of the tilted cylinder, (b) Edge detected data using surface operator described in 

Chapter 2, and (c) Curvature data from the method defined in Chapter 2. 
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(a) (b) 

Figure 3.6 Analysis of the thresholded votes accumulator resulted from Template 

Searcher applied to the titled cylinder in Figure 3.5 (a) Principal components analysis 

applied to the thresholded accumulator with the resulted directional vector [0, 0.49, 

0.86], and (b) The angle presenting the directional vector (cylinder axis) with an 

Azimuth angle of 90° and an Elevation angle of 60° (which translates to 30° away from 

the z-axis towards the y-direction). 

3.2.1.2 Experimental results 

Applying the template searcher has shown good results in detecting the 

synthesized cylinders’ axis. The difference between applying the method to 

synthetic data and real CT data is the fact that the latter has more noise. The 

noise here is defined by the existence of other shapes in the scene of interest. 

Decreasing the amount of noise is the main reason behind the surface 

curvature detection usage.  

A segment of a two-cylinder engine block contains two cylindrical shapes with 

different radius values have been evaluated. By manually measuring the radius 

of each cylinder radius, it has been found that the large cylinder has a radius of 

11 voxels and the small cylinder has a radius of 7 voxels. Slices through the 

original volume, edge detected volume and curvature estimated volume are 

also shown in Figure 3.7. From the curvature slices, we notice a fair amount of 

unrelated data has been removed, in comparison to the edge data. 
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(a) (b) 

z=1 z=2 z=3 z=1 z=2 z=3 

z=4 z=5 z=6 z=4 z=5 z=6 

z=7 z=8 z=9  z=7 z=8 z=9 

(c) (d) 
Figure 3.7 A segment of a two-cylinder engine block with two cylindrical shapes with 

two different radius values (a) Render of the engine segment, (b) Nine slices through 

the engine data, (c) Nine slices through surface data and (d) Nine slices through 

curvature data. 

Template searcher with two different radius values r = 11 voxels and r = 7 

voxels has been applied to the set of data in Figure 3.7, see Figure 3.8. The 

radius value has been set to decrease the computational expense and to easily 

identify the detection of the cylinder axis. The resulted votes have been fitted 

with PCA to extract the directional vectors. At radius r=11 the resulted 

directional vector [0.97, 0.21, 0] and an angle pair (Az=12.48°, El=0°) and at 
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radius r=7 the resulted directional vector [0, 0, 1] and an angle pair (Az=0°, 

El=90°). 

 

z 

 

 

 

 

Az=12.48°, El=0° 
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Direction Vector = [0.97, 0.21, 0] 

Template searcher with radius =11 

(a)  (b) 
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Az=0°, El=90° 

y                   x 

Direction Vector =[0, 0, 1] 

Template searcher with radius =7 

(c) (d) 
Figure 3.8 Analysis of the thresholded votes accumulator resulted from Template 

Searcher applied to the engine block segment in Figure 3.7 (a) Principal components 

analysis applied to the thresholded accumulator where the radius was set to 11 and 

the resulted directional vector [0.97, 0.21 ,0], (b) The angle presenting the directional 

vector (cylinder axis) with an Azimuth angle of 12.48° and an Elevation angle of 0°, (c) 

Principal components analysis applied to the thresholded accumulator where the 

radius was set to 7 and the resulted directional vector [0, 0, 1], and (d) The angle 

presenting the directional vector (cylinder axis) with an Azimuth angle of 0° and an 

Elevation angle of 90°. 
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Applying the developed methods of curvature and axis detection to a single 

coin from the set of data presented in Figure 1.1 is shown in Figure 3.9 where 

a single coin is under investigation using template searcher. Since the coins are 

shaped more like disks or ellipsoids than cylinders, it is expected to have few 

votes for the coin axis, which means less accurate direction estimation. PCA 

fitted data in Figure 3.9 gave a directional vector of [-0.2136 , 0.5209, 0.8264] 

and an angle pair (Az=111.99°, El=55.63°). 
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 (a)  (b) 

z 

x y 

Direction Vector:  [-0.21, 0.52, 0.82] Az=111.99°, El=55.63° 

(c) (d) 

Figure 3.9 A single coin under investigation using template searcher (a) 3D rendered 

single coin, (b) Nine slices through curvature data of the coin in (a), (c) PCA fitted votes 

after applying template searcher with radius = 18 and the resulted directional vector 

[0, 0, 1], and (d) The angle presenting the directional vector (cylinder axis) with an 

Azimuth angle of 111.99° and an Elevation angle of 55.63°. 
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3.2.2 Technique 2: Point-sphere searcher 

An alternative technique is based on the Hough transform for circles detection 

(Greig & Klein, 1986) and which considers that every point in curve data 

corresponds to a sphere in the Hough space. Figure 3.10 illustrates the vote 

collection using the proposed extension of Hough transform for circles 

presented in (Illingworth & Kittler, 1987), each voxel in the volume space that 

lies on the cylinder surface creates a sphere in the accumulator Hough space. 

Figure 3.10 A diagram illustrates the proposed point-sphere searcher method to collect 

votes in Hough space. 

The voting procedure is to add a sphere in the accumulator volume (࡯࡯࡭) 

centralized at the each voxel location, using the spherical template ࢚(ݔ௜ ௜ݕ,  	(௜ݖ,
from the previous section Eqn. 3.6. 

(࢏ࢠ,࢏࢟,࢏࢞)࡯࡯࡭ = (࢏ࢠ,࢏࢟,࢏࢞)࡯࡯࡭ + ࢏ࢠ,࢏࢟,࢏࢞|(࢏ࢠ,࢏࢟,࢏࢞)࢚ ∈ ࢋ࢘ࢋࢎ࢖࢙  3.6 

This method carries the same conic property of the original method, which 

provides a convenient way for votes’ collection. 

3.2.2.1 Implementation 

A point-sphere searcher with radius 18 voxels has been applied to the upright 

cylinder in Figure 3.3 and the tilted cylinder in Figure 3.5, as shown in Figure 

3.11. For the upright cylinder the PCA on the thresholded votes accumulator 

revealed that the central axis detected is located at the same point defined, 

(21, 21), and revealed directional vector of [0, 0, 1] and an angle pair (Az=0°, 
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El=90°) on the other hand the tilted cylinder gave a direction vector of 

[0, 0.49, 0.86] and an angle pair (Az=90°, El=60°) which yields an angle of 30o. 

z 

Az=0°, El=90° 

y 

x 

Direction Vector = [0, 0, 1] 

(a) (b) 

z 

Az=90°, El=60° 

 y 

     x 

Direction Vector = [0, 0.49, 0.86] 

(c) (d) 

Figure 3.11 Analysis of the thresholded votes accumulator resulting from Point-Sphere 

Searcher (a-b) Applied to the upright cylinder in Figure 3.3, where principal 

components analysis applied to thresholded accumulator resulted in directional vector 

[0, 0, 1] and angles presenting the directional vector (cylinder axis) with an Azimuth 

angle of 0° and an Elevation angle of 90°, and, (a-b) Applied to the upright cylinder in 

Figure 3.5,where principal components analysis applied to thresholded accumulator 

resulted in directional vector [0, 0.4994, 0.8664] and angles presenting the directional 

vector (cylinder axis) with an Azimuth angle of 90° and an Elevation angle of 60° (which 

translates to 30° away from the z-axis towards the y-direction). 
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3.2.2.2 Experimental results 

 Applying point-sphere searcher to the two cylinder engine segment of Figure 

3.7 with radius = 11 voxels and radius= 7 voxels to save computation time is 

shown in Figure 3.12, which presents two direction vectors related to the 

related values respectively [0.97, 0.21, 0] and an angle pair (Az=12.48°, El=0°) 

and [0, -0.01, 0.99] and an angle pair (Az=90°, El=89.4°). 

z 
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x 
Direction Vector=[0.97, 0.21, 0] 

(a) (b) 

z 

Az=90°, El=89.4° 
y      x 

Direction Vector=[0, -0.01, 0.99] 

(c) (d) 

Figure 3.12 Analysis of the thresholded votes accumulator resulting from Point-Sphere 

Searcher applied to the engine block segment in Figure 3.7 (a) Principal components 

analysis applied to the thresholded accumulator where the radius was set to 11 and 

the resulted directional vector [0.97, 0.21, 0], (b) The angle presenting the directional 

vector (cylinder axis) with an Azimuth angle of 12.48° and an Elevation angle of 0°, (c) 

Principal components analysis applied to the thresholded accumulator where the 

radius was set to 7 and the resulted directional vector [0,-0.01,0.99], and (d) The angle 

presenting the directional vector (cylinder axis) with an Azimuth angle of 90° and an 

Elevation angle of 89.4°. 
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In the last test, point-sphere searcher has been applied to coin data of Figure 

3.9 and the resulted vector is [-0.29, 0.5, 0.81] and an angle pair (Az=120.11°, 

El=54.48°) see Figure 3.13. 

z 

x 

y 

Direction Vector=[-0.29, 0.50, 0.81] 

(a) (b) 

Figure 3.13 Analysis of using Point-Sphere Searcher on coin of Figure 3.9 (a) PCA fitted 

votes after applying template searcher with radius = 18 and the resulted directional 

vector [-0.29,0.50,0.81], and (b) The angles presenting the directional vector (cylinder 

axis) with an Azimuth angle of 120.11° and an Elevation angle of 54.48°. 

3.2.3 Sphere detection 

The spherical Hough transform would be of great aid for biomedical 

applications especially for the current advances in the imaging system and 

increased interest in studying the newly developed databases to examine 

changes from one generation to the next. Sphere detection using Hough is 

rarely tackled in literature, (Ogundana et al., 2007) used surface normal to 

accumulate votes, which proved to be useful in point cloud environment. The 

conic property of the Hough transform is not inherited using this method. In 

this section, we use the same proposed methods as in Sections 3.2.1 and 3.2.2 

on sphere detection except this time the threshold for the accumulator is 

based on the largest cells of votes. In the template method, the sphere 

template would overlap the sphere in the volume to create a cell containing the 

number of overlapping voxels hence to create an accumulator cell with the 

largest number of votes. On the other hand, the point-sphere method would 

generate a cell in the accumulator with a large number of votes based on the 

intersection of multiple spheres generated by every voxel in the volume.  
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To test the validity of the proposed method, applications on a CT scan of 

Christmas tree shown in Figure 3.14. The accumulator is still 4D and for 

simplicity, the use a constant value for the sphere radius is based on a 

manually measured radius of ten voxels. The ground truth was done by visual 

inspection on the tree, which shows that eight ornaments exist. The 

thresholded accumulators based on the proposed methods in Figure 3.15 

shows that the spherical Christmas tree ornaments hanged on the tree 

branches were detected. The threshold value was chosen to be 80 percent of 

maximum number of votes in the accumulator. The results show that the 

template searcher performed better for this task by detecting all the 

ornaments, on the other hand, the point sphere were able to detect five 

spheres.  

Those basis of the proposed methods were used later in (Abuzaina et al., 

2013) to provide a novel velocity Hough transform to reconstruct a sphere in a 

missing video frame. Simply by projecting the velocity at which the sphere is 

moving from one frame to the next, fully occluded spheres could be 

reconstructed with a tolerable margin of error.  

Figure 3.14 Render of CT scanned Christmas tree, showing several spherical 

ornaments that would be suitable to test Hough for detecting spheres. 
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(a) (b) 

Figure 3.15 Thresholded accumulators based on the 80% of the maximum number of 

votes using (a) Template searcher in Section 3.2.1 and  (b) Point sphere searcher in 

Section 3.2.2 for the Christmas tree of Figure 3.14. 

3.2.4 Discussion 

Both approaches in sections 3.2.1 and 3.2.2 showed similar excellent results 

when applied to synthetic data. Table 3.1 Comparison between the direction 

vectors of synthetic data. The direction vectors calculated were identical the 

only problem was choosing a proper threshold value for the votes, which is in 

this case 0.7 of the maximum number of votes. 

Template searcher Point-sphere searcher 

Upright Cylinder (Az, El) (0°, 90°) (0°, 90°) 

Tilted Cylinder (Az, El) (90°, 60°) (90°, 60°) 

Table 3.1 Comparison between the direction vectors of synthetic data 

On the other hand, the direction vectors of the engine segment showed a slight 

difference that is negligible (Table 3.2). Both searchers had shown 

approximately identical results.  
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Template searcher Point-sphere searcher 

Searcher with radius 11 (Az, El) (12.48°, 0°) (12.48°, 0°) 

Searcher with radius 7 (Az, El) (0°, 90°) (90°, 89.4°) 

Table 3.2 Comparison between the direction vectors of the engine segment 

As mentioned earlier the searchers should be able to face the challenge of the 

coin data presented in Chapter 1. The resulted direction vectors had shown a 

slight difference between the two searchers Table 3.3. 

Template searcher Point-sphere searcher 

Searcher with radius 18 (Az, El) (111.99°, 55.63°) (120.11°, 54.48°) 

Table 3.3 Comparison between the direction vectors of the coin data 

The coin exact direction is unknown as the coin data spread randomly 

throughout the CT volume. To determine which vector is close to the correct 

direction, a plane fitting through the curvature data has been used (Figure 

3.16). 

z 

y x 

Direction Vector:   [-0.2991, 0.4439, 0.8447] 
Az=123.38, El=57.89 

Figure 3.16 Fitted plane through the curvature data in Figure 3.9 
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The new direction vector [-0.2991, 0.4439, 0.8447] resulted from the direction 

normal to the fitted plane and an angle pair (Az=123.38°, El=57.89°). The error 

percentages of the calculated axis angles (Az, EL) using Template searcher and 

Point sphere searcher with ground truth based on angles found using fitting 

presented in Figure 3.16 are shown in Table 3.4. The point-sphere searcher 

showed smaller error magnitude hence better direction estimation.  

Template searcher Point-sphere searcher 

Azimuth angle error 9.3% 3.9% 

Elevation angle error 2.6% 5.8% 

Table 3.4 Axis calculation error using the proposed method of evidence gathering 

template searcher and point-sphere searcher 

A speed comparison between the two searchers is shown in Figure 3.17. In 

terms of speed the template searcher showed superior speed compared to the 

point-sphere searcher. The tilted cylinder showed an increase in the processing 

time due to the rotation effect, which cause the surface detection to introduce 

extra voxels, which caused the point-sphere method to process more voxels 

and do extra calculations in the accumulator space. 

Figure 3.17 Speed comparison between template and point-sphere searchers; speed 

tests have been performed on a Macbook Pro machine with core due two processor 

2.5GHz, 8GB ram and 256 SSD drive. 
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Template searcher performed better at detecting spherical shapes task by 

detecting all the ornaments in Figure 3.14, in contrast the point-sphere 

operator was able to detect only five spheres for the same value of threshold. 

Changing the threshold value introduced other hypothetical spheres that 

cannot be seen visually but there is evidence based on the selected threshold 

that suggests the existence of those spheres.  

Applying the Hough transform to a multi-object complex scene as in Figure 1.1 

produce an accumulator array that is much affected by noise arising from other 

shapes in the scene. Using a condition-based threshold on the number of 

points in the detected shape makes the method more prone to noise when 

used to analyse 3D data. Should the objects in 3D space be separated before 

application of the Hough transform, this would minimize the noise introduced 

by the surrounding objects and would help to gather more evidence about the 

existence of a circle in the 3D space.  

It is also worth noting that a single cylinder axis will currently be detected by 

the searcher if the range of parameter values is close to the target shape. The 

coin shape is much deformed and the low resolution may have played a role in 

adding difficulty to the process. 

3.3 3D line detection 

The Hough transform is known to excel in detection of geometric shapes from 

their parameters. In two-dimensional space line detection using Hough 

transform has received great popularity and a wide range of literature. On the 

other hand the approach has not had as much attention in three-dimensional 

space (3D) due either to the high dimensionality required by the method or to 

the recent increased interest in 3D imaging systems. Line detection can 

provide the second stage for the methods proposed in Sections 3.2.1 and 3.2.2 

for cylinder detection. Several attempts to solve line detection based on Hough 

transform in 3D images (Bhattacharya et al., 2000; Zhou, Qiu, Ding, & Zhang, 

2008) each have their own approach. The only drawback common to these 

between those methods is neglecting the line length during the accumulation 

process, which is a fundamental parameter in line Hough detection.  In the 

case of point cloud images many have been interested in plane detection using 
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surface normals and good results have been obtained (Overby, Bodum, Kjems, 

& Iisoe, 2004) . In volumetric images plane detection by directly expanding the 

original method introduced by (Duda & Hart, 1972) into 3D has not merited 

prior study. The expansion starts with the plane equation as follows:   

࢔࢕࢏࢚ࢇ࢛ࢗࡱ	ࢋ࢔ࢇ࢒ࡼ → ࢇ	 ∗ ࢞+ ࢈ ∗ ࢟ + ࢉ ∗ ࢠ =  3.7 ࢊ

 Where  

ࢊ	 = ࢇ ∗ ࢕࢞	 + ࢈ ∗ ࢕࢟	 + ࢉ ∗  3.8 ࢕ࢠ

ܚܗܜ܋܍܄	ܔ܉ܕܚܗۼ = ,࢈,ࢇ)  3.9 (ࢉ

ࢋ࢔ࢇ࢒࢖	ࢋࢎ࢚	࢔࢕	࢚࢔࢏࢕ࡼ	 = ܗ࢖	 = (࢕ࢠ,࢕࢟,࢕࢞	) 3.10 

ࢇ		 = ࣂ࢙࢕ࢉ ∗  ࣐࢙࢕ࢉ	

࢈	 = ࣂ࢔࢏࢙ ∗  ࣐࢙࢕ࢉ

ࢉ			 =  ࣐࢔࢏࢙

3.11 

3.12 

3.13 

And by following the trigonometric transform (Illingworth & Kittler, 1987), a 

plane in 3D can be described using the parameters defined in Figure 3.18.The 

parametric equation can then be described as: 

࣋ = ࢞ ∗ 	ࣂ࢙࢕ࢉ	 ∗ ࣐࢙࢕ࢉ + ࢟ ∗ ࣂ࢔࢏࢙ ∗ +࣐࢙࢕ࢉ 	ࢠ ∗  3.14 ࣐࢔࢏࢙

Figure 3.18 Parameters initialization for plane in 3D space. 

 ߠ
߮ 

 ߩ

 Distance from the origin=ߩ

߮=Elevation angle 

 Azimuth=ߠ
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The duality inherent in the Hough transform for planes in images is that planes 

map to points (and vice versa). In 3D space, voxels in an xyz parameterisation 

map to planes, whereas voxels in ߮ߠߩ map to multiple sinusoids. The direct 

expansion of the 2D parametric equation would result in a volumetric 

accumulator of sinusoidal waves expanding through the accumulator planes, 

which makes the visualization and the interpretation difficult. As this is an 

accumulator for plane detection, it would fail to detect lines (Sarti & Tubaro, 

2002). To detect a line by this method, intersection between different planes 

has to be evaluated. 

The line detection in 3D space has been addressed by investigating range 

images (Bhattacharya et al., 2000). The Hough space is based on the cosine of 

the angles of a fitted line resulting from shape edges without regard for line 

size or location. Also the detected edges of the range images were based on 

the definition of the edge (perimeter) of the object, which is in 3D expanded to 

surface using the second derivative. In following the trail of the original Hough 

transform for line detection, the proposed method is designed to tolerate 

missing gaps on the object surface and noise.  

3.3.1 Methodology 

Each voxel in a volumetric image of an object surface was investigated to yield 

its relationship with the surrounding voxels to create an easy to interpret 

accumulator. If the voxel under study 	݌௜,௝,௞  is set to foreground then it is 

subtracted from every voxel ݌௫,௬,௭ ∈  As a result for the subtraction, the origin .܄

is shifted at the current point 	݌௜,௝,௞ and this can be presented as:  

࢔࢏ࢍ࢏࢘ࡻ	࢝ࢋࡺ = ࢠ,࢟,࢞࢖ − 	࢐,࢑,࢏࢖ ࢠ,࢟,࢞࢖	∀	 ∈  3.15 ܄

A coordinate transform was applied to convert from Cartesian to Spherical 

coordinates, which in turn simulates the effect of an analog sphere with 

varying radius centred at  ݌௜,௝,௞ . The radius here matters little, as the prime 

interest is the direction of the normal on the surface of the sphere. A planar 

accumulator ௜ܵ(ߠ,߮) was formed based on the azimuth (ߠ) and the elevation

(߮)  angles of the transform, each pair of (ߠ,߮)  contribute in a vote. The 

number of votes in each plane is equivalent to the number of voxels in a line 
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passing through a pair of angles. The process of origin shifting was then 

repeated for each voxel ݌௫,௬,௭  in the volume to create a stack of planes ܁. 

݅							݁ݎℎ݁ݓ						(߮,ߠ)௜ࡿ = 1: ߠ,܄	݊݅	ݏ݈݁ݔ݋ݒ# = 0: 360	,߮ = −90: 90 3.16 

܁ = [ܵ૚, ܵ૛, ܵ૜, … … . . , ܵ#୴୭୶ୣ୪ୱ	୧୬	܄	3.17 [ 

A vector ࡸ	of the detected line magnitudes was created and a histogram based 

on the unique line magnitudes ࡸ௜	and number of voxels corresponding to it in ܁ 
was used to initialize the size of the accumulator ࡭  by identifying the 

maximum line length detected. Each plane in the accumulator ۯ defines a line 

magnitude and contains the number of lines for each pair of (ߠ,߮) angles.  

࡭ = ,(߮,ߠ)ଵܮ	] ,(߮,ߠ)ଶܮ ,(߮,ߠ)ଷܮ … … . . , [(߮,ߠ)୪ୣ୬୥୲୦	୪୧୬ୣ	୫ୟ୶୧୫୳୫ܮ 3.18 

Once the desired peak has been identified and based on the line magnitude 

and the pair of angles, the address of each voxel contributed into the voting 

process was called and then fitted into a line using the equation for lines in 3D 

space. 

 ൥
ܺ
ܻ
ܼ
൩ = ൥

݅
݆
݇
൩+ ݐ ቈ

ܽ
ܾ
ܿ
቉ 

Where 

The Normal Vector = (ܽ, ܾ, ܿ) 

i, j, k the coordinates of a point contributed in the votes passing through 

the detected line. 

ܽ = ߠݏ݋ܿ ∗ ,߮ݏ݋ܿ ܾ = ߠ݊݅ݏ ∗ ܿ	݀݊ܽ	߮ݏ݋ܿ =  ߮݊݅ݏ

3.19 
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To illustrate the process visually, Figure 3.19 shows an image of a line 

consisting of three voxels. The normal vector angles to the spheres centred at 

the voxel location are accumulated in planar accumulator ܁ for each voxel. 

Based on the magnitudes detected, which in this case one and two, a new 

volumetric accumulator ࡭  was formed, based on the line magnitude was 

formed. 
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(a) 
P1 
P2 
P3 

P1 
P2 
P3 

P1 
P2 
P3 

Origin at P1 Origin at P2 Origin at P3 

Number of Voxels Number of Voxels Number of Voxels 

(b) 

ଵܵ(ߠ,߮) ܵଶ(ߠ,߮) ܵଷ(ߠ,߮)

(c) Magnitudes Vector L = [1,2] 

Number of lines at L1 Number of lines at L2 

(d) 

(߮,ߠ)ଵܮ (߮,ߠ)ଶܮ

Figure 3.19 The process of line detection using the proposed method on a line 

consisting of three voxels, (a) Origin shifting and coordinate transform at each voxel 

P1,P2 and P3, (b) Plane accumulators ଵܵ(ߠ,߮),ܵଶ(ߠ,߮)	and ܵଷ(ߠ,߮) for voxels P1,P2 and

P3 respectively, showing the number of voxels at each pair of (θ,φ), (c) The magnitude 

vector ܮ which contain all the magnitudes within the plane accumulators ܁,  (d) The 

planes ܮଵ(θ,φ) and ܮଶ(θ,φ)	of the accumulator ۯ showing the number of lines at each

pair of (θ,φ). 
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z 

y x 

(a) (b) 

 Figure 3.20 Synthesised cube ܄ with size of 25x25x25 which consists of nine voxels, 

(a) 3D scatter of the nine voxels presenting the volume ܄, (b) Histogram of the number 

of voxels forming detected lines versus the detected line magnitudes. 

3.3.2 Results 

To study the performance of the proposed method, a cube ܄  with size of 

25x25x25 and consists of nine voxels was synthesised (Figure 3.20a). The 

proposed method was used to detect all the possible lines passing through 

each voxel. The planar accumulator ܁ has nine planes for each voxel in the 

volume .The histogram of the detected line magnitudes ܮ in ܁ indicate that two 

magnitudes lengths were found Figure 3.20b. 

The accumulator ۯ	had two planes, each showing the number of lines detected 

at each pair of (ߠ,߮) for every line magnitude Figure 3.21. A sample of the 

extracted information at every peak in the accumulator ࡭ is shown in Figure 

3.22, the method performed very well in detecting the lines in the volumetric 

image. 
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										(߮,ߠ)ଶܮ 																			(߮,ߠ)ଵܮ
Figure 3.21 The planar accumulator S of the synthesized cube of Figure 3.20a showing 

the number of lines detected at each line magnitude of Figure 3.20b. 

Figure 3.22 Reconstructed lines from accumulator ۯ at every line magnitude	ܮ௜	and the 

angle pair (θ,φ)	 associated with it. See Appendix A. 
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Figure 3.23 Reconstructed lines from the accumulator A at every line magnitude	ܑۺ	and 

the angle pair (ી,૎)	 associated with it combines in one figure. 

The result of the combined lines shows that all the possible lines indeed have 

been successfully detected as shown in Figure 3.23. 

To further study the performance of the proposed method, a line ܄૛ were 

synthesised in 25x25x25 volume to study the effect of adding salt and pepper 

noise to an image Figure 3.24 . The line of interest was expected to have the 

largest magnitude (As there are other scattered lines all other directions in the 

image with smaller magnitudes).  

(a) (b) 

Figure 3.24 Synthesised line ܄૛ with size of 25x25x25 (a) 3D scatter of ܄૛, (b) 3D 

scatter of ܄૛ in salt and pepper noise. 
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(a) (b) 

Figure 3.25 Analysis of the detected lines of ܄૛ (a) The plane with the largest line 

magnitude ܮ૛૝ in A2, (b) Reconstructed line from the peaks in (a) (red). 

The plane of the largest magnitude ܮ૛૝	in A2 shows two peaks with size of one, 

which indicated a single line, detected with two different sets of angles (Figure 

3.25a). One of those peaks was reconstructed using the line equation. The 

reconstructed line was the desired line and indicated a successful detection 

(Figure 3.25b). In conclusion, the proposed method carries the same noise 

tolerance by Hough transform. 

Another study for the performance took place on an image with zigzag shape 

spanning through the three-dimensional space as in Figure 3.26. The lines in 

this zigzag shape show a challenging problem for any line detection because 

they form a plane rather than scattered set of lines in different directions. 

Moreover, the lines parallel to one of three axes do not suffer from the 

digitization as other lines through other angles, which would introduce some 

error. The magnitude vector suggested seven line magnitudes were detected. 
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(a) (b) 

(c) (d) 

Figure 3.26 Volumetric zigzag shape ܄૜ with different views 

Figure 3.27 The line magnitude vector of the shape in Figure 3.26 shown as a 

histogram of line magnitude versus the number of voxels 
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Figure 3.28 Analysis of the detected lines of ܄૜  (a) A plane from in A3 with the line 

magnitude ܮ଻ (b) Reconstructed lines from the highlighted peak ܮ଻(180,0)  in (a)

The top plane in the 3ܣ accumulator gave the largest line magnitude detected 

at ܮ଻(ߠ,߮) Figure 3.28. Thirty-six lines were found sharing the same pair of

angles (0,180). Those Lines were detected using the method proposed and 

highlighted them as significant lines with a large magnitude on the other hand 

for the untrained human eye this line can be rejected as insignificant line. 

Plane ܮ଺(ߠ,߮)  introduced other marginally significant peaks with number of

lines detected of twelve (Figure 3.29). Those lines show the effect of 

digitization on lines that are not parallel to one of the axes. The line could be 

described by the detected line but with some error. The next Plane ܮହ(ߠ,߮)

introduced important peaks with large number of eighty four lines. The lines 

present the planes forming the zigzag shape. Again those lines lay on one of 

the axes hence the large number of lines detected (Figure 3.30). 

(a)  (b) 
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(a) 

(b) 

Figure 3.29 Analysis of the detected lines of ܄૛ (a) A plane from in A3 with the line 

magnitude ܮ଺ (b) Reconstructed lines from the highlighted peaks ܮ଺(45,0)  and ܮ଺(135,0)

in (a) 

(a) (b) 

Figure 3.30 Analysis of the detected lines of ܄૛ (a) A plane from in A3 with the line 

magnitude ܮ૞ (b) Reconstructed lines from the highlighted peak ܮହ(0,90) in (a)
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Now the most interesting plane ܮସ(ߠ,߮) , which shows a significant increase in

the number of lines detected at the same pair of angles of line peaks detected 

in ܮ଺(ߠ,߮)  and two new peaks at new locations all with number of lines

detected of forty two (Figure 3.31). The new peaks showed the most accurate 

interpretation for the direction of the lines forming the zigzag that we are 

interested in. The analysis on the given zigzag shape showed that the 

digitization causes the straight line to be interpreted by the proposed method 

as smaller lines, which affect the expected magnitude. 

(a) 

(b) 

Figure 3.31 Analysis of the detected lines of ܄૛  (a) A plane accumulator of line 

magnitude ܮସ  (b) Reconstructed lines from the highlighted peaks 

,ହ(45,0)ܮ .ହ(124,0) in (a)ܮ ହ(56,0) andܮ,ହ(135,0)ܮ
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The proposed method is then applied to a real CT image (Figure 3.32), after 

applying 3D Sobel operator and simple manual threshold to separate the 

piston from the block engine. The piston magnitude and direction are the main 

objects of interest, as they were expected to form a relatively large line. The 

surrounding material is likely to interfere with the detected line magnitude and 

direction especially at the extreme angles with an increment of 90 degrees 

from the axis in all directions. The magnitude vector ܮ (Figure 3.33) showed 

that the largest line magnitude detected is 19 but the line corresponding to 

this magnitude laid on one of the extreme angles. The only significant peak 

with a direction other than the extreme angles was highlighted in (Figure 3.34). 

Figure 3.32 Different views of 3D scatter for computed tomography of an engine block 

 .૝ after applying Sobel operator and a manual threshold܄

Figure 3.33. The line magnitude vector of the shape in Figure 15 shown as a histogram 

of line magnitude versus the number of voxels 
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(a1) (b1) 

(a2) (b2) 

(a3) (b3) 

Figure 3.34 Analysis of the detected lines of ܄૝ (a1)-(a3) planes from a with the line 

magnitude ranging from ܮଵଵ	to ܮଽ  (b1)-(b3) reconstructed lines from the highlighted 

peaks from (a1) to (a3) respectively 
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z=2 z=12 z=22 

z=32 z=42 z=52 

z=62 z=72 z=82 

(a) (b) 

Figure 3.35 Engine segment with two cylinders of the same radius (a) 3D render (b) 

nine slices through the segment 

This peak was traced and appeared at magnitudes from 11 and smaller at the 

same pair of angles. Lines forming the piston cylinder were reconstructed and 

their magnitude range and direction were found. 

The proposed line Hough transform can also be employed to the axis detection 

in Sections 3.2.1 and 3.2.2. The cylinder axis detection methods have been 

applied to the engine block of (Figure 3.35). 

By setting the radius to 11 voxels to decrease the computational expense, the 

axis of each cylinder has been detected and shown in (Figure 3.36a-b). 

Applying line Hough transform to the detected axis revealed the cylinder 

length and the cylinder pair of angles in 3D space as in Figure 3.36c-e. 

x y 

z 
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(a) (b) 

(c) 

(d) (e) 

Figure 3.36 The results of applying the Line Hough transform on detected axis of the 

cylinders in (Figure 3.35), (a)-(b) Thresholded accumulators of point sphere searcher 

and template searcher, respectively.(c) The largest lines detected based on Line Hough. 

(d) and (e) Reconstructed lines based on the angle pairs in highlighted in (c).   
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3.3.3 Discussion 

As mentioned in the literature overview, many have proposed Hough transform 

based methods for plane detection in three-dimensional space but few have 

tackled the problem of line detection due to its complexity, which require by 

definition a four-dimensional accumulation space. The method proposed here 

gives a new perspective to the problem different than what has been proposed 

by other authors (Bhattacharya et al., 2000; Sarti & Tubaro, 2002; Overby et al., 

2004) 

The novelty of the proposed method concerns a new technique that simulate 

the effect of fitting an infinite sphere at every point in the three-dimensional 

space and accumulate the normal to the surface of the sphere. The process 

takes place by shifting the origin at every point and converting the coordinate 

system to spherical coordinate. The results were significant and reliable. 

The present results are significant in two major respects; the mining for line 

existence within a noisy volume image, and detection of lines with a good 

tolerance for gaps. The present findings appear to be consistent with the 

original Hough transform. The main advantage for Hough transform is the 

ability to extract information in a scene where the line is contaminated by 

noisy data, which is where computers can offer excellent performance, in 

comparison with the human vision. The other advantage is the tolerance for 

any shortcomings in the data and the missing information omitted by 

occlusion. Both advantages were inherited by the proposed method; the only 

key difference is the Hough space complexity due to the used framework to 

simplify the visualization. 

One of the issues that emerges from the results is lines that are parallel to an 

axis can result in extreme peaks in the accumulator which can affect the 

visualisation and detection processes. Another issue is how accumulator space 

enhancement is not possible through filtering processes (such as smoothing) 

since the peaks are discrete and any change in the accumulator would affect 

reconstruction. One solution could be to use another version of the 

accumulator to aid peak detection but this is beyond the scope of this research 

and is left for future research. 
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It should be noted that the memory demand (storage and speed) for the 

proposed method depends on the number of voxels in the image. The linear 

relation between the number of voxels and the size of the stack of planes ܁ is a 

new problem unique to the proposed method and cannot be avoided if line 

length is needed as a parameter. The stack of planes ܁  holds the voxels 

addresses and the votes (or magnitude) for each pair of angles (ߠ,߮). The 

literature was only concerned with finding line direction hence an easier 

computation expense. 

3.4 Conclusions 

In this chapter, several new ideas have been proposed to detect geometrical 

shapes in volumetric images based on accumulating votes from the parameters 

of the target shapes. The current increasing interest in 3D imaging systems 

due to the decrease in their memory demand, price and size is likely to 

translate to the desire for a standard method that can provide results that are 

as reliable and accurate as the well-established spatial methods. Three-

dimensional volumetric methods are not yet available in standard image 

programming libraries unlike their two-dimensional counterparts. The 

literature is still developing those ideas to bring them to operational capability. 

The proposed ideas in this chapter seek to detect geometrical shapes from 

their voxel information as it was originally introduced in (Duda & Hart, 1972; 

Illingworth & Kittler, 1987) rather than surface normals of segmented image 

(Rabbani & Heuvel, 2005; Camurri et al., 2014).  

The shape detection process can be much easier in terms of computational 

demand if aided by segmentation methods. Segmentation as pre-step for 

shape detection can be of great benefit and in the next chapter, we proposed a 

new intuitive three-dimensional segmentation method based on pressure 

analogy.  



Chapter 4: Pressure Analogy in 

Feature Extraction 

This chapter concerns the automated analysis of multiple objects in volumetric 

scans. The analysis will not focus on shape, as in the previous chapter, but on 

methods to separate the shapes for later analysis. The chapter will first describe a 

basic approach, and then its extended version. As the vehicle for analysis, we shall 

use the Roman hoard of coins described earlier Figure 1.1 and analyse it aiming to 

count the number of objects that can be disconnected within the volume. In the 

extended version, we shall analyse volumetric scans of femur bones, aiming to 

separate the bones from the tissue and objects that surround them when scanned 

on patients. We shall show how this separation process can be achieved; leading to 

accurate automated measurement of femoral bone parameters. We shall also 

describe how the extended technique can provide enhanced operation on the 

Roman hoard. We shall start by describing the use of pressure as an analogy used 

for developing an image processing operator that can separate objects in volumetric 

scans without knowledge of their shape. 

4.1 Simple Pressure Analogy 

Computed tomography (CT) imaging is an increasingly popular source of 

information about three-dimensional objects, with many applications ranging from 

medical to industrial. Scans can contain multiple objects with the same density or 

single objects containing smaller ones with similar density. The placement of the 

objects in the 3D space can be random and in some cases the surfaces of those 

objects touch which makes it difficult to separate them for analysis/ visualisation 

using conventional thresholding and segmentation techniques, motivating 

development of a higher-level process. An example of such a problem is the CT 

scanned jar (Figure 1.1), which contains the set of Roman coins, described earlier. 

This set of data contains coins with similar density randomly placed with different 
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orientations and locations within the jar. The problem associated with this particular 

set of data relies in the high attenuation factor for the material from which the coins 

are made which in turn increases the chance of touching surfaces in the volumetric 

image especially for the coins in the centre of the jar. Separating objects with the 

same density and texture is challenging due to the absence of techniques for 

detecting the regions of intersection between the objects in 3D, impeding the 

possibility of counting the coins. 

Many approaches have been developed to solve the problem of separating touching 

objects in two-dimensional (2D) space. The two main applications are concerned 

about separating rice grains (Yao, Zhou, & Wang, 2010) and counting cells in 

microscope images (Nasr-Isfahani, Mirsafian, & Masoudi-Nejad, 2008). A traditional 

approach involves thresholding, corner detection and joining points of interest to 

create a binary image of disconnected objects. However, so far no attention has 

been paid for techniques to separate touching objects in 3D images (Wirjadi, 2007). 

The literature provides some model-based methods that have been used to separate 

left and right lungs (Hu, Hoffman, & Reinhardt, 2001). The search for regions of 

interest uses images where lungs intersect, to minimize the computational 

demands. Other methods such as edge or surface detection can be used to properly 

segment objects in 3D space such as 3D Marr-Hildreth operator (Bomans, Hohne, 

Tiede, & Riemer, 1990) but unfortunately those methods do not address the 

touching regions. Using approaches based on connectivity would consider both 

surfaces as a single entity. It might be possible to achieve some results by 

morphological analysis but such procedures are isotropic and do not adapt to local 

scenarios. Three-dimensional Watershed segmentation is another candidate for such 

problems, it provides water analogy in which the objects in the image contain 

basins that would be flooded with water to define an image segment (Meyer, 1994; 

Russ, 2006). A comparison between what is introduced in this chapter with 

watershed will be presented later on in this chapter. 

We present a novel 3D approach based on using a physical analogy (M. S. Nixon, 

Liu, Direkoglu, & Hurley, 2009) to separate intersecting regions. The approach is 

anisotropic and does not require a model or previous knowledge about the regions 

of interest. It can be applied automatically so as to delineate intersecting structures 

by adapting locally to image content. As such the images are then rendered suitable 

for later analysis procedures. The analogy used is pressure, and the approach does 
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not mimic application of pressure precisely, and more to develop a new method to 

separate touching objects, in 3D, which allows in this case for the automated 

analysis of the Roman hoard of coins. Unlike the Watershed analogy, which tackles 

the segmentation process by considering the shape, the proposed analogy is 

applied to the background that surrounds the objects. 

4.1.1 Method Development 

Multiple objects in a volumetric image, which have the same intensity, are common 

in CT scan. Separating them can usually be achieved by using a thresholding 

operation, such as (Otsu, 1979), unless the objects surfaces are close together or 

touching. The area between touching objects in a CT scan image defines a very fine 

gradient caused by X-ray refraction exacerbating difficulty in segmenting the 

individual objects.  

On the other hand, Otsu thresholding can remove the background well. Since the 

objects of interest are solid, the histogram will show a well-defined peak where the 

objects exist, extracting this peak would help in creating a consistent background. 

Having separated the background, the objects need to be separated. To achieve 

this, a physical analogy has been used to measure the local pressure in the 

background which, has been considered to be filled with an ideal gas and governed 

by the following equation: 

ܸܲ = ܴ݊ܶ 4.1 

 

Here the number of moles (n), temperature (T) and ideal gas constant R are 

constant. An inversely proportional relation between the pressure and the volume is 

created. To use this as an image processing operator, the pressure at each 

background point ۾௫,௬,௭ is accumulated within a window ܅ as    

௫,௬,௭۾ =
1
∑ ܅∋௫,௬,௭௫,௬,௭܄
൘ ௫,௬,௭܄∀ ∈ background

 
4.2 

where	܄ is the volume of interest. The values of P are then thresholded to suggest 

where maximum pressure occurs. 
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௫,௬,௭ۻ = ฬ0 	if	۾௫,௬,௭ ≥ threshold	
1	 									otherwise

 
4.3 

This provides a mask ۻ which can be used to eliminate voxels in the original image 

V. The separated image S is then 

௫,௬,௭܁ = ௫,௬,௭ۻ ×  ୶,୷,୸ 4.4܄

4.1.2 Results 

To illustrate the proposed method, it has been applied to two touching synthetic 

disks (slices at different depths are shown in  (Figure 4.1). Using Otsu thresholding 

revealed only a single object in the image. The pressure domain is then calculated 

for the disks using local pressure (Figure 4.2). The window size has been chosen to 

be 5x5x5 to have a relatively acceptable signal to noise ratio; smaller windows 

would endure high noise and low levels of pressure on the other side larger 

windows would provide larger pressure levels but less localized search. Based on 

the window size a proper threshold is applied to create a mask of the inverse of the 

touching area. The mask is then multiplied by the image to separate the disks 

(Figure 4.3). The histogram of elements shows a new object, which indicates a 

successful separation. 

 ௫,௬,ଷ܄ ௫,௬,ଶ܄ ௫,௬,ଵ܄

 ௫,௬,଺܄ ௫,௬,ହ܄ ௫,௬,ସ܄

 ௫,௬,ଽ܄ ଼,௫,௬܄ ௫,௬,଻܄

Figure 4.1 Nine slices through synthetic image of two touching disks with small gradient 

between them. 

Z = 4

Z = 7
Z = 8

Z = 9

Z = 10 Z = 11 Z = 12
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 ௫,௬,ଷ۾ ௫,௬,ଶ۾ ௫,௬,ଵ۾

 ௫,௬,଺۾ ௫,௬,ହ۾ ௫,௬,ସ۾

 ௫,௬,ଽ۾ ଼,௫,௬۾ ௫,௬,଻۾

(a)  (b) 

Figure 4.2 Pressure domain (a) Nine slices of pressure domain P (b) Rendered thresholded 

pressure domain ۻ. 

Figure 4.3  The result of multiplying the image with the pressure mask Figure 4.2b (a) nine 

slices through the separated image ܁, (b) Histogram of number of voxels per element after 

applying the pressure mask to the synthetic disks showing a detection of two objects. 

For the image of Roman coins (Figure 1.1) the equal density of the coins and the 

noise present a great challenge. The volumetric image is of resolution 444 × 463 × 

411 and was derived using microfocus CT.  The direct application of Otsu 

thresholding detects only a single object (Figure 4.4), which shows detection of a 

Z = 4 Z = 6

Z = 8 Z = 9

Z = 10

Sx,y,1 Sx,y,2 Sx,y,3 

Sx,y,4 Sx,y,5 Sx,y,6 

Sx,y,7 Sx,y,8 Sx,y,9 

(a) (b) 

Z = 4 Z = 6

1 2

Object Number 

 1  2 

N
u

m
b

er
 o

f 
vo

x
el

s 

5000 



 Chapter 4 Pressure Analogy in Feature Extraction 

67 

single, large, object). Otsu thresholding was applied as a first step to the proposed 

method to remove the background. Additionally, a peak-based threshold was 

applied to the intensity histogram to further separate the object from the 

background. 

The pressure domain was calculated and thresholded to create a logical mask, 

Figure 4.5a, which is used to discard areas with certain pressure and thus the 

touching regions. Finally, labelling and connectivity check performed to present the 

detected objects in a histogram, derived from Figure 4.5b. The new histogram of 

objects shows that a large number of objects are detected within the set of Roman 

coins now that the regions where the coins touch have been excised. Objects with 

volume smaller than the mean volume have been removed to clearly identify 

significant elements among the histogram Figure 4.6. A sample of the objects 

related to those points is rendered in (Figure 4.7). This shows that the coins 

separation has indeed been successful and that single coins are now derived. 

Beyond selection of an appropriate threshold there are no other parameters 

associated with the new technique. 

Figure 4.4 Histogram of the connected objects after applying Otsu threshold to the Roman 

coins. 
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௫,௬,ଵۻ ௫,௬,ସ଺ۻ ௫,௬,ଽଵۻ ௫,௬,ଵ܁ ௫,௬,ସ଺܁ ௫,௬,ଽଵ܁

௫,௬,ଵଷ଺ۻ ௫,௬,ଵ଼ଵۻ ௫,௬,ଶଶ଺ۻ ௫,௬,ଵଷ଺܁ ௫,௬,ଵ଼ଵ܁ ௫,௬,ଶଶ଺܁

௫,௬,ଶ଻ଵۻ ௫,௬,ଷଵ଺ۻ ௫,௬,ଷ଺ଵۻ ௫,௬,ଶ଻ଵ܁ ௫,௬,ଷଵ଺܁ ௫,௬,ଷ଺ଵ܁

(a) (b) 

Figure 4.5 Nine slices through (a) Thresholded pressure mask ۻ, (b) Roman coins after 

application of the pressure mask ܁. 

Figure 4.6 Histogram of the connected objects after applying the pressure mask to the 

roman coins and removing the mean volume. 
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Figure 4.7 Nine roman coins extracted from the peaks in Figure 4.6 

CT images usually suffer from two types of noise: random noise caused by photon 

generation and noise introduced by the sensitivity of receptor but to furthermore 

study the effect of noise on the new method, volumetric Gaussian noise has been 

added to the volumetric image with increasing variance, Figure 4.8a. The number of 

correctly segmented objects is inversely proportional with the increase of noise 

(Figure 4.8b) and within acceptable tolerance. The noise does naturally affect 

segmentation, but clearly is not bad. 

ଶߪ = ଶߪ 0 = ଶߪ 0.001 = 0.002 

ଶߪ = ଶߪ 0.003 = ଶߪ 0.004 = 0.005 

(a) (b) 

Figure 4.8 Noise analysis on the performance of the proposed method (a) A crop of coins 

image after noise introduction with different variance values, (b) Number of objects detected 

versus the noise variance 
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A slice from the result of segmentation using 3D watershed segmentation is 

presented in (Figure 4.9). Several techniques exist as a pre-processor to Watershed 

segmentation; one method depends on the distance transform of the thresholded 

image (Gonzalez, Woods, & Eddins, 2002) and the other relies on minimal 

suppression to decrease the over-segmentation by discarding shallow basins (Russ, 

2006). Watershed without suppression showed over-segmentation that divided the 

shape into smaller parts, on the other hand the suppression method showed better 

result toward the over segmentation but inaccurate outlining for the shape of 

interest.  

Figure 4.9 Watershed segmentation applied on the coins of Figure 1.1 (a) Slice number 85 

investigated from the original volume, (b) Watershed segmentation after thresholding and 

application of distance transform, and (c) Watershed segmentation after minima suppression 

to decrease the effect of over segmentation. 

In comparison with the result of pressure method for the same slice (Figure 4.10), 

pressure presented better results in terms of labelling the object but failed in areas 

where the connection between the objects has similar density, which caused under-

segmentation. Also the pressure results showed an eroded object surface caused by 

the pressure mask, which can be easily overcome by growing the result on the 

thresholded image (this will be discussed further in Section 4.2. 
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Figure 4.10 Slice 85 from the pressure analogy segmentation applied to Figure 1.1 showing 

each object detected in specific colour. 

The main concern associated with the proposed method is the dependence on the 

local features and consistency in the density of the object of interest; however the 

application on a CT scanned orange (which has a low density and tightly connected 

pieces (Figure 4.11a) also demonstrated successful segmentation results as shown 

by the number of segmented objects in the histogram in Figure 4.11b and the 

render of those segmented objects Figure 4.11c. 

Figure 4.11 An example to show the effectiveness of the proposed method on a CT scan on 

a pealed orange (a) Rendered CT scan of an orange, (b) Histogram of the connected objects 

after applying the pressure mask to the orange image, (c) Rendered objects extracted from 

histogram (b). 
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4.1.3 Discussion 

Pressure analysis has shown promising results for separating touching objects with 

the same density in CT images given that the touching is has different density. The 

results show that it can clearly improve analysis over traditional techniques, on a 

selection of images. The new method is automatic, anisotropic, non-iterative and 

does not require a template nor knowledge of a target objects’ shape. The results 

depend significantly on the local features in the original image and the threshold 

used for the pressure domain. One observation would be the objects with smaller 

touching surface area appear to have been extracted better than the others with 

larger areas of intersection. As such, by using the analogy of gas pressure we have 

a new technique, which can be used to approach a known problem in (3D) image 

analysis.  

The only limitation of the proposed method is the inability to discriminate an area 

between two objects with a density value similar to the objects’ own density. One 

example of such a problem can be seen in CT image of the area between the femur 

bone and the hipbone, where the cartilage diminishes with time. Several slices of 

the connected areas between the femoral head (which is near spherical, near planar 

in cross section) and the acetabulum (which is its socket) of one volume are shown 

Figure 4.12. Both the acetabulum and the femoral head (and some veins) are shown 

to be white and the remainders of the CT images are shown in grey. In these 

images, the connections appear in different places, so a technique to separate them 

requires information from local features. Another problem also arises, in that there 

are multiple contact areas between the veins in the surrounding soft tissue which 

touching the femur, especially when a contrast agent is present. However, veins 

have little impact on the total surface area, as in Figure 4.13. 
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Figure 4.12 Different slices through the hip showing the contact area between the femoral 

head and the acetabulum 

z=325 z=329 z=333 

z=250 z=255 z=260 

Figure 4.13 Different slices showing the different contact areas between the femur bone and 

the surrounding veins that may interfere. 

The pressure approach presented in this section does not provide a mask capable 

of separating those areas as shown in Figure 4.14. Here, the thresholded pressure 

is highlighted in pink and not all of the intersecting area is highlighted, shown in 

particular in the image for z = 33 and z=38. The inability to distinguish this area of 

intersection motivated enhancements to overcome this problem, which are 

proposed in the next section. 

z=25 z=33 z=38 

z=42 z=53 z=58 
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Figure 4.14. Thresholded pressure highlighted in pink on the slices of Figure 4.12 with, 

showing how the pressure incapable of disconnecting the joined area between the femoral 

head and the acetabulum. 

z=25 z=33 z=38 

z=42 z=53 z=58 
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4.2 Enhanced Pressure 

Image segmentation is a valuable source of information for pre-clinical 

procedures. Due to the limitations in some scanners like the low resolution and 

low contrast, separate objects may appear as a single entity with exactly the 

same intensity value. The pressure analogy proposed in Section 4.1 provides a 

solution for the case in which there exist a small gradient between the two 

objects but would face a challenge if the objects are connected with the same 

intensity value between them. 

Hip replacement operation is a great example for such preclinical operation. 

Osteoarthritis, which is one of the most common types of arthritis, is a disease 

that causes the distance between the femur bone and the acetabulum (pelvis 

socket) to become very small due to the degradation of the articular cartilage 

and the overgrowth of the bone. For successful implant placement, a proper 

study for the positioning is essential to get the best results and to distribute 

the forces exerted by the body weight. To get this important information a 

statistical shape model needs to be calculated. In this work, we are interested 

in the phase that precedes the model creation where the standard approach is 

still manual segmentation.  

The problem of image segmentation in this scenario is illustrated in (Figure 

4.15) which shows one slice of a stack of CT-scanned images of the hip. The 

image shows the femoral head and the acetabulum, together with some 

surrounding tissue. We seek to process the whole volume image to visualize 

the femoral bone, and the image shows that the two bones appear to be 

connected. 

Previous research has tackled this problem using manual segmentation as 

prerequisite such as; statistical shape methods to describe the femur bone 

(Schmid, Kim, & Magnenat-Thalmann, 2011) (Yokota, Okada, Takao, Sugano, 

Tada, & Sato, 2009), generalised Hough transform to construct the optimum 

model (Seim, Kainmueller, & Heller, 2008) and an iterative deformable model 

to match the femur shape (Pettersson, Knutsson, & Borga, 2006). Other 

methods relied on initial parameters chosen by an operator to refine boundary 
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information between the acetabulum and the femoral bone (Zoroofi, Sato, 

Sasama, Nishii, Sugano, Yonenobu, Yoshikawa, Ochi, & Tamura, 2003). 

Figure 4.15 The intersection between the femoral head (blue) with the acetabulum 

(green) circled and labelled in (red). 

There are two automated approaches for bone segmentation in the literature, 

one is based on the Graphcut method using geometrical analysis, statistical 

analysis and morphology (Krcah, Szekely, & Blanc, 2011b) and the other one 

hinged on local adaptive thresholding conditioned on Bayesian rules (J. Zhang, 

Yan, Chui, & Ong, 2010).  

In this chapter, we extend the pressure analogy introduced in section 4.1 

(Alathari & Nixon, 2013) to include fully automatic segmentation of touching 

objects with similar density between them.  Pressure is used as a volumetric 

analogy to provide an operator to analyse and refine features in volume data. 

Again, only the principles of pressure are used to motivate an image analysis 

operator: precise detail is not needed. Pressure domain data has been 

enhanced by a new mapping technique followed by morphological operations 

to expand the pressure mask effect. This is not possible using conventional 

morphological operations (Lohmann, 1994) (without the pressure analogy) 

since these are isotropic and lack capability to separate gaps whilst retaining 

overall shape. Logical operations are applied to the pressure mask to separate 

the femur bone from the acetabulum. Labelling has been aided by using 

statistical operations. The proposed method is intuitive, anisotropic, non-
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iterative and requires no previous knowledge and can fully automatically 

separate connected structures of similar density in CT images. 

4.2.1 Methodology 

Extracting the femur bone presents a great challenge for segmentation 

methods due to the existence of similar density bones surrounding and 

touching its surface. The pressure analogy presents a new perspective into the 

problem of separating connected objects in volumetric images. Unlike the 

previous work, which depends on the small gradient between objects, this 

method addresses the separation of objects, which have a similar density and 

which appear to be touching in that the space between them is often small and 

occasionally zero. The same basis as the original pressure approach (Alathari & 

Nixon, 2013) was adopted, one-sided threshold followed by a convolving cube 

to calculate the volume of the background to obtain the pressure domain. The 

pressure domain provides valuable information about connected areas between 

the objects. 

Where ܅ is a window of size 5×5×5, ܄ is the volume that is thresholded so as 

to remove background data, retaining the high-density values, and ۾ is the 

pressure domain. The pressure data is then mapped using a high pass filter 

response to retain consistency and to provide a smooth transform, mainly to 

provide better visualization. The filter is derived by arranging the pressure 

levels ݌௙	in ascending order and deriving a mapping function extracted from a 

high-pass filter: 

࢕ࢂ = ௜ݒ
ܼோ

ܼோ + ܼ஼ 4.6 

௫,௬,௭۾ = 1 ෍ ௫,௬,௭܄
௫,௬,௭∈܅

ൗ ௫,௬,௭܄∀ ∈  4.5 ݀݊ݑ݋ݎܾ݃݇ܿܽ
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where ݒ௜ = 180, ܼ஼ = −݆(1 ⁄ܥ௙݌ߨ2 ), ܼோ = 1500  and C = 	1.06 × 10ି଺	with a cut-off

frequency ݌௙	௖௨௧	௢௙௙ = 100, for ݌௙ ∈ [1,125], so the high pressure values in the top 

25 levels are retained and emphasized. This mapping function is used to 

derive ۾ᇱ = .which is then thresholded (࢕ࢂ)۾

௫,௬,௭ۻ = ฬ1 	if	۾′௫,௬,௭ ≥ threshold	
0	 									otherwise

4.7 

After that, a connectivity check was applied on the thresholded mask; each 

element labelled defines a structured element ۻ௜ stored in 4D matrix M
L
. Each

element is dilated ⊕	 three times to increase its mass and close the gap 

between elements using structure S of size 3×3×3 with all voxels turned on. 

௜′ۻ = ௜ۻ ⊕  ܁

			∀	݅	 ∈ 1:  ݊݋݅ݏ݊݁݉݅݀	ℎݐ4	ℎ݁ݐ	݊݅	௅ۻ	݁ݖ݅ݏ

4.8 

The next step is to erode ⊖	the whole mask in an attempt to minimize its 

effect. 

௦௨௠ۻ = ݈ܽܿ݅݃݋݈ ቌ		 ෍ ௜′ۻ
#௘௟௘௠௘௡௧௦

௜ୀଵ
ቍ 4.9 

௙௜௡௔௟ۻ = ௦௨௠ۻ ⊖  4.10 ܁

The final mask ܯ௙௜௡௔௟  is then inverted and applied to the thresholded volume ܸ, 

separating the objects.  

௫,௬,௭܁ = ೣ,೤,೥	௙௜௡௔௟ۻ	¬ × ୶,୷,୸܄ 4.11 

The objects were labelled individually to describe each object uniquely. The 

mask discards a small amount of data, which is implicit in these operations. To 

recover this data, the mask was multiplied by a logical thresholded volume to 

obtain only the areas in the mask (used to separate objects), which do not exist 

in the background.  
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௫,௬,௭܀ = ೣ,೤,೥	௙௜௡௔௟ۻ	 ×  4.12 (୶,୷,୸܄)݈ܽܿ݅݃݋݈	

 

Skeletonization (Lam, Lee, & Suen, 1992) was applied per slice on the 

recovered volume ܀  to create the equivalent of a small creek or fissure 

between the mask segments to aid the reconstruction process. The labelled 

mask is then grown on those areas using the statistical mode. Each object in 

the volume	۴ can now be labelled uniquely with no lost data. 

۴௫,௬,௭ = ࢠ,࢟,࢞ࡾ∀				൯ࢃ∋ࢠ,࢟,࢞܁൫݁݀݋ܯ ∈ foreground 4.13 

 

Three morphological closing operations have been applied to every labelled 

object and close any open gaps in the detected object. 

۰௙௜௡௔௟,௜ = ۴௜y܁       ∀	݅	 ∈ 1: Number	of	labels 4.14 

 

where ܤ௙௜௡௔௟ is a 4D matrix which contains the volume of each segmented 

object. An illustration showing the whole process is shown in Figure 4.16. 
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To analyse the validity of the results, the surface area was calculated for the 

proposed method results ܽ௣ and the manually segmented data ܽ௠. The manual 

segmentation took place by thresholding then removing surrounding bones 

and soft tissue. The Dice similarity coefficient (݀ܿ) (Sørensen, 1948), which is 

used to measure the union of two sets to the average sample size. It was used 

to compare the results of segmentation by (Grau, Mewes, Alcañiz, Kikinis, & 

Warfield, 2004; Ben Younes, Nakajima, & Saito, 2014). 

݀ܿ = 2ܽ௣ ൫ܽ௣ + ܽ௠൯⁄  (11) 

Our work describes a solution that is based on the original basis of the 

pressure analogy. Virtually the same advantages have been accrued as in the 

literature; a non-iterative, anisotropic method that depends on local features of 

the objects in the scene. The novel step is the high-level refinement and the 

extension towards separating connected objects of similar density. 

4.2.2 Results 

As discussed previously, the method provides a mask that is used to separate 

the connected objects. In this section, we evaluate the performance of the 

proposed method on 51 volumetric cropped images of femur bone acquired 

using CT scanner. The images were cropped to concentrate the feature 

extraction process. To illustrate the problem, several slices of the connected 

areas between the acetabulum and the femoral head of one volume are shown 

Figure 4.12. In these images, the connections appear in different places, so the 

technique requires information from local features. Another problem also 

arises, in that the multiple contact areas between the veins in the surrounding 

soft tissue touching the femur, especially when a contrast agent is present. 

However, veins have little impact on the total surface area Figure 4.13. 
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Figure 4.17 A render of the final segmented image of femur bone shown in Figure 4.12 

and Figure 4.13 (a) Render showing the largest 6 objects, (b) The largest object 

labelled hence the femur bone. See Appendix B for the full set of segmented data.  

A rendering of the final labelled objects, with each label identified by a unique 

colour, is shown Figure 4.17a Once the femur bone is labelled and identified, it 

can be extracted by choosing the desired label as in Figure 4.17b Successive 

slices through the segmented data are shown in Figure 4.18.These show that 

the acetabulum is correctly identified as separate from the femur even when 

they are in contact and that the perimeters of the bones (the surfaces) are 

extracted correctly. 

The proposed method has been applied to the 51 femur volumes; a small 

sample of the results is shown in Figure 4.19. The segmentation proved to be 

successful and the femur bone was extracted properly. Nevertheless, some of 

the results showed less than perfect segmentation as in Figure 4.20. In some 

cases, some segments of the femur head were joined with the hip, in other 

cases the whole head of the femur bone is lost and the worst was the difficulty 

of separating the hip and the femur bone. Table 4.1 shows the performance of 

the proposed method on the 51 femur bones, the effect of veins have been 

omitted due to their minor contribution to the total surface of the segmented 

femur bone. This shows that a clear majority of the femurs (64.7%) have been 

successfully extracted, that many of the remainders have small segments 

missing (23.52%), some case the mask acted on the femoral neck rather than 

the femoral head which result in a femur with missing head (9.8%), and that 

only one is extracted with connections remaining (1.9%). 

(a) (b) 
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z=25 z=33 z=38 

z=42 z=53 z=58 

Figure 4.18 Different slices though the hip showing the contact area between the 

femoral head and the acetabulum 

Figure 4.19 Sample of four segmented femur bones using the proposed method. See 

Appendix B for the full set of segmented data. 
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(a) (b) (c) (d) 

Figure 4.20 Example of several situations where the proposed method did not perform well, 

(a) and (b) Some segments missing from the femoral head, (c) Femoral head completely lost, 

(d) Complete failure to separate the femur bone from the hip. See Appendix B for the full set 

of segmented data. 

Table 4.1 The performance of the proposed method based on visual inspection of 

segmented femur. 

Due to the absence of the source code for the state of the art methods such as 

(Krcah et al., 2011b) and (J. Zhang et al., 2010) a fair comparison would be 

difficult especially with the variety of parameter choices that is necessary for 

correct operation. The Dice coefficient of each sample of 9 volumetric images 

has been calculated. To verify the amount of loss in the total surface area in 

the results, the manual segmentation was used as the ground truth (Figure 

4.21). An average of dc = 0.907 has been calculated which indicate a minor 

loss in the total surface area and a successful segmentation. 

Notes on segmented data 
Percentage of the data 

processed with proposed 

pressure analogy 

Femur bones Fully segmented 64.7% 

Femur bones with missing Femoral head 9.8% 

Femur bones with missing bits from Femoral head 23.52% 

Femur bones connected to pelvis 1.9% 
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Figure 4.21 Dice coefficient for a sample of the results based on the total 

surface area compared to the surface area of the manually segmented data to 

determine the similarity between the two. 

It is also worth noting that the Dice coefficients of the femur bone extracted 

together with veins and arteries have introduced false-positive information. 

This arises from the larger surface area of the combination of bone with blood 

vessels and could lead the Dice coefficient to exceed unity, which has not 

occurred here (some segments have been omitted, but cannot be observed in 

these renderings). 

As anticipated, the proposed method showed promising results in segmenting 

and visualizing other bones such as the tibia and fibula bones in Figure 4.22 

where the only variable changed is the threshold used for the pressure (Eqn. 

4.7). Figure 4.23 shows images of the complete pelvis, Figure 4.23a, includes 

some blood vessels, two femoral heads and the lower lumbar region. Figure 

4.23b shows the labelled pelvis extracted alone from this data. Again, the only 

variable changed is the pressure threshold and the remainder of the technique 

is fully automatic. 
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(a) (b) (c) (d) 

Figure 4.22 Other bones segmented using the proposed method, (a) and (c) Rendering 

of segmented tibia bone, (b) and (d) Rendering of segmented fibula bone. 

(a) (b) 

Figure 4.23 Other bones segmented using the proposed method  (a) Rendering of the 

hip area including some blood vessels, two femoral heads and the lower lumbar 

region, (b) Rendering of the final segmented pelvis.  

4.2.3 Discussion 

Segmenting and visualizing the femur bone is the first step for future 

preclinical analysis in arthritis. The literature flourishes with machine learning 

techniques that depend on manually segmented data.  The problem with those 

techniques is the general problem of machine learning, they are data oriented. 
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Morphology operations alone would introduce or neglect some of the valuable 

information by acting in an isotropic manner, which would result in 

undesirable results. On the other hand, the new pressure analogy depends on 

local image features; it is anisotropic, non-iterative. The technique could even 

provide a mask without the need for training or learning. The proposed 

method based on the pressure analogy and carries the same advantages; it can 

also handle similar density connection between the objects. This would benefit 

the automation of the other techniques discussed in literature such as 

providing an automatic large set of data for machine learning and presenting 

the general Hough transform with a standard template. The results can also be 

of great help to the preclinical studies of hip replacement, and help 

determining the optimum positioning of the femur bone implant to achieve a 

perfect fit. The proposed method has shown encouraging results for 

separating touching objects with the same density in computer tomography 

volumes.  

Analysis on the resulted femur bone have been divided into three main 

categories; fully segmented femur bones, segmented bones with missing bits 

and segmented bone with veins attached. The categorization is based on the 

visual inspection of the data manually. The reason behind this classification is 

to study the effect of every shortcoming in the results caused by the 

segmentation artefact. The analysis were based on six criteria; femur length, 

femoral bone neck length defined by the distance from head-centre to neck-

axis intersection, femoral shaft area which is the area of the diaphysis at 2cm 

below lesser trochanter, the femoral head radius and the two radiuses of the 

shaft at 2cm below lesser trochanter. The results are compared side by side 

with manual segmentation provided by an expert which is considered by 

literature as the “gold standard” (Kaus, Warfield, Nabavi, Chatzidakis, Black, 

Jolesz, & Kikinis, 1999; Babalola, Patenaude, Aljabar, Schnabel, Kennedy, Crum, 

Smith, Cootes, Jenkinson, & Rueckert, 2008). 

The fully segmented results showed a very close relationship with the manually 

segmented data Figure 4.24. The consistency can be seen in all areas of 

investigation (Table 4.2), which indicate a proper overall segmentation for the 

femur bone based on the mean value comparison between the results of the 

proposed method and the manually segmented data. The standard deviation 
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indicates how each sample vary from the mean, due to the individuality and the 

variety of the samples (different ages and genders), the error would indicate 

the percentage difference between the samples in each group of results. The 

overall errors were in acceptable range.  

* Pressure based segmentation  /  o Manual segmentation by an expert
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(d) (e) (f) 

Figure 4.24 Analysis on the fully segmented data (a) femur length, (b) femoral bone 

neck length defined by the distance from head-centre to neck-axis intersection, (c) 

femoral shaft area which is the area of the diaphysis at 2cm below lesser trochanter, 

(d) the femoral head radii and the two radii of the shaft at 2cm below lesser trochanter, 

(e) the major and (f) the minor. 

On the other hand, the data classified as segmented femurs with missing bits 

showed less consistent results and that is due to the small amount of voxels 

available for fitting the femoral head sphere radius, which in its turn affect the 

neck calculations (Figure 4.25). Those bones also include some veins attached 

to the shaft and that is reflected in the femoral shaft area and its major and 

minor radiuses as seen in sample 1 and 4. The statistical analysis Table 4.3 
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showed an increase in the mean error hence the difference between the 

pressure segmented and the manually segmented data in the majority of areas 

of study. The small size of the data sample has also contributed in the increase 

in the standard deviation.  

Fully Segmented Samples 

Pressure Analogy Manual Segmentation % error 

Femoral Head 
Minor Radius 

mean (mm) 15.78 15.17 4.01 

std (mm) 1.20 1.29 6.98 

Femoral Neck 
Length 

mean (mm) 53.92 51.95 3.79 

std (mm) 6.34 4.62 37.21 

Femoral Shaft Area mean (mm)2 955.87 873.84 9.39 

std (mm)2 169.28 140.91 20.14 

Femoral Shaft 
Major Radius 

mean (mm) 19.22 18.07 6.40 

std (mm) 2.60 1.44 80.30 

Femur Length mean  (mm) 413.57 412.79 0.19 

std  (mm) 24.22 22.34 8.42 

Mean Femoral Head 
Radius 

mean  (mm) 23.70 23.85 0.63 

std  (mm) 3.45 1.93 78.22 

 Table 4.2 Statistical analysis of the fully segmented samples in Figure 4.24 

The shaft area and the shaft major radius suffered from a severe increase in 

the error that is also caused by the attached veins, which are translated in 

incorrect automatic measurements.  

The segmented data with veins attached to it (Figure 4.26), showed even less 

consistent results. The veins would contribute in all of the analysis, which in 

turn provided inaccurate analysis. To study how strong the effect of the veins, 

simple morphological opening has been applied to this data set followed by 

labelling the largest object as the femur. Five out of nine femurs have been 

separated using this technique as shown in (Figure 4.27). The improvements 

were significant in all areas except for one sample where the femoral head has 

been affected by the morphological operation and bits has been lost and the 

femoral head could not be reconstructed. The statistical comparison between 

the two samples of connected vein and removed veins are shows in (Table 4.4) 

and (Table 4.5) respectively, an improvement in the mean error is 

demonstrated in all areas of study. The deviation in the sample has also seen 

an improvement in most areas.  
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* Pressure based segmentation  /  o Manual segmentation by an expert
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Figure 4.25 Analysis on femur bones segmented with missing bits   (a) femur length, 

(b) femoral bone neck length defined by the distance from head-centre to neck-axis 

intersection, (c) femoral shaft area which is the area of the diaphysis at 2cm below 

lesser trochanter, (d) the femoral head radius and the two radii of the shaft at 2cm 

below lesser trochanter, (e) the major and (f) the minor. 
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Femur Bones Segmented with Missing Bits 

Pressure Analogy Manual Segmentation % error 

Femoral Head 
Minor Radius 

mean (mm) 18.53 16.03 15.57 

std (mm) 1.33 1.23 8.51 

Femoral Neck 
Length 

mean (mm) 39.68 48.16 17.62 

std (mm) 5.84 5.66 3.19 

Femoral Shaft Area mean (mm)2 1403.97 985.16 42.51 

std (mm)2 359.73 86.27 316.97 

Femoral Shaft 
Major Radius 

mean (mm) 24.49 19.37 26.42 

std (mm) 4.40 1.09 305.08 

Femur Length mean  (mm) 426.85 438.41 2.64 

std  (mm) 21.79 18.16 19.99 

Mean Femoral Head 
Radius 

mean  (mm) 28.25 24.75 14.15 

std  (mm) 2.43 1.67 46.03 

Table 4.3 Statistical analysis of the femur bones segmented with missing bits samples 

in Figure 4.25 
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* Pressure based segmentation  /  o Manual segmentation by an expert
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Figure 4.26 Analysis on femur bones segmented with vein (a) femur length, (b) femoral 

bone neck length defined by the distance from head-centre to neck-axis intersection, 

(c) femoral shaft area which is the area of the diaphysis at 2cm below lesser trochanter, 

(d) the femoral head radius and the two radii of the shaft at 2cm below lesser 

trochanter, (e) the major and (f) the minor. 
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* Pressure based segmentation  /  o Manual segmentation by an expert

m
m

 

m
m

 

m
m

2
 

Sample Number Sample Number Sample Number 

(a) (b) (c) 

m
m

 

m
m

 

m
m

 

Sample Number Sample Number Sample Number 

(d) (e) (f) 

Figure 4.27 Analysis on femur bones segmented in Figure 4.26 after successful veins 

removal using morphology (a) femur length, (b) femoral bone neck length defined by 

the distance from head-centre to neck-axis intersection, (c) femoral shaft area which is 

the area of the diaphysis at 2cm below lesser trochanter, (d) the femoral head radius 

and the two radii of the shaft at 2cm below lesser trochanter, (e) the major and (f) the 

minor. 
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Femur Bones Segmented with Vein 

Pressure Analogy Manual Segmentation % error 

Femoral Head 
Minor Radius 

mean (mm) 21.53 14.94 44.09 

std (mm) 4.62 1.26 268.19 

Femoral Neck 
Length 

mean (mm) 62.16 48.26 28.81 

std (mm) 24.84 5.30 368.92 

Femoral Shaft Area mean (mm)2 2593.40 839.66 208.86 

std (mm)2 861.63 130.12 562.20 

Femoral Shaft 
Major Radius 

mean (mm) 41.12 17.82 130.79 

std (mm) 9.02 1.45 520.21 

Femur Length mean  (mm) 429.06 402.69 6.55 

std  (mm) 29.31 29.47 0.54 

Mean Femoral Head 
Radius 

mean  (mm) 5.04 23.09 78.17 

std  (mm) 3.72 2.07 80.20 

Table 4.4 Statistical analysis of the femur bones segmented with missing bits samples 

in Figure 4.26 

Femur Bones Segmented with Vein Removed 

Pressure Analogy Manual Segmentation % error 

Femoral Head 
Minor Radius 

mean (mm) 15.24 15.04 1.34 

std (mm) 1.51 1.56 3.25 

Femoral Neck 
Length 

mean (mm) 50.74 47.86 6.00 

std (mm) 7.00 6.52 7.25 

Femoral Shaft Area mean (mm)2 877.62 844.45 3.93 

std (mm)2 147.26 158.46 7.07 

Femoral Shaft 
Major Radius 

mean (mm) 18.23 17.87 2.04 

std (mm) 1.48 1.92 23.09 

Femur Length mean  (mm) 416.24 410.60 1.37 

std  (mm) 40.09 36.79 8.98 

Mean Femoral Head 
Radius 

mean  (mm) 19.99 23.10 13.47 

std  (mm) 6.07 2.45 147.56 

Table 4.5 Statistical analysis of the femur bones segmented with missing bits samples 

in Figure 4.27 
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Figure 4.28 Several Samples of the segmented coins show effectiveness of the pressure 

enhancement. 

 The proposed method by (Krcah et al., 2011b) provides a good solution for 

automating the process of graph cut through providing a automatic seeds and 

sources using morphology. The only drawback of their proposed method is 

that it would detect a single object in the volumetric image and would face a 

great challenge dealing with volume similar to the one in Figure 1.1 where the 

object might be removed by morphology operations. Using the same method 

described in this section and by combining the pressure from the surface 

information with the pressure from the thresholded volume to increase the 

probability of the pressure point close to surface, the results show a much 

better segmentation (Figure 4.28) compared to the original pressure (Figure 

4.7) described in the section 4.1 in terms of the number and quality of 
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segmented objects. Segmented coin of (Figure 4.29) is used to illustrate the 

quality difference between the coin segmented using enhanced pressure 

analogy and the same coin using simple pressure analogy. The enhanced 

pressure provided more detail on the coin face, thicker volume and sharper 

edges noting that the coin in Figure 4.29a appears to show the head of the 

person and some letters which cannot be seen and only inferred from the 

surface in Figure 4.29b. 

(a) (b) 

Figure 4.29 Single coin from the set of (Figure 1.1) segmented using (a) Enhanced 

pressure, and (b) Simple pressure.  

A single slice of Watershed segmentation and the simple pressure are 

compared to the same slice resulted from the enhanced pressure in (Figure 

4.30). The enhanced pressure provided full detection of the object and less 

eroded surface than the simple pressure. Also compare to the Watershed 

segmentation far much better identification of the object of interest. 

(a) (b) (c) 

Figure 4.30 Single slice of the final segmented volume of the coins in (Figure 1.1) 

using (a) Watershed, (b) Simple pressure analogy, and (c) Enhanced pressure. 
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4.3 Conclusion 

The concept of using physical analogy (Mark S Nixon et al., 2009) has been 

available for years now; introducing new concept based on scientifically 

approved parameterizations. Several analogies have been introduced in 

literature; force field (Hurley, Nixon, & Carter, 2002) ,water flow (Liu & Nixon, 

2006) and heat flow (Direko & Nixon, 2006), which have introduced new 

perspective into image segmentation area. In this chapter pressure is used as a 

volumetric analogy to provide an operator to analyse and refine features in 

volume data. The main goal of the current chapter was to provide three 

dimensional segmentation method that is automatic, not iterative, connectivity 

based or model based. The findings have shown that such method is possible 

and depends on the understanding of the volumetric image nature and by 

applying the physical analogy in a virtual environment. The results indicate that 

the segmentation was successful except in some cases, which is expected to 

happen in any operator-based method. The method does not require any 

previous knowledge, which makes is applicable for small data sets. Despite the 

adventurous and exploratory nature of this method it shows that a physical 

analogy can provide results comparable with manual segmentation. An 

arguable weakness of the presented method is inherent from its main strength, 

which is the fact that it depends on the local features of the image. However, 

direct application on patient CT data, which is a real life situation, showed very 

promising results with no issues with noise. Further work might be to explore 

the possibility of using other image local features.  





Chapter 5: Conclusions and 

Future Work 

5.1 Conclusions 

The main goal of the current study was to develop a set of sequential model 

based methods to identify and segment objects in volumetric images. This 

study has shown that extending well-established methods in literature from 2D 

to 3D using the original basis should consider the increase in dimensionality. 

The current results highlight the importance of developing and expanding 2D 

operators before applying them into 3D space to make use of the extra 

information provided by the volumetric image. The current findings add to a 

growing body of literature on expanding what is already known into a higher 

dimension. 

The second major finding was that objects could be identified from voxel 

information. The findings of this research provide insights for information 

hidden within the voxel data. The literature use evidence gathering with the 

assumption of having segmented surface rather than a set of voxel as intended 

in the original Hough transform. This work contributes to existing knowledge 

of evidence gathering by providing several methods based on the same 

original mind-set of Hough transform. This study was limited by the absence of 

image databases that can be used to further highlight the advantages of using 

voxel information. 

The most obvious finding to emerge from this study is that studying the 

background rather than the objects themselves in thresholded image can aid in 

segmentation of the objects. The results of this research support the idea that 

physical analogy can help in solving image segmentation problems. This is the 

first time that pressure analogy has been used to segment objects in feature 

extraction. The study has gone some way towards enhancing our 

understanding of importance of the local feature in the volumetric image. The 
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scope of this study was limited to connected objects with the same high 

density. More research is required to further enhance the proposed method by 

including more local features in the study. 

5.2 Future Work 

Stacking the developed methods together would provide a new and one of the 

first methods to count objects in 3D volumetric images. The results would then 

be compared to other high level methods such as scale invariant feature 

transform (SIFT) and Speeded Up Robust Features (SURF). The comparison will 

be against the ability of detection of multiple simple geometrical shapes in one 

image. The search for other approaches will be continued along these lines in 

the literature as well as to refine techniques developed here. 

Several aspects of future improvement can be considered for the proposed 

Hough transform (Chapter 3) such as the automation of threshold values used 

in the proposed evidence gathering methods and the use of an advanced edge 

detector that would take into account the high frequency noise surrounding 

the object of interest. Validation process to confirm the shape detection based 

on accumulator peaks reconstruction and other methods (in case of cylinder 

detection, line detection should be used to indicate axis detection). The local 

features and the geometric properties of the shape could also be used to 

develop a decomposed accumulator space to reduce the computational 

expense. 

The use of edge information to enhance the pressure method (Chapter 4) 

proved to be a valuable guide through providing areas with higher priority in 

case of pressure point existence within the shape of interest. Further 

investigation will be considered on the ability of highlighted surface points to 

limit the erosion naturally inherited by the pressure analogy hence a better 

shape extraction. 

The main motivation behind the pressure analogy is to provide a step to 

replace the manual segmentation to provide presentable data and to create a 

database, which seems to be the current interest of research to ravel the 2D 

imaging systems. The segmented data can be used to provide sets of criteria 
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to rapidly train machine intelligence algorithms with data extracted 

automatically. 

Further future study will compare the statistical shape model will be created 

using the results of the proposed pressure analogy, after being registered and 

combined using principal component analysis, to a statistical shape model 

created using manual segmentation. Dice similarity coefficient will be used to 

compare the surface area of the two models and several cross sectional areas 

will be compared the specifics of the two models. Later on, the parameters of 

the presented line, cylinder and sphere detections can be used to guide the 

calculated statistical shape model into the correct position and direction to 

properly segment the femur bone. 
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Appendix A  
The full set of reconstructed lines of Figure 3.22 from the accumulator ࡭ of 

chapter 3 at every line magnitude	࢏ࡸ	and the angle pair (ࣂ,࣐)	 associated with

it.  
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Appendix B  
The full set of segmented femur bones using the proposed pressure analogy 

method. 
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Appendix C  
The full set of segmented coins of Figure 1.1 using the proposed pressure 

analogy of section 4.2. 
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