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Abstract—We introduce an experiment designed to study
trade-offs in collaborative decision making environments such
as finding the best level of selectivity and abstraction in sharing
information, and their impact on the time course and accuracy
of group decisions. Two models of the experiment are presented:
a cognitive model using the ACT-R cognitive architecture and a
probabilistic argumentation model using Markov Random Fields
(MARF). The cognitive model relies on memory mechanisms
such as spreading activation, partial matching and blending to
judge when to share information, which facts are relevant to
a given question, and how to aggregate probabilistic evidence.
MARF carries out real world reasoning after formal theory of
human argumentation while at the same time being flexible to
accommodate the deviations from the theory. MARF follows
knowledge engineering paradigm aiming at reaching correct
reasoning as much as possible. Representative results from the
experiment are presented and compared to the results of the two
models. Implications of the results and avenues for future work
are discussed.

I. INTRODUCTION

Decision making in distributed environments has become a
ubiquitous part of our environment. Collaborative networked
environments range from Google Docs to elaborate military
command and control centers. The design of such environ-
ments is far from trivial: while more information is generally
better, too much information can also be detrimental by over-
whelming its users. Given various cognitive and attentional
bottlenecks, decision makers face a fundamental trade-off in
interacting with this type of environment. One could attempt to
exchange as much information as possible with partners on the
collaborative network but the obvious gains are limited by two
factors: the limitations of our perceptual-motor capabilities,
i.e., how fast we can enter information into the network (e.g.,
by typing) and parse information received from the network
(e.g., by sorting through chat messages), and the limitations
on retaining information gleaned externally (e.g., forgetting
messages read earlier). Conversely, one could attempt to focus
on one’s own experiences, making the most of them by re-
hearsing them and performing as many inferences as possible,
but at the potential cost of neglecting crucial information
available externally. The effectiveness of a focus on internal
(i.e., personal experience and memory) vs. external (i.e., group
experiences shared through the environment) sources of infor-
mation fundamentally depends upon the precise quantitative
nature of our cognitive architecture, the statistical nature of

the external environment, and the organizational structure of
the information-sharing tool (Reitter & Lebiere, 2012).

In this paper, we assume some degree of information sharing
through the information environment and focus on a related
dilemma: what level of information to share between deci-
sion makers. One possibility is to share detailed information,
making sure that all decision makers have all potentially
useful information, at the possible cost of overwhelming them
with irrelevant details. The alternative is to share a high-
level, refined version of the information available, hoping to
maximize the utility of the exchange while minimizing the
perceptual-motor and attentional costs. The difficulty of that
trade-off is that one does not always (or even most of the
time) know a priori what is likely to be of interest to another
decision maker. The only way to know in general would be
to have access to all their information, creating a Catch-22
situation.

In the rest of the paper, we present the design of an exper-
iment intended to address the issue, specifically by allowing
decision-makers to share detailed facts or a high-level guess
regarding a variety of questions that can be answered using the
facts. We then present two computational models of decision-
making for that experiment that are intended to quantitatively
address the tradeoffs described. We then present an analysis
of experimental results as well as preliminary results from the
model simulations on the accumulation of information and its
impact on the fluctuation of decisions. Finally, we draw some
parallels between the two models and discuss some potential
extensions of the work.

II. EXPERIMENT

The task used simulates, using textual information, an
artificial world region with political unrest. It requires four
cooperating subjects to discover a variety of details and draw
conclusions regarding an impending terrorist attack. The data
underlying this task are from ELICIT (Chan & Adali, 2012).
Facts1 from which these conclusions can be drawn are released
to the subjects in stages over time. Each fact is given to
only one subject, each subject receiving facts disjoint from
those given to other subjects, and the subjects must decide
which facts to forward to which other subjects. For each trial,
68 facts are distributed in three waves. Each wave contains

1ELICIT calls these statements “factoids”



roughly 1/3 of the 68 facts. Between two consecutive waves, the
subjects have 5 minutes to process a wave of new facts. At the
end of a trial, the subject must submit their best conclusions
from the facts collected, 15 minutes after starting. In addition
to running experiments with four human subjects, automated
subjects (bots) were also implemented, and data were collected
for single subjects playing with three bots, though without the
human subjects knowing their teammates were automated.

Each of the four subjects is asked to answer a different
question about the attack: who, where, what and when. For
any group of subjects these four questions are distributed once
to each subject on four different trials. The first is a training
trial, the results of which are not used, followed by three
experimental trials. The answer to the who question is the
name of the group expected to conduct the attack; group names
are colors, such as the “gold group” or the “violet group.”
The answer to the where question is a country name; country
names are derived from Greek letter names, such as “Chiland”
or “Omegaland.” The answer to the what question is a kind of
target, such as “embassy” or “military base.” The answer to the
when question has a four-fold structure, consisting of month
name, day of the month, hour on a twelve hour clock, and
“AM” or “PM.” While not the subject of any of the questions,
there are also individuals, who serve as links connecting some
of the facts presented to subjects; individuals are named after
animals, such as “the Lion” or “the Jackal.”

The facts delivered to the subjects are sentences. Some are
simple and immediately useful, such as “The attack will be
at 11:00.” Though even this fact is delivered to the “where”
subject, and so must be forwarded by that subject to the
“when” subject. Others are more complex, and must be
combined with other information to be useful; for example,
“The Azure and Brown groups prefer to attack at night,” or
“The Lion is known to work only with the Azure, Brown,
or Violet groups.” Some of the facts delivered are essential
for constructing correct answers, others are helpful but not
essential, and still others are mere noise, contributing nothing
to correct answers.

The four subjects interact with the system and with each
other through a web-based user interface, Figure 1, imple-
mented with HTML and JavaScript. This interface is divided
into several panes. One, on the right, summarizes the player’s
current role (who, where, what or when), describes the names
and roles of the other players, and allows access to the
instructions for reference.

The most prominent pane of the interface is the inbox,
to which new facts are delivered. These may be new facts,
delivered by the system; or they may be facts forwarded by
another subject. Facts are normally displayed here in a partially
obscured form, with only a few keywords, such as “Yellow,”
“Magenta” and “Green,” legible, the rest of the text being
replaced with ellipses. The user can click on a fact to cause
the full text to be presented. When the mouse pointer is moved
off the fact it is partially obscured again; by recording the
users’ mouse actions insight into the the users’ attention can
be gleaned. Below the inbox is a pane multiplexed for three

purposes: outbox, mylist and guessbox. When used as the
outbox facts can be dragged to it, and forwarded to other
subjects, in whose inbox they will appear. When used as
mylist, facts can dragged to it for future reference; while users
can use this for whatever purpose they choose, it is expected
that those who do employ it will use it to consolidate facts they
suspect are important for answering their own question. Facts
in mylist, as in the inbox, are normally partially obscured,
and must be clicked to be read in full. At several points
in each round subjects are asked to make their best guess
so far at the question they have to answer, along with their
confidence in the guess, on a five-point scale. In this way, we
can trace human subjects’ behaviors on accumulating facts
and its impact on the fluctuation of decisions. These decision
traces are then compared with the traces produced by the ACT-
R model and the probabilistic argumentation model.

III. MODELS

Two different computational models of this task were im-
plemented, and their results compared to the human data. The
reason for using two different modeling paradigms is to study
what each can contribute to understanding group decision
making and draw lessons from any parallels or differences
between models. (Lebiere, Gonzalez, & Warwick, 2009)

A. ACT-R Cognitive Model

The ACT-R model uses the ACT-R cognitive architecture
(Anderson & Lebiere, 1998) and in particular leverages the
activation calculus in declarative memory. This modeling
approach reflects the fact that performance in this task heavily
relies on retrieval of information from memory, and the
activation processes in ACT-R declarative memory provide
powerful mechanisms to guide information retrieval as well as
embody limitations on the storage and retrieval of memories
under demanding conditions.

The task is decomposed into three component sub-tasks:
information sharing, inductive inference, and probability es-
timation. The goal of the information sharing subtask is to
determine which facts to share, and if so with which of their
teammate(s). The basic approach is to share facts that are
semantically related to the question domain of the teammate,
e.g., share facts containing location information with the
person in charge of the ’who’ question. The implementation
leverages the ACT-R partial matching mechanism that retrieves
chunks in declarative memory by combining activation with
semantic similarities.

The goal of the inductive inference subtask is to determine
the relevance and applicability of various facts to the specific
question. The approach is to activate facts whose context is
associated with a specific guess or answer. The implemen-
tation leverages the ACT-R spreading activation and base-
level learning mechanisms. Finally, the goal of the probability
estimation task is to determine the probabilty of each candidate
answer given various facts and their activation. This approach
is grounded in the assumption to represent each fact as a rough
probability estimate over the given options. The probability



Figure 1. The user interface of the experiment

estimation process leverages the blending memory retrieval
mechanism to generate aggregate estimates.

The information sharing model assumes that people use
primarily simple heuristics in determining whether information
is relevant to another decision maker. In this case, the assump-
tion is that subjects share a fact if they contain information
of the same semantic domain as that person’s question (e.g.,
location information if the given question is ’who’). While
this approach is well short of optimal it has the advantage
of being highly efficient and avoids assuming knowledge of
the other decision makers processes that is unlikely to be
available. To avoid implementing this approach using large
numbers of ad hoc heuristic rules (e.g., one for each combi-
nation of question and answer), pattern matching processes in
memory are used instead. Each fact is encoded as a set of
semantic keywords reflecting the key information contained
in the sentence. For each subject and given question, each
keyword is matched against the various questions to determine
if it contains information related to that question’s domain.
The ACT-R partial matching mechanism is used by setting
high semantic similarities between concepts of a common
domain (e.g., locations like ’psi’ and ’chi’, and a question like
’where’). This will result in the relevant question(s) retrieved
for each fact, indicating the relevant decision maker with
whom to share that fact. The mismatch penalty scaling factor
controlling the partial matching process will determine the
selectivity of the process. Thus varying the scaling factor can
determine the overall willigness to share information, leading
to individual differences reflected in more conservative or

widespread sharing.
The inductive inference model is used to reflect dependen-

cies between answers to different questions. For instance, an
answer (or guess) of a given location to a ’where’ question
(e.g., ’psi’) will raise the relevance of facts mentioning that lo-
cation when answering other questions (e.g., ’who’). The most
natural way to implement that dependency process is to use
the spreading activation mechanism. To do that, each fact is
associated with a context element representing its dependency
upon another answer (guess). When a given answer is pro-
cessed, related facts are retrieved from memory by spreading
activation from that answer to the facts including that answer
as context. Those facts receive a boost in activation from
the base-level learning process, making them more salient in
the subsequent probability estimation process. This boost can
result in well-known cognitive biases such as availability bias.
This approach is similar to the model of the impact of memory
availability in the model of sequential diagnostic reasoning of
Melhorn et al (2011).

The probability estimation model follows the instance-based
learning (IBL) modeling methodology (Gonzalez, Lerch, &
Lebiere, 2003). To provide for finer discrimination in judgment
and ensure the ability to gradually accumulate evidence from
a stream of individual facts, the basic problem of determining
the most likely candidate answer for each question is formu-
lated as a goal to assign a probability to each potential answer.
The goal is defined as a chunk of type hypothesis that contains
three slots:

• Question: the representation of the question, i.e., who,



what, where and when
• Answer: the representation of each possible answer, e.g.,

various groups for who
• Probability: a probability value assigned to the question-

answer pair

This representation follows the general IBL pattern of con-
text (question), decision (answer) and outcome (probability).
In keeping with the instance-based methodology, this repre-
sentation is used both for facts as well as goals. Specifically,
most facts are transformed into chunks of this type if they
make a strong assertion about a given question. For instance,
if the fact rules out a particular group, a hypothesis chunk
will be created (or reinforced if it already exists) stating
(who, group, 0). Conversely, if it strongly implies a group’s
involvement, the chunk (who, group, 100) will be created. If
the fact mentions the possible involvement of n groups, then
a separate hypothesis chunk is created for each group with a
probability of 1/n, reflecting mutually exclusive participation.

Of course, those assertions are not literally correct–rather
the intent is to provide the basis for a rough estimate of relative
probabilities based on the information provided. More precise
facts (e.g., stating actual probabilities, or using qualifiers such
as likely or probably) could be used to create more accurate
chunk encodings. When the model is asked to generate a
guess to a question, it iterates through all the possible answers
(e.g., all the groups for a who question) and generates a
probability estimate for each using the blending mechanism
used for memory retrievals (Lebiere, 1999). During memory
retrievals, each chunk in memory has an activation that reflects
factors such as recency, frequency, and degree of match to
the requested pattern. Recency is factored through a power
law decay from the time that the chunk is created. Frequency
reflects a power law of practice of the numbers of times that
a chunk is strengthened following rehearsals. For degree of
match, we assume for simplicity that each question and answer
are distinct and no similarities are defined. Blending retrieval
then assigns for a given question-answer pair a probability
to each chunk matching that request (in general, there will be
several) reflecting a softmax (Boltzmann) distribution of chunk
activations given a certain amount of noise. Those probability
estimates for each chunk associated with the question-answer
pair are then blended according to a weighted average of
the chunk probabilities (assuming linear similarities over the
probability space (Lebiere et al., 2013)). The probability
estimates are not normalized but instead the largest one is
selected to generate the guess. All parameters controlling the
behavior of the model are left at their default values: the
base-level decay rate is 0.5, the mismatch penalty is 2.5, the
activation noise is 0.25, and the blending temperature is 0.4.

Note that, as mandated by the ACT-R theory, the hypothesis
goals generated to provide the guess become themselves
chunks in memory, as are guesses received from other agents.
This can give rise to cognitive biases such as confirmation
bias, where a strong initial estimate leads to overoptimistic
estimates later despite contradictory evidence.

B. Probabilistic argumentation model

We developed the Markov Argumentation Random Field
(MARF) (Tang, Toniolo, Sycara, & Oren, 2014), which is
a combination of formal theory of human reasoning in ar-
gumentation and Markov random fields. The formal theory
of argumentation (Dung, 1995) formalizes the essentials of
human reasoning about inconsistent, uncertain and incom-
plete information in the course of argumentative dialogues.
However, in real world scenarios deviation from the formal
theory is unavoidable. MARF is a probabilistic model which
carries out real world reasoning after the formal theory of
human reasoning while at the same time being flexible to
accommodate the deviations from the theory. Unlike the ACT-
R model which focuses on revealing the cognitive process of
human reasoning, MARF follows the knowledge engineering
path aiming at reaching correct reasoning as much as possible.

A Markov random field (Kollar & Friedman, 2009) is a
graphical model which encodes local Markov properties —
a random variable is independent of all other variables given
its neighbors — as an undirected graph to establish proba-
bilities of all valuations to the variables. Echoing the local
Markov properties, Dung’s argumentation semantics (Dung,
1995) can be recovered by applying a list of acceptability
rules based on a graphical model of argument interaction. For
example, “A is labeled IN (accepted) if all its attackers are
labeled OUT (rejected)” (Caminada & Gabbay, 2009). Such
rules, which assign acceptability to an argument given the
status of its neighbors, also satisfy local Markov properties.
Moreover, the construction of arguments as proof networks
(Tang, Cai, McBurney, Sklar, & Parsons, 2011) also admit the
local Markov properties — the establishment of a conclusion
is independent of all other rules given the premises of the
rules for the conclusion. These two observations allow us to
construct Markov Argumentation Random Fields (MARF).

MARF compiles the argumentative knowledge and received
information into a mathematically rigid Markov Random
Field. The resulting MARF is able to track both supporting
links and conflicting links (argumentative defeats) among the
outcomes, the applied knowledge and the received informa-
tion. It can compute the most probable argumentation for the
outcomes and identify the pieces of knowledge or received
information that would render the premises or outcomes
unreliable or reverse the outcome dramatically.

For example, the MARF in Figure 2 is compiled from the
following facts in the ELICIT tasks2: (1) The Lion is involved;
(7) The Chartreuse group is not involved; (9) The Purple or
Gold group may be involved; (10) All of the members of the
Azure group are now in custody; (12) There is a lot of activity
involving the Violet group; (13) The Brown group is recruiting
locals - intentions unknown; (16) Members of the Purple group
have been visiting Omega; (18) The Azure group has a history
of attacking embassies; and a domain constraint (S-1) there is
only one answer for the who question: either Brown, Violet,

2The numbering of the facts are same as it is in the ELICIT fact set coded
as 1aGMU.



Chartreuse, Purple, Gold, or Azure.
In Figure 2, Oval nodes are variable nodes tracking the ac-

ceptability status (i.e., accepted, rejected, undecided) of pred-
icates (including equality assertion, e.g. who? := “Brown”).
Square nodes are factor nodes modeling how predicates ac-
ceptability status interrelate with each other regarding the
meaning of facts. For example, fact “10) All of the members
of the Azure group are now in custody” relates acceptability
of predicates inCustody(“Azure”) and the equality assertion
who? := “Azure” (the answer to who is “Azure”). If inCus-
tody(“Azure”) is accepted, then who? := “Azure” is likely to
be rejected. Every factor node is associated with a weight
to reflect how much such a factor should be taken into
account when evaluating the probability of an acceptability
assignment to predicates via an exponential family distribution
parameterized by the weights of the facts:

Pr(~x) =
1
Z ∏

Fj∈F
exp

(
〈~Wj,φ j(~x j)〉

)
where 〈~Wj,φ j(~x j)〉 is the inner product of the weights and
the argumentative features φ j(~x j) of the acceptability variables
vector ~x j of a fact Fj. Z is a normalization constant to ensure
that Pr(~x) is a probability distribution over all possible ac-
ceptability assignments. Argumentative features φ j(~x j) reveal
elements that are essentials in evaluating the meaning of the
fact according to the formal argumentation theory. The higher
the validity of an acceptability assignment is, the higher the
probability of such an assignment will be; the higher the
weight of a fact is, the higher the probability will be for an
acceptability assignment that conforms with the meaning of
the fact.

With MARF, we can model the interactions of premises,
conclusions, inference rules, and argument attacks quantita-
tively through potential functions. Simple operations on these
potentials facilitate the computation of a coherent probabilistic
interpretation of the argumentation outcome — the argumen-
tation structure along with the acceptability status assigned
to premises, conclusions, inference rules and arguments. In
addition, MARF provides a computational framework to learn
probabilistic evaluation functions of the premises and out-
comes following data revealing human reasoning.

IV. RESULTS

In this section, we will compare the results of human
experiments, the ACT-R model, and the MARF model running
on the same ELICIT task.

A. Human experiment results

Sixty subjects, divided into twelve groups of five, were
recruited and finished the task. While they did not know how
they were divided, four of each five worked cooperatively
together, and the fifth worked separately, with three bots.
Among the 60 subjects who participated in our experiments,
15 of them (including the subjects who worked with bots)
answered the “who” question for the fact set “1aGMU17”. The
results are depicted in Figure 3. Among all these participants,

50% of them reached to the correct answer, “the Violet group”,
after seeing the first wave of facts. After seeing the second
wave of facts, 100% percentage of the participants reached
the correct answer. However, after the third wave, about 40%
of the participants were confused by the new facts and changed
their answers from the correct one.

Figure 3. The human experiment result

B. ACT-R Results

Sample results for the “who” question are presented in
Figure 4 of fact set “1aGMU17”. Probability estimates for each
possible answer (i.e., all groups) are presented for each of three
waves of facts. Note that those are the unnormalized (non-
exclusive) probability estimates rather than actual (exclusive)
forced-choice answers. The initial estimate for the violet group
(the correct answer, as it turns out) is the highest following the
first and second batch of facts, making it the preferred choice
in these two phases as for the human subjects. However, the
estimate for the violet group falls to third-highest after the
third batch of facts due to a dilution effect from a number of
facts mentioning other possibilities.

Note that these results were generated without reflecting
the effect of previous guesses on later phases. This would be
a case where confirmation bias could actually lead to a correct
final answer by strengthening the correct guess based on the
effect of early evidence.

Figure 4. The ACT-R result



Figure 2. A compiled Markov Argumentation Random Fields after the first wave of facts (light green oval nodes are accepted predicates; grey oval nodes
are rejected predicates; light blue oval nodes are undecided predicates; red square nodes model the argumentative conflicting relationships among predicates)

C. Probabilistic argumentation results

The results MARF over the same ELICIT task (the fact
set “1aGMU17”) is depicted in Figure 5. The three waves
of incoming facts are compiled into three MARFs. Figure 2
is the MARF compiled from the first wave of facts. In this
first wave MARF, the fact “(1) The Lion is involved” is
disconnected from other facts because the meaning of this
fact is disconnected from other facts. After the second wave
of facts, fact (1) is connected to the majority of facts (as
depicted in Figure 6); however, there is a new disconnected
fact (15). As more and more facts becomes available, the
MARFs are able to consider more connected facts to evaluate
the acceptability of the predicates underlying the meanings
of these facts. After 3 waves of facts, the MARF is able
to evaluate acceptability status of each answer as marginal
probabilities, i.e., the probability of accepted, rejected and
undecided, considering all available facts. To align with the
results of human experiments and the ACT-R model, Figure 5
plots the probabilities of accepting the answers omitting the
probabilities of rejected and undecided status of these answers
where weights of all the facts are set to 10 and the weight of
the domain constraint is set to 100. In the first two waves,
MARF decides that the “Purple” group is the answer with
probability of 94%. However, after the receiving the third
wave, MARF changes its opinion sharply to the “Violet”
group. This is the case because different from human and ACT-
R model, the MARF is constructed to be decisive separating

the accepted answers and the rejected answers as much as
possible while following meanings of the available facts as
closely as possible.

Figure 5. The probabilistic argumentation result

V. CONCLUSIONS AND FURTHER WORK

We present an experiment and two computational models of
group decision making. While both data analysis and model
development are preliminary, they highlight interesting emerg-
ing effects. Rather than following a linear path, the deductive
processes faced with a constant stream of facts induce a
fluctuation in beliefs that reflect a potentially rich dynamic.
Both computational models capture some aspects of the human



Figure 6. The compiled Markov Argumentation Random Field after the second wave of facts (light green oval nodes are accepted predicates; grey oval nodes
are rejected predicates; light blue oval nodes are undecided predicates; red square nodes model the argumentative conflicting relationships among predicates)

data but not others. While both include a representation of
the deductive process (e.g. a question activates its relevant
facts and answers in the ACT-R model; an MARF factor
models a logical deductive rule) and its constituent facts and
conclusions, the processes reflect distinct assumptions regard-
ing the parallel vs sequential nature of inference processes,
the implicit vs explicit nature of probabilistic information,
and whether those processes are fundamentally optimizing
or satisficing. Still, those models share many representational
assumptions regarding the nature and structure of the problem
representation, which will allow us to formally examine the
implications of their assumptions.

ACT-R uses IBL to drive decision making; while MARF
uses potential factors to relate facts and answers. If the given
facts and its symbolic representation truly reflects logical
relation among the facts and answers, by design MARF will
produce the right answers. Furthermore, as factors in MARF
are interrelated through an undirected graphical model, MARF
is not sensitive in the order of receiving facts but sensitive in
the availability of facts. On the other hand, since the ACT-R
model uses IBL activation, it is more sensitive to the order of
receiving facts. Therefore the ACT-R model follows human
decision making closely while MARF follows closely the
logical relationships of information embedded in the facts to



estimate the answers.
Numerous avenues of work are possible for both data

analysis and model development. We will examine whether
learning processes can improve decision making with experi-
ence, develop models of judgments for information sharing,
and analyze various experimental conditions to determine the
answer to our initial question as to whether information is best
shared at the most detailed level of basic facts or in the form
of refined, high-level conclusions.
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