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Nonlinear Reduced Order
Aeroservoelastic Analysis of Very
Flexible Aircraft

N. D. Tantaroudag University of Liverpool, Liverpool, L69 3GH, United Kingaio
A. Da Roncl¥ University of Southampton, Southampton, S017 1BJ, Unitegidém

The present Chapter overviews the technical difficultied #erospace engineers have to
face during the design of future environmentally—frienalgrial vehicles. Present trends in
aerospace design are driven by two factors: increasingth@baerodynamic efficiency and
reducing the structural weight to a minimum. The failureiigtt of some research prototypes
of very flexible aircraft, as described in Section1.1, haswshthat traditional (linear)
methods are no longer adequate for the analysis and desifyiuoé aerial platforms. In
Sectior 1R, the reader will be introduced step—by-stelpaartathematical models adequate
to predict the complex interactions that may occur betwdenaerodynamic, structure,
flight mechanics, and control fields. The computationalco$these models, however, are
high when confronted with the large number of calculatioeeded to ensure structural
integrity over the flight envelope, and are inadequate fougtrial aircraft design. The
latest developments in the field of model reduction will becdssed in Sectidn1.3, and
the reader will have the opportunity to practise and useettmeathematical models with
the programming codes associated with this Chapter. Firedtive control techniques to
enhance the performance and resilience of a very flexilieaditest case to atmospheric gust
and turbulence are discussed in Sedfioh 1.4. After the ositris are given in Sectign 1.5,
some exercises proposed in Secfion 1.6 may be solved usgrtbgramming codes
accompanying this Chapter.

The Chapter is intended to provide the reader with the eisédatowledge to design
high—altitude long—endurance (HALE) vehicles that havimeg considerable attention in
recent years. However, it is worth noting that the matherahtinodels developed within
this Chapter are applicable to any aircraft configuratios, &m particular, to large transport
aircraft with increasingly larger aeroelastic effectseTgenerality of the models described
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2 Nonlinear Reduced Order Aeroservoelastic Analysis of \exible Aircraft

here allows dealing with more traditional (rigid) aircraéinfigurations which are a subset of
very flexible aircraft.

1.1 Introduction

The interest behind HALE vehicles has increased steadiy the last years as they provide
low—cost efficient platforms for a variety of applicatioriEhe low structural mass and
high aerodynamic efficiency allow flying at high altitudesddow speeds with minimal
energy consumption. The range of applications of HALE aiftararies from monitoring and
collecting data of the atmospheric environment to rescigsions in bio—hazard poisonous
environments. The advantage of inhibited HALE aircraftie ability to operate at extreme
conditions for long duration times without putting at riskrhan life.

The analysis and design of HALE aircraft, however, preseuse of the unique
challenges that are not critical for more rigid (and stifficeaft. The dynamic interaction
between deformable wings, flow development, and flight meicsamay cause structural
failure as occurred in 2003 on the NASAs Helios prototypdeTHelios aircraft was
developed under the Environmental Research Aircraft and@elechnology (ERAST) as a
HALE class vehicle. The Helios prototype aircraft was a firo6-concept solar electric—
powered flying wing designed to operate at high altitudesldag duration flights. Two
configurations were produced. The first configuration wagydesl to achieve high altitude
flight and the second one to achieve long endurance flight. ®hAugust 2001, the first
Helios configuration flew at a record altitude of 96,863 ft abaea level. The second
configuration was lost in flight on 26 June 2003 after encountering low—level turbulence.
After approximately 30 min within flight, atmospheric tutbnce caused larger than expected
wing deformations and the aircraft began a slowly divergiitgh oscillation. The wings
dihedral remained high and the oscillations never subsithstiead, oscillations grew with
each period and this led the structure of the aircraft angkivepulled apart, see Figure1L.1.

(a) Aeroelastic shape at cruise flight (b) Structural failure in flight, 28* June 2003

Figure 1.1 The NASA's Helios prototype was developed under the Envitental Research Aircraft
and Sensor Technology (ERAST) programme; from 'Noll &t2004)’
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1.1.1 Challenges and Prospects

From a technical standpoint, the challenges to be overcontieei analysis and design of
HALE aircraft can be summarised as follows.

1. The development of a multidisciplinary framework to ret&dally model the nonlinear
interactions occurring between the fluid, structure, fldyriamics, and control fields.

2. The lack of an approach to systematically reduce largepatational models to a
smaller system for faster simulation times and for contyatisesis design.

3. The exploitation of advanced control design strategig¢arne aeroelastic phenomena
and improve the effectiveness of the controlled responsatrtwmspheric gusts and
extend the flight envelope.

To define the state—of-the—art in the design of HALE vehiatedidentify opportunities for
progress, a brief review of recent developments in the feefast considered.

Nonlinear Time—domain Multidisciplinary Framework

There is a large body of work reporting the development oftigiistiplinary frameworks
to predict the dynamic response of free—flying flexible aifcencountering atmospheric
gusts and turbulence. Three representative referenceshase of’'Cook et al.|(2013);
Dillsaver and Cesnik (2011); Tantaroudas etlal. (2014)’evéhs a nonlinear formulation is
generally used for the structural model, which is based oearbstick representation of
the aircraft components, and for the flight dynamics, thedgaramic model in most of the
investigations is inferred from linear assumptions. It @virecognised that the ability to
obtain realistic (nonlinear) flow predictions is a remagissue in the field of very flexible
aircraft. Unsteady time domain analyses of highly flexitdeia vehicles with atmospheric
turbulence are still expensive despite the increase irnytodmputing power. The simulation
costs become prohibitive when high fidelity numerical medek introduced in an industrial
environment with a very large number of simulations reqliirearametric searches are
performed to estimate the critical loads that the aircralftemcounter during the expected
life cycle and these are used for structural sizing. Inaamdies in the load estimates can
jeopardise the entire project or result in a very conserggtnd inefficient) design.

Nonlinear Model Order Reduction

The response of a dynamic system to given initial conditiongxternal forces may be
obtained either in the frequency or time domain. The adeeda@f the analysis performed
in the frequency domain are offset by the underlying assiompif linearity in the system

response. The time domain analysis, through some numéniegjration schemes, allows
predicting the response of a nonlinear system. Unsteady diomain analysis is, however,
computationally expensive and, particularly so, in theecafa large dimensional model.
The objective of model order reduction is to produce a low atisional system that is
computationally efficient yet accurate enough to approtémep some desired threshold,
the response characteristics of the original system 'Aat(2005)’. The resulting reduced
order model can then be used to replace the original systemofitine calculations or to
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develop a simple and fast controller suitable for real tipglizations. An appropriate model
reduction methodology will ensure to meet the followingpedies:

e The approximation error may be reduced to a desired thrédhoincreasing the size
of the reduced order model. Hence, convergence of the rdduoéel on the original
system should be proved.

e The properties of the original system may be retained. Biapioperties, in particular,
are important for evaluating the system dynamic response.

e The algorithm to perform model reduction may be systematimputationally stable,
and efficient.

As described in more detail in Sectionll.3, there are two igd@proaches to reducing the
complexity and cost of a large computational model.

Advanced Active Control Strategies

Another important aspect that needs to be addressed in gigndef flexible aircraft is
the flight control system design. This can be often accoimgtisby means of active or
passive control. Here, however, we will focus on active oantActive control has the
potential to increase aircraft performance and to exterdltbht envelope to new limits.
The design of a gust—tolerant vehicle needs an accurateematical model to realistically
simulate the nonlinear interactions that dominate suchalaplatforms. Nevertheless, the
use of fairly large nonlinear physics—based models inttedwa complication in the design,
synthesis, and testing of control strategies. Two majdicdities arise when dealing with
control and that is the design and the implementation. Treigdebecomes complicated
when the system is of high order and includes many unobskereahunmeasurable states,
especially when the system is nonlinear. More importahtiyever, is the need of satisfying
the available computational resources. As for the impleateam problem, it is difficult to
scale applications in relation to available resources sischnemory and power limitations
and how the real time response is guaranteed during sucleringpitation. As a result, the
derivation of low order controllers based on reduced mobdetmes of high importance.
This is accomplished by model order reduction techniguethis way, not only the problem
of fast and accurate predictions of loads estimate is oweecbut also the design of the
flight control system is simplified and the hardware impletagan of the controller becomes
feasible'Campos-Delgado et al. (2003)’.

1.2 Coupled Large Computational Models

The present Chapter motivates from the unique challendesedf by HALE aircraft and
the need to develop and implement appropriate mathematicdéls of these vehicles. The
aircraft configuration, taken as the reference configunagiod around which the Chapter
is designed, shares many common aspects with the Global Heigkre[1.2), build by
Northrop Grumman and first flown in the year 1998. The airceaftfiguration that will
accompany the reader throughout this Chapter is unrexirimhd can be requested to the
Authors.

Whereas the reference aircraft is detailed in Se¢fionliti2eImathematical models for the
fluid, structure, and flight dynamic fields are introduced éct®ng 1.2 throudh 1.2.5.
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1.2.1 Aircraft Test Case

The test case is a flexible unmanned aerial vehicle (UAV) gleatrally resembles the RQ4
Global Hawk aircraft. Figure1l2 presents a three—dimeraigiew of the aircraft test case,
which features high aspect—ratio wings, a fairly rigid atrdined fuselage, and a V-tail. A
set of trailing—edge control surfaces is located on each sémg between 37 and 77% of
the wing span measured from the wing root, and at 32% of thal kdlword from the wing
trailing—edge. Basic geometric characteristics are shioviAigure[1.3.

A detailed finite element structural model of the airframeated in MSC/NASTRAN
was available for accurate stress calculations, and thédatvar used to create an equivalent
beam model. The structure was built of composite matemal the structural model included
a combination of various finite element types. With fuel ok the wings between the front
and rear spars accounting for over 4,700 kg, the centre eftgnaesulted to be at 6.38 m
from the nose of the aircraft.

The starting finite element model of the structure was theluged to an equivalent
beam model. A beam stick representation of the aircrafofadl easily as lifting surfaces
are of high aspect—ratio. For the wings and tail, the beameiweds located at the centre
of the corresponding structural box, between front and spars. The mass and stiffness
properties of the beam model were iteratively refined to ensugood agreement of the
lowest modeshapes and frequencies with the original eéetatfuctural model.

(a) RQ4 Global Hawk in flight (b) Test case of this Chapter

Figure 1.2 Examples of high—-altitude UAV; (a) RQ4 Global Hawk in flighb{irtesy U.S. Air Force),
and (b) the test case of this Chapter

A comparison of the first five lowest modeshapes and freqaerimtween the original
detailed model and the beam stick model is shown in TableTuhing the mass and
stiffness properties of the beam model reveals a reasorpdayg agreement for all the
modeshapes shown, with increasing inaccuracies at higbguéncies. Following a study
aimed at investigating the dependency of the frequenciagh@mumber of beam elements
used, it was found that 27 elements were adequate to disenldtie aircraft wing, and 10
were used for the tail. The fuselage, on the other hand, iiteztas a rigid body.

3http: /7 ww. nscsof t war e. cond pr oduct / nsc- nast r an, retrieved February 24, 2015.


http://www.mscsoftware.com/product/msc-nastran
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Figure 1.3 Geometric characteristics of the aircraft test case

Table 1.1 First five modeshapes and frequencies of the UAV test case mai

wing
Mode Modeshape MSC/NASTRAN Beam model
number 17 elements 27 elements
1 First bending 3.56 3.74 3.58
2 Second bending 7.75 7.92 6.84
3 First torsion 14.90 12.87 17.18
4 Third bending 15.70 10.83 11.98
5 Fourth bending 24.60 14.57 19.80

Modeshape frequencies in [Hz]
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1.2.2 Aerodynamic Model

Several options for the aerodynamics can be used. Usingg@inesring approach, we aim
for an aerodynamic model being as simple as possible yetraecanough. In the most
simple case, a two—dimensional linear aerodynamic modebeaused on a representative
two—dimensional section of the aeroelastically most aaltiifting surface. The unsteady
flow is modelled in this approach by a frequency domain exgioesfor the incompressible
two—dimensional potential flow over a flat plate in harmoniation, originally formulated
by 'Theodorsen (1935)'.

An extension to this approach, called strip theory, adapés 9ame two—dimensional
unsteady flow model for a three—dimensional aeroelastitesydy combining section
aerodynamics with a beam model for the wing structure. Shgory can provide fairly
reliable, and usually conservative, results for divergespeed, critical flutter speed and
aileron reversal. However, it requires that the physicahrabteristics of the aircraft
configuration under analysis can be adequately reduced &a@-ype structure and that
three—dimensional aerodynamic effects do not have a signifimpact on the aerodynamics.

The total aerodynamic loads consist of contributions agifrom the section motion,
trailing—edge flap rotation, and the penetration into agfistd as illustrated in Figure1l.4.
The aerodynamic loads due to an arbitrary input time—hist@e obtained through
convolution against a kernel function. Since the assumpsf linear aerodynamics, the
effects of the various influences on the aerodynamic forndsi@oments are added together
to find the variation of the forces and moments in time for &gimotion and gust. It follows
that

Ci =Cis+Ciyp + Ciy (1.2)

where the dependence on time is not shown explicitly. Theisualex: is used for denoting
the lift coefficient,i = L, and pitch moment coefficient= m, whereas, f, andg indicate
the contributions from the section motion, flat rotatiord guist perturbation, respectively. A
schematic representation of the various contributionti¢oaierodynamic loads is shown in
Figure[1.2.

A brief description of each contribution to the total aerpdsnic loads is summarised in
the following three sections. Note that, as common in aaradhics, the loads are formulated
using non—-dimensional time; = tU.,/b, which is also adopted for the time derivative,
(o) = d(e)/dr. The subindeX will be used to indicate initial conditions.

Section Motion

The first term on the right hand side of Equatibn{1.1) indisathe increment in the
aerodynamic loads caused by a generic motion of the wingosedtach structural node
of the beam stick model, see Section 1.2.3, has six degreéwedom that consist of
three rotations and three translations. As the aerodynamoitel here presented is two—
dimensional, the resulting motion of the wing section thetuwss in the three—dimensional
space is projected on the plane defining the wing cross sedteferring to Figurg T.4(p),
the motion of the wing section contributing to the aerodyitaoads consists of the vertical
displacement of the structural beam model, denoted,kgnd a rotation around the elastic
axis, denoted by. This information is readily available from the solutiontbg structural
problem.
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(b) Wing section structural deformatioris pending,¢: torsion)

Figure 1.4 Schematic of a slender wing structure showing various doritons to the aerodynamic
loads
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Denote bya the effective angle of incidence of the wing section whichludes the
freestream angle of attack,.,, and the wing torsional deformatioth,Scale then the vertical
displacementh, by the semi—chord of the wing cross sectigrs h/b. The resulting force
and moment coefficients for any arbitrary section motionifotpand plunge are formulated
as

Cra(r) =7 (¢ (1) — ana” () + o (7)) +

27r(a0 + &+ (1/2 — ah)aé) Gw (T) +

27r/0 G (T—0) (a (0) + & (o) + (1/2 — ap) & (0))da 1.2)
Cons (1) =7 (1/2 + an) (a0 + & + (1/2 = an)af) du (1) +

m(1/2 + ah)/o G (T —0) (a (0) + & (o) + (1/2 — ap) & (0))da+

S (€ () —ma’ (7)) — (1/2 @) 5o’ (1) - Lo’ (7)) (13

The Wagner function,,,, accounts for the influence of the shed wake, and is knowrtlgxac
in terms of Bessel functions. For a practical evaluationta integral, the exponential
approximation of/’Jones (1940)’ is used

G (1) =1 = V1e™57 — Uge 27 1.4)

where the constants ale, = 0.165, W5 = 0.335,¢e7 = 0.0455, andsy = 0.3.

Trailing—edge Flap Rotation

The second term on the right hand side of Equafiod (1.1) sepits the increment in the
aerodynamic loads for any arbitrary trailing—edge rotatiee Figurg 1.4(a). The build—up
in the loads not only depends on the instantaneous flapootatit also on its time derivatives
(velocity and acceleration). The relations between theérobeurface inputg, and the load
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coefficients are

Cry(r) = — Tyd' (1) — Ty 8" (1) +

27 [(%Twéo + %Tu&’)) Puw (1) +

/OT (%Tm 5 % Ty, 5”) bu (T — 0) da] (1.5)
Cong (1) = = Tt To0) 50y

(T = Ts — (c —2%) Ti+ 5Tn) () +

(Tr + (c; @ T) g

wlon +1/2) [ (20t + 5= 700 ) 6 () +
/T (le & + L Ti1 (SH) Ow (T — 0‘) d0’:| (16)
o \T 2w

The coefficientdy, Ty, T7, Ts, T19, andT7; are geometric constants that depend on the size
of the trailing—edge flap relative to the chord of the wingtieet The reader may find the full
expressions in_'Da Ronch etlgl. (2014)'.

Atmospheric Gust
The last term on the right hand side of Equation](1.1) dessrthe effect that atmospheric

gust and turbulence have on the build—up of aerodynamisldaat an arbitrary gust time—
history, the load coefficients are computed by the followiglgtions.

a

Crg(m) =27 (wgo Uy (1) + /T Uy (1 —0) %da) .7)
0
Crmyg (1) =7 (1/2 + an) (wg() Wi (1) + /OT Uy (7 —0) %da) (1.8)

where the gust intensity,,, is intended normalised by the freestream speed. The attegr
uses the exponential approximation of the Kiissner function

Up(r) =1 — Uge 37 — Wye 47 (1.9)

where the coefficient®; = 0.5792, ¥, = 0.4208, 3 = 0.1393, ande4 = 1.802 are
from Leishman (1994)’. Appropriate forms af, to model realistic atmospheric gust and
turbulence time—histories are presented in some detag @12 4.
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1.2.3 Flexible-body Dynamics Model

For the structural model, the geometrically—exact nomlindbeam equations are
used/Hesse and Palacios (2012)’. Results are obtained usio—noded displacement—
based elements. In a displacement-based formulationjneanities arising from large

deformations are cubic terms, as opposed to an intrinsicriggien where they appear up
to second order. The coupled flexible multibody nonlinearatipns are expressed in the
form

M(ws){ zi } + ngr ('ww Wy, w,.) { :ﬁ: } + Qstiff (ws) { :ﬁ: } = Rp
(1.10)

The subscriptss and r denote elastic and rigid—body degrees of freedom, resgdeti
The termsQqyr and Qe indicate, respectively, gyroscopic and elastic forcesgrebsR »
contains all external forces acting on the system, inclgidierodynamic contributions. More
details into the structural modelling of multibody dynamigsing finite elements can be
found in |Geradin and Cardona (2001)'.

Equation[[1.10) is coupled with the linearised quaternignations that propagate the
orientation of the body frame with respect to the inertiahfie.

G + Cortr + Coqéi =0 (1.11)

1.2.4 Atmospheric Gust and Turbulence Models

In flight, aircraft regularly encounter atmospheric tudnde. The turbulence is regarded for
linear analysis as a set of component velocities superiethos the background steady
flow. The aircraft experiences rapid changes in lift and matnferces, which cause rigid
and flexible dynamic responses of the entire aircraft. Thesponses can cause passenger
discomfort and introduce large loads on the structure whicist be accounted for during
the design stage to ensure aircraft safety. The models osede prediction of the aircraft
response have to accommodate those events that are pdresivdiscrete, and usually
described as gusts, as well as the phenomena describedtimsioan turbulence.

A concise summary of the mathematical models used to appedigi discrete and
continuous turbulent events is given next. The reader may dirmore extensive review
in "Etkin (1981)'.

Discrete Deterministic Gusts

Discrete events are isolated encounters with steep gtadienthe speed of air, typically
occurring at the edges of thermals and downdrafts, in theesvak structures or mountains,
or at temperature inversions. Discrete gusts may also appeare extremes of turbulence in
clouds, etc., possibly associated with organised strasteimbedded in the otherwise random
background. These organised extremes are not adequadtsigdlfor in the usual Gaussian
models of continuous random turbulence and specialisedadesmodels are then to be used.
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The most common discrete gust model, which has evolved begrdars from the isolated
sharped—edge gust function in the earliest airworthinegairements, is the "one—minus—
cosine"” function. Its formulation is

wy (z, 1) = { 1 wyo (1 — cos (% (t - %))) z € [tUsx — 2Ly, tUs) (1.12)
7 0 otherwise

wherewy is the gust intensity, is the gust length, and is the position of a point on
the aircraft relative to an aircraft-attached frame of rerfiee, see Figure(1.5). The design
gust velocity,wgo, varies with the gust length, altitude, and speed of fligtabhi (1988)'.

In the simple case of Equatidn (1]112), the gust intensityeddp on one spatial coordinate,
x, in addition to the time coordinate, The rate of change of the gust intensity at different
points located on the aircraft, e.g. main wing and tailpJdarsgely depends on two ratios,
see Figuré1]5. The first ratio describes the relative sizeefjust compared to the aircraft
characteristic length. The second ratio relates to the tinakes for the aircraft to fly over
the gusty field. As the above two ratios decrease, the depeadm the spatial coordinate
becomes more and more apparent and should be modelled appelypin simulating the
aircraft response to relatively short gusts.

Wgq

Wg

Wg0

ZL'go

T
L, 2L,

L, 2L,

(a) Frames in relative motion (b) Gust penetration effect

Figure 1.5 Discrete model of a "one—-minus—cosine" gust

Random Turbulence

Random turbulence is a chaotic motion of the air that is dieediby its statistical properties.
The main statistical features that need to be consideredstationarity, homogeneity,
isotropy, time and distance scales, probability distidng, correlations, and spectra.
Atmospheric turbulence is a vector process in which theoigleector is a random function
of the position vector and of time. Because of the complekityoduced by this multi—
dimensionality, the description of turbulence and the eissed input/response problems are
often simplified, whether justified or not, to a one—dimenalgepresentation.
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The engineering model of random turbulence at altitude le&s leveloped over many
years, see for example 'Houbolt (1973)". It is now widely epted that it is satisfactory
to treat atmospheric turbulence as frozen, homogeneodsisatropic in relatively large
patches. The frozen—field assumption, closely allied tdof&yhypothesis, is that turbulent
velocities do not change during the time of passage of tipdaaiie. This is a valid assumption
in most cases. The Dryden and the von Karman models are evadiddequate engineering
models to predict the correlation and spectra, with the iatead experimental evidence
favouring the latter. Although there is much evidence theiudlence is not in fact a Gaussian
process, with small and large values both occurring morgquiatly than in a normal
distribution, the assumption that individual patches aaei$3ian is widely used because of
the great analytical advantage it offers.

A commonly used spectrum that matches experimental ddia ieon Karman model. The
power spectral density (PSD, in fiis> Hz)]) for the vertical directiong ., according to the
Military Specification MIL-F-8785C, see _'Moorhouse and Woock (1982)’, is given by

022L. 1+ 8/3(aL.Q)?

P, () = U (1 t L Q)2)11/6

(1.13)

where() = w/U, is the scaled frequency (in [rad/my), is the root mean square turbulence
velocity (in [m/s]), L. is the characteristic scale wavelength of the turbulenagr(i]),
and a = 1.339 is the von Karman constant. Figlrell.6 illustrates the PS&ctspm as
function of the frequency. Whilst the system response irfitaguency domain to a random
turbulence can easily be calculated once the frequencymssgpfunction is known, this
approach is linear and does not permit nonlinear effectetmtiuded in the analysis. An
alternative approach is to generate a random turbuleneestigmal with the required spectral
characteristics defined in Equatign (1.13), and solve tidimear system of equations in the
time domain.

A method to calculate the time domain response of a nonleeraelastic model to random
turbulence is based on the following steps. First, take th&iEr transform of a unit variance
band—limited white noise signaX (€2), and pass it through a filter defined as the square root
of the PSD spectrum in Equatidn {11 13J, (Q2). Then, calculate the output signal using the
relation

W,y (Q) = H.(Q) X () (1.14)

Take the inverse Fourier transform @f, (€2) to obtain the random turbulence in the time
domain,w, (t). This method, which applies twice a Fourier transform, isf@mred over an
alternative method that does not make use of the Fouriesftvem. More details may be
found in |Gianfrancescao (2014)’.

The method described above is implemented in an open soufde. AB toolbox and
is referred to as the Von Karman Turbulence Generator (VKTB)e VKTG toolbox
implements the mathematical representations of randobuliemce defined in the Military
Specification MIL-F-8785C and Military Handbook MIL-HDBK#97, allowing for the
dependence of the root mean square turbulent velocity abdlance length scale on aircraft
mission parameters and weather conditions. As shown i€, the PSD of the VKTG
model shows a closer correlation at higher frequencies thighvon Karman spectrum of
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Equation[[1.18) compared to the off-the—shelf MATLAB/SIMIMK model. Note that the
VKTG toolbox accompanying this Chapter is also availablénarf.

-
1

=

L
1

Simulink Simulink
VKTG VKTG
10° Von Karman
QL/ \(:\ly

Q 10
£ = i
- N
] T o7k
o 2
) &
8 E s
£ 5 10°F
2 2
B 10* -
3 -

10°

1 1 1 1 1 1 6 1 1
5 10 20 30 40 50 60 10307 10* 10°
Time [s] Frequency [Hz]
(a) Time history of vertical gust (b) Power spectral density (PSD)

Figure 1.6 Random vertical gust intensity using the Von Karman spécaaresentation (Military

Specification: MIL-F—8785C; flight speed = 280 m/s; altitude:h = 10,000 m; and turbulence

intensity: "light 1072"); the terms "Simulink" and "VKTG" denote, respectivelfiet Von Karman

Wind Turbulence Model block of MATLAB and the present Von K& mn Turbulence Generator
implementation

1.2.5 Numerical Implementation

With the previous Sections as background, the coupled digsaoha flexible flying aircraft
encountering atmospheric gusts and turbulence requirassfut integration of each single
discipline within a comprehensive simulation environmdins generally possible to recast
the complete system of equations in state—space form asdhi®s convenient for the
derivation of the reduced order model, as discussed inG&EB.

1.3 Coupled Reduced Order Models

The numerical solution of a nonlinear system in the time damequires the integration of
the differential equations that govern its dynamics. Nuoatischemes are often referred to
as being explicit or implicit. For the conditional stahjliof explicit methods, a small time
step is required to solve the small time scales that are ahpagsent in spatially detailed
models but that are not needed in our analysis. Implicit wagithat are more complex to
program and require more computational effort in each swiwgtep are therefore preferred
because they allow for larger time step sizes. As most ofdhgpeitational methods to solve

4ntt p: /7 vwwy. per sonal . sot on. ac. uk/ adr 1d12/) retrieved February 24, 2015.


http://www.personal.soton.ac.uk/adr1d12/
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nonlinear systems is developed for first—order ordinarfecéhtial equations (ODES), it is
convenient to reformulate the coupled system as a systemstfdider ODEs.
Let us consider as starting point the nonlinear system

@ = F(x(t), u(t), d(t), t) (1.15)

where the nonlinear operatdt : R” — R™ depends on the specific formulation used. For

brevity, () denotes time derivativej(e)/dt. Consider the coupled system partitioned as
follows

xf Fy
z={ x, y,F =< F, (1.16)
x, F,

where the sub—indexeg s, and » indicate, respectively, the fluid, structural, and rigid
body (flight dynamics) degrees of freedom. Denoteubthe vector of manipulable inputs,
generally used for control purposes, andithe vector of exogenous disturbances perturbing
the system. Indicate thith component of” by f;. If the components o are differentiable
atx € R", define the Jacobian matrid € R™ x R" as

_0fi

aij (x) = 2= (@) (1.17)
or in matrix form as 9F
Az) = D (x) (1.18)

for any constant vector of manipulable inputs and exogerdissirbancesz and d,
respectively.

1.3.1 Approaches to Model Reduction

The difficulty with Equation[(1.75) is the size of the compigaal model which, for realistic
applications, may includ® (10*) to O (107) degrees of freedom. To accelerate the time
domain analysis and allow designing a low—order contraiesysa reduced order model of
Equation[(1.15) is often needed in practise. Two approathesduce the size of a system
exist.

The first approach is based on system identification teclesidoat attempt to replace
the original large computational model, which is treate@d dblack box", with a system of
smaller size. Often the model structure is simplified allayvior some forms of nonlinearity
to be included. The advantages are the easiness of the mamienplementation and the
availability of various techniques (Volterra series, tidi functions, surrogate models, etc.).
The disadvantages are the lack of robustness on the systamgiars and the limited validity
and certainty for conditions outside those used to gendénatenodel. More details may be
found in [Da Ronch et all (2011); Ghoreyshi et al. (2013)'.

The second approach involves a manipulation of the govgrrnéguations in
Equation[[1.15). The advantages are the ability to retaitinear effects in a smaller system
and that the system validity depends on the assumptions oaderive the model. The
disadvantage is the added complexity in the model impleatiomt. Two well-established
reduced order models for applications in unsteady aeradigzaand aeroelasticity are
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based on the harmonic balance method, 'Da Ronch et al. (Z0¥8a nonlinear model
projection, 'Da Ronch et al. (2012)’, respectively.

The approach to model reduction first presented in 'Da Rohah (2012)’ and thereafter
applied extensively to various problems and test casesDselRonch et al.|(2013h, 2014,
2013c); Tantaroudas etlal. (2014); Timme etlal. (2013)’,issussed in more detail in the
following sections. The approach is based on the maniulaif the governing equations
and consists of a systematic procedure to generate botr larel nonlinear reduced order
models, independently of the mathematical formulatiordusethe coupled system. The
approach also satisfies the properties outlined in Selctibd.1

1.3.2 Stability Analysis

Neglect first the explicit dependence of the system in Equdil.15) on the time variable,
and consider a constant vector of manipulable inputs angemaus disturbancea,andd.
Here, for simplicity,d = 0 is assumed. An equilibrium poing, satisfies the relation

F(& a) =0 (1.19)

The stability of the system in the neighbourhood of the dlgilm point, &, is studied
through an eigenvalue analysis. Define a small incremertit reispect to the equilibrium
point, w = « — . The linearised homogeneous system around the equilibpiimt, z,
takes the form

w=Aw (1.20)

where A is the Jacobian matrix, Equatidn(1l18). Let us consider hitiso of
Equation[[1.2D) in the exponential form

w = pett (1.21)

where )\ is a constant scalar angl is a constann—-dimensional vector. The right and
left eigenvalue problems associated with this ansatz; aftlstituting Equatiori.(1.21) into

Equation[[1.2D), are

left: )\Z’lﬂliAT’l,bZ i:1,2,...,n

For large computational models, the solution of the abogeraialue problems using off—
the—shelf algorithms is unfeasible. Because the subjecttisf the scope of this Chapter, the
interested reader is referred to 'Badcock etlal. (2011)relH&et us assume an appropriate
eigenvalue solver is available for solving the right and pebblems.

It is convenient to normalise the eigenvectors to satiséyttorthonormality conditions.
This will be of great benefit when deriving the reduced ordedsi.

PP =1 i=1,2..,n
¢JH¢Z =0 4,7=12,...,n

(1.22)

(1.23)

so that the relation holds

whered;; is the Kronecker delta and the operatey” indicates the Hermitian transpose,
e.g. the transpose of the complex conjugate.
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1.3.3 Model Projection

An attempt to solve Equatiof (1115) may not only requiredacgmputational resources but
it is also not well suited to design a low—order control systdhe idea of transforming
the above set of: simultaneous nonlinear equations into one that lendsf itselan
easier solution arises naturally. As common in structusalagnics, a transformation of
coordinates defined in terms of the orthonormal modal vectore,, ¢, ..., ¢,, IS an
efficient choice,’Meirovitch|(1990)'. Let define in the form of a linear combination of
modal vectors

w =12+ P17+ Paze + P+ o+ Pun + Pnn
=Y (Pizi + ¢izi)

where the over—bar sigfe) indicates the conjugate. It is worth noting that the sohutio
of the eigenvalue problems in Equati@n(1.22) provides iberralues and the associated
eigenvectors of the coupled system, describing the intierecbetween the fluid, structure,
and flight mechanics fields. It follows that the transformatof coordinates defined in

Equation [[1.25) generalises the well-known approach usstitictural dynamics to coupled

problems. The approach retains the high efficiency of theslfaactions, created using the
coupled modal vectors, to allow fast convergence even for-homogeneous cases.

Modal analysis in structural dynamics is a powerful toolngre good approximations of
the "exact" solution obtained through time integration qu&tion [Z.Ib) using a relatively
small number of modal vectors. This property holds for thepted model presented herein.
Because the structural response is generally well repteg&rith the low—frequency normal
modes, it is not unexpected that a small basis of coupled shagies dominated by the
motion of the structure is critical for the aeroelastic sge.

To achieve a significant reduction in the system size, a sbadls of biorthonormal
coupled eigenvectors and associated eigenvalues repatigerof the system dynamics
defined in Equatiori{1.15) should be identified. Let us colleccoupled eigensolutions in
the modal matrices of the right and left eigenvectors

(1.25)

A = Diag(>\1, )\2, ceey )\m)
® = [¢15 ¢27 DR ¢m] (126)
v = [¢17¢2;---7¢m]

where the diagonal matrid has dimension(m x m) and the matrices® and ¥ have
dimension(n x m).
Truncate then the linear combination in Equation (IL.25htdudem < n terms

m
sz(d)izi—l—d)iZi):i’z—i—@i (1.27)

i=1
where the columng; of the (n x m) matrix & span the subspace within which the system
motion is now restricted. The transformation of coordisatdates the state space vector of
the large order coupled model € R™, with the state space vector of the reduced order
coupled modelz € C™. To ensure convergence of the results, it is common to stiint w
a small basis of coupled eigenvectors, which is then exghndél the results have fully
converged. A study to investigate the model convergencetaldd in Sectioh 1.3.6.
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1.3.4 Linear Reduced Order Model

Let us start with the linearised model of Equatibn (1.15Y. $fmplicity, consider a constant
equilibrium point,Z, when no control inputs and disturbances are acting on th&esy
u = 0 andd = 0, respectively. Note that andd are independent of the equilibrium point,
wherease depends on both control and disturbance vectors. It follthas the linearised
system has the form

. OF  _ OF .
'w—Aw—i-a—u(:c)u—l—%(:c)d—Aw—i—Buu—i—de (1.28)

As the above linearised system still retains the size of thepled nonlinear system,
the transformation of coordinates may be used to derive eatimeduced order model.
First, substitute Equatiof(1.27) into Equatibn (1.28)eihpre—multiply each term by the
Hermitian transpose of the left modal matrik/?. Recalling the biorthonormal properties in
Equation[[1.2B) and{1.24), it follows that a linear reduoeder model has the form

% = Diag(\) z + Bruu + Byad (1.29)

where B,., = ¥ B, and B,, = ¥¥ B,. Solving the linear reduced order model in
Equation[[1.29) offers two important computational adeges. The first advantage is
that the system consists of a set of independent (uncoupbaagtions by exploiting the
biorthonormal properties of the modal basis which makessyis¢em much easier to solve.
The second advantage is that we have achieved a reductibe Bystem sizen < n, by
exploiting very efficient basis functions. As a result, ayefficient model of small size can
be used to predict the time domain response.

1.3.5 Nonlinear Reduced Order Model

Next, let us consider a way to incorporate nonlinear efféctthe reduced order model
formulation. There are two basic requisites to meet. Theriguisite relates to the difficulty
of the implementation and the cost of model generation, whiould be as low as possible
to facilitate its exploitation. The second requisite isttihés desirable to have a formulation
that is independent of the equations used to create the modelay that the approach to
nonlinear model reduction is systematic and applicablgriimciple, to any coupled system.
The method presented in'Da Ronch et lal. (2012)’ meets baghirements.

An approach to systematically derive nonlinear reducecerordodels indeed exists.
Expand the nonlinear system in Equatibn (1.15) in Taylaises retaining terms up to third
order in the perturbation. It follows that

1 1
w:Aw+Buu+de+§B(w,w)+§C(w,w,w) (1.30)

where the additional terms, compared to Equafion {1.28)¢ate the second and third order
Jacobian operators. It is immediate to verify that the ojpesaB andC' are, respectively,
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bi-linear and tri—linear with respect to the arguments ardaalytically obtained as

" PF
i=1 j=1 "+
i=1 j=1 k=1 3 YLk

The difficulty with substituting the transformation of cdamates, Equation{1.27), into
Equation[[1.3D) is the treatment of the quadratic and cudrim$, B and C, respectively.
After some manipulations and recalling the linearity of tiigh order operators, a relatively
simple relation is found. For brevity, the form of the qudgiréerm is reported

):ZZ (¢r &s) Z7Z5+B(¢7¢s)z7zs

r=1 s=1
B (¢, ¢s) zr 25 + B (br ¢s) 2 Zs) (1.33)

The interested reader is invited to referito 'Da Ronch 2t201¢)’ for the relation of the
cubic term. Here, it is sufficient to note that the double suay ilbe further simplified taking
advantage of the bi-linearity d8, e.9.B(¢,, ¢s) = B(¢s, ¢.), reducing the total number
of calculations required to compulg(z, z).

The final step, as already done for the linear reduced orddemis to pre—multiply each
term of Equation[(1.30), once expressed in functiorzaind not ofw, by the Hermitian
transpose of the left modal matri®,”. The nonlinear reduced order model has therefore the
form

z = Diag(\;) z + Bryu + Brgd + fan(2) (1.34)

where fn(z) contains the nonlinear terms of the quadratic and cubicatpes.

Numerical Implementation

A final note on the numerical approach used to calculate tgbehniorder terms of the
nonlinear reduced order model. It is possible to calculthtb@contributions without having
to resort to complex arithmetic, or to calculating all thewmsd and third order partial
derivatives analytically. Because it is only their actiam\eectors that is required, matrix—
free products may be used. The evaluation of the finite @iffees suffers from the truncation
error for values of the step size which are too large, and fifmarounding error for values
which are too small. The latter effect is more significanttfoe coefficients that include a
third Jacobian product. In cases where convergence of tie differences for various step
sizes is not found, it is possible to resort to availabledit@s supporting extended order
arithmetics, see 'Da Ronch et al. (2013c)'.

The approach to the generation of the reduced order modaile:tabove leads to the
following set of equations. The equations of the reduceéionibdel are independent of the
specific formulation used for the full order model, and areagis expressed in a state—space
form.

{ 2 = Diag(\i) 2 + Bryu + Brad + fan(2) (1.35)

w=®Pz+ Pz
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The dynamics of the nonlinear reduced order model in Equndfid%) is given in terms
of a complex—valued state vectar, which is of small size. The output equation defines
how the physical degrees of freedom of the original full ordedel can be retrieved if
necessary. The control inputs and disturbances are in tterge: andd, respectively. For
the linear aerodynamics described in Sedfion1.2.2, it gaggmnt that the control surface
rotation, angular velocity and acceleration are treatecbasmanded inputs. Keeping these
guantities as separate inputs is not convenient, as the tiuantities are all linked by a
time integration/derivation relationship. Referringl2e’ Ronch et &l (2014)’, it is possible
to realise that the actual commanded control input is thellangcceleration of the control
surface, and that the angular velocity and rotation areyedsduced by numerical time
integration.

1.3.6 Aircraft Test Case Gust Response

Having presented a set of mathematical models for the gefariof the flexible aircraft
dynamics and a model reduction strategy to reduce costanardsration of these tools is
now performed for the flexible unmanned aircraft test casgemftiof 1.211. The freestream
conditions ard/,, = 59 mM/s, as = 4 deg, ando, = 0.0789 kg/m?. In flight, the aircraft
exhibits large wing deformations. The deformed shape isprdead from a static aeroelastic
solution and taken as the equilibrium point for the reducedieh generation. The coupled
large order model, hereafter referred to as full order m@E@M), consists of 540 degrees
of freedom, 324 associated with the structural model andadtt6the aerodynamic model.

First, the right and left eigenvalue problems are solveduradothe static aeroelastic
deformed shape. As the identification of an adequate badiiséanodel projection is critical
for the analysis, a preliminary study was done to ensureerg@nce by increasing the size
of the modal basis, Equatidn (1126). A reasonable appraathinitially include a number
of coupled modes that are dominated by the structural regpdiese modes are associated
with the normal modes of the structure when the surroundind & removed. In addition to
this clear choice, the inclusion of the so called "gust mbéeseeded to enrich the modal
basis for gust loads prediction. In linear aerodynamicss¢hmodes are easily identified
being related to the smallest Kiissner constant: 0.1393. The eigenvalues of the "gust
modes" are\; = —e3U/b; (in [Hz]). Tests to ensure convergence of the modal basis wer
done using up to eight coupled eigenvalues, as summaridedid 1.2. The first five coupled
modes are mainly dominated by the structural response artcbaed at this flight conditions
from their corresponding normal modes of the structure. fidreaining modes are "gust
modes" and provide the mechanisms to describe the infludribe atmospheric gust on the
structural response. The variation of the frequenciesettupled modeshapes with respect
to the freestream speed is shown in Fiduré 1.7.

The convergence of a linear reduced order model for inangaske of the modal basis is
shown in Figuré€1]8. The open-loop response is computed fandom turbulence with
its statistical properties defined by the von Karman spectriihe reduced order model
predictions are compared with those of the original larggepmodel, of dimension 540
degrees of freedom. A good agreement is observed with asseight coupled modes for the
reduced order model. From here onward, the terms "FOM" a@MRdenote, respectively,
the full order model and the reduced order model. To empbagien a model is nonlinear,
"N" is appended to the short—hand notation.
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Table 1.2 Basis of coupled eigenvalues used for the model
projection, see Equatiof (1126)

Mode Modeshape Real part  Imaginary part
number

1 First bending -8.8207* +1.97

2 Second bending  -8.04~! +9.81.10"

3 First torsion -1 7107t +1.4510"

4 Third bending -7.0307! +2.1710*

5 Fourth bending  -6.040~" +4.1910"

6 Gust mode -9.90 0.00

7 Gust mode -1.010* 0.00

8 Gust mode -1.010* 0.00

Real and imaginary parts in [Hz]

75 015
o U_=50m/s . U_=50m/s
L] U_ =59 m/s U_ =59 m/s
60 v U, =70m/s 01 u_=70m/s
005
_er @ Fourth Bending
g g
=30 Third Bending =
005~
5 Second Bending @ First Torsion
01k
@ First Bending
=
1 1 1 1 ] 1 1 1 1 ]
12 0.9 0.6 0.3 0.3 0133 12 11 -10 K 8
Real () Real (%)
(a) Structural modes eigenvalues (b) Gust modes eigenvalues

Figure 1.7 Dependence on freestream speed of coupled aeroelastirfreigs for: (a) structurally—
dominated modeshapes, and (b) "gust modeshapes”
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Figure 1.8 Gust response of the aircraft test cabe.(= 59 m/s, asc = 4 deg, andp.. = 0.0789
kg/m?®); (a) convergence for increasing number of coupled moded, (B) vertical gust intensity
normalised byl (Military specification: MIL-F-8785C; and turbulence intty: "severel0~5")

Next, the reduced order model is demonstrated for the afticearch of the worst—-case
gust. The search is conducted for the "one—minus—cosinst' family considering gust
wavelengths between 0 and 776 aircraft mean aerodynamidsfwith a step size 0of 9.7). A
strong gust intensity, 14% of the freestream speed, caaggswing structural deformations.
In addition to the linear reduced model above, a nonlineduced order model was generated
with the same modes but including terms up to second orderifidiusion of higher order
terms did not modify the convergence properties of the motlet search was performed
using both the full and reduced order models and 80 caloulstivere performed in total.
Figure[ 1.9 illustrates the largest upward and downwardsiral deflections at the wing tip
for various gust wavelengths that are reported along thiedraial axis. The worst—case gust
causing the largest structural deformations is seen to dal/e duration, that corresponds
to a length of 197 mean aerodynamic chords at the flying spE®@ m/s. A comparison of
the dynamic response to the worst—case gust is made bethedingarised and nonlinear
models, and between the full and reduced order models. Betiwns of 9 m are considered
large as the wing span is 17.75 m, and it is not unexpectedsrctse that the linearised
(full and reduced) models over—predict the deformatio® §omputational cost to obtain
the gust profiles in Figufe1.9 with the reduced models waagtiém of that needed for the
original full model: for the linear case, the reduced modehdnstrated a speedup of about
10 times; for the nonlinear case, an increased performareecut 30 times was recorded.
These indicative values are expected to increase conbigi@sthe size of the original model
increases 'Da Ronch etlal. (2013c)’, demonstrating thetjpacuse and advantage of the
developed approach to model reduction.

To conclude, it is demonstrated through application to &steaHALE test case that the
reduced order models significantly reduce the computdtiost for parametric worst—case
gust searches. Sectibn 1]4.3 will also show that the redoictst models are adequate for a



Nonlinear Reduced Order Aeroservoelastic Analysis of \Fexible Aircraft 23

12~ 10

NFOM
—_——— FOM
10 L] NROM
v ROM

VN =

-
L

VT — =

Wing tip vert disp [m]
Wing tip vert disp [m]

ZW

1 1 1 1 1 1 0 1 1 1 1 1
0 100 200 300 400 500 600 0 15 3 45
- Time [s]

9

(a) Profile of largest deflections (b) Tuned worst—case gust

Figure 1.9 Worst—case gust search for the "one—minus—cosine” gustyfafa) profile of largest
structural deflections at the wing tip, and (b) dynamic resedor the tuned worst—case gust

variety of control designs for gust load alleviation.

1.4 Control System Design

Previous work by the authors has considered the systen&tirgtion of nonlinear reduced
models that not only capture the system nonlinearities lsotare parametrised with respect
to flow conditions (freestream speed, density, etc.) 'DadRaat al.[(2012)’,/’'Da Ronch et al.
(2013b)’, IPapatheou et al. (2013)’. The reduced modelewssed forH,, control design
for gust load alleviation. In general, thé., control provides strong disturbance rejection
but, in principle, a controller that can adapt during changéthe flow conditions such
as airspeed or density is desired. Recently, an adaptiveratien was found efficient
for gust load alleviation for a flexible wing, 'Tantaroudds& (2014)’. That study, in
addition to a comparison of control design performance,fesjsed the fact that inherently
different control methodologies, from robust controll&wsnonlinear adaptive controllers,
can be designed based on the very same nonlinear reducedmodel represented by
Equation[[1.3b).

This Section continues with an overview of the theory beltnal control strategies .,
synthesis in Sectidn1.4.1 and model reference adaptiveatdn Sectior 1.4R. Finally,
Sectio 1.4 3 presents a comparison for the gust loadsiait®v of the aircraft test case
using the two control strategies.

1.4.1 H, Synthesis

Starting from Equatiori{1.35), a manipulation is neededtast the system of equations for
H, control synthesis. First, observe that the equations ofgtieced order model dynamics
are complex—valued and this is incompatible for controigtesThe system of equations is
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recast easily in real form, splitting the real and imaginaayts into separate equations and
doubling its original dimension. Second, remind that foehlr aerodynamics, the rotation
5, angular velocityd’ and acceleration” of a control surface contribute to the built—up
of the aerodynamic loads. As an interdependency existsdegtthese three quantities, the
actual commanded input is chosen to be the control surfap@aracceleration, from which
the deflection and angular velocity can be calculated nurakyi It follows that it is more
convenient to perform control design synthesis arounddhewing set of equations rather

than Equation{1.35).

& =Ax + Bu + Dw. + Fyn(x)
Yo = C1x + Dyywe + Digu (1.36)
Ymsrd = Cox + Doy we + Do u

where w, = (d,wy)T, with w, indicating an artificial disturbance used in tuning the
variables of the control synthesis, amgd= (Realz),Imagz),d,d)T. The output is
distinguished by what the controller is aiming to contmly, and what the controller has
information aboutymsrg.

The H., control problem with additional input—shaping techniqdes control tuning
purposes for the classicél., problem formulation is written as follows| _'Zhou and Dayle
(1998y,

T A D B T
Yeul = | Ci1 Di1 Dy We (1.37)
Ymsrd C> Dy Doy u

The resulting controller has the linear form
u(s) = K (3) Ymsra(s) (1.38)

whereK (s) is the H,, controller transfer function in the Laplace domain. It i®dghat aims
to minimise the transfer of the disturbance signal fréno y. by creating a controller that
uses information fromymerqto change the input. This can be written as

sup fooo ||Ymsra (t) ||2 dt

.39
sp [ @ P S (1.39)

where~ represents the ratio of the maximum output energy to the maxi input energy.

The problem is expanded to include a weight on inpiis, which carries over to an
additional element on controlled output and a weight on messent noise K4, which
carries over to an additional element on measured outpetHLh control is derived on the
basis of the linearised model and is applied directly to thainear full order model by using
the reduced matrices from the nonlinear model order redinftamework.

1.4.2 Model Reference Adaptive Control

Assume the nonlinear reduced order model in the form of Eou4i.3%), and consider an
ideal model reference in the form

Em = AT + Bu + Bad + fanm (Tm) (1.40)
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Matrix A,, is a stable Hurwitz matrix that satisfies the desired pragexf the reference
system. This could mean eigenvalues with increased damgingpared to the actual
aeroelastic system. MatriB,,, is user defined and describes the influence of the control
inputs on the states of the reference model. The states akfeeence model due to the
increased damping in matri¥d,,, will decay to zero faster under the same disturbances
or flap actuation while their magnitude will be in general 8araas well. The physical
displacements of the system can be retrieved by using tipeibetjuation.

The goal is to find a dynamic control input, related to the flap actuation that satisfies
the conditionlim;_, « ||y (¢) — ym (t) ||. The exact control feedback for the model matching
conditions is defined as

u=K,z+ K'r (1.41)

wherer is a reference signal applied to both systems, as shown inéflg 10, representing

in our case the flap angle, add}, K are the exact gains acting on the states and control
input to match the two models. Substituting Equatfon (1id Bquation[[1.36) and satisfying
the model matching conditions yield

{ e (1.42)

B.K! = B,

Since A and B, are considered to be unknown to the controller, the valueK pfK* in
Equation[[1.41) are also unknown at the initial time and tttea& control signal applied at
the current time—step is defined as

u= K,z + K,r (1.43)

The gainsK, and K. in Equation [[1.41) are dynamic gains that need to be solvddcetiie
end will be required to converge to the values that providelati®n to Equation[(1.42).

However, in adaptive control systems there is a big unaegtabout the convergence
of the adaptive gains even in deterministic ideal situaiolm presence of stochastic
disturbances, this issue becomes even more challenging@nglicated and this topic
remained open for many years in nonlinear adaptive conesigsh. There are many cases
where the adaptive gains converge to different values tieadtual analytical pre—calculated
ideal gains even without the presence of disturbances.m@gcBarkana (2005)’ showed
that in cases where the adaptive gains do not reach the usdduiton that the preliminary
design suggests, it is not because there is something writhgttve control design. This
is because the adaptive controller only needs a specificfsgdins that correspond to a
particular input command compared to a unique solution afgfr all inputs that an exact
design suggests.

The closed loop dynamics of the nonlinear reduced modeisaptiint may be expressed
as

@ = (A + B.K,)z + B.K,7 + Byd + fun(2) (1.44)

Leto* = {K; K;}" andd = {K, K,}".The estimation error between the instantaneous
and the ideal gains is defined as

G=6"—0=(0, 6,)" (1.45)
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with 0, = K} — K, andd, = K; — K,. Now definep = (z,r)7. In that case the closed
loop system dynamics in Equatidn (11.44) are expressed as
&= (A+ B.K!)x + B.K'r — B.0,x — B.0,r + Bugd + fn (x)
= A,z + B,r — B¢ 0 + Byd + fu (x) (1.46)

For the purpose of the stability proof of the closed loop eysbne needs to define the error
dynamics between the two systems 'Barkana (2013)’.

e =x— T, (1.47)

The derivative of which, expresses the rate of change bettheetwo systems and can be
written as

eE=T—x,

= Am (m - mm) - BC¢T9_+ (.fnl ((13) - fnm (mm))
=A,e — BC¢T9_ + (.fnl (:13) - .f_nm (mm))
=A,e — B.¢"0 + Fpy (1.48)

At this point, the Lyapunov equation needs to be solved ferriierence model because its
solution will be part of the steady part of the Lyapunov caati function that we define and
that will lead to the stability proof of the nonlinear reddeaodel 'loannou and Slin (1996)'.

where in Equatiof(1.49)) is a semi—definite positive user defined matrix. A scalar
quadratic Lyapunov functiol in e andd may be defined, such that the system becomes
asymptotically stable by satisfying’ > 0 and its time derivative is semi—definite negative
V' < 0’loannou and Sur (1996)". This function will provide insigin the selection of the
parameter update law of the time varying gains in Equaliofd)1 The Lyapunov function

V(e 0)=e'Pe+0'T10>0 (1.50)

is considered, wher® = PT > ( is the solution of the algebraic Lyapunov Equation (1L.49)
for a particular selection of) while T' = T'7 > 0 is a user defined semi-definite positive
matrix. Note that the positiveness of the above Lyapunoetion is guaranteed only if the
system under examination is a minimum—phase system whiehf@rced in the reduced
order model generation. Differentiating the above equatith respect to time yields

V(e,0) = " (P + P")e + 260"T 0 + ePFp; (1.51)

By substitution of the error dynamics and by using Equaflodd), Equation(1.51) is
expanded as follows

V(e 0) = —eTQe + 207T! (I‘¢eTPBc + é) + ePFp; (1.52)
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From the above equation one can determine the adaptatiampéer to satisfy the semi
definite negativeness of the derivative of the Lyapunov fioncas

0 = —T¢e" PB, (1.53)
which leads to
V(e,0) = —e'Qe + +ePFp; (1.54)

The term —e” Qe in Equation[(T.B¥) is negative—definite with respectedoand this

is enforced by the semi—definitive positive matigx. The derivative of the Lyapunov
function remains negative definite in both(¢) and e (¢) if additionally the second
term in Equation{1.54) is not too large, or alternativelytlie following inequality is

satisfied|'Torres and Mehiel (2006)’.

1011 = 1) = Foms (@) | < 10 = (1.55)
However, it is impossible to come up with a general mathesahtproof that ensures
the stability of the nonlinear adaptive control scheme odfilflie aircraft for all types of
nonlinearities. Instead, the efficiency of the control dass demonstrated on the nonlinear
system for realistic amplitudes of external disturban@é& dynamic time varying gains in
Equation[[1.4B) are updated by the adaptive law so that e dierivative of the Lyapunov
function decreases along the error dynamic trajectoried &squation[[1.54). By using
Barbalat's lemma this translates in boundness of the eryoamiics with respect to the
time evolution and as a result the model matching conditamessatisfied. In general, this
control approach is limited to minimum phase systems. Tlwhen applied in unstable non—
minimum phase systems unstable zero—pole cancellationowmyr and the error between
the two assumed models slowly diverges to infinity. Howearsimple feedback based on the
Bass—Gura formula'Ogata (2010)’ can be applied on the ROpletoe any unstable zeros on
the left half plane. The implementation of the computati@gorithm may be summarised
in the block diagram shown in Figure 1]10.

1.4.3 Aircraft Test Case Gust Loads Alleviation
H, Synthesis

The design of a controller for loads alleviation was perfedon the linear reduced model
considering the tuned worst—case gust. The good perforenainihie controller to suppress
the vibrations of the linear model induced by the worst—agisgt is not unexpected, as
the controller was designed specifically for that scenatmwvever, its performance will be
shown on the nonlinear full model. The question address#usrSection is whether a good
alleviation can be achieved when considering a differeapshof the gust, but using the
same controller. The responses shown in Figure 1.11 arhdatiscrete worst—case gust and
for a continuous gust model based on Von Karman spectruma@haelastic vibrations of
the closed loop system are significantly reduced when coeadarthe open loop response.
However, the performance of the optimal robust controleseen to degrade when applied
to the nonlinear system for very strong stochastic distucba.
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Q.rnz (t) - Anzwm (t) + B7nu (t) + de (t) + fnm
ua(t) T

€T
ue (t) |&(t) = Ax(t) + Bow (t) + Bad (t) + fu
y(t) = Cz (t)
Uqg (t)
K(;B <
1le 0 (t) = —T'pe ()" PB,

Figure 1.10 Block diagram of a nonlinear adaptive control algorithm

The efficiency of the optimal control approach using the oedumodels for gust load
alleviation can be demonstrated in a case with noticealfferedihces between the linear
and nonlinear full order models, Figurell.9. However, thefqmance of the optimal
robust controller is reduced when applied to the nonlingstesn for very strong stochastic
disturbances.

Model Reference Adaptive Controller

The nonlinear reduced model was implemented to simplifysgrekd up the calculation of
the adaptive model reference control framework. The cosgpuabntrol surface deflection
was applied to the nonlinear full order model which is undetemal disturbances. The
selection of the reference model is of critical importanseéad choice could potentially
lead the flap to experience unrealistic rotations. In thigeca reference model was created
with additional damping added to the first bending and to@ionodes. As a result, the
aeroelastic vibrations of the reference system die out muoiekly than those of the plant
to be controlled. The eigenvalues of the linearised referaystem are summarised in the
Table[1.8, which should be confronted with Table 1.2 for theantrolled system. Note that
damping is added to the first five complex conjugate eigeegllihe eigenvalues and a
comparison between the plant model and the selected refeneadel for the worst case gust
are shown in Figure 1.12.

The selection of the semi—definite—positive matxwhich provides a solution to the
Lyapunov equation given a stable Hurwitz matrix of a refeeemodelA,, is also critical.
In this case(Q was chosen to be a diagonal matrix with eleme&ps= 10~*. As shown in
Equation[[1.5B8), the selection of the reference model ifilct howe (¢) will evolve during
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Figure 1.11 Gust loads alleviation response using tHe, controller compared to the open loop
response for: (a) worst—case "one—minus—cosine" gustfigore 1.9, and (b) von Karman turbulence
model
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response for: (a) worst—case "one—minus—cosine" gustfigore 1.9, and (b) von Karman turbulence
model; (c) eigenvalues of the system to be controlled andefezence system
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Table 1.3 Eigenvalues of the reference
model

Mode Real part  Imaginary part

number
1 -9.53107¢ +2.01
2 -8.53107¢ +1.0210!
3 -1.7110! +2.7910!
4 -5.73107¢ +4.7410!
5 -1.2110! +6.5510!
6 -9.90 0.00
7 -1.02:10* 0.00
8 -1.0110! 0.00

Real and imaginary parts in [Hz]

Table 1.4 Adaptation parameter selection

Discrete gust case  Continuous gust case

r 0.01Q 0.01Q
r 0.10Q 0.10Q
r 1.00Q 1.00Q

the time integration which is part of the adaptation paraméthe reference model in that
case needs to be stable so that the error decreases asyaiptdEinally, observe that the
adaptation parameter is affected Byand, as a result, by matricésandT.

The effect of the adaptation matrxis therefore investigated for the performance of the
closed loop system. The discrete selection of the semi-iefpositive matrixT” is shown
in Table[ 1.4 for both discrete and continuous gust loadsialien.

The derived controller based on the reduced model is dyreqiplied to the full order
nonlinear aeroelastic system. The wing tip vertical disptaent for different adaptation
rates for the worst case "one—minus—cosine" gust and foméntmus gust is shown in
Figure[1.1B.

Results show significant reduction of the wing tip deflectifor the closed loop system for
both linear and nonlinear cases, with realistic flap defiectis all cases. It can be seen that
for the particular selection of the semi—definite—posithagrix Q, a larger adaptation gain
is required during the fluid—structure—gust interactioalteviate the disturbances. A further
increase of the adaptation gain may lead to a non—realiapcréitation with a flap angle of
over 15 deg which is a common constraint for the flap maximusatian. Therefore, it is not
suggested to select very large adaptation rates becauflaghmight overshoot during the
fluid—structure—gust interaction.

Control Design Comparison

Both control designs were found adequate for gust loadviatien of a very flexible
aircraft. However, a "good" controller does not only guaearthat the closed loop structural
deformations are smaller than those of the open loop causntivut also that this is achieved
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Figure 1.13 Gust loads alleviation response using the MRAC controbberarious adaptation gains
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Table 1.5 Comparison of control performance for a discrete "one—
minus—cosine" gust

Controller design Reduction inwing tip  Maximum flap rotatio
deflection [%] [deg]

H 23.15 -9.47

MRAC,T = 107%Q 24.45 -7.54

MRAC, T =10"'Q 28.89 -7.56

MRAC, T =1Q 29.45 -8.11

Table 1.6 Comparison of control performance for a stochastic gust

Controller design Reduction inwing tip  Maximum flap rotatio
deflection [%] [deg]

H 10.26 12.79

MRAC,T = 107%Q 4.73 2.31

MRAC, T =107'Q 8.00 5.89

MRAC, T =1Q 12.68 12.83

with a realistic, optimal, and minimum control effort. Therformance of thef., and
MRAC controllers for the discrete "one—minus—cosine" gastported in Table1l5. It is
found that the adaptive control methodology achieves aebgtrformance in reducing
the wing tip deflection than thél., control strategy, and the performance in gust loads
alleviation increases for increasing adaptation rates.r&€duction in the wing tip deflection

is also achieved with a smaller control effort.

Finally, the performance of the two controllers is sumnedis Tablé 1.6 for the random
turbulence based on the Von Karmén spectrum. The gust ldselsation proves more
challenging in this case because of the larger frequenagnbtihan that for the "one—minus—
cosine" gust. The choice of the adaptation rate is critigslit affects the capability of the
control system to follow the rapid changes in the gust lods.not unexpected, therefore,
that the performance of the MRAC controller degrades forlkenadaptation rates. For larger
adaptation rates, the adaptive control design achievestdhe same level of gust loads
alleviation, but with a smaller control effort, than the, controller.

The comparison of the performance of the two control stiageigdicates that, in general,
the gust loads alleviation with a random turbulence is mvalenging and may result in
degraded performances, at least to some degree, compaetidtrete gust case. Note that
the ability to investigate two control strategies is endldg the model reduction technique
presented in this Chapter, demonstrating the readineskftevpractical use.

1.5 Conclusion

A unified methodology to facilitate control synthesis dessgarting from arbitrarily large

computational models of flexible flying aircraft is presehitethis Chapter. The methodology
requires the accurate calculation of the coupled eigemegahind modeshapes to form an
efficient basis for model projection, and a Taylor seriesagon is then used to retain some
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of the nonlinearities affecting the system dynamics. Thtouarious flight conditions and
atmospheric gusts and turbulence, the methodology is dstmraded for an aircraft test case
highlighting the benefits of the proposed approach. The odetlogy is found effective for
practical use, and its generality allows its applicabiithyany large computational model.

1.6 Exercises

1. Investigate the impact that the altitude has on the st#tisf the random vertical
gust intensity, Equation (1.113). Assuming a flight spéed = 250 m/s, turbulence
intensity "moderate10—3", and referring to the Military Specification MIL-F—
8785C, use the MATLAB Von Karman Turbulence Generator (VK T@lbox that
accompanies this Chapter.

2. A process model that describes the relation between toeityeand displacement is
given by the following dynamic equation.

#(t) = azx(t) + dbu(t) (1.56)
However, the desired dynamic response is given by a modeldyitamics of the form
T (1) = o T, (B) + b ue (T) (1.57)

Assume a controller of the form (¢t) = 01 (t) u.(t) — 02 (t) = (¢t) to assess the
problem of tracking between the two given systems.

1) Calculate the derivative of the errerierror dynamics), between the two systems in
the closed loop form solution.

2) Assuming a Lyapunov candidate functin=V (e (¢), 0 (t), 02 (1))

vV = % [62 (t) + % ((b92 (t) + a — am)® + (b6 (t) — bm)Q)] (1.58)

Calculate: a) the set ob,v that satisfiesV > 0; b) the derivative of the
Lyapunov function ine, 61, 05; c) the adaptation parametefis, 6> such that the
closed loop solution is asymptotically stable; and d) penfdhis simulation in
MATLAB/SIMULINK and investigate the effect of the adaptati parameters in the
closed loop solution.
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