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1
Nonlinear Reduced Order
Aeroservoelastic Analysis of Very
Flexible Aircraft

N. D. Tantaroudas1 University of Liverpool, Liverpool, L69 3GH, United Kingdom
A. Da Ronch2 University of Southampton, Southampton, S017 1BJ, United Kingdom

The present Chapter overviews the technical difficulties that aerospace engineers have to
face during the design of future environmentally–friendlyaerial vehicles. Present trends in
aerospace design are driven by two factors: increasing the global aerodynamic efficiency and
reducing the structural weight to a minimum. The failure in flight of some research prototypes
of very flexible aircraft, as described in Section 1.1, has shown that traditional (linear)
methods are no longer adequate for the analysis and design offuture aerial platforms. In
Section 1.2, the reader will be introduced step–by–step to the mathematical models adequate
to predict the complex interactions that may occur between the aerodynamic, structure,
flight mechanics, and control fields. The computational costs of these models, however, are
high when confronted with the large number of calculations needed to ensure structural
integrity over the flight envelope, and are inadequate for industrial aircraft design. The
latest developments in the field of model reduction will be discussed in Section 1.3, and
the reader will have the opportunity to practise and use these mathematical models with
the programming codes associated with this Chapter. Finally, active control techniques to
enhance the performance and resilience of a very flexible aircraft test case to atmospheric gust
and turbulence are discussed in Section 1.4. After the conclusions are given in Section 1.5,
some exercises proposed in Section 1.6 may be solved using the programming codes
accompanying this Chapter.

The Chapter is intended to provide the reader with the essential knowledge to design
high–altitude long–endurance (HALE) vehicles that have gained considerable attention in
recent years. However, it is worth noting that the mathematical models developed within
this Chapter are applicable to any aircraft configuration and, in particular, to large transport
aircraft with increasingly larger aeroelastic effects. The generality of the models described
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2 Nonlinear Reduced Order Aeroservoelastic Analysis of VeryFlexible Aircraft

here allows dealing with more traditional (rigid) aircraftconfigurations which are a subset of
very flexible aircraft.

1.1 Introduction

The interest behind HALE vehicles has increased steadily over the last years as they provide
low–cost efficient platforms for a variety of applications.The low structural mass and
high aerodynamic efficiency allow flying at high altitudes and low speeds with minimal
energy consumption. The range of applications of HALE aircraft varies from monitoring and
collecting data of the atmospheric environment to rescue missions in bio–hazard poisonous
environments. The advantage of inhibited HALE aircraft is the ability to operate at extreme
conditions for long duration times without putting at risk human life.

The analysis and design of HALE aircraft, however, presentssome of the unique
challenges that are not critical for more rigid (and stiff) aircraft. The dynamic interaction
between deformable wings, flow development, and flight mechanics may cause structural
failure as occurred in 2003 on the NASA’s Helios prototype. The Helios aircraft was
developed under the Environmental Research Aircraft and Sensor Technology (ERAST) as a
HALE class vehicle. The Helios prototype aircraft was a proof–of–concept solar electric–
powered flying wing designed to operate at high altitudes forlong duration flights. Two
configurations were produced. The first configuration was designed to achieve high altitude
flight and the second one to achieve long endurance flight. On 13th August 2001, the first
Helios configuration flew at a record altitude of 96,863 ft above sea level. The second
configuration was lost in flight on 26th June 2003 after encountering low–level turbulence.
After approximately 30 min within flight, atmospheric turbulence caused larger than expected
wing deformations and the aircraft began a slowly divergingpitch oscillation. The wings
dihedral remained high and the oscillations never subsided. Instead, oscillations grew with
each period and this led the structure of the aircraft and theskin pulled apart, see Figure 1.1.

(a) Aeroelastic shape at cruise flight (b) Structural failure in flight, 26th June 2003

Figure 1.1 The NASA’s Helios prototype was developed under the Environmental Research Aircraft
and Sensor Technology (ERAST) programme; from ’Noll et al. (2004)’
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1.1.1 Challenges and Prospects

From a technical standpoint, the challenges to be overcome in the analysis and design of
HALE aircraft can be summarised as follows.

1. The development of a multidisciplinary framework to realistically model the nonlinear
interactions occurring between the fluid, structure, flightdynamics, and control fields.

2. The lack of an approach to systematically reduce large computational models to a
smaller system for faster simulation times and for control synthesis design.

3. The exploitation of advanced control design strategies to tame aeroelastic phenomena
and improve the effectiveness of the controlled response toatmospheric gusts and
extend the flight envelope.

To define the state–of–the–art in the design of HALE vehiclesand identify opportunities for
progress, a brief review of recent developments in the field is first considered.

Nonlinear Time–domain Multidisciplinary Framework

There is a large body of work reporting the development of multidisciplinary frameworks
to predict the dynamic response of free–flying flexible aircraft encountering atmospheric
gusts and turbulence. Three representative references arethose of ’Cook et al. (2013);
Dillsaver and Cesnik (2011); Tantaroudas et al. (2014)’. Whereas a nonlinear formulation is
generally used for the structural model, which is based on a beam stick representation of
the aircraft components, and for the flight dynamics, the aerodynamic model in most of the
investigations is inferred from linear assumptions. It is now recognised that the ability to
obtain realistic (nonlinear) flow predictions is a remaining issue in the field of very flexible
aircraft. Unsteady time domain analyses of highly flexible aerial vehicles with atmospheric
turbulence are still expensive despite the increase in today computing power. The simulation
costs become prohibitive when high fidelity numerical models are introduced in an industrial
environment with a very large number of simulations required. Parametric searches are
performed to estimate the critical loads that the aircraft will encounter during the expected
life cycle and these are used for structural sizing. Inaccuracies in the load estimates can
jeopardise the entire project or result in a very conservative (and inefficient) design.

Nonlinear Model Order Reduction

The response of a dynamic system to given initial conditionsor external forces may be
obtained either in the frequency or time domain. The advantages of the analysis performed
in the frequency domain are offset by the underlying assumption of linearity in the system
response. The time domain analysis, through some numericalintegration schemes, allows
predicting the response of a nonlinear system. Unsteady time domain analysis is, however,
computationally expensive and, particularly so, in the case of a large dimensional model.
The objective of model order reduction is to produce a low dimensional system that is
computationally efficient yet accurate enough to approximate, to some desired threshold,
the response characteristics of the original system ’Antoulas (2005)’. The resulting reduced
order model can then be used to replace the original system for routine calculations or to
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develop a simple and fast controller suitable for real time applications. An appropriate model
reduction methodology will ensure to meet the following properties:

• The approximation error may be reduced to a desired threshold by increasing the size
of the reduced order model. Hence, convergence of the reduced model on the original
system should be proved.

• The properties of the original system may be retained. Stability properties, in particular,
are important for evaluating the system dynamic response.

• The algorithm to perform model reduction may be systematic,computationally stable,
and efficient.

As described in more detail in Section 1.3, there are two general approaches to reducing the
complexity and cost of a large computational model.

Advanced Active Control Strategies

Another important aspect that needs to be addressed in the design of flexible aircraft is
the flight control system design. This can be often accomplished by means of active or
passive control. Here, however, we will focus on active control. Active control has the
potential to increase aircraft performance and to extend the flight envelope to new limits.
The design of a gust–tolerant vehicle needs an accurate mathematical model to realistically
simulate the nonlinear interactions that dominate such aerial platforms. Nevertheless, the
use of fairly large nonlinear physics–based models introduces a complication in the design,
synthesis, and testing of control strategies. Two major difficulties arise when dealing with
control and that is the design and the implementation. The design becomes complicated
when the system is of high order and includes many unobservable or unmeasurable states,
especially when the system is nonlinear. More importantly,however, is the need of satisfying
the available computational resources. As for the implementation problem, it is difficult to
scale applications in relation to available resources suchas memory and power limitations
and how the real time response is guaranteed during such implementation. As a result, the
derivation of low order controllers based on reduced modelsbecomes of high importance.
This is accomplished by model order reduction techniques. In this way, not only the problem
of fast and accurate predictions of loads estimate is overcome but also the design of the
flight control system is simplified and the hardware implementation of the controller becomes
feasible ’Campos-Delgado et al. (2003)’.

1.2 Coupled Large Computational Models

The present Chapter motivates from the unique challenges offered by HALE aircraft and
the need to develop and implement appropriate mathematicalmodels of these vehicles. The
aircraft configuration, taken as the reference configuration and around which the Chapter
is designed, shares many common aspects with the Global Hawk(Figure 1.2), build by
Northrop Grumman and first flown in the year 1998. The aircraftconfiguration that will
accompany the reader throughout this Chapter is unrestricted and can be requested to the
Authors.

Whereas the reference aircraft is detailed in Section 1.2.1, the mathematical models for the
fluid, structure, and flight dynamic fields are introduced in Sections 1.2.2 through 1.2.5.
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1.2.1 Aircraft Test Case

The test case is a flexible unmanned aerial vehicle (UAV) thatgenerally resembles the RQ4
Global Hawk aircraft. Figure 1.2 presents a three–dimensional view of the aircraft test case,
which features high aspect–ratio wings, a fairly rigid streamlined fuselage, and a V–tail. A
set of trailing–edge control surfaces is located on each semi wing between 37 and 77% of
the wing span measured from the wing root, and at 32% of the local chord from the wing
trailing–edge. Basic geometric characteristics are shownin Figure 1.3.

A detailed finite element structural model of the airframe created in MSC/NASTRAN3

was available for accurate stress calculations, and this was later used to create an equivalent
beam model. The structure was built of composite material, and the structural model included
a combination of various finite element types. With fuel tanks on the wings between the front
and rear spars accounting for over 4,700 kg, the centre of gravity resulted to be at 6.38 m
from the nose of the aircraft.

The starting finite element model of the structure was then reduced to an equivalent
beam model. A beam stick representation of the aircraft follows easily as lifting surfaces
are of high aspect–ratio. For the wings and tail, the beam model was located at the centre
of the corresponding structural box, between front and rearspars. The mass and stiffness
properties of the beam model were iteratively refined to ensure a good agreement of the
lowest modeshapes and frequencies with the original detailed structural model.

(a) RQ4 Global Hawk in flight

Z

X

Y

(b) Test case of this Chapter

Figure 1.2 Examples of high–altitude UAV; (a) RQ4 Global Hawk in flight (courtesy U.S. Air Force),
and (b) the test case of this Chapter

A comparison of the first five lowest modeshapes and frequencies between the original
detailed model and the beam stick model is shown in Table 1.1.Tuning the mass and
stiffness properties of the beam model reveals a reasonablygood agreement for all the
modeshapes shown, with increasing inaccuracies at higher frequencies. Following a study
aimed at investigating the dependency of the frequencies onthe number of beam elements
used, it was found that 27 elements were adequate to discretised the aircraft wing, and 10
were used for the tail. The fuselage, on the other hand, is modelled as a rigid body.

3http://www.mscsoftware.com/product/msc-nastran, retrieved February 24, 2015.

http://www.mscsoftware.com/product/msc-nastran
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X

Y

Z

13.58 m

17.75 m

1.66 m

2.97 m

0.73 m

1.39 m

0.68 m

6.0 m
3.84 m

Figure 1.3 Geometric characteristics of the aircraft test case

Table 1.1 First five modeshapes and frequencies of the UAV test case main
wing

Mode Modeshape MSC/NASTRAN Beam model
number 17 elements 27 elements

1 First bending 3.56 3.74 3.58
2 Second bending 7.75 7.92 6.84
3 First torsion 14.90 12.87 17.18
4 Third bending 15.70 10.83 11.98
5 Fourth bending 24.60 14.57 19.80

Modeshape frequencies in [Hz]
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1.2.2 Aerodynamic Model

Several options for the aerodynamics can be used. Using an engineering approach, we aim
for an aerodynamic model being as simple as possible yet accurate enough. In the most
simple case, a two–dimensional linear aerodynamic model can be used on a representative
two–dimensional section of the aeroelastically most critical lifting surface. The unsteady
flow is modelled in this approach by a frequency domain expression for the incompressible
two–dimensional potential flow over a flat plate in harmonic motion, originally formulated
by ’Theodorsen (1935)’.

An extension to this approach, called strip theory, adapts the same two–dimensional
unsteady flow model for a three–dimensional aeroelastic system by combining section
aerodynamics with a beam model for the wing structure. Striptheory can provide fairly
reliable, and usually conservative, results for divergence speed, critical flutter speed and
aileron reversal. However, it requires that the physical characteristics of the aircraft
configuration under analysis can be adequately reduced to a beam–type structure and that
three–dimensional aerodynamic effects do not have a significant impact on the aerodynamics.

The total aerodynamic loads consist of contributions arising from the section motion,
trailing–edge flap rotation, and the penetration into a gusty field as illustrated in Figure 1.4.
The aerodynamic loads due to an arbitrary input time–history are obtained through
convolution against a kernel function. Since the assumption is of linear aerodynamics, the
effects of the various influences on the aerodynamic forces and moments are added together
to find the variation of the forces and moments in time for a given motion and gust. It follows
that

Ci = Ci,s + Ci,f + Ci,g (1.1)

where the dependence on time is not shown explicitly. The sub–indexi is used for denoting
the lift coefficient,i = L, and pitch moment coefficient,i = m, whereass, f, andg indicate
the contributions from the section motion, flat rotation, and gust perturbation, respectively. A
schematic representation of the various contributions to the aerodynamic loads is shown in
Figure 1.4.

A brief description of each contribution to the total aerodynamic loads is summarised in
the following three sections. Note that, as common in aerodynamics, the loads are formulated
using non–dimensional time,τ = tU∞/b, which is also adopted for the time derivative,
(•)′ = d(•)/dτ . The subindex0 will be used to indicate initial conditions.

Section Motion

The first term on the right hand side of Equation (1.1) indicates the increment in the
aerodynamic loads caused by a generic motion of the wing section. Each structural node
of the beam stick model, see Section 1.2.3, has six degrees offreedom that consist of
three rotations and three translations. As the aerodynamicmodel here presented is two–
dimensional, the resulting motion of the wing section that occurs in the three–dimensional
space is projected on the plane defining the wing cross section. Referring to Figure 1.4(b),
the motion of the wing section contributing to the aerodynamic loads consists of the vertical
displacement of the structural beam model, denoted byh, and a rotation around the elastic
axis, denoted byθ. This information is readily available from the solution ofthe structural
problem.



8 Nonlinear Reduced Order Aeroservoelastic Analysis of VeryFlexible Aircraft

CL,f + CL,g

Cm,f + Cm,g

δ

wg(x, t) wg(y, t)

Structural node

Beam model

Aerodynamic section

(a) Trailing–edge control surfaces,δ, and atmospheric gust,wg

CL,s

Cm,s

θ

h

α∞ U∞

(b) Wing section structural deformations (h: bending,θ: torsion)

Figure 1.4 Schematic of a slender wing structure showing various contributions to the aerodynamic
loads
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Denote byα the effective angle of incidence of the wing section which includes the
freestream angle of attack,α∞, and the wing torsional deformation,θ. Scale then the vertical
displacement,h, by the semi–chord of the wing cross section,ξ = h/b. The resulting force
and moment coefficients for any arbitrary section motion in pitch and plunge are formulated
as

CL,s (τ) = π (ξ′′ (τ) − ah α
′′ (τ) + α′ (τ)) +

2 π
(

α0 + ξ′
0
+ (1/2 − ah)α

′
0

)

φw (τ) +

2 π

∫ τ

0

φw (τ − σ)
(

α′ (σ) + ξ′′ (σ) + (1/2 − ah)α
′′ (σ)

)

dσ (1.2)

Cm,s (τ) = π (1/2 + ah)
(

α0 + ξ′0 + (1/2 − ah)α
′
0

)

φw (τ) +

π (1/2 + ah)

∫ τ

0

φw (τ − σ)
(

α′ (σ) + ξ′′ (σ) + (1/2 − ah)α
′′ (σ)

)

dσ+

π

2
ah (ξ

′′ (τ) − ah α
′′ (τ)) − (1/2 − ah)

π

2
α′ (τ) −

π

16
α′′ (τ) (1.3)

The Wagner function,φw, accounts for the influence of the shed wake, and is known exactly
in terms of Bessel functions. For a practical evaluation of the integral, the exponential
approximation of ’Jones (1940)’ is used

φw (τ) = 1 − Ψ1 e
−ε1 τ − Ψ2 e

−ε2 τ (1.4)

where the constants areΨ1 = 0.165, Ψ2 = 0.335, ε1 = 0.0455, andε2 = 0.3.

Trailing–edge Flap Rotation

The second term on the right hand side of Equation (1.1) represents the increment in the
aerodynamic loads for any arbitrary trailing–edge rotation, see Figure 1.4(a). The build–up
in the loads not only depends on the instantaneous flap rotation but also on its time derivatives
(velocity and acceleration). The relations between the control surface input,δ, and the load
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coefficients are

CL,f (τ) = − T4 δ
′ (τ) − T1 δ

′′ (τ) +

2 π

[(

1

π
T10 δ0 +

1

2 π
T11 δ

′
0

)

φw (τ) +

∫ τ

0

(

1

π
T10 δ

′ +
1

2 π
T11 δ

′′

)

φw (τ − σ) dσ

]

(1.5)

Cm,f (τ) = −
(T4 + T10)

2
δ (τ) −

(

T1 − T8 − (c − ah) T4 + 1

2
T11

)

2
δ′ (τ) +

(T7 + (c − ah) T1)

2
δ′′ (τ) +

π (ah + 1/2)

[(

1

π
T10 δ0 +

1

2 π
T11 δ

′
0

)

φw (τ)) +

∫ τ

0

(

1

π
T10 δ

′ +
1

2 π
T11 δ

′′

)

φw (τ − σ) dσ

]

(1.6)

The coefficientsT1, T4, T7, T8, T10, andT11 are geometric constants that depend on the size
of the trailing–edge flap relative to the chord of the wing section. The reader may find the full
expressions in ’Da Ronch et al. (2014)’.

Atmospheric Gust

The last term on the right hand side of Equation (1.1) describes the effect that atmospheric
gust and turbulence have on the build–up of aerodynamic loads. For an arbitrary gust time–
history, the load coefficients are computed by the followingrelations.

CL,g (τ) = 2 π

(

wg0 Ψk (τ) +

∫ τ

0

Ψk (τ − σ)
dwg

dσ
dσ

)

(1.7)

Cm,g (τ) = π (1/2 + ah)

(

wg0 Ψk (τ) +

∫ τ

0

Ψk (τ − σ)
dwg

dσ
dσ

)

(1.8)

where the gust intensity,wg, is intended normalised by the freestream speed. The integration
uses the exponential approximation of the Küssner function

Ψk (τ) = 1 − Ψ3 e
−ε3 τ − Ψ4 e

−ε4 τ (1.9)

where the coefficientsΨ3 = 0.5792, Ψ4 = 0.4208, ε3 = 0.1393, and ε4 = 1.802 are
from ’Leishman (1994)’. Appropriate forms ofwg to model realistic atmospheric gust and
turbulence time–histories are presented in some detail in Section 1.2.4.
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1.2.3 Flexible–body Dynamics Model

For the structural model, the geometrically–exact nonlinear beam equations are
used ’Hesse and Palacios (2012)’. Results are obtained using two–noded displacement–
based elements. In a displacement–based formulation, nonlinearities arising from large
deformations are cubic terms, as opposed to an intrinsic description where they appear up
to second order. The coupled flexible multibody nonlinear equations are expressed in the
form

M (ws)

{

ẅs

ẅr

}

+ Qgyr ( ˙ws, ws, wr)

{

ẇs

ẇr

}

+ Qstiff (ws)

{

ws

wr

}

= RF

(1.10)
The subscriptss and r denote elastic and rigid–body degrees of freedom, respectively.
The termsQgyr andQstiff indicate, respectively, gyroscopic and elastic forces, whereasRF

contains all external forces acting on the system, including aerodynamic contributions. More
details into the structural modelling of multibody dynamics using finite elements can be
found in ’Geradin and Cardona (2001)’.

Equation (1.10) is coupled with the linearised quaternion equations that propagate the
orientation of the body frame with respect to the inertial frame.

ζ̇i + CQR ẇr + CQQ ζi = 0 (1.11)

1.2.4 Atmospheric Gust and Turbulence Models

In flight, aircraft regularly encounter atmospheric turbulence. The turbulence is regarded for
linear analysis as a set of component velocities superimposed on the background steady
flow. The aircraft experiences rapid changes in lift and moment forces, which cause rigid
and flexible dynamic responses of the entire aircraft. Theseresponses can cause passenger
discomfort and introduce large loads on the structure whichmust be accounted for during
the design stage to ensure aircraft safety. The models used for the prediction of the aircraft
response have to accommodate those events that are perceived as discrete, and usually
described as gusts, as well as the phenomena described as continuous turbulence.

A concise summary of the mathematical models used to approximate discrete and
continuous turbulent events is given next. The reader may find a more extensive review
in ’Etkin (1981)’.

Discrete Deterministic Gusts

Discrete events are isolated encounters with steep gradients in the speed of air, typically
occurring at the edges of thermals and downdrafts, in the wakes of structures or mountains,
or at temperature inversions. Discrete gusts may also appear as rare extremes of turbulence in
clouds, etc., possibly associated with organised structures embedded in the otherwise random
background. These organised extremes are not adequately allowed for in the usual Gaussian
models of continuous random turbulence and specialised discrete models are then to be used.
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The most common discrete gust model, which has evolved over the years from the isolated
sharped–edge gust function in the earliest airworthiness requirements, is the "one–minus–
cosine" function. Its formulation is

wg (x, t) =

{

1

2
wg0

(

1− cos
(

π U∞

Lg

(

t− x
U∞

)))

x ∈ [tU∞ − 2Lg, tU∞]

0 otherwise
(1.12)

wherewg0 is the gust intensity,Lg is the gust length, andx is the position of a point on
the aircraft relative to an aircraft–attached frame of reference, see Figure (1.5). The design
gust velocity,wg0, varies with the gust length, altitude, and speed of flight ’Hoblit (1988)’.
In the simple case of Equation (1.12), the gust intensity depends on one spatial coordinate,
x, in addition to the time coordinate,t. The rate of change of the gust intensity at different
points located on the aircraft, e.g. main wing and tailplane, largely depends on two ratios,
see Figure 1.5. The first ratio describes the relative size ofthe gust compared to the aircraft
characteristic length. The second ratio relates to the timeit takes for the aircraft to fly over
the gusty field. As the above two ratios decrease, the dependence on the spatial coordinate
becomes more and more apparent and should be modelled appropriately in simulating the
aircraft response to relatively short gusts.

Lg 2Lg
x

wg

wg0

U∞

(a) Frames in relative motion

Lg 2Lg
x

wg

wg0

U∞

(b) Gust penetration effect

Figure 1.5 Discrete model of a "one–minus–cosine" gust

Random Turbulence

Random turbulence is a chaotic motion of the air that is described by its statistical properties.
The main statistical features that need to be considered are: stationarity, homogeneity,
isotropy, time and distance scales, probability distributions, correlations, and spectra.
Atmospheric turbulence is a vector process in which the velocity vector is a random function
of the position vector and of time. Because of the complexityintroduced by this multi–
dimensionality, the description of turbulence and the associated input/response problems are
often simplified, whether justified or not, to a one–dimensional representation.
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The engineering model of random turbulence at altitude has been developed over many
years, see for example ’Houbolt (1973)’. It is now widely accepted that it is satisfactory
to treat atmospheric turbulence as frozen, homogeneous, and isotropic in relatively large
patches. The frozen–field assumption, closely allied to Taylor’s hypothesis, is that turbulent
velocities do not change during the time of passage of the airplane. This is a valid assumption
in most cases. The Dryden and the von Kármán models are considered adequate engineering
models to predict the correlation and spectra, with the weight of experimental evidence
favouring the latter. Although there is much evidence that turbulence is not in fact a Gaussian
process, with small and large values both occurring more frequently than in a normal
distribution, the assumption that individual patches are Gaussian is widely used because of
the great analytical advantage it offers.

A commonly used spectrum that matches experimental data is the von Kármán model. The
power spectral density (PSD, in [m2/(s2 Hz)]) for the vertical direction,Φz, according to the
Military Specification MIL–F–8785C, see ’Moorhouse and Woodcock (1982)’, is given by

Φz (Ω) =
σ2

z 2Lz

U∞

1 + 8/3 (aLz Ω)
2

(

1 + (aLz Ω)
2

)11/6
(1.13)

whereΩ = ω/U∞ is the scaled frequency (in [rad/m]),σz is the root mean square turbulence
velocity (in [m/s]), Lz is the characteristic scale wavelength of the turbulence (in [m]),
and a = 1.339 is the von Kármán constant. Figure 1.6 illustrates the PSD spectrum as
function of the frequency. Whilst the system response in thefrequency domain to a random
turbulence can easily be calculated once the frequency response function is known, this
approach is linear and does not permit nonlinear effects to be included in the analysis. An
alternative approach is to generate a random turbulence time signal with the required spectral
characteristics defined in Equation (1.13), and solve the nonlinear system of equations in the
time domain.

A method to calculate the time domain response of a nonlinearaeroelastic model to random
turbulence is based on the following steps. First, take the Fourier transform of a unit variance
band–limited white noise signal,X (Ω), and pass it through a filter defined as the square root
of the PSD spectrum in Equation (1.13),Hz (Ω). Then, calculate the output signal using the
relation

Wg (Ω) = Hz (Ω) X (Ω) (1.14)

Take the inverse Fourier transform ofWg (Ω) to obtain the random turbulence in the time
domain,wg (t). This method, which applies twice a Fourier transform, is preferred over an
alternative method that does not make use of the Fourier transform. More details may be
found in ’Gianfrancesco (2014)’.

The method described above is implemented in an open source MATLAB toolbox and
is referred to as the Von Kármán Turbulence Generator (VKTG). The VKTG toolbox
implements the mathematical representations of random turbulence defined in the Military
Specification MIL–F–8785C and Military Handbook MIL–HDBK–1797, allowing for the
dependence of the root mean square turbulent velocity and turbulence length scale on aircraft
mission parameters and weather conditions. As shown in Figure 1.6, the PSD of the VKTG
model shows a closer correlation at higher frequencies withthe von Kármán spectrum of
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Equation (1.13) compared to the off–the–shelf MATLAB/SIMULINK model. Note that the
VKTG toolbox accompanying this Chapter is also available online 4.
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Figure 1.6 Random vertical gust intensity using the Von Kármán spectral representation (Military
Specification: MIL–F–8785C; flight speed:V = 280 m/s; altitude:h = 10, 000 m; and turbulence
intensity: "light 10−2"); the terms "Simulink" and "VKTG" denote, respectively, the Von Kármán
Wind Turbulence Model block of MATLAB and the present Von Kármán Turbulence Generator
implementation

1.2.5 Numerical Implementation

With the previous Sections as background, the coupled dynamics of a flexible flying aircraft
encountering atmospheric gusts and turbulence requires a careful integration of each single
discipline within a comprehensive simulation environment. It is generally possible to recast
the complete system of equations in state–space form as thiscomes convenient for the
derivation of the reduced order model, as discussed in Section 1.3.

1.3 Coupled Reduced Order Models

The numerical solution of a nonlinear system in the time domain requires the integration of
the differential equations that govern its dynamics. Numerical schemes are often referred to
as being explicit or implicit. For the conditional stability of explicit methods, a small time
step is required to solve the small time scales that are always present in spatially detailed
models but that are not needed in our analysis. Implicit methods that are more complex to
program and require more computational effort in each solution step are therefore preferred
because they allow for larger time step sizes. As most of the computational methods to solve

4http://www.personal.soton.ac.uk/adr1d12/, retrieved February 24, 2015.

http://www.personal.soton.ac.uk/adr1d12/
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nonlinear systems is developed for first–order ordinary differential equations (ODEs), it is
convenient to reformulate the coupled system as a system of first–order ODEs.

Let us consider as starting point the nonlinear system

ẋ = F (x(t), u(t), d(t), t) (1.15)

where the nonlinear operatorF : Rn̂ → R
n depends on the specific formulation used. For

brevity, ˙(•) denotes time derivative,d(•)/dt. Consider the coupled system partitioned as
follows

x =







xf

xs

xr







, F =







Ff

Fs

Fr







(1.16)

where the sub–indexesf, s, and r indicate, respectively, the fluid, structural, and rigid
body (flight dynamics) degrees of freedom. Denote byu the vector of manipulable inputs,
generally used for control purposes, and byd the vector of exogenous disturbances perturbing
the system. Indicate theith component ofF by fi. If the components ofF are differentiable
atx ∈ Rn, define the Jacobian matrixA ∈ Rn × Rn as

aij (x) =
∂ fi
∂xj

(x) (1.17)

or in matrix form as

A (x) =
∂ F

∂x
(x) (1.18)

for any constant vector of manipulable inputs and exogenousdisturbances,̃u and d̃,
respectively.

1.3.1 Approaches to Model Reduction

The difficulty with Equation (1.15) is the size of the computational model which, for realistic
applications, may includeO

(

104
)

to O
(

107
)

degrees of freedom. To accelerate the time
domain analysis and allow designing a low–order control system, a reduced order model of
Equation (1.15) is often needed in practise. Two approachesto reduce the size of a system
exist.

The first approach is based on system identification techniques that attempt to replace
the original large computational model, which is treated asa "black box", with a system of
smaller size. Often the model structure is simplified allowing for some forms of nonlinearity
to be included. The advantages are the easiness of the numerical implementation and the
availability of various techniques (Volterra series, indicial functions, surrogate models, etc.).
The disadvantages are the lack of robustness on the system parameters and the limited validity
and certainty for conditions outside those used to generatethe model. More details may be
found in ’Da Ronch et al. (2011); Ghoreyshi et al. (2013)’.

The second approach involves a manipulation of the governing equations in
Equation (1.15). The advantages are the ability to retain nonlinear effects in a smaller system
and that the system validity depends on the assumptions madeto derive the model. The
disadvantage is the added complexity in the model implementation. Two well–established
reduced order models for applications in unsteady aerodynamics and aeroelasticity are
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based on the harmonic balance method, ’Da Ronch et al. (2013a)’, and nonlinear model
projection, ’Da Ronch et al. (2012)’, respectively.

The approach to model reduction first presented in ’Da Ronch et al. (2012)’ and thereafter
applied extensively to various problems and test cases, see’Da Ronch et al. (2013b, 2014,
2013c); Tantaroudas et al. (2014); Timme et al. (2013)’, is discussed in more detail in the
following sections. The approach is based on the manipulation of the governing equations
and consists of a systematic procedure to generate both linear and nonlinear reduced order
models, independently of the mathematical formulation used in the coupled system. The
approach also satisfies the properties outlined in Section 1.1.1.

1.3.2 Stability Analysis

Neglect first the explicit dependence of the system in Equation (1.15) on the time variable,
and consider a constant vector of manipulable inputs and exogenous disturbances,ũ andd̃.
Here, for simplicity,d̃ = 0 is assumed. An equilibrium point,̃x, satisfies the relation

F (x̃, ũ) = 0 (1.19)

The stability of the system in the neighbourhood of the equilibrium point, x̃, is studied
through an eigenvalue analysis. Define a small increment with respect to the equilibrium
point,w = x− x̃. The linearised homogeneous system around the equilibriumpoint, x̃,
takes the form

ẇ = Aw (1.20)

where A is the Jacobian matrix, Equation (1.18). Let us consider a solution of
Equation (1.20) in the exponential form

w = φ eλ t (1.21)

where λ is a constant scalar andφ is a constantn–dimensional vector. The right and
left eigenvalue problems associated with this ansatz, after substituting Equation (1.21) into
Equation (1.20), are

right: λi φi = Aφi i = 1, 2, . . . , n
left: λiψi = AT ψi i = 1, 2, . . . , n

(1.22)

For large computational models, the solution of the above eigenvalue problems using off–
the–shelf algorithms is unfeasible. Because the subject isout of the scope of this Chapter, the
interested reader is referred to ’Badcock et al. (2011)’. Here, let us assume an appropriate
eigenvalue solver is available for solving the right and left problems.

It is convenient to normalise the eigenvectors to satisfy the biorthonormality conditions.
This will be of great benefit when deriving the reduced order model.

φH
i φi = 1 i = 1, 2, . . . , n
ψH

j φi = δij i, j = 1, 2, . . . , n
(1.23)

so that the relation holds

ψH
j Aφi = λi δij i, j = 1, 2, . . . , n (1.24)

whereδij is the Kronecker delta and the operator(•)H indicates the Hermitian transpose,
e.g. the transpose of the complex conjugate.
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1.3.3 Model Projection

An attempt to solve Equation (1.15) may not only require large computational resources but
it is also not well suited to design a low–order control system. The idea of transforming
the above set ofn simultaneous nonlinear equations into one that lends itself to an
easier solution arises naturally. As common in structural dynamics, a transformation of
coordinates defined in terms of then orthonormal modal vectorsφ1,φ2, . . . ,φn, is an
efficient choice, ’Meirovitch (1990)’. Let definew in the form of a linear combination of
modal vectors

w = φ1 z1 + φ̄1 z̄1 + φ2 z2 + φ̄2 z̄2 + . . . + φn zn + φ̄n z̄n
=

∑n
i=1

(

φi zi + φ̄i z̄i
) (1.25)

where the over–bar sign̄(•) indicates the conjugate. It is worth noting that the solution
of the eigenvalue problems in Equation (1.22) provides the eigenvalues and the associated
eigenvectors of the coupled system, describing the interactions between the fluid, structure,
and flight mechanics fields. It follows that the transformation of coordinates defined in
Equation (1.25) generalises the well–known approach used in structural dynamics to coupled
problems. The approach retains the high efficiency of the basis functions, created using the
coupled modal vectors, to allow fast convergence even for non–homogeneous cases.

Modal analysis in structural dynamics is a powerful tool to ensure good approximations of
the "exact" solution obtained through time integration of Equation (1.15) using a relatively
small number of modal vectors. This property holds for the coupled model presented herein.
Because the structural response is generally well represented with the low–frequency normal
modes, it is not unexpected that a small basis of coupled modeshapes dominated by the
motion of the structure is critical for the aeroelastic response.

To achieve a significant reduction in the system size, a smallbasis of biorthonormal
coupled eigenvectors and associated eigenvalues representative of the system dynamics
defined in Equation (1.15) should be identified. Let us collect m coupled eigensolutions in
the modal matrices of the right and left eigenvectors

Λ = Diag(λ1, λ2, . . . , λm)
Φ = [φ1, φ2, . . . , φm]
Ψ = [ψ1, ψ2, . . . , ψm]

(1.26)

where the diagonal matrixΛ has dimension(m×m) and the matricesΦ and Ψ have
dimension(n×m).

Truncate then the linear combination in Equation (1.25) to includem ≪ n terms

w ≈

m
∑

i=1

(

φi zi + φ̄i z̄i
)

= Φ z + Φ̄ z̄ (1.27)

where the columnsφi of the(n×m) matrixΦ span the subspace within which the system
motion is now restricted. The transformation of coordinates relates the state space vector of
the large order coupled model,w ∈ Rn, with the state space vector of the reduced order
coupled model,z ∈ Cm. To ensure convergence of the results, it is common to start with
a small basis of coupled eigenvectors, which is then expanded until the results have fully
converged. A study to investigate the model convergence is detailed in Section 1.3.6.
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1.3.4 Linear Reduced Order Model

Let us start with the linearised model of Equation (1.15). For simplicity, consider a constant
equilibrium point,x̃, when no control inputs and disturbances are acting on the system,
u = 0 andd = 0, respectively. Note thatu andd are independent of the equilibrium point,
whereasx̃ depends on both control and disturbance vectors. It followsthat the linearised
system has the form

ẇ = Aw +
∂ F

∂u
(x̃) u +

∂ F

∂d
(x̃) d = Aw + Bu u + Bd d (1.28)

As the above linearised system still retains the size of the coupled nonlinear system,
the transformation of coordinates may be used to derive a linear reduced order model.
First, substitute Equation (1.27) into Equation (1.28). Then, pre–multiply each term by the
Hermitian transpose of the left modal matrix,Ψ

H . Recalling the biorthonormal properties in
Equation (1.23) and (1.24), it follows that a linear reducedorder model has the form

ż = Diag(λi) z + Bruu + Brd d (1.29)

whereBru = Ψ
H Bu and Brd = Ψ

H Bd. Solving the linear reduced order model in
Equation (1.29) offers two important computational advantages. The first advantage is
that the system consists of a set of independent (uncoupled)equations by exploiting the
biorthonormal properties of the modal basis which makes thesystem much easier to solve.
The second advantage is that we have achieved a reduction in the system size,m ≪ n, by
exploiting very efficient basis functions. As a result, a very efficient model of small size can
be used to predict the time domain response.

1.3.5 Nonlinear Reduced Order Model

Next, let us consider a way to incorporate nonlinear effectsin the reduced order model
formulation. There are two basic requisites to meet. The first requisite relates to the difficulty
of the implementation and the cost of model generation, which should be as low as possible
to facilitate its exploitation. The second requisite is that it is desirable to have a formulation
that is independent of the equations used to create the modelin a way that the approach to
nonlinear model reduction is systematic and applicable, inprinciple, to any coupled system.
The method presented in ’Da Ronch et al. (2012)’ meets both requirements.

An approach to systematically derive nonlinear reduced order models indeed exists.
Expand the nonlinear system in Equation (1.15) in Taylor’s series retaining terms up to third
order in the perturbation. It follows that

ẇ = Aw + Bu u + Bd d +
1

2!
B (w, w) +

1

3!
C (w, w, w) (1.30)

where the additional terms, compared to Equation (1.28), indicate the second and third order
Jacobian operators. It is immediate to verify that the operatorsB andC are, respectively,
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bi–linear and tri–linear with respect to the arguments and are analytically obtained as

B (w, w) =

n
∑

i=1

n
∑

j=1

∂2F

∂xi ∂xj
wi wj (1.31)

C (w, w, w) =
n
∑

i=1

n
∑

j=1

n
∑

k=1

∂3 F

∂xi ∂xj ∂xk
wi wj wk (1.32)

The difficulty with substituting the transformation of coordinates, Equation (1.27), into
Equation (1.30) is the treatment of the quadratic and cubic terms,B andC, respectively.
After some manipulations and recalling the linearity of thehigh order operators, a relatively
simple relation is found. For brevity, the form of the quadratic term is reported

B (z, z) =
n
∑

r=1

n
∑

s=1

(B (φr φs) zr zs + B
(

φr φ̄s

)

zr z̄s +

B
(

φ̄r φs

)

z̄r zs + B
(

φ̄r φ̄s

)

z̄r z̄s
)

(1.33)

The interested reader is invited to refer to ’Da Ronch et al. (2012)’ for the relation of the
cubic term. Here, it is sufficient to note that the double sum may be further simplified taking
advantage of the bi–linearity ofB, e.g.B(φr,φs) = B(φs,φr), reducing the total number
of calculations required to computeB(z, z).

The final step, as already done for the linear reduced order model, is to pre–multiply each
term of Equation (1.30), once expressed in function ofz and not ofw, by the Hermitian
transpose of the left modal matrix,ΨH . The nonlinear reduced order model has therefore the
form

ż = Diag(λi) z + Bru u + Brd d + fnln (z) (1.34)

wherefnln(z) contains the nonlinear terms of the quadratic and cubic operators.

Numerical Implementation

A final note on the numerical approach used to calculate the higher order terms of the
nonlinear reduced order model. It is possible to calculate all the contributions without having
to resort to complex arithmetic, or to calculating all the second and third order partial
derivatives analytically. Because it is only their action on vectors that is required, matrix–
free products may be used. The evaluation of the finite differences suffers from the truncation
error for values of the step size which are too large, and fromthe rounding error for values
which are too small. The latter effect is more significant forthe coefficients that include a
third Jacobian product. In cases where convergence of the finite differences for various step
sizes is not found, it is possible to resort to available libraries supporting extended order
arithmetics, see ’Da Ronch et al. (2013c)’.

The approach to the generation of the reduced order model detailed above leads to the
following set of equations. The equations of the reduced order model are independent of the
specific formulation used for the full order model, and are always expressed in a state–space
form.

{

ż = Diag(λi) z + Bru u + Brd d + fnln (z)
w = Φ z + Φ̄ z̄

(1.35)



20 Nonlinear Reduced Order Aeroservoelastic Analysis of VeryFlexible Aircraft

The dynamics of the nonlinear reduced order model in Equation (1.35) is given in terms
of a complex–valued state vector,z, which is of small size. The output equation defines
how the physical degrees of freedom of the original full order model can be retrieved if
necessary. The control inputs and disturbances are in the vectorsu andd, respectively. For
the linear aerodynamics described in Section 1.2.2, it is apparent that the control surface
rotation, angular velocity and acceleration are treated ascommanded inputs. Keeping these
quantities as separate inputs is not convenient, as the three quantities are all linked by a
time integration/derivation relationship. Referring to ’Da Ronch et al. (2014)’, it is possible
to realise that the actual commanded control input is the angular acceleration of the control
surface, and that the angular velocity and rotation are easily deduced by numerical time
integration.

1.3.6 Aircraft Test Case Gust Response

Having presented a set of mathematical models for the description of the flexible aircraft
dynamics and a model reduction strategy to reduce costs, a demonstration of these tools is
now performed for the flexible unmanned aircraft test case ofSection 1.2.1. The freestream
conditions areU∞ = 59 m/s,α∞ = 4 deg, andρ∞ = 0.0789 kg/m3. In flight, the aircraft
exhibits large wing deformations. The deformed shape is computed from a static aeroelastic
solution and taken as the equilibrium point for the reduced model generation. The coupled
large order model, hereafter referred to as full order model(FOM), consists of 540 degrees
of freedom, 324 associated with the structural model and 216with the aerodynamic model.

First, the right and left eigenvalue problems are solved around the static aeroelastic
deformed shape. As the identification of an adequate basis for the model projection is critical
for the analysis, a preliminary study was done to ensure convergence by increasing the size
of the modal basis, Equation (1.26). A reasonable approach is to initially include a number
of coupled modes that are dominated by the structural response. These modes are associated
with the normal modes of the structure when the surrounding fluid is removed. In addition to
this clear choice, the inclusion of the so called "gust modes" is needed to enrich the modal
basis for gust loads prediction. In linear aerodynamics, these modes are easily identified
being related to the smallest Küssner constant,ǫ3 = 0.1393. The eigenvalues of the "gust
modes" areλi = −ǫ3U∞/bi (in [Hz]). Tests to ensure convergence of the modal basis were
done using up to eight coupled eigenvalues, as summarised inTable 1.2. The first five coupled
modes are mainly dominated by the structural response and are traced at this flight conditions
from their corresponding normal modes of the structure. Theremaining modes are "gust
modes" and provide the mechanisms to describe the influence of the atmospheric gust on the
structural response. The variation of the frequencies of the coupled modeshapes with respect
to the freestream speed is shown in Figure 1.7.

The convergence of a linear reduced order model for increasing size of the modal basis is
shown in Figure 1.8. The open–loop response is computed for arandom turbulence with
its statistical properties defined by the von Kármán spectrum. The reduced order model
predictions are compared with those of the original large order model, of dimension 540
degrees of freedom. A good agreement is observed with as low as eight coupled modes for the
reduced order model. From here onward, the terms "FOM" and "ROM" denote, respectively,
the full order model and the reduced order model. To emphasise when a model is nonlinear,
"N" is appended to the short–hand notation.
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Table 1.2 Basis of coupled eigenvalues used for the model
projection, see Equation (1.26)

Mode Modeshape Real part Imaginary part
number

1 First bending -8.82·10−1
±1.97

2 Second bending -8.04·10−1
±9.81·101

3 First torsion -1.71·10−1
±1.45·101

4 Third bending -7.03·10−1
±2.17·101

5 Fourth bending -6.04·10−1
±4.19·101

6 Gust mode -9.90 0.00
7 Gust mode -1.01·101 0.00
8 Gust mode -1.01·101 0.00

Real and imaginary parts in [Hz]
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Figure 1.7 Dependence on freestream speed of coupled aeroelastic frequencies for: (a) structurally–
dominated modeshapes, and (b) "gust modeshapes"
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Figure 1.8 Gust response of the aircraft test case (U∞ = 59 m/s,α∞ = 4 deg, andρ∞ = 0.0789
kg/m3); (a) convergence for increasing number of coupled modes, and (b) vertical gust intensity
normalised byU∞ (Military specification: MIL-F-8785C; and turbulence intensity: "severe10−5")

Next, the reduced order model is demonstrated for the efficient search of the worst–case
gust. The search is conducted for the "one–minus–cosine" gust family considering gust
wavelengths between 0 and 776 aircraft mean aerodynamic chords (with a step size of 9.7). A
strong gust intensity, 14% of the freestream speed, causes large wing structural deformations.
In addition to the linear reduced model above, a nonlinear reduced order model was generated
with the same modes but including terms up to second order. The inclusion of higher order
terms did not modify the convergence properties of the model. The search was performed
using both the full and reduced order models and 80 calculations were performed in total.
Figure 1.9 illustrates the largest upward and downward structural deflections at the wing tip
for various gust wavelengths that are reported along the horizontal axis. The worst–case gust
causing the largest structural deformations is seen to havea 4 s duration, that corresponds
to a length of 197 mean aerodynamic chords at the flying speed of 59 m/s. A comparison of
the dynamic response to the worst–case gust is made between the linearised and nonlinear
models, and between the full and reduced order models. Deformations of 9 m are considered
large as the wing span is 17.75 m, and it is not unexpected in this case that the linearised
(full and reduced) models over–predict the deformations. The computational cost to obtain
the gust profiles in Figure 1.9 with the reduced models was a fraction of that needed for the
original full model: for the linear case, the reduced model demonstrated a speedup of about
10 times; for the nonlinear case, an increased performance of about 30 times was recorded.
These indicative values are expected to increase considerably as the size of the original model
increases ’Da Ronch et al. (2013c)’, demonstrating the practical use and advantage of the
developed approach to model reduction.

To conclude, it is demonstrated through application to a realistic HALE test case that the
reduced order models significantly reduce the computational cost for parametric worst–case
gust searches. Section 1.4.3 will also show that the reducedorder models are adequate for a
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Figure 1.9 Worst–case gust search for the "one–minus–cosine" gust family; (a) profile of largest
structural deflections at the wing tip, and (b) dynamic response for the tuned worst–case gust

variety of control designs for gust load alleviation.

1.4 Control System Design

Previous work by the authors has considered the systematic generation of nonlinear reduced
models that not only capture the system nonlinearities but also are parametrised with respect
to flow conditions (freestream speed, density, etc.) ’Da Ronch et al. (2012)’, ’Da Ronch et al.
(2013b)’, ’Papatheou et al. (2013)’. The reduced models were used forH∞ control design
for gust load alleviation. In general, theH∞ control provides strong disturbance rejection
but, in principle, a controller that can adapt during changes of the flow conditions such
as airspeed or density is desired. Recently, an adaptive controller was found efficient
for gust load alleviation for a flexible wing, ’Tantaroudas et al. (2014)’. That study, in
addition to a comparison of control design performance, emphasised the fact that inherently
different control methodologies, from robust controllersto nonlinear adaptive controllers,
can be designed based on the very same nonlinear reduced order model represented by
Equation (1.35).

This Section continues with an overview of the theory behindtwo control strategies,H∞

synthesis in Section 1.4.1 and model reference adaptive control in Section 1.4.2. Finally,
Section 1.4.3 presents a comparison for the gust loads alleviation of the aircraft test case
using the two control strategies.

1.4.1 H
∞

Synthesis

Starting from Equation (1.35), a manipulation is needed to recast the system of equations for
H∞ control synthesis. First, observe that the equations of thereduced order model dynamics
are complex–valued and this is incompatible for control design. The system of equations is
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recast easily in real form, splitting the real and imaginaryparts into separate equations and
doubling its original dimension. Second, remind that for linear aerodynamics, the rotation
δ, angular velocityδ′ and accelerationδ′′ of a control surface contribute to the built–up
of the aerodynamic loads. As an interdependency exists between these three quantities, the
actual commanded input is chosen to be the control surface angular acceleration, from which
the deflection and angular velocity can be calculated numerically. It follows that it is more
convenient to perform control design synthesis around the following set of equations rather
than Equation (1.35).







ẋ = Ax + Bu + Dwe + Fnln (x)
yctrl = C1 x + D11we + D12 u

ymsrd = C2 x + D21we + D22 u

(1.36)

wherewe = (d,wd)
T , with wd indicating an artificial disturbance used in tuning the

variables of the control synthesis, andx = (Real(z), Imag(z), δ, δ′)T . The output is
distinguished by what the controller is aiming to control,yctrl, and what the controller has
information about,ymsrd.

The H∞ control problem with additional input–shaping techniquesfor control tuning
purposes for the classicalH∞ problem formulation is written as follows, ’Zhou and Doyle
(1998)’,
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The resulting controller has the linear form

u (s) = K (s) ymsrd(s) (1.38)

whereK (s) is theH∞ controller transfer function in the Laplace domain. It is one that aims
to minimise the transfer of the disturbance signal fromd to yctrl by creating a controller that
uses information fromymsrd to change the inputu. This can be written as

sup
∫∞

0
||ymsrd(t) ||

2 dt

sup
∫∞

0
||d (t) ||2 dt

≤ γ (1.39)

whereγ represents the ratio of the maximum output energy to the maximum input energy.
The problem is expanded to include a weight on inputs,Kc, which carries over to an

additional element on controlled output and a weight on measurement noise,Kd, which
carries over to an additional element on measured output. TheH∞ control is derived on the
basis of the linearised model and is applied directly to the nonlinear full order model by using
the reduced matrices from the nonlinear model order reduction framework.

1.4.2 Model Reference Adaptive Control

Assume the nonlinear reduced order model in the form of Equation (1.35), and consider an
ideal model reference in the form

ẋm = Am xm + Bm u + Bd d + f̄nln,m (xm) (1.40)
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Matrix Am is a stable Hurwitz matrix that satisfies the desired properties of the reference
system. This could mean eigenvalues with increased dampingcompared to the actual
aeroelastic system. MatrixBm is user defined and describes the influence of the control
inputs on the states of the reference model. The states of thereference model due to the
increased damping in matrixAm will decay to zero faster under the same disturbances
or flap actuation while their magnitude will be in general smaller as well. The physical
displacements of the system can be retrieved by using the output equation.

The goal is to find a dynamic control input,u, related to the flap actuation that satisfies
the conditionlimt→∞ ‖y (t)− ym (t) ‖. The exact control feedback for the model matching
conditions is defined as

u = K∗
x x + K∗

r r (1.41)

wherer is a reference signal applied to both systems, as shown in Figure 1.10, representing
in our case the flap angle, andK∗

x, K
∗
r are the exact gains acting on the states and control

input to match the two models. Substituting Equation (1.41)in Equation (1.36) and satisfying
the model matching conditions yield

{

A + BcK
∗
x = Am

BcK
∗
r = Bm

(1.42)

SinceA andBc are considered to be unknown to the controller, the values ofK∗
x,K

∗
r in

Equation (1.41) are also unknown at the initial time and the actual control signal applied at
the current time–step is defined as

u = Kxx + Krr (1.43)

The gainsKx andKr in Equation (1.43) are dynamic gains that need to be solved and at the
end will be required to converge to the values that provide a solution to Equation (1.42).

However, in adaptive control systems there is a big uncertainty about the convergence
of the adaptive gains even in deterministic ideal situations. In presence of stochastic
disturbances, this issue becomes even more challenging andcomplicated and this topic
remained open for many years in nonlinear adaptive control design. There are many cases
where the adaptive gains converge to different values than the actual analytical pre–calculated
ideal gains even without the presence of disturbances. Recently, ’Barkana (2005)’ showed
that in cases where the adaptive gains do not reach the uniquesolution that the preliminary
design suggests, it is not because there is something wrong with the control design. This
is because the adaptive controller only needs a specific set of gains that correspond to a
particular input command compared to a unique solution of gains for all inputs that an exact
design suggests.

The closed loop dynamics of the nonlinear reduced model at this point may be expressed
as

ẋ = (A + BcKx)x + BcKrr + Bdd + fnln (x) (1.44)

Letθ∗ = {K∗
x K∗

r }
T andθ = {Kx Kr}

T . The estimation error between the instantaneous
and the ideal gains is defined as

θ̄ = θ∗ − θ =
(

θ̄x θ̄r
)T

(1.45)
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with θ̄x =K∗
x −Kx andθ̄r =K∗

r −Kr. Now defineφ = (x, r)T . In that case the closed
loop system dynamics in Equation (1.44) are expressed as

ẋ = (A + BcK
∗
x )x + BcK

∗
rr −Bcθ̄xx − Bcθ̄rr + Bdd + fnl (x)

= Am x + Bmr − Bcφ
T θ̄ + Bdd + fnl (x) (1.46)

For the purpose of the stability proof of the closed loop system one needs to define the error
dynamics between the two systems ’Barkana (2013)’.

e = x− xm (1.47)

The derivative of which, expresses the rate of change between the two systems and can be
written as

ė = ẋ− ẋm

= Am (x− xm) − Bcφ
T θ̄ +

(

fnl (x) − f̄nm (xm)
)

= Ame − Bcφ
T θ̄ +

(

fnl (x) − f̄nm (xm)
)

= Ame − Bcφ
T θ̄ + FDf (1.48)

At this point, the Lyapunov equation needs to be solved for the reference model because its
solution will be part of the steady part of the Lyapunov candidate function that we define and
that will lead to the stability proof of the nonlinear reduced model ’Ioannou and Sun (1996)’.

PAm + Am
TP = −Q, Q = QT ≥ 0 (1.49)

where in Equation (1.49)Q is a semi–definite positive user defined matrix. A scalar
quadratic Lyapunov functionV in e and θ̄ may be defined, such that the system becomes
asymptotically stable by satisfyingV > 0 and its time derivative is semi–definite negative
V ′ ≤ 0 ’Ioannou and Sun (1996)’. This function will provide insight on the selection of the
parameter update law of the time varying gains in Equation (1.43). The Lyapunov function

V (e, θ) = eTPe+ θ̄TΓ−1θ̄ > 0 (1.50)

is considered, whereP = P T > 0 is the solution of the algebraic Lyapunov Equation (1.49)
for a particular selection ofQ while Γ = Γ

T ≥ 0 is a user defined semi–definite positive
matrix. Note that the positiveness of the above Lyapunov function is guaranteed only if the
system under examination is a minimum–phase system which isenforced in the reduced
order model generation. Differentiating the above equation with respect to time yields

V̇ (e, θ) = ėT
(

P + P T
)

e + 2θ̄TΓ−1 ¯̇θ + ePFDf (1.51)

By substitution of the error dynamics and by using Equation (1.49), Equation (1.51) is
expanded as follows

V̇ (e, θ) = −eTQe + 2θ̄TΓ−1

(

ΓφeTPBc +
¯̇
θ
)

+ ePFDf (1.52)
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From the above equation one can determine the adaptation parameter to satisfy the semi
definite negativeness of the derivative of the Lyapunov function as

¯̇
θ = −ΓφeTPBc (1.53)

which leads to

V̇ (e, θ) = −eTQe + + ePFDf (1.54)

The term −eTQe in Equation (1.54) is negative–definite with respect toe and this
is enforced by the semi–definitive positive matrixQ. The derivative of the Lyapunov
function remains negative definite in bothx (t) and e (t) if additionally the second
term in Equation (1.54) is not too large, or alternatively ifthe following inequality is
satisfied ’Torres and Mehiel (2006)’.

||FDf || = ||fnl (x) − f̄nm (xm) || ≤
||Q||

||P ||
||x − xm|| (1.55)

However, it is impossible to come up with a general mathematical proof that ensures
the stability of the nonlinear adaptive control scheme of flexible aircraft for all types of
nonlinearities. Instead, the efficiency of the control design is demonstrated on the nonlinear
system for realistic amplitudes of external disturbances.The dynamic time varying gains in
Equation (1.43) are updated by the adaptive law so that the time derivative of the Lyapunov
function decreases along the error dynamic trajectories asin Equation (1.54). By using
Barbalat’s lemma this translates in boundness of the error dynamics with respect to the
time evolution and as a result the model matching conditionsare satisfied. In general, this
control approach is limited to minimum phase systems. Thus,when applied in unstable non–
minimum phase systems unstable zero–pole cancellation mayoccur and the error between
the two assumed models slowly diverges to infinity. However,a simple feedback based on the
Bass–Gura formula ’Ogata (2010)’ can be applied on the ROM toplace any unstable zeros on
the left half plane. The implementation of the computational algorithm may be summarised
in the block diagram shown in Figure 1.10.

1.4.3 Aircraft Test Case Gust Loads Alleviation

H∞ Synthesis

The design of a controller for loads alleviation was performed on the linear reduced model
considering the tuned worst–case gust. The good performance of the controller to suppress
the vibrations of the linear model induced by the worst–casegust is not unexpected, as
the controller was designed specifically for that scenario.However, its performance will be
shown on the nonlinear full model. The question addressed inthis Section is whether a good
alleviation can be achieved when considering a different shape of the gust, but using the
same controller. The responses shown in Figure 1.11 are for the discrete worst–case gust and
for a continuous gust model based on Von Kármán spectrum. Theaeroelastic vibrations of
the closed loop system are significantly reduced when compared to the open loop response.
However, the performance of the optimal robust controller is seen to degrade when applied
to the nonlinear system for very strong stochastic disturbances.
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r (t)
ẋm (t) = Amxm (t) +Bmu (t) +Bdd (t) + fnm

ym(t) = Cxm (t)

e(t) = (x(t)− xm(t))

ẋ(t) = Ax(t) +Bcu (t) +Bdd (t) + fnl

y(t) = Cx (t)

KGB

1

s
˙̄θ (t) = −Γφe (t)T PBc

xm

−

x

ud (t)

ud (t)

uc (t)

Figure 1.10 Block diagram of a nonlinear adaptive control algorithm

The efficiency of the optimal control approach using the reduced models for gust load
alleviation can be demonstrated in a case with noticeable differences between the linear
and nonlinear full order models, Figure 1.9. However, the performance of the optimal
robust controller is reduced when applied to the nonlinear system for very strong stochastic
disturbances.

Model Reference Adaptive Controller

The nonlinear reduced model was implemented to simplify andspeed up the calculation of
the adaptive model reference control framework. The computed control surface deflection
was applied to the nonlinear full order model which is under external disturbances. The
selection of the reference model is of critical importance as a bad choice could potentially
lead the flap to experience unrealistic rotations. In this case, a reference model was created
with additional damping added to the first bending and torsional modes. As a result, the
aeroelastic vibrations of the reference system die out morequickly than those of the plant
to be controlled. The eigenvalues of the linearised reference system are summarised in the
Table 1.3, which should be confronted with Table 1.2 for the uncontrolled system. Note that
damping is added to the first five complex conjugate eigenvalues. The eigenvalues and a
comparison between the plant model and the selected reference model for the worst case gust
are shown in Figure 1.12.

The selection of the semi–definite–positive matrixQ which provides a solution to the
Lyapunov equation given a stable Hurwitz matrix of a reference modelAm is also critical.
In this case,Q was chosen to be a diagonal matrix with elementsQii = 10−4. As shown in
Equation (1.53), the selection of the reference model will affect howe (t) will evolve during
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Figure 1.11 Gust loads alleviation response using theH∞ controller compared to the open loop
response for: (a) worst–case "one–minus–cosine" gust fromFigure 1.9, and (b) von Kármán turbulence
model



30 Nonlinear Reduced Order Aeroservoelastic Analysis of VeryFlexible Aircraft

Time [s]

W
in

g 
tip

 v
er

t d
is

p 
[m

]

0 2 4 6 8 10
-2

0

2

4

6

8

Open Loop
Reference Model

(a) Worst–case "one–minus–cosine" gust

Time [s]

W
in

g 
tip

 v
er

t d
is

p 
[m

]

0 1 2 3 4 5
-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

Open Loop
Reference Model

(b) Von Kármán turbulence

Real (  )

Im
ag

 (
 )

-20 -15 -10 -5 0 5

0

20

40

60

80

100

Reference model
Open Loop

(c) Eigenvalues

Figure 1.12 Ideal reference model for the MRAC controller design compared to the open loop
response for: (a) worst–case "one–minus–cosine" gust fromFigure 1.9, and (b) von Kármán turbulence
model; (c) eigenvalues of the system to be controlled and thereference system
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Table 1.3 Eigenvalues of the reference
model

Mode Real part Imaginary part
number

1 -9.53·10−1
±2.01

2 -8.53·10−1
±1.02·101

3 -1.71·101 ±2.79·101

4 -5.73·10−1
±4.74·101

5 -1.21·101 ±6.55·101

6 -9.90 0.00
7 -1.01·101 0.00
8 -1.01·101 0.00

Real and imaginary parts in [Hz]

Table 1.4 Adaptation parameter selection

Discrete gust case Continuous gust case

Γ 0.01Q 0.01Q
Γ 0.10Q 0.10Q
Γ 1.00Q 1.00Q

the time integration which is part of the adaptation parameter. The reference model in that
case needs to be stable so that the error decreases asymptotically. Finally, observe that the
adaptation parameter is affected byP and, as a result, by matricesQ andΓ.

The effect of the adaptation matrixΓ is therefore investigated for the performance of the
closed loop system. The discrete selection of the semi–definite–positive matrixΓ is shown
in Table 1.4 for both discrete and continuous gust loads alleviation.

The derived controller based on the reduced model is directly applied to the full order
nonlinear aeroelastic system. The wing tip vertical displacement for different adaptation
rates for the worst case "one–minus–cosine" gust and for a continuous gust is shown in
Figure 1.13.

Results show significant reduction of the wing tip deflections for the closed loop system for
both linear and nonlinear cases, with realistic flap deflections is all cases. It can be seen that
for the particular selection of the semi–definite–positivematrixQ, a larger adaptation gainΓ
is required during the fluid–structure–gust interaction toalleviate the disturbances. A further
increase of the adaptation gain may lead to a non–realistic flap rotation with a flap angle of
over 15 deg which is a common constraint for the flap maximum rotation. Therefore, it is not
suggested to select very large adaptation rates because theflap might overshoot during the
fluid–structure–gust interaction.

Control Design Comparison

Both control designs were found adequate for gust loads alleviation of a very flexible
aircraft. However, a "good" controller does not only guarantee that the closed loop structural
deformations are smaller than those of the open loop counterpart but also that this is achieved
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Figure 1.13 Gust loads alleviation response using the MRAC controller for various adaptation gains
compared to the open loop response for: (a) worst–case "one–minus–cosine" gust from Figure 1.9, and
(b) von Kármán turbulence model
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Table 1.5 Comparison of control performance for a discrete "one–
minus–cosine" gust

Controller design Reduction in wing tip Maximum flap rotation
deflection [%] [deg]

H∞ 23.15 -9.47
MRAC, Γ = 10−2Q 24.45 -7.54
MRAC, Γ = 10−1Q 28.89 -7.56
MRAC, Γ = 1Q 29.45 -8.11

Table 1.6 Comparison of control performance for a stochastic gust

Controller design Reduction in wing tip Maximum flap rotation
deflection [%] [deg]

H∞ 10.26 12.79
MRAC, Γ = 10−2Q 4.73 2.31
MRAC, Γ = 10−1Q 8.00 5.89
MRAC, Γ = 1Q 12.68 12.83

with a realistic, optimal, and minimum control effort. The performance of theH∞ and
MRAC controllers for the discrete "one–minus–cosine" gustis reported in Table 1.5. It is
found that the adaptive control methodology achieves a better performance in reducing
the wing tip deflection than theH∞ control strategy, and the performance in gust loads
alleviation increases for increasing adaptation rates. The reduction in the wing tip deflection
is also achieved with a smaller control effort.

Finally, the performance of the two controllers is summarised in Table 1.6 for the random
turbulence based on the Von Kármán spectrum. The gust loads alleviation proves more
challenging in this case because of the larger frequency content than that for the "one–minus–
cosine" gust. The choice of the adaptation rate is critical,as it affects the capability of the
control system to follow the rapid changes in the gust loads.It is not unexpected, therefore,
that the performance of the MRAC controller degrades for smaller adaptation rates. For larger
adaptation rates, the adaptive control design achieves about the same level of gust loads
alleviation, but with a smaller control effort, than theH∞ controller.

The comparison of the performance of the two control strategies indicates that, in general,
the gust loads alleviation with a random turbulence is more challenging and may result in
degraded performances, at least to some degree, compared toa discrete gust case. Note that
the ability to investigate two control strategies is enabled by the model reduction technique
presented in this Chapter, demonstrating the readiness level for practical use.

1.5 Conclusion

A unified methodology to facilitate control synthesis design starting from arbitrarily large
computational models of flexible flying aircraft is presented in this Chapter. The methodology
requires the accurate calculation of the coupled eigenvalues and modeshapes to form an
efficient basis for model projection, and a Taylor series expansion is then used to retain some
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of the nonlinearities affecting the system dynamics. Through various flight conditions and
atmospheric gusts and turbulence, the methodology is demonstrated for an aircraft test case
highlighting the benefits of the proposed approach. The methodology is found effective for
practical use, and its generality allows its applicabilityto any large computational model.

1.6 Exercises

1. Investigate the impact that the altitude has on the statistics of the random vertical
gust intensity, Equation (1.13). Assuming a flight speedU∞ = 250 m/s, turbulence
intensity "moderate10−3", and referring to the Military Specification MIL–F–
8785C, use the MATLAB Von Kármán Turbulence Generator (VKTG) toolbox that
accompanies this Chapter.

2. A process model that describes the relation between the velocity and displacement is
given by the following dynamic equation.

ẋ (t) = αx (t) + b u (t) (1.56)

However, the desired dynamic response is given by a model with dynamics of the form

ẋm (t) = αm xm (t) + bm uc (t) (1.57)

Assume a controller of the formu (t) = θ1 (t) uc (t) − θ2 (t) x (t) to assess the
problem of tracking between the two given systems.

1) Calculate the derivative of the error,e (error dynamics), between the two systems in
the closed loop form solution.

2) Assuming a Lyapunov candidate functionV = V (e (t) , θ1 (t) , θ2 (t))

V =
1

2

[

e2 (t) +
1

b γ

(

(b θ2 (t) + α − αm)
2
+ (b θ1 (t) − bm)

2
)

]

(1.58)

Calculate: a) the set ofb, γ that satisfiesV ≥ 0; b) the derivative of the
Lyapunov function ine, θ1, θ2; c) the adaptation parametersθ1, θ2 such that the
closed loop solution is asymptotically stable; and d) perform this simulation in
MATLAB/SIMULINK and investigate the effect of the adaptation parameters in the
closed loop solution.
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