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ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES
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Doctor of Philosophy

Quantum Error Correction Codes

by Zunaira Babar

Quantum parallel processing techniques are capable of solving certain complex problems at a substan-

tially lower complexity than their classical counterparts. From the perspective of telecommunications,

this quantum-domain parallel processing provides a plausible solution for achieving full-search based

multi-stream detection, which is vital for future gigabit-wireless systems. The peculiar laws of quantum

mechanics have also spurred interest in the absolutely-secure quantum-based communication systems.

Unfortunately, quantum decoherence imposes a hitherto insurmountable impairment on the practical

implementation of quantum computation as well as on quantum communication systems, which may

be overcome with the aid of efficient error correction codes. In this thesis, we design error correction

codes for the quantum domain, which is an intricate journey from the realm of classical channel coding

theory to that of the Quantum Error Correction Codes (QECCs).

Since quantum-based communication systems are capable of supporting the transmission of both

classical and quantum information, we initially focus our attention on the code design for entanglement-

assisted classical communication over the quantum depolarizing channel. We conceive an EXtrinsic

Information Transfer (EXIT) chart aided near-capacity classical-quantum code design, which invokes

a classical Irregular Convolutional Code (IRCC) and a Unity Rate Code (URC) in conjunction with

our proposed soft-decision aided SuperDense Code (SD). Hence, it is referred to as an ‘IRCC-URC-

SD’ arrangement. The proposed scheme is intrinsically amalgamated both with 2-qubit as well as

3-qubit SD coding protocols and it is benchmarked against the corresponding entanglement-assisted

classical capacity. Since the IRCC-URC-SD scheme is a bit-based design, it incurs a capacity loss. As

a further advance, we design a symbol-based concatenated code design, referred to as a symbol-based

‘CC-URC-SD’, which relies on a single-component classical Convolutional Code (CC). Additionally,

for the sake of reducing the associated decoding complexity, we also investigate the impact of the

constraint length of the convolutional code on the achievable performance.

Our initial designs, namely IRCC-URC-SD and CC-URC-SD, exploit redundancy in the classical

domain. By contrast, QECCs relying on the quantum-domain redundancy are indispensable for con-

ceiving a quantum communication system supporting the transmission of quantum information and

also for quantum computing. Therefore, we next provide insights into the transformation from the
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family of classical codes to the class of quantum codes known as ‘Quantum Stabilizer Codes’ (QSC),

which invoke the classical syndrome decoding. Particularly, we detail the underlying quantum-to-

classical isomorphism, which facilitates the design of meritorious families of QECCs from the known

classical codes. We further study the syndrome decoding techniques operating over classical channels,

which may be exploited for decoding QSCs. In this context, we conceive a syndrome-based block

decoding approach for the classical Turbo Trellis Coded Modulation (TTCM), whose performance is

investigated for transmission over an Additive White Gaussian Noise (AWGN) channel as well as over

an uncorrelated Rayleigh fading channel.

Pursuing our objective of designing efficient QECCs, we next consider the construction of Hashing-

bound-approaching concatenated quantum codes. In this quest, we appropriately adapt the conven-

tional non-binary EXIT charts for Quantum Turbo Codes (QTCs) by exploiting the intrinsic quantum-

to-classical isomorphism. We further demonstrate the explicit benefit of our EXIT-chart technique for

achieving a Hashing-bound-approaching code design. We also propose a generically applicable struc-

ture for Quantum Irregular Convolutional Codes (QIRCCs), which can be dynamically adapted to a

specific application scenario with the aid of the EXIT charts. More explicitly, we provide a detailed

design example by constructing a 10-subcode QIRCC and use it as an outer code in a concatenated

quantum code structure for evaluating its performance.

Working further in the direction of iterative code structures, we survey Quantum Low Density Par-

ity Check (QLPDC) codes from the perspective of code design as well as in terms of their decoding algo-

rithms. Furthermore, we propose a radically new class of high-rate row-circulant Quasi-Cyclic QLDPC

(QC-QLDPC) codes, which can be constructed from arbitrary row-circulant classical QC-LDPC ma-

trices. We also conceive a modified non-binary decoding algorithm for homogeneous Calderbank-

Shor-Steane (CSS)-type QLDPC codes, which is capable of alleviating the problems imposed by the

unavoidable length-4 cycles. Our modified decoder outperforms the state-of-the-art decoders in terms

of their Word Error Rate (WER) performance, despite imposing a reduced decoding complexity. Fi-

nally, we intricately amalgamate our modified decoder with the classic Uniformly-ReWeighted Belief

Propagation (URW-BP) for the sake of achieving further performance improvement.



Declaration of Authorship

I, Zunaira Babar, declare that the thesis entitled Quantum Error Correction Codes and the work

presented in the thesis are both my own, and have been generated by me as the result of my own

original research. I confirm that:

� this work was done wholly or mainly while in candidature for a research degree at this University;

� where any part of this thesis has previously been submitted for a degree or any other qualification

at this University or any other institution, this has been clearly stated;

� where I have consulted the published work of others, this is always clearly attributed;

� where I have quoted from the work of others, the source is always given. With the exception of

such quotations, this thesis is entirely my own work;

� I have acknowledged all main sources of help;

� where the thesis is based on work done by myself jointly with others, I have made clear exactly

what was done by others and what I have contributed myself;

� parts of this work have been published as: [1, 2, 3, 4, 5, 6, 7]

Signed:.......................................................................................................................

Date:..........................................................................................................................

v





Acknowledgements

I would like to take this opportunity to express my deepest gratitude to my supervisors Dr. Soon Xin

Ng and Prof. Lajos Hanzo. Without their insightful guidance, continuous support and inexhaustible

enthusiasm, I would not have been able to accomplish this formidable task. Their inspirational mo-

tivation has helped me grow both as a researcher as well as a person. I would also like to thank

the faculty members of the Southampton Wireless Group, namely Dr. Robert G. Maunder, Dr Mo-

hammed El-Hajjar, Dr Rong Zhang, Prof. Lie Liang Yang and Prof. Sheng Chen for the useful

discussions/suggestions throughout my research. Special thanks are also due to Dr. Mark Wilde

(Louisiana State University) for the valuable discussions. I also extend my gratitude to all my col-

leagues at Southampton for their continuous support and inspiration. I am also indebted to the School

of Electronics and Computer Science, University of Southampton, for supporting my studies under

the auspices of the Pan-European Concerto project. Finally, I extend my heartfelt appreciation to my

family and friends for their unconditional support and encouragement.

vii





List of Publications

Journal Papers:

1. Zunaira Babar, Panagiotis Botsinis, Dimitrios Alanis, Soon Xin Ng and Lajos Hanzo, “Fif-

teen Years of Quantum LDPC Coding and Improved Decoding Strategies”, IEEE Access (to be

submitted).

2. Zunaira Babar, Panagiotis Botsinis, Dimitrios Alanis, Soon Xin Ng and Lajos Hanzo, “Con-

struction of Quantum LDPC Codes from Classical Row-Circulant QC-LDPCs”, IEEE Commu-

nications Letters (to be submitted).

3. Zunaira Babar, Panagiotis Botsinis, Dimitrios Alanis, Soon Xin Ng and Lajos Hanzo, “The

Road from Classical to Quantum Codes: a Hashing Bound Approaching Design Procedure”,

IEEE Access, vol.3, pp. 146-176, Mar. 2015.

4. Zunaira Babar, Soon Xin Ng and Lajos Hanzo, “EXIT-Chart Aided Near-Capacity Quantum

Turbo Code Design”, IEEE Transactions on Vehicular Technology, vol.64, no.3, pp. 866-875,

Mar. 2015.

5. Zunaira Babar, Soon Xin Ng and Lajos Hanzo, “Near-Capacity Code Design for Entanglement-

Assisted Classical Communication over Quantum Depolarizing Channels”, IEEE Transactions

on Communications, vol. 61, no. 12, pp. 4801-4807, Dec. 2013.

6. Zunaira Babar, Soon Xin Ng and Lajos Hanzo, “Reduced-Complexity Syndrome-Based TTCM

Decoding”, IEEE Communications Letters, vol. 17, no. 6, pp. 1220-1223, Jun. 2013.

7. Panagiotis Botsinis, Dimitrios Alanis, Zunaira Babar, Soon Xin Ng and Lajos Hanzo, “Non-

Coherent Quantum Multiple Symbol Differential Detection for Wireless Systems”, IEEE Access,

vol.3, pp. 569-598, May 2015.

8. Mark Wilde, Min-Hsiu Hsieh and Zunaira Babar, “Entanglement-Assisted Quantum Turbo

Codes”, IEEE Transactions on Information Theory, vol. 60, no. 2, pp. 1203-1222, Feb. 2014.

9. Panagiotis Botsinis, Dimitrios Alanis, Zunaira Babar, Soon Xin Ng and Lajos Hanzo, “Iterative

Quantum-Assisted Multi-User Detection for Multi-Carrier Interleave Division Multiple Access

Systems”, IEEE Transactions on Communications (under review).

10. Abdulah Jeza Aljohani, Zunaira Babar, Soon Xin Ng, and Lajos Hanzo, “Distributed Source-

Channel Coding using Reduced-Complexity Syndrome-Based TTCM”, IEEE Communications

Letters (to be submitted).

ix



11. Dimitrios Alanis, Panagiotis Botsinis, Zunaira Babar, Soon Xin Ng and Lajos Hanzo, “Non-

Dominated Quantum Iterative Routing Optimization for Wireless Multihop Networks”, IEEE

Access (to be submitted).

Conference Papers:

1. Zunaira Babar, Soon Xin Ng and Lajos Hanzo, “EXIT-Chart Aided Code Design for Symbol-

Based Entanglement-Assisted Classical Communication over Quantum Channels”, IEEE Vehic-

ular Technology Conference (VTC-Fall), Sep. 2014, Vancouver, BC.

2. Hung Nguyen, Zunaira Babar, Soon Xin Ng, Matteo Mazzotti, Lorenzo Iacobelli and Lajos

Hanzo, “Network Coded MIMO Aided Cooperative Communications in the Ambulance-and-

Emergency Area”, International Conference on Selected Topics in Mobile and Wireless Net-

working (MoWNet), Sep. 2014, Rome, IT.

Poster Presentation:

1. Zunaira Babar, Panagiotis Botsinis, Dimitrios Alanis, Soon Xin Ng and Lajos Hanzo, “Quantum-

Aided Solutions in Wireless Systems”, International Workshop on Quantum Communication

Networks, Jan. 2014, Leeds, UK.



Contents

Abstract iii

Declaration of Authorship v

Acknowledgement vii

List of Publications ix

List of Symbols xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Historical Overview of QECCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Quantum Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Quantum Low Density Parity Check Codes . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Quantum Turbo Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Entanglement-Assisted Quantum Codes . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Novel Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Preliminaries of Quantum Information 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xi



2.2 Quantum Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 N -Qubit Composite System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 No-Cloning Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Unitary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 The Pauli Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Quantum Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Near-Capacity Code Designs for Entanglement-Assisted Classical Communication 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Review of the Superdense Coding Protocol . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 2-Qubit Superdense Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 N -Qubit Superdense Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Entanglement-Assisted Classical Capacity . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Bit-Based Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Near-Capacity Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 EXIT Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.2 Near-Capacity IRCC-URC-SD Design . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Results and Discussions I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.1 Performance of IRCC-URC-2SD . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6.2 Performance of IRCC-URC-3SD . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Symbol-Based Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Results and Discussions II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 From Classical to Quantum Error Correction 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Review of Classical Linear Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Quantum Stabilizer Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xii



4.3.1 Stabilizer Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Quantum-to-Classical Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2.1 Pauli-to-Binary Isomorphism . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2.2 Pauli-to-Quaternary Isomorphism . . . . . . . . . . . . . . . . . . . . 79

4.3.3 Classification of Quantum Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Quantum Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Entanglement-Assisted Quantum Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Classical Syndrome Decoding 91

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Look-Up Table-based Syndrome Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Trellis-based Syndrome Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Linear Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2 Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Block Syndrome Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.1 General Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.2 Block Syndrome Decoder for TTCM . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.2.2 Syndrome-Based MAP Decoder . . . . . . . . . . . . . . . . . . . . . 108

5.4.2.3 Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.2.4 Syndrome-based Blocking . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.1 Performance of BSD-TTCM over AWGN Channel . . . . . . . . . . . . . . . . 110

5.5.2 Performance of BSD-TTCM over Uncorrelated Rayleigh Fading Channel . . . . 112

5.5.3 Effect of Frame Length on the Performance of BSD-TTCM . . . . . . . . . . . 116

5.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 EXIT-Chart Aided Hashing Bound Approaching Concatenated Quantum Codes 121

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xiii



6.2 Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Circuit-Based Representation of Stabilizer Codes . . . . . . . . . . . . . . . . . . . . . 125

6.4 Concatenated Quantum Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4.2 Degenerate Iterative Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5 EXIT-Chart Aided Quantum Code Design . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.6 Results and Discussions I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.6.1 Accuracy of EXIT Chart Predictions . . . . . . . . . . . . . . . . . . . . . . . . 143

6.6.2 Entanglement-Assisted and Unassisted Inner Codes . . . . . . . . . . . . . . . 143

6.6.3 Optimized Quantum Turbo Code Design . . . . . . . . . . . . . . . . . . . . . . 147

6.7 Quantum Irregular Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.8 Results and Discussions II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.9 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7 Quantum Low Density Parity Check Codes 163

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 Quantum LDPC Code Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2.1 Calderbank-Shor-Steane Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2.2 Non-CSS Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.3 Entanglement-Assisted QLDPC Codes . . . . . . . . . . . . . . . . . . . . . . . 175

7.3 Iterative Decoding of Quantum LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . 176

7.3.1 Binary Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.3.2 Non-Binary Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.3.3 Decoding Issues & Heuristic Methods for Improvement . . . . . . . . . . . . . . 182

7.4 High-Rate QLDPC Codes from Row-Circulant Classical LDPCs . . . . . . . . . . . . . 186

7.5 Results and Discussions I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.6 Modified Non-Binary Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.7 Reweighted BP for Graphs Exhibiting Cycles . . . . . . . . . . . . . . . . . . . . . . . 200

7.8 Results and Discussions II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.8.1 Modified Non-Binary Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

xiv



7.8.2 Uniformly-Reweighted BP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.9 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8 Conclusions and Future Directions 217

8.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Appendices 231

A Construction of Syndrome Former 231

A.1 Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

A.2 Turbo Trellis Coded Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

B Simulation of QLDPC Decoding 235

List of Abbreviations 237

Glossary 239

Bibliography 245





List of Symbols

General Notation

� The notation |.〉 is used to indicate a quantum state. Therefore, |ψ〉 represents a qubit having
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� The notation [.] is used to indicate the effective Pauli operation. Therefore, [P] represents the
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� The notation ⋆ is used to indicate the symplectic product.

� The notation ⊗ is used to indicate the tensor product.

� The notation
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� The notation
∏

is used to indicate the product operation.

� The notation
∑

is used to indicate the sum operation.

� The notation 〈, 〉 is used to represent the inner product.

� The GF(4) variables are represented with aˆon top, e.g. x̂.

� The notation (n, k) is used for a classical code, while the notation [n, k] is used for a quantum

code.

� The superscript T is used to indicate the matrix transpose operation. Therefore, xT represents

the transpose of the matrix x.
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π The bit or qubit interleaver.

π−1 The bit or qubit de-interleaver.

πs The symbol-based interleaver.

π−1
s The symbol-based de-interleaver.

Rc The equivalent classical coding rate of a quantum code.

RQ The quantum coding rate.

S The Pauli error inflicted on the auxiliary qubits.

S The phase gate.

T [.] The transfer function.
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X The Pauli-X operator.
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Chapter 1
Introduction

I
f computers that you build are quantum,

Then spies everywhere will all want ’em.

Our codes will all fail,

And they’ll read our email,

Till we get crypto that’s quantum, and daunt ’em.

Jennifer and Peter Shor

1.1 Motivation

The laws of quantum mechanics provide a promising solution to our quest for miniaturization and

increased processing power, as implicitly predicted by Moore’s law formulated four decades ago [8].

This can be attributed to the inherent parallelism associated with the quantum bits (qubits). More

specifically, in contrast to the classical bits, which can either assume a value of 0 or 1, qubits can exist

in a superposition of the two states. Consequently, while an N -bit classical register can store only

a single N -bit value, an N -qubit quantum register can store all the 2N states concurrently, allowing

parallel evaluations of certain functions with regular global structure at a complexity cost that is

equivalent to a single classical evaluation [9, 10], as illustrated in Figure 1.1. Therefore, as exemplified

by Shor’s factorization algorithm [13] and Grover’s search algorithm [14], quantum-based computation

is capable of solving certain complex problems at a substantially lower complexity, as compared to

its classical counterpart. From the perspective of telecommunications, this quantum domain parallel

processing seems to be a plausible solution for the massive parallel processing required for achieving

joint optimization in large-scale communication systems, for example with the aid of quantum as-

sisted multi-user detection [10, 15, 16] and quantum-assisted routing optimization for self-organizing

networks [17]. More explicitly, provided that we can create a sufficiently high number of parallel

1
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Figure 1.1: Quantum Parallelism: Given a function f(x), which has a regular global structure such that

f(x) : {0, 1}2 → {0, 1}2, a classical system requires four evaluations to compute f(x) for all possible

x ∈ {00, 01, 10, 11}. By contrast, since a 2-qubit quantum register can be in a superposition of

all the four states concurrently, i.e. |ψ〉 = α0|00〉+ α1|01〉+ α2|10〉+ α3|11〉, quantum computing

requires only a single classical evaluation to yield the outcome, which is also in a superposition of all

the four possibilities, i.e. α0|f(00)〉+α1|f(01)〉+α2|f(10)〉+α3|f(11)〉. However, it is not possible
to read all the four states because the quantum register collapses to one of the four superimposed

states upon measurement. Nevertheless, we may manipulate the resultant superposition of the

four possible states before observing the quantum register for the sake of determining a desired

property of the function, as in [11, 12, 13, 14].

streams and that we have a low-complexity full-search-based multi-stream detector, the through-

put of the wireless system may be increased linearly with the transmit power [10]. Unfortunately,

the associated optimal full-search-based multi-stream detectors of classical systems have an excessive

complexity, which increases exponentially both with the number of users as well as the antennas. Since

quantum-based computation is capable of solving certain complex problems at a substantially lower

complexity as compared to its classical counterpart, quantum parallel processing techniques may be

invoked here [10, 15, 16, 17].

Against this background, quantum computation may jeopardize the most trusted methods of clas-

sical public key encryption, which derive their security from the computational complexity associated

with the underlying mathematical functions. While classical cryptography is at risk of being deci-

phered due to quantum computing, quantum-based communication is capable of supporting secure

data dissemination, where any ‘measurement’ or ‘observation’ by an eavesdropper perturbs the quan-

tum superposition, hence intimating the parties concerned [18, 9]. Quantum-based communication

has given rise to a new range of security paradigms, which cannot be created using a classical commu-

nication system. In this context, quantum key distribution techniques [19, 20], quantum secure direct

communication [21, 22, 23] and the recently proposed unconditional quantum location verification [24]

are of particular significance. In particular, quantum-based communication supports the transmission

of classical as well as quantum information over an absolutely secure quantum channel, which exploits

a classical side-channel for detecting eavesdropping.
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Bit Flip

Phase Flip

Figure 1.2: Quantum decoherence characterized by bit-flips and phase-flips. The vertical polarization repre-

sents the state |1〉, while the horizontal polarization represents the state |0〉.

System Size Cosmic Room Vacuum

(cm) Radiation Temperature Sunlight (106 particles/cm3) Air

10−3 10−7 10−14 10−16 10−18 10−35

10−5 1015 10−3 10−8 10−10 10−23

10−6 1025 105 10−2 10−6 10−19

Table 1.1: Coherence time (seconds) under different environmental conditions for systems of varying sizes [27,

p. 176].

Unfortunately, a major impediment to the practical realization of quantum computation as well

as communication systems is quantum noise, which is conventionally termed as ‘decoherence’ (loss of

the coherent quantum state). More explicitly, decoherence is the undesirable interaction of the qubits

with the environment [25, 26]. It may be viewed as the undesirable entanglement of qubits with the

environment, which perturbs the fragile superposition of states, thus leading to the detrimental effects

of noise. The overall decoherence process may be characterized either by bit-flips or phase-flips or in

fact possibly both, inflicted on the qubits [25], as depicted in Figure 1.21. The longer a qubit retains its

coherent state, known as the coherence time, the better. In particular, the coherence time is affected

both by the size of the system as well as the environment. Table 1.1 depicts the coherence time

for systems of varying sizes under different environmental conditions, i.e. when subjected to cosmic

radiation, room temperature, sunlight, vacuum and air. Ideally, a quantum computing algorithm

(and similarly quantum communication) should be designed such that the computational process (or

transmission) finishes before the qubits decohere. Since different quantum systems have different

1A qubit may be realized in different ways, e.g. two different photon polarizations, different alignments of a nuclear

spin, two electronic levels of an atom or the charge/current/energy of a Josephson junction.
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Coherence Time per Max. No. of

System Time Gate Operation Reliable

(s) (s) Operations

Electrons from gold atom 10−8 10−14 106

Trapped indium atoms 10−1 10−14 1013

Optical microcavity 10−5 10−14 109

Electron spin 10−3 10−7 104

Electron quantum dot 10−3 10−6 103

Nuclear spin 104 10−3 107

Table 1.2: Maximum number of reliable operations for various systems [27, p. 177].

coherence times as well as different quantum gate operation times, the maximum number of reliable

operations varies for different systems, as illustrated in Table 1.2, where the maximum number of

reliable operations is computed as:

Max. no. of reliable operations =
Coherence time

Time per gate operation
. (1.1)

We may further observe in Table 1.2 that for the first three systems, which have the same time per

gate operation, the system having the longest coherence time, i.e. trapped indium atoms, permits the

maximum number of reliable operations. This is also evident from Eq. (1.1). Hence, it is desirable to

increase the coherence time for reliable quantum computation. Analogously, a longer coherence time

is also necessary for reliable quantum communication.

Recall that quantum-based communication systems support the transmission of both classical as

well as of quantum information. When the information to be transmitted is classical, we may invoke

the family of classical error correction techniques for counteracting the impact of decoherence, as de-

picted in the system model of Figure 1.3. More specifically, the classical information is first encoded

using a classical error correction code. The encoded bits are then mapped onto the qubits, which are

transmitted over a quantum channel. The mapping of classical bits to qubits may be carried out for

example by the so-called superdense coding protocol [28]. By contrast, for a more general commu-

nication system, which supports the transmission of classical as well as quantum information, and

for reliable quantum computation, we have to resort to the class of Quantum Error Correction Codes

(QECCs), which exploit redundancy in the quantum domain in contrast to the classical redundancy of

Figure 1.3. Analogous to the decoherence phenomenon, QECCs also rely on the peculiar phenomenon

of entanglement - hence John Preskill eloquently pointed out that we are “fighting entanglement with

entanglement” [29]. More explicitly, similar to the classical channel coding techniques, QECCs rec-

tify the impact of quantum noise (bit-flips and phase-flips) for the sake of ensuring that the qubits
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Bits Qubits

Mapper

Channel

Encoder

Demapper

Channel

Decoder

Quantum

Channel

Bits Qubits

Bit → Qubit

Bit → Qubit

Figure 1.3: Quantum-based communication system for the transmission of classical information, relying on

classical error correction codes, where bit-to-qubit mapping may be carried out using the super-

dense coding protocol [28].

retain their coherent quantum state for longer durations with a high probability, thus in effect benefi-

cially increasing the coherence time of the unperturbed quantum state. This has been experimentally

demonstrated in [30, 31, 32].

Against this background, in this thesis, we will focus our attention on the design of classical codes

for the system of Figure 1.3 as well as on QECCs, which are indispensable for conceiving a quantum

communication system and also for quantum computing.

1.2 Historical Overview of QECCs

A major breakthrough in the field of quantum information processing was marked by Shor’s pioneering

work on QECCs, which dispelled the notion that conceiving QECCs was infeasible due to the existence

of the no-cloning theorem. Inspired by the classical 3-bit repetition codes, Shor conceived the first

quantum code in his seminal paper [25], which was published in 1995. The proposed code had a

coding rate of 1/9 and was capable of correcting only single qubit errors. This was followed by

Calderbank-Shor-Steane (CSS) codes, invented independently by Calderbank and Shor [33] as well as

by Steane [34, 35], which facilitated the design of good quantum codes from the known classical binary

linear codes. More explicitly, CSS codes may be defined as follows:

An [n, k1 − k2] CSS code, which is capable of correcting t bit errors as well as phase errors, can be

constructed from classical linear block codes C1(n, k1) and C2(n, k2), if C2 ⊂ C1 and both C1 as well

as the dual of C2, i.e. C
⊥
2 , can correct t errors. Here, C1 is used for correcting bit errors, while C⊥

2

is used for phase-error correction.

Therefore, with the aid of CSS construction, the overall problem of finding good quantum codes was

reduced to finding good dual-containing or self-orthogonal classical codes. Following these principles,

the classical [7, 4, 3] Hamming code was used to design a 7-qubit Steane code [35] having a coding rate
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of 1/7, which is capable of correcting single isolated errors inflicted on the transmitted codewords.

Finally, Laflamme et al. [36] and Bennett et al. [37] independently proposed the optimal single error

correcting code in 1996, which required only four redundant qubits.

Following these developments, Gottesman formalized the notion of constructing quantum codes

from the classical binary and quaternary codes by establishing the theory of Quantum Stabilizer Codes

(QSCs) [38] in his Ph.D thesis [39]. In contrast to the CSS construction, the stabilizer formalism

defines a more general class of quantum codes, which imposes a more relaxed constraint than the CSS

codes. Explicitly, the resultant quantum code structure can either assume a CSS or a non-CSS (also

called unrestricted) structure, but it has to meet the symplectic product criterion. More specifically,

stabilizer codes constitute a broad class of quantum codes, which subsumes CSS codes as a subclass

and has undoubtedly provided a firm foundation for a wide variety of quantum codes developed,

including for example quantum Bose-Chaudhuri-Hocquenghem (BCH) codes [40, 41, 42, 43], quantum

Reed-Solomon codes [44, 45], Quantum Low Density Parity Check (QLDPC) codes [46, 47, 48, 49],

Quantum Convolutional Codes (QCCs) [50, 51, 52, 53], Quantum Turbo Codes (QTCs) [54, 55] as

well as quantum polar codes [56, 57, 58]. These major milestones achieved in the history of QECCs

are chronologically arranged in Figure 1.4. Let us now look deeper into the development of QCCs,

QLDPC codes and QTCs, which have been the prime focus of most recent research both in the classical

as well as in the quantum domains.

1.2.1 Quantum Convolutional Codes

The inception of QCCs dates back to 1998. Inspired by the higher coding efficiencies of Classical

Convolutional Codes (CCCs) as compared to the comparable block codes and the low latency associ-

ated with the online encoding and decoding of CCCs [59], Chau conceived the first QCC in [60]. He

also generalized the classical Viterbi decoding algorithm for the class of quantum codes in [61], but

he overlooked some crucial encoding and decoding aspects. Later, Ollivier et al. [50, 51] revisited

the class of stabilizer-based convolutional codes. Similar to the classical Viterbi decoding philosophy,

they also conceived a Look-Up Table (LUT) based quantum Viterbi algorithm for the maximum like-

lihood decoding of QCCs, whose complexity increases linearly with the number of encoded qubits.

Ollivier et al. also derived the corresponding online encoding and decoding circuits having complexity

which increased linearly with the number of encoded qubits. Unfortunately, their proposed rate-1/5

single-error correcting QCC did not provide any performance or decoding complexity gain over the

rate-1/5 single-error correcting block code of [36]. Pursuing this line of research, Almeida et al. [62]

constructed a rate-1/4 single-error correcting Shor-type concatenated QCC from a CCC(2, 1, 2) and

invoked the classical syndrome-based trellis decoding for the quantum domain. Hence, the proposed

QCC had a higher coding rate than the QCC of [50, 51]. However, this coding efficiency was achieved

at the cost of a relatively high encoding complexity associated with the concatenated trellis structure.

It must be pointed out here that the pair of independent trellises used for decoding the bit-flips and

phase-flips impose a lower complexity than a large joint trellis would. Finally, Forney et al. [52, 53]
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1995 − Shor’s code [25]

Stabilizer codes [38, 39] − CSS codes [33, 34, 35], 5-qubit code [36, 37]

− Quantum BCH codes [40, 41]

−
Quantum Reed-Solomon codes [45] − Quantum Reed-Muller codes [44]

2000 −
− Quantum LDPC codes [46]

−
− Quantum convolutional codes [50]

−
2005 −

−
−
− Quantum turbo codes [54]

−
2010 −

− Quantum polar codes [56]

−

Figure 1.4: Major milestones achieved in the history of quantum error correction codes.

designed rate-(n−2)/n QCCs comparable to their classical counterparts, thus providing higher coding

efficiencies than the comparable block codes. Forney et al. [52, 53] achieved this by invoking arbitrary

classical self-orthogonal rate-1/n F4-linear and F2-linear convolutional codes for constructing unre-

stricted and CSS-type QCCs, respectively. Forney et al. [52, 53] also conceived a simple decoding

algorithm for single-error correcting codes. Both the coding efficiency and the decoding complexity of

the aforementioned QCC structures are compared in Table 1.3. Furthermore, in the spirit of finding

new constructions for QCCs, Grassl et al. [63, 64] constructed QCCs using the classical self-orthogonal

product codes, while Aly et al. explored various algebraic constructions in [65] and [66]. Particularly,

the QCCs of [65] were derived from classical BCH codes, while the QCCs of [66] were constructed

from the classical Reed-Solomon and Reed-Muller codes. Recently, Pelchat and Poulin made a ma-

jor contribution to the decoding of QCCs by proposing degenerate Viterbi decoding [67], which runs

the Maximum A Posteriori (MAP) algorithm [68] over the equivalent classes of degenerate errors,

thereby improving the attainable performance. The major contributions to the development of QCCs

are summarized in Table 1.4.
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Author(s) Coding Efficiency Decoding Complexity

Ollivier and Tillich [50, 51] Low Moderate

Almeida and Palazzo [62] Moderate Moderate

Forney et al. [52, 53] High Low

Table 1.3: Comparison of the Quantum Convolutional Code (QCC) structures.

Year Author(s) Contribution

1998 Chau [60] The first QCCs were developed. Unfortunately, some important encoding/decoding

aspects were ignored.

1999 Chau [61] Classical Viterbi decoding algorithm was generalized to the quantum domain. How-

ever, similar to [60], some crucial encoding/decoding aspects were overlooked.

2003 Ollivier and

Tillich [50, 51]

Stabilizer-based convolutional codes and their maximum likelihood decoding using

the Viterbi algorithm were revisited to overcome the deficiencies of [60, 61]. Failed to

provide better performance or decoding complexity than the comparable block codes.

2004 Almeida and

Palazzo [62]

Shor-type concatenated QCC was conceived and classical syndrome trellis was invoked

for decoding. A high coding efficiency was achieved at the cost of a relatively high

encoding complexity.

2005 Forney et al. [52, 53] Unrestricted and CSS-type QCCs were derived from arbitrary classical self-orthogonal

F4 and F2 CCCs, respectively, yielding a higher coding efficiency as well as a lower

decoding complexity than the comparable block codes.

2005 Grassl and Rot-

teler [63, 64]

Conceived a new construction for QCCs from the classical self-orthogonal product

codes.

2007 Aly et al. [65] Algebraic QCCs dervied from BCH codes.

2008 Aly et al. [66] Algebraic QCCs constructed from Reed-Solomon and Reed-Muller Codes.

2013 Pelchat and

Poulin [67]

Degenerate Viterbi decoding was conceived, which runs the MAP algorithm over the

equivalent classes of degenerate errors, thereby improving the performance.

Table 1.4: Major contributions to the development of Quantum Convolutional Codes (QCCs).
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1.2.2 Quantum Low Density Parity Check Codes

Although convolutional codes provide a somewhat better performance than the comparable block

codes, yet they are not powerful enough to yield a capacity approaching performance, when used

on their own. Consequently, the desire to operate close to the achievable capacity at an affordable

decoding complexity further motivated researchers to design beneficial quantum counterparts of the

classical LDPC codes [69], which achieve information rates close to the Shannonian capacity limit

with the aid of iterative decoding schemes. Furthermore, the sparseness of the LDPC matrix is of

particular interest in the quantum domain, because it requires only a small number of interactions per

qubit during the error correction procedure, thus facilitating fault-tolerant decoding. Moreover, this

sparse nature also makes QLDPC codes highly degenerate.

Postol [46] conceived the first example of a non-dual-containing CSS-based QLDPC code from

a finite geometry based classical LDPC in 2001. Later, Mackay et al. [47] proposed various code

structures (e.g. bicycle codes and unicycle codes) for constructing QLDPC codes from the family

of classical dual-containing LDPC codes. Additionally, Mackay et al. also proposed the class of

Cayley graph-based dual-containing codes in [70], which were further investigated by Couvreur et

al. in [71, 72]. Aly et al. contributed to these developments by constructing dual-containing QLDPC

codes from finite geometries in [73], while Djordjevic exploited the Balanced Incomplete Block Designs

(BIBDs) in [74], albeit neither of these provided any gain over Mackay’s bicycle codes. Lou et al.

[75, 76] invoked the non-dual-containing CSS structure by using both the generator and the PCM of

classical Low Density Generator Matrix (LDGM) based codes. Hagiwara et al. [77] conceived Quasi-

Cyclic (QC) QLDPC codes, whereby the constituent PCMs of non-dual-containing CSS-type QLDPCs

were constructed from a pair of QC-LDPC codes found using algebraic combinatorics. Hagiwara’s

design of [77] was extended to non-binary QLDPC codes in [78, 79], which operate closer to the

Hashing limit than MacKay’s bicycle codes. The concept of QC-QLDPC codes was further extended

to the class of spatially-coupled QC codes in [80]. While all the aforementioned QLDPC constructions

were CSS-based, Camara et al. [49] were the first authors to conceive non-CSS QLDPC codes. Later,

Tan et al. [81] proposed several systematic constructions for non-CSS QLDPC codes, four of which

were based on classical binary QC-LDPC codes, while one was derived from classical binary LDPC-

convolutional codes. Since most of the above-listed QLDPC constructions exhibit an upper bounded

minimum distance, topological QLDPCs2 were derived from Kitaev’s construction in [82, 83, 84].

Amidst these activities, which focused on the construction of QLDPC codes, Poulin et al. were the

first scientists to address the decoding issues of QLDPC codes [85], which were further improved

in [86]. The major contributions made in the context of QLDPC codes are summarized in Table 1.6,

while the most promising QLDPC construction methods are compared in Table 1.53.

2Topological code structures are beyond the scope of this thesis.
3All QLDPC codes must have short cycles in the quaternary formalism, which will be discussed in Chapter 7. The

second column only indicates ‘short cycles’ in the binary formalism.
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Code Short Minimum Delay Decoding

Construction Cycles Distance Complexity

Bicycle codes [47] Yes Upper Bounded Standard Standard

Cayley-graph based

codes [70, 71, 72]

Yes Increases with

the code length

Standard Increases with

the code length

LDGM-based

codes [75, 76]

Yes Upper Bounded Standard High

Non-binary quasi-

cyclic codes [78, 79]

No Upper Bounded Standard High

Spatially-coupled

quasi-cyclic

codes [80]

No Upper Bounded High High

Table 1.5: Comparison of the Quantum Low Density Parity Check (QLDPC) code structures.

1.2.3 Quantum Turbo Codes

Pursuing further the direction of iterative code structures, Poulin et al. conceived QTCs in [54, 55],

based on the interleaved serial concatenation of QCCs. Unlike QLDPC codes, QTCs offer a complete

freedom in choosing the code parameters, such as the frame length, coding rate, constraint length

and interleaver type. Moreover, their decoding is not impaired by the presence of length-4 cycles

associated with the symplectic criterion. Furthermore, in contrast to QLDPC codes, the iterative

decoding invoked for QTCs takes into account the inherent degeneracy associated with quantum

codes. However, it was found in [54, 55, 87] that the constituent QCCs cannot be simultaneously both

recursive and noncatastrophic. Since the recursive nature of the inner code is essential for ensuring

an unbounded minimum distance, whereas the noncatastrophic nature is a necessary condition to

be satisfied for achieving decoding convergence to a vanishingly low error rate, the QTCs designed

in [54, 55] had a bounded minimum distance. The QBER performance curves of the QTCs conceived

in [54, 55] also failed to match the classical turbo codes. This issue was dealt with in [88], where

the quantum turbo decoding algorithm of [55] was improved by iteratively exchanging the extrinsic

rather than the a posteriori information. The major contributions made in the domain of QTCs are

summarized in Table 1.6.
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Year Author(s) Code

Type

Contribution

QLDPC

Code

Construction

2001 Postol [46] Non-dual The first example of QLDPC code constructed

from a finite geometry based classical code. A

generalized formalism for constructing QLDPC

codes from the corresponding classical codes was

not developed.

2004 Mackay et

al. [47]

Dual Various code structures, e.g. bicycle codes and

unicycle codes, were conceived for construct-

ing QLDPC codes from classical dual-containing

LDPC codes. Performance impairment due to the

presence of unavoidable length-4 cycles was first

pointed out in this work. Minimum distance of

the resulting codes was upper bounded by the row

weight.

2005 Lou et al.

[75, 76]

Non-dual The generator and PCM of classical LDGM codes

were exploited for constructing CSS codes. An in-

creased decoding complexity was imposed and the

codes had an upper bounded minimum distance.

2007 Mackay [70] Dual Cayley graph-based QLDPC codes were proposed,

which had numerous length-4 cycles.

Camara et

al. [49]

Non-CSS QLDPC codes derived from classical self-

orthogonal quaternary LDPC codes were con-

ceived, which failed to outperform MacKay’s bi-

cycle codes.

Hagiwara

et al. [77]

Non-dual Quasi-cyclic QLDPC codes were constructed us-

ing a pair of quasi-cyclic LDPC codes, which

were found using algebraic combinatorics. The

resultant codes had at least a girth of 6, but

they failed to outperform MacKay’s constructions

given in [47].

2008 Aly et al.

[73]

Dual QLDPC codes were constructed from finite ge-

ometries, which failed to outperform Mackay’s bi-

cycle codes.

Djordjevic

[74]

Dual BIBDs were exploited to design QLDPC codes,

which failed to outperform Mackay’s bicycle

codes.

Table 1.6: (Continued on the next page)
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Year Author(s) Code

Type

Contribution

2010 Tan et al.

[81]

Non-CSS Several systematic constructions for non-CSS

QLDPC codes were proposed, four of which

were based on classical binary quasi-cyclic LDPC

codes, while one was derived from classical binary

LDPC-convolutional codes. These code designs

failed to outperform Mackay’s bicycle codes.

2011 Couvreur

et al.

[71, 72]

Dual Cayley graph-based QLDPC codes of [70] were

further investigated. The lower bound on the min-

imum distance of the resulting QLDPC was loga-

rithmic in the code length, but this was achieved

at the cost of an increased decoding complexity.

Kasai [78,

79]

Non-dual Quasi-cyclic QLDPC codes of [77] were extended

to non-binary constructions, which outperformed

Mackay’s bicycle codes at the cost of an increased

decoding complexity. Performance was still not at

par with the classical LDPC codes and minimum

distance was upper bounded.

Hagiwara et

al. [80]

Non-dual Spatially-coupled QC-QLDPC codes were devel-

oped, which outperformed the ‘non-coupled’ de-

sign of [77] at the cost of a small coding rate loss.

Performance was similar to that of [78, 79], but

larger block lengths were required.

Decoding

2008 Poulin et

al. [85]

Heuristic methods were developed to alleviate the

performance degradation caused by unavoidable

length-4 cycles and symmetric degeneracy error.

2012 Wang et

al. [86]

Feedback mechanism was introduced in the con-

text of the heuristic methods of [85] to further

improve the performance.

QTC

Code

Construction

2008 Poulin et

al. [54, 55]

Non-CSS QTCs were conceived based on the interleaved se-

rial concatenation of QCCs. QTCs are free from

the decoding issue associated with the length-4 cy-

cles and they offer a wider range of code parame-

ters. Degenerate iterative decoding algorithm was

also proposed. Unfortunately, QTCs have an up-

per bounded minimum distance.

Table 1.6: (Continued on the next page)
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Year Author(s) Code

Type

Contribution

Decoding
2014 Wilde et

al. [88]

The iterative decoding algorithm of [54, 55] failed

to yield performance similar to the classical turbo

codes. The decoding algorithm was improved by

iteratively exchanging the extrinsic rather than

the a posteriori information.

Table 1.6: Major contributions to the development of iterative quantum codes, where the code types ‘dual-

containing CSS’ and ‘non-dual-containing CSS’ are abbreviated as ‘dual’ and ‘non-dual’, respec-

tively.

1.2.4 Entanglement-Assisted Quantum Codes

Some of the well-known classical codes cannot be imported into the quantum domain by invoking

the aforementioned stabilizer-based code constructions because the stabilizer codes have to satisfy the

stringent symplectic product criterion. This limitation was overcome in [89, 90, 91, 92] with the notion

of EA quantum codes, which exploit pre-shared entanglement between the transmitter and receiver.

Later, this concept was extended to numerous other code structures, e.g. EA-QLDPC code [93], EA-

QCC [94], EA-QTC [95, 88] and EA-polar codes [96]. In [95, 88], it was also found that EA-QCCs

may be simultaneously both recursive as well as non-catastrophic. Therefore, the issue of bounded

minimum distance of QTCs was resolved with the notion of entanglement. Furthermore, EA-QLDPC

codes are free from length-4 cycles in the binary formalism, which in turn results in an impressive

performance similar to that of the corresponding classical LDPC codes. Hence, the concept of the

entanglement-assisted regime resulted in a major breakthrough in terms of constructing quantum

codes, whose behaviour is similar to that of the corresponding classical codes. The major milestones

achieved in the history of entanglement-assisted quantum error correction codes are chronologically

arranged in Figure 1.5.

1.3 Outline of the Thesis

We next describe the structure of the thesis, which is also summarized in Figure 1.6.

� Chapter 2: Preliminaries of Quantum Information

In Chapter 2, we provide the portrayal of introduction to quantum information theory. We

commence our discussions with qubits in Section 2.2, which is extended to an N -qubit quantum

system in Section 2.3. In Sections 2.4 and 2.5, we lay out the fundamental concepts of the

no-cloning theorem and of entanglement, respectively. We then proceed with a discussion on
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2000 −
−
− First EA-QECC constructed [89]

−
−

2005 −
− EA stabilizer formalism [90, 91, 92]

−
−
− EA quantum LDPC codes [93]

2010 − EA quantum convolutional codes [94]

− EA quantum turbo codes [95, 88]

− EA polar codes [96]

Figure 1.5: Major milestones achieved in the history of entanglement-assisted quantum error correction codes.

the quantum-domain unitary operators in Section 2.6, while the Pauli group is introduced in

Section 2.7. Finally, we highlight the various quantum channel models in Section 2.8.

� Chapter 3: Near-Capacity Code Designs for Entanglement-Assisted Classical Com-

munication

In Chapter 3, we invoke EXtrinsic Information Transfer (EXIT) chart aided near-capacity classi-

cal code designs conceived for reliable transmission of classical bits over the quantum communica-

tion channel of Figure 1.3. More specifically, we focus our attention on the entanglement-assisted

transmission of classical information over quantum channels4, which is achieved with the aid of

the SuperDense (SD) coding protocol. We commence by reviewing the SD protocol in Sec-

tion 3.2, which is in essence the ‘Bit → Qubit Mapper’ of Figure 1.3. We next characterize the

associated capacity in Section 3.3. In Section 3.4, we conceive a bit-based scheme, which ex-

ploits classical channel coding by serially concatenating a classical Irregular Convolutional Code

(IRCC) and a classical Unity Rate Code (URC) with a quantum-based SD encoder, hence refer

to it as an IRCC-URC-SD system. We present our EXIT-chart aided near-capacity design crite-

rion in Section 3.5, where the IRCC is optimized for achieving a near-capacity performance. Our

4A quantum channel can be used for modeling imperfections in quantum hardware, namely, faults resulting from

quantum decoherence and quantum gates. Furthermore, a quantum channel can also model quantum-state flips imposed

by the transmission medium, including free-space wireless channels and optical fiber links, when qubits are transmitted

across these media.
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bit-based code structure of Section 3.4 incurs a capacity loss due to the symbol-to-bit conversion.

To overcome this capacity loss, we propose a symbol-based code design in Section 3.7, which

employs a single-component Convolutional Code (CC) and a symbol interleaver in contrast to

the IRCC and bit interleaver of Section 3.7.

� Chapter 4: From Classical to Quantum Error Correction

Since the code designs of Chapter 3 rely on classical-domain redundancy, they are only suitable

for the reliable transmission of classical information over a quantum channel. For more general

quantum communication systems, which may transmit both classical as well as quantum infor-

mation, and for quantum computation systems, it is vital to invoke QECCs, which exploit the

redundancy in the quantum domain. In this spirit, in Chapters 6 and 7, we design QECCs,

for which the foundation is developed in Chapters 4 and 5. More specifically, in Chapter 4, we

detail the quantum to classical isomorphism, which facilitates the construction of quantum codes

from the known classical codes. In Section 4.2, we review the classical linear block codes. We

next discuss the QSCs in Section 4.3, which are derived from the classical linear block codes of

Section 4.2. In particular, we lay out the underlying quantum to classical isomorphism, which

forms the basis for importing arbitrary classical codes into the quantum domain. We extend

our discussions to the construction of QCCs from the CCCs in Section 4.4, while Section 4.5

presents EA-QSCs, which facilitate the design of quantum codes from arbitrary classical codes

without imposing any stringent requirements.

� Chapter 5: Classical Syndrome Decoding

In Chapter 4, the stabilizer codes are characterized by an equivalent classical PCM. Therefore,

they are decoded using the classical PCM-based syndrome decoding. In this spirit, we dis-

cuss the classical syndrome decoding techniques operating over a classical channel in Chapter

5. We commence our discussion with the conceptually simplest LUT-based syndrome decoding

in Section 5.2, while Section 5.3 details the construction of the syndrome-based error trellis for

linear block codes and convolutional codes. Finally, in Section 5.4, we details the Block Syn-

drome Decoding (BSD) approach designed for reducing the decoding complexity. In particular,

we conceive a syndrome-based block decoding approach for the classical Turbo Trellis Coded

Modulation (TTCM) scheme.

� Chapter 6: EXIT-Chart Aided Hashing Bound Approaching Concatenated Quan-

tum Codes

In Chapter 4, we presented the methodology of constructing QECCs from the known classical

codes, followed by the associated classical syndrome decoding approach in Chapter 5. Pursuing

further the design of QECCs, in Chapter 6, we construct Hashing bound approaching QECCs,

based on the foundation laid down in Chapters 4 and 5. The related discourse begins by laying

out the design objectives in Section 6.2. Section 6.3 then details the circuit based representation

of QCCs, which facilitates the degenerate iterative decoding of concatenated quantum codes. We
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next present our system model and the associated degenerate iterative decoding in Section 6.4.

Finally, in Section 6.5, we extend the application of classical nonbinary EXIT charts to the

circuit-based syndrome decoder of QTCs for approaching the Hashing bound5. For the sake of

further facilitating the Hashing bound approaching code design, we propose the general structure

of Quantum IRregular Convolutional Code (QIRCC) in Section 6.7, which constitutes the outer

component of a concatenated quantum code.

� Chapter 7: Quantum Low Density Parity Check Codes

Pursuing further the design of iterative code structures, we focus our efforts on QLDPC codes in

Chapter 7, which may be constructed from the classical binary as well as quaternary codes. In

this context, Section 7.2 reviews the various QLDPC construction methods, while the QLDPC

decoding methods and the associated challenges are discussed in Section 7.3. In Section 7.4,

we propose a formalism for constructing high-rate row-circulant QC-QLDPC codes from arbi-

trary row-circulant classical LDPC matrices. In Section 7.6, we conceive a modified non-binary

decoding algorithm for homogeneous CSS-type QLDPC codes, for the sake of alleviating the

problems imposed by unavoidable length-4 cycles. Finally, Section 7.7 details the reweighted

BP algorithm, which is known to alleviate the structural flaw of short cycles in classical LDPC

codes.

� Chapter 8: Conclusions and Future Directions

Chapter 8 summarizes the main results of this thesis and outlines a range of promising future

research directions.

1.4 Novel Contributions of the Thesis

The novel contributions of this thesis are summarized below:

� A near-capacity code design is conceived for entanglement-assisted classical communication over

the quantum depolarizing channel. The proposed system relies on efficient EXIT-chart aided

near-capacity classical code designs conceived for approaching the entanglement-assisted classical

capacity of a quantum depolarizing channel. It incorporates an IRCC, a URC and a soft-decision

aided SD, which is hence referred to as an IRCC-URC-SD arrangement [5].

� Our previously proposed IRCC-URC-SD design is bit-based, thereby incurring a capacity loss

due to symbol-to-bit conversion. To circumvent this capacity loss, an alternative iterative code

design is proposed, which is referred to as a symbol-based CC-URC-SD. This symbol-based

concatenated code design incorporates a single CC as the outer component, while the URC

and SD schemes constitute the amalgamated symbol-based inner code. The resultant system is

optimized for approaching the capacity by invoking non-binary EXIT charts [7].

5The Hashing bound sets the lower limit on the achievable capacity.



� The iterative decoder of of a classical TTCM exchanges extrinsic information between the con-

stituent TCM decoders, which imposes a high computational complexity at the receiver. There-

fore we conceive the syndrome-based block decoding of TTCM, which is capable of reducing the

decoding complexity by disabling the decoder, when the syndrome becomes zero [6].

� We adapt the conventional nonbinary EXIT charts for concatenated quantum codes by exploiting

the intrinsic quantum-to-classical isomorphism. The EXIT chart analysis not only allows us to

dispense with the time-consuming Monte Carlo simulations but also facilitates the design of near-

capacity codes without resorting to the analysis of their distance spectra. We further analyze the

behaviour of both an unassisted (non-recursive) and of an entanglement-assisted (recursive) inner

convolutional code using EXIT charts for demonstrating the benefits of recursive code structures

in terms of achieving an unbounded minimum distance. Finally, we optimize the constituent

components of the concatenated structure using the EXIT charts conceived for approaching the

Hashing bound [4].

� A generically applicable structure is conceived for QIRCC, which can be dynamically adapted

to match any given inner code, for achieving a Hashing-bound-approaching performance. More

specifically, we construct a 10-subcode QIRCC for demonstrating a Hashing-bound-approaching

performance [3].

� Since the high-rate classical QC-LDPC codes are known to operate efficiently both at short and

at moderate lengths, a new class of high-rate row-circulant QC-QLDPC codes is proposed. The

conceived family of QC-QLDPC codes can be constructed from arbitrary row-circulant classical

QC-LDPC matrices using the simple transpose and column permutation operations [2].

� We have conceived a modified non-binary decoding algorithm for homogeneous CSS-type QLDPC

codes for alleviating the structural flaws of unavoidable length-4 cycles, which are inherently as-

sociated with these QLDPC matrices [1].

� We amalgamate the Uniformly-Reweighted Belief Propagation (URW-BP) method with QLDPC

decoding for further alleviating the issue of short cycles [1].



Chapter 2
Preliminaries of Quantum Information

2.1 Introduction

T
his chapter provides a preliminary introduction to quantum information theory. It aims to

develop a basic understanding of the laws of quantum mechanics and the associated important

terminologies used in quantum information.

This chapter is organized as follows. We commence with a discussion on quantum bits in Sec-

tion 2.2, which is then extended to an N -qubit quantum system in Section 2.3. We next detail the

widely known no-cloning theorem and the concept of entanglement in Sections 2.4 and 2.5, respec-

tively. This is followed by a discussion on quantum unitary transformations in Section 2.6. Finally,

we define the Pauli group in Section 2.7, while the different quantum channel models are detailed in

Section 2.8. In Section 2.9, we conclude this chapter.

2.2 Quantum Bits

The elementary unit of information in classical computers is a binary digit (or bit), which can either

assume a value of 0 or 1. The analogous term in quantum information theory is a qubit (quantum

bit), which has the unique characteristic that it can also exist in a linear combination of the states 0

and 1 (often called superposition). The resulting superimposed state of a qubit is represented as [18]:

|ψ〉 = α|0〉 + β|1〉, (2.1)

where | 〉 is called Dirac notation or Ket [97], which is a standard notation for states in quantum

physics, while α and β are complex numbers with α2 + β2 = 1. More specifically, a qubit is a

vector in the two-dimensional Hilbert space C2 with |0〉 and |1〉 (known as computational basis states)

constituting the orthogonal basis for the vector space, which have the amplitudes α and β, respectively.

19
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|0〉 |1〉

α|0〉+ β|1〉

Figure 2.1: A qubit realized by an orbiting electron - ground state denotes the state |0〉, while the excited

state represents the orthogonal basis state |1〉. A qubit may also be found in a superposition of

the two basis states, which is denotes as α|0〉+ β|1〉.

Consequently, the qubit shown in Eq. (2.1) can also be represented in vector notation as follows [18]:

|ψ〉 =
(

α

β

)

= α

(

1

0

)

+ β

(

0

1

)

(2.2)

where the pure states |0〉 and |1〉 are given by:

|0〉 =
(

1

0

)

, |1〉 =
(

0

1

)

. (2.3)

However, it is not possible to observe the superimposed state of a qubit. More specifically, a qubit exists

in a continuum of states between |0〉 and |1〉 until it is ‘measured’ or ‘observed’. Upon ‘measurement’

it collapses to the state |0〉 with a probability of |α|2 and |1〉 with a probability of |β|2.

The basis states of a 2-dimensional quantum space may be realized in different ways, e.g. two

different photon polarizations, different alignments of a nuclear spin, the charge/current/energy of

a Josephson junction or two different energy levels of an orbiting electron [18, 98]. The latter has

been illustrated in Figure 2.1, where an electron can exist either in the ‘ground’ or the ‘excited’ state,

which corresponds to the basis states |0〉 and |1〉, respectively. The electron can be moved from the

ground state to the excited state by exposing the atom to an appropriate amount of light (or energy)

for an appropriate period of time. If the exposure time is reduced, the electron may be moved to an

arbitrary superposition of the two basis energy levels, i.e. α|0〉 + β|1〉, as illustrated in Figure 2.1.

However, the weird laws of quantum mechanics do not allow us to see or observe this superimposed

state. Upon measurement, the electron will be found in the ground state with a probability of |α|2
and in the excited state with a probability of |β|2 [18].

The two-dimensional complex vector space of a qubit can also be visualized in 3D as a unique

point on the surface of a unit-radius sphere, which is known as a Bloch sphere [18]. More explicitly,

since α2 + β2 = 1, Eq. (2.1) can also be written as [18]:

|ψ〉 = eiγ(cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉), (2.4)
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θ

ϕ

|ψ〉

|0〉

|1〉

z

x

y

Figure 2.2: 3D representation of a qubit ψ on Bloch sphere, which is parametrized by the variables θ and ϕ.

The computational basis states |0〉 and |1〉 correspond to the North and South poles, respectively,

while an arbitrary quantum state may lie anywhere on the surface of the sphere.

where θ,γ and ϕ are real numbers. In Eq. (2.4), the arbitrary phase γ has no observable effect, i.e.

|ψ〉 and eiγ |ψ〉 yield the same output upon measurement. Consequently, the arbitrary phase γ may

be ignored, which reduces Eq. (2.4) to:

|ψ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉. (2.5)

Consequently, a qubit is defined as a point on the Bloch sphere using the two variables θ and ϕ, as

shown in Figure 2.2. The computational basis states |0〉 and |1〉 correspond to the instances where θ

is 0 and π, respectively, in Figure 2.2. A qubit having an arbitrary state, which is characterized by

Eq. (2.5), may lie anywhere on the surface of the sphere.

2.3 N-Qubit Composite System

A single qubit is essentially a vector in the 2-dimensional Hilbert space. Consequently, an N -qubit

composite system, which consists of N qubits, has a 2N -dimensional Hilbert space, which is the tensor

product of the Hilbert space of the individual qubits. For example, a 2-qubit composite system, having

the constituent qubits |ψ〉 = α|0〉+ β|1〉 and |ψ′〉 = α′|0〉+ β′|1〉, may be formulated as follows:

|ψ〉 ⊗ |ψ′〉 = (α|0〉 + β|1〉) ⊗ (α′|0〉+ β′|1〉)
= αα′|00〉 + αβ′|01〉+ βα′|10〉 + ββ′|11〉, (2.6)

where⊗ denotes the tensor product and the state |ij〉 is the tensor product of 1st and 2nd qubits having

states |i〉 and |j〉, respectively, i.e. |i〉 ⊗ |j〉. Consequently, the state of an N -qubit system may be
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represented by a unit-length vector, which is the tensor product of N two-dimensional Hilbert spaces,

i.e. (C2)⊗N , whose basis vectors are given by all the tensor products of the form |x1〉 ⊗ · · · ⊗ |xN 〉,
where xi ∈ {0, 1}. The resulting N -qubit superimposed state may be generalized as:

α0|00 . . . 0〉+ α1|00 . . . 1〉+ · · ·+ α2N−1|11 . . . 1〉, (2.7)

where αi ∈ C and
2N−1
∑

i=0
|αi|2 = 1.

Eq. (2.7) gives quantum systems the inherent property of parallelism. For examples, a 2-bit

classical computer can store either of the 4 possible bit patterns, i.e. 00, 01, 10, 11. By contrast, a 2-

qubit quantum computer can exist in a superposition of all the 4 states simultaneously, as depicted in

Eq. (2.6). This in turn facilitates a quantum computer to process all the states concurrently, making

it 4 times more powerful, as illustrated in Figure 1.1. Similarly, an N -qubit quantum computer

can make 2N computations at the same time. Hence, the parallelism increases exponentially with a

linear increase in the size of the system. Unfortunately, we cannot observe or measure all the 2N states

because the N -qubit quantum state of Eq. (2.7) collapses to one of the basis states upon measurement.

More explicitly, the quantum register collapses to the ith basis state with a probability of |αi|2 under

the idealized assumption of having perfect measurement (or gates). However, quantum parallelism

may be manipulated to determine a certain desired property of a function, hence substantially reducing

the computational overhead for certain complex problems[18].

2.4 No-Cloning Theorem

The concept of cloning (or copying) forms the basis of classical error correction codes. However,

quantum information does not allow the cloning of qubits [99]. This is a direct consequence of the

linearity of transformations.

Let us assume that U is a copying operation, which copies the arbitrary states |ψ〉 and |φ〉 as
follows:

U |ψ〉 = |ψ〉 ⊗ |ψ〉, U |φ〉 = |φ〉 ⊗ |φ〉. (2.8)

Furthermore, let |ψ′〉 be a linear combination of |ψ〉 and |φ〉 so that we have:

|ψ′〉 = λ1|ψ〉 + λ2|φ〉, (2.9)

which is copied by the operator U is as follows:

U |ψ′〉 = |ψ′〉 ⊗ |ψ′〉
= (λ1|ψ〉+ λ2|φ〉) ⊗ (λ1|ψ〉 + λ2|φ〉)
= λ21|ψ〉 ⊗ |ψ〉+ λ1λ2|ψ〉 ⊗ |φ〉+ λ1λ2|φ〉 ⊗ |ψ〉+ λ22|φ〉 ⊗ |φ〉. (2.10)

Since the copying operation U must be linear, we also have:

U |ψ′〉 = U (λ1|ψ〉 + λ2|φ〉) = λ1U |ψ〉+ λ2U |φ〉. (2.11)
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Substituting Eq. (2.8) into Eq. (2.11) gives:

U |ψ′〉 = λ1|ψ〉 ⊗ |ψ〉+ λ2|φ〉 ⊗ |φ〉. (2.12)

We may notice here that Eq. (2.10) and Eq. (2.12) are not equal. The equality holds only when either

λ1 or λ2 is zero, i.e. we have |ψ′〉 = |ψ〉 or |ψ′〉 = |φ〉 . Hence, it is not possible to clone an arbitrary

quantum state.

2.5 Entanglement

The 2-qubit composite system depicted in Eq. (2.6) is a tensor product of the constituent qubits |ψ〉
and |ψ′〉. By contrast, two qubits are said to be ‘entangled’ if they cannot be decomposed into the

tensor product of the constituent qubits. Let us consider the state:

|ψ〉 = α|00〉 + β|11〉, (2.13)

where both α and β are non-zero. It is not possible to decompose it into two individual qubits because

we have:

α|00〉 + β|11〉 6= (α1|0〉+ β1|1〉)(α2|0〉 + β2|1〉)
= α1α2|00〉 + α1β2|01〉 + β1α2|10〉 + β1β2|11〉, (2.14)

for any choice of non-zero αi and βi subject to normalization. Consequently, a peculiar link exists

between the two qubits such that measuring one qubit also collapses the other, despite their spatial

separation. More specifically, if we measure the first qubit of |ψ〉 seen in Eq. (2.13), we may obtain

a |0〉 with a probability of |α|2 and a |1〉 with a probability of |β|2. If the first qubit is found to be

|0〉, then the measurement of the second qubit will definitely be |0〉. Similarly, if the first qubit is |1〉,
then the second qubit will also collapse to |1〉. This mysterious correlation between the two qubits,

which doesn’t exist in the classical world, is called entanglement. It was termed ‘spooky action at a

distance’ by Einstein [100].

Entanglement finds many applications in quantum information theory. Generally, the 2-qubit

based entanglement protocols rely on the following four orthonormal states [18]:

1√
2
(|00〉 + |11〉) , 1√

2
(|00〉 − |11〉) ,

1√
2
(|01〉 + |10〉) , 1√

2
(|01〉 − |10〉) , (2.15)

which are known as Bell states, named after John S. Bell, also referred to as the Einstein-Podolsky-

Rosen (EPR) pairs. Two of the widely known applications of entanglement are superdense coding [28]

and teleportation [101].
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2.6 Unitary Operators

A linear operator, whose inverse is its adjoint (hermitian conjugate), is known as a unitary operator

(a quantum gate) [18]. More explicitly, a unitary transformation U acts linearly on the superimposed

quantum state, i.e. we have:

U(α|0〉 + β|1〉) = αU(|0〉) + βU(|1〉), (2.16)

and,

UU † = I, (2.17)

where U † is the adjoint of U , while I denotes the identity matrix. More explicitly, a unitary operator

preserves the inner product, hence ensuring that the sum of probabilities of all possible states is equal

to 1.

Some of the basic unitary operators are discussed below:.

� Pauli Matrices (I, X, Y, Z-gates): Pauli matrices (also called Pauli operators) are single-

qubit quantum gates defined as [102]:

I =

(

1 0

0 1

)

, X =

(

0 1

1 0

)

, Y =

(

0 −i
i 0

)

, Z =

(

1 0

0 −1

)

. (2.18)

The identity matrix I of Eq. (2.18) is a simple repeat gate. For an input state |ψ〉 = α|0〉+β|1〉,
the output of an I-gate can be computed as:

|ψ′〉 = I|ψ〉 =
(

1 0

0 1

)(

α

β

)

=

(

α

β

)

≡ α|0〉 + β|1〉 ≡ |ψ〉. (2.19)

The Pauli-X of Eq. (2.18) is analogous to the classical NOT gate, which operates as follows:

|ψ′〉 = X|ψ〉 =
(

0 1

1 0

)(

α

β

)

=

(

β

α

)

≡ β|0〉 + α|1〉. (2.20)

Hence, Pauli-X swaps the probabilities of the computational basis states |0〉 onto |1〉. In terms

of Bloch sphere of Figure 2.2, the operation of Eq. (2.20) can be visualized as a 180° rotation

about x-axis. Similarly, Pauli-Y of Eq. (2.18) corresponds to a 180° rotation about y-axis. It

swaps the amplitudes of the two superimposed states and introduces a phase shift of π between
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the resulting superimposed states, which can be mathematically represented as:

|ψ′〉 = Y|ψ〉 =
(

0 −i
i 0

)(

α

β

)

=

(

−iβ
iα

)

= −i(β|0〉 − α|1〉) ≡ e−iπ/2(β|0〉 + eiπα|1〉). (2.21)

The Pauli-Z of Eq. (2.18) rotates the state about z-axis by 180°, i.e. shifts the angle ϕ of

Figure 2.2 by π. Thus, it introduces a phase shift of π between the two superimposed states, i.e

we have:

|ψ′〉 = Z|ψ〉 =
(

1 0

0 −1

)(

α

β

)

=

(

α

−β

)

= α|0〉 − β|1〉) ≡ α|0〉+ eiπβ|1〉. (2.22)

Hence, X-gate is equivalent to bit flip, Z-gate to phase flip and Y-gate is a phase flip followed

by a bit flip. Therefore, the three Pauli matrices are related as follows:

Y = iXZ, (2.23)

where i =
√
−1.

� Hadamard Gate: Hadamard gate is a single-qubit gate, which has no classical counterpart. It

maps a pure state |0〉 or |1〉 onto a superposition of the computational basis vectors as shown

below [18]:

|0〉 → 1√
2
(|0〉 + |1〉), |1〉 → 1√

2
(|0〉 − |1〉). (2.24)

The resulting states of Eq. (2.24) are also known as Hadamard basis states. In matrix notation,

the operation of Eq. (2.24) can be modeled as:

H =
1√
2

(

1 1

−1 1

)

. (2.25)

Furthermore, the Hadamard operation can be visualized as a 90° rotation about y-axis on a

Bloch sphere of Figure 2.2, followed by a 180° rotation about x-axis.

� Phase Gate: Phase gate S is a π/2-phase-shift or equivalently i-phase-shift gate, which shifts

the angle ϕ of Figure 2.2 by π/2, which can be mathematically encapsulated as follows [18]:

S =

(

1 0

0 i

)

. (2.26)

More explicitly, S changes the phase of |1〉 by π/2, while leaving |0〉 intact. This may be

visualized as a 90° rotation about the z-axis. Hence, the phase gate S is related to the Z-gate

as follows:

S =
√
Z. (2.27)
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� Controlled-NOT Gate: Controlled-NOT (CNOT) gate is a multi-qubit gate, which is analo-

gous to a classical XOR gate. It takes two inputs, i.e. a control qubit and a target qubit. When

the control qubit is in state |1〉, the target undergoes a NOT operation. Otherwise, it is left

unchanged. The operation of a CNOT gate can be modeled as [102]:

CNOT(|a, x〉) ≡ |a, a⊕ x〉. (2.28)

The corresponding matrix is given by:

CNOT =













1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0













. (2.29)

2.7 The Pauli Group

The Pauli matrices I, X, Y and Z anti-commute with each other, as shown below:

XY = iZ, YX = −iZ→ XY = −YX (2.30)

YZ = iX, ZY = −iX→ YZ = −ZY
ZX = iY, XZ = −iY → ZX = −XZ

Therefore, the set of Pauli matrices constitute the non-Abelian group of Table 2.1, which is obtained

by multiplying the left-most column with the top row. For example, the second row of Table 2.1

is computed by multiplying Pauli-X with the set of Pauli operators, which constitute the top row

of Table 2.1, i.e. we have:

XI = X, XX = I, XY = iZ, XZ = −iY. (2.31)

The resultant non-Abelian group of Table 2.1 is termed as a single qubit ‘Pauli group’, which is

denoted by G1. Hence, the Pauli group G1 consists of all the Pauli matrices (I, X, Y and Z) together

with the multiplicative factors ±1 and ±i, i.e. we have:

G1 ≡ {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}. (2.32)

The general N -qubit Pauli group GN is an N -fold tensor product of G1, i.e. we have GN = G⊗N
1 .

More specifically, consider an N -qubit system, where Pi denotes the Pauli operator acting on the ith

qubit, which may be mathematically modeled as follows [98]:

Pi , I1 ⊗ · · · ⊗ Ii−1 ⊗ Pi ⊗ Ii+1 ⊗ · · · ⊗ IN . (2.33)

Then GN is given by:

GN = G⊗n
1 = ǫP1 ⊗ P1 ⊗ · · · ⊗ PN , (2.34)

where ǫ ∈ {±1,±i} and Pi ∈ {I,X,Y,Z}.
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I X Y Z

I I X Y Z

X X I iZ −iY
Y Y −iZ I iX

Z Z iY −iX I

Table 2.1: Single qubit Pauli group G1 [98].

2.8 Quantum Channels

Recall from Section 1.1 that quantum decoherence is a major impediment to the practical realization

of quantum computation and communication systems. Decoherence may be viewed as the unwanted

entanglement of the qubit with the environment, which perturbs its coherent quantum state. Let us

consider the decoherence process for the basis states |0〉 and |1〉, which can be encapsulated as [25]:

|e0〉|0〉 → |a0〉|0〉+ |a1〉|1〉,
|e0〉|1〉 → |a2〉|0〉+ |a3〉|1〉, (2.35)

where |e0〉 is the state of the environment before interaction, while |ai〉 denotes the ith post-decoherence

state of the environment (not necessarily orthogonal or normalized), which ensures that the overall

evolution of Eq. (2.35) is unitary. Consequently, a qubit in the state |ψ〉 = α|0〉+ β|1〉 decoheres as:

|e0〉|ψ〉 → α (|a0〉|0〉 + |a1〉|1〉) + β (|a2〉|0〉+ |a3〉|1〉) . (2.36)

Eq. (2.36) can be rearranged as:

|e0〉|ψ〉 →
1

2
(|a0〉+ |a3〉) (α|0〉 + β|1〉) + 1

2
(|a0〉 − |a3〉) (α|0〉 − β|1〉) +

1

2
(|a1〉+ |a2〉) (α|1〉 + β|0〉) + 1

2
(|a1〉 − |a2〉) (α|1〉 − β|0〉) , (2.37)

which is equivalent to:

|e0〉|ψ〉 →
1

2
(|a0〉+ |a3〉) I|ψ〉+

1

2
(|a0〉 − |a3〉)Z|ψ〉+

1

2
(|a1〉+ |a2〉)X|ψ〉+

−i
2

(|a1〉 − |a2〉)Y|ψ〉. (2.38)

Hence, as we may observe in Eq. (2.37), the state ψ is mapped onto a linear combination of the

original state (Pauli-I operation), phase flipped state (Pauli-Z operation), bit flipped state (Pauli-X

operation) and both phase and bit flipped state (Pauli-Y operation). In the process of the quantum

error correction, the superimposed state of Eq. (2.37) collapses to one of these four possibilities upon

measurement. Therefore, the overall decoherence process can be visualized as inflicting bit errors or
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phase errors or possibly both errors on the qubit, which was also depicted in Figure 1.2. Alternatively,

we may intuitively argue that since any arbitrary unitary operator can be expressed as a linear com-

bination of the Pauli-I, Pauli-Z, Pauli-X and Pauli-Y operators, decoherence can also be described in

terms of these Pauli operators. Hence, quantum channel models are defined on the basis of the set of

Pauli operators.

A quantum channel can be used for modeling imperfections in quantum hardware, namely, faults

resulting from quantum decoherence and quantum gates. Furthermore, a quantum channel can also

model quantum-state flips imposed by the transmission medium, including free-space wireless channels

and optical fiber links, when qubits are transmitted across these media. Some of the commonly used

quantum channel models are discussed below [18]:

� Bit-Flip Channel: Analogous to a classical binary symmetric channel, a bit-flip channel char-

acterized by the probability p maps the basis state |0〉 → |1〉 and |1〉 → |0〉 with a probability of

p. The associated set of operators are defined as:

E0 =
√

1− p I =
√

1− p
(

1 0

0 1

)

, E1 =
√
p X =

√
p

(

0 1

1 0

)

, (2.39)

where Ej is the jth operator, which maps a given channel input onto the corresponding output.

� Phase-Flip Channel: A phase-flip channel characterized by the probability p inflicts a Pauli-Z

error on the transmitted qubit with a probability of p, which can be encapsulated as:

E0 =
√

1− p I =
√

1− p
(

1 0

0 1

)

, E1 =
√
p Z =

√
p

(

1 0

0 −1

)

. (2.40)

� Bit-Phase-Flip Channel: A bit-phase-flip channel characterized by the probability p inflicts

a Pauli-Y error on the transmitted qubit with a probability of p, which can be defined as:

E0 =
√

1− p I =
√

1− p
(

1 0

0 1

)

, E1 =
√
p Y =

√
p

(

0 −i
i 0

)

. (2.41)

� Depolarizing Channel: A depolarizing channel characterized by the probability p inflicts a

bit-error (Pauli-X) or a phase-error (Pauli-Z) or both bit and phase errors (Pauli-Y) with a

probability of p/3 each, which can be expressed as:

E0 =
√

1− p I =
√

1− p
(

1 0

0 1

)

, E1 =

√

p

3
X =

√

p

3

(

0 1

1 0

)

,

E2 =

√

p

3
Z =

√

p

3

(

1 0

0 −1

)

, E3 =

√

p

3
Y =

√

p

3

(

0 −i
i 0

)

. (2.42)

The depolarizing channel of Eq. (2.42) may be referred to as a symmetric channel, since the three

types of errors occur with equal probabilities. By contrast, if the Pauli-X, Pauli-Z and Pauli-Y

errors occur with different probabilities, the channel is termed as being asymmetric [103, 104].
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� Amplitude Damping Channel: Amplitude damping channel models the loss of energy from

a quantum system. An amplitude damping channel characterized by the damping probability

γ, or more specifically the probability of losing a photon, is modeled as:

E0 =

(

1 0

0
√
1− γ

)

, E1 =

(

0
√
γ

0 0

)

. (2.43)

According to Eq. (2.43), the operator E1 changes the state |1〉 to |0〉 depicting that energy is

lost to the environment, while the operator E0 reduces the amplitude of the state |1〉 because
energy is dissipated, which makes it less likely to encounter the state |1〉.

� Phase Damping Channel: Phase damping characterizes the loss of quantum information

without the loss of energy. It may include for example the scattering of photons, or perturba-

tion of electronic states caused by the stray electrical charges. Phase damping channel can be

described as follows:

E0 =

(

1 0

0
√
1− λ

)

, E1 =

(

0 0

0
√
λ

)

, (2.44)

where λ is the probability of scattering of a photon (without loss of energy). Similar to the

amplitude damping channel, a E0 reduces the amplitude of state |1〉. On the other hand, the

operator E1 destroys the state |0〉, while reduces the amplitude of state |1〉.

In this treatise, we will only consider the widely used symmetric depolarizing channel model of

Eq. (2.42) [33, 85, 47, 105].

2.9 Summary and Conclusions

This chapter provides a brief introduction to quantum information. We commence the discussion

in Section 2.2 with the introduction of qubits, which are analogous to the classical bits but have

the additional capability of existing in a superposition of the two classical states, namely 0 and 1.

A qubit is conventionally represented as a linear combination of the computational basis states |0〉
and |1〉, i.e. |ψ〉 = α|0〉 + β|1〉, which collapses to the classical states 0 or 1 upon measurement.

More specifically, |α|2 and |β|2 denote the probability of finding the qubit in the states |0〉 and |1〉,
respectively, upon measurement. This property has in turn made quantum parallelism a reality,

enabling N -qubit quantum computers to concurrently process 2N computations, which was discussed

in Section 2.3. In Section 2.4, we detailed the no-cloning theorem, which states that the laws of

quantum mechanics do not permit the cloning of an arbitrary quantum states. We next presented the

concept of entanglement in Section 2.5, which is in essence a mysterious correlation that exists despite

the spatial separation between the entangled qubits. More specifically, entangled qubits cannot be

decomposed into the tensor product of the individual qubits. We next discussed the quantum unitary

transformations in Section 2.6, which are also summarized in Table 2.2. In Section 2.7, we introduced

the notion of a Pauli group. A single qubit Pauli group is a closed multiplicative group of the Pauli



matrices, while an N -qubit Pauli group is a tensor product of N single qubit Pauli groups. Finally,

we laid down various quantum channel models in Section 2.8, which are summarized in Table 2.3. In

the rest of the thesis, we will only focus on the depolarizing channel.

Gate Symbol Operation Matrix

Pauli-I I Identity operation.





1 0

0 1





Pauli-X X Bit flip.





0 1

1 0





Pauli-Z Z Phase flip.





1 0

0 −1





Pauli-Y Y Bit and phase flip.





0 −i

i 0





Hadamard H Maps a pure state |0〉 or |1〉 onto a superposition of the

basis states.

1√
2





1 1

−1 1





Phase S Changes the phase of the basis state |1〉 by π/2, while

leaving |0〉 intact.





1 0

0 i





Controlled-NOT CNOT A 2-qubit gate, which flips the target qubit when the

control qubit is in the state |1〉.

















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

















Table 2.2: Summary of the quantum unitary operators of Section 2.2.

Channel Definition

Bit-flip Inflicts a Pauli-X error with a probability of p.

Phase-flip Inflicts a Pauli-Z error with a probability of p.

Bit-phase-flip Inflicts a Pauli-Y error with a probability of p.

Depolarizing Inflicts a Pauli-X, Z or Y error with a probability of p/3 each.

Amplitude damping Models the energy dissipation from a quantum system with a damping probability γ.

Phase damping Models the loss of quantum information without any energy dissipation, which is

characterized by the scattering probability λ.

Table 2.3: Summary of the quantum channel models of Section 2.8.



Chapter 3
Near-Capacity Code Designs for

Entanglement-Assisted Classical

Communication

3.1 Introduction

Quantum-based communication constitutes an attractive solution for absolute secure trans-

mission [18]. More explicitly, any ‘measurement’ or ‘observation’ of the transmitted qubits

by the eavesdropper perturbs the associated quantum superposition, hence intimating the

parties concerned [18]. In this context, entanglement-assisted transmission of classical infor-

mation over quantum channels is of particular significance. This idea was conceived by Bennett [28]

in his widely-cited 2-qubit SuperDense (2SD) coding protocol, which transmits 2 classical bits per

channel use (cbits/use) over a noiseless quantum channel with the aid of a pre-shared maximally en-

tangled qubit. The corresponding Entanglement-Assisted Classical Capacity (EACC) of the so-called

quantum depolarizing channel was quantified in [106, 107].

Analogous to Shannon’s well-known capacity theorem conceived for classical channels, the EACC

quantifies the capacity limit of reliable transmission of classical information over a noisy quantum

channel, when an unlimited amount of noiseless entanglement is shared between the transmitter and

the receiver. The corresponding ‘classical-quantum-classical’ conversion based transmission model,

whereby classical information is transmitted over a quantum channel with the aid of the SuperDense

(SD) coding protocol, is depicted in Figure 3.1. Here, Alice intends to transmit her 2-bit classical

message x to Bob using a 2-qubit maximally entangled state |ψx〉AB, where A denotes the information

qubit, while B is a pre-shared entangled qubit transmitted over a noiseless channel. More specifically,

31



32 3. Near-Capacity Code Designs for Entanglement-Assisted Classical Communication

Bob

Alice

x

|ψx〉A′B

N

|ψx〉AB

A

A′

B′

B

|ψy〉B′B

E

D
y

Figure 3.1: Classical-quantum-classical transmission model employing 2-qubit SD.

the pre-shared qubit B is transmitted to the receiver before the actual transmission commences, for

example it can be shared during the off-peak hours, when the channel is under-utilized. The classical

message x is encoded by the block E of Figure 3.1 into the corresponding quantum state using the

2SD coding protocol of [28]. The processed qubit A′ is passed through a quantum depolarizing

channel, which is denoted as NA′→B′
. At the block D of Figure 3.1, the receiver Bob performs

symbol-by-symbol Bell-basis measurement1 [18, 10] on the received state |ψy〉B′B , yielding the 2-

bit classical message y. This transmission model was extended to a distributed network in [108],

whereby the 2SD scheme of [28] was generalized to an N -particle system with the aid of an N -qubit

entangled state. The resultant protocol facilitates for the receiver to detect messages from (N − 1)

users with the aid of a single N -qubit entangled quantum state as well as a single joint quantum

measurement, albeit this is achieved at the cost of a reduced EACC. Recently, Chiuri et al. [109]

experimentally determined the achievable EACC of a quantum depolarizing channel, which paves the

way for the practical implementation of future quantum-based communication systems. However,

reliable transmission is impossible without efficient error correction codes.

Inspired by the near-capacity performance of concatenated classical code designs, in this chapter

we design both bit-based as well as symbol-based concatenated classical-quantum code structures with

the aid of EXtrinsic Information Transfer (EXIT) charts for the sake of achieving a performance close

to the EACC of the quantum depolarizing channel. More explicitly, our novel contributions are as

follows [5, 7]:

� We have conceived an SD-based near-capacity design for entanglement-assisted classical com-

munication over a quantum depolarizing channel. Our design, referred to as an IRCC-URC-2SD

arrangement, incorporates a classical Irregular Convolutional Code (IRCC) and a Unity Rate

Code (URC). We have also introduced a soft-decision aided SD decoder for facilitating iterative

decoding.

1Bell-basis measurement is a joint measurement on a 2-qubit composite system for the sake of detecting the orthonor-

mal Bell states of Eq. (2.15).
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B

EPR Generation

Alice

H A

x1 x2

Quantum

Classical

|0〉

|0〉

|ψx〉AB

A′

|ψx〉A′B

Bob

M

x1

x2

H

10→ Z 11→ XZ

01→ X00→ I

Figure 3.2: The quantum circuit of 2-qubit superdense coding. Alice generates the Einstein-Podolsky-Rosen

(EPR) pair |ψx〉AB using a H gate and CNOT gate, respectively. Qubit A is used for encoding the

2-bit message, while the qubit B is pre-shared with Bob. Bob performs Bell-basis measurement

on the received state |ψx〉A
′B , yielding the original classical message.

� Our IRCC-URC-2SD design is bit-based, thereby incurring an capacity loss due to symbol-

to-bit conversion. To circumvent this capacity loss, we have proposed an alternative iterative

code design referred to as a symbol-based CC-URC-2SD. Our symbol-based design incorporates

a single Convolutional Code (CC) as the outer component, while the URC and 2SD schemes

constitute the amalgamated symbol-based inner code.

The rest of the chapter is laid out as follows. We review the SD coding protocol in Section 3.2,

while the EACC of N -qubit SD schemes is investigated in Section 3.3. The bit-based system model

and our near-capacity design are detailed in Sections 3.4 and 3.5, respectively, while the corresponding

simulation results are discussed in Section 3.6. Next we have detailed our symbol-based scheme in

Section 3.7 and the associated results are discussed in Section 3.8. Finally, our conclusions are offered

in Section 3.9.

3.2 Review of the Superdense Coding Protocol

3.2.1 2-Qubit Superdense Coding

The 2SD protocol [28] invokes the peculiar law of quantum entanglement for transmitting two classical

bits using a single qubit. Figure 3.2 shows the quantum circuit of 2SD [28]. Here, Alice intends to

transmit two bits of classical information x = (x1 x2) to Bob. Alice initiates the process by generating
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a maximally entangled Bell state, also referred to as the Einstein-Podolsky-Rosen (EPR) pair [28],

which is given by [28]:

|ψx〉AB =
|00〉 + |11〉√

2
. (3.1)

This is achieved by applying the Hadamard gate (H) of Eq. (2.24) and the CNOT gate of Eq. (2.28)

to two qubits initialized to the state |0〉, as depicted in the ‘EPR Generation’ block of Figure 3.2.

More explicitly, the Einstein-Podolsky-Rosen pair generation proceeds as follows:

Step 1: Apply the Hadamard gate to the first qubit:

|00〉 → 1√
2
(|0〉+ |1〉) |0〉. (3.2)

Step 2: Apply the CNOT gate to the second qubit, which is controlled by the first qubit:

1√
2
(|00〉+ |10〉)→ 1√

2
(|00〉 + |11〉) ≡ |ψx〉AB . (3.3)

The resultant qubit A is used for encoding the 2-bit classical message, while the qubit B may be

pre-shared with Bob before actual transmission takes place, for example during the instances, when

the channel is not busy. During the encoding procedure, Alice performs either the I, X, Z or XZ

operation of Table 3.1 on her qubit A, depending on her 2-bit message. More specifically, the classical

message is embedded in the qubit A as follows:

� For (x1 x2) = (0 0), do not apply any operation,

� For (x1 x2) = (0 1), apply the X gate of Eq. (2.18) to A,

1√
2
(|00〉 + |11〉)→ 1√

2
(|10〉+ |01〉) . (3.4)

� For (x1 x2) = (0 1), apply the Z gate of Eq. (2.18) to A,

1√
2
(|00〉 + |11〉)→ 1√

2
(|00〉 − |11〉) . (3.5)

� For (x1 x2) = (0 1), apply the Z gate followed by the X gate to A,

1√
2
(|00〉 + |11〉)→ 1√

2
(|10〉 − |01〉) . (3.6)

This classical to quantum mapping is summarized in Table 3.1.

Alice sends the appropriately processed qubit A′ over the quantum channel to Bob. Let us assume

having a noiseless channel here. Since the four Bell states ψx〉A
′B of Table 3.1 are orthonormal, they

are distinguishable at the receiver. Recall that qubit B is pre-shared with Bob. Upon receiving the

processed qubit A′, Bob performs a collective Bell-basis measurement on the received state |ψx〉A′B,

which is carried out as follows:
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(x1 x2) A |ψx〉A
′B

0 0 I |00〉 + |11〉
0 1 X |10〉 + |01〉
1 0 Z |00〉 − |11〉
1 1 XZ |10〉 − |01〉

Table 3.1: Classical-to-quantum mapping for 2-qubit superdense coding. (The normalization factor 1√
2
is

ignored for simplicity.)

Step 1: Apply the CNOT gate to qubit B, which is controlled by the qubit A′:

|ψ00〉 =
1√
2
(|00〉 + |11〉)→ 1√

2
(|00〉 + |10〉),

|ψ01〉 =
1√
2
(|10〉 + |01〉)→ 1√

2
(|11〉 + |01〉),

|ψ10〉 =
1√
2
(|00〉 − |11〉)→ 1√

2
(|00〉 − |10〉),

|ψ11〉 =
1√
2
(|10〉 − |01〉)→ 1√

2
(|11〉 − |01〉). (3.7)

Step 2: Apply the Hadamard gate to the first qubit:

1√
2
(|00〉 + |10〉)→ 1√

2

1√
2
((|0〉 + |1〉)|0〉 + (|0〉 − |1〉)|0〉) ≡ |00〉,

1√
2
(|11〉 + |01〉)→ 1√

2

1√
2
((|0〉 − |1〉)|1〉) + (|0〉+ |1〉)|1〉) ≡ |01〉,

1√
2
(|00〉 − |10〉)→ 1√

2

1√
2
((|0〉 + |1〉)|0〉 − (|0〉 − |1〉)|0〉) ≡ |10〉,

1√
2
(|11〉 − |01〉)→ 1√

2

1√
2
((|0〉 − |1〉)|1〉 − (|0〉 + |1〉)|1〉) ≡ −|11〉. (3.8)

Step 3: Measure the first qubit:

|00〉 → 00,

|01〉 → 01,

|10〉 → 10,

−|11〉 → 11. (3.9)

Hence, Alice transmits only a single qubit, namely A′, to Bob through the quantum channel for

communicating a 2-bit classical message, resulting in a transmission rate of 2 cbits/use. Indeed, the

transmission of the pre-shared entangled qubit B also consumes transmission resources, hence the
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Figure 3.3: The quantum circuit for 3-qubit superdense coding. Alice generates the Greenberger-Horne-

Zeilinger state |ψx〉AB using a H gate and CNOT gates respectively. Qubits A1 and A2 are

used for encoding the 3-bit message, while the qubit B is pre-shared with Bob. Bob measures the

received state |ψx〉A
′B in the orthonormal basis, yielding the original classical message.

overall transmission requirements remain the same as in a classical scenario. However, traditionally

this is considered to be less of a problem, because the entangled qubit may be shared during off-peak

hours, when the network is under-utilized [28]. Alternatively, if both the transmitter and receiver are

mobile, sharing may take place if and when they are close to each other [110].

3.2.2 N-Qubit Superdense Coding

N -qubit SuperDense coding (NSD) [108] is a generalization of the 2SD scheme to a multi-qubit chan-

nel, which facilitates for the receiver to read messages from multiple users with the aid of a single

entangled quantum state as well as using a single joint quantum measurement. Let us consider a

system supporting N users sharing an N -qubit Greenberger-Horne-Zeilinger (GHZ) state [111], where

each user possesses one qubit. Furthermore, one of the users intends to receive information from

the (N − 1) other users (the source transmitters in this case). For N qubits, there are 2N unitary

operations, which map the initial N -qubit state onto a unique quantum state. Therefore, the source

transmitters mutually decide a priori to perform only certain operations on the qubit in their pos-

session. Since there are 2N operations and (N − 1) source transmitters, one transmitter can perform

four operations on its qubit, while the remaining (N − 2) transmitters can perform two operations.

Consequently, the former can transmit 2 cbits/use, while the latter can only transmit 1 cbit/use. The

overall rate is therefore N
N−1 cbits/use. The receiver makes a collective measurement on the N -qubit

state for determining the classical information transmitted by each transmitter.

Let us now consider the 3-qubit system of Figure 3.3, where two source transmitters intend to

transmit three classical information bits to a receiver over a quantum channel. Since there are three

users, the corresponding 3-qubit Greenberger-Horne-Zeilinger state, which is shared amongst the users,



3.3. Entanglement-Assisted Classical Capacity 37

(x1 x2 x3) A1 A2 |ψx〉A
′B

0 0 0 I I |000〉 + |111〉
0 0 1 I X |010〉 + |101〉
0 1 0 I Z |000〉 − |111〉
0 1 1 I XZ |010〉 − |101〉
1 0 0 X I |100〉 + |011〉
1 0 1 X X |110〉 + |001〉
1 1 0 X Z |100〉 − |011〉
1 1 1 X XZ |110〉 − |001〉)

Table 3.2: Classical-to-quantum mapping for 3-qubit superdense coding. The normalization factor 1√
2

is

ignored for simplicity.

is given by:

|ψx〉AB =
|000〉 + |111〉√

2
. (3.10)

Here A constitutes a 2-qubit subsystem having qubits A1 and A2. The entangled triplet |ψx〉AB is

prepared by the first transmitter (Tx1) and shared both with the second source transmitter (Tx2)

as well as the receiver, i.e. with Bob, before actual communication takes place. For simplicity, we

may combine the two source transmitters into a single device, namely into Alice’s device, who wishes

to transmit 3 classical bits to Bob. More explicitly, one bit is transmitted from Tx1 of Figure 3.3,

while two bits are transmitted from Tx2 to Bob. The qubits A1 and A2 are used by Tx1 and Tx2,

respectively, for mapping three classical bits onto two processed qubits, while the entangled qubit

B is pre-shared with Bob, as illustrated in Figure 3.3. Since Alice is in possession of the pair of

qubits A1 and A2, she can perform the I, X, Z or XZ Pauli operations on each of these qubits for

generating distinct output qubit states |ψx〉A
′B, which are orthonormal and therefore distinguishable

at the receiver. This may be achieved by adopting any set of classical-to-quantum mapping rules,

which are capable of ensuring that the resultant states |ψx〉A
′B are orthonormal. Table 3.2 enlists one

such mapping.

3.3 Entanglement-Assisted Classical Capacity

Under the assumptions discussed in Section 3.2.1, 2SD doubles the capacity of a noiseless quantum

channel. Conventionally it is assumed that the pre-sharing of the entangled qubit destined from Alice

to Bob takes place over a noiseless channel and only the processed qubit(s) is passed through a noisy

quantum channel [106, 112]. The corresponding EACC of 2SD has already been derived in [106, 112]
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based on its equivalence to a 4-ary symmetric classical channel. In this section, we will generalize it

to N -qubit SD by exploiting the well-known equivalent M -ary classical channel model (M = 2N ).

Let us recall that the capacity C of a classical channel is equivalent to the maximum value of the

conveyed mutual information I(x, y) between the transmitted symbol x and the received symbol y,

i.e. we have [113]:

C = max
P(x)

I(x, y) = max
P(x)

[H(y)−H(y|x)], (3.11)

where H is the classical entropy function. Since C is maximized for equiprobable source symbols, the

capacity of an M -ary classical channel is given by:

C = log2M −H(y|x), (3.12)

which is further defined as follows [114, 115]:

C = log2M + E

[

M−1
∑

m=0

P(y|x = x(m)) log2 P(y|x = x(m))

]

, (3.13)

using Eq. (10) and (11) of [114]. Here E[.] is the expectation (or time average) of y and x(m) is the

mth hypothetically transmitted classical message for m ∈ {0, 1, . . . ,M − 1}.

Based on Eq. (3.13), the capacity of NSD coding relying on a single noiseless pre-shared entangled

qubit may be readily expressed as:

CNsd =
N +

∑M−1
m=0 P(y|x = x(m)) log2 P(y|x = x(m))

N − 1
cbits/use, (3.14)

where P(y|x) denotes the transition probabilities of the induced classical channel2.

Symbol-by-symbol measurements performed at the 2-qubit superdense decoder reduces the trans-

mission model of Figure 3.1 to a 4-ary classical channel. Consequently, the channel transition proba-

bilities of the induced classical channel may be encapsulated as:

P(y|x = x(m)) =

{

1− p, if E = 0

p/3, if E ∈ {1, 2, 3},
(3.15)

where m ∈ {0, 1, 2, 3}. Furthermore, E is the decimal equivalent of the N -bit classical error e, which is

induced by the depolarizing channel. More specifically, the N -bit classical error e = [e1, . . . , ei, . . . , eN ]

relates the ith bit of x = [x1, . . . , xi, . . . , xN ] to that of y = [y1, . . . , yi, . . . , yN ] as follows:

yi = xi ⊕ ei or ei = yi ⊕ xi. (3.16)

Substituting Eq. (3.15) in Eq. (3.14) yields the entanglement-assisted classical capacity of 2SD over a

quantum depolarizing channel, i.e we have:

C2sd = 2 + (1− p) log2(1− p) + p log2(p/3), (3.17)

2Due to the time-invariant nature of P(y|x), the average information is the same as the instantaneous value. The

expectation operation of Eq. (3.13) can be therefore ignored.
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which gives a maximum capacity of 2 cbits/use for the noiseless scenario.

Similarly, symbol-by-symbol measurements performed at the 3-qubit superdense decoder reduces

the overall transmission to an 8-ary classical channel. However, unlike the 2SD scheme, now 2 qubits

are transmitted over the noisy quantum channel. All the possible quantum channel errors along with

the corresponding probabilities of occurrence and the resultant classical error patterns e are listed in

Table 3.3. The resulting corrupted state |ψy〉B′B for the transmitted state 1√
2
(|000〉 + |111〉) is also

tabulated in Table 3.3. It must be noted that different quantum errors may result in the same e, for

example the third and sixth rows of Table 3.3 have the same classical error pattern. Consequently, we

combined the probabilities corresponding to the same error patterns arriving at the following channel

transition probabilities for the 3SD scheme:

P(y|x = x(m)) =























(1− p)2 + p2/9, if E ∈ {0}
(1− p)(p/3) + p2/9, if E ∈ {2, 3, 6, 7}
2(1 − p)(p/3), if E ∈ {4}
2p2/9, if E ∈ {1, 5},

(3.18)

where we have m ∈ {0, 1, . . . , 7}. Eq. (3.18) may be substituted in Eq. (3.14) to compute the EACC

of the 3SD scheme, when communicating over a quantum depolarizing channel. More explicitly, we

have:

C3sd =
3

2
+

1

2

7
∑

m=0

P(y|x = x(m)) log2 P(y|x = x(m)). (3.19)

Hence, the 3SD scheme has a maximum capacity of 1.5 cbits/use, when the channel is noiseless.

3.4 Bit-Based Code Structure

In this section we will present the architecture of our proposed classical-quantum communication sys-

tem, which is designed for approaching the EACC of the NSD code with the aid of EXIT charts [116,

68, 117]. Figure 3.4 shows the general schematic of the proposed system, which employs a classical

IRCC [118, 119] for achieving the near-capacity performance. Furthermore, a classical symbol-based

recursive URC having a generator polynomial of G(D) = 1
1+D [68] is used as a precoder for reaching

the (1, 1) point of perfect decoding convergence in the EXIT chart [120]. We amalgamate our con-

ceived soft-decision SD with the symbol-based URC, which hence constitutes an amalgamated inner

component, while the bit-based IRCC is our outer component.

At the transmitter, the system is fed with classical bits {u1}, which are encoded by an IRCC

encoder. The IRCC-encoded bits {v1} of Figure 3.4 are then interleaved (π), yielding the permuted

bit stream {u2}, which is converted to symbols3 and fed to the URC encoder of Figure 3.4. Classical

to quantum domain conversion then takes place at the SD encoder, which maps the classical sym-

bols x onto the orthogonal quantum states |ψx〉A′B using the entangled state |ψx〉AB, as discussed in

3Bit-to-symbol convertor is assumed to be inside the URC Encoder block of Figure 3.4.
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Error on A1 Error on A2 |ψy〉B
′B Error (e/E) Error Probability

I I |000〉 + |111〉 000/0 (1− p)(1 − p)

X I |100〉 + |011〉 011/3 (p/3)(1 − p)

Z I |000〉 − |111〉 100/4 (p/3)(1 − p)

Y I |100〉 − |011〉 111/7 (p/3)(1 − p)

I X |010〉 + |101〉 010/2 (1− p)(p/3)

I Z |000〉 − |111〉 100/4 (1− p)(p/3)

I Y |010〉 − |101〉 110/6 (1− p)(p/3)

X X |110〉 + |001〉 001/1 (p/3)(p/3)

Z X |010〉 − |101〉 110/6 (p/3)(p/3)

Y X |110〉 − |001〉 101/5 (p/3)(p/3)

X Z |100〉 − |011〉 111/7 (p/3)(p/3)

Z Z |000〉 + |111〉 000/0 (p/3)(p/3)

Y Z |100〉 + |011〉 011/3 (p/3)(p/3)

X Y |110〉 − |001〉 101/5 (p/3)(p/3)

Z Y |010〉 + |101〉 010/2 (p/3)(p/3)

Y Y |110〉 + |001〉 001/1 (p/3)(p/3)

Table 3.3: List of all the possible quantum errors when the first and second qubit, A1 and A2 respectively, of
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Figure 3.4: Schematic of the proposed IRCC-URC-SD classical-quantum communication system.

Section 3.1. Hence, the SD encoder has a function similar to that of the classical Phase-Shift Keying

(PSK) or Quadrature Amplitude Modulation (QAM) bit-to-symbol mapper, which maps several clas-

sical bits onto a complex-valued phasor for communication using the classical electromagnetic waves.

The qubits of the resultant quantum state are then serially transmitted over the quantum depolarizing

channel4.

At the receiver, iterative decoding is invoked for exchanging extrinsic information between the

inner (URC-SD) and outer (IRCC) decoders. Here the notations A(b) and E(b) refer to the a priori

and extrinsic probabilities of b, where we have b ∈ {v1, u2, x}, which are exploited for achieving

decoding convergence to a vanishingly low Bit Error Rate (BER). The SD decoder converts the received

orthogonal states |ψy〉B′B to classical symbols y by performing a joint measurement in the orthonormal

basis. It must be highlighted here that a conventional SD decoder yields the hard-decision outputs.

Instead, here we conceive a soft-decision SD decoder, which computes the corresponding extrinsic

probability E(x) for the transmitted classical symbol x, as follows:

E(x) ≈ P(y|x), (3.20)

where P(y|x) is given by Eq. (3.15) and (3.18) for the 2-qubit and 3-qubit schemes, respectively. The

soft output E(x) is then fed into the Maximum A-Posteriori (MAP) decoder of URC, which engages

in iterative decoding with the IRCC decoder.

4As illustrated earlier in Figure 3.1, the processed qubit(s) A′ is transmitted over the noisy quantum channel, while

B is shared between Alice and Bob over a noiseless channel.
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3.5 Near-Capacity Design

3.5.1 EXIT Charts

EXIT charts [116, 68, 117] are capable of visualizing the convergence behaviour of iterative decoding

schemes by exploiting the input/output relations of the constituent decoders in terms of their average

Mutual Information (MI) transfer characteristics. In the context of our proposed model of Figure 3.4,

the EXIT chart visualizes the exchange of the following four MI terms:

1. average a priori MI between u2 and A(u2): IA(u2),

2. average a priori MI between v1 and A(v1): IA(v1),

3. average extrinsic MI between u2 and E(u2): IE(u2), and

4. average extrinsic MI between v1 and E(v1): IE(v1).

Here, IA(u2) and IE(u2) constitute the EXIT curve of the inner decoder, while IA(v1) and IE(v1) yield the

EXIT curve of the outer decoder. For the sake of constructing the inner and outer EXIT curves, the

Log Likelihood Ratios (LLRs)5 related to the a priori probabilities of A(u2) and A(v1) respectively,

are modeled using a Gaussian distribution, having a mean of σ2A/2 and a variance of σ2A, for a range

of IA(u2), IA(v1) ∈ [0, 1]. The corresponding average extrinsic MI can be formulated as [114, 115]:

IE(u2) = log2M + E

[

M−1
∑

m=0

E(u
(m)
2 ) log2(E(u

(m)
2 ))

]

, (3.21)

and

IE(v1) = log2M + E

[

M−1
∑

m=0

E(v
(m)
1 ) log2(E(v

(m)
1 ))

]

. (3.22)

Furthermore, since we are employing symbol-to-bit conversion at the URC decoder, we incorporate

binary EXIT charts in our design. This in turn implies that in Eq. (3.21) and (3.22) we have M = 2

and m ∈ {0, 1}. The resultant inner EXIT function Tu2
is given by:

IE(u2) = Tu2
[IA(u2), p], (3.23)

while the outer EXIT function Tv1 is as follows:

IE(v1) = Tv1 [IA(v1)]. (3.24)

5The LLR L(x) of a bit x is the log of the ratio of the probabilities of the bit taking the two possible values of 0 and

1, which is given by[68]:

L(x) = ln

(

P(x = 1)

P(x = 0)

)

.
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More explicitly, unlike Tv1 , Tu2
is a function of the depolarizing probability p, since the inner decoder

is fed by the channel. Finally, the MI transfer characteristics of both the decoders encapsulated by

Eq. (3.23) and (3.24) are plotted in the same graph, with the x and y axes of the outer decoder

swapped. The resultant EXIT chart is capable of visualizing the exchange of extrinsic MI as a stair-

case-shaped decoding trajectory, as the iterations proceed. Examples of EXIT charts will be given in

Section 3.6.

3.5.2 Near-Capacity IRCC-URC-SD Design

We have exploited the area property of EXIT charts [121] for designing a near-capacity classical error

correction code for our classical-quantum communication system of Figure 3.4. According to this

property, the area under the normalized EXIT curve of the inner decoder is approximately equal to

the attainable channel capacity [121], provided that the channel’s input symbols are equiprobable.

Since our system model of Figure 3.4 transmits classical information over a quantum depolarizing

channel, the attainable channel capacity of the system is the entanglement-assisted classical capacity

given in Eq. (3.14). However, as mentioned in Section 3.4, symbol-to-bit conversion takes place at

the output of the URC decoder. This incurs a capacity loss [122]. More explicitly, the corresponding

bit-based capacity of 2SD may be computed by marginalizing the symbol-based channel transition

probabilities P(y|x) of Eq. (3.15) to the bit-based probabilities P(yi|xi) for i ∈ {1, 2}, assuming that

the constituent bits are independent. More specifically, we get:

P(yi = xi|xi) = 1− 2

3
p,

P(yi 6= xi|xi) =
2

3
p. (3.25)

Based on this marginalized perspective, the resultant 4-ary classical channel may be viewed as a pair of

independent Binary Symmetric Channels (BSCs) having a crossover probability of 2p/3. The capacity

of each BSC is given by:

Ci
BSC = 1 + (1− 2

3
p) log2(1−

2

3
p) +

2

3
p log2(

2

3
p), (3.26)

for i ∈ {1, 2}. Since 2 classical bits are transmitted per channel use in the 2SD scheme, the symbol-

based capacity of Eq. (3.17) is reduced to the sum of the capacity of these two BSCs, which is equivalent

to:

Cbit
2sd =

2
∑

i=1

Ci
BSC

= 2 ·
[

1 + (1− 2

3
p) log2(1−

2

3
p) +

2

3
p log2(

2

3
p)

]

, (3.27)

where Ci
BSC is the capacity of the ith BSC given in Eq. (3.26). More explicitly, the generalized formula

of the bit-based capacity of an NSD scheme relying on a single noiseless pre-shared entangled qubit is
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given by:

Cbit
Nsd =

1

N − 1
·

N
∑

i=1

Ci
BSC, (3.28)

where N = 2 for the 2SD scheme.

Similarly, for computing the bit-based EACC of 3SD, the induced 8-ary channel may be viewed

as three independent BSCs. For the sake of computing the channel transition probabilities associated

with each of the three BSCs, we normalize the symbol-based conditional probability of Eq. (3.18) for

each of the three constituent bits as follows:

P(y1 = x1|x1) =
∑

e1=0

P(y = x+ e|x = x(m)) = 1− 4

3
p+

8

9
p2,

P(y1 6= x1|x1) =
∑

e1=1

P(y = x+ e|x = x(m)) =
4

3
p− 8

9
p2,

P(y2 = x2|x2) =
∑

e2=0

P(y = x+ e|x = x(m)) = 1− 4

3
p+

8

9
p2,

P(y2 6= x2|x2) =
∑

e2=1

P(y = x+ e|x = x(m)) =
4

3
p− 8

9
p2,

P(y3 = x3|x3) =
∑

e3=0

P(y = x+ e|x = x(m)) = 1− 2

3
p,

P(y3 6= x3|x3) =
∑

e3=1

P(y = x+ e|x = x(m)) =
2

3
p. (3.29)

Using Eq. (3.13) as well as (3.29) and exploiting the fact that 3 classical bits are transmitted per 2

channel uses in 3SD, the symbol-based capacity of Eq. (3.19) is reduced to:

Cbit
3sd =

1

2
·

3
∑

i=1

Ci
BSC

=
1

2
· [3− 2×H2(

4

3
p− 8

9
p2)−H2(

2

3
p)], (3.30)

where Ci
BSC is the capacity of the ith BSC, while H2(z) is the binary entropy function, which is given

by,

H2(z) = −z log2(z)− (1− z) log2(1− z). (3.31)

The capacity loss for both the 2SD and 3SD schemes is quantified in Figure 3.5, which compares their

bit-based and symbol-based capacities. Nevertheless, it must be pointed out that by virtue of being a

unity rate code, the URC does not impose any capacity loss, as verified in Figure 3.5. The capacity

of our inner decoder (URC-SD) is approximately equal to the attainable bit-based entanglement-

assisted classical capacity for both 2-qubit and 3-qubit superdense codes. The URC is only invoked

for transforming the horizontal EXIT curve of the SD decoder to a slanted one for the sake of improving

the scheme’s decoding convergence, as detailed in the next section.

Furthermore, the area under the normalized EXIT curve of the outer decoder is equivalent to

(1 − Ro), where Ro is its coding rate [121]. Therefore, our near-capacity design aims for creating a
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Figure 3.5: Classical information rate (cbits/use) versus quantum depolarizing probability for 2-qubit and

3-qubit superdense codes with and without URC. Symbol-to-bit conversion incurs a capacity loss

for 2SD as well as 3SD.

narrow, but marginally open tunnel between the EXIT curves of the inner and outer decoders at the

highest possible depolarizing probability, which corresponds to the lowest possible SNR for a classical

channel. A feasible design option could be to create the EXIT curves of all the possible convolutional

codes to find the optimal code C, which gives the best match, i.e. whose EXIT curve yields a marginally

open tunnel with the inner decoder’s EXIT curve of URC-SD. To circumvent this tedious task, we have

invoked the IRCC of [119], whereby a family of subcodes Cl, l ∈ {1, 2, . . . , L}, is used for constructing

the target code C. Due to its inherent flexibility, the resultant IRCC provides a better match than any

single code. Furthermore, for the sake of reducing the encoding and decoding complexity, the family

of subcodes Cl is constructed by selecting an ri-rate convolutional code Ci as the mother code and

obtaining the remaining (L − 1) subcodes Cl by puncturing the mother code for rate rl > r1 and by

adding more generators and subsequently puncturing for rl < r1. The l
th subcode has a coding rate of

rl and it encodes a specifically designed fraction, ̺l, of the original information bits to ̺lNc encoded

bits. Here, Nc is the total length of the coded frame. More specifically, for an L-subcode IRCC, ̺l is

the lth IRCC weighting coefficient satisfying the following constraints [118, 119]:

L
∑

l=1

̺l = 1 , Ro =
L
∑

l=1

̺lrl , ̺l ∈ [0, 1],∀l , (3.32)

which can be conveniently represented in the following matrix form:
[

1 1 . . . 1

r1 r2 . . . rL

]

[

̺1 ̺2 . . . ̺L

]T
=

[

1

Ro

]

C ̺ = d . (3.33)
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Figure 3.6: Normalized outer EXIT curves (inverted) of the 17 IRCC subcodes.

In our design, we have employed an IRCC relying on a set of 17 memory-4 convolutional subcodes

having 17 different coding rates between 0 and 1, which was found in [119]. These 17 subcodes are

derived such that it covers the complete range of coding rates from 0.1 to 0.9 with a rate-increment of

0.05, i.e. having rates of rl ∈ {0.1, 0.15, 0.2, . . . , 0.85, 0.9}. Figure 3.6 shows the inverted outer EXIT

curves for each of the constituent subcode of the IRCC scheme.

In physically tangible terms, the input bit stream is divided into 17 fractions corresponding to the

17 different-rate subcodes and the specific optimum fractions to be encoded by these codes are found by

dynamic programming. More specifically, the EXIT curves of the 17 subcodes, given in Figure 3.6, are

superimposed onto each other after weighting by the appropriate fraction-based weighting coefficients,

which are determined by minimizing the area of the open EXIT-tunnel. To elaborate a little further,

the transfer function of the IRCC is given by:

IE(v1) = Tv1
[

IA(v1)

]

=
L
∑

l=1

̺l Tv1,l
[

IA(v1)

]

, (3.34)

where Tv1,l
[

IA(v1)

]

= IE(v1),l is the transfer function of the lth subcode. We employed the curve

matching algorithm of [118, 119] for optimizing the weighting coefficients of the IRCC subcodes by

ensuring that a narrow, yet open tunnel exists between the EXIT curves of the outer and inner decoder

at the highest possible depolarizing probability; thus, guaranteeing that the system has a near-capacity

performance.
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SD scheme 2-qubit

IRCC coding rate 1/2

IRCC active subcodes ̺4 = 0.0177, ̺5 = 0.0145, ̺7 = 0.6455, ̺12 = 0.1797,

̺13 = 0.0580, ̺16 = 0.0105, ̺17 = 0.0742

Interleaver length 30, 000 bits

Overall system rate 1 cbits/use

Table 3.4: Simulation parameters of the IRCC-URC-SD scheme of Figure 3.4.

3.6 Results and Discussions I

Based on the near-capacity design of Section 3.5, we have designed an SD-based near-capacity code

for entanglement-assisted classical communication over the quantum depolarizing channel. We next

evaluate the performance of our 2-qubit and 3-qubit designs in Section 3.6.1 and 3.6.2, respectively.

3.6.1 Performance of IRCC-URC-2SD

Since we intend to design a system having a rate of 1 cbit/use, we have assumed a constant overall

coding rate of 0.5 for the IRCC. Figure 3.7 shows the normalized EXIT curves for 2SD at a depolarizing

probability of 0.15 and using an interleaver length of 30, 000 bits. As expected, the EXIT curve of the

2SD decoder is a horizontal straight line. Hence, our URC is used as a precoder, to transform this

horizontal EXIT curve into a slanted curve which terminates at the (1, 1) point of the EXIT chart;

thus, facilitating a possible convergence to an infinitesimally low BER. More specifically, the area

under the EXIT curve remains the same, yet reaches the (1, 1) point. Furthermore, using the curve

matching algorithm of [118, 119], the IRCC weight vector of Eq. (3.33) was optimized to get a narrow

open tunnel as evident in Figure 3.7. The corresponding simulation parameters are summarized in

Table 3.4, where only seven subcodes are activated. The tunnel of Figure 3.7 is narrow, but wide

enough for successful convergence, as visualized using the decoding trajectories. If the depolarizing

probability is increased beyond p = 0.15, the EXIT curves of the inner and outer decoder would

crossover, hence closing the tunnel. Thus, the system has a convergence threshold of p = 0.15. In

other words, it can tolerate depolarizing probabilities upto p = 0.15, and yet achieve an infinitesimally

low BER. However, this would require a high number of iterations between the IRCC and URC-2SD,

hence imposing a high complexity.

The coding rate of the designed IRCC-URC-2SD system is 1 cbit/use, since a 1/2-rate IRCC is

used. From the bit-based capacity curve of Figure 3.5, it can be found that the associated noise limit is

p∗ = 0.165. By contrast, the convergence threshold of our system is p = 0.15. Thus, it operates within
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Figure 3.7: Normalized EXIT curves of the IRCC-URC-2SD system of Figure 3.4 at a depolarizing probability

of 0.15 using the simulation parameters of Table 3.4.

[10× log10(
0.165
0.15 )] = 0.4 dB of the noise limit6. Alternatively, this discrepancy may also be quantified

in terms of the difference in the area under the inner and outer EXIT curves, which corresponds to

the normalized capacity loss. The area under the normalized EXIT curve of our URC-2SD scheme is

0.531, whereas that under the IRCC is 0.5. Thus, the capacity of our IRCC-URC-2SD scheme is only

[0.031 × 2] = 0.062 cbits/use away from the capacity, when p = 0.15.

We have further evaluated the BER performance of our IRCC-URC-2SD scheme in Figure 3.8 for

the simulation parameters of Table 3.4. As it can be observed in Figure 3.8, the performance improves

upon increasing the number of iterations. More specifically, the 2-qubit system starts to converge

to a lower BER, as the number of iterations increases at a depolarizing probability of p = 0.15,

which matches the convergence thresholds predicted using EXIT charts. More explicitly, since the

EXIT chart tunnel closes beyond the depolarizing probability threshold of p = 0.15, the system

fails to converge, if the depolarizing probability is increased further. Hence, the performance does

not improve upon increasing the number of iterations if the depolarizing probability exceeds the

threshold. By contrast, when the depolarizing probability is below the threshold, the BER improves

at each successive iteration. Here, the trade-off between the complexity imposed and the performance

attained comes into play. It should also be noted that the performance improves with diminishing

returns at a higher number of iterations. For example, doubling the number of iterations from I = 8 to

6The difference in dB between two channel depolarizing probabilities p1 and p2 is calculated as follows [95, 88]:
(

10× log10
p1
p2

)

.
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Figure 3.8: Achievable BER performance of the IRCC-URC-2SD scheme of Figure 3.4 upon increasing the

number of iterations, i.e. I = {1, 2, 8, 16, 32}. The simulation parameters are summarized in

Table 3.4. The dashed-line at p∗ = 0.165 marks the noise limit for a classical information rate of

1 cbit/use, which is obtained from the bit-based EACC curve of 2SD given in Figure 3.5.

I = 16 for IRCC-URC-2SD increases the tolerable depolarizing probability by 0.0225, corresponding

to a BER of 10−4. A further increase to I = 32 iterations only improves p by around 0.01 at a BER

of 10−4. We further demonstrate this in Figure 3.9, where we quantify the distance from the capacity,

i.e. from the noise limit of p∗ = 0.165, in terms of dB at a BER of 10−4 upon increasing the number of

iterations. We may observe in Figure 3.9 that we approach the achievable noise limit with diminishing

returns, as the number of iterations is increased.

To elaborate further on the significance of using an IRCC rather than a conventional 1/2-rate

CC, we have also conceived a corresponding setup, whereby the IRCC of Figure 3.4 is replaced by a

memory-4 1/2-rate CC in the proposed IRCC-URC-2SD system. This is synonymous to employing

an IRCC, which has only the 9th subcode active. Figure 3.10 shows the resultant EXIT curves for

p = 0.15 and p = 0.125. It can be observed in Figure 3.10 that for p = 0.15, which is the convergence

threshold of our IRCC-URC-2SD design, the inner and outer EXIT curves of the CC-URC-2SD scheme

exhibit a cross-over. Thus, implying that the CC-URC-2SD configuration fails to converge at p = 0.15.

An open tunnel emerges only when p is decreased to 0.125. Consequently, the convergence threshold of

CC-URC-2SD is p = 0.125, which is lower than that of our near-capacity design of Figure 3.7. It must

also be pointed out here that the area between the inner and outer EXIT curves at the convergence

threshold is wider than Figure 3.7. The wider the gap, the higher the capacity loss. Therefore, using

a regular CC, rather than an IRCC, yields a poor match between the inner and outer decoders’ EXIT

curves.
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Figure 3.11: Normalized EXIT curves of the IRCC-URC-3SD system at a depolarizing probability of 0.1 using

the simulation parameters of Table 3.5.

3.6.2 Performance of IRCC-URC-3SD

As another example, we designed an IRCC-URC-3SD scheme having a classical transmission rate of

0.75 cbits/use. We have therefore assume a coding rate of 0.5 for the IRCC. Figure 3.11 shows the EXIT

curves for our 3-qubit SD at a depolarizing probability of 0.1. The optimized IRCC weights are given

in Table 3.5, where only five subcodes are activated. For p ≤ 0.1, the system successfully converges

and the decoding trajectory terminates at the (1, 1) point of the EXIT chart. Since our 3SD transmits

1.5 cbits/use and we have used 1/2-rate IRCC, the effective throughput of the designed system is 0.75

cbits/use. The corresponding depolarizing probability according to the bit-based capacity curve of

Figure 3.5 is p∗ = 0.11. Thus, in terms of the depolarizing probability, our designed system operates

within [10× log10(
0.11
0.10 )] = 0.4 dB of the capacity. Furthermore, the area under the normalized EXIT

curve of the inner decoder is 0.5209. The deviation from the capacity curve is therefore [0.0209×1.5] ≈
0.031 cbits/use.

We have further evaluated the corresponding BER performance in Figure 3.12 for the simulation

parameters of Table 3.5. Analogous to our IRCC-URC-2SD scheme in Figure 3.8, the performance in

Figure 3.12 improves upon increasing the number of iterations. Particularly, the system converges for

p ≤ 0.1, which conforms to our EXIT chart predictions of Figure 3.11. Furthermore, for p ≤ 0.1, the

performance tends to approach the noise limit of p∗ = 0.11. This is also demonstrated in Figure 3.13,

which plots the distance from the capacity (dB) at a BER of 10−4 as a function of the number of

iterations. As observed previously for our 2SD scheme, the performance converges towards the noise
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SD scheme 3-qubit

IRCC coding rate 1/2

IRCC active subcodes ̺6 = 0.2641, ̺7 = 0.4062, ̺12 = 0.1068,

̺13 = 0.1247, ̺17 = 0.0982

Interleaver length 30, 000 bits

Overall system rate 0.75 cbits/use

Table 3.5: Simulation parameters of the IRCC-URC-SD scheme of Figure 3.4.

limit, as the number of iterations increases, but this happens with diminishing returns at higher

number of iterations.

We have further benchmarked the performance of our IRCC-URC-SD system of Figure 3.4 against

the classical Turbo Code (TC) in Figure 3.14 for both 2SD as well as 3SD designs. This was achieved

by replacing the IRCC-URC unit of Figure 3.4 with TC7. We have used a memory-3 1/2-rate TC for

our comparison, since it invokes 16 states in each iteration, which is the same as the number of states

invoked per iteration in our design8. The uncoded BER curves of our 2SD and 3SD schemes are also

plotted in Figure 3.14. Furthermore, we have used a sufficiently high number of iterations, i.e. I = 32,

for our designed system to ensure that the system reaches the top right corner of the EXIT chart at

a depolarizing probability that is close to the noise limit. More specifically, as observed in Figure 3.9

and Figure 3.13 for the 2SD and 3SD schemes, respectively, doubling the number of iterations from 16

to 32 improves the performance only slightly. Therefore, we can safely assume that if the increasing

the number of iterations may not improve the performance appreciably. By contrast, I = 16 iterations

were used for TC since it did not yield any appreciable performance improvement, when the number

of iterations was increased beyond I = 8, as evidenced in Figure 3.14. Our proposed IRCC-URC-SD

system is capable of performing closer to the capacity, hence, outperforming the turbo code for both

2SD and 3SD. The corresponding distances from the capacity expressed in terms of dB at a BER of

10−4 are tabulated in Table 3.6, where the noise limits for 2SD and 3SD are p∗ = 0.165 and p∗0.11,

respectively.

7Symbol-to-bit conversion takes place at the output of SD decoder. Consequently, the symbol-based probabilities of

Eq. (3.15) and (3.18) are converted to bit-based LLRs, assuming that the bits constituting the symbol are independent.
8Since a memory-3 turbo code has two components with 23 states, total number of states per iteration are 2×23 = 16.

Similarly, a memory-4 IRCC invokes 24 = 16 states per iteration.
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Figure 3.12: Achievable BER performance of the IRCC-URC-3SD scheme of Figure 3.4 with increasing number

of iterations, i.e. I = {1, 2, 8, 16, 32}. The simulation parameters are summarized in Table 3.5.

The dashed-line at p∗ = 0.11 marks the noise limit for a classical information rate of 0.75 cbit/use,

which is obtained from the bit-based EACC curve of 3SD given in Figure 3.5.
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Figure 3.14: Comparison of the achievable BER performance of our IRCC-URC-SD scheme with TC-SD

having a memory-3 1/2-rate TC as the outer component. 2SD and 3SD schemes are plotted

with filled and hollow markers, respectively, and their simulation parameters are summarized in

Table 3.4 and Table 3.5, respectively. Uncoded BER curves for both 2SD as well as 3SD are also

plotted for comparison. Results are summarized in Table 3.6.

3.7 Symbol-Based Code Structure

Since the design of Figure 3.4 uses a bit interleaver and hence bit-based iterative decoding, symbol-to-

bit conversion is invoked before the related soft-information is fed from the inner decoder (URC-SD)

to the outer decoder (IRCC). This in turn incurs a capacity loss. As gleaned from Figure 3.5, for

a 2SD scheme having a classical information rate of 1 cbit/use, a bit-based system ensures reliable

transmission for p ≤ 0.165, while a symbol-based system would increase the noise limit to p∗ = 0.1875.

Therefore, a bit-based error correction scheme incurs a capacity loss of around 0.6 dB as compared

to its symbol-based counterpart. This capacity loss was previously identified in [122] for classical

discrete-memoryless channels and a modified binary LDPC code was proposed to circumvent this

TC-SD IRCC-URC-SD

2SD 1.9 dB 0.6 dB

3SD 2.2 dB 0.75 dB

Table 3.6: Distance of the TC-SD and IRCC-URC-SD schemes from the capacity at a BER of 10−4 using the

performance curves of Figure 3.14.
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Figure 3.15: Schematic of the proposed symbol-based CC-URC-SD classical-quantum communication system.

issue. Similarly, to circumvent the quantum channel capacity loss, we have conceived an iterative code

design for symbol-based CC-URC-2SD, which incorporates a single CC as the outer component, while

the URC and 2SD schemes constitute the amalgamated inner code.

Figure 3.15 shows the proposed system model. At the transmitter, the system is fed with classical

bits {u}, which are encoded by a 1/2-rate CC. The encoded 4-ary coded symbols v = (v1 v2) are then

interleaved by a symbol interleaver (πs), yielding the permuted symbol stream v′, which is fed to the

symbol-based recursive URC having a generator polynomial of G(D) = 1
1+D [68]. Similar to the bit-

based design of Figure 3.4, classical to quantum domain conversion then takes place at the SD encoder

of Figure 3.15 and the encoded qubits |ψx〉A
′B are serially transmitted over the quantum depolarizing

channel. The receiver of Figure 3.15 is also same as that of Figure 3.4 with the bit interleaver replaced

by a symbol interleaver.

Since our proposed model of Figure 3.15 relies on symbol-based iterative decoding, we invoke

non-binary EXIT charts of [114, 68, 117] for the sake of achieving a near-capacity performance.

3.8 Results and Discussions II

Using the non-binary EXIT-charts, we have optimized our iterative code structure of Figure 3.15 to

design a system with a coding rate of 1 cbit/use. According to the symbol-based capacity curve of

Figure 3.5, the corresponding noise limit for our system is p∗ = 0.1875.

Design Objective I: For the sake of comparing the symbol-based scheme of Figure 3.15 with

the bit-based scheme of Figure 3.4, which uses a 1/2-rate memory-4 IRCC, find the optimal 1/2-

rate memory-4 convolutional code, which gives the best match with URC-2SD in the CC-URC-2SD
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Figure 3.16: Normalized EXIT curves of the CC-URC-2SD system. Various 1/2-rate memory-4 convolu-

tional codes were used as outer components. The optimal outer code has generator polynomials

(g1, g2) = (31, 36)8.

configuration, when symbol-based iterative decoding is invoked.

For the sake of achieving this objective, we created the EXIT curves of all the possible 1/2-rate

memory-4 convolutional codes by evaluating all legitimate generator polynomials to find the optimal

code C, which yields a marginally open tunnel at the highest possible channel depolarizing probability.

The EXIT characteristics of some of these (2, 1, 4) CCs are plotted in Figure 3.16 along with the inner

decoder EXIT curve of the URC-2SD scheme at p = 0.15 and p = 0.16. As gleaned from the figure,

all outer decoder EXIT curves plotted in ‘solid’ lines exhibit a convergence threshold of pth = 0.15,

i.e. a marginally open tunnel exists for p = 0.15. If the depolarizing probability is increased beyond

0.15, the inner and outer decoder EXIT curves will crossover, thereby closing the tunnel. By contrast,

the pair of outer decoder EXIT curves plotted in ‘dashed’ lines have pth < 0.15. Hence, our desired

optimal code C is one of those associated with pth = 0.15. It may be further observed in Figure 3.16

that the EXIT curve labeled as ‘Optimal Outer’, whose octally represented generator polynomials are

(g1, g2) = (31, 36)8, converges faster than the others9. Therefore, we have selected it as our optimal

outer component.

The BER performance of the optimal CC of Figure 3.16 is recorded in Figure 3.17 using the

simulation parameters of Figure 3.7. As it can be observed, the turbo-cliff formulation starts around

9The optimal outer code yields the widest area between the inner and outer EXIT curves after the (0.5, 0.5)-point.

This signifies that fewer decoding iterations are required.
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SD scheme 2-qubit

Interleaver length 30, 000 bits

Overall system rate 1 cbits/use

Convolutional Code

Coding rate 1/2

Memory 4

(g1, g2) (31, 36)8

Table 3.7: Simulation parameters of the CC-URC-2SD scheme of Figure 3.15.

p = 0.15, which matches the convergence threshold predicted using EXIT charts. More specifically,

at p ≤ 0.15, the system converges to a low BER as the number of iterations increases, while for

p ≥ 0.16, the performance fails to improve upon increasing the number of iterations. This is because,

as shown in Figure 3.16, the EXIT chart tunnel closes at p = 0.16. Thus, the system fails to converge

to a low BER for p ≥ 0.16. It may also be observed that the performance only moderately improves

with diminishing returns at higher number of iterations. Furthermore, since doubling the number of

iterations from I = 10 to I = 20 only improves the performance slightly at a BER of 10−4, we may

conclude that I = 20 iterations are sufficient to approach the (1, 1)-point of near-perfect convergence.

This is also demonstrated in Figure 3.18, where the distance from the capacity in dBs is plotted at

a BER of 10−4 for the increasing number of iterations. We may observe in Figure 3.18 that there is

only a negligible improvement in performance, when the number of iterations is increased from 15 to

20.

We further compare our symbol-based CC-URC-2SD to the bit-based IRCC-URC-2SD of Figure 3.4

in Figure 3.19, where the uncoded BER of 2SD is also plotted. It may be observed that both systems

have the same convergence threshold of p = 0.15, which is within [10 × log10(
0.15

0.1875 )] = 1 dB of the

achievable noise limit. Since an IRCC has a higher encoding and decoding structural complexity than

a single-component CC, we can achieve the same convergence threshold at a lower encoding/decoding

structural complexity using the symbol-based scheme. Furthermore, the CC-URC-2SD system exhibits

an improved BER performance compared to the IRCC-URC-2SD scheme, as shown in Figure 3.19.

After I = 2 iterations, the IRCC-URC-2SD arrangement yields a BER of 10−4 at p = 0.0225, while

the CC-URC-SD scheme has a BER of 10−4 at p = 0.0525. Therefore, CC-URC-2SD outperforms

the IRCC-URC-2SD arrangement by [10 × log10(
0.0225
0.0525 )] = 3.7 dB. Moreover, as demonstrated in

Figure 3.8, the IRCC-URC-2SD scheme achieves perfect convergence after about I = 32 iterations,

while only I = 20 iterations are sufficient for the symbol-based CC-URC-2SD. We further benchmark

the performance against the achievable symbol-based capacity of p∗ = 0.1875. At a BER of 10−4 and

after a sufficiently high number of iterations (I = 20 for CC-URC-2SD and I = 32 for IRCC-URC-

2SD), the CC-URC-2SD scheme operates within [10 × log10(
0.149
0.1875 )] = 1 dB of the capacity, while
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Figure 3.17: Achievable BER performance of the CC-URC-2SD scheme of Figure 3.15 with increasing number

of iterations, i.e. I = {1, 2, 5, 10, 15, 20}. Simulation parameters are summarized in Table 3.7.

The dashed-line at p∗ = 0.1875 marks the noise limit for a classical information rate of 1 cbit/use,

which is obtained from the symbol-based EACC curve of 2SD given in Figure 3.5.
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Figure 3.18: Performance of the CC-URC-2SD scheme of Figure 3.17, at a BER of 10−4, which is quantified

in terms of the distance from the symbol-based EACC of 2SD, i.e. p∗ = 0.1875, as the number

of iterations is increased.
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Figure 3.19: Comparison of the achievable BER performance of the bit-based IRCC-URC-2SD of Figure 3.4

and the symbol-based CC-URC-2SD design of Figure 3.15 using the simulation parameters of

Table 3.4 and Table 3.7, respectively.

the IRCC-URC-2SD regime exhibits a deviation of [10 × log10(
0.142
0.1875 )] = 1.2 dB from the capacity.

Thus, the performance of both systems becomes comparable, once perfect convergence is achieved.

However, the IRCC-URC-2SD scheme requires 60% more iterations than the symbol-based CC-URC-

SD arrangement.

Design Objective II: Find the optimal 1/2-rate memory-2 and memory-3 convolutional codes,

which exhibit the best EXIT-curve shape match with URC-2SD in the CC-URC-2SD configuration,

when symbol-based iterative decoding is invoked.

Again, for the sake of finding the optimal memory-2 and memory-3 outer components, we created

the EXIT curves for all the possible codes, as we previously did in Figure 3.16. It was found that

the CC(2, 1, 2) having the generators (g1, g2) = (7, 5)8 and the CC(2, 1, 3) with generators (g1, g2) =

(17, 15)8 yield the best match. The corresponding EXIT curves for the optimized memory-2 and

memory-3 CCs are plotted in Figure 3.20 together with the optimal memory-4 CC of Figure 3.16.

All codes have the same decoding convergence threshold. The corresponding BER performance is

compared in Figure 3.21 after both 2 and 20 iterations. The CC associated with a higher constraint

length exhibits a lower BER before perfect convergence is achieved, e.g. after 2 iterations as shown in

Figure 3.21. Furthermore, after 20 iterations, all codes have a similar performance at a BER of 10−4.

Codes having a lower constraint length have the additional benefit of a lower decoding complexity,

since fewer states are invoked per iteration. We have further compared the optimized symbol-based

CC-URC-2SD designs for varying constraint lengths to the bit-based IRCC-URC-2SD in Table 3.8 by

quantifying their performance at a BER of 10−4 in terms of the distance (dB) from the noise limit
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Figure 3.20: Normalized EXIT curves of the CC-URC-2SD system optimized for varying constraint lengths.

Optimal outer components are plotted here: CC(2, 1, 2) with (g1, g2) = (7, 5)8, CC(2, 1, 3) with

(g1, g2) = (17, 15)8 and CC(2, 1, 4) with (g1, g2) = (31, 36)8.

of p∗ = 0.1875. All the three symbol-based configurations outperform the bit-based IRCC-URC-SD

scheme.

3.9 Summary and Conclusions

In this chapter, we have conceived both bit-based as well as symbol-based concatenated classical-

quantum code structures for entanglement-assisted classical communication over a quantum depolar-

izing channel. We commenced with a review of the SD protocol in Section 3.2, which facilitates the

transmission of N classical bits by sending only (N − 1) qubits over the noisy quantum channel, while

one qubit is pre-shared with the receiver. This results in a transmission rate of 2 cbits/use for the 2SD

protocol of Section 3.2.1 and a rate of N
N−1 cbits/use for the general NSD scheme of Section 3.2.2. We

then derived the EACC for the general NSD transmission in Section 3.3, which was also customized

for the 2SD and 3SD schemes. In Section 3.4, we presented our proposed bit-based IRCC-URC-SD

system of Figure 3.4, which relies on channel coding operating in the classical domain by serially con-

catenating an IRCC and a URC aided SD encoder. Furthermore, we have introduced a soft-decision

aided superdense decoder facilitating iterative decoding. More specifically, the URC and SD constitute

the amalgamated inner component, while the IRCC constitutes the outer component. Therefore, iter-

ative decoding is invoked for exchanging extrinsic information between the inner (URC-SD) and outer
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Figure 3.21: Comparison of the achievable BER performance of the symbol-based CC-URC-2SD design of

Figure 3.15 optimized for varying constraint lengths. Optimal CCs are: CC(2, 1, 2) with (g1, g2) =

(7, 5)8, CC(2, 1, 3) with (g1, g2) = (17, 15)8 and CC(2, 1, 4) with (g1, g2) = (31, 36)8. Other

simulation parameters are same as Table 3.7.

Outer Code I = 2 I→∞
CC(2, 1, 2) 7.2 dB 1 dB

CC(2, 1, 3) 5.7 dB 1 dB

CC(2, 1, 4) 5.5 dB 1 dB

IRCC 9.2 dB 1.2 dB

Table 3.8: Comparison of the symbol-based CC-URC-2SD schemes having the optimized CC(2, 1, 2),

CC(2, 1, 3) and CC(2, 1, 4) of Figure 3.21 to the bit-based IRCC-URC-2SD design of Figure 3.19

quantified in terms of the distance from the capacity (noise limit p∗ = 0.1875) at a BER of 10−4.

Here ‘∞’ denotes ‘sufficiently high’ number of iterations for ensuring near-perfect convergence,

which is assumed to be I = 20 for CC-URC-2SD and I = 32 for IRCC-URC-2SD.



(IRCC) decoders. Furthermore, we presented our EXIT-chart aided near-capacity design criterion in

Section 3.5 and demonstrated how the IRCC weighting coefficients have to be optimized for ensuring

that a marginally open tunnel exits between the inner and outer decoders’ EXIT curves at the highest

possible depolarizing probability.

We then evaluated the performance of our bit-based IRCC-URC-SD design for 2SD and 3SD in

Section 3.6.1 and 3.6.2, respectively, which was benchmarked against the bit-based EACC given in

Figure 3.5. It was demonstrated that our BER performance curves of Figure 3.8 and Figure 3.12

conform to the EXIT chart predictions of Figure 3.7 and Figure 3.11, respectively. Furthermore, the

proposed system of Figure 3.4 operates within 0.4 dB of the achievable noise limit for both 2SD as well

as 3SD schemes. More specifically, our design exhibits a deviation of only 0.062 and 0.031 cbits/use

from the corresponding 2-qubit and 3-qubit capacity limits, respectively. We also benchmarked our

system against the classical convolutional and turbo codes in Figure 3.10 and Figure 3.14, respectively.

It was shown in Figure 3.14 that the TC-2SD scheme operates within 1.9 dB of the capacity at a BER

of 10−4, while the performance of our bit-based IRCC-URC-2SD is only 0.6 dB from the capacity.

Similarly, the TC-3SD scheme is 2.5 dB from the capacity at a BER of 10−4 in contrast to the bit-based

IRCC-URC-3SD, which operates within 0.75 dB.

Our bit-based code structure of Figure 3.4 incurs a capacity loss due to the symbol-to-bit conver-

sion, as quantified in Figure 3.5. To overcome this capacity loss, we conceived a symbol-based code

design in Section 3.7, which employs a single-component CC and a symbol interleaver in contrast to

the IRCC and bit interleaver of Figure 3.4. We optimized our symbol-based CC-URC-2SD design with

the aid of non-binary EXIT charts in Figure 3.16. Our simulation results of Section 3.8 demonstrated

that the symbol-based CC-URC-2SD provides a significant BER performance improvement, despite

its lower encoding/decoding complexity than that of the bit-based IRCC-URC-2SD. Quantitatively,

after 2 iterations, our proposed symbol-based CC-URC-2SD design incorporating a memory-4 CC

outperformed the bit-based IRCC-URC-2SD scheme by 3.7 dB at a BER of 10−4, as evidenced in

Figure 3.19. Furthermore, the bit-based IRCC-URC-2SD arrangement required around 60% more

iterations than the symbol-based CC-URC-2SD for achieving perfect decoding convergence. We also

demonstrated in Figure 3.21 that the decoding complexity can be further reduced by using memory-2

and memory-3 CCs, which rely on only 4 and 8 states, respectively, per iteration. It was found in

Figure 3.21 that even the memory-2 and memory-3 designs outperform the bit-based IRCC-URC-2SD.

Finally, the performances of our bit-based IRCC-URC-SD (I = 32) as well as the symbol-based CC-

URC-SD (I = 20) at a BER of 10−4 are summarized in Figure 3.22, along with the TC-SD (I = 16)

benchmark. To dispense with the exhaustive search, it may be helpful to conceive a symbol-based

IRCC, whose weighting coefficients can be dynamically adapted to provide the best EXIT-curve match

with that of a given inner code, as also discussed in Section 8.2.

To conclude, in this chapter, we exploited classical redundancy for the reliable transmission of

classical information over a quantum channel. Consequently, this design approach is only appropri-

ate when the information to be transmitted is classical. For more general quantum communication

systems, which may transmit classical as well as quantum information, and for quantum computation



2sd-3sd-cap-sum1.gle

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

C
la

ss
ic

al
In

fo
rm

at
io

n
R

at
e

(c
bi

ts
/u

se
)

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Depolarizing Probability (p)

Bit-based
Symbol-based

3SD

2SD

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

C
la

ss
ic

al
In

fo
rm

at
io

n
R

at
e

(c
bi

ts
/u

se
)

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Depolarizing Probability (p)

IRCC-URC-2SD
TC-2SD
CC-URC-2SD
IRCC-URC-3SD
TC-3SD

Figure 3.22: Classical information rate (cbits/use) versus the quantum depolarizing probability for bit-based

and symbol-based 2SD as well as 3SD schemes. The performances of our designed bit-based

IRCC-URC-SD (I = 32) and symbol-based CC-URC-SD (I = 20), along with the TC-SD (I =

16) benchmark, are compared at a BER of 10−4.

systems, it is vital to invoke quantum error correction codes, hence exploiting the redundancy in the

quantum domain. In this spirit, we detail the design principles for constructing quantum codes from

the known classical codes in the next chapter.





Chapter 4
From Classical to Quantum Error Correction

4.1 Introduction

I
n Chapter 3, we invoked near-capacity classical code designs for classical transmission over a quan-

tum communication channel. Our classical-quantum code design, which amalgamates the classical

codes with a quantum superdense code, is only suitable when the transmitted information is clas-

sical. For reliable quantum information transmission as well as for quantum computing systems, we

have to resort to the family of Quantum Error Correction Codes (QECCs), which exploit redundancy

in the quantum domain in contrast to the classical redundancy of Chapter 3. Meritorious families

of QECCs can be derived from the known classical codes by exploiting the underlying quantum-to-

classical isomorphism, while also taking into account the peculiar laws of quantum mechanics. This

transition from the classical to the quantum domain has to address the following challenges [18]:

� No-Cloning Theorem: Most classical codes are based on the transmission of multiple replicas

of the same bit, e.g. in a simple rate-1/3 repetition code each information bit is transmitted

thrice. This is not possible in the quantum domain according to the no-cloning theorem [99],

discussed in Section 2.4, which states that an arbitrary unknown quantum state cannot be

copied/cloned.

� Continuous Nature of Quantum Errors: In contrast to the classical errors, which are

discrete with bit-flip being the only type of error, recall from Section 2.8 that a qubit may

experience both a bit-flip as well as a phase-flip or in fact both. These impairments have a

continuous nature and the erroneous qubit may lie anywhere on the surface of the Bloch sphere

of Figure 2.2.

� Qubits Collapse upon Measurement: ‘Measurement’ of the received bits is a vital step

representing a hard-decision operation in the field of classical error correction, but this is not

feasible in the quantum domain, since qubits collapse to classical bits upon measurement.

65
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In a nutshell, a classical (n, k) binary code is designed to protect discrete-valued message sequences

of length k by encoding them into one of the 2k discrete codewords of length n. By contrast, since

a quantum state of k qubits is specified by 2k continuous-valued complex coefficients, quantum

error correction aims for encoding a k-qubit state into an n-qubit state, so that all the 2k complex

coefficients can be perfectly restored [47]. For example, let k = 2, then the 2-qubit information word

|ψ〉 is given by:

|ψ〉 = α0|00〉 + α1|01〉 + α2|10〉 + α3|11〉. (4.1)

Consequently, the error correction algorithm would aim for correctly preserving all the four coefficients,

i.e. α0, α1, α2 and α3. It is interesting to note here that although the coefficients α0, α1, α2 and

α3 are continuous in nature, yet the entire continuum of errors can be corrected, if we can correct a

discrete set of errors, i.e. bit (Pauli-X), phase (Pauli-Z) as well as both (Pauli-Y) errors inflicted on

either or both qubits [18]. This is because the act of measurement collapses the entire continuum of

errors to a discrete set. More explicitly, for |ψ〉 of Eq. (4.1), the discrete error set is as follows:

{IX, IZ, IY,XI,XX,XZ,XY,ZI,ZX,ZZ,

ZY,YI,YX,YZ,YY}. (4.2)

However, the errorsX, Y and Z may occur with varying frequencies. In this discourse, we will focus on

the specific design of codes conceived for mitigating the deleterious effects of the quantum depolarizing

channel, which has been extensively investigated in the context of QECCs [47, 54, 56].

Most of the quantum codes developed to date owe their existence to the theory of stabilizer

codes, which allows us to import any arbitrary classical binary as well as quaternary code to the

quantum domain. In this chapter, we will delve deeper into the stabilizer formalism, giving insights

into the construction of quantum codes from the known classical codes. Since the stabilizer codes

owe their existence to the classical linear block codes, we commence with a review of the classical

linear block codes in Section 4.2. Stabilizer codes are then introduced in Section 4.3, with a particular

emphasis on the general stabilizer formalism, on the underlying quantum-to-classical isomorphism

and on the classification of quantum errors, which are discussed in Sections 4.3.1, 4.3.2 and 4.3.3,

respectively. We next detail the construction of quantum convolutional codes in Section 4.4, while

the entanglement-assisted quantum codes are discussed in Section 4.5. Finally, the highlights of the

chapter are summarized in Section 4.6.

4.2 Review of Classical Linear Block Codes

The stabilizer formalism derives its existence from the theory of classical linear block codes. A classical

linear block code C(n, k) maps k-bit information blocks onto n-bit codewords. For small values of k

and n, this can be readily achieved using a look-up table, which maps the input information blocks

onto the encoded message blocks. However, for large values of k and n, the process may be simplified
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using a k × n generator matrix G as follows:

x = xG, (4.3)

where x and x are row vectors for information and encoded messages, respectively. Furthermore, G

may be decomposed as:

G = (Ik|P ) , (4.4)

where Ik is a (k × k)-element identity matrix and P is a k × (n − k)-element matrix. This in turn

implies that the first k bits of the encoded message are information bits, followed by (n − k) parity

bits.

At the decoder, syndrome decoding is invoked, which determines the position of the channel-

induced error using the observed syndromes rather than directly acting on the received codewords.

More precisely, each generator matrix is associated with an (n− k)× n-element Parity Check Matrix

(PCM) H which is given by:

H =
(

P T |In−k

)

, (4.5)

and is defined such that x is a valid codeword only if,

xHT = 0. (4.6)

For a received vector y = x+ e, where e is the error incurred during transmission, the error syndrome

of length (n− k) is computed as:

s = yHT = (x+ e)HT = xHT + eHT = eHT , (4.7)

which is then used for identifying the erroneous bit.

Let us consider a simple 3-bit repetition code, which makes three copies of the intended information

bit. More precisely, k = 1 and n = 3. It is specified by the following generator matrix:

G =
(

1 1 1
)

, (4.8)

which yields two possible codewords [111] and [000]. At the receiver, a decision may be made on the

basis of the majority voting by reading the received bits. For example, if y = [011] is received, then we

may conclude that the transmitted bit was 1. Alternatively, we may invoke the PCM-based syndrome

decoding. According to Eq. (4.5), the corresponding PCM is given by:

H =

(

1 1 0

1 0 1

)

. (4.9)

It can be worked out that yHT = 0 only for the two valid codewords [111] and [000]. For all other

received codewords, at least one of the two syndrome elements is set to 1, e.g. when the first bit is

corrupted, i.e. y = [011] or [100], s = [11]. The Look-Up Table (LUT) for the PCM of Eq. (4.9)

is given in Table 4.1, which enlists all the 1-bit errors that may be identified using this syndrome

decoding procedure.
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Syndrome (s) Index of Error

[11] 1

[10] 2

[01] 3

Table 4.1: Look-up table for the PCM of Eq. (4.9), which enlists the single-bit errors along with the corre-

sponding syndromes.

This process of error correction using the generator and parity check matrices is usually preferred

due to its compact nature. Generally, C(n, k) code, which encodes a k-bit information message into

an n-bit codeword, would require 2k n-bit codewords. Thus, it would require a total of n2k bits to

completely specify the code space. By contrast, the aforementioned approach only requires kn bits of

the generator matrix. Hence, memory resources are saved exponentially, while encoding and decoding

operations are efficiently implemented. These attractive features of classical block linear codes and the

associated PCM-based syndrome decoding have led to the development of quantum stabilizer codes.

4.3 Quantum Stabilizer Codes

4.3.1 Stabilizer Formalism

Let us recall from Section 2.2 that qubits collapse to classical bits upon measurement [18]. This pre-

vents us from directly applying the classical error correction techniques for reliable quantum transmis-

sion. Inspired by the PCM-based syndrome decoding of classical codes, Gottesman [38, 39] introduced

the notion of stabilizer formalism, which facilitates the design of quantum codes from the classical

ones. Analogous to Shor’s pioneering 9-qubit code [25], stabilizer formalism circumvents the measure-

ment issue by observing the error syndromes without reading the actual quantum information. More

specifically, Quantum Stabilizer Codes (QSCs) invoke the syndrome decoding approach of classical

linear block codes for estimating the errors incurred during transmission.

Figure 4.1 shows the general schematic of a quantum communication system relying on a QSC for

reliable transmission. An [n, k] QSC1 encodes the information qubits |ψ〉 into the coded sequence |ψ〉
with the aid of (n− k) auxiliary (also called ancilla) qubits, which are initialized to the state |0〉. The
noisy sequence |ψ̂〉 = P|ψ〉, where P is the n-qubit channel error, is received at the receiver (RX),

which engages in a 3-step process for the sake of recovering the intended transmitted information.

More explicitly, RX computes the syndrome of the received sequence |ψ̂〉 and uses it to estimate

the channel error P̃ with the aid of the classical syndrome decoding. The recovery operator R then

1We use round brackets (.) for classical codes, while the square brackets [.] are used for quantum codes.
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Figure 4.1: System Model: Quantum communication system relying on a quantum stabilizer code.

uses the estimated error P̃ to restore the transmitted coded stream. Finally, the decoder, or more

specifically the inverse encoder, processes the recovered coded sequence |ψ̃〉, yielding the estimated

transmitted information qubits |ψ̃〉.

An [n, k] QSC, constructed over a code space C, which maps the information word (logical qubits)

|ψ〉 ∈ C
2k onto the codeword (physical qubits) |ψ〉 ∈ C

2n , where C
d denotes the d-dimensional Hilbert

space, is defined by a set of (n − k) independent commuting n-tuple Pauli operators gi, for 1 ≤
i ≤ (n − k). The corresponding stabilizer group H contains both gi and all the products of gi for

1 ≤ i ≤ (n− k) and forms an Abelian subgroup of Gn. A unique feature of these operators is that they

do not change the state of valid codewords, while yielding an eigenvalue of −1 for corrupted states.

Let us now elaborate on this definition of the stabilizer code by considering a simple 3-qubit bit-flip

repetition code, which is capable of correcting single-qubit bit-flip errors. Since the laws of quantum

mechanics do not permit cloning of the information qubit, we cannot encode |ψ〉 to (ψ ⊗ ψ ⊗ ψ).

Instead, the 3-qubit bit-flip repetition code entangles two auxiliary qubits with the information qubit

such that the basis states |0〉 and |1〉 are copied thrice in the superposition of basis states of the

resulting 3-qubit codeword, i.e. |0〉 and |1〉 are mapped as follows:

|0〉 → |0〉 ≡ |000〉,
|1〉 → |1〉 ≡ |111〉. (4.10)

Consequently, the information word |ψ〉 = α|0〉 + β|1〉 is encoded as:

α|0〉 + β|1〉 → α|0〉+ β|1〉 ≡ α|000〉 + β|111〉, (4.11)

using the quantum circuit of Figure 4.2. The resultant codeword |ψ〉 is stabilized by the operators

g1 = ZZI and g2 = ZIZ. Here the term ‘stabilize’ implies that the valid codewords are not affected

by the generators g1 and g2 and yield an eigenvalue of +1, as shown below:

g1
[

|ψ〉
]

= α|000〉 + β|111〉 ≡ |ψ〉,
g2
[

|ψ〉
]

= α|000〉 + β|111〉 ≡ |ψ〉. (4.12)

On the other hand, if a corrupted state |ψ̂〉 is received, then the stabilizer generators yield an eigenvalue
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|ψ〉

|0〉

|0〉

|ψ〉

Figure 4.2: Circuit for 3-qubit bit-flip repetition code. The information qubit |ψ〉 is encoded into |ψ〉 using
two auxiliary qubits, which are entangled with |ψ〉 using CNOT gates.

Z

|0〉 M

≡

M|0〉HH

Figure 4.3: Quantum circuit for measuring the Z operator acting on the bottom qubit [18]. The top qubit is

the auxiliary qubit used for computing syndrome. The circuit on the left is popular, while the one

on the right is suitable for implementation.

of −1, e.g. let |ψ̂〉 = |100〉 + β|011〉 where P = XII, then we have:

g1

[

|ψ̂〉
]

= −α|100〉 − β|011〉 ≡ −|ψ̂〉,

g2

[

|ψ̂〉
]

= −α|100〉 − β|011〉 ≡ −|ψ̂〉. (4.13)

More specifically, the stabilizer generators have a role similar to the PCM of a classical linear block

code. The eigenvalue is −1 if the n-tuple Pauli error P acting on the transmitted codeword |ψ〉 anti-
commutes with the stabilizer gi (analogous to yH

T 6= 0 in Eq. (4.7)) and it is +1 if P commutes with

gi (analogous to yH
T = 0 in Eq. (4.7)). Therefore, we have:

gi|ψ̂〉 =
{

|ψ〉, giP = Pgi
−|ψ〉, giP = −Pgi,

(4.14)

where |ψ̂〉 = P|ψ〉. The resultant ±1 eigenvalue gives the corresponding error syndrome s, which is 0

for an eigenvalue of +1 and 1 for an eigenvalue of −1. This computation of the syndrome using the Z

operators is realized by employing the quantum circuit of Figure 4.3, where the circuit on the left is

popular, while the one on the right is the equivalent circuit suitable for implementation [18]. In both

circuits of Figure 4.3, the top qubit is the auxiliary qubit used for computing the syndrome, while the

bottom qubit is the coded qubit subjected to the Z operator. The resultant syndromes are listed in
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|ψ̂〉 = P|ψ〉 g1|ψ̂〉 g2|ψ̂〉 Syndrome (s) Index of Error

α|100〉 + β|011〉 −1 −1 [11] 1

α|010〉 + β|101〉 −1 +1 [10] 2

α|001〉 + β|110〉 +1 −1 [01] 3

Table 4.2: Single-qubit bit-flip errors along with the corresponding eigenvalues for 3-qubit bit-flip repetition

code having g1 = ZZI and g2 = ZIZ.

Table 4.2 along with the corresponding single-qubit bit-flip errors, eigenvalues and the location of the

single-bit errors, which may be identified using the syndrome decoding approach.

A 3-qubit phase-flip repetition code may be constructed using a similar approach. This is because

phase errors in the Hadamard basis {|+〉, |−〉} are similar to the bit errors in the computational basis

{|0〉, |1〉}. More explicitly, the states |+〉 and |−〉 are defined as:

|+〉 ≡ H|0〉 = |0〉+ |1〉√
2

,

|−〉 ≡ H|1〉 = |0〉 − |1〉√
2

, (4.15)

where H is a single-qubit Hadamard gate, which is given by [18]:

H =
1√
2

(

1 1

1 −1

)

. (4.16)

Therefore, Pauli-Z acting on the states |+〉 and |−〉 yields:

Z|+〉 = |−〉,
Z|−〉 = |+〉, (4.17)

which is similar to the operation of Pauli-X on the states |0〉 and |1〉, i.e. we have:

X|0〉 = |1〉,
X|1〉 = |0〉. (4.18)

Consequently, analogous to Eq. (4.10), a 3-qubit phase-flip repetition code encodes |0〉 and |1〉 in the

Hadamard basis as follows:

|0〉 → |0〉 ≡ |+++〉,
|1〉 → |1〉 ≡ | − −−〉, (4.19)

for protection against the single-qubit phase errors. Based on Eq. (4.19), |ψ〉 is encoded as:

α|0〉 + β|1〉 → α|0〉+ β|1〉 ≡ α|+++〉+ β| − −−〉, (4.20)
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|ψ〉
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|0〉

|0〉
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H

Figure 4.4: Circuit for 3-qubit phase-flip repetition code. The information qubit |ψ〉 is encoded into |ψ〉
using two auxiliary qubits, which are entangled with |ψ〉 using CNOT gates. Finally, the H-gate

transforms the computational basis into the Hadamard basis for phase-error correction.
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M|0〉H

X
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H

Figure 4.5: Quantum circuit for measuring the X operator acting on the bottom qubit [18]. The top qubit is

the auxiliary qubit used for computing syndrome. The circuit on the left is the usual construction,

while the one on the right is suitable for implementation.

using the quantum circuit of Figure 4.4, where Hadamard gates are used at the end of the circuit of

Figure 4.2 to transform the computational basis into the Hadamard basis. The resultant encoded state

of Eq. (4.20) is stabilized by the generators g1 = XXI and g2 = XIX, where the computation of the

syndrome using theX operators is realized in Figure 4.5. We may also observe in these design examples

that the Pauli-X operators are used in the stabilizer generators for phase-error (Z) correction, while

the Pauli-Z operators are used for bit-error (X) correction.

The overall transition from the classical 3-bit repetition code of Section 4.2 to the quantum repe-

tition code is depicted in Figure 4.6, which can be summarized as follows:

� Encoder: In classical codes, the information bit may be cloned (or copied) during the encoding

process, e.g. in a 3-bit repetition code. This is not permissible in the quantum domain owing

to the no-cloning theorem. Alternatively, in quantum codes, the information qubit is entangled

with the auxiliary qubits for copying the information in the superposition of basis states, e.g. as

in Eq. (4.10) for the 3-qubit bit-flip repetition code and in Eq. (4.19) for the 3-qubit phase-flip

repetition code.

� Channel: Only bit errors occur during the transmission over a classical channel, e.g. a binary
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CLASSICAL QUANTUM: Challenges QUANTUM: Solutions

Cloning

x→ xxx

Hadamard Basis

α|0〉+ β|1〉 → α|+++〉+ β| − −−〉CHANNEL

ENCODER

0

1

0

1

(1− p)

(1− p)

p

p

Bit errors only

Bit & Phase errors

Theorem

No-Cloning

(1− p)

α|0〉 − β|1〉

β|0〉+ α|1〉

α|0〉+ β|1〉α|0〉+ β|1〉

p/3

p/3

p/3

−iβ|0〉+ iα|1〉

Entanglement

α|0〉+ β|1〉 → α|000〉+ β|111〉

DECODERMeasurement
Qubits collapse

upon measurement
Syndrome Decoding

Figure 4.6: Transition from the classical to quantum codes.

symmetric channel having a channel crossover probability of p. By contrast, a qubit may ex-

perience a bit-flip or a phase-flip as well as both, when subjected to the depolarizing channel

having a depolarizing probability of p. Since phase errors in the Hadamard basis {|+〉, |−〉} are
similar to the bit errors in the computational basis {|0〉, |1〉}, phase errors may be corrected in

the same way as the bit errors by exploiting the Hadamard basis.

� Decoder: In classical codes, the received bits are measured during the decoding process, e.g. in

a 3-bit repetition code a decision may be made on the basis of majority voting. Unfortunately, the

qubits collapse upon measurement. Consequently, quantum codes invoke the classical syndrome

decoding approach, which circumvents any observation.

Stabilizer generators gi constituting the stabilizer group H must exhibit the following two charac-

teristics:

1. Any two operators in the stabilizer set must commute so that the stabilizer operators

can be applied simultaneously, i.e. we have:

g1g2|ψ〉 = g2g1|ψ〉. (4.21)

This is because the stabilizer leaves the codeword unchanged as encapsulated below:

gi|ψ〉 = |ψ〉. (4.22)

Hence, evaluating the left-hand and right-hand sides of Eq. (4.21) gives:

g1g2|ψ〉 = g1|ψ〉 = |ψ〉, (4.23)
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and

g2g1|ψ〉 = g2|ψ〉 = |ψ〉, (4.24)

respectively. This further imposes the constraint that the stabilizers should have an even number

of places with different non-Identity (i.e. X, Y, or Z) operations. This is derived from the

fact that the X, Y and Z operations anti-commute with one another. More explicitly, using

Eq. (2.18), it can be shown that:

XY =

(

0 1

1 0

)(

0 −i
i 0

)

=

(

i 0

0 −i

)

= iZ, (4.25)

while we have:

YX =

(

0 −i
i 0

)(

0 1

1 0

)

=

(

−i 0

0 i

)

= −iZ. (4.26)

This implies that:

XY = −YX. (4.27)

Similarly, we can readily show that:

YZ = iX, ZY = −iX→ YZ = −ZY
ZX = iY, XZ = −iY → ZX = −XZ. (4.28)

Thus, for example the operators ZZI and XYZ commute, whereas ZZI and YZI anti-commute.

2. Generators constituting the stabilizer group H are closed under multiplication, i.e.

multiplication of the constituent generators gi yields another generator, which is also part of the

stabilizer group H. For example, the full stabilizer group H of the 3-qubit bit-flip repetition

code will also include the operator IZZ, which is the product of g1 and g2.

4.3.2 Quantum-to-Classical Isomorphism

4.3.2.1 Pauli-to-Binary Isomorphism

QSCs may be characterized in terms of an equivalent classical PCM notation satisfying the commu-

tativity constraint of stabilizers [123, 47] given in Eq. (4.21). This is achieved by mapping the I, X,

Y and Z Pauli operators onto (F2)
2 as follows:

I→ (00), X→ (01), Y → (11), Z→ (10), (4.29)

where a binary 1 at the first index represents a Z operator, while a binary 1 at the second index

represents an X operator. More explicitly, the (n− k) stabilizers of an [n, k] stabilizer code constitute
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the rows of the binary PCM H, which can be represented as a concatenation of a pair of (n− k)× n
binary matrices Hz and Hx based on Eq. (4.29), as given below:

H = (Hz|Hx) . (4.30)

Each row of H corresponds to a stabilizer of H, so that the ith column of Hz and Hx corresponds to

the ith qubit and a binary 1 at these locations represents a Z and X Pauli operator, respectively, in

the corresponding stabilizer. For the 3-qubit bit-flip repetition code, which can only correct bit-flip

errors, the PCM H is given by:

H =

(

1 1 0 0 0 0

1 0 1 0 0 0

)

. (4.31)

It must be pointed out here that Hz of Eq. (4.31) is same as the H of the classical repetition code of

Eq. (4.9), yielding the same syndrome patterns in Table 4.1 and Table 4.2.

Let us further elaborate the process by considering the [9, 1] Shor’s code, which consists of the Pauli-

Z as well as the Pauli-X operators. The corresponding stabilizer generators are given in Table 4.3.

They can be mapped onto the binary matrix H as follows:

H =

































1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

































. (4.32)

Given the matrix notation of Eq. (4.30), the multiplication of Pauli operators is transformed into

the bit-wise addition of the equivalent binary representation. For example, multiplying the set of Pauli

operators {I,X,Z,Y} with Pauli-X is equivalent to the second column of Table 4.4, when the Pauli

operators are mapped onto (F2)
2 according to Eq. (4.29). Furthermore, the commutative property

of stabilizers given in Eq. (4.21) is transformed into the orthogonality of rows with respect to the

symplectic product (also referred to as a twisted product). If row i is Hi = (Hzi ,Hxi
), where Hzi and

Hxi
are the binary strings for Z and X respectively, then the symplectic product of rows i and i′ is

given by,

Hi ⋆ Hi′ = (Hzi ·Hxi′ +Hzi′ ·Hxi
) mod 2. (4.33)

This symplectic product is zero if there are even number of places where the non-Identity operators

(X, Y or Z) in the row i and i′ are different; thus meeting the commutativity requirement. In other

words, if H is written as H = (Hz|Hx), then the symplectic product is satisfied for all the rows only

if we have:

HzH
T
x +HxH

T
z = 0 mod 2, (4.34)
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Stabilizer

g1 ZZIIIIIII

g2 IZZIIIIII

g3 IIIZZIIII

g4 IIIIZZIII

g5 IIIIIIZZI

g6 IIIIIIIZZ

g7 XXXXXXIII

g8 IIIXXXXXX

Table 4.3: Stabilizers for 9-qubit Shor’s code.

+ 00 01 10 11

00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00

Table 4.4: (F2)
2 Addition.

which may be readily verified for the H of Eq. (4.32). Consequently, any classical binary codes

satisfying Eq. (4.34) may be used for constructing QSCs. A special class of these stabilizer codes is

constituted by the family of Calderbank-Shor-Steane (CSS) codes, which are defined as follows:

An [n, k1 − k2] CSS code, which is capable of correcting (d − 1)/2 bit-flips as well as phase-flips,

can be constructed from classical linear block codes C1(n, k1) and C2(n, k2), if C2 ⊂ C1 and both C1

as well as the dual of C2, i.e. C
⊥
2 , have a minimum Hamming distance d.

In CSS construction, the PCM H ′
z of C1 is used for correcting bit-flips, while the PCM H ′

x of

C⊥
2 is used for phase-flip correction. Consequently, the PCM of the resultant CSS code assumes the

following form:

H =

(

H ′
z 0

0 H ′
x

)

, (4.35)

where we have Hz =

(

H ′
z

0

)

, Hx =

(

0

H ′
x

)

, where H ′
z and H ′

x are now (n− k1)× n and k2 × n binary

matrices, respectively. Furthermore, since C2 ⊂ C1, the symplectic condition of Eq. (4.34) is reduced
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Stabilizer Codes

Dual−Containing
Non−Dual−
Containing

CSS Non−CSS

H = [Hz|Hx]

H ′
z = H ′

x H ′
z 6= H ′

x

H ′
zH

′T
x = 0

H =

[

H ′
z 0
0 H ′

x

]

HzH
T
x +HxH

T
z = 0

Figure 4.7: Family of stabilizer codes.

to H ′
zH

′T
x = 0. In this scenario, (n − k1 + k2) stabilizers are applied to n qubits. Therefore, the

resultant quantum code encodes (k1− k2) information qubits into n qubits. Furthermore, if H ′
z = H ′

x,

the resultant structure is termed as a dual-containing (or self-orthogonal) code because Hz′H ′T
z = 0,

which is equivalent to C⊥
1 ⊂ C1. Hence, the stabilizer codes may be sub-divided into various code

structures based on the binary matrix H of Eq. (4.30), as summarized in Figure 4.7.

Let us consider the classical (7, 4) Hamming code, whose PCM is given by:

H =







1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1






. (4.36)

Since the H of Eq. (4.36) yields HHT = 0, it is used for constructing the dual-containing rate-1/7

Steane code [35]. The corresponding stabilizer generators are listed in Table 4.5.

Based on the Pauli-to-binary isomorphism encapsulated in Eq. (4.29), a Pauli error P ∈ Gn expe-

rienced by an n-qubit block transmitted over a depolarizing channel can be modeled by an effective

error-vector P , which is a binary vector of length 2n. The effective error P may be represented as

P = (Pz , Px), where both Pz and Px are n-bit long and represent Z and X errors, respectively. This

implies that an X error imposed on the tth qubit will yield a 0 and a 1 at the tth and (n+ t)th index

of P , respectively. Similarly, a Z error imposed on the tth qubit will give a 1 and a 0 at the tth and

(n + t)th index of P , respectively, while a Y error on the tth qubit will result in a 1 at both the tth

as well as (n + t)th index of P . The resultant quantum-domain syndrome is given by the symplectic

product of H and P , which is formulated as follows:

s = H ⋆ P T =
(

HzP
T
x +HxP

T
z

)

mod 2, (4.37)
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Stabilizer

g1 ZZIZZII

g2 ZIZZIZI

g3 IZZZIIZ

g4 XXIXXII

g5 XIXXIXI

g6 IXXXIIX

Table 4.5: Stabilizers for the Steane code.

n

n

Z Z Z Z Z XX X X X

Figure 4.8: Effective classical error P corresponding to the error P imposed on an n-qubit frame.

where the Pauli-X operator is used for correcting Z errors, while the Pauli-Z operator is used for

correcting X errors, as previously discussed in the context of 3-qubit bit-flip and phase-flip repetition

codes. The resulting syndrome has either a value of 0 or 1. Thus, the quantum-domain syndrome is

equivalent to the classical-domain binary syndrome and a basic quantum-domain decoding procedure

is similar to the syndrome based decoding of the equivalent classical code [47]. However, due to the

degenerate nature of quantum codes (discussed in Section 4.3.3), quantum decoding aims for finding

the most likely error coset, while the classical syndrome decoding finds the most likely error.

Hence, an [n, k] QSC associated with (n − k) stabilizers can be effectively modeled using an

(n − k) × 2n-element classical PCM satisfying Eq. (4.34). The coding rate of the equivalent classical

code Rc can be determined as follows:

Rc =
2n − (n− k)

2n

=
n+ k

2n

=
1

2

(

1 +
k

n

)

=
1

2
(1 +RQ) , (4.38)

where RQ is its quantum coding rate. Using Eq. (4.38), the coding rate of the classical equivalent of

Shors rate-1/9 quantum code is 5/9, while that of the Steane code is 4/7.
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+ 0 1 ω ω

0 0 1 ω ω

1 1 0 ω ω

ω ω ω 0 1

ω ω ω 1 0

Table 4.6: GF(4) Addition.

× 0 1 ω ω

0 0 0 0 0

1 0 1 ω ω

ω 0 ω ω 1

ω 0 ω 1 ω

Table 4.7: GF(4) Multiplication.

4.3.2.2 Pauli-to-Quaternary Isomorphism

Since the I, X, Y and Z Pauli operators have the equivalent 2-bit representation of Eq. (4.29), they

may also be expressed in the Galois Field GF(4) by the equivalent 4-ary symbols. More specifically,

the Pauli-to-quaternary isomorphism may be encapsulated as:

I→ 0, X→ 1, Y → ω, Z→ ω, (4.39)

where 0, 1, ω and ω are the elements of GF(4), which conform to the additive and multiplicative

rules of Table 4.6 and Table 4.72, respectively. According to this isomorphism, the multiplication

of Pauli operators is transformed to the addition of the corresponding elements in GF(4), while the

commutativity (symplectic product) criterion is mapped onto the trace3 inner product [39]. For

example, multiplying the set of Pauli operators {I,X,Z,Y} with Pauli-X is equivalent to the second

column of Table 4.6. On the other hand, the commutative relationship between Â and B̂ in GF(4) is

computed using the trace inner product as follows4:

Tr〈Â, B̂〉 = Tr(Â× B̂) = 0, (4.40)

2The addition and multiplication rules for GF(p), having a prime p, are the same as the modulo p addition and

multiplication, while the rules for GF(pm), having m > 1, do not follow the conventional rules for modulo pm addition

and multiplication. For example, the addition of the elements of GF(4) is equivalent to the bitwise modulo 2 addition of

the equivalent 2-bit patterns.
3In GF(4), the trace operator maps x to (x+ x). where x is the conjugate of x [41].
4We denote GF(4) variables with aˆon top, e.g. x̂.
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〈, 〉 0 1 ω ω

0 0 0 0 0

1 0 1 ω ω

ω 0 ω 1 ω

ω 0 ω ω 1

Table 4.8: GF(4) Hermitian inner product.

tr〈, 〉 0 1 ω ω

0 0 0 0 0

1 0 0 1 1

ω 0 1 0 1

ω 0 1 1 0

Table 4.9: GF(4) trace inner product.

where 〈, 〉 represents the Hermitian inner product and B̂ denotes the conjugate5 of B̂. Moreover,

Tr(0) = Tr(1) = 0, while Tr(ω) = Tr(ω) = 1. Explicitly, both the Hermitian inner product and

the trace inner product between the elements of GF(4) are tabulated in Table 4.8 and Table 4.9,

respectively.

Based on Eq. (4.40), the symplectic product of Eq. (4.33) is transformed into the trace inner

product in GF(4). For example, the symplectic product of the ith and i′th row of Ĥ, which is defined

in GF(4), is formulated as:

Ĥi ⋆ Ĥi′ = Tr〈Ĥi, Ĥi′〉 = Tr

(

n
∑

t=1

Ĥit × Ĥ i′t

)

, (4.41)

where Ĥit denotes the element in the ith row and tth column of Ĥ.

Let us now prove the equivalence of Eq. (4.33) and Eq. (4.41). Given Hi = (Hzi ,Hxi
) and the

mapping of Eq. (4.39), Ĥi may be expressed as:

Ĥi = ωHzi +Hxi
. (4.42)

5In GF(4), the conjugate operation is defined as x = x2 [41]. Consequently, conjugation swaps the elements ω and ω,

while leaving 0 and 1 intact.
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Substituting Eq. (4.42) into Eq. (4.41) yields:

Ĥi ⋆ Ĥi′ = Tr〈(ωHzi +Hxi
), (ωHzi′ +Hxi′ )〉

= Tr
(

(ωHzi +Hxi
) (ωHzi′ +Hxi′ )

)

= Tr
(

HziHzi′ + ωHziHxi′ + ωHxi
Hzi′ +Hxi

Hxi′
)

. (4.43)

Since Tr(1) = 0 and Tr(ω) = Tr(ω) = 1, Eq. (4.43) reduces to:

Ĥi ⋆ Ĥi′ = HziHxi′ +Hxi
Hzi′ , (4.44)

which is the same as Eq. (4.33). Consequently, analogous to Eq. (4.37), the syndrome in the quaternary

domain is computed as:

si = Tr(ŝi) = Tr

(

n
∑

t=1

Ĥit × P̂ t

)

, (4.45)

where si is the syndrome corresponding to the ith row of Ĥ and P̂t is the tth element of P̂ , which

represents the error inflicted on the tth qubit.

Any arbitrary classical quaternary linear code, which is self-orthogonal with respect to the trace

inner product of Eq. (4.41), can be used for constructing a QSC. Since a quaternary linear code is

closed under multiplication by the elements of GF(4), this condition reduces to satisfying the Hermitian

inner product, rather than the trace inner product [41]. This can be proved as follows.

Let C be a classical linear code in GF(4) having codewords u and v. Furthermore, let us assume

that:

〈u, v〉 = α+ βω. (4.46)

For the sake of satisfying the symplectic product, we must have:

Tr〈u, v〉 = 0. (4.47)

Since Tr(ω) = 1, Eq. (4.47) is only valid, when β is zero in Eq. (4.46). Furthermore, since the code C

is GF(4)-linear, Eq. (4.47) leads to:

Tr〈u, ωv〉 = 0, (4.48)

which in turn implies that α should also be zero in Eq. (4.46). Hence, for a classical GF(4)-linear code,

the Hermitian inner product of Eq. (4.46) must be zero when the trace inner product of Eq. (4.47) is

zero. Based on this notion, Calderbank, Rains, Shor and Sloane proposed [41]:

An [n,k] QSC, which is capable of correcting (d − 1)/2 bit-flips as well as phase-flips, can be

constructed in the quaternary domain from a classical self-orthogonal (under the Hermitian inner

product) GF(4)-linear block code C(n, (n−k)/2), if the orthogonal code C⊥(n, (n+k)/2) has a minimum

Hamming distance d.

The PCM of the resultant QSC is characterized as:

Ĥ =

(

Ĥc

ωĤc

)

, (4.49)
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Stabilizer

g1 IYZZY

g2 YIYZZ

g3 IXYYX

g4 XIXYY

Table 4.10: Stabilizers for 5-qubit Hamming code.

Pauli (F2)
2 GF(4)

I 00 0

X 01 1

Y 11 ω

Z 10 ω

Multiplication Bit-wise Addition Addition

Commutativity Symplectic Product Trace Inner Product

Table 4.11: Quantum-to-classical isomorphism.

where Ĥc is the PCM of the orthogonal code C⊥(n, (n + k)/2). For example, there exists a classical

self-orthogonal GF(4)-linear code C(5, 2), whose orthogonal code C⊥(5, 3) is a Hamming code having

the PCM Ĥc given by [53]:

Ĥc =

(

0 ω ω ω ω

ω 0 ω ω ω

)

. (4.50)

Consequently, the (5, 1) quantum Hamming code can be constructed as:

Ĥ =













0 ω ω ω ω

ω 0 ω ω ω

0 1 ω ω 1

1 0 1 ω ω













. (4.51)

Based on the Pauli-to-GF(4) mapping of Eq. (4.39), Ĥ is mapped onto the stabilizer generators listed

in Table 4.10.

Hence, a Pauli operator may be expressed in terms of the equivalent binary or quaternary repre-

sentation, which is summarized in Table 4.11. This in turn facilitates the design of quantum codes

from the known classical codes.
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4.3.3 Classification of Quantum Errors

The error set of a classical linear block code C having a PCM H can be classified as:

1. Detected Error Patterns: These error patterns yield a non-trivial syndrome, i.e. eHT 6= 0,

which may be corrected by the code.

2. Undetected Error Patterns: This set of error patterns results in a trivial syndrome, i.e.

eHT = 0, which cannot be detected by the code. More specifically, an undetected error maps

the transmitted codeword onto another valid codeword. Since the resultant codeword still lies in

the code space C, it does not trigger a non-zero syndrome. These error patterns are attributed

to the small minimum distance of the code.

Analogous to the classical detected error patterns, quantum detected error patterns anti-commute

with at least one of the stabilizer generators, which results in a non-trivial syndrome. Similarly, the

quantum undetected error patterns commute with all the stabilizer generators, yielding an all-zero

syndrome. This commuting set of error patterns is also known as the centralizer (or normalizer) of

the stabilizer code having the stabilizer group H, which is denoted as C(H) (or N(H)). In particular,

the centralizer of an [n, k] QSC is a dual subspace consisting of n-tuple Pauli errors P ∈ Gn, which
are orthogonal to all the stabilizers of the stabilizer group H. Furthermore, since the H is itself an

Abelian group consisting of mutually orthogonal generators, it is contained in the centralizer, i.e. we

have H ⊂ N(H). Recall from Section 4.3.1 that the stabilizer generators do not disturb the state of

valid codewords. This in turn implies that errors which belong to the stabilizer group, i.e. we have

P ∈ H, do not corrupt the transmitted codewords and therefore may be classified as the harmless

undetected error patterns. This class of errors does not have any classical analogue. By contrast,

those error patterns, which lie in the subspace N(H) \ H, are the harmful undetected errors, which

map one valid codeword onto another. Hence, as depicted in Figure 4.9, quantum error patterns can

be classified as follows:

1. Detected Errors Patterns: These error patterns fall outside the normalizer subspace, i.e.

they satisfy P ∈ Gn \N(H).

2. Harmful Undetected Error Patterns: This set of error patterns is defined as N(S) \ H.

3. Harmless Undetected Errors Patterns: These error patterns fall in the stabilizer group H.

The set of harmless undetected error patterns gives quantum codes the intrinsic property of ‘degen-

eracy’ [67]. More explicitly, Pauli errors which differ only by the elements of the stabilizer group have

the same impact on all the codewords and therefore can be corrected by the same recovery operations.

For example, the errors P and P ′ = giP have the same impact on the transmitted codeword, because

we have:

P ′[|ψ〉] = giP[|ψ〉] = Pgi[|ψ〉]. (4.52)
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Detected Error Patterns

Harmful Undetected Error Patterns

Harmless Undetected Error Patterns
H

N(H)
P ∈ Gn

Figure 4.9: Error pattern classification for stabilizer codes.

Since gi[|ψ〉] = |ψ〉, we get:

P ′[|ψ〉] = P[|ψ〉]. (4.53)

Therefore, degenerate errors can be corrected by the same recovery operation. Getting back to our

example of the 3-qubit bit-flip repetition code of Section 4.3.1, let P = IIX and P ′ = g1P = ZZX.

Both P as well as P ′ corrupt the transmitted codeword of Eq. (4.11) to α|001〉+β|110〉. Consequently,

P and P ′ do not have to be differentiated and are therefore classified as degenerate errors. Thus,

degeneracy enables a quantum code to pack more information as compared to the underlying classical

design.

4.4 Quantum Convolutional Codes

Quantum Convolutional Codes (QCCs) are derived from the corresponding classical convolutional

codes using stabilizer formalism. This is based on the equivalence between the Classical Convolutional

Codes (CCC) and the classical linear block codes with semi-infinite length, which is derived below [124].

Consider a (2, 1,m) classical convolutional code with generators,

g(0) = (g
(0)
0 , g

(0)
1 , . . . , g(0)m ),

g(1) = (g
(1)
0 , g

(1)
1 , . . . , g(1)m ). (4.54)

For an input sequence [u = (u0, u1, u2, . . . )], the output sequences [v(0) = (v
(0)
0 , v

(0)
1 , v

(0)
2 , . . . )] and

[v(1) = (v
(1)
0 , v

(1)
1 , v

(1)
2 , . . . )]are given as follows:

v(0) = u⊛ g(0),

v(1) = u⊛ g(1), (4.55)

where ⊛ denotes discrete convolution (modulo 2), which implies that for all l ≥ 0 we have:

v
(j)
l =

m
∑

i=0

ul−ig
(j)
i = ulg

(j)
0 + ul−1g

(j)
1 + · · · + ul−mg

(j)
m , (4.56)
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where j = 0, 1 and ul−i , 0 for all l < i. The two encoded sequences are multiplexed into a single

codeword sequence v given by:

v = (v
(0)
0 , v

(1)
0 , v

(0)
1 , v

(1)
1 , v

(0)
2 , v

(1)
2 , . . . ) (4.57)

This encoding process can also be represented in matrix notation by interlacing the generators g(0)

and g(1) and arranging them in matrix form as follows6,

G =













g
(0)(1)
0 g

(0)(1)
1 . . . g

(0)(1)
m

g
(0)(1)
0 g

(0)(1)
1 . . . g

(0)(1)
m

g
(0)(1)
0 g

(0)(1)
1 . . . g

(0)(1)
m

. . . . . .
. . .













, (4.58)

where g
(0)(1)
i ,

(

g
(0)
i g

(1)
i

)

. The encoding operation of Eq. (4.56) is therefore equivalent to,

v = uG. (4.59)

Since the information sequence u is of arbitrary length, G is semi-infinite. Furthermore, each row of

G is identical to the previous row, but is shifted to the right by two places (since n = 2). In practice,

u has a finite length N . Therefore, G has N rows and 2(m + N) columns for CCC(2, 1,m). For

CCC(n, k,m), G can be generalized as follows:

G =













G0 G1 . . . Gm

G0 G1 . . . Gm

G0 G1 . . . Gm

. . . . . .
. . .













, (4.60)

where Gl is a (k x n) submatrix with entries,

Gl =













g
(0)
1,l g

(1)
1,l . . . g

(n−1)
1,l

g
(0)
2,l g

(1)
2,l . . . g

(n−1)
2,l

...
...

...

g
(0)
k,l g

(1)
k,l . . . g

(n−1)
k,l













. (4.61)

The corresponding PCM H can be represented as a semi-infinite matrix consisting of submatrices Hl

with dimensions of (n− k)× n. For a convolutional code having m memory elements, H is given by:

H =





























H0

H1 H0

H2 H1 H0

...
...

...

Hm Hm−1 Hm−2 . . . H0

Hm Hm−1 Hm−2 . . . H0

...
...

...





























. (4.62)

6Blank spaces in the matrix indicate zeros.
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n
−
k

m× n

. . . H0Hm−1 Hm−2Hm

. . . H0Hm−1 Hm−2Hm

(m× n+ n)

Figure 4.10: Block-band structure of the semi-infinite classical PCM H .

Therefore, a CCC can be represented as a linear block code with semi-infinite block length. Fur-

thermore, if each row of the submatrices Hl is considered as a single block and hj,i is the ith row

of the jth block, then H has a block-band structure after the first m blocks, whereby the successive

blocks are time-shifted versions of the first block (j = 0) and the adjacent blocks have an overlap of m

submatrices. This has been depicted in Figure 4.10 and can be mathematically represented as follows:

hj,i = [0j×n, h0,i], 1 ≤ i ≤ (n− k), 0 ≤ j, (4.63)

where 0j×n is a row-vector with (j × n) zeros.

As discussed in Section 4.3.2, the rows of a classical PCM correspond to the stabilizers of a

quantum code. Hence, the quantum stabilizer group H of an [n, k,m] stabilizer convolutional code is

given by [51]:

H = sp{gj,i = I⊗jn ⊗ g0,i}, 1 ≤ i ≤ (n− k), 0 ≤ j, (4.64)

where gj,i is the ith stabilizer of the jth block of the stabilizer group H. Furthermore, sp represents a

symplectic group, thus implying that all the stabilizers gj,i must be independent and must commute

with each other.

As proposed by Forney in [52, 53], CSS-type QCCs can be derived from the classical self-orthogonal

binary convolution codes. Let us consider the rate 1/3 QCC of [52, 53], which is constructed from a

binary rate-1/3 CCC with generators:

G =







1 1 1 1 0 0 1 1 0 0 0 0 . . .

0 0 0 1 1 1 1 0 0 1 1 0 . . .

. . .






. (4.65)

In D-transform notation, these generators are represented as (1 +D+D2, 1 +D2, 1). Each generator

is orthogonal to all other generators under the binary inner product, making it a self-orthogonal code.

Moreover, the dual C⊥ has the capability of correcting 1 bit. Therefore, based on the CSS construction,
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the basic stabilizers of the corresponding single-error correcting [3, 1] QCC are as follows:

g0,1 = (XXX,XII,XXI) , (4.66)

g0,2 = (ZZZ,ZII,ZZI) . (4.67)

Other stabilizers of H are the time-shifted versions of these basic stabilizers as depicted in Eq. (4.64).

Let us further consider a non-CSS QCC construction given by Forney in [52, 53]. It is derived

from the classical self-orthogonal rate-1/3 quaternary (F4) convolutional code C having generators

(1+D, 1+wD, 1+ w̄D), where F4 = {0, 1, w,w}. These generators can also be represented as follows:

G =







1 1 1 1 w w̄ 0 0 0 . . .

0 0 0 1 1 1 1 w w̄ . . .

. . .






. (4.68)

Since all these generators are orthogonal under the Hermitian inner product, C is self-orthogonal.

Therefore, a [3, 1] QCC can be derived from this classical code. The basic generators g0,i, for 1 ≤ i ≤ 2,

of the corresponding stabilizer group, H, are generated by multiplying the generators of Eq. (4.68)

with w and w̄, and mapping 0, w, 1, w̄ onto I, X, Y and Z respectively. The resultant basic stabilizers

are as follows:

g0,1 = (XXX,XZY) , (4.69)

g0,2 = (ZZZ,ZYX) , (4.70)

and all other constituent stabilizers of H can be derived using Eq. (4.64).

4.5 Entanglement-Assisted Quantum Codes

Let us recall that the classical binary and quaternary codes may only be used for constructing stabilizer

codes if they satisfy the symplectic criterion of Eq. (4.34). Consequently, some of the well-known

classical codes cannot be explored in the quantum domain. This limitation can be readily overcome by

using the entanglement-assisted stabilizer formalism, which exploits pre-shared entanglement between

the transmitter and receiver to embed a set of non-commuting stabilizer generators into a larger set

of commuting generators.

Figure 4.11 shows the general schematic of a quantum communication system, which incorporates

an Entanglement-Assisted Quantum Stabilizer Code (EA-QSC). An [n, k, c] EA-QSC, having a coding

rate RQ = k/n and an entanglement consumption rate E = c/n, encodes the information qubits |ψ〉
into the coded sequence |ψ〉 with the aid of (n − k − c) auxiliary qubits, which are initialized to

the state |0〉. Furthermore, the transmitter and receiver share c entangled qubits (ebits) before their

actual transmission takes place. This may be carried out during the off-peak hours, when the channel

is under-utilized, thus efficiently distributing the transmission requirements in time. More specifically,
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Syndrome
Processing

|0〉

|ψ〉
Quantum Channel

|ψ̂〉 |ψ̃〉
Encoder Decoder

|ψ〉

RX

R |ψ̃〉

|φ+〉 TX
P̃

Figure 4.11: System Model: Quantum communication system relying on an entanglement-assisted quantum

stabilizer code.

.

the state |φ+〉 of an ebit is given by the following Bell state:

|φ+〉 = |00〉
TXRX + |11〉TXRX

√
2

, (4.71)

where TX and RX denotes the transmitter’s and receiver’s half of the ebit, respectively. Similar to the

superdense coding protocol of [28], it is assumed that the receiver’s half of the c ebits are transmitted

over a noiseless quantum channel, while the transmitter’s half of the c ebits together with the (n−k−c)
auxiliary qubits are used for encoding the intended k information qubits into n coded qubits. The

resultant n-qubit codewords |ψ〉 are transmitted over a noisy quantum channel. The receiver then

combines his half of the c noiseless ebits with the received n-qubit noisy codewords |ψ̂〉 to compute

the syndrome, which is used for estimating the error pattern P̃ incurred on the n-qubit codewords.

The rest of the processing at the receiver is the same as that in Figure 4.1.

The entangled state of Eq. (4.71) has unique commutativity properties, which assist us in trans-

forming a set of non-Abelian generators into an Abelian set. The state |φ+〉 is stabilized by the

operators XTXXRX and ZTXZRX , which commute with each other. Therefore, we have7:

[XTXXRX ,ZTXZRX ] = 0. (4.72)

However, local operators acting on either of the qubits anti-commute, i.e. we have:

{XTX ,ZTX} = {XRX ,ZRX} = 0. (4.73)

Therefore, if we have two single qubit operators XTX and ZTX , which anti-commute with each other,

then we can resolve the anti-commutativity by entangling another qubit and choosing the local oper-

ators on this additional qubit such that the resultant two-qubit generators (XTXXRX and ZTXZRX

for this case) commute. This additional qubit constitutes the receiver half of the ebit. In other words,

we entangle an additional qubit for the sake of ensuring that the resultant two-qubit operators have

an even number of places with different non-identity operators, which in turn ensures commutativity.

7[a, b] represents the commutative relation between a and b, while {a, b} denotes the anti-commutative relation.
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Let us consider a pair of classical binary codes associated with the following PCMs:

Hz =













0 1 0 0

0 0 0 0

1 1 1 0

0 1 1 1













, (4.74)

and

Hx =













1 0 1 0

1 1 0 1

1 0 0 1

1 1 1 0













, (4.75)

which are used to construct a non-CSS quantum code having H = (Hz|Hx). The PCM H does not

satisfy the symplectic criterion. The resultant non-Abelian set of Pauli generators are as follows:

HQ =













X Z X I

X X I X

Y Z Z X

X Y Y Z













. (4.76)

In Eq. (4.76), the first two generators (i.e. the first and second row) anti-commute, while all other

generators commute with each other. This is because the local operators acting on the second qubit

in the first two generators anti-commute, while the local operators acting on all other qubits in these

two generators commute. In other words, there is a single index (i.e. 2) with different non-Identity

operators. To transform this non-Abelian set into an Abelian set, we may extend the generators of

Eq. (4.76) with a single additional qubit, whose local operators also anti-commute for the sake of

ensuring that the resultant extended generators commute. Therefore, we get:

HQ =













X Z X I Z

X X I X X

Y Z Z X I

X Y Y Z I













, (4.77)

where the operators to the left of the vertical bar (|) act on the transmitted n-qubit codewords, while

those on the right of the vertical bar act on the receiver’s half of the ebits.

4.6 Summary and Conclusions

Qubits cannot be cloned or copied and they collapse to classical bits upon measurement. Moreover,

in contrast to a classical channel, which imposes only bit errors, the quantum channel inflicts both bit

as well as phase errors. Hence, classical coding techniques cannot be directly applied to the quantum

domain. Against this background, in this chapter we have provided insights into the quantum stabilizer

formalism, which aids in the development of quantum codes from the known classical codes.



In Section 4.2, we reviewed the classical linear block codes, which is the basis of the stabilizer for-

malism. We then discussed the stabilizer codes in Section 4.3. More specifically, we laid out the general

stabilizer formalism in Section 4.3.1 and detailed the transition from the classical codes to the quantum

codes, which was summarized in Figure 4.6. Particularly, with the aid of design examples, namely the

3-qubit bit-flip repetition code and the 3-qubit phase-flip repetition code, it was demonstrated that

entanglement can be invoked for circumventing the cloning issue, the Hadamard basis can be exploited

for phase-error correction, while the classical syndrome decoding approach can be used for observing

the channel errors without reading the actual received qubits. We then derived the equivalence be-

tween the quantum codes and the classical binary and quaternary codes in Sections 4.3.2.1 and 4.3.2.2,

respectively, which was summarized in Table 4.11. Based on this quantum-to-classical isomorphism,

arbitrary classical binary and quaternary codes can be used for constructing QSCs, provided they meet

the stringent commutativity criterion, which is characterized by the symplectic product in the binary

domain and by the Hermitian inner product in the quaternary domain. Following this design rule,

we constructed [7, 1] and [5, 1] QSCs from the classical dual-containing (7, 4) Hamming code and the

classical self-orthogonal GF(4)-linear (5, 2) code, respectively. Furthermore, various code structures,

namely dual-containing CSS, non-dual-containing CSS and non-CSS, associated with the binary PCM

of a stabilizer code were summarized in Figure 4.7. In Section 4.3.3, we presented the classification

of quantum errors. It was pointed out that quantum codes are inherently degenerate. Consequently,

errors, which differ by an element of the stabilizer group, can be corrected with the same recovery

operation. Furthermore, errors, which belong to the stabilizer group, constitute the class of harmless

undetected errors, which has no classical analogue. In Section 4.4, we laid out the design of QCCs

from the CCCs. Since convolutional codes are equivalent to semi-infinite block codes, it was shown

that the designs of Section 4.3 can be readily extended to the QCCs. Finally, in Section 4.5, EA-QSCs

were presented, which facilitate the design of quantum codes from arbitrary classical codes when they

do not meet the commutativity requirement, hence virtually all classical codes can be imported to

the quantum domain. However, this is achieved at the cost of pre-shared transmission of entangled

qubits, which is a valuable resource and therefore should be minimized.

As discussed in this chapter, QSCs invoke the classical PCM-based syndrome decoding approach.

More explicitly, the stabilizer generators of a QSC are used for computing the syndrome, which

collapses to a binary 0 or 1 upon measurement. Since the resultant syndrome is binary and the

generators of a QSC can be mapped onto an equivalent classical PCM, the observed syndromes are

fed to a classical PCM-based syndrome decoder for estimating the channel error. Therefore, in Chapter

5 we will focus our attention on the classical syndrome decoding techniques.



Chapter 5
Classical Syndrome Decoding

5.1 Introduction

I
n Chapter 4, we provided insights into the construction of stabilizer codes from the known classical

codes based on the underlying quantum-to-classical isomorphism. Let us recall that since a

Quantum Stabilizer Code (QSC) can be mapped onto an equivalent classical binary or quaternary

Parity Check Matrix (PCM), classical PCM-based syndrome decoding may be invoked during the

quantum decoding process. More explicitly, the ‘syndrome processing’ block of Figure 4.1 may be

expanded, as shown in Figure 5.1. The process begins with the computation of the syndrome of

the received sequence |ψ̂〉 using the stabilizer generators, which collapse to a binary 0 or 1 upon

measurement. For estimating the equivalent channel error P̃ (or
˜̂
P in quaternary domain), the binary

syndrome sequence s is fed to a classical PCM-based syndrome decoder, which operates over the

equivalent classical PCM associated with the QSC. Finally, the estimated binary (or quaternary)

error is mapped onto the equivalent Pauli error P̃ using the binary-to-Pauli mapping of Eq. (4.29) (or

quaternary-to-Pauli mapping of Eq. (4.39)). The classical syndrome decoder of Figure 5.1 is exactly

the same decoder, which we would use for any conventional classical code, with the exception of the

following two differences:

1. In contrast to the syndrome of a classical code, which is computed as the product of the PCM

Binary−to−PauliSyndrome
Computation

PCM−based 
Classical

MappingSyndrome Decoder

|ψ̂〉 P̃s P̃

Figure 5.1: Syndrome processing block of Figure 4.1.
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and the transpose of the channel error (HP T ), the syndrome of a quantum code is computed

using the symplectic product of Eq. (4.37) (or the trace inner product of Eq. (4.45)).

2. The conventional classical decoding aims for finding the most likely error, given the observed

syndrome, while quantum decoding aims for finding the most likely error coset, which takes into

account the degenerate nature of quantum codes, as discussed in Section 4.3.3.

In this chapter, we will focus our attention on the classical syndrome decoding techniques for

the conventional classical codes for transmission over a classical channel, thereby ignoring these two

differences. The concepts developed in this chapter together with those of Chapter 4 will be sub-

sequently used in the later chapters in the context of quantum codes. We have also conceived a

reduced-complexity syndrome-based decoder in this chapter.

In contrast to conventional codeword decoding, which finds the most likely codeword, having the

minimum Hamming distance, syndrome decoding finds the most likely error, having the minimum

Hamming weight. The notion of syndrome decoding stems from the Look-Up Table (LUT) based de-

coding of linear block codes, whereby the syndrome of the received sequence characterizes the inflicted

error using a pre-computed LUT [124]. An LUT-based syndrome decoder is in essence a minimum-

distance decoder, which finds the error vector having the minimum Hamming weight. By contrast,

the soft-decision Maximum Likelihood (ML) codeword decoding of a linear block code requires a

brute force attempt for computing the conditional probability for all possible codewords x, given the

received sequence y P(x|y) (or the probability of all possible errors e given the observed syndrome

s for syndrome decoding P(e|s)). To circumvent this tedious task, Bahl et al. [125] were the first

to conceive the syndrome-based1 code trellis2 for linear block codes. However, they did not provide

a detailed construction. This gap was filled by Wolf in [126], whereby the method of constructing

the syndrome-based code trellis for linear block codes was presented. Wolf [126] also proved that in

contrast to a brute force ML decoding of a linear block code C(n, k) over GF(q), which would require

qk evaluations, a code trellis requires only qmin{k,n−k} states. The ideas presented in [125, 126] for the

trellis-based ML codeword decoding of linear block codes are readily applicable to the trellis-based

ML syndrome decoding, which relies on the corresponding syndrome-based error trellis. Parallel to

these developments, Schalkwijk and Vinckin [127, 128, 129] conceived the idea of a syndrome-based

error trellis for convolutional codes. They exploited the inherent symmetries of the trellis structure for

reducing the complexity of the decoding hardware required for the hard-decision syndrome decoding

of convolutional codes. Later, soft-decision syndrome decoding approaches were presented in [130]

and [131], which were based on the error trellis and code trellis, respectively. This concept was further

extended to the family of high-rate turbo codes in [132].

1We call this trellis syndrome-based because it is constructed from the PCM of the linear block code, while the classic

trellis of a convolutional code is constructed using the code generators.
2Each path of a code trellis is a valid codeword, while each path of an error trellis is a possible channel error, which

would yield a given syndrome sequence. Therefore, a code trellis is used for codeword decoding, while an error trellis is

used for syndrome decoding.
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The error trellis-based syndrome decoding is of particular significance, because the state prob-

abilities of an error trellis are a function of the channel errors rather than of the coded sequence.

Consequently, at high Signal-to-Noise Ratios (SNRs), the syndrome decoder is more likely to en-

counter a zero-state due to the predominant error-free transmissions. This underlying property of

syndrome decoding has been exploited in [133, 134] for developing a Block Syndrome Decoder (BSD)

for convolutional codes, which divides the received sequence into erroneous and error-free parts based

on the syndrome. More specifically, the BSD only decodes the erroneous blocks, with the initial and

final states of the trellis initialized to zero. Therefore, the decoding complexity is substantially reduced

at higher SNRs. It also offers a potential for parallelization [135]. The concept of BSD was further

extended to turbo codes in [136], where a pre-correction sequence3 was also computed at each iteration

to correct the errors. Consequently, the Hamming weight of the syndrome sequence decreases with

ongoing iterations. Thus, the decoding complexity was reduced not only at higher SNRs, but also

for the higher-indexed iterations. Furthermore, a syndrome-based Maximum A-Posteriori (MAP)

decoder was proposed in [137] for designing an adaptive low-complexity decoding approach for turbo

equalization. Some other applications of BSD are dealt with in [138, 139, 140].

Inspired by the significant decoding complexity reductions reported for BSD, our novel contribution

in this chapter is that we have extended the application of the syndrome-based MAP decoder of [137]

together with the BSD of [136] to Turbo Trellis Coded Modulation (TTCM) for the sake of reducing its

decoding complexity [6]. The resultant scheme is referred to as BSD-TTCM. We have investigated the

performance of our proposed BSD-TTCM for transmission over the Additive White Gaussian Noise

(AWGN) channel as well as over an uncorrelated Rayleigh fading channel in this chapter.

The rest of this chapter is organized as follows. In Section 5.2, we detail the LUT-based syndrome

decoding method, which forms the basis of the syndrome decoding concept. This is followed by a

discussion on the trellis-based syndrome decoding in Section 5.3. Particularly, Section 5.3.1 focuses on

the construction of the syndrome-based trellis of linear block codes, while in Section 5.3.2 we extend

this syndrome-based trellis formalism to convolutional codes. Section 5.4 deals with the BSD. More

specifically, in Section 5.4.1, we lay out the general BSD formalism, while our proposed block-based

syndrome decoder designed for TTCM is presented in Section 5.4.2. We then evaluate the performance

of our proposed decoder in Section 5.5. Finally, we summarize the chapter in Section 5.6.

5.2 Look-Up Table-based Syndrome Decoding

The LUT-based syndrome decoding derives its philosophy from the standard array-based decoding.

For a binary linear block code C(n, k), standard array is a 2n−k × 2k array, which distributes all the

possible 2n n-tuple vectors into 2k disjoint subsets of size 2n−k, such that each subset contains only

one valid codeword. More specifically, a standard array is constructed as follows:

3Pre-correction sequence is an estimated/predicted error sequence, which is used to correct errors in the received

information.



94 5. Classical Syndrome Decoding

� Let {x1, x2, . . . , x2k} be the set of valid codewords (n-bit each) of C(n, k). Place all these 2k

codewords of C in the first row of the standard array, commencing from the all-zero codeword.

� Select any minimum weight vector e2 from the pool of 2n n-bit vectors, which is not contained

in the first row. List the coset (e2 +C) in the second row such that e2 + xi is in the ith column,

where xi is the ith valid codeword.

� Select another minimum weight vector e3 from the remaining pool, i.e. excluding the vectors

contained in the first two rows, and list the coset (e3 + C) in the third row.

� Continue the process for all 2n−k cosets.

The resultant standard array may be expressed as:



















x1 = 0 x2 . . . xi . . . x2k

e2 e2 + x2 . . . e2 + xi . . . e2 + x2k

e3 e3 + x2 . . . e3 + xi . . . e3 + x2k
...

...

e2n−k e2n−k + x2 . . . e2n−k + xi . . . e2n−k + x2k



















, (5.1)

where {e1 = 0, e2, . . . , e2n−k} constitutes the set of possible minimum-weight errors, which may be

identified using the code C(n, k). More explicitly, each row of Eq. (5.1) is a unique coset, whose coset

leader is the minimum weight vector given in the first column. We may notice in Eq. (5.1) that adding

(modulo 2) the coset leader to any element of the same coset yields the corresponding valid codeword.

For example, if we add e3 to the second element of the third coset according to e3 + x2, we get x2.

Hence, the coset leader identifies the most likely (having the minimum Hamming weight) error for its

coset.

Since the PCM-based syndrome decoding approach discussed in Section 4.2 is an LUT-based

syndrome decoder, let us construct the associated standard array. Recall from Section 4.2 that a 3-bit

repetition code C(3, 1) has two valid codewords, i.e. x1 = [000] and x2 = [111]. Using Eq. (5.1) and

this set of valid codewords, we get the following standard array:













x1 x2

e2 e2 + x2

e3 e3 + x2

e4 e4 + x2













=













000 111

001 110

010 101

100 011













. (5.2)

Let us assume furthermore that the received vector y = [011] lies in the fourth coset. Consequently,

the estimated error is [100] and the corresponding estimated codeword is [011] + [100] = [111], which

is the first element of the subset (column) to which y belongs.

Since the standard array is a (2n−k × 2k)-element array, it imposes huge storage requirements for

large linear block codes. This may be alleviated by using the LUT-based syndrome decoding. Let us
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consider the ith element of the jth coset of the standard array of Eq. (5.1). Its syndrome may be

computed as:

s = (ej + xi)H
T = ejH

T + xiH
T = ejH

T . (5.3)

Hence, each coset is identified by a unique syndrome. Consequently, rather than storing all the 2k ele-

ments of the coset, we can construct an LUT, which only stores the coset leader and the corresponding

syndrome, i.e. we have:












e1 = 0 0

e2 e2H
T

e3 e3H
T

e4 e4H
T













=













000 00

001 01

010 10

100 11













. (5.4)

This is equivalent to the LUT given in Table 4.1, which also has 2 columns and 2n−k = 4 rows.

5.3 Trellis-based Syndrome Decoding

Trellis-based syndrome decoding operates over a syndrome-based error trellis. More specifically, each

path of an error trellis characterizes a unique channel error for a given syndrome. Consequently, the

set of paths of the error trellis for a particular syndrome is the same as the coset of the standard array

(Eq. (5.1)) corresponding to that syndrome. When the syndrome is zero, which is equivalent to the

first coset of Eq. (5.1), i.e. to set of all valid codewords, the error trellis collapses to a code trellis.

The trellis-based syndrome decoding therefore invokes either the classic Viterbi algorithm [141] or the

Bahl-Cocke-Jelinek-Raviv (BCJR) decoding (also called MAP decoding) [125] for estimating the most

likely channel error for a given syndrome. In this context, let us now have a look at the construction

of the syndrome-based error trellis for linear block codes and convolutional codes in Section 5.3.1 and

5.3.2, respectively. Finally, the MAP algorithm will be presented later in Section 5.4.2.2.

5.3.1 Linear Block Codes

Consider a linear block code C(n, k) constituted over GF(q) having an (n− k)×n PCM H, whose ith

column is represented by hi for i = {1, 2, . . . , n}. The syndrome-based trellis of this code is defined

by a set of states interconnected by unidirectional edges, where a state is basically represented by

an (n − k)-bit syndrome. Analogously to a conventional trellis, the edges are drawn between the

trellis-states at depth t and those at depth (t− 1), for t = {0, 1, . . . , n}, with the direction of the edge

emerging from the state at depth (t− 1) and arriving at the state at depth t. At any trellis-depth t,

there are at most qn−k nodes and the lth trellis-state at depth t is denoted as sl(t). Based on this

notation, let us now construct the syndrome-based trellis of Figure 5.2 for a binary code C(5, 3), whose

PCM is given by,

H =

(

1 1 0 1 0

1 0 1 0 1

)

=
(

h1 h2 h3 h4 h5

)

. (5.5)
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Figure 5.2: Syndrome-based trellis for a linear block code C(5, 3) constructed over GF(2).

The trellis of Figure 5.2 can be constructed as follows:

1. The trellis emerges from the trellis-state (0, 0) at t = 0, i.e. we have s0(0) = (0, 0).

2. We next determine the set of trellis-states for t = {1, . . . , 5} as follows:

(a) We compute the edges emerging from the trellis-state s0(0) at trellis-depth t = 0 to the

states at depth t = 1 using the relationship:

sl(t) = si(t− 1) + αjht, for j = 0, 1, . . . , (q − 1), (5.6)

where sl(t) is the lth state at depth t, si(t − 1) is the ith state at depth (t − 1) and αj is

an element of GF(q). Since we are using a binary code, there are only two possible values

of αj in Eq. (5.6) i.e. α0 = 0 and α1 = 1. Substituting these values of αj into Eq. (5.6) at

t = 1 yields:

s0(1) = s0(0) + α0h1

=

(

0

0

)

+ 0.

(

1

1

)

=

(

0

0

)

, (5.7)

s1(1) = s0(0) + α1h1

=

(

0

0

)

+ 1.

(

1

1

)

=

(

1

1

)

. (5.8)
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Consequently, the trellis-state s0(0) = (0, 0) at t = 0 is connected to the states s0(1) = (0, 0)

and s1(1) = (1, 1) at t = 1, as seen in the trellis of Figure 5.6. The corresponding edges are

labeled by 0 and 1 for α0 = 0 and α1 = 1, respectively.

Eq. (5.7) and Eq. (5.8) may also be computed using an alternate approach. We know that

for a received vector y and the PCM H, the syndrome vector s is given by,

s = yHT . (5.9)

At t = 1, we receive only the first element of y i.e. y = [y10000]
T . Therefore, Eq. (5.7) and

Eq. (5.8) can also be formulated as:

sl(1) =

(

1 1 0 1 0

1 0 1 0 1

)

.

















y1

0

0

0

0

















where y1 ∈ {α0, α1}. (5.10)

(b) The process is similarly repeated for t = 2, where we have:

sl(2) = s0(1) + αjh2

sl(2) = s1(1) + αjh2, (5.11)

for j = {0, 1}. If the alternate approach of Eq. (5.10) is adopted, Eq. (5.11) may be written

as:

sl(2) =

(

1 1 0 1 0

1 0 1 0 1

)

.

















y1

y2

0

0

0

















, where y1, y2 ∈ {α0, α1}, (5.12)

since we have two received bits y1 and y2 at t = 2.

(c) This process is repeated until we reach the end of the PCM, i.e t = 5.

3. Finally, any paths, which do not terminate at the all-zero syndrome, can be removed, hence

resulting in the expurgated code trellis, which is shown in Figure 5.3. Since only the paths ter-

minating at the all-zero syndrome are considered, these paths correspond to the valid codewords.

For generating the error trellis, we discard all paths, which do not terminate at the syndrome of

the received vector y. Consequently, each path of the expurgated error trellis defines a possible

error sequence. In other words, the error trellis collapses to a code trellis, when the syndrome

observed is zero.

The above-mentioned process for constructing a syndrome-based trellis of a linear block code may be

generalized as follows:
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Figure 5.3: Expurgated syndrome-based code trellis for the binary code C(5, 3).

1. The trellis starts from an all-zero state, i.e. there is a single state at t = 0 denoted by s0(0),

which is equivalent to an all-zero vector of length (n− k).

2. For each t = {1, 2, . . . , n}, the trellis-states at depth t are obtained from the set of states at

depth (t − 1) using the Eq. (5.6). Edges are drawn between the state si(t − 1) at trellis-depth

t− 1 and the q states sl(t− 1) at depth t, which are labeled by the corresponding value of αj .

3. For a code trellis, the constructed trellis is expurgated by removing those paths, which do not

lead to an all-zero state at depth n. Consequently, each of the qk paths in the resultant trellis

defines a valid codeword. By contrast, for the error trellis, the constructed trellis is expurgated by

discarding those paths, which do not terminate at the syndrome observed, i.e. at the syndrome

of the received vector y.

5.3.2 Convolutional Codes

The conventional code trellis of a convolutional code is derived from the generator matrix G. By

contrast, an error trellis is constructed using the corresponding PCM, which is known as the syndrome

former HT for convolutional codes. Let us review the example given in [142] for illustrating the trellis

construction procedure. We use a rate-2/3 convolutional code, whose generator G(D) is given by:

G(D) =

(

1 +D D 1 +D

D 1 1

)

. (5.13)

The corresponding syndrome former is as follows:

HT (D) =







1

1 +D2

1 +D +D2






. (5.14)
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Figure 5.4: Realization of the encoder and syndrome former given in Eq. (5.13) and Eq. (5.14), respectively.

The circuit of G(D) for CC(n, k) is realized in Figure 5.4(a), whereby the input information sequence

ut = (u
(1)
t , . . . , u

(k)
t ) at time instant t is encoded by the generator G(D), yielding the output code

sequence of vt = (v
(1)
t , . . . , v

(n)
t ). Let et = (e

(1)
t , . . . , e

(n)
t ) be the channel error experienced during

transmission. The received sequence yt = (y
(1)
t , . . . , y

(n)
t ) is therefore given by:

yjt = vjt ⊕ ejt . (5.15)

Analogously to the linear block codes, we may define the resultant syndrome sequence s using the

syndrome former HT as follows4:

s = yHT = (v + e)HT = eHT . (5.16)

This realization of the syndrome former is shown in Figure 5.4(b), which employs the error sequence

et = (e
(1)
t , . . . , e

(n)
t ) as its input for computing the corresponding syndrome st at time instant t using

the syndrome former of Eq. (5.14). Consequently, we may construct the trellis for the syndrome former

of Figure 5.4(b) as we conventionally do using the encoder G. Furthermore, since the syndrome st can

either have a value of 0 or 1, we divide the resultant trellis into two sub-trellis modules corresponding

to st = 0 and st = 1, as shown in Figure 5.5. Here, the state at time t is defined as σt = (σ
(1)
t σ

(2)
t )

and each branch leading from σt−1 to σt is labeled with the error et = (e
(1)
t , e

(2)
t , e

(3)
t ). Let us assume

that the received sequence is:

{yt}3t=1 = {011 011 111}. (5.17)

Since the received sequence yt and the inflicted channel error et yield the same syndrome according

to Eq. (5.16), we feed yt into the circuit of Figure 5.4(b) for computing the syndrome. Consequently,

using the syndrome former of Figure 5.4(b), whose registers are initialized to the zero state, we get

{st}3t=1 = {0, 1, 0}, while the resultant states are σ1 = (10), σ2 = (10) and σ3 = (10), respectively.

The corresponding trellis can be constructed by starting from the state σ0 = (00) and concatenating

the sub-trellises of Figure 5.5 based on the value of st. More specifically, for the syndrome values of

4Recall from Section 4.4 that the PCM of a convolutional code is a semi-infinite matrix. The semi-infinite binary

matrix HT corresponding to HT (D) of Eq. (5.14) is defined later in Eq. (5.20).
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Figure 5.5: Syndrome-based error sub-trellises for HT corresponding to st = 0 and st = 1.
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Figure 5.6: Syndrome-based error trellis for HT corresponding to the received sequence of Eq. (5.17), which

is constructed by concatenating the sub-trellises of Figure 5.5.

{st}3t=1 = {0, 1, 0} , we concatenate the sub-trellis for st = 0 to that for the state st = 1, followed

by another sub-trellis for the st = 0. This yields the trellis of Figure 5.6 for the received sequence of

Eq. (5.17), which is initialized to the state σ0 = (00) and terminates at σ3 = (10).

The error trellis of Figure 5.6 is equivalent to the conventional code trellis generated using the gen-

erator G, which is shown in Figure 5.7. Here the state at time t is (u
(1)
t , u

(2)
t ) and each branch is labeled

with the coded bits (v
(1)
t , v

(2)
t , v

(3)
t ). Furthermore, the trellis emerges from and it is terminated at the

all-zero states5. Each path of Figure 5.6 corresponds to a path of Figure 5.7 and this correspondence

is one-to-one relationship [142]. Consider an arbitrary path ẽ = {000 100 011} of Figure 5.6 (marked

with a thick line). Since the received sequence is y = {011 011 111}, the estimated transmitted code

sequence ṽ is computed as:

ṽ
(j)
t = ẽ

(j)
t ⊕ y

(j)
t . (5.18)

Hence, we have ṽ = {011 111 100}, which is a path of the trellis seen in Figure 5.7 (marked with

a thick line). We may, therefore, conclude that for every error path in the error trellis, there is a

corresponding unique path in the conventional code trellis. Either the Viterbi or the MAP algorithm

5It is assumed that termination bits are used.
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Figure 5.7: Conventional code trellis, generated using the encoder G of Figure 5.4(a), corresponding to Fig-

ure 5.6. Each path of Figure 5.6 can be mapped onto a path of the code trellis using Eq. (5.18).

can then be used for determining the most likely error ẽ for the received sequence. The estimated

error sequence is then added (bit-wise modulo 2) to the received sequence y as in Eq. (5.18), yielding

the most likely transmitted code sequence ṽ. It is then passed through the inverse encoder G−1 for

estimating the most likely information sequence ũ as follows:

ũ = ṽG−1. (5.19)

The syndrome-based error trellis of Figure 5.6 has the same complexity as the conventional code trellis

of Figure 5.7 for soft-decision decoding, which is ∼ nqkqm for CC(n, k,m) and grows exponentially

upon increasing the value of k (increasing the coding rate R). By contrast, Sidorenko et al. [131]

proposed a syndrome-based trellis, which has a lower complexity6 than the conventional trellis for both

hard-decision and soft-decision decoding. This construction is derived from the Wolf trellis of [126]

conceived for linear block codes, which was discussed in Section 5.3.1. The complexity of the resultant

trellis is ∼ nqmin(k,n−k)qm, which decreases upon increasing R for R > 1
2 and it is approximately

equivalent to that of the conventional trellis for R < 1
2 . More explicitly, Sidorenko’s method [131] of

constructing the syndrome-based trellis divides each branch of Figure 5.6 into n stages.

Let us now continue the same example as in Eq. (5.14). Recall from Section 4.4 that a convolutional

code is equivalent to a semi-infinite linear block code. For the syndrome former of Eq. (5.14), the

associated semi-infinite parity check matrix can be constructed as:

H =



















111

001 111

011 001 111

011 001 111
. . .

. . .



















, (5.20)

6The complexity of a code trellis is the number of operations (selections and additions) required to decode a block [131].
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Figure 5.8: Syndrome-based code trellis for the PCM of Eq. (5.20).

which is composed of the time-shifted versions of the basic PCM Hb given by:

Hb =







111

001

011






. (5.21)

Consequently, we can construct its syndrome-based trellis by interconnecting a series of sub-trellises

formed using the basic PCM Hb, where the number of interconnected sub-trellises is equal to the

length of the received bit stream.

Figure 5.8 shows the first sub-trellis of the syndrome-based code trellis for the PCMH of Eq. (5.20),

which has (23 = 8) states since the associated Hb has 3 rows (syndromes). The trellis of Figure 5.8 is

constructed as follows:

1. The trellis emerges from an all-zero state i.e from (0, 0, 0) at t = 0.

2. The first sub-trellis is constructed using Eq. (5.21). Here each state is labeled by three syndromes,

namely s3s2s1
7, where s1, s2 and s3 correspond to the first, second and third row of Hb. The

states at depth t are obtained from the set of states at depth (t− 1) using the relationship:

sl(t) = si(t− 1) + αjht, for j = 0, 1, . . . , (q − 1). (5.22)

Here, sl(t) is the lth node at depth t, si(t− 1) is the ith node at depth (t− 1), αj is the element

of Fq and ht is the tth column of Hb. Connecting lines are drawn between the node si(t−1) and

the two nodes at depth t and each line is labeled by the corresponding value of αj . At t = 1, we

7In Section 5.3.1, state was represented by s1s2s3. Both representations are equivalent.
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have:

s0(1) = s0(0) + α0h1

=







0

0

0






+ 0.







1

0

0







=







0

0

0






, (5.23)

s1(1) = s0(0) + α1h1

=







0

0

0






+ 1.







1

0

0







=







1

0

0






. (5.24)

Consequently, the state (000) at t = 0 is connected to states (000) and (001) at t = 1 via bits 0

and 1, respectively. At t = 2, we have:

s0(2) = s0(1) + α0h2

=







0

0

0






+ 0.







1

0

1







=







0

0

0






, (5.25)

s1(2) = s0(1) + α1h2

=







0

0

0






+ 1.







1

0

1







=







1

0

1






. (5.26)
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s2(2) = s1(1) + α0h2

=







1

0

0






+ 0.







1

0

1







=







1

0

0






, (5.27)

s3(2) = s1(1) + α1h2

=







1

0

0






+ 1.







1

0

1







=







0

0

1






. (5.28)

Consequently, the state (000) at t = 1 is connected to states (000) and (101) at t = 2 via bits 0

and 1, respectively, while the state (001) at t = 1 is connected to states (001) and (100) at t = 2

via bits 0 and 1, respectively. This process is repeated for t = 3.

3. Recall that if y is the received bit stream, then the syndrome vector s of a linear block code is

formulated as:

s = yHT . (5.29)

Since in Eq. (5.20) only the first three (n = 3) elements of the first row are non-zero, the first

element of s in Eq. (5.29), i.e. s1, is therefore only affected by the first three received bits.

Consequently, at t = 3, which marks the end of the first sub-trellis, only those paths are retained

for which the first bit of the syndrome is 0. This implies that the specific paths terminating at

states (000), (010), (100) and (110) are retained, while those ending at (001), (011), (101) and

(111) are discarded. Moreover, since the first element s1 of the syndrome s (least significant bit

of the state) is completely defined at this point, we do not have to represent this bit in the trellis

anymore. This syndrome bit is discarded, making room for the fourth syndrome bit, which is set

to 0 initially. This process of removing the least significant bit is referred to as pruning in [143].

Therefore, the trellis states are now represented by s4s3s2 and the valid states at t = 3, i.e.

(000), (010), (100) and (110), are mapped onto (000), (001), (010) and (011).

4. Step 2 is repeated to construct the second sub-trellis starting from the valid states obtained after

pruning in Step 3. The process of generating the sub-trellis and pruning for interconnecting them

is repeated until the length of trellis becomes equivalent to that of the received bit stream.

5. The resultant trellis represents all the valid codewords. The most likely valid codeword is

determined by finding the specific path having the minimum Hamming distance from the received

sequence.
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This approach can also be adapted for reducing the complexity of the syndrome-based error trellis [144].

For the error trellis, the pruning is carried out on the basis of the syndrome of the received sequence,

rather than the zero syndrome.

5.4 Block Syndrome Decoding

5.4.1 General Formalism

The syndrome associated with a received sequence depends on the specific channel conditions. More

explicitly, the syndrome is a function of the channel error sequence e encountered during transmission.

Consequently, we are more likely to have zero-valued syndromes at higher SNRs, when the channel

error sequence e has longer strings of zeros. If these error-free segments are successfully detected, then

the decoding complexity can be substantially reduced by decoding only the erroneous portions. More

explicitly, the decoder is switched off, when the transmission is assumed to be error-free, yielding the

BSD of [133, 134].

A critical design parameter for the BSD is the minimum number of consecutive zero syndromes

(Lmin) after which the sub-block is deemed to be error-free. It must be long enough to ensure that

the performance of BSD is the same as that of a full-complexity decoder. A lower value of Lmin will

result in more error-free blocks, thereby reducing the complexity imposed. However, this will increase

the likelihood of false detection, thereby degrading the BER performance of the system. On the other

hand, a higher value of Lmin will give a better BER performance, but at the expense of an increased

decoding complexity. Hence, Lmin strikes a trade-off between the BER performance attained and

the complexity imposed. The minimum number of consecutive zero syndromes Lmin can be further

split into the parameters Loff and Lon, where we have Lmin =
(

Loff + Lon + 1
)

[133], as shown in

Figure 5.9. Here, Loff denotes the number of consecutive zero syndromes after which the decoder

can be safely switched off, which therefore defines the end of the previous erroneous sub-block. By

contrast, Lon denotes the number of stages before the first non-zero syndrome, when the decoder has

to be switched on again. Therefore, the start of the next erroneous sub-block is defined by Lon. More

specifically, if L0 is the length of the sub-block having at least Lmin consecutive zero syndromes, then

the initial Loff symbols of this sub-block are appended to the previous erroneous block and the last

Lon symbols are appended to the following erroneous block. Only the remaining (L0 − Lmin + 1)

symbols are considered error-free. This ensures that the trellis of the erroneous sub-blocks starts from

and terminates at the all-zero state.

5.4.2 Block Syndrome Decoder for TTCM

Turbo Trellis-Coded Modulation (TTCM) [145] constitutes a bandwidth-efficient near-capacity joint

modulation/coding solution, which relies on the classic turbo coding architecture, but involves the
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Figure 5.9: Design parameters of BSD [133].

bandwidth-efficient Trellis-Coded Modulation (TCM) [146] instead of the constituent convolutional

codes. More explicitly, the constituent TCM codes, which can be optimally designed using EXtrinsic

Information Transfer (EXIT) charts [147], are concatenated in a parallel fashion and iterative decoding

is invoked at the receiver for exchanging extrinsic information between the pair of TCM decoders.

In order to reduce its decoding complexity, we propose to reduce the effective number of decoding

iterations by appropriately adapting the syndrome-based block decoding approach of [133, 136] for

TTCM.

5.4.2.1 System Model

Figure 5.10 shows the schematic of one of the two constituent decoders of the BSD conceived for

TTCM, which we refer to as BSD-TTCM. The received symbol sequence yt is demapped onto the

nearest point xi in the corresponding 2n-ary constellation diagram, yielding the hard-demapped sym-

bols ỹt, i.e. we have:

ỹt = argmin
i
(yt − htxi), (5.30)

for i ∈ {0, . . . , 2n − 1} and,
yt = htxt + nt. (5.31)

Here, xt is the complex-valued phasor corresponding to the n-bit transmitted codeword ct, which is

obtained using the 2n-PSK bit-to-symbol mapper µ as follows:

xt = µ (ct) , (5.32)
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Figure 5.10: Schematic of the proposed BSD-TTCM Decoder. Only one constituent decoder is shown here.

Pa
i [.], Pe

i [.] and Po
i [.] are the a-priori, extrinsic and a-posteriori probabilities related to the ith

decoder; et is the channel error on the transmitted symbol and ut is the information part of the

tth channel error et.

while ht is the uncorrelated Rayleigh-distributed fading amplitude and nt is the noise experienced by

the tth symbol.

Recall that in TTCM, the odd and even symbols are punctured for the upper and lower TCM

encoders, respectively[145]. Consequently, the parity bits of the corresponding hard-demapped punc-

tured symbols are set to zero [145] in the ‘Hard Demapper’ block of Figure 5.10. Then, a so-called

pre-correction sequence ẽt, which is predicted by the error estimation module, is used for correcting

any predicted errors in the hard-demapped output. This sequence is initialized to zero for the first

iteration. The syndrome s is computed for the corrected symbol stream r using the syndrome former

matrix HT as follows:

s = rHT , (5.33)

where, the jth bit of rt is related to that of ỹt and ẽt, for j ∈ {0, . . . , n− 1}, as follows:

r
(j)
t = ỹ

(j)
t ⊕ ẽ

(j)
t , (5.34)

with rt =
(

r
(0)
t , . . . , r

(j)
t , . . . , r

(n−1)
n

)

, ỹt =
(

ỹ
(0)
t , . . . , ỹ

(j)
t , . . . , ỹ

(n−1)
t

)

, and ẽt =
(

ẽ
(0)
t , . . . , ẽ

(j)
t , . . . , ẽ

(n−1)
t

)

.

Then the syndrome is analyzed for sake of dividing the received block into error-free and erroneous

sub-blocks. The error-free sub-blocks are then subjected to a hard-decision and only the erroneous

sub-blocks are passed to the MAP decoder. Like in the conventional TTCM decoder, both constituent

decoders have a similar structure and iterative decoding is invoked for exchanging extrinsic information

between the two.
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5.4.2.2 Syndrome-Based MAP Decoder

We have invoked the syndrome-based MAP decoder of [137] in the BSD-TTCM of Figure 5.10. In

contrast to the conventional MAP decoder, which operates on the basis of the code trellis, its syndrome-

based MAP counterpart relies on the error trellis constructed using the syndrome formerHT [127, 142].

More explicitly, each trellis path of a code trellis represents a legitimate codeword. By contrast, each

path of an error trellis specifies the hypothetical error sequence causing a departure from a specific

legitimate code trellis path. Furthermore, both trellises have the same complexity and every error

path in the error trellis uniquely corresponds to a codeword path in the code trellis [142]. The

classic MAP algorithm [125] computes the A-Posteriori Probability (APP) Po(ut) for every M -ary

transmitted information symbol ut given by Po(ut) = P(ut = m|yt) for m ∈ {0, 1, . . . ,M − 1}, where
M = 2n−1, (n − 1) is the number of bits in an information symbol and R = n−1

n is the coding rate.

However, the syndrome-based MAP computes the APP for every M -ary channel error experienced by

the information symbol. In other words, ut is the transmitted information symbol in the code trellis,

whereas, in the error trellis, ut denotes theM -ary channel error experienced by the information symbol.

Therefore, the channel information P(yt|xt) related to the transmitted codeword xt, is modified to

P(yt|et) for the channel error et, which is formulated as:

P(yt|et) =
1

2πσ2
. e−

|yt−htx̃t|2
2σ2 , (5.35)

where σ2 is the noise variance per dimension and x̃t is given by:

x̃t = µ (c̃t) , (5.36)

for,

c̃
(j)
t = ỹ

(j)
t ⊕ e

(j)
t . (5.37)

Here, we have c̃t =
(

c̃
(0)
t , . . . , c̃

(j)
t , . . . , c̃

(n)
t

)

and et =
(

e
(0)
t , . . . , e

(j)
t , . . . , e

(n)
t

)

. The APP of ut can be

calculated in terms of the forward-backward recursive coefficients αt and βt as follows:

Po(ut) =
∑

(τ̂ ,τ)⇒
ut=m

γt(τ̂ , τ) . αt−1(τ̂) . βt(τ), (5.38)

where the summation implies adding all the probabilities associated with those transitions (from state

τ̂ to τ) of the error trellis for which ut = m. Furthermore, we have:

γt(τ̂ , τ) = Pa(ut) . P(yt|et),
αt(τ) =

∑

all τ̂

γt(τ̂ , τ) . αt−1(τ̂ ),

βt−1(τ̂ ) =
∑

all τ

γt(τ̂ , τ) . βt(τ), (5.39)

where Pa(ut) is the a-priori probability of the information part of the error et, i.e. ut. At the

first iteration, no a-priori information is available; hence, it is initialized to be equiprobable, i.e.

Pa(ut) = 1/M .
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Figure 5.11: Variation in the number of differences (δe) between the actual and estimated error and Hamming

weight (wh) of the syndrome with increasing iterations at Eb/N0 = 3.8 dB.

5.4.2.3 Error Estimation

Similar to the bit-wise pre-correction sequence proposed in [136] for turbo codes, we make an estimate

of the 2n-ary symbol error in each iteration to ensure that the Hamming weight of the syndrome

decreases with ongoing iterations. While the extrinsic information was used in [136] for the estimating

the pre-correction sequence, we have improved the estimation by using the APP instead of the extrinsic.

This proceeds as follows:

� The information part of the pre-correction sequence ẽt is set to the hard decision of the APP of

the information symbol (Po(ut)) computed by the other decoder.

� The parity part of ẽt is set to the hard decision value of the APP of the codeword (Po(et)) gleaned

from the previous iteration of the same decoder, which yields the same information symbol as

that computed in the first step.

Figure 5.11 verifies the accuracy of our pre-correction sequence. Here the average number of differences

δe, between the actual and estimated error, is plotted against the number of iterations at an SNR per

bit of Eb/N0 = 3.8 dB, for 1000 frames of 12000 TTCM-8PSK symbols transmitted over an AWGN

channel. Both constituent decoders are characterized separately, which are referred to as Dec 1 and

Dec 2 in Figure 5.11. Observe that the differences decrease at each successive iteration, eventually

reaching zero at the 6th iteration. Furthermore, the Hamming weight wh of the syndrome closely

follows the same trend.
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5.4.2.4 Syndrome-based Blocking

The Hamming weight of the syndrome sequence of Eq. (5.33) decreases at higher SNRs, since only a

few errors are encountered. It also decreases with each successive iteration. This is because the errors

are estimated at each iteration and the corresponding correction is applied to the received symbols. In

other words, upon increasing the number of iterations or SNR, the syndrome exhibits longer sequences

of zeros, which indicates error-free transmission. This fact can be exploited to partition the received

block into error-free and erroneous segments, as proposed in [133, 136]. This is achieved by heuristically

choosing a design parameter, Lmin = (Lstart + Lend + 1), which is the minimum number of consecutive

zero syndromes after which the sub-block may be deemed error-free. Furthermore, Lstart and Lend

define the start and end of the next and previous sub-blocks, respectively. If L0 is the length of the sub-

block having at least Lmin consecutive zero syndromes, then the initial Lend = (Lmin − 1)/2 symbols

of this sub-block are appended to the previous erroneous block and the last Lstart = (Lmin − 1)/2

symbols are appended to the following erroneous block [133, 136]. Only the remaining (L0−Lmin+1)

symbols are considered error-free. This ensures that the trellis of the erroneous sub-blocks starts from

and terminates at the zero state. The hypothetical error-free blocks do not undergo further decoding

and the corresponding APPs of the error-free trellis segment are set to 1. On the other hand, the

erroneous blocks are fed to a MAP decoder with the initial and final states of the decoding trellis set

to zero.

It must be mentioned here that the design parameter Lmin strikes a trade-off between the BER

performance attained and the complexity imposed. A lower value of Lmin will result in more error-free

blocks, thereby reducing the complexity imposed. However, it will degrade the BER performance of

the system. On the other hand, a higher value of Lmin will give a better BER performance but at the

expense of an increased decoding complexity.

5.5 Results and Discussions

5.5.1 Performance of BSD-TTCM over AWGN Channel

In order to quantify the reduction in decoding complexity achieved with the proposed BSD-TTCM, we

have analyzed the performance of TTCM over an AWGN channel using the parameters of Table 5.1.

Furthermore, we have heuristically optimized the design parameter Lmin while ensuring that the BSD-

TTCM yields the same BER as the conventional TTCM decoder. Since the Hamming weight of the

syndrome decreases with the SNR, the optimum Lmin has to increase with the SNR to ensure that

the performance is not compromised. We have particularly focused our attention on the high-SNR

region (i.e. Eb/N0 ≥ 3.5) and the Lmin value was appropriately optimized for every 0.1 dB increment

in Eb/N0, as listed in Table 5.2. It must be mentioned here that the optimum Lmin for a particular

value of Eb/N0 depends on the code parameters of Table 5.1 as well as on the channel type. The
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Coding Rate 2/3

Modulation PSK

Interleaver length 12, 000

Iterations 6

Table 5.1: TTCM parameters.

SNR Range Lmin

Eb/N0 ≤ 3.5 dB 51

3.5 < Eb/N0 ≤ 3.6 dB 111

3.6 < Eb/N0 ≤ 3.7 dB 401

3.7 < Eb/N0 ≤ 3.8 dB 3001

3.8 < Eb/N0 ≤ 3.9 dB 5001

Table 5.2: Optimum Lmin for the TTCM of Table 5.1 operating over an AWGN channel.

BER performance of our BSD-TTCM based on the design parameter Lmin of Table 5.2 is compared

to that of the conventional TTCM decoder in Figure 5.12. Both decoding schemes exhibit a similar

performance. The corresponding reduction in the decoding complexity is quantified in Figure 5.13

and Figure 5.14 in terms of:

� Percentage of No-Decoding: This quantifies the total number of symbols in the error-free

sub-blocks as a percentage of the frame length (i.e. 12000).

� Equivalent number of iterations: Each iteration is weighted by the percentage of the symbols

that had to be decoded, which quantified the equivalent (or effective) number of iterations.

In Figure 5.13, as Eb/N0 is increased from 3.0 dB to 3.5 dB for Lmin = 51, the percentage of non-

decoded symbols for each iteration increases, reaching a maximum of 45% for the 6th iteration at 3.5

dB. When we further increase the Lmin to 111 at 3.6 dB, the percentage of non-decoded symbols in

iterations 2 to 5 decreases, while that in the 6th increases. This is because at this point there are two

counter-acting forces:

1. An increased Lmin would reduce the number of error-free blocks.

2. An increased Eb/N0 would decrease the Hamming weight of the syndrome sequence and, there-

fore, increase the number of error-free blocks.
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Figure 5.12: Comparison of the BER performance curve of BSD-TTCM with the conventional TTCM decod-

ing over an AWGN channel. The corresponding TTCM parameters are summarized in Table 5.1,

while the optimized Lmin are listed in Table 5.2.

A similar trend is observed, when Eb/N0 is increased further. Particularly, at high SNRs, at least a

20% complexity reduction is achieved for the 5th iteration and 45% for the 6th iteration.

Figure 5.14 quantifies the decoding complexity in terms of the equivalent number of decoding

iterations. We may observe in Figure 5.14 that increasing the Eb/N0 from 3.0 dB to 3.5 dB for

Lmin = 51, reduces the number of effective iterations to a minimum of 4.8 at 3.5 dB. This is equivalent

to a (100 × (6 − 4.8)/6) = 20% reduction in the number of decoding iterations. Then, when Lmin is

increased to 111 at 3.6 dB, the number of equivalent iterations increases to 5. This corresponds to a

reduction of (100 × (6 − 5)/6) ≈ 17% compared to the maximum of 6 iterations and it is therefore

still significant. On average our proposed scheme reduces the effective number of iterations by at

least one, i.e. by 17%, for high SNRs. We have also benchmarked the performance of our proposed

BSD-TTCM decoder against the conventional hard-decision aided high-SNR Early Termination (ET)

criterion of [136] in Figure 5.14. Our proposed scheme outperforms ET by at least 0.5 iteration at

high SNRs. The complexity may be further reduced by increasing Lmin. However, as discussed before,

this will incur a BER performance degradation.

5.5.2 Performance of BSD-TTCM over Uncorrelated Rayleigh Fading Channel

We have further investigated the performance of BSD-TTCM in the event of uncorrelated Rayleigh

fading channel for the code parameters of Table 5.1. The corresponding optimum design parame-

ter Lmin for increasing SNRs in the high-SNR region (i.e. Eb/N0 ≥ 6.2) are listed in Table 5.3.
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Figure 5.13: Reduction in decoding complexity of the BSD-TTCM of Figure 5.12, quantified in terms of the

‘percentage of no-decoding’.
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SNR Range Lmin

Eb/N0 ≤ 6.2 dB 61

6.2 < Eb/N0 ≤ 6.6 dB 101

6.6 < Eb/N0 ≤ 7.0 dB 301

7.0 < Eb/N0 ≤ 7.4 dB 1201

7.4 < Eb/N0 ≤ 7.8 dB 4001

Table 5.3: Optimum Lmin for the TTCM of Table 5.1 operating over an uncorrelated Rayleigh fading channel.

Figure 5.15 compares the resulting BER performance of the proposed BSD-TTCM with that of the

conventional TTCM. As seen from Figure 5.15, syndrome-based blocking does not incur any signif-

icant BER degradation and that both decoding schemes exhibit a similar BER performance. The

corresponding reduction in the decoding complexity is quantified in Figure 5.16 and Figure 5.17 in

terms of the ‘percentage of no-decoding’ and ‘equivalent number of iterations’, respectively.

In Figure 5.16, as Eb/N0 is increased from 5.0 dB to 6.2 dB for Lmin = 61 , the percentage of

non-decoded symbols for each iteration increases, reaching about 30% for the 6th iteration at 6.2 dB.

As Eb/N0 is increased further, the percentage of non-decoded symbols decreases during iterations 2

to 4, while it increases in iterations 5 and 6. This behaviour is similar to that observed in Figure 5.13.

We may also notice in Figure 5.16 that, in the high-SNR region, at least a 20% complexity reduction

is achieved for the 5th iteration and 30% for the 6th. By contrast, at least 20% and 45% complexity

reduction was achieved for the 5th and the 6th iteration for transmission over the AWGN channel in

Figure 5.13.

Figure 5.17 plots the corresponding decoding complexity in terms of the effective number of iter-

ations. Increasing the Eb/N0 from 5.0 dB to 6.2 dB for Lmin = 61 reduces the number of effective

iterations to a minimum of 5.27 at 6.2 dB. This is equivalent to a (100 × (6 − 5.27)/6) ≈ 12% re-

duction in the number of decoding iterations. Thereafter the number of effective iterations more or

less remain the same. Hence, BSD-TTCM yields a decoding complexity reduction of around 12% in

the high-SNR region, when operating in the uncorrelated Rayleigh fading channel, which is slightly

less than the 17% reduction observed for the AWGN channel in Figure 5.13. Based on these results,

it is reasonable to conclude that the decoding complexity of BSD-TTCM is only slightly higher in

an uncorrelated Rayleigh fading channel than in an AWGN channel, but the attainable complexity

savings are still quite significant. In Figure 5.17, we have also benchmarked the performance of our

proposed BSD-TTCM decoder against the conventional hard-decision aided ET criterion of [136]. We

may observe in the Figure 5.17 that BSD-TTCM outperforms ET for all SNRs.
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Figure 5.15: Comparison of the BER performance curve of BSD-TTCM with the conventional TTCM de-

coding over an uncorrelated Rayleigh fading channel. The corresponding TTCM parameters are

summarized in Table 5.1, while the optimized Lmin are listed in Table 5.3.
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Figure 5.16: Reduction in decoding complexity of the BSD-TTCM of Figure 5.15, quantified in terms of the

‘percentage of no-decoding’.
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Figure 5.17: Reduction in decoding complexity of the BSD-TTCM of Figure 5.15, quantified in terms of the

‘equivalent number of iterations’.

SNR Range Lmin

Eb/N0 ≤ 6.6 dB 61

6.6 < Eb/N0 ≤ 7.0 dB 201

7.0 < Eb/N0 ≤ 7.4 dB 281

7.4 < Eb/N0 ≤ 7.8 dB 321

Table 5.4: Optimum Lmin for varying Eb/N0 over uncorrelated Rayleigh fading channel using a frame of 500

symbols. Other TTCM parameters are same as that of Table 5.1.

5.5.3 Effect of Frame Length on the Performance of BSD-TTCM

The high-SNR ET scheme, which we have used in Section 5.5.1 and 5.5.2 as a benchmarker, offers

higher reductions in the decoding complexity when shorter frames are used. Intuitively, shorter frames

also improve the effective decoding complexity reduction of the BSD approach. Hence, BSD-TTCM

is likely to outperform ET even for short frames. For the sake of substantiating our claim, we have

analyzed the performance of the 8-state TTCM relying on 8PSK transmissions over an uncorrelated

Rayleigh fading channel using a frame length of 500 TTCM-8PSK symbols and 6 iterations. The

corresponding SNR-based Lmin values are listed in Table 5.4.

The design parameter Lmin of Table 5.4 is heuristically optimized for a particular Eb/N0 range,

while ensuring that the BER performance curve of the resultant BSD-TTCM scheme is the same as

that of the conventional TTCM, which is demonstrated in Figure 5.18. The corresponding decoding
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Figure 5.18: Comparison of the BER performance curve of BSD-TTCM with the conventional TTCM decod-

ing over an uncorrelated Rayleigh fading channel using the TTCM parameters of Table 5.1 but

with a reduced frame length of 500. The corresponding optimized Lmin are listed in Table 5.3.

complexity is analyzed in Figure 5.19 and Figure 5.20. Reducing the frame length from 12, 000 to

500 symbols increases the percentage of non-decoded symbols at each iteration, as we can observed

by comparing Figure 5.19 with Figure 5.13. Consequently, BSD-TTCM still out performs the ET

technique, as shown in Figure 5.20.

5.6 Summary and Conclusions

Since quantum codes invoke the classical syndrome decoding based approach, as illustrated in Fig-

ure 5.1, in this chapter we discussed these decoding techniques operating over a classical channel.

Unlike the widely used codeword decoding, which aims for identifying the most likely codeword, syn-

drome decoding characterizes the most likely channel error sequence. In this context, we commenced

our discussions with the LUT-based syndrome decoding in Section 5.2, detailing the motivation behind

the LUT-based syndrome decoding approach invoked for classical linear block codes. More specifi-

cally, it was demonstrated with the aid of a design example that the standard array-based codeword

decoding imposes high storage requirements for long block codes. Fortunately, the same task may be

achieved with the aid of an LUT-based decoder, which only requires a memory of size 2n−k × 2, as

depicted in Eq. (5.2), while the corresponding standard array of Eq. (5.1) has a size of 2n−k × 2k. We

then proceeded with the construction of the error trellis of linear block codes and of convolutional

codes in Sections 5.3.1 and 5.3.2, respectively. It was shown in Figure 5.6 and Figure 5.7 that the

conventional code trellis and the syndrome-based error trellis are equivalent. More explicitly, each
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Figure 5.19: Reduction in decoding complexity of the BSD-TTCM of Figure 5.18, quantified in terms of the

‘percentage of no-decoding’.
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SNR No-Decoding Reduction w.r.t. Reference

Channel Range I = 5 I = 6 Iavg Early Termination Figures

AWGN ≥ 3.5 ≥ 20% ≥ 45% ≤ 5 ≥ 0.5 iteration Figure 5.13 and

Figure 5.14

Rayleigh ≥ 6.2 ≥ 20% ≥ 30% ≤ 5.3 ≥ 0.5 iteration Figure 5.16 and

Figure 5.17

Table 5.5: Summary of the achieved decoding complexity reduction, when BSD-TTCM is invoked using the

simulation parameters of Table 5.1. Decoding complexity is quantified in terms of the percentage

of no-decoding as well as the equivalent number of iterations Iavg. Complexity reduction is also

compared with the high-SNR early termination technique.

path of a code trellis corresponds to a legitimate codeword, while each path of an error trellis is a

legitimate error sequence for a given syndrome. When the syndrome is zero, the error trellis collapses

to a code trellis. Finally, in Section 5.4, we laid out the reduced-complexity BSD approach. In par-

ticular, we conceived a syndrome-based block decoding approach for TTCM in Section 5.4.2. The

proposed BSD-TTCM only decodes the blocks deemed to be erroneous, which are identified using the

syndrome sequence, hence reducing the asscoiated decoding complexity. Furthermore, a pre-correction

sequence is estimated at each iteration for reducing the decoding complexity of the forthcoming itera-

tions. Finally, we evaluated the performance of our proposed BSD-TTCM for transmission over both

an AWGN channel as well as an uncorrelated Rayleigh fading channel in Section 5.5.

In Section 5.5.1, we compared the BER performance of the proposed BSD-TTCM to that of the

classic full-complexity TTCM decoder for transmission over an AWGN channel. It was demonstrated

in Figure 5.12 that the design parameter Lmin may be heuristically optimized upon increasing SNR

values for the sake of achieving the same BER performance as that of a classic TTCM decoder.

We further quantified the achieved complexity reductions in terms of the percentage of non-decoded

blocks at each iteration index as well as the number of effective decoding iterations in Figure 5.13 and

Figure 5.14, respectively. Quantitatively, we demonstrated in Figure 5.13 that a decoding complexity

reduction of at least 17% is attained at high SNRs in terms of the effective number of iterations, with

at least 20% and 45% reduction in the 5th and 6th iterations, respectively, for transmission over an

AWGN channel. It was also shown in Figure 5.14 that our proposed reduced-complexity technique

outperforms the ET scheme at all SNRs, yielding at least a reduction of 0.5 iteration in the high-SNR

regime. These results are summarized in Table 5.58.

We further extended our analysis to the performance of BSD-TTCM over an uncorrelated Rayleigh

fading channel in Section 5.5.2. Analogously to the AWGN channel, the design parameter Lmin was

optimized upon increasing SNR, so that the BSD-TTCM exhibits the same performance as that of a

classic decoder, as evidenced in Figure 5.15. It was observed in Figure 5.16 and Figure 5.17 and that

8‘With respect to’ is abbreviated as ‘w.r.t.’ in Table 5.5.



the BSD approach offers a slightly less reduction in complexity for transmission over the uncorrelated

Rayleigh fading channel than that offered over the AWGN channel. More specifically, the decoding

complexity reduction for transmission over a Rayleigh fading channel in Figure 5.16 was found to be

about 12% in the high-SNR region, with at least 20% and 30% reduction in the 5th and 6th iterations,

respectively. In Section 5.5.3, we furthermore evaluated the performance of our BSD-TTCM scheme

for a short frame length of 500 symbols. It was observed in Figure 5.20 that BSD-TTCM outperforms

the frequently used ET technique, regardless of the frame length. These results are also tabulated in

Table 5.5.

The classical-quantum communication system, which we conceived in Chapter 3, supports only

the transmission of classical information. By contrast, quantum communication systems may transmit

classical as well as quantum information. This in turn requires efficient Quantum Error Correction

Codes (QECCs). QECCs are also vital for reliable quantum computation. In the next chapter, we will

proceed with the design of QECCs, which is based on the classical to quantum transition of Chapter 4

and the classical syndrome decoding approach of Chapter 5.



Chapter 6
EXIT-Chart Aided Hashing Bound

Approaching Concatenated Quantum Codes

6.1 Introduction

I
n Chapter 3, we conceived a classical-quantum communication system, relying on near-capacity

classical code designs. The designs of Chapter 3 are restricted to the transmission of classical

information. By contrast, a more general quantum communication system may transmit both

classical as well as quantum information, which in turn requires efficient Quantum Error Correction

Codes (QECCs). QECCs are also indispensable for reliable quantum computation. In this spirit, in

Chapter 4, we presented the methodology of constructing QECCs from known classical codes, while

the associated classical syndrome decoding techniques were discussed in Chapter 5. Pursuing further

the design of QECCs, in this chapter we aim for designing Hashing bound approaching QECCs, based

on the foundation laid down in Chapters 4 and 5.

Similar to the family of classical error correction codes [124, 68], which aim for operating close to

Shannon’s capacity limit, QECCs are designed to approach the quantum capacity [148, 149, 150], or

more specifically the Hashing bound, which is a lower bound of the achievable quantum capacity. A

significant amount of work has been carried out over the last few decades to achieve this objective.

However, the field of QECCs is still not as mature as that of their classical counterparts. Recently,

inspired by the family of classical near-capacity concatenated codes, which rely on iterative decoding

schemes, e.g. [151, 116], substantial efforts have been invested in [55, 88] to construct comparable con-

catenated quantum codes, which we refer to as serially concatenated Quantum Turbo Codes (QTCs).

In this context, the search for the optimal components of a QTC has been so far confined to the analysis

of the distance spectra of the constituent Quantum Convolutional Codes (QCCs), followed by intensive

Monte-Carlo simulations for determining the convergence threshold of the resultant QTC, as detailed

121
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in [55, 88]. While the distance spectrum dominates a turbo code’s performance in the Bit Error Rate

(BER) floor region, it has a relatively insignificant impact on the convergence properties in the low

Signal-to-Noise Ratio (SNR) turbo-cliff region [116]. Therefore, having a good distance spectrum does

not guarantee having a near-capacity performance - in fact, often there is a trade-off between them.

To circumvent this problem and to dispense with time-consuming Monte-Carlo simulations, we extend

the application of EXtrinsic Information Transfer (EXIT) charts to the design of QTCs. More specif-

ically, in the light of the increasing interest in conceiving Hashing bound approaching concatenated

quantum code design principles, the novel contributions of this chapter are [4, 3]:

� We have appropriately adapted the conventional non-binary EXIT chart based design approach

to the family of QTCs based on the underlying quantum-to-classical isomorphism of Chapter 4.

We have analyzed the behaviour of both an unassisted (non-recursive) and of an entanglement-

assisted (recursive) inner convolutional code using EXIT charts for demonstrating that, similar

to their classical counterparts, recursive inner quantum codes constitute families of QTCs having

an unbounded minimum distance1. We have further optimized the constituent inner and outer

components of the concatenated structure using EXIT charts for the sake of approaching the

Hashing bound.

� We have conceived a generically applicable structure for Quantum Irregular Convolutional Codes

(QIRCCs), which can be dynamically adapted to a specific application scenario for the sake

of facilitating a Hashing bound approaching performance. We also provide a detailed design

example by constructing a 10-subcode QIRCC and use it as an outer code in a concatenated

structure for evaluating its performance.

This chapter is organized as follows. We commence by outlining our design objectives in Section 6.2.

We then present the circuit-based representation of QCCs in Section 6.3, which is essential for un-

derstanding the iterative decoding procedure employed by concatenated quantum codes. Then, the

system model of a quantum communication system relying on concatenated quantum codes is laid

out in Section 6.4.1, followed by the associated degenerate decoding algorithm in Section 6.4.2. We

present our proposed EXIT-chart aided near-capacity quantum code design in Section 6.5, followed

by our simulation results in Section 6.6. We then proceed with our proposed QIRCC in Section 6.7,

whose performance is recorded in Section 6.8. Finally, our conclusions are offered in Section 6.9.

6.2 Design Objectives

An ideal code C designed for a quantum depolarizing channel may be characterized in terms of the

channel’s depolarizing probability p and its coding rate RQ. Here the coding rate RQ is measured

1The unbounded minimum distance of a code implies that its minimum distance increases almost linearly with the

interleaver length.
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in terms of the number of information qubits transmitted per channel use, i.e. we have RQ = k/n,

where k and n are the lengths of the information word and codeword, respectively. Analogously to

Shannon’s classical capacity, the relationship between p and RQ for the depolarizing channel is defined

by the Hashing bound, which sets a lower limit on the achievable quantum capacity2. The Hashing

bound is given by [37, 88]:

CQ(p) = 1−H2(p)− p log2(3), (6.1)

where H2(p) is the binary entropy function. More explicitly, for a given p, if a random code C of a

sufficiently long codeword-length is chosen such that its coding rate obeys RQ ≤ CQ(p), then C may

yield an infinitesimally low QuBit Error Rate (QBER) for a depolarizing probability of p. It must be

noted here that intuitively a low QBER corresponds to a high fidelity between the transmitted and

the decoded quantum state. More explicitly, for a given value of p, CQ(p) gives the Hashing limit on

the coding rate. Alternatively, for a given coding rate RQ, where we have RQ = CQ(p
∗), p∗ gives the

Hashing limit on the channel’s depolarizing probability. In duality to the classical domain, this may

also be referred to as the noise limit. An ideal quantum code should be capable of ensuring reliable

transmission close to the noise limit p∗. Furthermore, for any arbitrary depolarizing probability p, its

discrepancy with respect to the noise limit p∗ may be computed in decibels (dB) as follows [88]:

Distance from Hashing bound , 10× log10

(

p∗

p

)

. (6.2)

Consequently, our quantum code design objective is to minimize the discrepancy with respect to the

Hashing bound, thereby yielding a Hashing bound approaching code design.

It is pertinent to recall here the Entanglement-Assisted (EA) regime discussed in Section 4.5,

where the EA code C is characterized by an additional parameter c. Here c is the number of entan-

gled qubits pre-shared between the transmitter and the receiver, thus leading to the terminology of

being entanglement-assisted3. It is assumed furthermore that these pre-shared entangled qubits are

transmitted over a noiseless quantum channel. The resultant EA Hashing bound is given by [88, 154]:

CQ(p) = 1−H2(p)− p log2(3) + E, (6.3)

where the so-called entanglement consumption rate is E = c
n . Furthermore, the value of c may be

varied from 0 to a maximum of (n− k). For the family of maximally entangled codes associated with

c = (n− k), the EA Hashing bound of Eq. (6.3) is reduced to [88, 154]:

CQ(p) = 1− H2(p)− p log2(3)
2

. (6.4)

Therefore, the resultant Hashing region of the EA communication is bounded by Eq. (6.1) and

Eq. (6.4), which is also illustrated in Figure 6.1. To elaborate a little further, let us assume that

2Recall from Section 4.3.3 that quantum codes are inherently degenerate in nature because different errors may have

the same impact on the quantum state. Due to this degenerate nature, the ultimate capacity of a quantum channel can

be higher than that defined by the Hashing bound [152, 153]. However, none of the codes known to date outperform the

Hashing bound at practically feasible frame lengths.
3A quantum code without pre-shared entanglement, i.e. c = 0, may be termed as an unassisted quantum code.
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Figure 6.1: Unassisted and EA Hashing bounds characterized by Eq. (6.1) and Eq. (6.4), respectively, for the

quantum depolarizing channel. The region enclosed by these two bounds, which is labeled the

Hashing region, defines the capacity for varying number of pre-shared entangled qubits (c). At

RQ = 0.4, the unassisted Hashing bound gives a noise limit of p∗ = 0.095, while the maximally

entangled Hashing bound increases the limit to p∗ = 0.25. The circle represents a maximally

entangled code with RQ = 0.4, which ensures reliable transmission for p ≤ 0.15, thus operating at

a distance of 2 dB from the noise limit.

the desired coding rate is RQ = 0.4. Then, as gleaned from Figure 6.1, the noise limit for the ‘unas-

sisted’ quantum code is around p∗ = 0.095, which increases to around p∗ = 0.25 with the aid of

maximum entanglement, i.e. we have E = 1 − RQ = 0.6. Furthermore, 0 < E < 0.6 will result in

bearing noise limits in the range of 0.095 < p∗ < 0.25. Let us assume furthermore that we design

a maximally entangled code C for RQ = 0.4, so that it ensures reliable transmission for p ≤ 0.15.

Based on Eq. (6.2), the performance of this code (marked with a circle in Figure 6.1) is around

[10× log 10(0.250.15 )] = 2 dB away from the noise limit. We may approach the noise limit more closely by

optimizing a range of conflicting design challenges, which are illustrated in the stylized representation

of Figure 6.2. For example, we may achieve a lower QBER by increasing the code length. However,

this in turn incurs longer delays. Alternatively, we may resort to more complex code designs for re-

ducing the QBER, which may also be reduced by employing codes having lower coding rates or higher

entanglement consumption rates, thus requiring more transmitted qubits or entangled qubits. Hence

striking an appropriate compromise, which meets these conflicting design challenges, is required.
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Figure 6.2: Stylized illustration of the conflicting design challenges, which are involved in the design of quan-

tum codes.

6.3 Circuit-Based Representation of Stabilizer Codes

Circuit-based representation of quantum codes facilitates the design of concatenated code structures.

More specifically, for decoding concatenated quantum codes it is more convenient to exploit the circuit-

based representation of the constituent codes, rather than the conventional trellis-based syndrome

decoding. Therefore, in this section, we will review the circuit-based representation of quantum codes.

This discussion is based on [55].

Let us recall from Section 5.3.1 that an (n, k) classical linear block code constructed over the

code space C maps the information word x ∈ F
k
2 onto the corresponding codeword x ∈ F

n
2 . In the

circuit-based representation, this encoding procedure can be encapsulated as follows:

C = {x = (x : 0n−k)V }, (6.5)

where V is an (n × n)-element invertible encoding matrix over F2 and 0n−k is an (n − k)-bit vector

initialized to 0. Furthermore, given the generator matrix G and the Parity Check Matrix (PCM) H,

the encoding matrix V may be specified as:

V =

(

G
(

H−1
)T

)

, (6.6)

and its inverse is given by:

V −1 =
(

G−1 HT
)

. (6.7)

The encoding matrix V specifies both the code space as well as the encoding operation, while its

inverse V −1 specifies the error syndrome. More specifically, let y = x + e be the received codeword,
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V −1
l

s
e

Figure 6.3: Circuit representation of the inverse encoder eV −1 = (l : s).

where e is the n-bit error incurred during transmission. Then, passing the received codeword y through

the inverse encoder V −1 yields:

yV −1 = (x̃ : s) , (6.8)

where x̃ = x + l for the logical error l ∈ F
k
2 inflicted on the information word x and s ∈ F

n−k
2 is the

syndrome, which is equivalent to yHT . Eq. (6.8) may be further decomposed to:

(x+ e)V −1 = (x+ l : s) ,

xV −1 + eV −1 = (x : 0n−k) + (l : s) , (6.9)

which is a linear superposition of the inverse of Eq. (6.5) and eV −1 = (l : s). Hence, the inverse

encoder V −1 decomposes the channel error e into the logical error l and error syndrome s, which is

also depicted in Figure 6.3.

Analogously to Eq. (6.5), the unitary encoding operation V of an [n, k] QSC, constructed over a

code space C, which maps the information word (logical qubits) |ψ〉 ∈ C
2k onto the codeword (physical

qubits) |ψ〉 ∈ C
2n , may be mathematically encapsulated as follows:

C = {|ψ〉 = V(|ψ〉 ⊗ |0n−k〉)}, (6.10)

where |0n−k〉 are (n−k) auxiliary qubits initialized to the state |0〉. The unitary encoder V of Eq. (6.10)

carries out an n-qubit Clifford transformation, which maps an n-qubit Pauli group Gn onto itself under

conjugation [155], i.e. we have:

VGnV† = Gn. (6.11)

In other word, a Clifford operation preserves the elements of the Pauli group under conjugation such

that for P ∈ Gn, VPV† ∈ Gn. Furthermore, any Clifford unitary matrix is completely specified by a

combination of Hadamard (H) gates, phase (S) gates and controlled-NOT (C-NOT) gates, which are
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defined as follows4 [18]:

H =
1√
2

(

1 1

1 −1

)

, S =

(

1 0

0 i

)

,

C-NOT =













1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0













. (6.12)

Hadamard gate preserves the elements of a single-qubit Pauli group G1 under conjugation as follows:

X→ HXH† = Z,

Z→ HZH† = X,

Y → HYH† = −Y, (6.13)

while phase gate preserves them under conjugation as:

X→ SXS† = Y,

Z→ SZS† = Z,

Y → SYS† = −X, (6.14)

The C-NOT gate of Eq. (6.12) is a 2-qubit gate, where the first qubit is the control qubit, while the

second is the target. Since C-NOT is a 2-qubit gate, it acts on the elements of G2, transforming the

standard basis of G2 under conjugation as given below:

X⊗ I→ X⊗X,

I⊗X→ I⊗X,

Z⊗ I→ Z⊗ I,

I⊗ Z→ Z⊗ Z. (6.15)

Let us further emphasize on the significance of Clifford encoding operation. Since V belongs to the

Clifford group, it preserves the elements of the stabilizer group H under conjugation. If g′i is the ith

stabilizer of the unencoded state |ψ〉, then this may be proved as follows:

|ψ〉 ⊗ |0n−k〉 = g′i (|ψ〉 ⊗ |0n−k〉) . (6.16)

Encoding |ψ〉 with V yields:

V (|ψ〉 ⊗ |0n−k〉) = V
(

g′i (|ψ〉 ⊗ |0n−k〉)
)

, (6.17)

which is equivalent to:

V (|ψ〉 ⊗ |0n−k〉) = V
(

g′iV†V (|ψ〉 ⊗ |0n−k〉)
)

, (6.18)

4The standard gates invoked here may not be optimum. There is no evidence in literature pertaining to the optimality

of these gates.
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since V†V = In. Substituting Eq. (6.10) into Eq. (6.18) gives:

|ψ〉 =
(

Vg′iV†
)

|ψ〉. (6.19)

Hence, the encoded state |ψ〉 is stabilized by gi = Vg′iV†. From this it appears as if any arbitrary

V (not necessarily Clifford) can be used to preserve the stabilizer subspace, which is not true. Since

we assume that the stabilizer group H is a subgroup of the Pauli group, we impose the additional

constraint that V must yield the elements of Pauli group under conjugation as in Eq. (6.11), which is

only true for Clifford operations.

Furthermore, the Clifford encoding operation also preserves the commutativity relation of stabiliz-

ers. Let g′i and g′j be a pair of unencoded stabilizers. Then the above statement can be proved as

follows:

gigj =
(

Vg′iV†
)(

Vg′jV†
)

= Vg′ig′jV†. (6.20)

Since g′i and g
′
j commute, we have:

Vg′ig′jV† = Vg′jg′iV†. (6.21)

Using V†V = In, gives:

Vg′jV†Vg′iV†. = gjgi. (6.22)

Since the n-qubit Pauli group forms a basis for the (2n × 2n)-element matrices of Eq. (6.12), the

Clifford encoder V, which acts on the 2n-dimensional Hilbert space, can be completely defined by

specifying its action under conjugation on the Pauli-X and Z operators acting on each of the n qubits,

as seen in Eq. (6.13) to (6.15). However, V and V ′, which differ only through a global phase such

that V ′ = ejθV, have the same impact under conjugation. Therefore, global phase has no physical

significance in the context of Eq. (6.11) and the n-qubit encoder V can be completely specified by its

action on the binary equivalent of the Pauli operators. More specifically, the n-qubit encoder V maps

P ∈ Gn to P ′ ∈ Gn as follows:

P ′ = VPV†, (6.23)

which is equivalent to mapping the equivalent 2n-bit vector P = [P] onto P ′ = [P ′], where [.] denotes

the effective Pauli group Gn such that P = [P] differs from P by a multiplicative constant, i.e. we

have P = P/{±1,±i}, and the elements of Gn are represented by 2n-tuple binary vectors based on

the mapping given in Eq. (4.29). Consequently, Eq. (6.23) can be re-written as:

P ′ = [P ′] = [VPV†]. (6.24)

Since the effective mapping of Eq. (6.24) is binary, i.e. P → P ′, we may characterize it in terms of an

equivalent (2n× 2n)-element binary matrix V , which is defined as follows:

P ′ = [VPV†] = [P]V = PV. (6.25)

Furthermore, since the Clifford transformation V preserves the commutativity relationship, the asso-

ciated binary matrix V is always a symplectic matrix [55]. As a consequence of this equivalence, any
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Clifford unitary can be efficiently simulated on a classical system as stated by the Gottesman-Knill

theorem [156].

We next define V by specifying its action on the elements of the Pauli group Gn. More pre-

cisely, we consider 2n n-qubit unencoded operators Zi,Xi, . . . , Zn,Xn, where Zi and Xi represents

the Pauli Z and X operator, respectively, acting on the ith qubit and the identity I on all other

qubits. The unencoded operators Zk+1, . . . , Zn stabilizes the unencoded state of Eq. (6.10), i.e.

(|ψ〉 ⊗ |0n−k〉), and are therefore called the unencoded stabilizer generators. On the other hand,

Xk+1, . . . ,Xn are the unencoded pure errors since Xi anti-commutes with the corresponding unen-

coded stabilizer generator Zi, yielding an error syndrome of 1. Furthermore, the unencoded logical

operators acting on the information qubits are Zi,Xi, . . . , Zk,Xk, which commute with the unencoded

stabilizers Zk+1, . . . , Zn. The encoder V maps the unencoded operators Zi,Xi, . . . , Zn,Xn onto the

encoded operators Zi,X i, . . . , Zn,Xn, which may be represented as follows:

X i =
[

VXiV†
]

= [Xi]V, Zi =
[

VZiV†
]

= [Zi]V. (6.26)

Since Clifford transformations do not perturb the commutativity relation of the operators, the resultant

encoded stabilizers Zk+1, . . . , Zn are equivalent to the stabilizers gi of Eq. (4.14), while Xk+1, . . . ,Xn

are the pure errors ti of the resultant stabilizer code, which trigger a non-trivial syndrome. Moreover,

Zi,X i, . . . , Zk,Xk are the encoded logical operators, which commute with the stabilizers gi. Logical

operators merely map one codeword onto the other, without affecting the codespace C of the stabilizer
code. It also has to be mentioned here that the stabilizer generators gi together with the encoded

logical operations constitute the normalizer of the stabilizer code. The (2n × 2n)-element binary

symplectic encoding matrix V is therefore given by:

V =

























































Z1

...

Zk

Zk+1

...

Zn

X1

...

Xk

Xk+1

...

Xn

























































=

























































Z1

...

Zk

g1
...

gn−k

X1

...

Xk

t1
...

tn−k

























































, (6.27)

where the Pauli Z and X operators are mapped onto the classical bits using the Pauli-to-binary

isomorphism of Section 4.3.2.1.

Analogously to the classical inverse encoder of Eq. (6.8), the inverse encoder of a quantum code

is the Hermitian conjugate V†. Let |ψ̂〉 = P|ψ〉 be the received codeword such that P is the n-qubit
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|ψ〉

|0〉

|0〉

|ψ〉

Figure 6.4: Encoding Circuit for 3-qubit bit-flip repetition code.

channel error. Then, passing the received codeword |ψ̂〉 through the inverse encoder V† yields:

V†P|ψ〉 = V†PV(|ψ〉 ⊗ |0(n−k)〉)
= (L|ψ〉) ⊗ (S|0(n−k)〉), (6.28)

where V†PV ≡ (L ⊗ S) and L ∈ Gk denotes the error imposed on the information word, while

S ∈ Gn−k represents the error inflicted on the remaining (n − k) auxiliary qubits. In the equivalent

binary representation, Eq. (6.28) may be modeled as follows:

PV −1 = (L : S) , (6.29)

where we have P = [P], L = [L] and S = [S].

Let us now derive the encoding matrix V for the 3-qubit bit-flip repetition code C(3, 1). Recall

from Section 4.3.2.1 that the corresponding binary PCM H is given by:

H =

(

1 1 0 0 0 0

1 0 1 0 0 0

)

, (6.30)

and the circuit of Figure 6.4 constitutes the encoder. Its unencoded operators are as follows:























Z1

Z2

Z3

X1

X2

X3























=























ZII

IZI

IIZ

XII

IXI

IIX























≡























1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1























. (6.31)

A C-NOT gate is then applied to the second qubit, which is controlled by the first. As seen in

Eq. (6.15), the C-NOT gate copies Pauli X operator forward from the control qubit to the target
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qubit, while Z is copied in the opposite direction. Therefore, we get:






















ZII

IZI

IIZ

XII

IXI

IIX























C-NOT(1, 2)−−−−−−−−−→























ZII

ZZI

IIZ

XXI

IXI

IIX























≡























1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 1























. (6.32)

Another C-NOT gate is then applied to the third qubit, which is also controlled by the first, yielding:






















ZII

ZZI

IIZ

XXI

IXI

IIX























C-NOT(1, 3)−−−−−−−−−→























ZII

ZZI

ZIZ

XXX

IXI

IIX























≡























1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

0 0 0 1 1 1

0 0 0 0 1 0

0 0 0 0 0 1























= V. (6.33)

We can also express the binary matrix V of Eq. (6.33) in decimal notation as:

V ≡ {32, 48, 40, 7, 2, 1}10 , (6.34)

where each index corresponds to a row of V , e.g. the first row (1 0 0 0 0 0) is equivalent to the decimal

number 32.

As gleaned from Eq. (6.33), the stabilizer generators of the 3-qubit bit-flip repetition code are

g1 = ZZI and g2 = ZIZ according to Eq. (6.27), where k = 1 and n = 3. More explicitly, rows 2

and 3 of V constitute the PCM H of Eq. (6.30). The encoded logical operators are Z1 = ZII and

X1 = XXX, which commute with the stabilizers g1 and g2. Finally, the pure errors are t1 = IXI and

t2 = IIX, which anti-commute with g1 and g2, respectively, yielding a non-trivial syndrome.

Based on the above discussion, we now proceed to lay out the circuit-based model for a convo-

lutional code, which is given in [55]. As discussed in Section 4.4, convolutional codes are equivalent

to linear block codes associated with semi-infinite block lengths. More specifically, as illustrated in

Figure 4.10, the PCM H of a C(n, k,m) convolutional code has a block-band structure, where the

adjacent blocks have an overlap of m submatrices. Similarly, the encoder V of a classical convolutional

code can be built from repeated applications of a linear invertible seed transformation U , which is an

(n +m) × (n +m)-element encoding matrix, as shown in Figure 6.5. The inverse encoder V −1 can

be easily obtained by moving backwards in time, i.e. by reading Figure 6.5 from right to left. Let us

further elaborate by stating that at time instant j, the seed transformation matrix U takes as its input

the memory bits mj−1 ∈ F
m
2 , the logical bits lj ∈ F

k
2 and the syndrome bits sj ∈ F

n−k
2 to generate the

output bits ej ∈ F
n
2 and the memory state mj. More explicitly, we have:

(mj : ej) = (mj−1 : lj : sj)U , (6.35)
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Figure 6.5: Circuit representation of the encoder V of a convolutional code [55].

and the overall encoder is formulated as [55]:

V = U[1,...,n+m]U[n+1,...,2n+m] . . . U[(N−1)n+1,...,Nn+m] ,

=
N
∏

j=1

U[(j−1)n+1,...,jn+m], (6.36)

where N denotes the length of the convolutional code and U[(j−1)n+1,...,jn+m] acts on (n + m) bits,

i.e. (mj−2 : lj−1 : sj−1). For an C[n, k,m] quantum convolutional code, the seed transformation U is

a 2(n+m)× 2(n +m)-element symplectic matrix and Eq. (6.35) may be re-written as:

(Mj : Pj) = (Mj−1 : Lj : Sj)U , (6.37)

where M represents the memory state with an m-qubit Pauli operator.

The aforementioned methodology conceived for constructing the circuit-based model of unassisted

quantum codes may be readily extended to the class of EA codes [88]. The unitary encoding operation

V of an C[n, k, c] EA-QSC, which acts on the n transmitter qubits, i.e k information qubits, a auxiliary

qubits and c pre-shared entangled qubits, may be mathematically modeled as follows:

C = {|ψ〉 = V(|ψ〉TX ⊗ |0a〉TX ⊗ |φ+c 〉TXRX )} , (6.38)

where the superscripts TX and RX denote the transmitter’s and receiver’s qubits, respectively. Fur-

thermore, |0a〉TX are a auxiliary qubits initialized to the state |0〉, where a = (n−k−c), and |φ+c 〉TXRX

are the c entangled qubits. Analogously to Eq. (6.28), the inverse encoder of an EA quantum code V†

gives:

V†P|ψ〉 = V†PV(|ψ〉TX ⊗ |0a〉TX ⊗ |φ+c 〉TXRX )

= (LTX |ψ〉TX )⊗ (STX |0a〉TX ⊗ (ETX |φ+c 〉TXRX ), (6.39)

where LTX ∈ Gk denotes the error imposed on the information word, while STX ∈ Ga represents

the error inflicted on the transmitter’s a auxiliary qubits and ETX ∈ Gc is the error corrupting the
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transmitter’s half of c ebits. The equivalent binary representation of Eq. (6.39) is given by:

PV −1 = (L : S : E) , (6.40)

where we have P = [PTX ], L = [LTX ], S = [STX ] and E = [ETX ]. Similarly, Eq. (6.37) can be

re-modeled as follows:

(Mj : Pj) = (Mj−1 : Lj : Sj : Ej)U . (6.41)

6.4 Concatenated Quantum Codes

6.4.1 System Model

Figure 6.6 shows the general schematic of a quantum communication system relying on a pair of

concatenated quantum stabilizer codes. In our work, both the inner as well as the outer codes are

assumed to be convolutional codes. Furthermore, analogously to the classical concatenated codes, the

inner code must be recursive, while both the inner as well the outer code must be non-catastrophic.

Using a recursive inner code is essential for the sake of ensuring that the resultant families of codes

have an unbounded minimum distance. On the other hand, the non-catastrophic nature of both the

inner and the outer codes guarantees that a decoding convergence to an infinitesimally low error rate is

achieved. It was found in [54, 87] that QCCs cannot be simultaneously recursive and non-catastrophic.

In order to overcome this problem, Wilde et al. [95, 88] proposed to employ EA inner codes, which

are recursive as well as non-catastrophic. Therefore, the inner code should be an entanglement-

assisted recursive and non-catastrophic code, while the outer code can be either an unassisted or an

entanglement-assisted non-catastrophic code.

At the transmitter, the intended quantum information |ψ1〉 is encoded by an C[n1, k1] outer encoder

V1 using (n1−k1) auxiliary qubits, which are initialized to the state |0〉, as depicted in Eq. (6.10). The

encoded qubits |ψ1〉 are passed through a quantum interleaver (π). The resultant permuted qubits |ψ2〉
are fed to an C[n2, k2] inner encoder V2, which encodes them into the codewords |ψ2〉 using (n2 − k2)
auxiliary qubits initialized to the state |0〉5. The n-qubit codewords |ψ2〉, where we have n = n1n2,

are then serially transmitted over a quantum depolarizing channel, which imposes an n-tuple error

P2 ∈ Gn on the transmitted codewords.

At the receiver, the received codeword |ψ̂2〉 = P2|ψ2〉 is passed through the inverse encoder V†2 ,
which yields the corrupted information word of the inner encoder L2|ψ2〉 and the associated (n2−k2)-
qubit syndrome S2|0(n2−k2)〉 as depicted previously in Eq. (6.28), where L2 denotes the error imposed

on the logical qubits of the inner encoder, while S2 represents the error inflicted on the remaining

(n2 − k2) qubits. The corrupted logical qubits of the inner encoder are de-interleaved, resulting

5Please note that this is a general schematic. The inner code can be either an unassisted or an EA code. However, it is

advisable to use an EA inner code for the sake of ensuring an unbounded minimum distance of the resultant concatenated

code.
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Figure 6.6: System Model: Quantum communication system relying on concatenated quantum stabilizer

codes. Pa
i (.), P

e
i (.) and Po

i (.) denote the a-priori, extrinsic and a-posteriori probabilities related to

the ith decoder.

in P1|ψ1〉, which is then passed through the inverse outer encoder V†1 . This gives the corrupted

information word of the outer encoder L1|ψ1〉 and the associated (n1−k1)-qubit syndrome S1|0(n1−k1)〉.

The next step is to estimate the error L1 for the sake of ensuring that the original logical qubit

|ψ1〉 can be restored by applying the recovery operation R. For estimating L1, both the syndromes

S2|0(n2−k2)〉 and S1|0(n1−k1)〉 are fed to the syndrome-based6 inner and outer Soft-In Soft-Out (SISO)

decoders [68], respectively, which engage in iterative decoding [55, 88] in order to yield the estimated

error L̃1. The corresponding block is marked as ‘Iterative Decoder’ in Figure 6.6. Here, Pa
i (.), P

e
i (.)

and Po
i (.) denote the a-priori, extrinsic and a-posteriori probabilities [68] related to the ith decoder.

Based on this notation, the turbo decoding process can be summarized as follows:

� The inner SISO decoder of Figure 6.6 uses the channel information Pch(P2), the a-priori informa-

tion gleaned from the outer decoder Pa
2(L2) (initialized to be equiprobable for the first iteration)

and the syndrome S2 to compute the extrinsic information Pe
2(L2). For a coded sequence of

length N , we have P2 = [P2,1,P2,2, . . . ,P2,t, . . . ,P2,N ], where P2,t = [P1
2,t,P2

2,t, . . . ,Pn
2,t]. The

channel information Pch (P2,t) is computed assuming that each qubit is independently transmit-

ted over a quantum depolarizing channel having a depolarizing probability of p, whose channel

transition probabilities are given by [55]:

Pch

(

P i
2,t

)

=

{

1− p, if Pi
2,t = I

p/3, if Pi
2,t ∈ {X,Z,Y}.

(6.42)

6See Section 5.4.2.2 for details of syndrome-based SISO or Maximum A-Posteriori (MAP) decoder.
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� Pe
2(L2) is passed through the quantum de-interleaver (π−1) of Figure 6.6 to generate the a-priori

information for the outer decoder Pa
1(P1).

� Based on both the a-priori information Pa
1(P1) and on the syndrome S1, the outer SISO decoder

of Figure 6.6 computes both the a-posteriori information Po
1(L1) and the extrinsic information

Pe
1(P1).

� Pe
1(P1) is then interleaved to obtain Pa

2(L2), which is fed back to the inner SISO decoder of Fig-

ure 6.6. This iterative procedure continues, until either convergence is achieved or the maximum

affordable number of iterations is reached.

� Finally, a qubit-based Maximum A-Posteriori (MAP) decision is made for determining the most

likely error coset L1. It must be mentioned here that both the inner and outer SISO decoders

employ the degenerate decoding approach of [55], which aims for finding the ‘most likely error

coset’ rather than the ‘most likely error’ acting on the logical qubits Li, as we will discuss in the

next section.

6.4.2 Degenerate Iterative Decoding

As discussed in Section 4.3.3, quantum codes exhibit the intrinsic property of degeneracy, which is

also obvious from Eq. (6.28). More explicitly, we have:

S|0n−k〉 = S1|0〉 ⊗ · · · ⊗ Sn−k|0〉. (6.43)

Since, we have Sj ∈ {I,X,Y,Z}, we can re-write Eq. (6.43) as follows [55]:

S|0n−k〉 ≡ ǫ|s1〉 ⊗ · · · ⊗ |sn−k〉, (6.44)

where ǫ ∈ {±1,±i}, and:

sj = 0 if Sj = I or Sj = Z,

sj = 1 otherwise. (6.45)

For example, if S1 = Y and Sj = I for j 6= 1, since Y = iXZ, we get S|0n−k〉 = i|1〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉.

Observing the (n− k) syndrome qubits of Eq. (6.44) collapses them to the classical syndrome s =

{s1, . . . , sn−k}, which is equivalent to the symplectic product of P and H, i.e. s = (P ⋆ Hj)1≤j≤n−k.

More precisely, the syndrome sequence |0n−k〉 is invariant to the Z-component of S since Z|0〉 = |0〉.
Let S be the effective 2(n− k)-bit error on the syndrome, which may be decomposed as S = Sx +Sz,

where Sx and Sz are the X and Z components of S, respectively. Then s only reveals Sx. Hence,

two distinct error sequences P = (L : Sx + Sz)V and P ′ = (L : Sx + S′z)V , which only differ in the

Z-component of S, yield the same syndrome s. Furthermore, it must be noted that both P and P ′

have the same logical error L. Therefore, P and P ′ differ only by the stabilizer group and are known
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Figure 6.7: General schematic of a SISO decoder. Pa(.), Pe(.) and Po(.) denote the a-priori, extrinsic and

a-posteriori probabilities.

as degenerate errors, which do not have to be distinguished, since they can be corrected by the same

recovery operation L−1.

The classic syndrome-based MAP decoder aims for finding the most likely error for a given syn-

drome, which may be modeled as:

L(S) = argmaxLP(L|S), (6.46)

where P(L|S) denotes the probability of experiencing the logical error L imposed on the transmitted

qubits, given that the syndrome of the received qubits is S. By contrast, quantum codes employ

degenerate decoding, which aims for finding the most likely error coset C(L,Sx) associated with the

observed syndrome Sx. The coset C(L,Sx) is defined as [55]:

C(L,Sx) = {P = (L : Sx + Sz)V } ∀Sz ∈ {I,Z}n−k. (6.47)

Therefore, a degenerate MAP decoder yields:

L(Sx) = argmaxLP(L|Sx), (6.48)

where we have:

P(L|Sx) ≡
∑

Sz∈{I,Z}n−k

P(L|(Sx + Sz)). (6.49)

The iterative decoder of Figure 6.6 consists of two serially concatenated SISO decoders, which

employ the aforementioned degenerate decoding approach. Figure 6.7 shows the general schematic of

a SISO decoder, where the Pauli operators P, L and S are replaced by the effective operators P , L

and Sx, respectively. The SISO decoder of Figure 6.7 yields the a-posteriori information pertaining

to the logical error L and channel error P based on the classic forward-backward recursive coefficients

α and β, which are computed over the quantum circuit of Figure 6.8 (analogous to a classic trellis) as

follows [55]:
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Mt−1 Pt

Mt

U

Pt+1

Mt+1

St−1

Lt
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Lt+1

St+1

Mt−2

Lt−1

U

U

Figure 6.8: Circuit representation of the encoder V of a quantum convolutional code [55]. The operation of the

tth seed transformation can be characterized as (Mt : Pt) = (Mt−1 : Lt : St)U , where Mt ∈ Gm,

Pt ∈ Gn, Lt ∈ Gk and St ∈ Gn−k, while U is a 2(n+m) × 2(n +m)-element binary symplectic

matrix.

� For a coded sequence of duration N , let us denote the channel error sequence by P = [P1, P2, . . . ,

Pt, . . . , PN ] and the logical error sequence by L = [L1, L2, . . . , Lt, . . . , LN ], where we have Pt ∈ Gn

and Lt ∈ Gk. More explicitly, Pt = [P 1
t , P

2
t , . . . , P

n
t ] and Lt = [L1

t , L
2
t , . . . , L

k
t ].

� Let us decompose the 2(n+m)× 2(n+m)-element binary symplectic matrix U of Figure 6.8 as

U = (UM : UP ), where UM is the binary matrix formed by the first 2m columns of U , while UP is

the binary matrix formed by the last 2n columns of U . Therefore, Eq. (6.37) can be decomposed

as:

Mt = (Mt−1 : Lt : St)UM , (6.50)

Pt = (Mt−1 : Lt : St)UP . (6.51)

� The forward recursive coefficient αt (Mt) is the probability that the memory state of the tth

seed transformation U in the circuit of Figure 6.8 is Mt at time instant t, given the syndrome

sequence up to this point, i.e. Sx
≤t ,

(

Sx
j

)

0≤j≤t
, which can be mathematically modeled as:

αt (Mt) , P
(

Mt|Sx
≤t

)

,

∝
∑

(µ,λ,σ)⇒
Mt=(µ:λ:σ)UM

Pa (Lt = λ) Pa (Pt = (µ : λ : σ)UP )αt−1 (Mt−1 = µ) , (6.52)

where the summation implies adding all the probabilities associated with those specific values of

the memory state Mt−1 = µ ∈ Gm, of the logical error Lt = λ ∈ Gk and of the error inflicted on

the auxiliary qubits St = σ ∈ Gn−k, which yield a particular value ofMt according to Eq. (6.50).

Furthermore, σ can be decomposed into the X and Z components such that σ = σx+σz, having

σx = Sx
t , while σz can assume all possible values, as seen in Eq. (6.49).



138 6. EXIT-Chart Aided Hashing Bound Approaching Concatenated Quantum Codes

� The backward recursive coefficient βt (Mt) is the probability that the memory state of the tth

seed transformation U in the circuit of Figure 6.8 is Mt given the future syndrome sequence, i.e.

Sx
>t ,

(

Sx
j

)

t<j≤N
, which can be encapsulated as:

βt (Mt) , P (Mt|Sx
>t) ,

∝
∑

λ,σ

Pa (Lt+1 = λ) Pa (Pt+1 = (Mt : λ : σ)UP ) βt+1 (Mt+1 = (Mt : λ : σ)UM ) , (6.53)

where the summation implies adding the probabilities for all possible values of logical errors

Lt+1 = λ ∈ Gk plus the errors inflicted on the auxiliary qubits St+1 = σ ∈ Gn−k, given

furthermore that σ = σx + σz, having σx = Sx
t+1.

� Finally, we have the a-posteriori probabilities Po(Lt) and Po(Pt), which are given by:

Po(Lt) , P(Lt|Sx),

∝
∑

µ,σ

Pa(Lt)P
a(Pt = (µ : Lt : σ)UP )αt−1 (Mt−1 = µ)βt (Mt = (µ : Lt : σ)UM ) , (6.54)

Po(Pt) , P(Pt|Sx),

∝
∑

µ,λ,σ⇒
Pt=(µ:λ:σ)UP

Pa(Pt)P
a(Lt = λ)αt−1 (Mt−1 = µ)βt (Mt = (µ : λ : σ)UM ) , (6.55)

where Sx , (Sx
t )0≤t≤N , while the memory state Mt−1 = µ ∈ Gm, logical error Lt = λ ∈ Gk and

the error inflicted on the auxiliary qubits St = σ ∈ Gn−k, given further that σ = σx+σz, having

σx = Sx
t .

� The marginalized probabilities Po(Lj
t ), for j ∈ {0, k − 1}, and Po(P j

t ), for j ∈ {0, n − 1}, are
then computed from Po(Lj

t ) and Po(P j
t ), respectively. The a-priori information is then removed

in order to yield the extrinsic probabilities [88]. Therefore, in the logarithmic domain, we have:

ln[Pe(Lj
t)] = ln[Po(Lj

t )]− ln[Pa(Lj
t )], (6.56)

ln[Pe(P j
t )] = ln[Po(P j

t )]− ln[Pa(P j
t )]. (6.57)

It has to be mentioned here that the property of degeneracy is only an attribute of auxiliary qubits and

the ebits of an EA code do not contribute to it. This is because both X as well as Z errors acting on

the transmitter’s half of ebits give distinct results when measured in the Bell basis, i.e. ETX |φ+c 〉TXRX

gives four distinct Bell states for ETX

j ∈ {I,X,Z,Y}. Consequently, degeneracy is a function of the

number of auxiliary qubits a and reduces to zero for a = 0.

6.5 EXIT-Chart Aided Quantum Code Design

The EXIT chart analysis not only allows us to dispense with the time-consuming Monte-Carlo simu-

lations, but also facilitates the design of capacity approaching codes without resorting to the tedious
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analysis of their distance spectra. Therefore, they have been extensively employed for designing near-

capacity classical codes [157, 158, 159], as we previously demonstrated in Chapter 3. Let us further

recall from Section 3.5.1 that the EXIT chart of a serially concatenated scheme visualizes the exchange

of four Mutual Information (MI) terms, i.e. the average a-priori MI of the outer decoder I1A, the av-

erage a-priori MI of the inner decoder I2A, the average extrinsic MI of the outer decoder I1E, and the

average extrinsic MI of the inner decoder I2E . More specifically, I1A and I1E constitute the EXIT curve

of the outer decoder, while I2A and I2E yield the EXIT curve of the inner decoder. The MI transfer

characteristics of both the decoders are plotted in the same graph, with the x and y axes of the outer

decoder swapped. The resultant EXIT chart quantifies the improvement in the mutual information

as the iterations proceed, which can be viewed as a stair-case-shaped decoding trajectory. An open

tunnel between the two EXIT curves ensures that the decoding trajectory reaches the (1, y) point of

perfect convergence.

In this section, we extended the application of EXIT charts to the quantum domain by appro-

priately adapting the conventional non-binary EXIT chart generation technique [160, 114] for the

quantum syndrome decoding approach. Before proceeding with the application of EXIT charts for

quantum codes, let us elaborate on the quantum-to-classical isomorphism of Section 4.3.2, which forms

the basis of our EXIT chart aided approach. As discussed in Section 4.3.2.1, a Pauli error operator

P experienced by an N -qubit frame transmitted over a depolarizing channel can be modeled by an

effective error-vector P , which is a binary vector of length 2N . The first N bits of P denote Z errors,

while the remaining N bits represent X errors. More explicitly, an X error imposed on the 1st qubit

will yield a 0 and a 1 at the 1st and (N + 1)th index of P , respectively. Similarly, a Z error imposed

on the 1st qubit will give a 1 and a 0 at the 1st and (N +1)th index of P , respectively, while a Y error

on the 1st qubit will result in a 1 at both the 1st as well as (N +1)th index of P . Since a depolarizing

channel characterized by the probability p incurs X, Y and Z errors with an equal probability of p/3,

the effective error-vector P reduces to two Binary Symmetric Channels (BSCs) having a crossover

probability of 2p/3, where we have one channel for the Z errors and the other for the X errors. Hence,

a quantum depolarizing channel has been considered analogous to a BSC [47, 161], whose capacity is

given by:

CBSC

C (p) = 1−H2(2p/3), (6.58)

where H2 is the binary entropy function. Let us recall from Eq. (4.38) that the code rate RQ of an

[n, k] QSC is related to the equivalent classical code rate RC as follows [47, 81]:

RC =
1

2
(1 +RQ) . (6.59)

The corresponding quantum capacity can be computed by substituting Eq. (6.58) into Eq. (6.59) such

that RC = CBSC

C (p), which yields [47, 81]:

CBSC

Q (p) = 1− 2H2(2p/3). (6.60)

However, the two BSCs constituting a quantum depolarizing channel are not entirely independent.

There is an inherent correlation between the X and Z errors [47], which is characterized in Table 6.1.
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Z = 0 Z = 1

X = 0 1− p p/3

X = 1 p/3 p/3

Table 6.1: Correlation between X and Z errors on th ith qubit in terms of the corresponding probability of

occurrence.

This correlation is taken into account by the iterative decoder of Section 6.4.2. Alternatively, a

quantum depolarization channel can also be considered equivalent to a 4-ary symmetric channel based

on the Pauli-to-quaternary isomorphism of Section 4.3.2.2. More explicitly, the ith and (N+i)th index

of P constitute the 4-ary symbol according to the Pauli-to-quaternary isomorphism of Section 4.3.2.2.

Hence, the corresponding classical capacity is equivalent to the maximum rate achievable over each

half of the 4-ary symmetric channel, or more explicitly the normalized capacity of a 4-ary symmetric

channel [47, 81]. Since theX, Y and Z errors occur with an equal probability of p/3 over a depolarizing

channel, the normalized capacity of the equivalent 4-ary classical channel is given by:

C4-ary

C (p) =
1

2

(

2 + (1− p) log2 (1− p) +
p

3
log2

(p

3

)

+
p

3
log2

(p

3

)

+
p

3
log2

(p

3

))

=
1

2
(2 + (1− p) log2(1− p) + p log2(p)− p log2(3))

=
1

2
(2−H2(p)− p log2(3)) . (6.61)

Substituting Eq. (6.61) into Eq. (6.59) yields the Hashing bound of Eq. (6.1), i.e. we have:

CQ(p) = 1−H2(p)− p log2(3). (6.62)

Recall that a quantum code is equivalent to a classical code through Eq. (4.30). Additionally, the

decoding of a quantum code is essentially carried out with the aid of the equivalent classical code by

exploiting the additional property of degeneracy. Particularly, quantum codes employ the syndrome

decoding approach of Chapter 5, which yields information about the error-sequence rather than the

information-sequence or coded qubits, hence avoiding the observation of the latter sequences, which

would collapse them back to the classical domain.

Since a quantum code has an equivalent classical representation and the depolarizing channel is

analogous to a BSC, we employ the EXIT chart technique to design concatenated quantum codes that

can approach the Hashing bound. The major difference between the EXIT charts conceived for the

classical and quantum domains is that while the former models the a-priori information concerning

the input bits of the inner encoder (and similarly the output bits of the outer encoder), the latter

models the a-priori information concerning the corresponding error-sequence, i.e. the error-sequence

related to the input qubits of the inner encoder L2 (and similarly the error-sequence related to the

output qubits of the outer encoder P1).
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Figure 6.9: System model for generating the EXIT chart of the inner decoder.

Similar to the classical EXIT charts, it is assumed that the interleaver length is sufficiently high

to ensure that [116, 68]:

� the a-priori values are fairly uncorrelated; and

� the a-priori information has a Gaussian distribution.

Figure 6.9 shows the system model used for generating the EXIT chart of the inner decoder. Here,

a quantum depolarizing channel having a depolarizing probability of p generates the error sequence

P2, which is passed through the inverse inner encoder V −1
2 . This yields both the error imposed

on the logical qubits L2 and the syndrome Sx
2 . The a-priori channel block then models the a-priori

probability Pa
2(L2) such that the average MI between the actual error L2 and the a-priori probabilities

Pa
2(L2) is given by IA(L2) [116, 68, 117]. More explicitly, we have IA(L2) = I[L2,P

a
2(L2)], where I

denotes the average MI function. Moreover, the ith and (N + i)th bits of the effective error vector L2

can be visualized as 4-ary symbols. Consequently, similar to classical non-binary EXIT charts [160,

114], the logarithmic a-priori probability is modeled using an independent Gaussian distribution

with a mean of σ2A/2 and variance of σ2A, assuming that the X and Z errors constituting the 4-ary

symbols are independent7. Based on the channel probability Pch(P2), on the syndrome Sx
2 and on

the a-priori probability Pa
2(L2), the inner SISO decoder generates the extrinsic probability Pe

2(L2) by

using the degenerate decoding approach of Section 6.4.2. Finally, the extrinsic average MI IE(L2) =

I[L2,P
e
2(L2)] between L2 and Pe

2(L2) is computed. Since the equivalent classical capacity of a quantum

channel is given by the capacity achievable over each half of the 4-ary symmetric channel, IE(L2) is

the normalized MI of the 4-ary symbols, which can be computed based on [114, 115] as:

IE(L2) =
1

2

(

2 + E

[

3
∑

m=0

Pe
2(L

j(m)
2 ) log2 P

e
2(L

j(m)
2 )

])

, (6.63)

where E is the expectation (or time average) operator and L
j(m)
2 is the mth hypothetical error imposed

on the logical qubits. More explicitly, since the error on each qubit is represented by an equivalent

7Under the idealized asymptotic conditions of having an infinite-length interleaver, IA(L2) may be accurately modeled

by the Gaussian distribution. As and when shorter interleavers are used, the Gaussian assumption becomes less accurate,

hence in practice a histogram-based approximation may be relied upon.
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Figure 6.10: System model for generating the EXIT chart of the outer decoder [4].

pair of classical bits, L
j(m)
2 is a 4-ary classical symbol associated with m ∈ {0, 3}. The process is

repeated for a range of IA(L2) ∈ [0, 1] values for the sake of obtaining the extrinsic information

transfer characteristics at the depolarizing probability p. The resultant inner EXIT function T2 of the

specific inner decoder may be defined as follows:

IE(L2) = T2[IA(L2), p], (6.64)

which is a function of the channel’s depolarizing probability p.

The system model used for generating the EXIT chart of the outer decoder is depicted in Fig-

ure 6.10. As inferred from Figure 6.10, the EXIT curve of the outer decoder is independent of the

channel’s output information. The a-priori information is generated by the a-priori channel based on

P1 (error on the physical qubits of the second decoder) and IA(P1), which is the average MI between

P1 and Pa
1(P1). Furthermore, as for the inner decoder, P1 is passed through the inverse outer encoder

V −1
1 to compute Sx

1 , which is fed to the outer SISO decoder to yield the extrinsic probability Pe
1(P1).

The average MI between P1 and Pe
1(P1) is then calculated similar to Eq. (6.63) as follows:

IE(P1) =
1

2

(

2 + E

[

3
∑

m=0

Pe
1(P

j(m)
1 ) log2 P

e
1(P

j(m)
1 )

])

. (6.65)

The resultant EXIT chart is characterized by the following MI transfer function:

IE(P1) = T1[IA(P1)], (6.66)

where T1 is the outer EXIT function, which is dependent on the specific outer decoder, but it is

independent of the depolarizing probability p.

Finally, the MI transfer characteristics of both decoders characterized by Eq. (6.64) and Eq. (6.66)

are plotted in the same graph, with the x and y axes of the outer decoder swapped. For the sake of

approaching the achievable capacity of Figure 6.1, our EXIT-chart aided design aims for creating a

narrow, but marginally open tunnel between the EXIT curves of the inner and outer decoders at the

highest possible depolarizing probability (analogous to the lowest possible SNR for a classical channel).

For a given noise limit p∗ and the desired code parameters, this may be achieved in two steps. We first

find that specific inner code, which yields the largest area under its EXIT-curve at the noise limit p∗.
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Once the optimal inner code is selected, we find the optimal outer code, whose EXIT-curve gives the

best match with the chosen inner code. The narrower the tunnel-area between the inner and outer

decoder’s EXIT curve, the lower is the deviation from the achievable capacity or the Hashing bound,

which may be quantified using Eq. (6.2).

6.6 Results and Discussions I

6.6.1 Accuracy of EXIT Chart Predictions

In order to verify the accuracy of our EXIT-chart based approach, we have analyzed the convergence

behaviour of a rate-1/9 QTC, consisting of two identical rate-1/3 QCCs, whose parameters are listed

in Table 6.2. More specifically, for both the inner and outer decoders, we have used the configuration

termed as “PTO1R” in [95, 88], which is a non-catastrophic but quasi-recursive code.

Our first aim was to predict the convergence threshold using EXIT charts, which would otherwise

require time-consuming Word Error Rate (WER) or QBER simulations. Convergence threshold can be

determined by finding the maximum depolarizing probability p, which yields a marginally open EXIT

tunnel between the EXIT curves of the inner and outer decoder; hence, facilitating an infinitesimally

low error rate. Figure 6.11 shows the EXIT curves for the inner and outer decoders, where the area

under the EXIT curve of the inner decoder decreases upon increasing p. Eventually, the inner and

outer curves crossover, when p is increased to p = 0.13. More explicitly, increasing p beyond 0.125,

closes the EXIT tunnel. Hence, the convergence threshold is around p = 0.125. Figure 6.12 further

shows two decoding trajectories superimposed on the EXIT chart of Figure 6.11 at p = 0.125. We have

used a 30, 000-qubit long interleaver. As seen from Figure 6.12, the trajectory successfully reaches the

(x, y) = (1, y) point of the EXIT chart. This in turn guarantees an infinitesimally low WER/QBER

at p = 0.125 for an interleaver of infinite length.

We have further verified the validity of our EXIT chart predictions using WER simulations. Fig-

ure 6.13 shows the WER performance curve for the simulation parameters of Table 6.2. The achievable

performance of Figure 6.13 improves upon increasing the number of iterations from one through to

eight. More specifically, the turbo-cliff region starts to emerge around p = 0.125 (marked with a

dashed-line in Figure 6.13), whereby the WER drops as the iterations proceed. Therefore, our EXIT

chart predictions of Figure 6.11 follow the Monte-Carlo simulation results of Figure 6.13 to a reasonable

degree.

6.6.2 Entanglement-Assisted and Unassisted Inner Codes

All non-catastrophic QCCs are non-recursive [55]. Therefore, the resultant families of QTCs have

a bounded minimum distance and they do not have a true iterative threshold. To circumvent this

limitation of QTCs, Wilde et al. [95, 88] proposed to employ EA inner codes, which are recursive as well



144 6. EXIT-Chart Aided Hashing Bound Approaching Concatenated Quantum Codes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PTO1R (Outer) − PTO1R (Inner)

I
A
(L

1
) / I

E
(P

2
)

I E
(L

1) 
/ I

A
(P

2)

 

 

inner @ p = 0.12
inner @ p = 0.125
inner @ p = 0.13
outer

Figure 6.11: The EXIT curves of a QTC parametrized by the increasing depolarizing probability p. The

parameters of the inner and outer QCC are listed in Table 6.2.
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Figure 6.12: The EXIT chart of a QTC with decoding trajectories at p = 0.125. We have used the QTC of

Table 6.2 with an increased interleaver length of 30, 000 qubits.
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Coding rate R = 1/9

Entanglement consumption rate E = 0

Interleaver length N = 3, 000 qubits

Iterations I = 8

Inner QCC

Coding rate Ri = 1/3

Entanglement consumption rate Ei = 0

Memory 3

Seed transformation Ui = {1355, 2847, 558, 2107, 3330, 739,
2009, 286, 473, 1669, 1979, 189}10

Outer QCC

Coding rate Ro = 1/3

Entanglement consumption rate Eo = 0

Memory 3

Seed transformation Uo = {1355, 2847, 558, 2107, 3330, 739,
2009, 286, 473, 1669, 1979, 189}10

Table 6.2: Simulation parameters of the concatenated scheme of Figure 6.6. The inner/outer QCC is the

“PTO1R” configuration of [95, 88], which is an unassisted rate-1/3 QCC (quasi-recursive and non-

catastrophic).

as non-catastrophic. The resulting families of EA-QTCs have an unbounded minimum distance [95,

88], i.e. their minimum distance increases almost linearly with the interleaver length. Here, we verify

this by analyzing the inner decoder’s EXIT curves for both the unassisted (non-recursive) and the EA

(recursive) inner convolutional codes.

For classical recursive inner codes, the inner decoder’s EXIT curve reaches the (x, y) = (1, 1)

point8, which guarantees perfect decoding convergence to a vanishingly low WER/QBER as well as

having an unbounded minimum distance for the family of QTCs [55] based on these inner codes.

8Note that we only need (x, y) = (1, y) for achieving decoding convergence to an infinitesimally low error rate.

However, this requires an outer code having a sufficiently large minimum distance for the sake of ensuring that the outer

code’s EXIT curve does not intersect with that of the inner code before reaching the (1, y) point. Unfortunately, an

outer code having a large minimum distance would result in an EXIT curve having a large open-tunnel area. Thus, it

will operate far from the capacity.
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Figure 6.13: Achievable WER performance of the QTC of Figure 6.6 as the number of iterations (I) is

increased from 1 through to the 8. Simulation parameters are summarized in Table 6.2. The

dashed-line at p = 0.125 marks the convergence threshold predicted using the EXIT chart of

Figure 6.12.

Consequently, the resulting families of QTCs have unbounded minimum distance and hence an arbi-

trarily low WER/QBER can be achieved for an infinitely long interleaver. This also holds true for the

recursive QCCs, as shown in Figure 6.14. In this figure, we compare the inner decoder’s EXIT curves

of both the unassisted QCC (non-recursive) and the EA-QCC (recursive) of [95], which are labeled

“PTO1R” and “PTO1REA”, respectively. More explicitly, PTO1REA is the maximally-entangled9

version of PTO1R, which has the same configuration as that of the PTO1R given in Table 6.2, but

with an increased entanglement consumption rate of 2/3. We may observed in Figure 6.14 that, for

the PTO1R configuration, decreasing the depolarizing probability from p = 0.14 to p = 0.12 shifts

the inner decoder’s EXIT curve upwards and towards the (1, 1) point. Hence, the EXIT curve will

manage to reach the (1, 1) point only at very low values of depolarizing probability. By contrast, the

EXIT curve of PTO1REA always terminates at (1, 1), regardless of the value of p. Therefore, provided

an open EXIT tunnel exists and the interleaver length is sufficiently long, the decoding trajectories

of an EA-QTC will always reach the (1, 1) point; thus, guaranteeing an arbitrarily low WER/QBER

for the family of QTCs based on these inner codes. Particularly, the performance improves upon

increasing the interleaver length; thus, implying that the minimum distance increases upon increasing

the interleaver length. Therefore, the resultant QTCs have an unbounded minimum distance.

9For a maximally entangled code, we have c = (n− k), resulting in an entanglement consumption rate of (1− RQ),

where RQ is its coding rate.
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Figure 6.14: Comparison of the inner EXIT curves of both unassisted and entanglement-assisted QCCs, la-

beled as PTO1R and PTO1REA respectively. PTO1R is the inner code of Table 6.2, while

PTO1REA is the same as PTO1R but requires 2 e-bits.

6.6.3 Optimized Quantum Turbo Code Design

The QTC design of [95, 88] characterized in Figure 6.12 exhibits a large area between the inner

and outer decoder’s EXIT curves. The larger the ‘open-tunnel’ area, the farther the WER/QBER

performance from the achievable noise limit p∗ [68]. For an unassisted rate-1/9 code, the noise limit is

p∗ = 0.16028 according to the Hashing bound of Figure 6.1. Consequently, the design of Figure 6.12

operates within
[

10× log10(
0.125

0.16028 )
]

= 1.1 dB of the noise limit. Various other distance spectra

based QTCs investigated in [88], which exhibit a wide EXIT chart tunnel analogous to Figure 6.12,

operate within 0.9 dB of the Hashing bound. For the sake of achieving a Hashing bound approaching

performance, we minimize the area between the inner and outer EXIT curves, so that a narrow, but

still marginally open tunnel exists at the highest possible depolarizing probability.

Design Objective: Congenially with the rate-1/9 QTC of [88], find the optimal inner and outer

components of a rate-1/9 QTC relying on a maximally-entangled inner code (recursive and non-

catastrophic) and an unassisted outer code (non-catastrophic), both having a memory of 3 and a rate

of 1/3. The resultant QTC has an entanglement consumption rate of 6/9 (or equivalently 2/3), for

which the corresponding noise limit is p∗ = 0.3779 according to Eq. (6.3). Consequently, the optimized

QTC should operate at a channel depolarizing probability close to the noise limit p∗ = 0.3779.

For the sake of finding the optimized inner and outer components, which minimize the area between
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Coding rate R = 1/9

Entanglement consumption rate E = 6/9

Interleaver length N = 3, 000 qubits

Iterations I = 15

Inner QCC

Coding rate Ri = 1/3

Entanglement consumption rate Ei = 2/3

Memory 3

Seed transformation Ui = {4091, 3736, 2097, 1336, 1601, 279,
3093, 502, 1792, 3020, 226, 1100}10

Outer QCC

Coding rate Ro = 1/3

Entanglement consumption rate Eo = 0

Memory 3

Seed transformation Uo = {1048, 3872, 3485, 2054, 983, 3164,
3145, 1824, 987, 3282, 2505, 1984}10

Table 6.3: Simulation parameters of the optimized QTC, having a rate-1/3 EA-QCC (recursive and non-

catastrophic) as the inner code, while an unassisted rate-1/3 QCC (non-catastrophic) is used as

the outer code.

the corresponding EXIT curves at a depolarizing probability close to the noise limit, we randomly

selected both the inner and outer encoders from the Clifford group according to the algorithm of [162].

Based on this design criterion, we found the optimal inner and outer code pair, whose seed transfor-

mations (decimal representation) are given by:

Ui = {4091, 3736, 2097, 1336, 1601, 279, 3093, 502, 1792, 3020, 226, 1100}10 ; (6.67)

Uo = {1048, 3872, 3485, 2054, 983, 3164, 3145, 1824, 987, 3282, 2505, 1984}10 . (6.68)

Code parameters of our optimized design are also summarized in Table 6.3.

Figure 6.15 shows the EXIT curves of our optimized QTC at the convergence threshold of p = 0.35.

As observed in Figure 6.15, a marginally open EXIT tunnel exists between the two curves, which would

facilitate decoding trajectories to reach the (1, 1) point of perfect convergence. Hence, our optimized

QTC has a convergence threshold of p = 0.35, which is only
[

10× log10(
0.35

0.3779 )
]

= 0.3 dB from the noise
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Figure 6.15: The EXIT curves of the optimized rate-1/9 QTC. The parameters of the inner and outer QCC

are listed in Table 6.3.

limit of p∗ = 0.3779. We have quantified the corresponding achievable performance in Figure 6.16,

where the interleaver length was increased from 1500 to 12, 000. All other simulation parameters

are kept the same as that of Table 6.3. We have recorded both the WER as well as the QBER

performance. Analogous to the classical turbo codes, increasing the interleaver length improves the

attainable performance for p < 0.35, hence providing a better performance at the cost of an increased

delay, which was also pointed out in Figure 6.2 in the context of our conflicting design challenges.

In Figure 6.17, we further compare our optimized design, using the parameters of Table 6.3, to

the “PTO1REA-PTO1R” configuration of [88], whose parameters are summarized in Table 6.4. Both

configurations employ a rate-1/3 EA-QCC (recursive and non-catastrophic) as the inner code, while an

unassisted rate-1/3 QCC (non-catastrophic) is used as the outer code. For the “PTO1REA-PTO1R”

design, the turbo cliff region emerges around p = 0.31, which is within 0.9 dB of the noise limit. It

may also be observed in Figure 6.17 that our optimized design outperforms the “PTO1REA-PTO1R”

in terms of having a better convergence threshold, albeit at the cost of a higher error-floor. This

is because our optimized outer code has a low minimum distance of only 3. Its truncated distance

spectrum is as follows:

D(x) =2x3 + 19x4 + 108x5 + 530x6 + 2882x7 + 14179x8 + 62288x9 + 243234x10+

845863x11 + 1165784x12 + 2501507x13 + 744394x14 .

By contrast, the truncated distance spectrum of “PTO1R”, which has a minimum distance of 5, is
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Figure 6.16: Achievable QBER and WER performance of the optimized QTC of Figure 6.6 as the inter-

leaver length (N) is increased from 1500 through 12, 000. All other simulation parameters are

summarized in Table 6.3.

given by [88]:

D(x) = 11x5 + 47x6 + 253x7 + 1187x8 + 6024x9 + 30529x10 + 153051x11 + 771650x12 .

Consequently, as gleaned from Figure 6.17, the “PTO1REA-PTO1R” configuration has a much lower

error floor (< 10−6), since the outer code “PTO1R” has a higher minimum distance. However, this

enlarges the area between the inner and outer decoder’s EXIT curves; thus, driving the performance

farther away from the achievable capacity. Hence, there is a trade-off between the minimization of

the error floor and achieving a Hashing bound approaching performance. More specifically, while the

distance-spectrum based design primarily aims for achieving a lower error floor, the EXIT-chart based

design strives for achieving a near-capacity performance. Note that the error floor can also be reduced

by employing a longer interleaver. Furthermore, we invoked a maximum of 8 decoding iterations

for the “PTO1REA-PTO1R” design, while a maximum of 15 iterations were used for our optimized

design. Again, this can be attributed to the wide EXIT tunnel that exists between the inner and

outer decoders’ EXIT curves of the ‘PTO1REA-PTO1R” construction. More explicitly, the wider the

gap between the inner and outer decoders’ EXIT curves, the faster the decoding convergence, since a

lower number of decoding iterations are invoked for reaching the (1, 1) point of perfect convergence.

In this section, we did not intend to carry out an exhaustive code search for finding the best code.

Instead, our intention was to optimize our design in terms of its convergence threshold for the sake of

demonstrating the explicit benefit of our EXIT-chart technique conceived for approaching the Hashing

bound. Nevertheless, in the next section, we have conceived QIRCC, which reduces the error floor.
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Coding rate R = 1/9

Entanglement consumption rate E = 6/9

Interleaver length N = 3, 000 qubits

Iterations I = 8

Inner QCC

Coding rate Ri = 1/3

Entanglement consumption rate Ei = 2/3

Memory 3

Seed transformation Ui = {1355, 2847, 558, 2107, 3330, 739,
2009, 286, 473, 1669, 1979, 189}10

Outer QCC

Coding rate Ro = 1/3

Entanglement consumption rate Eo = 0

Memory 3

Seed transformation Uo = {1355, 2847, 558, 2107, 3330, 739,
2009, 286, 473, 1669, 1979, 189}10

Table 6.4: Simulation parameters of the “PRO1REA-PTO1R” configuration of [95, 88], which is used as a

benchmark. Similar to the QTC of Table 6.3, inner code is a rate-1/3 EA-QCC (recursive and

non-catastrophic), while the outer code is an unassisted rate-1/3 QCC (non-catastrophic).

6.7 Quantum Irregular Convolutional Codes

In this section we further pursue our design objective, i.e. to find the optimal outer code C having a

coding rate Ro, which gives the best match with the given inner code, i.e. whose EXIT curve yields a

marginally open tunnel with the given inner decoder’s EXIT curve at a depolarizing probability close

to the Hashing bound. For the sake of achieving this objective, a feasible design option could be to

create the outer EXIT curves of all the possible convolutional codes to find the optimal code C, which
gives the best match, as we did in Section 6.6.3. To circumvent this exhaustive code search, in this

section we propose to invoke QIRCCs for achieving EXIT-curve matching.

Similar to the classical Irregular Convolutional Code (IRCC) of [119], our proposed QIRCC employs

a family of Q subcodes Cq, q ∈ {1, 2, . . . ,Q}, for constructing the target code C. Due to its inherent

flexibility, the resultant QIRCC provides a better EXIT-curve match than any single code, when used

as the outer component in the concatenated structure of Figure 6.6. The qth subcode has a coding rate
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of rq and it encodes a specifically designed fraction of the original information qubits to ̺qN encoded

qubits. Here, N is the total length of the coded frame. More specifically, for a Q-subcode IRCC, ̺q

is the qth IRCC weighting coefficient satisfying the following constraints [118, 119]:

Q
∑

q=1

̺q = 1 , Ro =
Q
∑

q=1

̺qrq , ̺q ∈ [0, 1],∀q , (6.69)

which can be conveniently represented in the following matrix form:

(

1 1 . . . 1

r1 r2 . . . rQ

)

(

̺1 ̺2 . . . ̺Q
)T

=

(

1

Ro

)

r ̺ = R . (6.70)

Hence, as shown in Figure 6.18, the input stream is partitioned into Q sub-frames10, which are

assembled back into a single N -qubit stream after encoding.

In the context of classical IRCCs, the subcodes Cq are constructed from a mother code [118, 119].

More specifically, high-rate subcodes are obtained by puncturing the mother code, while the lower rates

are obtained by adding more generators. However, unlike classical codes, puncturing is not easy to

implement for quantum codes, since the resultant punctured code must satisfy the symplectic criterion,

as in [163]. In this context, in order to design the constituent subcodes of our proposed QIRCC, we

10This is only true if all subcodes are active. If ̺q = 0 for the qth subcode, then Cq is not activated. Therefore, the

input stream is only divided among the active subcodes.
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Qubit Stream
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QIRCC

|ψ1
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...

|ψQ
1 〉

...

Figure 6.18: Structure of a Q-subcode QIRCC encoder.

selected 5 strong randomly-constructed memory-3 quantum convolutional codes with quantum code

rates {1/4, 1/3, 1/2, 2/3, 3/4}, which met the non-catastrophic criterion of [55]. More explicitly, for the

sake of achieving a random construction for the Clifford encoder specifying the quantum convolutional

code, we used the classical random walk algorithm over the (n+m)-qubit Clifford group as in [162].

The seed transformations of the resultant subcodes having rates {1/4, 1/3, 1/2, 2/3, 3/4} are given

below:

U1 = {9600, 691, 11713, 4863, 1013, 6907, 1125, 828, 10372, 6337, 5590, 11024, 12339, 3439}10 ,
U2 = {3968, 1463, 2596, 3451, 1134, 3474, 657, 686, 3113, 1866, 2608, 2570}10 ,
U3 = {848, 1000, 930, 278, 611, 263, 744, 260, 356, 880}10 ,
U4 = {529, 807, 253, 1950, 3979, 2794, 956, 1892, 3359, 2127, 3812, 1580}10 ,
U5 = {62, 6173, 4409, 12688, 7654, 10804, 1763, 15590, 6304, 3120, 2349, 1470, 9063, 4020}10 . (6.71)

The EXIT curves of these QIRCC subcodes are shown in Figure 6.19, whereby the memory-3 sub-

codes of Eq. (6.71) are indicated by solid lines. Furthermore, in order to facilitate accurate EXIT

curve matching with a sufficiently versatile and diverse set of inner EXIT functions, we also se-

lected 5 weak randomly-constructed memory-1 subcodes for the same range of coding rates, i.e.

{1/4, 1/3, 1/2, 2/3, 3/4}. The corresponding seed transformations are as follows:

U6 = {475, 194, 526, 422, 417, 988, 426, 611, 831, 84}10 ,
U7 = {26, 147, 149, 99, 112, 184, 64, 139}10 ,
U8 = {37, 55, 58, 35, 57, 54}10 ,
U9 = {57, 248, 99, 226, 37, 93, 244, 54}10 ,
U10 = {469, 634, 146, 70, 186, 969, 387, 398, 807, 452}10 , (6.72)

and their EXIT curves are plotted in Figure 6.19 with the dotted lines. It must be mentioned here that

the range of coding rates chosen for the QIRCC subcodes can be expanded such that the EXIT curves
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Figure 6.19: Outer EXIT curves (inverted) of our QIRCC subcodes having code rates {1/4, 1/3, 1/2, 2/3, 3/4}
for both memory-3 as well as memory-1.

cover a larger portion of the EXIT plot, which would further improve curve matching. However, this

increases the encoding and decoding structual complexity.

Based on our proposed QIRCC, relying on the 10 subcodes specified by Eq. (6.71) and (6.72),

the input bit stream is divided into 10 fractions corresponding to the 10 different-rate subcodes. The

specific optimum fractions to be encoded by these codes are found by dynamic programming. More

specifically, since the QCCs belong to the class of linear codes, the EXIT curves of the 10 subcodes,

given in Figure 6.19, are superimposed onto each other after weighting by the appropriate fraction-

based weighting coefficients, which are determined by minimizing the area of the open EXIT-tunnel.

To elaborate a little further, the transfer function of the QIRCC is given by the weighted sum of each

subcode’s transfer function as shown below:

IE(P1) = T1[IA(P1)] =

Q
∑

q=1

̺q T
q
1 [IA(P1)] , (6.73)

where T q
1 [IA(P1)] is the transfer function of the qth subcode. For a given inner EXIT curve and outer

code rate RQ, we employ the curve matching algorithm of [118, 119] for optimizing the weighting

coefficients ̺ of our proposed QIRCC such that the square of the error between the inner and inverted

outer EXIT curves is minimized subject to Eq. (6.69). More explicitly, the error function may be

modeled as:

e(i) = T2[i, p]− T−1
1 [i], (6.74)

where p = (p∗− ǫ) given that p∗ is the noise limit defined by the Hashing bound and ǫ is an arbitrarily
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small number. The corresponding matrix-based notation may be formulated as [118, 119]:

e = b−A̺, (6.75)

where we have:

b =













T2[i1, p]

T2[i2, p]
...

T2[iN, p]













, and

A =













T 1−1

1 [i1] T 2−1

1 [i1] . . . TQ−1

1 [i1]

T 1−1

1 [i2] T 2−1

1 [i2] . . . TQ−1

1 [i2]
...

...
...

...

T 1−1

1 [iN] T 2−1

1 [iN] . . . TQ−1

1 [iN]













. (6.76)

Here, N denotes the number of sample points such that i ∈ {i1, i2, . . . , iN} and it is assumed that

N > Q. Furthermore, the error should be greater than zero for the sake of ensuring an open tunnel,

i.e. we have:

e(i) > 0, ∀i ∈ [0, 1]. (6.77)

The resultant cost function, i.e. sum of the square of the errors, is given by [118]:

J (̺1, . . . , ̺Q) =
∫ 1

0
e(i)2di, (6.78)

which may also be written as:

J (̺) = eTe. (6.79)

The overall process may be encapsulated as follows:

̺opt = argmin
̺

J (̺), (6.80)

subject to Eq. (6.69) and (6.77), which is a convex optimization problem. The unconstrained op-

timal solution for Eq. (6.80) is found iteratively using steepest descent approach with a gradient of

∂J (̺)/∂̺ = 2e, which is then projected onto the constraints defined in Eq. (6.69) and (6.77). Further

details of this optimization algorithm can be found in [68, 118, 119].

6.8 Results and Discussions II

For the sake of demonstrating the curve matching capability of our proposed QIRCC, we designed a

rate-1/9 concatenated code relying on the rate-1/3 EA inner code of Table 6.4, namely “PTO1REA” [95,

88], in conjunction with our proposed QIRCC, which constitutes the outer code. Since the entangle-

ment consumption rate of “PTO1REA” is 2/3, the resultant code has an entanglement consumption
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Figure 6.20: EXIT curves of the concatenated rate-1/9 system, with PTO1REA as the inner code and QIRCC

as the outer, at p = 0.345 and p = 0.34. The parameters of the inner and outer code are

summarized in Table 6.5, while the trajectories are plotted for a 30, 000-qubit long interleaver.

rate of 6/9, for which the corresponding noise limit is p∗ = 0.3779 according to Eq. (6.3) [88]. Fur-

thermore, since we intend to design a rate-1/9 system with a rate-1/3 inner code, we have Ro = 1/3.

Hence, for a target coding rate of 1/3, we used the optimization algorithm discussed in Section 6.7 for

the sake of finding the optimum weighting coefficients of Eq. (6.80) at the highest possible depolarizing

probability p = p∗ − ǫ. It was found that we only need to invoke two subcodes out of the 10 possible

subcodes, based on ̺ = [0 0 0 0 0.168 0.832 0 0 0 0]T , for attaining a marginally open tunnel, which

occurs at p = 0.345, as shown in Figure 6.20 using the simulation parameters of Table 6.5. Hence, the

resultant code has a convergence threshold of p = 0.345, which is only
[

10× log10(
0.345
0.3779 )

]

= 0.4 dB

from the noise limit of p∗ = 0.3779. Figure 6.20 also shows two decoding trajectories at p = 0.34 for a

30, 000 qubit long interleaver. As gleaned from the figure, the decoding trajectories closely follow the

EXIT curves reaching the (1, 1) point of perfect convergence.

The corresponding WER performance curves recorded for our QIRCC-based optimized design,

having the simulation parameters of Table 6.5, are seen in Figure 6.21, where the WER is reduced

upon increasing the number of iterations from 1 through to 15. More explicitly, our code converges to

a low WER for p ≤ 0.345. Thus, this convergence threshold matches the one predicted using EXIT

charts in Figure 6.20. More explicitly, since the EXIT chart tunnel closes for p > 0.345, the system

fails to converge, if the depolarizing probability is increased beyond 0.345. Hence, the performance
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Coding rate R = 1/9

Entanglement consumption rate E = 6/9

Interleaver length N = 3, 000 qubits

Iterations I = 15

Inner QCC

Coding rate Ri = 1/3

Entanglement consumption rate Ei = 2/3

Memory 3

Seed transformation Ui = {1355, 2847, 558, 2107, 3330, 739,
2009, 286, 473, 1669, 1979, 189}10

Outer QIRCC

Coding rate Ro = 1/3

Entanglement consumption rate Eo = 0

Weighting coefficients ̺ = [0 0 0 0 0.168 0.832 0 0 0 0]T

Table 6.5: Simulation parameters of the QIRCC-aided configuration. Inner code is the same as that in Ta-

ble 6.4, while the QIRCC is used as the outer code, whose weighting coefficients are optimized with

the aid of EXIT charts for the sake of approaching the Hashing bound.

does not improve upon increasing the number of iterations if the depolarizing probability exceeds the

threshold. By contrast, when the depolarizing probability is below the threshold, the WER improves

at each successive iteration. It should also be noted that the performance improves with diminishing

returns at a higher number of iterations.

Figure 6.22 compares our QIRCC-based optimized design with the rate-1/9 “PTO1REA-PTO1R”

configuration of [88]. An interleaver length of 3000 qubits was used. For the “PTO1REA-PTO1R”

configuration, the turbo cliff region emerges around 0.31, which is within 0.9 dB of the noise limit.

Therefore, our QIRCC-based design outperforms the “PTO1REA-PTO1R” configuration of [88]. More

specifically, the “PTO1REA-PTO1R” configuration yields a WER of 10−3 at p = 0.29, while our

design gives a WER of 10−3 at p = 0.322. Hence, our optimized design outperforms the ‘PTO1REA-

PTO1R” configuration by about
[

10× log10(
0.29
0.322 )

]

= 0.5 dB at a WER of 10−3. It must be mentioned

here that the “PTO1REA-PTO1R” configuration may have a lower error floor than our design for

low value of p, yet our design exhibits a better performance in the turbo cliff region. We further

compare our QIRCC-based optimized design with the exhaustive-search based optimized turbo code

of Section 6.6.3 in Figure 6.22. Our QIRCC-based design does not provide any improvement in

terms of its convergence threshold as compared to the optimized QTC of Section 6.6.3. However, our
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Figure 6.21: Achievable WER performance of our QIRCC-based optimized design, having the parameters of

Table 6.5, as the number of iterations (I) is increased from 1 through 15.

QIRCC-based design has a much lower error rate associated with a lower error floor, as gleaned from

Figure 6.22. Furthermore, the QIRCC-based design allows us to dispense with the exhaustive-search

based optimization of Section 6.6.3. It must be pointed out here that we may accrue an improvement

in the convergence threshold by increasing the number of QIRCC subcodes, which would facilitate

better curve matching.

6.9 Summary and Conclusions

Powerful QECCs are required for stabilizing and protecting the fragile constituent qubits of both

quantum computation as well as of communication systems against the undesirable decoherence. In

line with the developments in the field of classical channel coding theory, this may be achieved by

exploiting concatenated codes designs, which invoke iterative decoding. Therefore, in this chapter we

have provided a slow-paced tutorial for designing Hashing bound approaching concatenated quantum

codes using EXIT charts, which is based on the insights developed in Chapters 4 and 5.

We commenced our discourse by highlighting our design objectives in Section 6.2. In particular,

we characterized the performance of an ideal code in terms of its channel depolarizing probability

mitigating capacity, its coding rate and its entanglement consumption rate - all three of which are

related to each other through the Hashing bound, or more specifically the Hashing region of Figure 6.1.

We next presented the circuit based representation of QCCs in Section 6.3, which facilitates the

degenerate iterative decoding of concatenated quantum codes. We also discussed the construction of
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Figure 6.22: Comparison of the achievable WER performance of our QIRCC-based optimized QTC having

the parameters of Table 6.5 with the “PRO1REA-PTO1R” configuration of [95, 88] (Table 6.4)

and our exhaustive-search based optimized QTC of Section 6.6.3 (Table 6.3).

Clifford unitary encoder, which is completely specified by the Hadamard, phase and controlled-NOT

gates of Eq. (6.12). We next presented our system model in Section 6.4.1, which relies on the circuit-

based representation of a pair of concatenated QSCs. The degenerate iterative decoding approach,

which is invoked in the system model of Section 6.4.1, is then detailed in Section 6.4.2. Unlike

the classic syndrome-based MAP algorithm, which aims for finding the most likely error for a given

syndrome, a degenerate MAP algorithm aims for finding the most likely error coset. More explicitly,

the probabilities corresponding to degenerate errors are accumulated, as depicted in Eq. (6.49), in

order to cater for the specific errors, which can be corrected by the same recovery operation. Finally,

in Section 6.5, we extended the application of classical nonbinary EXIT charts to the circuit-based

syndrome decoder of QTCs, to facilitate the EXIT-chart aided Hashing bound approaching design

of QTCs. While the classical EXIT charts aim for modeling the a-priori information concerning the

input bits of the inner encoder (and similarly the output bits of the outer encoder), the EXIT charts

conceived for quantum codes have the objective of modeling the a-priori information concerning the

corresponding error-sequence, i.e. the error-sequence related to the input qubits of the inner encoder

(and similarly the error-sequence related to the output qubits of the outer encoder).

We evaluated the performance of our EXIT-chart based code design in Section 6.6. More specif-

ically, we first established the accuracy of our EXIT chart approach in Section 6.6.1, where it was

demonstrated that our EXIT-chart predictions of Figure 6.12 match the Monte-Carlo simulation re-

sults, recorded in Figure 6.13, to a reasonable degree. We next analyzed in Section 6.6.2 the behavior

of both an unassisted (non-recursive) and an EA (recursive) inner QCC using EXIT charts. We
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demonstrated in Figure 6.14 that similar to their classical counterparts, the recursive inner quantum

codes constitute families of QTCs having an unbounded minimum distance. In Section 6.6.3, we op-

timized the constituent inner and outer components of the QTC of Figure 6.6 using EXIT charts. In

this context, our design guidelines for achieving a Hashing bound approaching performance may be

summarized as follows:

� As discussed in the context of our design objectives in Section 6.2, we commence our design

by determining the noise limit p∗ for the desired code parameters, i.e the coding rate and the

entanglement consumption rate of the resultant concatenated quantum code, using the capacity

curves of Figure 6.1.

� We then proceed with the selection of the inner stabilizer code of Figure 6.6, which has to be

both recursive as well as non-catastrophic, as argued in Section 6.4.1. Since the unassisted

quantum codes cannot be simultaneously both recursive as well as non-catastrophic, we employ

an EA code. Furthermore, the EA inner code of Figure 6.6 may be either derived from the

family of known classical codes, as discussed in Chapter 4, or it may be constructed using the

random Clifford operations, which were discussed in Section 6.3. At this point, the EXIT curves

of Section 6.5 may be invoked for the sake of finding that specific inner code, which yields the

largest area under its EXIT-curve at the noise limit p∗.

� Finally, we find the optimal non-catastrophic outer code of Figure 6.6, which gives the best

EXIT-curve match to that of a carefully chosen inner code having the largest area under its

EXIT curve. Our EXIT-chart aided design of Section 6.5 aimed for creating a narrow, but

marginally open tunnel between the EXIT curves of the inner and outer decoders at the highest

possible depolarizing probability, as demonstrated in the EXIT curves of Figure 6.15. The

narrower the tunnel-area, the lower is the deviation from the Hashing bound, which may be

quantified using Eq. (6.2).

Recall that the desired code structure may also be optimized on the basis of a range of conflicting

design challenges, which were illustrated in Figure 6.2.

We demonstrated in Section 6.6.3 that in contrast to the distance spectra based QTCs of [88],

whose convergence threshold is within 0.9 dB of the Hashing bound, the convergence threshold of

our optimized QTC is within 0.3 dB of the noise limit, as evidenced in Figure 6.15. However, the

resultant optimized QTC has a higher error floor and worse WER performance, which was recorded

in Figure 6.16 and compared to the performance of [88] in Figure 6.17. Nevertheless, the error floor

may be reduced upon increasing the interleaver length, which would in turn incur a longer delay. For

example, upon increasing the interleaver length from N = 1500 to N = 12, 000 in Figure 6.16, the

WER floor was reduced from WER = 10−2 to WER = 2×10−3, which is about an order of magnitude.

It is important to mention here that we did not intend to carry out an exhaustive code search for

finding the best code, but our aim was rather to find a design optimized in terms of improving the



Distance from Capacity

Code Structure Convergence

Threshold

Performance at

WER = 10−2

Performance at

WER = 10−3

QTC of [88] 0.9 dB 1.1 dB 1.15 dB

Exhaustive-search

based optimized QTC

0.3 dB 0.8 dB Error floor <

10−3

QIRCC-based QTC 0.4 dB 0.6 dB 0.7 dB

Table 6.6: Comparison of the performance of the QTC of [88], i.e. PRO1REA-PTO1R, with our exhaustive-

search optimized QTC of Section 6.6.3 and the PRO1REA-QIRCC of Section 6.8. All the three

configurations rely on a rate-1/3 EA-QCC (recursive and non-catastrophic) as the inner code, while

the outer code is an unassisted rate-1/3 QCC (non-catastrophic).

convergence threshold for the sake of demonstrating the explicit benefit of our EXIT-chart based

design in terms of approaching the Hashing bound.

For the sake of further facilitating the Hashing bound approaching code design, we proposed the

structure of QIRCC in Section 6.7, which constitutes the outer component of a concatenated quantum

code. The proposed QIRCC allows us to dispense with the exhaustive code-search methods, since it

can be dynamically adapted to match any given inner code using EXIT charts. We constructed a 10-

subcode QIRCC and used it as an outer code in concatenation with the non-catastrophic and recursive

EA-QCC of [95, 88]. We optimized our design using EXIT charts, as demonstrated in Figure 6.20,

while the achievable performance was recorded in Figure 6.21. Finally, we compared the designs of

Table 6.3, Table 6.4 and Table 6.5 in Figure 6.22. The corresponding results are summarized in

Table 6.6.

In the spirit of designing iterative code structures, in this chapter we conceived Hashing bound

approaching designs for concatenated quantum codes. Pursuing further the iterative code design,

in the next chapter we will focus our efforts on the family of Quantum Low Density Parity Check

(QLDPC) codes from the perspective of code design as well as on the associated iterative decoding

algorithms.





Chapter 7
Quantum Low Density Parity Check Codes

7.1 Introduction

I
n Chapter 6, we conceived Hashing bound approaching designs for concatenated quantum codes.

Pursuing further the quest for designing iterative code structures, in this chapter we focus on

the Quantum Low Density Parity Check (QLDPC) codes. In particular, the astounding near-

capacity performance of the classical Low Density Parity Check (LDPC) codes [69, 164, 165, 166, 167],

despite an affordable decoding complexity, has inspired the community to design QLDPC codes. The

sparseness of the QLDPC matrix is of particular interest in the quantum domain, because it requires

only a small number of interactions per qubit during the error correction procedure. More specifically,

each qubit is only involved in a small fraction of the stabilizer generators (or the rows of the QLDPC

matrix). Consequently, the sparse nature of QLDPC matrix inherently limits the propagation of

errors, hence facilitating ‘fault tolerant’ decoding.

QLDPC codes belong to the family of Quantum Stabilizer Codes (QSCs) [38, 39], which is a

generalized formalism for designing quantum codes from any arbitrary classical binary and quaternary

codes, as discussed in Chapter 4. However, this transfiguration from the classical to the quantum

domain imposes a stringent symplectic criterion on the parent classical codes, which brings with it

various design challenges. Against this backdrop, in this chapter we survey the evolution of QLDPC

code designs, focusing on the various code constructions to conceive powerful QLDPC codes from

the known families of classical LDPC codes. We also review the syndrome-based iterative decoding

algorithms invoked for QLDPC codes. Finally, we contribute to these developments by conceiving a

new code design and an improved decoding algorithm. More specifically, our novel contributions are

as follows [1, 2]:

� We have proposed a radically new class of high-rate row-circulant Quasi Cyclic (QC) QLDPC

codes. More specifically, our proposed unassisted non-dual-containing CSS QLDPC codes can

163
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be constructed from arbitrary row-circulant classical QC-LDPC matrices, which are known to

generate efficient short and moderate length high-rate classical QC-LDPC codes.

� We have conceived a modified non-binary decoding algorithm for homogeneous Calderbank-Shor-

Steane (CSS)-type QLDPC codes, which is capable of mitigating the impact of the unavoidable

length-4 cycles..

� We demonstrate that the Uniformly-Reweighted Belief Propagation (URW-BP) technique of [168,

169] may also be invoked for further improving the attainable performance.

The rest of the chapter is organized as follows. We commence with a review of QLDPC code designs

in Section 7.2, while a range of powerful decoding techniques are discussed in Section 7.3. We next

propose our new code design in Section 7.4, whose performance is evaluated in Section 7.5. Finally, we

present our proposed decoding algorithm in Section 7.6, while in Section 7.7 we detail the reweighted

belief propagation. The corresponding simulation results are presented in Section 7.8, while Section 7.9

concludes our discourse.

7.2 Quantum LDPC Code Designs

Analogous to classical LDPC codes, which belong to the family of linear block codes discussed in

Section 4.2, QLDPC codes are inherently stabilizer codes, which may be characterized using an equiv-

alent classical Parity Check Matrix (PCM) H of Eq. (4.30). More specifically, an [n, k] QLDPC code

having a coding rate of RQ = k/n is equivalent to a (2n, n + k) binary LDPC code having a coding

rate of Rc = (n+ k)/2n. We may divide the QLDPC codes into three main categories on the basis of

the general global structure of the associated PCM H, namely Calderbank-Shor-Steane (CSS) codes,

non-CSS codes and Entanglement-Assisted (EA) codes, as summarized in Figure 7.1. The CSS-type

constructions may also be classified as dual-containing and as non-dual-containing codes. Let us now

take a look at each of these categories individually.

7.2.1 Calderbank-Shor-Steane Codes

Ideally, any two classical binary LDPC codes, which meet the symplectic criterion, may be used

for constructing a CSS-based QLDPC code. However, randomly choosing the constituent pair of

classical codes is not feasible, because finding two sparse codes, which satisfy the stringent symplectic

constraint, is highly unlikely. This motivated Postol [46] to conceive the first example of a CSS-based

non-dual-containing QLDPC code from a small (15, 7) finite geometry based classical LDPC code in

2001. More specifically, in Postol’s code, the PCM of a finite geometry based cyclic classical LDPC

code constitutes the H ′
z of Eq. (4.35), while H ′

x is derived from H ′
z, so that the symplectic criterion is

satisfied, i.e. we have H ′
zH

′T
x = 0. Since both the constituent PCMs, i.e. H ′

z and H ′
x, are cyclic, this

facilitates the implementation of the encoder. However, Postol did not develop a generalized method
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Figure 7.1: Classification of QLDPC codes.

for his proposed design, which could facilitate the construction of QLDPC codes from any arbitrary

finite geometry based classical LDPC codes. This gap was filled by Mackay et al. in [47], where several

systematic constructions were developed for the CSS-based QLDPC codes by restricting the designs

to the dual-containing structure.

Before proceeding with the constructions of [47], let us take a look at the symplectic condition

of Eq. (4.34) in the context of the dual-containing QLDPC codes. Recall from Section 4.3.2.1 that the

symplectic criterion of Eq. (4.34) reduces to H ′
zH

′T
z = 0 for the dual-containing QLDPC codes, which

have H ′
x = H ′T

z . This in turn implies that the PCM of a classical LDPC code may only be used for

constructing a dual-containing QLDPC code if:

1. it has an even row weight; and

2. every pair of rows has an even number of overlapping 1’s, which we may term as an ’even overlap’.

By contrast, good classical LDPC codes must have at most a single overlapping 1 between every pair of

rows for the sake of avoiding length-4 cycles because short cycles of length-4 impair the performance of

the associated decoding algorithm. Consequently, the ‘even overlap’ condition results in unavoidable

cycles of length 4 in the resultant PCM, as depicted in Figure 7.2 for a random binary PCM H ′
z given

by1:

H ′
z =

(

1 0 1 1

1 1 1 0

)

. (7.1)

1This is a random example for illustrating the impact of an even number of overlaps. The row weight must be even.

Furthermore, the H ′
z of Eq. (7.1) may not be a good classical code.
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Length-4
Cycle

c0 c1

v1 v2v0 v3

H ′
z =

(

1 0 1 1
1 1 1 0

)

Figure 7.2: Tanner graph of H ′
z . An ‘even overlap’ between the rows of H ′

z results in a length-4 cycle.

Furthermore, the constraint H ′
zH

′T
z = 0 also implies that the code-space of the underlying classical

code must contain its dual. Hence, the resultant code contains codewords having a weight equal to the

row weight ρ. Therefore, the minimum distance of the classical dual-containing code is upper-bounded

by ρ. Surprisingly, this upper-bound does not exist for quantum codes due to the degenerate nature

of quantum errors. Recall from Section 4.3.3 that the n-tuple channel error pattern acting on the

codewords of a QSC, may be classified as:

1. Detected Error Patterns: These error patterns anti-commute with the stabilizers of the code,

yielding a non-trivial syndrome.

2. Harmful Undetected Error Patterns: This class of error patterns commutes with the sta-

bilizers. Consequently, these error patterns are harmful, because they map one valid codeword

onto another; thus, corrupting the codeword without triggering a non-trivial syndrome. Harmful

undetected error patterns are attributed to the small minimum distance of the code.

3. Harmless Undetected Error Patterns: This is a unique class of error patterns, which do

not have a classical analogue. Similar to the ‘harmful undetected error patterns’, these error

patterns also commute with the stabilizers, but they are harmless in the context of quantum

codes. This is because these are the degenerate errors, which belong to the stabilizer group, and

therefore do not corrupt the state of the valid codewords. More explicitly, for dual-containing

CSS codes, the harmless undetected error patterns lie in the code-space of the dual code C⊥
1 , as

depicted in Figure 7.3. It must be mentioned here that although the harmless undetected errors

do not affect the minimum distance of the resultant quantum code, they lead to the ‘symmetric

degeneracy error’ in the iterative decoding procedure of QLDPC codes, which will be discussed

in Section 7.3.3.

Bicycle codes, which were proposed by Mackay et al. in [47], marked the first major breakthrough

towards the realization of CSS-based dual-containing quantum LDPC codes. The proposed code design

relies on a semi-random/semi-structured construction, which satisfies the dual-containing constraint

by deliberately imposing a global structure on the constituent PCM. A bicycle code having a row
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Harmful Undetected Error Patterns

Detected Error Patterns

Harmless Undetected Error Patterns

C⊥
1

C1

n-tuple Errors

Figure 7.3: Error pattern classification for dual-containing CSS codes.

weight of ρ, a block length of n and (n−k) stabilizers is constructed using a random sparse n/2×n/2
cyclic matrix Cm, which has a row weight of ρ/2. The non-zero entries in Cm can be chosen either

randomly or using a difference set satisfying the property that every difference (modulo n/2) occurs

at most once in the set. This matrix Cm is then used for constructing a base matrix H0, which is a

concatenation of Cm and its transpose, i.e. we have:

H0 =
(

Cm, C
T
m

)

. (7.2)

Consequently, H0 is a dual-containing code satisfying the ‘even overlap’ constraint, because every

overlap that occurs in Cm may also be found in CT
m. Furthermore, since H0 is an n/2× n matrix, the

resultant dual-containing quantum LDPC code has a coding rate RQ = 0 (or equivalently Rc = 1/2).

To achieve a non-zero coding rate, k rows of H0 are discarded, so that the column weights of the

resultant (n−k)×n PCM H ′
z are as uniform as possible. This code design offers flexibility in choosing

the code parameters, i.e. ρ, n and k. However, the minimum distance of the resultant code is upper-

bounded by ρ. This is because the discarded rows of H0 are all codewords of weight ρ, which are not

contained in the dual, and therefore contribute to the harmful undetected error patterns.

Mackay et al. also proposed unicycle codes in [47], which are derived from perfect difference sets2.

The perfect difference set property implies that all pairs of rows of the PCM must have a single

2A perfect difference set characterized on the additive group of size n has the unique property that every integer from

1 to n − 1 may be expressed as a difference of two integers in the set (modulo n) in exactly one way. By contrast, in

the plain difference sets, every difference occurs at most once, i.e. either it may not occur or will occur only once. For

example, the set {1, 2, 4} forms a perfect difference set for the group of size 7 because every integer from 1 to 6 can be

expressed as the difference of two elements in the difference set, i.e. we have:

(1− 2)mod 7 = 6, (1− 4)mod 7 = 4, (2− 1)mod 7 = 1,

(2− 4)mod 7 = 5, (4− 1)mod 7 = 3, (4− 2)mod 7 = 2.
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overlapping 1. Since we need an ‘even overlap’ to achieve a dual-containing structure, the PCM is

extended by adding an extra column having all logical ones. Hence, every pair of rows in the resultant

PCM have two overlapping 1’s, which result in a single length-4 cycle between every pair of rows.

Thus, an (n, k) PCM is transformed into a dual-containing (n+1, k+1) PCM, which has a row weight

of (ρ+1) (where ρ is the row weight of the initial matrix and must be odd) and whose column weights

are all ρ, except for the last ‘all-one’ column. Mackay et al. also suggested that the unique structure

of unicycle codes may be exploited for avoiding the length-4 cycles during the decoding procedure [47].

More explicitly, a unicycle code may be viewed as a superposition of two codes, i.e. one having an

‘all-zero’ column at the end and the other having an ‘all-one’ column. For the sake of avoiding the

short cycles, each of the two codes is decoded separately using the sum product algorithm [47]. If

both decoders return a valid codeword, the codeword which has the maximum likelihood is chosen.

Hence, an improved decoding procedure is conceived at the cost of an increased decoding complexity.

Furthermore, the minimum distance of the unicycle codes constructed using difference sets is upper-

bounded by the row weight, because the resultant code has codewords of weight ρ, which do not lie

in the dual. Since the choice of n, k and ρ for perfect difference sets is limited, this design does not

offer much flexibility in choosing the code parameters. By contrast, bicycle codes can be constructed

from any arbitrary cyclic classical LDPC.

To extend the application of Mackay’s unicycle codes to a wider range of code parameters, Aly [73]

exploited the classical type-II Euclidean Geometry (EG) LDPC codes of [170]. Similar to the perfect

difference sets, a classical type-II EG LDPC code having a PCM HEG-II has the unique characteristic

that all pairs of rows have a single overlapping value of 1. Consequently, Aly suggested that the code

characterized by an (n − k) × n matrix HEG-II may be converted into a dual-containing code in the

following two ways:

1. If the row weight of HEG-II is odd, then similar to the unicycle codes, an ‘all-one’ column 1 is

appended to HEG-II, i.e. we have:

H ′
z = (HEG-II | 1) . (7.3)

2. If the row weight of HEG-II is even, then 1 is appended to HEG-II for the sake of ensuring an

‘even overlap’, while an identity matrix I of size (n− k)× (n− k) is appended to make the row

weight even, i.e. we have:

H ′
z = (HEG-II | 1 | I) . (7.4)

The resultant codes offer beneficial high coding rates. However, they have an upper-bounded minimum

distance of at least (γ + 1), where γ denotes the column weight.

Unicycle code construction was further explored by Djordjevic [74] for designing Quasi-Cyclic (QC)

high-rate dual-containing QLDPC codes from the Balanced Incomplete Block Design (BIBD) based

classical LDPC codes [171, 172], which have a minimum distance of at least (γ + 1), where γ denotes

the column weight. More specifically, the BIBD3 is characterized by the parameter λ. A BIBD-based

3BIBD(v, b, r, k, λ) distributes all the v elements (or points) of a set V into b subsets (or blocks) of size k such that,
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LDPC code has exactly λ overlaps between every pair of rows. Since good classical LDPC codes must

have at most a single row overlap, λ is set to 1 for designing classical LDPC codes with a girth of

at least 6. Consequently, analogous to the perfect difference set based classical LDPC codes, each

pair of rows has a single overlapping value of 1, which can be made even by imposing the unicycle

code structure on the PCM. Djordjevic also designed dual-containing LDPC codes by using BIBDs

associated with an even λ. Unfortunately, the even λ based QLDPC codes failed to outperform the

unicycle based BIBD constructions [74].

Since all the aforementioned dual-containing constructions resulted in an upper-bounded mini-

mum distance, the quest for the construction of unbounded QLDPC codes continued. Pursuing this

objective, another non-trivial class of dual-containing QLDPC codes was proposed by Mackay et al.

in [70], which was derived from Cayley graphs. These codes were further investigated by Couvreur et

al. in [71, 72], where it was formally shown that the lower bound on the minimum distance of the

resultant code is a logarithmic function of the code length, thus the minimum distance can be im-

proved by extending the codeword (or block) length, albeit again, only logarithmically. However, this

is achieved at the cost of an increased decoding complexity imposed by the escalating row weight,

which also increases logarithmically with the block length. Furthermore, Cayley graph based designs

may be viewed as a special class of the topological codes [173, 174, 175]4, which are already known to

have growing minimum distances.

Let us recall that the dual-containing QLDPC codes have unavoidable short cycles, which impair

the performance of the decoding algorithm. Hence, even if dual-containing QLDPC codes having an

unbounded minimum distance are designed, they are unlikely to surpass the performance of their non-

dual-containing counterparts. Therefore, in the midst of these activities, Lou et al. [75, 76] rekindled

the interest in CSS-based non-dual-containing QLDPC codes by invoking the classical Low Density

Generator Matrix (LDGM) codes for code construction. More specifically, since both the generator

matrix and the PCM of an LDGM code are sparse, they can be used as the components of a CSS

code. Let G̃ and H̃ be the generator matrix and PCM, respectively, of an (n, k) LDGM code. Then

the resultant CSS code may be formulated as follows:

H =

(

H̃ 0

0 G̃

)

. (7.5)

� each pair of elements occurs in exactly λ of the blocks,

� every element occurs in exactly r blocks, and

� the number of elements in each block k is small as compared to the size v of set V ; thus, giving it the name

“incomplete”.

Let us consider a set V of seven numbers, which is given by V = {1, 2, 3, 4, 5, 6, 7}. Then, the blocks {1, 2, 4}, {2, 6, 5},

{3, 4, 6}, {4, 5, 7}, {1, 5, 6}, {2, 6, 7} and {1, 3, 7} constitute the BIBD(7,7,3,3,1) since there are 7 elements (v) in the set

V which are distributed among 7 blocks (b), each element appears in 3 blocks (r), each block has 3 elements (k) and

each pair of elements occur in 1 block (λ).
4Topological constructions are beyond the scope of this work.
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Since H̃ is an (n − k) × n matrix, while G̃ is a k × n matrix, the resultant PCM H is an n × 2n

matrix. Consequently, the corresponding QLDPC code has a coding rate of zero. Lou et al. [75, 76]

suggested that this may be avoided by applying linear row operations both to G̃ as well as to H̃ for

the sake of reducing their number of rows. Unfortunately, this row-reduction may in turn create short

cycles in the resultant PCM. For the sake of avoiding the adverse impact of these short cycles, Lou et

al. [75, 76] also conceived a modified Tanner graph, which requires code doping [176] for pushing the

iterative decoding process towards convergence. Hence, an improved performance is achieved at the

cost of an increased decoding complexity.

Unfortunately, the constituent codes of all the aforementioned CSS constructions, both those of

the dual-containing as well as of the non-dual-containing codes, suffer from the presence of length-4

cycles. To dispense with these short cycles, Hagiwara et al. [77, 177] conceived a unique class of

non-dual containing QC-QLDPC codes, which have a girth of at least 6. More specifically, let us

consider a circulant matrix T having a size of LP/2 × LP/2, ρ = L/2 and γ = L, which is given

by [177]:

T =













t0 t1 . . . tL/2−1

tL/2−1 t0 . . . tL/2−2
...

...

t1 t2 . . . t0













, (7.6)

where ti denotes the index of the circulant permutation matrix5 of size P and ti ∈ [P∞] := {0, 1, . . . , P−
1}∪ {∞}. Hagiwara et al. have shown that H ′

z and H ′
x derived from the matrix T of Eq. (7.6) satisfy

the symplectic criterion, if they have the form:

H ′
z = (T1, T2) and H ′

x =
(

−T T
2 ,−T T

1

)

. (7.7)

Furthermore, since row deletion does not perturb the symplectic criterion, rows may be deleted from

H ′
z andH

′
x in order to achieve the desired coding rate. For the sake of ensuring a girth of 6, Hagiwara et

al. relied upon algebraic combinatorics for designing the constituent circulant matrices T1 and T2,

so that all the rows of H ′
z as well as of H ′

x have at most a single overlap. The bicycle codes of [47]

may be viewed as a special case of this construction, i.e. when P = 1 and T2 = T T
1 . Unfortunately,

5A circulant permutation matrix I(1) of size P is given by:

I(1) =























0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0

...
...

1 0 0 . . . 0























.

More explicitly, I(1) is a P × P identity matrix shifted to the right by one position. Therefore, I(x) may be defined as

a P × P identity matrix shifted to the right by x positions, where x is known as the index of the permutation matrix.

Moreover, x = 0 defines an unshifted identity matrix, while x = ∞ is specially used to denote a zero matrix of size P ×P .
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the resultant codes failed to outperform MacKay’s bicycle codes [47] and their minimum distance is

upper-bounded by the row weight.

Among all the dual-containing codes discussed above, Mackay’s bicycle construction [47] offers the

best performance at an affordable decoding complexity. However, the resultant performance is still not

on par with that of the classical LDPC codes. For example, the rate-1/4 bicycle code of [47], having

n = 19, 014, operates within about 5.5 dB of the Hashing limit at a Word Error Rate (WER) of 10−3.

Furthermore, all the aforementioned codes have an upper-bounded minimum distance except for the

Cayley graph based designs. In the quest for increasing the minimum distance and hence to approach

the capacity, Hagiwara et al. extended the QC design of [77, 177] to Spatially-Coupled (SC) codes

in [80], which outperformed their corresponding ‘non-coupled’ counterparts at the cost of a small coding

rate loss. However, the performance still remained relatively far from the capacity. More specifically,

the SC QC-QLDPC of [80], having a coding rate of 0.49 and a length of n = 1, 81, 000, operates

within about 3.8 dB of the Hashing limit at a WER of 10−3. Kasai et al. further contributed to these

developments by deriving non-binary QC-QLDPC codes in [78, 79] from the design of [77, 177]. The

resultant codes outperformed their binary counterparts at the cost of an increased decoding complexity.

A rate-1/2 code, having a length of n = 20, 560 and a Galois field of GF(210), was shown to operate

within about 1.9 dB of the Hashing limit at a WER of 10−3. The SC codes were further investigated

by Andriyanova et al. in [178], where the constituent codes were derived from the classical LDGM

codes as in [75, 76]. Analogous to the EA quantum codes, Andriyanova et al. assumed that some

qubits are transmitted over a noiseless channel. Consequently, the resultant rate-1/4 LDGM-based

SC-QLDPC codes, having a length of n = 76, 800, succeeded in operating within about 1.7 dB of

the Hashing limit at a WER of 10−3. The assumption of having noiseless qubits was later eliminated

in [179], whereby these qubits were protected by the error reducing Quantum Turbo Code (QTC)

of [179], which resulted in a modest coding rate loss and in a moderately increased complexity for the

overall code. It was shown that the performance of the resultant rate-1/2 QTC-assisted LDGM-based

SC-QLDPC code, having a length of n = 8, 21, 760, is within about 0.7 dB of the Hashing limit at a

WER of 10−3. Figure 7.4 compares the achievable performance of the aforementioned codes, namely

‘bicycle’ code of [47], ‘SC QC-QLDPC’ code of [80], ‘non-binary QC-QLDPC’ code of [78, 79], ‘LDGM-

based SC-QLDPC’ code of [178] and the ‘QTC-assisted LDGM-based SC-QLDPC’ code of [179], at a

WER of 10−3, which is benchmarked against the Hashing bound.

All the main contributions pertaining to CSS-based QLDPC codes are summarized in Figure 7.5.

7.2.2 Non-CSS Codes

Non-CSS stabilizer codes have the potential of exploiting any redundancy more efficiently than their

CSS-based counterparts. For example, a CSS-based block code requires a block length of 7 qubits to

correct a single bit-flip or phase-flip [34], while only 5 qubits are required for a non-CSS block code [36].

Consequently, Camara et al. [48, 49] proposed the construction of non-CSS (also called unrestricted)

QLDPC codes. In contrast to most of the aforementioned dual-containing constructions, which satisfy
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Figure 7.4: Achievable performance at a WER of 10−3 benchmarked against the Hashing bound for the

‘bicycle’ code (R = 0.25, n = 19, 014) of [47], ‘SC QC-QLDPC’ code (R = 0.49, n = 1, 81, 000)

of [80], ‘non-binary QC-QLDPC’ code (R = 0.5, n = 20, 560, GF(210)) of [78, 79], ‘LDGM-

based SC-QLDPC’ code (R = 0.25, n = 76, 800) of [178] and the ‘QTC-assisted LDGM-based

SC-QLDPC’ code (R = 0.25, n = 8, 21, 760) of [179].

the symplectic criterion in their global code structure, the design conceived by Camara et al. aims at

building the symplectic constraint into the local code structure. More specifically, since the PCM of

a classical quaternary LDPC code can be mapped onto the generators of a QSC based on Eq. (4.39),

Camara et al. developed a group theoretical approach for constructing self-orthogonal quaternary

LDPC codes satisfying the symplectic criterion of Eq. (4.41). It was found that the Tanner graph of

the resultant self-orthogonal quaternary PCM has cycles of length 4. However, these short cycles are

imposed by the commutativity constraint. More specifically, every column of a quaternary PCM must

contain at least two different non-zero entries, i.e Pauli-X, Pauli-Z, or Pauli-Y, so that it can correct

both phase-flips as well as bit-flips occurring on that qubit. On the other hand, any two rows of the

PCM must have an even number of positions with different non-zero elements (or non-Identity Pauli

operators). For example, let us consider a weight-2 column of a PCM, which is involved in two rows

with a value of 1 and ω, respectively. Now to meet the commutativity constraint, these two rows must

have another overlapping column having different non-zero entries; thus, creating cycles of length-4.

Intuitively, these short cycles are also present in the PCM H of the CSS codes, when they are viewed

in the quaternary domain. In fact, these cycles are excessive in the dual-containing CSS codes, which

also have the additional cycles resulting from the dual-containing constraint6. The proposed non-CSS

QLDPC codes of [48, 49] outperformed the bicycle codes in the waterfall region of their performance

6This is further discussed in Section 7.3.3.
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2000

2009

Postol [46] conceived the prototype of a non-dual-containing QLDPC from a small finite geometry

based classical LDPC codes. A generalized formalism for code construction was lacking.

2001
Mackay et al. [47] proposed a generalized construction called ‘bicycle’ for designing dual-containing

QLDPC codes from any arbitrary cyclic classical LDPC code. Minimum distance was upper-bounded by

the row weight and an improved decoding algorithm was required for tackling length-4 cycles.

2004

Mackay et al. [47] introduced a generalized dual-containing code structure called ‘unicycle’ derived

from perfect difference sets and developed an improved decoding algorithm for unicycle codes to over-

come the issue of length-4 cycles. Minimum distance was upper-bounded by the row weight, range of

possible code parameters was limited and the associated decoding complexity was increased.

2004

Lou et al. [75, 76] exploited the generator and PCM of classical LDGM codes for constructing non-

dual-containing QLDPC codes and invoked code doping based improved decoding. Minimum distance

was upper-bounded and decoding complexity was increased.

2005

Camara et al. [48, 49] exploited a group theoretical approach to construct self-orthogonal quaternary

PCMs for non-CSS QLDPC codes. Failed to outperform Mackay’s codes of [47].

2005
Hagiwara et al. [77] constructed non-dual-containing QC-QLDPC codes having a girth of 6 using a

pair of classical QC-LDPC codes, which was found with the aid of algebraic combinatorics. Minimum

distance was upper-bounded by the row weight and the proposed code failed to outperform MacKay’s bicycle

codes [47].

2007

Aly et al. [73] constructed dual-containing QLDPCs from finite geometry based classical LDPCs by

exploiting the unicycle code design. Minimum distance was upper-bounded and decoding complexity was

increased.

2008

Djordjevic [74] derived dual-containing QLDPCs from even index BIBDs as well as BIBD-based uni-

cycle codes. Minimum distance was upper-bounded. Even index BIBD code failed to outperform the

BIBD-based unicycle code.
2008

Hsieh et al. [93] conceived the first EA QC-QLDPC codes, which outperformed their unassisted counter-

parts. Despite their efforts to minimize the number of ebits, significant fractions of ebits were required,

which grew with the code length.

2009

Hsieh et al. [180, 181] proposed finite-geometry based EA-QLDPCs. Two of the proposed constructions

required only a single ebit, while the entanglement consumption rate was a decreasing function of the

code length for the remaining designs.

2009

Figure 7.5: (Continued on the next page)
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2010

2015

Tan et al. [81] conceived several systematic non-CSS constructions by exploiting simple yet powerful

coding techniques, e.g. concatenation, rotation and scrambling. Failed to outperform Mackay’s codes

of [47].

2010

Djordjevic [182] introduced BIBD based EA-QLDPC codes requiring only a single ebit.

2010

Fujiwara et al. [183] conceived a general framework for designing EA-QLDPCs having a prescribed

number of ebits. Some designs required only a single ebit.

2010

Couvreur et al. [71, 72] further investigated the Cayley graph-based dual-containing QLDPC codes

of [70] to resolve the issue of upper-bounded minimum distance. Row weight increased logarithmically

with the block length, imposing an increased decoding complexity.

2011

Kasai [78, 79] extended the non-dual-containing QC-QLDPC codes of [77] to non-binary construc-

tions. Minimum distance was upper-bounded and decoding complexity was increased.

2011

Hagiwara et al. [80] proposed spatially-coupled non-dual-containing QC-QLDPC codes, which outper-

formed the ‘non-coupled’ design of [77] at the cost of a small coding rate loss. Minimum distance was

upper-bounded.

2011

Andriyanova et al. [178] derived spatially coupled non-dual-containing QLDPCs from LDGM-based

codes of [75, 76], resulting in a performance close to the Hashing limit. Noisless transmission of some

qubits was assumed and minimum distance was upper-bounded.

2012

Fujiwara et al. [105] further investigated EA-QLDPCs requiring a single ebit.

2013

Maurice et al. [179] improved the non-dual-containing design of [178] by protecting the noiseless

qubits using the error reducing turbo code of [179]. Performance was arbitrarily close to the Hashing

limit at the cost of a small coding rate loss. Minimum distance was upper-bounded and encoding/decoding

complexity was increased.

2013

Fujiwara et al. [184] conceived EA-QLDPC codes relying on ‘less noisy’ qubits, which assume a phase-

flip channel model for the ebits.

2015

Figure 7.5: Major contributions to the development of QLDPC codes. The ‘code type’ for each contribution

is highlighted in bold, while the associated ‘demerits’ are marked in italics.
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curve, while yielding a higher error floor due to their small minimum distance. It is expected that this

non-CSS construction may have an unbounded minimum distance, thus yielding lower error floors,

when the block length is sufficiently large. However, this was not explicitly proven in [48, 49].

Pursuing the same line of research, Tan et al. [81] were the first researchers to design the con-

stituent PCMsHz andHx of a non-CSS code by invoking classical binary codes. More specifically, they

conceived several systematic constructions for non-CSS QLDPC codes, which imposed both global as

well as local structures on the underlying binary codes for the sake of satisfying the symplectic criterion.

This is achieved by exploiting simple yet powerful coding techniques, which include concatenation,

rotation and scrambling. The designed codes exhibit a better performance than the non-CSS codes

of [48, 49]. However, they still failed to outperform Mackay’s codes of [47]. In conclusion, the major

milestones achieved in the domain of non-CSS QLDPC codes are summarized in Figure 7.5 .

7.2.3 Entanglement-Assisted QLDPC Codes

Efficient classical LDPC codes exist, which are known to approach the Shannon capacity for a large

block size. For example, the optimized 1/2-rate classical LDPC code of [185] operates within 0.13 dB

of the capacity limit for transmission over an Additive White Gaussian Noise (AWGN) channel at

a Bit Error Rate (BER) of 10−6 using a code length of 106. More specifically, the turbo cliff of

this LDPC code is merely 0.06 dB away from the Shannon capacity. This inspired researchers to

achieve a comparable performance for QLDPCs. Unfortunately, the symplectic criterion, or more

specifically the commutativity requirement of the stabilizers, limits the direct application of such

efficient classical codes in the quantum domain. As discussed in Sections 7.2.1 and 7.2.2, only a

limited class of classical codes, which conform to stringent local or global structural constraints, may

be used as the constituents of a quantum code. This obstacle may be overcome by exploiting the

EA quantum code designs of [90, 91, 92], which assist us in importing any classical code into the

quantum domain. However, the pre-shared noiseless entangled qubits (ebits) of an EA code constitute

a valuable resource, because maintaining a noiseless entangled state is not a trivial task. Consequently,

a practically realizable code design should aim for minimizing the number of pre-shared noiseless ebits.

The first EA-QLDPC codes were conceived by Hsieh et al. in [93], whereby EA CSS-based QC-

QLDPC codes were designed from their classical counterparts. Hsieh et al. chose the constituent

circulant matrices of the classical QC code by ensuring that the number of ebits required is minimized.

Despite their efforts, a significant number of these ebits was required, which grew with the code

length. More importantly, these designs supported the conjecture that the high efficiency of EA codes

should be attributed to the large fractions of pre-shared ebits. On a positive note, since the EA

quantum codes of [93] shared the same attributes as the classical parent code, especially in terms

of the girth and the minimum distance, these EA-QLDPC codes outperformed the state-of-the-art

unassisted QLDPC codes. Working further in the direction of minimizing the number of pre-shared

ebits, in [180, 181] Hsieh et al. conceived finite-geometry based EA-QLDPCs, whose ‘entanglement

consumption rate’ decreases with the code length. Furthermore, two of these constructions required
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only a single ebit regardless of the code length; thus dispensing with the then prevailing apprehensions

surrounding the family of EA-codes. It must be emphasized here that the proposed design does not

impose any restrictions on the underlying finite geometry based classical LDPC codes of [170]. A

more general framework conceived for designing the EA-QLDPCs, having a prescribed number of

ebits, was presented in [183], which was derived from combinatorial design theory. Some of these

designs required only a single ebit, despite having a high performance, a high coding rate and a

low complexity. The necessary and sufficient conditions for designing single-ebit based EA-QLDPCs

were further investigated in [105]. Moreover, BIBD based EA-QLDPC codes requiring only a single

ebit were also identified in [182]. Recently, Fujiwara [186] introduced the notion of quantum codes

relying on ‘less noisy’ (or ‘reliable’) qubits. More explicitly, unlike the EA formalism, which requires

completely noiseless ebits, the framework of [186] assumes that these auxiliary qubits are subjected

to a phase-flip channel, which is a more realistic noise model. In this spirit, Fujiwara et al. [184]

conceived QLDPC codes relying on ‘less noisy’ qubits. The major contributions made in the domain

of EA-QLDPC codes are summarized in Figure 7.5.

7.3 Iterative Decoding of Quantum LDPC Codes

Analogous to the classical LDPC codes, QLDPC codes invoke the classic Belief Propagation (BP) based

decoding, also referred to as the Sum-Product Algorithm (SPA), which operates over the Tanner graph

of the corresponding PCM. However, let us recall that qubits collapse upon measurement. Therefore,

the syndrome-based version [187] of the classic codeword decoding has to be used for QLDPC codes.

The underlying BP can be implemented both in the binary as well as in the quaternary domain, which

are discussed in Sections 7.3.1 and 7.3.2, respectively.

7.3.1 Binary Decoding

A quantum depolarizing channel characterized by the depolarizing probability p is isomorphic to two

independent Binary Symmetric Channels (BSCs) [47], i.e. one for phase-flips and the other for bit-flips,

each having a cross-over probability of 2p/3. More explicitly, based on the Pauli-to-binary isomorphism

encapsulated in Eq. (4.29), a Pauli error P ∈ Gn experienced by an n-qubit block transmitted over a

depolarizing channel can be modeled by an effective error-vector P , which is a binary vector of length

2n. The effective error P may be represented as P = (Pz , Px), where both Pz and Px are n-bit long

and represent Z and X errors, respectively. This implies that an X error imposed on the tth qubit

will yield a 0 and a 1 at the tth and (n + t)th index of P , respectively. Similarly, a Z error imposed

on the tth qubit will give a 1 and a 0 at the tth and (n+ t)th index of P , respectively, while a Y error

on the tth qubit will result in a 1 at both the tth as well as (n+ t)th index of P . Since a depolarizing

channel characterized by the probability p incurs X, Y and Z errors with an equal probability of p/3,
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MappingLDPC Decoder
Binary−to−Pauli

Classical
Syndrome

Computation

Channel Information

|ψ̂〉 P̃S P̃

H = [Hz, Hx]

Figure 7.6: General schematic of a syndrome-based decoder for QLDPC codes.

the effective error-vector P reduces to two BSCs having a crossover probability of 2p/3, where we have

one channel for the Z errors and the other for the X errors.

Based on the aforementioned simplified notion, which ignores the correlation between the X and

Z errors, QLDPC codes can be decoded by running the syndrome-based BP over the Tanner graph of

the equivalent binary code having H = (Hz|Hx) [81]. More explicitly, let S be the observed syndrome

sequence, which is given by the symplectic product of H and P , as formulated below:

S = H ⋆ P T = HzP
T
x +HxP

T
z . (7.8)

The observed syndrome S of Eq. (7.8) is fed to a classical syndrome-based LDPC decoder to estimate

the most likely inflicted channel error P̃ , as depicted in Figure 7.6. For an H of size m × 2n, where

we have m = (n− k), the resultant estimated error vector P̃ is of length 2n, whose first n bits are for

the estimated phase errors P̃z, while the other n bits indicate the estimated bit errors P̃x. Finally, the

2n-bit binary vector is mapped onto the n-qubit Pauli error P̃ based on the mapping encapsulated

in Eq. (4.29). More explicitly, the tth and (n + t)th value of P̃ are combined based on Eq. (4.29) to

estimate the error inflicted on the tth qubit.

For CSS codes, we have Hz =

(

H ′
z

0

)

and Hx =

(

0

H ′
x

)

. Consequently, the Tanner graph of

the matrix H consists of two independent Tanner graphs corresponding to the matrices H ′
z and

H ′
x. This in turn implies that X and Z errors can be decoded independently using the matrices H ′

z

and H ′
x, respectively [47]. Hence, the QuBit Error Rate (QBER) of a CSS QLDPC code may be

approximated by the sum of the BER of the two constituent classical codes. More explicitly, if pxe

and pze are the classical BERs for H ′
z and H ′

x, respectively, then the overall QBER is equivalent to

(pxe + pze − pxepze) ≈ (pxe + pze), which reduces to 2pze for a dual-containing CSS code having H ′
x = H ′

z.

For a binary m× 2n LDPC matrix H, the classical LDPC decoder of Figure 7.6 aims for finding

the most likely error P of length 2n given the observed syndrome S, i.e. we have:

P̃ = argmax
P∈(F2)2n

P(P |S), (7.9)

where P(P |S) is the probability of experiencing the error P ∈ (F2)
2n imposed on the transmitted

codewords, given that the syndrome of the received qubits |ψ̂〉 is S ∈ (F2)
m. Unfortunately, Eq. (7.9)
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ci

vt

mPt
ci→vt

m
Pt′
vt′→ci

(a) Horizontal Message Exchange

ci

vt

Pch(Pt)

mPt
ci′→vt

mPt
vt→ci

(b) Vertical Message Ex-

change

Figure 7.7: Belief Propagation (BP) algorithm. Check nodes and variable nodes are denoted by ci and vt,

respectively.

defines an NP-complete problem [188]. A sub-optimal algorithm for solving Eq. (7.9) is constituted

by the classic BP, which finds the element-wise optimum value rather than the global optimum. More

explicitly, for P = (P0, P1, . . . , Pt, . . . , P2n−1), BP finds Pt such that:

P̃t = argmax
Pt∈F2

P(Pt|S), (7.10)

where P(Pt|S) is the marginalized probability of the tth bit. The BP operates by exchanging messages

over the Tanner graph of H having check nodes ci for i ∈ {0,m − 1} and variable nodes vt for

t ∈ {0, 2n − 1}. The messages sent by the ith check node ci to the tth variable node are denoted by

mPt
ci→vt , while the messages directed from the tth variable node to the ith check node are given by

mPt
vt→ci , where Pt is the error imposed on the tth variable node. The overall syndrome-based message

exchange procedure is summarized in Algorithm 1, which proceeds as follows [187]:

� Initialization: The algorithm begins by initializing the messages mPt
vt→ci according to the chan-

nel model Pch(Pt). For a BSC having a crossover probability of 2p/3, we have:

m0
vt→ci = 1− 2p/3,

m1
vt→ci = 2p/3. (7.11)

� Horizontal message exchange: Let V (ci) be the set of variable nodes connected to the check

node ci, i.e. V (ci) ≡ {vt : Hit = 1}, and V (ci)\vt be the set V (ci) excluding the variable node vt.

As depicted in Figure 7.7(a), in this step the algorithm runs through the rows of H (checks) and
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computes the message mPt
ci→vt for each vt ∈ V (ci) and Pt ∈ F2. The message ma

ci→vt represents

the probability that the syndrome value observed for the check ci is Si given that the tth variable

node has the error (Pt = a), where a ∈ {0, 1}. This can be mathematically formulated as:

ma
ci→vt = K

∑

P :Pt=a

P(Si|P )
∏

vt′∈V (ci)\vt
m

Pt′
vt′→ci , (7.12)

where K is the normalization constant invoked for ensuring
∑

a∈{0,1}m
a
ci→vt = 1, while P(Si|P )

is a binary function, which is equal to 1 only when the check ci is satisfied, i.e. when the value of

the check node ci computed using the error vector P matches the measured syndrome value Si,

otherwise it is 0. Furthermore, according to Eq. (7.12), the messages ma
ci→vt destined for the tth

variable node do not take into account the messages flowing in the opposite direction along the

same edge, i.e. ma
vt→ci. Consequently, ma

ci→vt only contains the new information gleaned from

the messages sent by the other variable nodes and it is therefore termed as being ‘extrinsic’.

This ensures that the successive iterations of this iterative algorithm are independent.

� Vertical message exchange: Let C(vt) be the set of check nodes connected to the variable

node vt, i.e. C(vt) ≡ {ci : Hit = 1}, and C(vt) \ ci be the set C(vt) excluding the check node

ci. As shown in Figure 7.7(b), for each column of H (hence called ‘vertical’), the BP computes

the message mPt
vt→ci for all ci ∈ V (vt) and Pt ∈ F2. More explicitly, the messages ma

vt→ci are

computed by evaluating the product of the channel information Pch(Pt = a) and the messages

ma
ci′→vt flowing into the variable node vt along all the edges connected to it, but excluding

ma
ci→vt , which is received along the same edge. Hence, the extrinsic message is computed as:

ma
vt→ci = K Pch(Pt = a)

∏

ci′∈C(vt)\ci

ma
ci′→vt , (7.13)

where K is the normalization constant, which ensures that
∑

a∈{0,1}m
a
vt→ci = 1.

� Element-wise marginal probability: Finally, the element-wise marginal probability P(Pt|S)
for Pt ∈ F2 is calculated as follows:

P(Pt = a|S) = K Pch(Pt = a)
∏

ci∈C(vt)

ma
ci→vt , (7.14)

which takes into account all the messages flowing into the variable node vt.

� Hard decision & syndrome check: As previously portrayed in Eq. (7.10), a hard decision is

made by finding the most likely error P̃t, which maximizes the marginal probability computed in

Eq. (7.14). Based on the estimated error vector P̃ , the syndrome S̃ = H(P̃x : P̃z)
T is computed.

If the syndrome S̃ of the estimated error P̃ is the same as the observed syndrome S, the process

halts, indicating that the correct solution is found. Otherwise, the algorithm repeats itself from

the horizontal message exchange step onwards. This iterative procedure continues, until either

S̃ = S or the maximum number of iterations Imax is reached.
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Algorithm 1 Syndrome-based BP

1: Set Pch(0)← (1 − 2p/3) and Pch(1)← 2p/3.

2: Initialize ma
vt→ci ← Pch(a), ∀ vt, ci ∈ C(vt) and a ∈ {0, 1}.

3: for iter← 1 to Imax do

4: for all i ∈ {0, (m− 1)}, vt ∈ V (ci) and a ∈ {0, 1} do

5: ma
ci→vt ← k

∑

P :Pt=a P(Si|P )
∏

v
t′
∈V (ci)\vt

m
P

t′

v
t′
→ci .

6: end for

7: for t← 0 to (2n− 1) do

8: for all ci ∈ C(vt) and a ∈ {0, 1} do

9: ma
vt→ci ← k Pch(Pt = a)

∏

c
i′
∈C(vt)\ci

ma
c
i′
→vt .

10: end for

11: for all a ∈ {0, 1} do
12: P(Pt = a|S)← k Pch(Pt = a)

∏

ci∈C(vt)
ma

ci→vt .

13: end for

14: P̃t ← argmax
Pt∈F2

P(Pt|S).
15: end for

16: S̃ ← H(P̃x : P̃z)
T .

17: if (S̃ = S) then

18: return P̃ .

19: end if

20: end for

7.3.2 Non-Binary Decoding

Based on the Pauli-to-GF(4) formalism of Eq. (4.39), QLDPC codes can be decoded by invoking the

non-binary BP, which takes into account the correlation between the phase-flips and bit-flips. The

syndrome-based non-binary BP is similar to the binary BP of Algorithm 1, with the following two

major modifications:

� Non-binary BP exploits the depolarizing channel model, which does not ignore the correlation

between the bit and phase errors. The equivalent 4-ary channel model has the following proba-

bility distribution:

Pch

(

P̂t = â
)

=

{

1− p, if â = 0

p/3, if â ∈ {1, ω, ω},
(7.15)

where we have P̂ =
(

P̂0, P̂1, . . . , P̂t, . . . , P̂n−1

)

and P̂t denotes the error inflicted on the tth qubit.
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� The syndrome Si, which was computed as Hi(Px : Pz)
T in the binary scenario, is now given by

the trace inner product of Ĥi and P̂ (see Eq. (4.41)):

Si = Tr(Ĥi · P̂ ), (7.16)

where Ĥi is the ith row of H in GF(4) and i ∈ {0,m− 1}.

As compared to the binary BP, non-binary decoding imposes an increased complexity, specifically

on the horizontal message exchange step. More explicitly, since the summation in Eq. (7.12) runs

for all possible error sequences {P̂ : P̂t = â}, which yield the syndrome Si for the ith check node,

the complexity increases both with the row weight as well as with the dimensionality of the Galois

field. For classical non-binary LDPC codes, this increased complexity is alleviated by invoking the

Fast Fourier Transform (FFT) based decoding of [189], which can be conveniently adapted to the

syndrome-based decoding of QLDPC codes.

Based on the notion of the trace inner product of Eq. (4.41), Eq. (7.16) can be expanded as:

Si = Tr(Ŝi) = Tr





∑

t∈V (ci)

Ĥit × P̂ t



 , (7.17)

where we have Ŝi ∈ {0, 1, ω, ω}, which can also be expressed as:

Ŝi = Ĥit × P̂ t +
∑

t′∈V (ci)\vt
Ĥit′ × P̂ t′ . (7.18)

Unlike in the binary scenario, where we have Hit ∈ {0, 1}, here we have Ĥit ∈ {1, ω, ω} in Eq. (7.18).

Therefore, given the messages mâ
ci→vt and mâ

vt→ci exchanged between the check node ci and the

variable node vt for P̂ = â, we denote the equivalent messages for (Ĥit × P̂ t) as m̌
âs
ci→vt and m̌âs

vt→ci ,

respectively, where we have (Ĥit × â) = âs. Based on this notation, we may infer from Eq. (7.17)

and Eq. (7.18) that the Probability Density Function (PDF) of the horizontal message m̌âs
ci→vt can be

obtained by convolving the PDFs of the messages m̌âs+Ŝi
vt′→ci for vt′ ∈ V (ci) \ vt. We may further notice

in Eq. (7.17) that for a given Si, Ŝi can have two possible values. More explicitly, for GF(4), we have

Tr(0) = Tr(1) = 0, while Tr(ω) = Tr(ω) = 1. Consequently, for Si = Tr(Ŝi = 0) = Tr(Ŝi = 1) = 0, we

have:

PDF{m̌0
ci→vt} = PDF{m̌1

ci→vt}

=
1

2





⊗

vt′

PDF{m̌0
vt′→ci}+

⊗

vt′

PDF{m̌1
vt′→ci}



 ,

PDF{m̌ω
ci→vt} = PDF{m̌ω

ci→vt}

=
1

2





⊗

vt′

PDF{m̌ω
vt′→ci}+

⊗

vt′

PDF{m̌ω
vt′→ci}



 , (7.19)
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where
⊗

represents the convolution process and vt′ ∈ V (ci) \ vt. Similarly, for Si = Tr(Ŝi = ω) =

Tr(Ŝi = ω) = 1, we have:

PDF{m̌0
ci→vt} = PDF{m̌1

ci→vt}

=
1

2





⊗

vt′

PDF{m̌ω
vt′→ci}+

⊗

vt′

PDF{m̌ω
vt′→ci}



 ,

PDF{m̌ω
ci→vt} = PDF{m̌ω

ci→vt}

=
1

2





⊗

vt′

PDF{m̌0
vt′→ci}+

⊗

vt′

PDF{m̌1
vt′→ci}



 . (7.20)

The complex convolution operation required in Eq. (7.19) and (7.20) can be efficiently implemented by

multiplying the corresponding PDFs in the frequency domain with the aid of the FFT-based algorithm

of [189].

7.3.3 Decoding Issues & Heuristic Methods for Improvement

Belief propagation invoked for decoding LDPC codes gives the exact solution only when the underlying

Tanner graph is a tree. Nonetheless, it yields reasonably good approximations even in the presence

of cycles, provided that the girth of the associated LDPC matrix is sufficiently large, at least 6.

This has been proven by the capacity approaching classical LDPC codes, for example in [164, 165].

Unfortunately, short cycles of length 4 are unavoidable in the construction of QLDPC codes, which

in turn impair the iterative decoding procedure.

The unavoidable cycles of length 4 found in QLDPC codes are the result of the commutativity

property of the stabilizers. More explicitly, the constituent stabilizer generators of a stabilizer code

must commute, i.e. they should have even number of places with different non-Identity Pauli operators.

In other words, if an anti-commuting pair of Pauli operators acts on the tth variable node in a pair

of stabilizer generators, then there should be another anti-commuting pair of Pauli operators acting

on the t′th variable node in the same pair of generators for the sake of ensuring that the generators

commute with each other. For example, the generators:

g0 = XIYZ,

g1 = ZYXI, (7.21)

commute7 because there are two pairs of anti-commuting Pauli operators acting on the first and third

qubits, respectively. This in turn implies that the corresponding rows in the resultant PCM have even

number of overlaps, which give rise to short cycles in the Tanner graph, as illustrated in Figure 7.8.

Since here the key point is to have “different non-Identity operators”, a possible option could be to

7This is just a random example to illustrate the concept of commutativity and the resulting short cycles. The

generators g0 and g1 of this example may not constitute a good stabilizer code.
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c0 c1

v1 v2v0 v3

X
Z
Y

Figure 7.8: Tanner graph of a commuting pair of stabilizer generators, where c0 and c1 are the check nodes

for the generators g0 = XIYZ and g1 = ZYXI, respectively. The edges connected to the variable

nodes v0 and v2 constitute a cycle of length 4.

assign only a single type of non-Identity operator to each variable node of the Tanner graph. If we

only assign Pauli-X to the variable node vt so that it does not anti-commute in any pair of generators,

then we will be unable to detect both Pauli-X as well as Pauli-Y errors acting on vt. This would yield

an undesirable code, which has a minimum distance of one. We may conclude that:

1. each column of a QLDPC matrix must have at least two different non-Identity Pauli operators,

and

2. every pair of rows must an have even number of places with different non-Identity Pauli operators.

Consequently, all CSS as well as non-CSS QLDPC constructions have a Tanner graph of girth-4. It

is interesting to observe here that these short cycles may be avoided in the corresponding binary

formalism. Let us consider the example given in Eq. (7.21), which can be expressed in the binary form

as follows:

g0 →
(

1 0 1 0 0 0 1 1
)

,

g1 →
(

0 1 1 0 1 1 0 0
)

. (7.22)

Since these binary generators only have a single overlapping 1, the length 4 cycle no longer exits.

However, let us recall from Section 7.3.2 that binary decoding ignores the correlation between the X

and Z errors, which degrades the performance. Hence, a compromise must be struck between these

two conflicting aspects.

The issue of short cycles is more pronounced in both the dual-containing QLDPC codes as well

as in the EA CSS QLDPC codes having H ′
x = H ′

z. We may call them homogeneous CSS codes, since

identical PCMs are used for correcting bit-flips and phase-flips. Let the resultant m×n PCM in GF(4)

be Ĥ as follows:

Ĥ =

(

ωH ′
z

H ′
z

)

. (7.23)
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Code Type Unavoidable Short Cycles

Binary Formalism GF(4) Formalism

Dual-containing CSS (Homogeneous) ✓ ✓

Non-dual-containing CSS ✗ ✓

Non-CSS ✗ ✓

Homogeneous CSS EA ✗ ✓

All other EA ✗ ✗

Table 7.1: Unavoidable short cycles in various code structures (✓ = present, ✗ = absent, ✓ = numerous cycles

present).

Merits Demerits

Improves Performance Degrades Performance

Trade−off

Short Cycles

Higher
Complexity

Increased No. ofGF(4)
Decoding

X & Z

Correlation

Figure 7.9: Merits and demerits of GF(4) decoding as compared to binary decoding.

Consequently, the ith and (i+m/2)th rows completely overlap, resulting in numerous cycles of length

4. Furthermore, the dual-containing code construction also has the additional short cycles within

the matrix H ′
z, as discussed in Section 7.2.1, which exist even in the binary formalism. Table 7.1

summarizes the presence of unavoidable short cycles in various code structures, while Figure 7.9

captures the merits and demerits of GF(4) decoding as compared to its binary counterpart.

Degeneracy is another unique aspect, which distinguishes a quantum code from a classical one. Let

us recall from Section 4.3.3 that errors, which differ only by the stabilizer group, have the same impact

on the transmitted codewords and can therefore be corrected by the same recovery operation. This

in turn improves the performance of quantum codes. Unfortunately, the iterative decoding invoked

for QLDPC codes does not take into account this degeneracy. More explicitly, rather than finding the

most likely error, as in Eq. (7.9), the decoding algorithm should find the most likely error coset by

summing the probabilities of all degenerate errors [85, 190]. Furthermore, QLDPC codes are highly

degenerate as compared to the other families of quantum codes. This is because the generators of a

QLDPC code are sparse in nature. Consequently, it has many low-weight degenerate errors, which
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dominate the probability of the error coset. It is therefore more likely that the most probable error P̃

of Eq. (7.9) may not coincide with the most probable error coset for QLDPC codes. However, rather

than exploiting the benefits of high degeneracy associated with sparse codes, the marginalized iterative

decoding invoked for QLDPC codes is impaired by degeneracy[85, 190]. This is because degenerate

errors of equal weight have the same marginalized probability distribution, which can be attributed

to the symmetry of the probability distribution of the channel depicted in Eq. (7.15).

Let us review the case study given in [85]. Consider a 2-qubit stabilizer code having the generators

XX and ZZ. Assume furthermore that IX is the channel error encountered during transmission over

a depolarizing channel, whose PDF is given in Eq. (7.15). The resultant syndrome is S = (0 1)

and the corresponding set of degenerate errors is {XI, IX,YZ,ZY}. Consequently, the marginalized

conditional probability of the error on each of the two qubits is given by:

P
(

P̂t = â|S
)

=

{

1− p, if â = 0

p/3, if â ∈ {1, ω, ω},
(7.24)

where t = {0, 1}. Hence, the marginalized probability is identical for both the qubits. This symmetry

forces the decoder to detect the same error on both the qubits. However, none of the associated

errors, i.e. {XI, IX,YZ,ZY}, exhibit this symmetry, hence leading to the ‘symmetric degeneracy

error’ concept of [85]. Moreover, since the channel profile of Eq. (7.15) is biased towards the Identity

operator, the probability of ‘no-error’ dominates at low noise levels.

Poulin and Chung investigated various heuristic methods in [85] to break the symmetry exhibited

by the marginalized probabilities of Eq. (7.24). Among the investigated methods, “random pertur-

bation” provides the best performance. It aims for breaking the degenerate symmetry by randomly

perturbing the channel PDF of Eq. (7.15) for the qubits involved in the frustrated checks8, thus

putting an end to the decoding impasse. Random perturbation begins with the standard non-binary

BP, which gives the estimated channel error
˜̂
P . If the syndrome computed for

˜̂
P is not the same as

the observed channel syndrome S, the channel probabilities of all variable nodes vt connected to a

randomly chosen frustrated check ci are perturbed (up to a normalization) as follows:

Pch(P̂t = 0)→ Pch(P̂t = 0),

Pch(P̂t = 1)→ (1 + δ1)Pch(P̂t = 1),

Pch(P̂t = ω)→ (1 + δω)Pch(P̂t = ω),

Pch(P̂t = ω)→ (1 + δω)Pch(P̂t = ω), (7.25)

where δ1, δω and δω are random variables in the range [0, δ]. Non-binary BP is re-run with these

modified channel probabilities for Tpert iterations and
˜̂
P is estimated again. If all the check nodes are

satisfied now, the process terminates. Otherwise, the channel probabilities perturbed in Eq. (7.25) are

restored and the process is repeated with another randomly chosen frustrated check.

8Check nodes for which the computed syndrome does not match the observed syndrome are known as frustrated

checks [85].
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Another heuristic method of alleviating the symmetric degeneracy problem was conceived in [86],

which exploits an enhanced feedback procedure. More specifically, Wang et al. [86] proposed an

“enhanced feedback” strategy for perturbing the channel probabilities similar to the random pertur-

bation, but this perturbation is based both on the stabilizer generators involved in the frustrated

checks as well as on the channel model. Similar to the random perturbation method, the enhanced

feedback algorithm randomly selects a frustrated check ci. It also selects a variable node vt connected

to ci. Let S̃i be the value of the ith check node for the estimated error
˜̂
P , while Si be the ith observed

channel syndrome. The channel probability for vt is then perturbed as follows:

� If S̃i = 0 and Si = 1, then:

Pch

(

P̂t = â
)

=

{

p/2, if â = 0 or Ĥit,

(1− p)/2, otherwise.
(7.26)

� If S̃i = 1 and Si = 0, then:

Pch

(

P̂t = â
)

=

{

(1− p)/2, if â = 0 or Ĥit,

p/2, otherwise.
(7.27)

The perturbed values are fed to the standard non-binary BP decoder, which provides a new estimate

of the channel error. The perturbation process is repeated, until all the checks are satisfied or the

maximum number of feedbacks na is reached. Since these perturbations are more reliable than random

perturbations, this method outperforms the random perturbation based heuristic method of [47].

7.4 High-Rate QLDPC Codes from Row-Circulant Classical LDPCs

Classical row-circulant QC-LDPC matrices are known to generate efficient short and moderate length

high-rate QC-LDPC codes, which outperform the corresponding randomly constructed codes. More

specifically, short and moderate length random (unstructured) LDPC matrices with a high coding rate

have numerous cycles of length 4, which may be avoided in the structured configurations. The BIBD

and Cyclic Difference Family (CDF) based code structures of [191, 192, 171, 172, 193] are particularly

significant in this respect, which have at least a girth of 6.

Let us have a look at the BIBD constructions proposed by Bose [194], which constitute the row-

circulant classical QC-LDPCs. Recall that a BIBD, having the parameters (v, b, r, k, λ), divides all

the v elements of a set V into b blocks of size k such that, each pair of elements occurs in exactly λ

of the blocks, every element occurs in exactly r blocks, and the number of elements in each block k

is small as compared to the size v of set V . These parameters are summarized in Table 7.2. Based

on this notation, Bose proposed the following BIBD [194] constructions, which are suitable for the

row-circulant QC-LDPCs [172, 195].
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Variable Description

V Finite set.

v Number of elements of V .

b Number of blocks.

r Number of blocks containing a given element.

k Number of elements of a block.

λ Number of blocks containing a given pair of elements.

Table 7.2: BIBD parameters.

1. Type-I Bose BIBDs: Given that t is a positive integer such that (12t + 1) is a power of a

prime, then there exists a prime Galois field GF(12t + 1) having elements from 0 to 12t. The

elements of GF(12t + 1) constitute the finite set V of the BIBD. Furthermore, let α be the

primitive element of GF(12t + 1), which satisfies the following condition:

α4t − 1 = αc, (7.28)

where c is an integer in the range 0 < c < 12t + 1. The legitimate values of t along with

the corresponding primitive elements are listed in Table 7.3 [195, p. 526]. For these values of

t and α, Bose [194] proposed that there exists a BIBD having the parameters v = (12t + 1),

b = t(12t + 1), r = 4t, k = 4 and λ = 1, whose t base blocks are given by:

Bi = {0, α2i, α2i+4t, α2i+8t}, (7.29)

for 0 ≤ i < t. We can further create (12t + 1) blocks for block Bi by adding each element of

the Galois field to each element of the base block, hence resulting in a total of t(12t+1) blocks.

The incidence matrix of this BIBD is a (12t + 1) × t(12t + 1) matrix, which is formed by t

submatrices as follows:

HBIBD = (H0,H1, . . . ,Ht−1) , (7.30)

where the ith submatrix Hi is a (12t + 1) × (12t + 1) circulant matrix. More specifically, Hi

is the incidence matrix corresponding to the ith base block constructed by adding each element

of the GF(12t + 1) to the elements of the ith base block. Furthermore, the row weight and

column weight of each submatrix is 4. Therefore, the matrix HBIBD has a row weight of 4t and

a column weight of 4. Since the incidence matrix of Eq. (7.30) has the required properties of a

QC-LDPC matrix, a subarray of HBIBD can be used for constructing a classical QC-LDPC code.

For 0 < m < t, the PCM of the resulting code is given by [172]:

H = (H0,H1, . . . ,Hm−1) , (7.31)
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t GF(q) (α, c)

1 GF(13) (2, 1)

6 GF(73) (5, 33)

8 GF(97) (5, 27)

9 GF(109) (6, 71)

15 GF(181) (2, 13)

19 GF(229) (6, 199)

20 GF(241) (7, 191)

23 GF(277) (5, 209)

28 GF(337) (10, 129)

34 GF(409) (21, 9)

35 GF(421) (2, 167)

38 GF(457) (13, 387)

45 GF(541) (2, 7)

59 GF(709) (2, 381)

61 GF(733) (6, 145)

Table 7.3: Legitimate values of t for GF(12t+ 1) along with the corresponding primitive elements satisfying

Eq. (7.28) [195, p. 526].

which is a (12t + 1) ×m(12t + 1) QC matrix having a row weight of 4m and a column weight

of 4. The minimum distance of the resulting LDPC code is at least 5 and the coding rate is

approximately (m− 1)/m [172].

2. Type-II Bose BIBDs: Let t be a positive integer such that (20t + 1) is a power of a prime,

then there exists a prime Galois field GF(20t+1) having elements from 0 to 20t. Analogous to

the type-I design, the elements of GF(20t+1) constitute the finite set V of the BIBD. However,

in contrast to Eq. (7.28), the primitive element α of GF(20t + 1) has to satisfy the condition:

α4t + 1 = αc, (7.32)

where c is an integer in the range 0 < c < 20t + 1. The legitimate values of t along with the

corresponding primitive elements are listed in Table 7.4 [195, p. 532]. For these values of t and

α, Bose [194] proposed that we can construct a BIBD having the parameters v = (20t + 1),

b = t(20t + 1), r = 5t, k = 5 and λ = 1, whose t base blocks are given by:

Bi = {α2i, α2i+4t, α2i+8t, α2i+12t, α2i+16t}, (7.33)

for 0 ≤ i < t. Similar to the type-I design, (12t+1) blocks can be constructed for each base block

Bi by adding each element of the Galois field to each element of the base block. Hence, there is a

total of t(20t+1) blocks. The incidence matrix of the resulting BIBD is a (20t+1)×t(20t+1)
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t GF(q) (α, c)

2 GF(41) (6, 3)

3 GF(61) (2, 23)

12 GF(241) (7, 197)

14 GF(281) (3, 173)

21 GF(421) (2, 227)

30 GF(601) (7, 79)

32 GF(641) (3, 631)

33 GF(661) (2, 657)

35 GF(701) (2, 533)

41 GF(821) (2, 713)

Table 7.4: Legitimate values of t for (20t + 1) along with the corresponding primitive elements satisfying

Eq. (7.32) [195, p. 532].

matrix, which is formed by t submatrices as previously shown in Eq. (7.30). For the type-II

design, the row weight and column weight of each submatrix Hi is 5. Therefore, the matrix

HBIBD has a row weight of 5t and a column weight of 5. Again, according to Eq. (7.31), we

can construct a QC-LDPC of size (20t + 1)×m(20t + 1), which has a row weight of 5m and a

column weight of 5 [172].

In [74], Djordjevic proposed that BIBDs having an odd row weight and λ = 1 can be transformed into

a dual-containing QLDPC code by appending an all-ones column to the original PCM, while in [182]

Djordjevic conceived the EA BIBD-based QLDPC codes, which required a single e-bit.

In contrast to these developments, we conceive a radically new class of codes for constructing

unassisted non-dual-containing CSS QLDPC codes from arbitrary row-circulant classical QC-LDPC

matrices. This construction brings with it the following obvious benefits:

� Pre-shared ebits are not required.

� Since the constructed codes are non-dual-containing, they do not suffer from the excessive short

cycles, which are a characteristic of the dual-containing designs as well as the homogeneous CSS

EA codes (Table 7.1).

Particularly, we apply our proposed construction to the family of BIBD-based classical codes for

evaluating the resulting performance.

Let us consider the row-circulant QC-LDPC matrix of Eq. (7.31), assuming that it consists of

an even number of square circulant submatrices. Inspired by the QC-QLDPC codes of [77, 177], we
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propose that if we formulate H ′
z and H ′

x as follows:

H ′
z = H,

H ′
x =

(

HT
m
2
,HT

m
2
+1, . . . ,H

T
m−1,H

T
0 ,H

T
1 , . . . ,H

T
m
2
−1

)

, (7.34)

where when m is even, the resulting CSS code satisfies the symplectic criterion H ′
zH

′T
x = 0. This may

be readily proved as shown below:

H ′
zH

′T
x =

(

H0,H1, . . . ,Hm
2
−1,Hm

2
,Hm

2
+1, . . . ,Hm−1

)



































Hm
2

Hm
2
+1

...

Hm−1

H0

H1

...

Hm
2
−1



































= H0Hm
2
+H1Hm

2
+1 + · · · +Hm

2
−1Hm−1

+Hm
2
H0 +Hm

2
+1H1 + · · · +Hm−1Hm

2
−1 . (7.35)

Since the multiplication of circulant matrices is commutative, the two parts of Eq. (7.35), i.e. (H0Hm
2
+

H1Hm
2
+1 + · · ·+Hm

2
Hm) and (Hm

2
H0 +Hm

2
+1H1 + · · ·+Hm−1Hm

2
−1) are equal. Hence, the modulo

2 addition of Eq. (7.35) yields 0; thus, satisfying the symplectic criterion. Furthermore, the resulting

quantum coding rate is (m− 2)/2. We may also notice here that our proposed code structure may be

viewed as a special case of Eq. (7.7) for m = 2, , given further that T1 and T2 of Eq. (7.7) are binary

circulant matrices, i.e. ti ∈ {0, 1} in Eq. (7.6).

Let us now have a look at the girth of the resulting QC-QLDPC code. The constituent l × l

circulant submatrix Hi of Eq. (7.31), which has a row weight and a column weight of γ, is completely

characterized by the polynomial hi(x) = xdi,0+xdi,1+ · · ·+xdi,γ−1 , where di,j denotes the column index

of the jth non-zero entry in the first row of Hi. For example, if the first row of Hi has a 1 at index 0, 5

and 8, then the polynomial is given by 1+x5+x8. The PCMH has a girth of at least 6 if every difference

(di,j1 − di,j2) modulo l, for 0 ≤ i ≤ (m− 1) and 0 ≤ j1, j2 ≤ (γ − 1) is a unique integer between 0 and

(l− 1). Furthermore, the polynomial transpose is defined as hi(x)
T = xl−di,1 +xl−di,2 + · · ·+xl−di,γ−1 ,

which would yield the same differences as hi(x). Hence, since in Eq. (7.34) we are taking the transpose

of all the sub-matrices Hi and just permuting their location, the differences (di,j1 − di,j2) for H ′
z and

H ′
x are the same and both have the same girth.

7.5 Results and Discussions I

To evaluate the performance of our proposed design, we considered BIBD(12t+1, t(12t+1), 4t, 4, 1).

We further arbitrarily chose t = 15 from Table 7.3, whose primitive root is α = 2. Consequently, the
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BIBD Parameters

Galois field GF(12t + 1)

t 15

α 2

Bi {0, 22i, 22i+4t, 22i+8t}
m 14

LDPC Parameters

Coded qubits n = 2534

Information qubits k = 2172

E-bits c = 0

Row weight 56

Column Weight 4

QLDPC Decoder

Standard decoding iterations Imax = 100

Table 7.5: Simulation parameters.

resulting t base blocks are give by:

Bi = {0, 22i, 22i+4t, 22i+8t}, (7.36)

for 0 ≤ i < t. Since our design requires m to be even, we chose m = 14, which would yield a

[2534, 2172] QLDPC code having a coding rate of 0.857. Furthermore, the row weight of the resulting

QLDPC code is 56, while its column weight is 4. These parameters are summarized in Table 7.5. We

further compare our design with an equivalent bicyle QLDPC code, whose PCM is given by:

H ′
x = H ′

z = [H0,H1, . . . ,Hm
2
−1,H

T
0 ,H

T
1 , . . . ,H

T
m
2
−1], (7.37)

and a comparable EA-QLDPC, which requires a single e-bit and has:

H ′
x = H ′

z = [H0,H1, . . . ,Hm−1]. (7.38)

Figure 7.10 compares the performance of our designed QLDPC code (labeled ‘Proposed’), the

bicycle code of Eq. (7.37) (labeled ‘BiC’) and the EA-QLDPC code of Eq. (7.38) (labeled ‘EA’) for

both the binary as well as the non-binary decoding. We invoked a maximum of 100 iterations. Each

decoding algorithm iterates until either a valid error is found or the maximum number of iterations
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Figure 7.10: Comparison of the achievable WER performance of our proposed [2534, 2172] QLDPC code

(labeled ‘Proposed’)) with the bicycle code of Eq. (7.37) (labeled ‘BiC’) and the EA-QLDPC

code of Eq. (7.38) (labeled ‘EA’), using the simulation parameters of Table 7.5.

is reached. Furthermore, the WER metric here counts the detected as well as the undetected block

errors. We may observe in Figure 7.10 that the performance of our designed QLDPC is exactly the

same as that of the EA-QLDPC code for binary decoding, while that of the bicycle QLDPC code is

slightly worse, which is due to the presence of length-4 cycles. By contrast, when non-binary decoding

is invoked, then the performance of our proposed design improves significantly as compared to both

the bicycle code as well as the EA-QLDPC. More specifically, the bicycle code achieves a WER of 10−4

at p = 0.00055, which increases to p = 0.0007 when EA-QLDPC is used. By contrast, our construction

exhibits a WER of 10−4 at p = 0.00215, which is almost a three times increase as compared to EA-

QLDPC. As mentioned in Section 7.4, unlike the bicycle codes and EA-QLDPC, which have numerous

short cycles in the GF(4) formalism, our design has only a few short cycles in the GF(4) formalism.

Consequently, it outperforms the comparable bicycle and EA counterparts. It is also pertinent to

notice in Figure 7.10 that the performance of the non-binary decoder is not always better than that of

the binary decoder. As previously discussed in Figure 7.9, a non-binary decoder tends to improve the

performance because it takes into account the correlation between the bit and phase errors. However,

the GF(4) formalism increases the number of short cycles, which degrades the performance. Due to

these conflicting attributes, a non-binary decoder may not always outperform its binary counterpart,

as observed Figure 7.10 in the low-noise regime.
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Figure 7.11: Tanner graph of the 7-qubit Steane code.

7.6 Modified Non-Binary Decoding

Let us recall from Section 7.3.3 that homogeneous CSS-type QLDPC codes, which include both the

dual-containing construction as well as the EA-QLDPC codes, have an excessive number of short

cycles. The ith and (i+m/2)th rows of the associated PCM Ĥ are related by a multiple of ω, i.e. we

have Ĥi = ωĤi+m/2, as seen in Eq. (7.23). For example, consider the 7-qubit Steane code [35], which

is derived from the (7, 4) Hamming code. The PCM of a classical (7, 4) Hamming code is given by:

H ′
z =







1 0 0 1 0 1 1

0 1 0 1 1 0 1

0 0 1 0 1 1 1






. (7.39)

Consequently, according to Eq. (7.23), the corresponding PCM of the 7-qubit Steane code is:

Ĥ =























ω 0 0 ω 0 ω ω

0 ω 0 ω ω 0 ω

0 0 ω 0 ω ω ω

1 0 0 1 0 1 1

0 1 0 1 1 0 1

0 0 1 0 1 1 1























, (7.40)

whose Tanner graph is plotted in Figure 7.11. As gleaned from Figure 7.11, cycles of length 4 exist

between all the variable nodes connected to the checks ci and ci+3. The dual-containing nature of

Steane code also results in some additional short cycles. However, here we focus our attention only

on the cycles resulting from the homogeneous CSS structure. To alleviate the impact of these short

cycles, we propose a modified Tanner graph, which amalgamates the check nodes ci and ci+m/2 into a

supernode, thereby eliminating the cycles. The resultant modified Tanner graph is given in Figure 7.12.

Based on the modified Tanner graph of Figure 7.12, the horizontal messages exchanged between the

supernodes (ci, ci+m/2) and the variable nodes vt aim for satisfying both the checks ci and ci+m/2

simultaneously. Therefore, we have to modify Eq. (7.19) and (7.20) of the non-binary BP accordingly.

Since we have Ĥi = ωĤi+m/2, the non-binary syndromes Ŝi and Ŝi+m/2 are also related similarly,

i.e. we have Ŝi = ωŜi+m/2. Based on this relation, Table 7.6 enlists the possible values of Ŝi+m/2
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c0 c3 c1 c4 c2 c5

v0 v1 v6v5v4v3v2

Figure 7.12: Modified Tanner graph of 7-qubit Steane code. Check nodes ci and ci+m/2 are combined to form

a supernode.

Ŝi Ŝi+m/2 Si Si+m/2

0 0 0 0

1 ω 0 1

ω 1 1 0

ω ω 1 1

Table 7.6: List of all possible values of Ŝi and the corresponding values of Ŝi+m/2 and the binary syndromes

Si = Tr(Ŝi) and Si+m/2 = Tr(Ŝi+m/2).

for all the possible values of Ŝi along with the corresponding binary syndromes Si = Tr(Ŝi) and

Si+m/2 = Tr(Ŝi+m/2). As gleaned from Table 7.6, for each value of Si (or Si+m/2), there are two

possible values of Ŝi (or Ŝi+m/2). Recall from Section 7.3.2 that this is because Tr(0) = Tr(1) = 0,

while Tr(ω) = Tr(ω) = 1. On the other hand, for every pair of (Si, Si+m/2), there is a unique value of

Ŝi and Ŝi+m/2. Consequently, for the supernode Ci = (ci, ci+m/2), the PDFs of Eq. (7.19) and (7.20)

may be modified as follows:

� If the observed channel syndromes are (Si, Si+m/2) = (0, 0), then:

PDF{m̌âs
Ci→vt

} =
⊗

vt′

PDF{m̌âs
vt′→Ci

}. (7.41)

� If the observed channel syndromes obey (Si, Si+m/2) = (0, 1), then we have:

PDF{m̌âs
Ci→vt

} =
⊗

vt′

PDF{m̌âs+1
vt′→Ci

}. (7.42)

� If the observed channel syndromes satisfy (Si, Si+m/2) = (1, 0), then we arrive at:

PDF{m̌âs
Ci→vt

} =
⊗

vt′

PDF{m̌âs+ω
vt′→Ci

}. (7.43)
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� If the observed channel syndromes are (Si, Si+m/2) = (1, 1), then:

PDF{m̌âs
Ci→vt

} =
⊗

vt′

PDF{m̌âs+ω
vt′→Ci

}. (7.44)

Here âs = (Ĥit × â) for â ∈ {0, 1, ω, ω}.

Hence, Eq. (7.41) to (7.44) ensure that both the constituent check nodes ci and ci+m/2 of the su-

pernode Ci are satisfied simultaneously. This is achieved without any additional complexity overhead.

In fact, our proposed method requires less computations than the standard non-binary BP, because

the number of check nodes is reduced to half.

Let us consider the Steane code of Eq. (7.40) for explaining the decoding procedure. Assume that

when the 7-qubit codeword is transmitted over a quantum depolarizing channel having a depolarizing

probability of p = 0.26, an X error is inflicted on the first qubit, i.e. we have P = XIIIIII. Using

Eq. (7.16), the observed syndrome may be computed as:

S = Tr

















































ω 0 0 ω 0 ω ω

0 ω 0 ω ω 0 ω

0 0 ω 0 ω ω ω

1 0 0 1 0 1 1

0 1 0 1 1 0 1

0 0 1 0 1 1 1























.



























1

0

0

0

0

0

0





















































= Tr























ω

0

0

1

0

0























=























1

0

0

0

0

0























. (7.45)

We first run the standard non-binary BP on the Tanner graph of Figure 7.11 for estimating the channel

error. The non-binary BP algorithm proceeds as follows:

� Initialization: The messagesmâ
vt→ci , which are sent from the variable nodes vt ∈ {v0, v1, . . . , v6}

to the check nodes ci ∈ {c0, c1, . . . , c5} for â ∈ {0, 1, ω, ω}, are initialized according to the channel

depolarizing probability of p = 0.26, i.e. we have:

mâ
vt→ci =

{

0.74, if â = 0

0.0867, if â ∈ {1, ω, ω}.
(7.46)

� Horizontal message exchange: The horizontal messages mâ
ci→vt equivalent to Eq. (7.12),

which are sent from the check nodes ci to the variable nodes vt, may be computed using the

FFT-based algorithm of [189]. The algorithm is briefly outlined below:

1. PDF of m̌âs
vt→ci: Recall from Section 7.3.2 that we have:

âs = Ĥit × â. (7.47)

Consequently, the PDF of m̌âs
vt→ci can be obtained by permuting the corresponding PDF

of mâ
vt→ci according to the value of Ĥit using Eq. (7.47). Let us consider the PDF of
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the message mâ
v0→c0, which is equivalent to (m0

v0→c0 ,m
1
v0→c0 ,m

ω
v0→c0 ,m

ω
v0→c0). The cor-

responding entry in Ĥ is Ĥ00 = ω. Hence, using Eq. (7.47) and Table 4.7, we get

âs = (0, ω, 1, ω) for â = (0, 1, ω, ω). This implies that the PDF of m̌âs
v0→c0 is equivalent

to (m0
v0→c0 ,m

ω
v0→c0 ,m

1
v0→c0 ,m

ω
v0→c0). For the Ĥ of Eq. (7.40), we may generalize the com-

putation of m̌âs
vt→ci as follows:

PDF{m̌âs
vt→ci} =

{

(m0
vt→ci ,m

ω
vt→ci ,m

1
vt→ci ,m

ω
vt→ci), if ci ∈ {c0, c1, c2}

(m0
vt→ci ,m

1
vt→ci ,m

ω
vt→ci ,m

ω
vt→ci), if ci ∈ {c3, c4, c5}.

(7.48)

Furthermore, for the initial PDF of Eq. (7.46), Eq. (7.48) reduces to:

m̌âs
vt→ci =

{

0.74, if âs = 0

0.0867, if âs ∈ {1, ω, ω},
(7.49)

for ci ∈ {c0, c1, . . . , c5}.
2. FFT of the PDF of m̌âs

vt→ci: Recall from Section 7.3.2 that the convolution operation

required in Eq. (7.19) and Eq. (7.20) is equivalent to the multiplication of the corresponding

PDFs in the frequency domain. The FFT of the PDF of Eq. (7.49) can be computed using

the FFT matrix as follows:

F{m̌âs
vt→ci} =













1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1













.













m̌0
vt→ci

m̌1
vt→ci

m̌ω
vt→ci

m̌ω
vt→ci













, (7.50)

where F denotes the FFT operation. Hence, the FFT of the PDF of Eq. (7.49) is equivalent

to:

F{m̌âs
vt→ci} =













1

0.6533

0.6533

0.6533













. (7.51)

3. Convolution of PDFs: The convolution operations of Eq. (7.19) and Eq. (7.20), which

are invoked for computing the horizontal messages related to the variable node vt, can be

carried out using FFT as follows:

⊗

vt′

PDF{m̌âs
vt′→ci} ≡ F−1







∏

vt′

F{m̌âs
vt′→ci}







, (7.52)

where F−1 denotes the Inverse FFT (IFFT) operation and vt′ ∈ V (ci) \ vt. Given the Ĥ of

Eq. (7.40) and the FFT of Eq. (7.51), we get:

∏

vt′

F{m̌âs
vt′→ci} ≡













1

0.2788

0.2788

0.2788













. (7.53)



7.6. Modified Non-Binary Decoding 197

Then, the inverse FFT of Eq. (7.53) is computed by multiplying with the FFT matrix,

which is the same as that in Eq. (7.50). More explicitly, we have:

F−1







∏

vt′

F{m̌âs
vt′→ci}







=













1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1













.













1

0.2788

0.2788

0.2788













=













1.8364

0.7212

0.7212

0.7212













. (7.54)

Finally, the PDF of Eq. (7.54) is normalized to yield the output of Eq. (7.52), i.e. we get:

⊗

vt′

PDF{m̌âs
vt′→ci} ≡













0.4591

0.1803

0.1803

0.1803













. (7.55)

4. PDF of m̌âs
ci→vt: The PDF of the messages m̌âs

ci→vt may be computed using Eq. (7.19)

or Eq. (7.20) depending on the value of the syndrome observed, which was computed in

Eq. (7.45). Since the syndrome of Eq. (7.45) is 1 for the first check node c0, we use Eq. (7.20)

for computing the PDF of the messages emerging from the check node c0. Therefore, we

get:

m̌âs
c0→vt =













0.1803

0.1803

0.3197

0.3197













. (7.56)

Furthermore, the syndrome of Eq. (7.45) has a value of 0 for all other check nodes. There-

fore, we use Eq. (7.19) for ci 6= c0, which yields the following PDF:

m̌âs
ci→vt =













0.3197

0.3197

0.1803

0.1803













. (7.57)

5. PDF of mâ
ci→vt: For the sake of retrieving the messages mâ

ci→vt from the PDF of m̌âs
ci→vt ,

the resultant PDFs of Eq. (7.56) and Eq. (7.57) have to permuted as we did in Step

1. More specifically, the permutation operation, which is required for this step, is the

reverse of the permutation operation carried out in Step 1. Let us consider the check nodes

ci ∈ {c0, c1, c2}, for which the non-zero values of Ĥit are always equal to ω (or equivalently

all the branches emerging from these check nodes in the Tanner graph of Figure 7.11 are

labeled with the Pauli-Z operator). Furthermore, recall from Step 1 that âs = (0, ω, 1, ω)

for â = (0, 1, ω, ω), when Ĥit = ω. This implies that the PDF of mâ
ci→vt is equivalent to

(m̌0
ci→vt , m̌

ω
ci→vt , m̌

1
ci→vt , m̌

ω
ci→vt), for ci ∈ {c0, c1, c2}. For all other check nodes, the PDF
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of mâ
ci→vt is same as that of m̌âs

ci→vt , because Ĥit = 1. Therefore, the resultant PDFs are

as follows:

mâ
ci→vt =













0.1803

0.3197

0.1803

0.3197













, (7.58)

for ci = c0, while we have:

mâ
ci→vt =













0.3197

0.1803

0.3197

0.1803













, (7.59)

for ci ∈ {c1, c2}, and we have:

mâ
ci→vt =













0.3197

0.3197

0.1803

0.1803













, (7.60)

for the remaining check nodes ci ∈ {c3, c4, c5}.

� Vertical message exchange: We next compute the vertical messages mâ
vt→ci using Eq. (7.13).

For example, consider the message mâ
v0→c0 , which is destined from the variable node v0 to the

check node c0. Since the variable node v0 is only connected to c0 and c3 in the Tanner graph of

Figure 7.11, the message mâ
v0→c0 may be computed as:

mâ
v0→c0 = K Pch(P0 = â)×mâ

c3→v0 =













0.8005

0.0937

0.0529

0.0529













. (7.61)

� Element-wise marginal probability: The element-wise marginal probabilities of the error on

the variable node vt, given the observed syndrome S, may be computed using Eq. (7.14). Let us

consider again the variable node v0, which is connected to check nodes c0 and c3. Consequently,

the resultant marginal distribution of the error Pt inflicted on the variable node vt may be

computed as:

P(P0 = â|S) = K Pch(P0 = â)×mâ
c0→v0 ×mâ

c3→v0 =













0.7189

0.1493

0.0475

0.0842













. (7.62)

The process is repeated for all the variable nodes and the resultant marginalized probabilities

are tabulated in Table 7.7.
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t â = 0 â = 1 â = ω â = ω P̃t

0 0.7189 0.1493 0.0475 0.0842 0

1 0.8552 0.0565 0.0565 0.03185 0

2 0.8552 0.0565 0.0565 0.03185 0

3 0.8392 0.0983 0.0313 0.0313 0

4 0.9205 0.0343 0.0343 0.0109 0

5 0.8392 0.0983 0.0313 0.0313 0

6 0.9100 0.0601 0.0191 0.0108 0

Table 7.7: Marginal probability P(Pt = â|S) after the first iteration, when the standard non-binary BP decod-

ing algorithm is invoked over the Tanner graph of the 7-qubit Steane code for transmission through

a depolarizing channel having p = 0.26, which inflicts an X error on the first qubit, i.e. we have

P = XIIIIII.

� Hard decision & syndrome check: Finally, a hard decision is made for the sake of finding

the most likely error P̃t, which maximizes the marginal probability computed in the previous

step. The resultant values of P̃t are listed in the last column of Table 7.7. More specifically, the

probability of ‘no-error’ dominates for all the variable nodes. The syndrome corresponding to

the resultant estimated error P̃t does not match the observed syndrome S of Eq. (7.45). Hence,

the algorithm repeats itself from the horizontal message exchange step.

Figure 7.13(a) plots the resultant marginal probability P(Pt = â|S) for the first qubit, as the iterations
proceed. As gleaned from Figure 7.13(a), the standard decoding algorithm fails to converge. We next

invoke our modified non-binary BP algorithm for the sake of analyzing the impact of our proposed

algorithm. Recall from Figure 7.12 that the check nodes ci and ci+3 are amalgamated into a single

supernode Ci. The corresponding observed syndrome values of Eq. (7.45) are also amalgamated, which

yields (S0, S3) = (1, 0), (S1, S4) = (0, 0) and (S2, S5) = (0, 0). Consequently, the modified BP differs

from the standard non-binary in the Step 4 of the ‘horizontal message exchange’, since it takes into

account the amalgamated supernodes, rather than the individual check nodes. Using Eq. (7.41) to

Eq. (7.44), Step 4 of the ‘horizontal message exchange’ may be carried out as follows:

� PDF of m̌âs
Ci→vt

: Since the syndrome observed for the supernode C0 is (S0, S3) = (1, 0), we use

Eq. (7.43) for computing the PDF of the messages emerging from this supernode. Consequently,

we arrive at:

m̌âs
C0→vt

=
⊗

vt′

PDF{m̌âs+ω
vt′→C0

} =













0.1803

0.1803

0.4591

0.1803













. (7.63)
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t â = 0 â = 1 â = ω â = ω P̃t

0 0.1946 0.6525 0.0764 0.0764 0

1 0.8788 0.0404 0.0404 0.0404 0

2 0.8788 0.0404 0.0404 0.0404 0

3 0.8271 0.0969 0.0380 0.0380 0

4 0.9486 0.0171 0.0171 0.0171 0

5 0.8271 0.0969 0.0380 0.0380 0

6 0.9241 0.0425 0.0167 0.0167 0

Table 7.8: Marginal probability P(Pt = â|S) after the first iteration, when the modified non-binary BP decod-

ing algorithm is invoked over the Tanner graph of the 7-qubit Steane code for transmission through

a depolarizing channel having p = 0.26, which inflicts an X error on the first qubit, i.e. we have

P = XIIIIII.

Furthermore, since the syndrome is (Si, Si+3) = (0, 0) for all other supernodes, we use Eq. (7.41)

for computing the corresponding PDFs. Hence, we get:

m̌âs
Ci→vt

=
⊗

vt′

PDF{m̌âs
vt′→Ci

} =













0.4591

0.1803

0.1803

0.1803













, (7.64)

for Ci ∈ {C1, C2}.

The rest of the decoding algorithm is same as the standard non-binary BP, except that we only have

three supernodes in the modified Tanner graph of Figure 7.12 in contrast to the six check nodes of

Figure 7.11. The resultant marginalized probabilities are tabulated in Table 7.8, while Figure 7.13(b)

plots the marginal probability for the first qubit, as the iterations proceed. We may observe in

Figure 7.13(b) that our modified BP algorithm converges to the correct estimate in two iterations.

On the other hand, the standard non-binary decoder initially tends to converge towards the correct

solution. However, it starts diverging from the correct estimate after the third iteration, because the

probability values become highly correlated (or over-confident) due to the presence of numerous short

cycles.

7.7 Reweighted BP for Graphs Exhibiting Cycles

Belief propagation is capable of providing a reasonably good approximation to the optimization prob-

lem of Eq. (7.10), provided that the underlying Tanner graph has a sufficiently high girth. However,



7.7. Reweighted BP for Graphs Exhibiting Cycles 201

steane-standard-q3.gle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ar
gi
n
al

P
ro
b
ab
ili
ty

(P
(P

t|S
))

0 1 2 3 4 5 6 7 8 9 10

Iteration Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ar
gi
n
al

P
ro
b
ab
ili
ty

(P
(P

t|S
))

0 1 2 3 4 5 6 7 8 9 10

Iteration Index

I

X

Z

Y

(a) Standard non-binary BP.

steane-modifed-q3.gle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ar
gi
n
al

P
ro
b
ab
ili
ty

(P
(P

t|S
))

0 1 2 3 4 5 6 7 8 9 10

Iteration Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ar
gi
n
al

P
ro
b
ab
ili
ty

(P
(P

t|S
))

0 1 2 3 4 5 6 7 8 9 10

Iteration Index

I

X

Z

Y

0.446

0.448

0.45

0.452

1 2 3

(b) Modified non-binary BP.

Figure 7.13: Evolution of the marginal probability for the first qubit of the 7-qubit Steane code for transmis-

sion through a depolarizing channel having p = 0.26, which inflicts an X error on the first qubit,

i.e. we have P = XIIIIII. Standard BP fails to converge, while our modified BP converges to

the correct solution in two iterations.
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it is not guaranteed to converge or may converge onto an incorrect solution in the presence of cy-

cles [196, 197]. Furthermore, it may require a large number of iterations for achieving convergence,

especially in the high noise regime, thereby imposing a higher complexity. These shortcomings of the

classic BP algorithm are primarily due to the fact that the BP messages become dependent with time

when short cycles exist in the Tanner graph. Alternatively, we may refer to the messages as being

‘over-confident’ or ‘over-estimated’. To alleviate the impact of this over-confidence, Wainwright et al.

[196] conceived the Tree-ReWeighted Belief Propagation (TRW-BP) method for pair-wise interactions,

which improves the convergence of the classic BP by reweighting the edges of the underlying graph

with their Edge Appearance Probabilities (EAP)9. The TRW-BP algorithm was extended to higher-

order interactions in [168, 169], whereby EAPs were replaced by the Factor Appearance Probabilities

(FAPs) of the nodes10. Based on this extended TRW-BP, Wymeersch et al. re-formulated the vertical

message exchange step of the classic BP (Eq. (7.13)) as [168, 169]:

ma
vt→ci = K Pch(Pt = a)

(

ma
ci→vt

)ρi−1
∏

ci′∈C(vt)\ci

(

ma
ci′→vt

)ρi′
, (7.65)

where ρi is the FAP of the ith check node. Similarly, the computation of the element-wise marginal

probability (Eq. (7.14)) was modified as:

P(Pt = a|S) = K Pch(Pt = a)
∏

ci∈C(vt)

(

ma
ci→vt

)ρi . (7.66)

Both Eq. (7.65) and (7.66) reduces to the classic BP for ρi = 1 ∀i.

The TRW-BP technique requires the optimization of ρi for all nodes. To reduce this optimzation

task, Wymeersch et al. [168, 169] also proposed the URW-BP, which invokes a uniform FAP value for

all the nodes, where we have ρi = ρ ∀i. Various other variations of TRW-BP have been investigated

in [198, 199, 200, 201] for classical binary LDPC codes, which demonstrate that the TRW-BP effectively

improves the convergence of binary LDPC codes, when the number of iterations is not too high.

Inspired by these results, in Section 7.8 we also analyze the impact of URW-BP on the non-binary

decoding of quantum LDPC codes, which are known to have unavoidable short cycles.

7.8 Results and Discussions II

7.8.1 Modified Non-Binary Decoding

For the sake of quantifying the attainable performance gain of our modified non-binary BP of Sec-

tion 7.6, in this section we compare its performance in conjunction with the decoding algorithms of

Section 7.3. Our first system of Table 7.9 relies on Mackay’s 1/2-rate [800, 400] bicycle code having

a row weight of 30. The corresponding WER performance recorded for varying channel depolarizing

probabilities is plotted in Figure 7.14, where we have considered the following decoders:

9EAP of an edge represents the probability of appearance of that edge in a randomly chosen spanning tree.
10FAP denotes the appearance probability of a node in the collection of trees [168, 169].
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QLDPC Matrix

Code Construction Mackay’s bicycle code

Coded qubits n = 800

Information qubits k = 400

E-bits c = 0

Row weight 30

QLDPC Decoder

Standard decoding iterations Imax = 90

Perturbation iterations Tpert=40

Random perturbation strength δ = 0.1

Maximum no. of feedbacks na = 40

Table 7.9: System I - Simulation parameters.

1. Binary: the binary BP decoding algorithm of Section 7.3.1,

2. Standard Non-Binary: the non-binary BP decoding algorithm of Section 7.3.2,

3. Random Perturbation: the random perturbation technique [85] of Section 7.3.3,

4. Enhanced Feedback: the enhanced feedback method [86] of Section 7.3.3,

5. Modified Non-Binary: our modified non-binary BP of Section 7.6,

6. Modified & Enhanced Feedback: our modified non-binary BP of Section 7.6 amalgamated

with the enhanced feedback method [86] of Section 7.3.3.

For all the decoding schemes, we have used a maximum of Imax = 90 iterations. Furthermore, for

both the ‘Random Perturbation’ as well as for the ‘Enhanced Feedback’, we set Tpert = 40, while the

random perturbation strength was set to δ = 0.1 and the maximum number of feedbacks to na = 40 for

the ‘Enhanced Feedback’11. These simulation parameters are tabulated in Table 7.9. Each decoding

algorithm iterates until either a valid error is found or the maximum number of iterations is reached.

Furthermore, the WER metric here counts both the detected as well as the undetected block errors.

We may observe in Figure 7.14 that the ‘Binary’ decoder exhibits the worse performance. Using

the ‘Binary’ decoder, we achieve a WER of 10−4 at a channel depolarizing probability of p = 0.0085,

which increases to p = 0.01075 with the ‘Standard Non-Binary’ decoder. This is equivalent to a

11We have used the decoding parameters of [86].
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Figure 7.14: Achievable WER performance comparison of the modified BP with the existing decoding schemes,

using the simulation parameters of Table 7.9.

( (0.01075−0.0085)
0.0085 × 100) = 26% depolarizing probability increase that the decoder can cope with. Fur-

thermore, the ‘Random Perturbation’, the ‘Enhanced Feedback’ and the ‘Modified Non-Binary’ de-

coders have a similar performance at low noise levels, increasing the tolerable depolarizing probability

to p = 0.014 at a WER of 10−4, which corresponds to a ( (0.014−0.01075)
0.01075 × 100) = 30% increase of p at

WER = 10−4 with respect to the ‘Standard Non-Binary’ decoder. Furthermore, with the ‘Modified

& Enhanced Feedback’ configuration, the tolerable depolarizing probability increases to p = 0.017 at

a WER of 10−4, which is equivalent to about ( (0.017−0.014)
0.014 × 100) = 21% increase with respect to

p = 0.014. Table 7.1012 summarizes these results.

The performance of our ‘Modified Non-Binary’ BP at a WER of 10−4 is similar to that of the

heuristic methods, namely ‘Random Perturbation’ and ‘Enhanced Feedback’. However, the ‘Modi-

fied Non-Binary’ technique imposes a lower decoding complexity in terms of the average number of

decoding iterations, which is evidenced in Figure 7.15. Consequently, our ‘Modified Non-Binary’ BP

converges faster than the existing decoding schemes. In particular, in the high-noise regime, our ‘Mod-

ified Non-Binary’ decoder outperforms both the ‘Random Perturbation’ and the ‘Enhanced Feedback’

in terms of its WER performance recorded in Figure 7.14 as well as in terms of the average number

of iterations seen in Figure 7.15. As compared to the ‘Standard Non-Binary’ decoder, the ‘Modified

Non-Binary’ algorithm always yields a lower WER and invokes on average less decoding iterations.

We may observe furthermore in Figure 7.15 that the amalgamated ‘Modified & Enhanced Feedback’

invokes less iterations as compared to the ‘Enhanced Feedback’, while the performance of the former

12‘With respect to’ is abbreviated as ‘w.r.t.’ in Table 7.10.
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Dec.

No.

Decoding Method p Improvement

1 Binary 0.0085 -

2 Standard Non-Binary 0.01075 26% w.r.t. Dec. 1

3 Random Perturbation 0.014 30% w.r.t. Dec. 2

4 Enhanced Feedback 0.014 30% w.r.t. Dec. 2

5 Modified Non-Binary 0.014 30% w.r.t. Dec. 2

6 Modified & Enhanced Feedback 0.017 21% w.r.t. Dec. 5

Table 7.10: Achievable depolarizing probability (p) at a WER of 10−4, based on Figure 7.14.

is also superior in terms of the WER curve of Figure 7.14. This is again due to the fact that the modi-

fied BP of Section 7.6 facilitates faster convergence as compared to the standard non-binary decoding.

More specifically, in the region of interest, i.e. for p ≤ 0.017 corresponding to the desired WER of

≤ 10−4, the combination of the enhanced feedback method with our modified BP, namely ‘Modified

& Enhanced Feedback’, imposes almost the same complexity as that imposed by the ‘Modified Non-

Binary’ BP, when used on its own. However, the former exhibits a much lower WER than the latter.

We compare furthermore the performance of all the decoding schemes at a depolarizing probability of

p = 0.016 in Table 7.11.

Let us now compare the performance of the different decoding schemes in the context of our

second system of Table 7.12, relying on the homogeneous EA-QLDPC code of [86] having n = 816,

k = 404 and e = 404, which is derived from the Mackay’s classical (816, 408) LDPC, having a row

weight of 6 and a column weight of 3. For all the decoding schemes, we have used a maximum

of Imax = 90 iterations. Furthermore, for both the the ‘Random Perturbation’ as well as for the

‘Enhanced Feedback’ methods, we set Tpert = 40, while the random perturbation strength was set

to δ = 0.1 and the maximum number of feedbacks na = 81 was used for the ‘Enhanced Feedback’

decoder. These simulation parameters are summarized in Table 7.12. The resultant WER performance

curves are compared in Figure 7.16, while the average number of decoding iterations invoked for

varying channel depolarizing probabilities are compared in Figure 7.17. As observed from Figure 7.16,

the ‘Binary’ decoder achieves a WER of 10−4 at p = 0.057, which increases to p = 0.069 when

the ‘Standard Non-Binary’ decoder is invoked. Consequently, the ‘Standard Non-Binary’ increases

the tolerable depolarizing probability by ( (0.069−0.057)
0.057 × 100) = 21% as compared to the ‘binary’

decoder. This is further increased to p = 0.076 in conjunction with the ‘Random Perturbation’, which

corresponds to about ( (0.076−0.069)
0.069 ×100) = 10% increase and to p = 0.082 for the ‘Enhanced Feedback’,

which represents a ( (0.082−0.069)
0.069 × 100) = 19% increase. By contrast, our ‘Modified Non-Binary’ BP

exhibits a WER of 10−4 around p = 0.085, which corresponds to a ( (0.085−0.069)
0.069 × 100) = 23%
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Figure 7.15: Comparison of the average number of decoding iterations invoked by the modified BP and the

existing decoding schemes using the simulation parameters of Table 7.9.

Dec.

No.

Decoding Method WER Iavg

1 Binary 1.5710−2 3.98

2 Standard Non-Binary 1.4710−3 4.28

3 Random Perturbation 4.5710−4 7.52

4 Enhanced Feedback 4.4710−4 5.08

5 Modified Non-Binary 3.6710−4 2.81

6 Modified & Enhanced Feedback 5.2710−5 2.96

Table 7.11: Performance comparison in terms of the achievable WER and the average number of decoding

iterations (Iavg) invoked at a depolarizing probability of p = 0.016, based on Figure 7.14 and

Figure 7.15.
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QLDPC Matrix

Code Construction Homogeneous EA-QLDPC

Coded qubits n = 816

Information qubits k = 404

E-bits c = 404

Row weight 6

Column weight 3

QLDPC Decoder

Standard decoding iterations Imax = 90

Perturbation iterations Tpert = 40

Random perturbation strength δ = 0.1

Maximum no. of feedbacks na = 81

Table 7.12: System II - Simulation parameters.

increase as compared to the ’Standard Non-Binary’ decoder. Using the heuristic enhanced feedback

approach with our modified BP, namely ‘Modified & Enhanced Feedback’ provides a further increase

to p = 0.0945, which represents a ( (0.0945−0.085)
0.085 × 100) = 11% increase. These results are tabulated

in Table 7.13. In terms of the average number of decoding iterations, our ‘Modified Non-Binary’ BP

always outperforms both the ‘Standard Non-Binary’ decoder as well as the ‘Random perturbation’

and the ‘Enhanced Feedback’ solutions, as depicted in Figure 7.17.

7.8.2 Uniformly-Reweighted BP

Since bicycle codes exhibit numerous short cycles, we use our first system of Table 7.9 for the analysis

of the URW-BP of Section 7.7, which is combined with our modified non-binary decoder of Section 7.6.

More precisely, we amalgamate the horizontal exchange step of our modified non-binary BP with the

vertical exchange step of the URW-BP.

We commence by heuristically determining the optimum value ρ of the FAP, which varies with

both the channel depolarizing probability as well as with the maximum number of decoding iterations.

Figure 7.18 shows the impact of ρ on the WER performance at varying channel depolarizing proba-

bilities p for Imax = 10, 20 and 90 iterations. We may observe in Figure 7.18 that the WER varies

with the value of ρ, attaining a minimum value at the optimum ρ. This optimum ρ is different for

each p value, tending to move towards ρ = 1 as the value of p increases or as the maximum affordable

number of iterations increases. The resultant values of ρ optimized for different channel depolarizing
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Figure 7.16: Achievable WER performance comparison of the modified BP with the existing decoding schemes,

using the simulation parameters of Table 7.12.

Dec.

No.

Decoding Method p Improvement

1 Binary 0.057 -

2 Standard Non-Binary 0.069 21% w.r.t. Dec. 1

3 Random Perturbation 0.076 10% w.r.t. Dec. 2

4 Enhanced Feedback 0.082 19% w.r.t. Dec. 2

5 Modified Non-Binary 0.085 23% w.r.t. Dec. 2

6 Modified & Enhanced Feedback 0.0945 11% w.r.t. Dec. 5

Table 7.13: Achievable depolarizing probability (p) at a WER of 10−4, based on Figure 7.16.
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Figure 7.17: Comparison of the average number of decoding iterations invoked by the modified BP and the

existing decoding schemes using the simulation parameters of Table 7.12.

Optimized ρ for different values of p

Imax 0.012 0.014 0.016 0.018 0.02 0.025 0.03

10 0.8 0.8 0.8 0.9 0.9 0.9 0.9

20 0.8 0.8 0.9 0.9 0.9 0.9 1

90 0.9 0.9 0.9 0.9 0.9 1 1

Table 7.14: Optimized ρ for different values of p and maximum number of iterations Imax for System I of

Table 7.9, based on the performance curves of Figure 7.18.

probabilities p and for different maximum number of iterations are summarized in Table 7.14.

To quantify the performance gain achieved with the aid of the URW-BP, we compare the perfor-

mance of the optimized URW-BP to our modified non-binary BP in Figure 7.19 for Imax = 10, 20

and 90 iteration. Here the optimized URW-BP is based on the best values of ρ listed in Table 7.14.

The performance curves of Figure 7.19 reveal that the improvement in WER is lower for higher values

of p as well as for larger values of the maximum number of affordable iterations. For example, when

a maximum of Imax = 10 decoding iterations are invoked at a WER of 10−3, the URW-BP scheme

increases p = 0.0125 to p = 0.0155, which is around a ( (0.0155−0.0125)
0.0125 × 100) = 24% increase. By

contrast, for a maximum of Imax = 20 iterations, URW-BP increases from p = 0.015 to p = 0.017 at a

WER of 10−3. This is equivalent to an increase of ( (0.017−0.015)
0.015 ×100) = 13%. Furthermore, at an even

higher maximum number of iterations of Imax = 90, URW-BP achieves a WER of 10−3 at p = 0.0185,
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Figure 7.18: URW-BP optimization: impact of varying FAP values on the WER performance at various

channel depolarizing probabilities p. URW-BP is amalgamated with the modified non-binary

decoder and the performance is analyzed for the System I of Table 7.9.
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Figure 7.19: Achievable WER performance of the URW-BP, having the best values of ρ listed in Table 7.14,

compared with the ‘Modified Non-Binary’, when used on its own. Performance is evaluated for

the System I of Table 7.9 using Imax = 10, 20 and 90 iterations.

which is only a ( (0.0185−0.018)
0.018 ×100) = 3% increase as compared to the modified non-binary algorithm.

These values are summarized in Table 7.15. Hence, the notion of reweighting the message probabilities

is more beneficial at low depolarizing probabilities and for smaller values of the maximum affordable

number of iterations. This is because at higher depolarizing probabilities (and similarly larger values

of the maximum number of iterations), the messages are highly correlated.

p at a WER of 10−3

Imax Modified BP URW-BP Increase

10 0.0125 0.0155 24%

20 0.015 0.017 13%

90 0.018 00185 3%

Table 7.15: Performance comparison of URW-BP with the modified BP for System I of Table 7.9, based on

Figure 7.19.
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7.9 Summary and Conclusions

Classical LDPC codes are known to exhibit a near-capacity performance at an affordable decoding

complexity. This has spurred considerable interest in the design of QLDPC codes over the recent

years. The sparseness of LDPC matrix is also particularly important for quantum codes because it

facilitates fault tolerant decoding.

QLDPC codes may be constructed from the classical binary as well as quaternary codes, as dis-

cussed in the review of QLDPC construction methods in Section 7.2. The design guidelines for

constructing QLDPC codes may be summarized as follows:

� An [n, k] QLDPC code, having a coding rate of RQ = k/n, may be constructed from a classical

(2n, n+ k) binary LDPC code, having a coding rate of Rc = (n+ k)/2n, if the associated PCM

H satisfies the stringent symplectic criterion.

� Ideally, the rows of the PCM H should have at most a single overlapping value of 1 (or non-

zero value in the GF(4) formalism)) for the sake of avoiding length-4 cycles in the Tanner

graph, which degrade the performance of the iterative decoding algorithm. Unfortunately, the

symplectic criterion requires ‘even overlaps’ between the rows of H, thus resulting in unavoidable

length-4 cycles. A major design challenge is therefore to construct good QLDPC codes in the

wake of the unavoidable length-4 cycles.

� We may exploit four main global structures of the PCM H for designing QLDPC codes, namely

dual-containing CSS, non-dual-containing CSS, non-CSS and entanglement-assisted solutions of

Figure 7.1. The design challenges associated with each of these structures are summarized below:

– Dual-containing CSS (Section 7.2.1): Mackay’s bicycle codes are so far the best

amongst the dual-containing CSS codes, but their performance is not on par with the

classical LDPC codes. This is because this construction suffers the most from having short

cycles, which exist both in the binary as well as in the GF(4) formalism.

– Non-dual-containing CSS codes (Section 7.2.1): It is difficult to find a pair of sparse

binary PCMs satisfying the symplectic criterion, which constitute good QLDPC codes. At

the time of writing, only the SC QC-LDPC codes and the non-binary QC-QLDPC codes

are known to perform close to the Hashing bound. But this comes either at the cost of

pre-shared noiseless ebits or at an increased complexity.

– Non-CSS codes (Section 7.2.2): Ideally, non-CSS constructions are preferred over the

CSS codes because they exploit the redundant qubits more efficiently. However, finding

good non-CSS QLDPC codes remains an open challenge at the time of writing.

– EA codes (Section 7.2.3): Entanglement-assistance may aid in achieving a performance

comparable to that of the classical LDPC codes. However again, this requires pre-shared

ebits, which constitute a valuable resource gleaned at the cost of a transmission overhead.

Therefore, efforts must be made to minimize the number of required ebits.
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� Additionally, it is desirable that the resulting QLDPC code has the following attributes:

– A structured PCM, for example a cyclic or quasi-cyclic structure, for facilitating its imple-

mentation; and

– An unbounded minimum distance or at least a sufficiently high minimum distance for long

block lengths.

We further discussed in Section 7.3 that QLDPC codes may be decoded using syndrome-based BP

either in the binary domain or in the non-binary domain. Besides the obvious lower complexity of the

binary decoding, the two main differences between these decoding regimes are:

� In contrast to the binary decoding of Section 7.3.1, which assumes that the bit-flips and phase-

flips are independent, non-binary decoding of Section 7.3.2 takes into account the correlation

between them, which improves their performance.

� The number of length-4 cycles is higher in the non-binary formalism of the PCM as compared

to the binary one. This tends to degrade the performance of the non-binary decoder.

Hence, we have a pair of conflicting attributes.

From the perspective of decoding, the challenges discussed in Section 7.3.3 may be summarized as

follows:

� Degeneracy: Quantum codes are inherently degenerate in nature. This may improve the asso-

ciated decoding performance if the decoder takes this degeneracy into account. Unfortunately,

the BP algorithm does not exploit this degeneracy. In fact, since BP is based on marginalized

probabilities, the presence of degenerate errors impairs its performance.

� Short cycles: Unavoidable length-4 cycles found in QLDPC codes degrade the performance

of BP. This gets even worse for the homogeneous CSS codes, when they are decoded in the

non-binary domain.

Heuristic methods, namely random perturbation and enhanced feedback, are known to mitigate both

these issues to some extent. However, this is achieved at the cost of an increased decoding complexity.

In the spirit to construct non-dual-containing CSS QLDPC codes, we conceived a formalism in

Section 7.4 for constructing high-rate row-circulant QC-QLDPC codes from arbitrary row-circulant

classical LDPC matrices. Since our design is merely based on the transpose and column permutation

operations, the characteristics of the underlying classical LDPC matrix are not compromised. In

particular, we applied our formalism to the BIBD-based classical LDPCs for evaluating its performance

in Section 7.5. It was demonstrated in Figure 7.10 that our designed [2534, 2172] QLDPC code is

capable of tolerating three times higher depolarizing probability at a WER of 10−4 as compared to its

EA (homogeneous) counterpart and about four times higher depolarizing probability, when compared



Dec.

No.

Decoding Method p at WER = 10−4 Improvement in p Iavg

System I of Table 7.9 (Figure 7.14 and Figure 7.15)

1 Binary 0.0085 - 1.7

2 Standard Non-Binary 0.01075 26% w.r.t. Dec. 1 2.6

3 Random Perturbation 0.014 30% w.r.t. Dec. 2 4.19

4 Enhanced Feedback 0.014 30% w.r.t. Dec. 2 3.6

5 Modified Non-Binary 0.014 30% w.r.t. Dec. 2 2.47

6 Modified & Enhanced Feedback 0.017 21% w.r.t. Dec. 5 3.4

System II of Table 7.12 (Figure 7.16 and Figure 7.17)

1 Binary 0.057 - 4

2 Standard Non-Binary 0.069 21% w.r.t. Dec. 1 5

3 Random Perturbation 0.076 10% w.r.t. Dec. 2 7.5

4 Enhanced Feedback 0.082 19% w.r.t. Dec. 2 7

5 Modified Non-Binary 0.085 23% w.r.t. Dec. 2 5.5

6 Modified & Enhanced Feedback 0.0945 11% w.r.t. Dec. 5 7

Table 7.16: Summary of the simulation results of Section 7.8.1 at a WER of 10−4.

to an equivalent dual-containing bicycle code in the GF(4) formalism. This is because both the

homogeneous EA-QLDPC codes as well as the dual-containing QLDPCs have numerous short cycles

in the GF(4) formalism, which impair the performance of the decoding algorithm.

In Section 7.6, we conceived a modified non-binary decoding algorithm for homogeneous CSS-type

QLDPC codes, which successfully mitigated the problems imposed by unavoidable length-4 cycles.

In Section 7.8.1, we demonstrated in Figure 7.14 to Figure 7.17 that our modified decoder exhibits a

superior WER performance, despite its lower decoding complexity, when compared to the state-of-the-

art decoding techniques. We also amalgamated our improved decoding algorithm with the heuristic

methods for attaining additional performance gains. Results are summarized in Table 7.16.

In Section 7.7, we laid out the reweighted BP algorithm, which is known to alleviate the issue of

short cycles in classical LDPC codes. In Section 7.8.2, we amalgamated our modified algorithm of

Section 7.6 with the URW-BP of Section 7.7 for evaluating the performance. It was demonstrated in

Figure 7.19 that URW-BP can be exploited for counteracting the issues of short-cycles, particularly

when the maximum number of decoding iterations is small. More specifically, the results summarized

in Table 7.15 reveal that URW-BP improves the tolerable depolarizing probability by 24% at a WER



of 10−3, when Imax = 10 decoding iterations are invoked, while the improvement decreases to 13% at

Imax = 20. Increasing the maximum number of affordable decoding iterations to Imax = 90 reduces

the performance gain to 3%.





Chapter 8
Conclusions and Future Directions

I
n this concluding chapter, we will summarize our conclusions in Section 8.1, while a range of

potential future research directions will be discussed in Section 8.2.

8.1 Summary and Conclusions

Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits

against the undesirable effects of quantum decoherence. For classical information transmission over

a quantum channel, we may alternatively exploit the family of classical error correction codes for

counteracting the deleterious impact of decoherence. However, for realizing reliable quantum informa-

tion transmission through a quantum-based communication system as well as for quantum computing

systems, QECCs are indispensable. Against this background, in this thesis, we aimed to:

� Design classical error correction schemes for reliable transmission of classical information over

an absolutely secure quantum channel;

� Design QECCs for absolutely secure quantum-based communication and quantum computation

systems.

In light of these objectives, we progressed through this thesis as follows:

� Chapter 1: We commenced our discourse in Section 1.1 by laying out the motivation for

designing error correction schemes for both quantum communication and computing systems,

while the historical background of QECCs was presented in Section 1.2. We then proceeded

with the outline of the thesis in Section 1.3. Finally, the novel contributions of the thesis were

highlighted in Section 1.4.

217
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� Chapter 2: In Chapter 2, we provided a preliminary introduction to quantum information the-

ory. More specifically, we detailed the difference between classical bits and qubits in Section 2.2,

while the notion of an N -qubit quantum system was presented in Section 2.3. We then intro-

duced the no-cloning theorem and the notion of quantum entanglement in Sections 2.4 and 2.5,

respectively. In Section 2.6, various quantum unitary operators were discussed, while the Pauli

group was defined in Section 2.7. Finally, we discussed various quantum channel models in

Section 2.8.

� Chapter 3: In Chapter 3, EXtrinsic Information Transfer (EXIT) Chart-aided near-capacity

classical code designs were presented for reliable transmission of classical information over a

secure quantum channel. In particular, we focused our attention on the entanglement-assisted

transmission of classical information over a depolarizing channel, which was achieved with the

aid of the SuperDense (SD) coding protocol.

Explicitly, in Section 3.2, we briefly reviewed the SD protocol, which maps the classical bits onto

qubits for transmission over a quantum channel. More specifically, the 2-qubit SD (2SD) protocol

was presented in Section 3.2.1, which transmits 2 classical bits per channel use (cbits/use)

with the aid of a single pre-shared entangled qubit. The 2SD protocol of Section 3.2.1 was

further generalized to its N -qubit SD (NSD) counterpart in Section 3.2.2, which facilitates the

transmission of N classical bits by sending only (N − 1) qubits over the noisy quantum channel,

while one qubit is pre-shared with the receiver before actual transmission takes place. More

explicitly, we considered the N = 3 scenario, resulting in a transmission rate of 1.5 cbits/use.

The corresponding quantum circuits designed for the 2SD and 3SD protocols were given in

Figure 3.2 and Figure 3.3, respectively. The associated Entanglement-Assisted Classical Capacity

(EACC) was derived for the generalized NSD transmission in Section 3.3, which was specifically

characterized for the 2SD and 3SD schemes in Eq. (3.17) and (3.19), respectively.

Section 3.4 proposed a radically new amalgamated classical-quantum code structure, where a

classical IRregular Convolutional Code (IRCC) was concatenated with a classical symbol-based

recursive Unity Rate Code (URC) and a quantum-based SD mapper through a bit interleaver.

More explicitly, an IRCC constitutes the outer code of the proposed code design, while the

URC and SD scheme were combined to form a single inner component. The resultant system

was referred to as a ‘bit-based IRCC-URC-SD’ arrangement, whose schematic was given in

Figure 3.4. Furthermore, iterative decoding was invoked for exchanging extrinsic information

between the inner (URC-SD) and outer (IRCC) decoders. We next presented our EXIT-chart

aided near-capacity design criterion in Section 3.5 for optimizing the weighting coefficients of

the IRCC. The design guidelines conceived for our IRCC-URC-SD structure are summarized as

follows:

– Using the bit-based capacity curves of Figure 3.5, the noise limit p∗, which may be defined

as the maximum tolerable channel depolarizing probability, is determined for the desired

classical information transmission rate in cbits/use and for the required SD protocol .
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– The inner decoder EXIT curve of the amalgamated twin-component inner (URC-SD) de-

coder is computed at a channel depolarizing probability of p = (p∗ − ǫ) using the binary

EXIT chart generation approach of Section 3.5.1. Here ǫ is a small number, which charac-

terizes the distance from the capacity p∗.

– Finally, as discussed in Section 3.5.2, the weighting coefficients of the IRCC subcodes,

having an overall coding rate of Ro, are optimized for the sake of ensuring that a marginally

open tunnel exists between the EXIT curves of the outer and inner decoder at the highest

possible depolarizing probability, i.e at the lowest value of ǫ. This in turn guarantees that

the system has a near-capacity performance.

The performance of the bit-based IRCC-URC-SD design invoked for our 2SD and 3SD schemes

was evaluated in Section 3.6.1 and 3.6.2, respectively, which was benchmarked against the bit-

based EACC of Figure 3.5. It was demonstrated that the actual convergence threshold deter-

mined using the Bit Error Rate (BER) performance curves of Figure 3.8 and Figure 3.12 was the

same as the EXIT chart predictions of Figure 3.7 and Figure 3.11, respectively. Furthermore, the

BER performance improved upon increasing the number of iterations, as long as the depolarizing

probability was lower than the convergence threshold, which was quantified in Figure 3.9 and

Figure 3.13 in terms of the distance from capacity (dB) at BER of 10−4. However, the perfor-

mance only improved with diminishing returns at a higher number of iterations. In particular,

the convergence threshold of the designed systems of Figure 3.7 and Figure 3.11 was within

0.4 dB of the achievable noise limit for both 2SD as well as for 3SD schemes. More specifically,

the normalized capacity loss was only 0.062 and 0.031 cbits/use from the corresponding 2-qubit

and 3-qubit noise limits, respectively. The attainable performance was also benchmarked against

that of classical turbo codes in Figure 3.14, which is summarized in Table 8.1.

The bit-based IRCC-URC-SD code structure of Figure 3.4 incurred a capacity loss due to the

symbol-to-bit conversion, which was quantified in Figure 3.5. To alleviate this issue, a symbol-

based CC-URC-SD scheme was conceived in Section 3.7, where a symbol-based classical Con-

volutional Code (CC) was concatenated with an integrated URC-SD through a symbol inter-

leaver. The proposed CC-URC-SD scheme was optimized with the aid of non-binary EXIT

charts. More specifically, we optimized the system in Section 3.8 by exhaustively searching

through all the possible generator polynomials in Figure 3.16 for finding the specific CC whose

EXIT curve yields a marginally open tunnel at the highest possible depolarizing probability.

The resultant optimal memory-2, memory-3 and memory-4 CCs of Figure 3.20 were found to

have the octally represented generator polynomials of (g1, g2) = (7, 5)8, (g1, g2) = (17, 15)8 and

(g1, g2) = (31, 36)8 , respectively. The simulation results of Figure 3.19 demonstrated that the

symbol-based CC-URC-2SD provides a significant BER performance improvement, despite its

lower encoding/decoding complexity than that of the bit-based IRCC-URC-2SD. Quantitatively,

we observed in Figure 3.19 that after 2 iterations our proposed symbol-based CC-URC-2SD

design incorporating a memory-4 CC outperformed the bit-based IRCC-URC-2SD scheme of

Figure 3.4 by 3.7 dB at a BER of 10−4. Even the memory-2 and memory-3 designs were found
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Code Structure I∞ Distance from

Capacity at

BER = 10−4

Reference

Figures

IRCC-URC-2SD 32 0.6 dB Figure 3.8 and

Figure 3.9

IRCC-URC-3SD 32 0.7 dB Figure 3.12 and

Figure 3.13

TC-2SD 16 1.9 dB Figure 3.14

TC-3SD 16 2.2 dB Figure 3.14

Table 8.1: Comparison of the decoding complexity and the achievable performance of the TC-SD and IRCC-

URC-SD schemes. Decoding complexity is quantified in terms of the number of iterations required

for achieving a near-perfect convergence, which is denoted as I∞, while the achievable performance

is measured in terms of the distance from the bit-based capacity at a BER of 10−4.

to outperform the bit-based IRCC-URC-2SD in Figure 3.21. Furthermore, the performance of

the bit-based IRCC-URC-2SD and the symbol-based CC-URC-2SD was comparable, once per-

fect convergence was achieved. Nonetheless, the symbol-based designs imposed a lower decoding

complexity, because they require less iterations, as quantified in Table 8.2.

� Chapter 4: In Chapter 3, we designed near-capacity classical-quantum coding schemes, which

exploited redundancy in the classical domain. Therefore, the designs given in Chapter 3 are only

suitable for a quantum-based communication system, which transmits classical information. By

contrast, we have to resort to QECCs for the transmission of quantum information and for

quantum computing systems. In this spirit, the rest of the thesis is focused on the design of

QECCs.

Unlike a classical bit, a qubit cannot be copied and it collapses to a classical bit upon measure-

ment. Furthermore, while bit errors are the only type of errors experienced during transmission

over a classical channel, a quantum channel may inflict both bit-flips as well as phase-flips.

Therefore, it is not feasible to directly map classical codes onto their quantum counterparts.

Nevertheless, quantum codes may be designed from the known classical codes by exploiting the

underlying quantum-to-classical isomorphism, which This transition from the classical to the

quantum domain was presented in Chapter 4. The discussion commenced in Section 4.2, where

the classical linear block codes were reviewed with a particular emphasis on the 3-bit repetition

code. The stabilizer formalism, which facilitates the design of quantum codes from the classical

ones, was then discussed in Section 4.3. It was demonstrated with the aid of the 3-qubit bit-flip

repetition code and 3-qubit phase-flip repetition code that:
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Code Structure I∞ Distance from

Capacity at

BER = 10−4

Reference

Figures

IRCC-URC-2SD 32 1.2 dB Figure 3.8 and

Figure 3.9

CC(2,1,2)-URC-2SD 20 1 dB Figure 3.17 and

Figure 3.18

CC(2,1,3)-URC-2SD 20 1 dB Figure 3.21

CC(2,1,4)-URC-2SD 20 1 dB Figure 3.21

Table 8.2: Comparison of the decoding complexity and the achievable performance of the bit-based IRCC-

URC-2SD and the symbol-based CC-URC-2SD schemes. The decoding complexity is quantified

in terms of the number of iterations required for achieving a near-perfect convergence, which is

denoted as I∞, while the achievable performance is measured in terms of the distance from the

symbol-based capacity at a BER of 10−4.

– The copying operation of classical codes is equivalent to copying the basis states of the

qubit, which can be achieved via quantum entanglement;

– Measurement of a qubit may be circumvented by observing the channel errors without

observing the actual quantum information by invoking the classical syndrome decoding

techniques;

– Phase-flips may be corrected by copying in the Hadamard basis.

This quantum to classical transition was summarized in Figure 4.6.

Section 4.3.2 detailed the equivalence between the quantum and classical Parity Check Matrices

(PCMs), focusing specifically on the Pauli-to-binary isomorphism in Section 4.3.2.1, while the

Pauli-to-quaternary isomorphism was discussed in Section 4.3.2.2. The underlying mapping was

also summarized in Table 4.11, which facilitates the design of quantum codes from arbitrary

classical binary codes, if they meet the symplectic criterion, and from arbitrary classical quater-

nary codes, if they satisfy the Hermitian inner product. This in turn led to various structures

of Quantum Stabilizer Codes (QSCs), namely to the dual-containing Calderbank-Shor-Steane

(CSS) as well as to the non-dual-containing CSS and non-CSS structures, which are summarized

in Table 8.3. Furthermore, it was discussed in Section 4.3.3 that QSCs are degenerate in nature.

Consequently, errors, which only differ by the generator of the stabilizer group have the same

impact on the transmitted qubit and can be corrected by the same recovery operation. This

further leads to the class of harmless undetected error patterns in Figure 4.9, which only exist

in the quantum domain.
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Code Type Parity Check

Matrix

Criteria Design Examples

Dual-containing CSS





H ′
z 0

0 H ′
z



 H ′
zH

′T
z = 0 Steane code of Eq. (4.36)

and QCC of Eq. (4.65)

Non-dual-containing

CSS





H ′
z 0

0 H ′
x



 H ′
z 6= H ′

x and

H ′
zH

′T
x = 0

-

Non-CSS (Hz|Hx) HzH
T
x +HxH

T
z = 0 Hamming code of Eq. (4.51)

and QCC of Eq. (4.68)

EA





H ′
z 0

0 H ′
z



 and

(Hz|Hx)

None EA-QSC of Eq. (4.77)

Table 8.3: Summary of the stabilizer code structures of Chapter 4.

Section 4.4 extended the discussion of Section 4.3.2 to the family of convolutional codes, where

both CSS-type and non-CSS type Quantum Convolutional Codes (QCCs) were designed from

the known classical CCs. Section 4.5 then presented the Entanglement-Assisted (EA) stabilizer

formalism. This formalism allows any classical code to be used as a quantum code, even if it

does not meet the symplectic or Hermitian inner product criterion. However, this is achieved

with the aid of pre-shared entanglement, which is indeed a valuable resource gleaned at the cost

of a transmission overhead. Therefore, efforts must be made to minimize the number of required

entangled qubits.

The various stabilizer code structures discussed in this chapter are summarized in Table 8.3.

� Chapter 5: The stabilizer codes of Chapter 4 invoke the classical syndrome decoding, which

runs over the equivalent classical code derived on the basis of the underlying quantum-to-binary

or quantum-to-quaternary isomorphism. Therefore, in Chapter 5, we focused our efforts on the

classical syndrome decoding techniques.

The notion of syndrome decoding derives its essence from the Look-Up Table (LUT) based

syndrome decoding of classical linear block codes, which was discussed in Section 5.2. More

explicitly, in contrast to the conventionally used codeword decoding, which aims for finding

the most likely codeword, syndrome decoding aims for identifying the most likely channel error

vector. It was demonstrated in Section 5.2 that in the context of linear block codes, LUT-based

syndrome decoding substantially reduces the storage requirements of the standard array-based

codeword decoding. In Section 5.3, the concept of syndrome decoding was extended to trellis-

based decoding. In particular, Section 5.3.1 discussed the construction of syndrome-based trellis

of linear block codes, while Section 5.3.2 presented the syndrome-based trellis of convolutional

codes. It was pointed out that since every path in the error trellis of Figure 5.6 corresponds
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to a path in the codeword trellis of Figure 5.7, these representations are exactly equivalent.

Furthermore, each path of the error trellis is a legitimate error sequence for a given observed

syndrome, while each path of a codeword trellis is a valid codeword. Consequently, the former

is used for syndrome decoding, while the latter is exploited for codeword decoding.

The error trellis-based syndrome decoding is of particular significance, because the state prob-

abilities of an error trellis depend on the channel errors, rather than on the coded sequence.

Consequently, in the low noise regime, the syndrome decoder is more likely to encounter a

zero-state due to having predominantly error-free transmissions. This unique feature of error

trellis-based syndrome decoding led to the discussion on Block Syndrome Decoding (BSD) in

Section 5.4. Section 5.4.1 presented the general BSD formalism, while Section 5.4.2 conceived

a reduced-complexity BSD for Turbo Trellis Coded Modulation (TTCM), hence referred to as

‘BSD-TTCM’, whose schematic was given in Figure 5.10. The proposed BSD-TTCM divides the

received frame into error-free and erroneous sub-blocks based on the syndrome of the received

frame. Only the erroneous blocks are subsequently decoded, thereby reducing the decoding com-

plexity. This yields a reduction in the decoding complexity in the higher Signal-to-Noise Ratio

(SNR) region as well as for higher indexed decoding iterations. Furthermore, the performance

of BSD-TTCM of Figure 5.10 depends on the design parameter Lmin, which is the minimum

number of consecutive zero syndromes after which the sub-block is deemed to be error-free.

Section 5.5 evaluated the performance of the BSD-TTCM of Figure 5.10 for transmission over a

classical Additive White Gaussian Noise (AWGN) channel as well as an uncorrelated Rayleigh

fading channel. The results of Figure 5.12 to Figure 5.17 obtained for the TTCM of Table 5.1

are summarized in Table 8.4. Here, the design parameter Lmin was heuristically optimized for

ensuring that BSD-TTCM yields the same BER performance as the conventional full-complexity

decoder TTCM decoder, as evidenced in Figure 5.12 and Figure 5.15 for transmission over an

AWGN and a Rayleigh fading channel, respectively. Section 5.5.3 further evaluated the per-

formance of BSD-TTCM for a short frame of only 500 symbols. The BSD-TTCM scheme was

found to outperform the frequently used high-SNR early termination technique in Figure 5.20,

despite the short frame length.

� Chapter 6: Based on the insights developed in Chapter 4 as well as Chapter 5 and inspired by

the EXIT-chart aided near-capacity classical code designs of Chapter 3, we conceived Hashing

bound approaching concatenated QECCs using EXIT charts in Chapter 6.

Section 6.2 presented our code design objectives, where the achievable capacity region, or more

precisely the Hashing region, was characterized in Figure 6.1, which depends on the coding rate,

on the channel depolarizing probability as well as on the entanglement consumption rate. We

then proceeded with the circuit based representation of QCCs in Section 6.3, which facilitates

the degenerate iterative decoding of concatenated quantum codes. We also discussed the con-

struction of the Clifford unitary encoder, which is completely specified by the Hadamard as well

as by the phase and the controlled-NOT gates of Eq. (6.12). This was further explained by

constructing the equivalent binary Clifford encoder for a 3-qubit bit-flip repetition code using
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Channel Percentage of No-

Decoding

Equivalent No.of Itera-

tions

Comparison with Early

Termination

AWGN At least 20% and 45% reduc-

tion in the 5th and 6th iter-

ations, respectively.

At least 17% deduction. At least a reduction of 0.5

iteration.

Rayleigh At least 20% and 30% reduc-

tion in the 5th and 6th iter-

ations, respectively.

At least 12% deduction. At least a reduction of 0.5

iteration.

Table 8.4: Decoding complexity reduction of BSD-TTCM (summarized from the simulation results of Fig-

ure 5.12 to Figure 5.17, which were obtained for the TTCM of Table 5.1). Decoding complexity

is quantified in terms of the percentage of no-decoding (second column) and the equivalent num-

ber of iterations (third column). Complexity reduction is further compared with high-SNR early

termination technique (fourth column).

the encoding circuit of Figure 6.4. Finally, Section 6.4 detailed the structure and decoding of

concatenated quantum codes, which may also be referred to as Quantum Turbo Codes (QTCs).

More specifically, the schematic of a quantum communication system relying on a pair of concate-

nated QSCs was presented in Section 6.4.1, while the associated degenerate iterative decoding

was detailed in Section 6.4.2. In particular, it was highlighted in Section 6.4.2 that unlike the

conventional Maximum A-Posteriori (MAP) decoder, which yields the most likely error for a

given syndrome, a degenerate MAP decoder aims for finding the most likely error coset by

summing the probabilities over the set of degenerate errors (Eq. (6.49)).

Section 6.5 conceived the EXIT charts of the concatenated quantum code structure of Figure 6.6.

More specifically, the classical non-binary EXIT chart generation technique was extended to the

circuit-based syndrome decoder of QTCs in Figure 6.9 and Figure 6.10 for the inner and outer

decoders, respectively. While the classical EXIT charts aim for modeling the a-priori information

concerning the input bits of the inner encoder (and similarly the output bits of the outer encoder),

the EXIT chart conceived for quantum codes models the a-priori information concerning the

corresponding error-sequence, i.e. the error-sequence related to the input qubits of the inner

encoder (and similarly the error-sequence related to the output qubits of the outer encoder).

Section 6.6 then evaluated the accuracy of the EXIT charts of Section 6.5. It was demonstrated

in Section 6.6.1 that the convergence threshold predicted by the EXIT-chart of Figure 6.12 is

the same as the one determined using the Monte-Carlo simulation results of Figure 6.13. In

Section 6.6.2, we analyzed the inner decoder EXIT curves of recursive (unassisted) and non-

recursive (entanglement-assisted) QCCs in Figure 6.14 for demonstrating that the EXIT curve

of a recursive inner QCC reaches the (1, 1)-point of perfect convergence. This in turn facilitates

the design of families of QTCs having an unbounded minimum distance. Section 6.6.3 presented
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the inner and outer components of our optimized QTC in Figure 6.15, which were found using

an EXIT-chart aided exhaustive search. Our design guidelines for achieving a Hashing bound

approaching performance may be summarized as follows:

– Design Criterion: Determine the noise limit p∗ for the desired code parameters, i.e the

coding rate and the entanglement consumption rate of the resultant QTC.

– Selection of Inner Component: Select a recursive and non-catastrophic inner EA-

QCC, which can be either derived from the family of known classical codes, as discussed in

Chapter 4, or it can be constructed using random Clifford operations, which were discussed

in Section 6.3. At this point, the EXIT chart technique investigated in Section 6.5 is

invoked for the sake of finding that specific QCC, which yields the largest area under its

inner decoder EXIT-curve at the noise limit p∗.

– Selection of Outer Component: Find a non-catastrophic outer QCC, whose EXIT

curve gives the best EXIT-curve match with the inner decoder EXIT curve of the chosen

inner code. Our EXIT-chart aided design of Section 6.5 aims for creating a narrow, but

marginally open tunnel between the EXIT curves of the inner and outer decoders at the

highest possible depolarizing probability, as demonstrated in Figure 6.15. The narrower the

tunnel-area, the lower is the deviation from the Hashing bound, which is quantified using

Eq. (6.2).

Based on the EXIT chart of Figure 6.15 and the achievable performance of Figure 6.16, it was

demonstrated in Section 6.6.3 that the convergence threshold of our optimized QTC is 0.6 dB

closer to the Hashing limit as compared to the distance spectra based QTCs of [88]. However,

this is achieved at the cost of a higher Word Error Rate (WER) floor, which may be reduced

upon increasing the interleaver length, as evidenced in Figure 6.16, hence imposing a longer

delay.

Section 6.7 proposed the structure of a 10-subcode Quantum IRregular Convolutional Code

(QIRCC) for further facilitating the Hashing bound approaching code design. The proposed

QIRCC may be dynamically adapted to match any given inner code using EXIT charts, hence

allowing us to dispense with the exhaustive code search. Section 6.8 quantified the impact of

using QIRCC as the outer component in Figure 6.6, which was recorded in Figure 6.21. As

evidenced in Figure 6.22, the QIRCC-based optimized design, when used in conjunction with

the same inner code as that of the QTC in [88], outperformed the QTC of [88] both in terms

of the convergence threshold as well as the achievable WER performance. The results are also

summarized in Table 8.5. However, this was achieved at the cost of an increased decoding

complexity, because the former invoked a maximum of Imax = 15 iterations in contrast to the

Imax = 8 iterations invoked by the latter. The QIRCC-based optimized design of Figure 6.20

also had a lower WER than the exhaustive-search based optimized design of Section 6.6.3, as

demonstrated in Figure 6.22.

� Chapter 7: Pursuing further the design of iterative code structures, Chapter 7 focused on
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Distance from Capacity

Code Structure Convergence

Threshold

Performance at

WER = 10−3

QTC of [88] 0.9 dB 1.15 dB

QIRCC-based QTC 0.4 dB 0.7 dB

Table 8.5: Comparison of the performance of the QTC of [88] with our QIRCC-based QTC, when the same

inner code was used.

Code Type Merits Demerits

Dual-containing CSS Mackay’s bicycle codes are so

far the best among the QLDPC

codes.

Numerous short cycles.

Non-dual-containing

CSS

Few short cycles in GF(4) for-

malism and none in the binary

formalism.

Difficult to find good non-dual-

containing CSS QLDC codes.

Non-CSS Efficiently exploit redundant

qubits.

Difficult to find good non-CSS

QLDC codes.

EA Performance comparable to the

classical LDPC codes.

Pre-shared entangled qubits re-

quired.

Table 8.6: Summary of the QLDPC constructions of Chapter 7.

Quantum Low Density Parity Check (QLDPC) codes, by providing insights into the various

QLDPC structures as well as the associated decoding.

In line with the categorization of Table 8.3, Section 7.2 reviewed the QLDPC code construction

methods, focusing in particular on the related design issues. A major design challenge high-

lighted in this discussion was the presence of unavoidable length-4 cycles, resulting from the

commutativity requirement of the stabilizers. More explicitly, an arbitrary binary or quaternary

code may be used for constructing a QLDPC matrix, if it meets the symplectic product or the

Hermitian inner product criterion, as also summarized in Table 8.3. This in turn results in short

(length-4) cycles. We summarize the design challenges of Section 7.2 in Table 8.6. Section 7.3

discussed the syndrome decoding of QLDPC codes. In particular, binary decoding was pre-

sented in Section 7.3.1, while its non-binary counterpart was the subject of Section 7.3.2. The

differences highlighted between the two decoding schemes may be summarized as follows:

– In contrast to the binary decoding of Section 7.3.1, which assumes that bit and phase errors
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are independent, the non-binary decoding of Section 7.3.2 takes into account the correlation

between them, which improves their performance.

– The number of length-4 cycles is higher in the non-binary formalism of the PCM as com-

pared to the binary formalism. This tends to degrade the performance of the non-binary

decoder.

Section 7.3.3 presented the decoding issues associated with QLDPC codes, which may be sum-

marized as:

– Degeneracy: Quantum codes are inherently degenerate in nature. This may improve

the associated decoding performance, provided that the decoder takes this degeneracy into

account. Unfortunately, the Belief Propagation (BP) algorithm does not exploit this degen-

eracy. In fact, since BP is based on marginalized probabilities, the presence of degenerate

errors impairs its performance.

– Short cycles: Unavoidable length-4 cycles found in QLDPC codes deteriorate the perfor-

mance of BP. This gets even worse for the homogeneous CSS codes, when they are decoded

in the non-binary domain.

Heuristic methods, namely random perturbation and enhanced feedback, were then invoked for

alleviating these issues at the cost of an increased decoding complexity.

Section 7.4 conceived a formalism for constructing high-rate row-circulant QC-QLDPC codes

from arbitrary row-circulant classical LDPC matrices. Since the proposed design is merely

based on the transpose and column permutation operations, the characteristics of the underlying

classical LDPC matrix are not compromised. In particular, the new formalism was applied to

the family of BIBD-based classical LDPCs for evaluating their performance in Section 7.5. It

was demonstrated in Figure 7.10 that the proposed construction outperforms the comparable

bicycle code as well as the EA-QLDPC code. Quantitatively, our designed [2534, 2172] QLDPC

code of Table 7.5 is capable of tolerating three times higher depolarizing probability at a WER

of 10−4 as compared to its EA counterpart and about four times higher depolarizing probability,

when compared to an equivalent dual-containing bicycle code.

Section 7.6, we proposed a modified non-binary decoding algorithm for homogeneous CSS-type

QLDPC codes, which successfully mitigated the issue of unavoidable length-4 cycles. In Sec-

tion 7.8.1, it was demonstrated in Figure 7.14 to Figure 7.17 that the modified decoder exhibits

a superior WER performance as well as a lower decoding complexity than the state-of-the-

art benchmark decoding techniques. The improved decoding algorithm of Section 7.6 was also

amalgamated with heuristic methods for attaining additional performance gains. The simulation

results of Figure 7.14 to Figure 7.17 are summarized in Table 8.7.

Section 7.7 presented the Uniform ReWeighted BP (URW-BP) algorithm, which is known to

alleviate the issue of short cycles in classical LDPC codes. In Section 7.8.2, we also amalgamated

our modified algorithm of Section 7.6 with the URW-BP of Section 7.7. It was demonstrated



228 8. Conclusions and Future Directions

System Dec.

No.

Decoding Method Improvement in p Iavg Reference

System I

1 Binary - 1.7

Table 7.9,

Figure 7.14,

Figure 7.15

2 Standard Non-Binary 26% w.r.t. Dec. 1 2.6

3 Random Perturbation 30% w.r.t. Dec. 2 4.19

4 Enhanced Feedback 30% w.r.t. Dec. 2 3.6

5 Modified Non-Binary 30% w.r.t. Dec. 2 2.47

6 Modified & Enhanced Feedback 21% w.r.t. Dec. 5 3.4

System II

1 Binary - 4

Table 7.12,

Figure 7.16,

Figure 7.17

2 Standard Non-Binary 21% w.r.t. Dec. 1 5

3 Random Perturbation 10% w.r.t. Dec. 2 7.5

4 Enhanced Feedback 19% w.r.t. Dec. 2 7

5 Modified Non-Binary 23% w.r.t. Dec. 2 5.5

6 Modified & Enhanced Feedback 11% w.r.t. Dec. 5 7

Table 8.7: Summary of the simulation results of Section 7.8.1, where performance is quantified for the dual-

containing QLDPC (System I) and the homogeneous EA-QLDPC (System II) in terms of the

achievable channel depolarizing probability p at a WER of 10−4 and the corresponding average

number of decoding iterations Iavg .

in Figure 7.19 that the URW-BP can be exploited for counteracting the problems imposed by

short-cycles, particularly when the maximum number of decoding iterations is small.

8.2 Future Research Directions

In this section, we briefly discuss a number of possible future research avenues.

1. Symbol-based IRCC-URC-SD for Entanglement-Assisted Classical Communication

In Chapter 3, we conceived bit-based IRCC-URC-SD schemes for approaching the bit-based

EACC, while a CC-URC-SD arrangement was proposed for the sake of approaching the symbol-

based EACC. More specifically, the symbol-based CC-URC-SD scheme outperformed the bit-

based IRCC-URC-SD because the symbol-to-bit conversion invoked in the bit-based arrangement

incurs an irrecoverable capacity loss. However, we exhaustively searched through all the possible
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convolutional codes for designing a near-capacity CC-URC-SD code. To dispense with the ex-

haustive search, it may be helpful to conceive a symbol-based IRCC, whose weighting coefficients

can be dynamically adapted to provide the best EXIT-curve match with a given inner code.

2. Near-Capacity Code Designs for Classical Communication Assisted by Less Noisy

Qubits or by Noisy Qubits

In Chapter 3, we focused our attention on the code designs conceived for EA classical communi-

cation over a quantum depolarizing channel, assuming that the pre-shared entangled qubits are

transmitted over a noiseless channel. Alternatively, we may assume that:

� the ebits are less noisy [186], i.e. they only experience phase errors, which generally domi-

nate the bit errors in realistic scenarios; or alternatively

� the ebits are also shared over a noisy channel [112].

From an implementational perspective, it might be useful to extend our proposed code designs

to these two scenarios.

3. Reduced-Complexity Block Syndrome Decoding for Quantum Turbo Codes

In Chapter 5, we conceived a reduced-complexity BSD for the classical TTCM, whose perfor-

mance was analyzed for transmission over the classical AWGN and Rayleigh fading channels.

Furthermore, we proposed Hashing bound approaching concatenated quantum codes, or more

precisely QTCs, in Chapter 6. It will be beneficial to apply the concept of BSD to the decoding

of QTCs (BSD-QTC). In TTCM decoding, the trellis of erroneous sub-blocks emerges from and

terminates at the all-zero state. By contrast, a QTC is decoded over the equivalent circuit-based

representation. Hence, in the context of the BSD-QTC, it will also be important to investigate

how to initialize and terminate the memory states of the circuit-based representation.

4. EXIT-Chart aided Design of Classically-Enhanced EA Quantum Turbo Codes

Our Hashing bound approaching QTCs of Chapter 6 only encode qubits. By contrast, classically-

enhanced EA-QTCs [88, 202] support the simultaneous transmission of both classical as well as

quantum information. In this context, it may be important to invoke the EXIT-chart aided

design methodology for optimizing the constituent components of a classically enhanced EA-

QTC, which aim for approaching the corresponding capacity limits/bounds of [203, 204].

5. Union Bounds for Quantum Turbo Codes

The convergence threshold of our optimized QTC design of Section 6.6.3 is only 0.3 dB away

from the achievable noise limit. However, it exhibits a high error floor in Figure 6.16. We

managed to reduce the error floor by employing QIRCC as the outer component, as seen in

Figure 6.17. Alternatively, it may be helpful to derive the QuBit Error Rate (QBER) union

bound of the QTC based on its distance spectrum. We may then optimize the design with the

aid of EXIT charts as well as the union bounds, where EXIT charts would ensure a Hashing



bound approaching performance, while considering the union bounds would ensure a low error

floor [115].

6. Unity Rate Code or Short Block Code Aided Concatenated Quantum Codes

In Chapter 3, we demonstrated the beneficial impact of classical URC in achieving a near-capacity

performance, when used as the inner code. By contrast, in Chapter 6, we used EA-QCCs as the

inner components, which in turn yielded low-rate concatenated quantum codes. Alternatively,

we may replace the inner EA-QCC by a Quantum Unity Rate Code (QURC), which would

merely act as a scrambler. In this context, the design of a QURC is a promising research area.

Since unassisted QCCs cannot be simultaneously recursive and non-catastrophic, the design of a

QURC seems to be a formidable task. As an alternative option, we conjecture that if Quantum

Short Block Codes (QSBCs) are conceived analogous to the classical Short Block Codes (SBCs)

of [205, 206], which have a minimum distance of at least two, then they can be used as the inner

component for reaching the (1, 1) point of perfect convergence.

7. Hashing Bound Approaching Quantum Low Density Parity Check Codes

The domain of QLDPC codes has a lot of research potential, both from the perspective of code

design as well as decoder design. As discussed in Chapter 7, only the spatially coupled QLDPC

codes have managed to approach the Hashing bound, which is achieved at the cost of an increased

complexity or pre-shared noiseless qubits. Therefore, designing Hashing bound approaching

QLDPC codes is still an open challenge. Furthermore, unlike the degenerate iterative decoding

of QTCs, the decoding of QLDPC codes does not take into account the degeneracy issue. It

is worth conceiving a degenerate decoding algorithm for QLDPC codes, or at least conceiving

deterministic methods for improving the QLDPC decoding, rather than the heuristic methods

of Section 7.3.3.



Appendix A
Construction of Syndrome Former

In this appendix, we detail the construction of the syndrome former, which was invoked in Chapter 5

for constructing the syndrome-based trellis. More specifically, in Section A.1, we derive the syndrome

former of the Convolutional Code (CC) of Section 4.4, while in Section A.2 we construct the syndrome

former of the Turbo Trellis Coded Modulation (TTCM) of Section 5.4.2.

A.1 Convolutional Codes

Recall from Section 4.4 that convolutional codes are equivalent to linear block codes having a semi-

infinite length. Therefore, the generator polynomials of a convolutional code CC(n, k,m) may be

arranged to construct the corresponding generator matrix G, as depicted in Eq. (4.60). For the special

class of systematic CCs, whose n-bit codewords consist of k information bits followed by (n−k) parity
bits, the matrix G of Eq. (4.60) may also be represented as follows1:

G =













IP0 0P1 0P2 . . . 0Pm

IP0 0P1 0P2 . . . 0Pm

IP0 0P1 0P2 . . . 0Pm

. . . . . .
. . .













, (A.1)

where I is a (k × k)-element identity matrix, 0 is a (k × k)-element all-zero matrix and Pl is a

k × (n− k)-element matrix with entries:

Pl =













g
(k)
1,l g

(k+1)
1,l . . . g

(n−1)
1,l

g
(k)
2,l g

(k+1)
2,l . . . g

(n−1)
2,l

...
...

...

g
(k)
k,l g

(k+1)
k,l . . . g

(n−1)
k,l













. (A.2)

1Blank spaces in the matrix indicate zeros.
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If g
(j)
i = (g

(j)
i,0 , g

(j)
i,1 , . . . , g

(j)
i,m) represents the generator polynomial for the ith input (information) bit

and the jth output (coded) bit, then the resultant (k× n)-element transform-domain matrix G(D) is

given by:

G(D) =













1 0 . . . 0 g
(k)
1 (D) g

(k+1)
1 (D) . . . g

(n−1)
1 (D)

0 1 . . . 0 g
(k)
2 (D) g

(k+1)
2 (D) . . . g

(n−1)
2 (D)

...
...

...
...

...
...

0 0 . . . 1 g
(k)
k (D) g

(k+1)
k (D) . . . g

(n−1)
k (D)













, (A.3)

where g
(j)
i (D) = g

(j)
i,0 + g

(j)
i,1D + g

(j)
i,2D

2 + · · · + g
(j)
i,mD

m, given that D represents the delay of a sin-

gle memory element (or register). Furthermore, the associated Parity Check Matrix (PCM) H of

Eq. (4.62) takes the following form:

H =





























PT
0 I

PT
1 0 PT

0 I

PT
2 0 PT

1 0 PT
0 I

...
...

...
...

...
...

PT
m 0 PT

m−1 0 PT
m−2 0 . . . PT

0 I

PT
m 0 PT

m−1 0 PT
m−2 0 . . . PT

0 I
...

...
...

...
...

...
...

...





























, (A.4)

where I is an (n− k)× (n− k)-element identity matrix, while 0 is an (n− k)× (n− k)-element all-zero

matrix. The corresponding (n− k)× n transform-domain PCM H(D) is given by:

H(D) =













g
(k)
1 (D) g

(k)
2 (D) . . . g

(k)
k (D) 1 0 . . . 0

g
(k+1)
1 (D) g

(k+1)
2 (D) . . . g

(k+1)
k (D) 0 1 . . . 0

...
...

...
...

...
...

g
(n−1)
1 (D) g

(n−1)
2 (D) . . . g

(n−1)
k (D) 0 0 . . . 1













. (A.5)

Based on the above discussion, we next construct the syndrome former given in Eq. (5.14) for the

generator matrix of Eq. (5.13), i.e. we have:

G(D) =

(

1 +D D 1 +D

D 1 1

)

. (A.6)

We first find the equivalent systematic form analogous to Eq. (A.3) by applying elementary row

operations to Eq. (A.6) as follows:

� Divide Row 1 by (1 +D)

G(D) =

(

1 D/(1 +D) 1

D 1 1

)

. (A.7)

� Add (D× Row 1) to Row 2

G(D) =

(

1 D/(1 +D) 1

0 (1 +D +D2)/(1 +D) (1 +D)

)

. (A.8)
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Figure A.1: Encoder of Ungerboeck’s 8-state TCM-8PSK.

� Multiply Row 2 by (1 +D)/(1 +D +D2)

G(D) =

(

1 D/(1 +D) 1

0 1 (1 +D2)/(1 +D +D2)

)

. (A.9)

� Add (D/1 +D ×Row 2) to Row 1

G(D) =

(

1 0 1/(1 +D +D2)

0 1 (1 +D2)/(1 +D +D2)

)

. (A.10)

Hence, Eq. (A.10) is the systematic form of the generator matrix given in Eq. (A.6). Based on this

systematic matrix, we may deduce from Eq. (A.5) that the corresponding PCM H(D) is as follows:

H(D) =
(

1/(1 +D +D2) (1 +D2)/(1 +D +D2) 1
)

. (A.11)

The equivalent non-systematic form of Eq. (A.11) can be derived by applying elementary row opera-

tions to Eq. (A.11). More specifically, multiply H(D) with 1/(1 +D +D2), which yields:

H(D) =
(

1 1 +D2 1 +D +D2
)

. (A.12)

A.2 Turbo Trellis Coded Modulation

In Section 5.4.2, we have employed Ungerboeck’s 8-state TCM-8PSK [146], given in Figure A.1, for

evaluating the performance of our proposed reduced-complexity decoder. The associated generator

matrix is given by:

G(D) =

(

1 0 D2/(1 +D3)

0 1 D/(1 +D3)

)

. (A.13)

The corresponding PCM is:

H(D) =
(

D2/(1 +D3) D/(1 +D3) 1
)

. (A.14)
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Figure A.2: Syndrome former of Ungerboeck’s 8-state TCM-8PSK.

according to Eq. (A.5). We may further simplify Eq. (A.14) by multiplying it with (1 + D3), which

yields:

H(D) =
(

D2 D 1 +D3
)

. (A.15)

The syndrome former circuit of the PCM of Eq. (A.15) is given in Figure A.2.



Appendix B
Simulation of QLDPC Decoding

The syndrome-based Quantum Low Density Parity Check (QLDPC) decoding algorithms of Chap-

ter 7 may be simulated by invoking the conventional codeword decoding approach in conjunction

with the equivalent classical binary or quaternary Parity Check Matrix (PCM). Recall from Chap-

ter 5 that syndrome decoding aims for finding the most likely error pattern inflicted by the channel

given the observed syndrome, while the classic codeword decoding aims for finding the most likely

transmitted codeword, given the received codeword. If y = (y0, y1, . . . , yt, . . . , yn−1) is the received

sequence, then the transmitted code sequence v = (v0, v1, . . . , vt, . . . , vn−1) and the channel error

e = (e0, e1, . . . , et, . . . , en−1) are related as follows:

yt = vt ⊕ et, (B.1)

where ⊕ denotes the modulo-2 addition. The most likely codeword estimated by the codeword decod-

ing and the most likely error pattern estimated by the syndrome decoding are also related through

Eq. (B.1). Hence, these approaches are equivalent.

The codeword-based counterpart of the non-binary QLDPC decoding of Section 7.3.2 may be

implemented by:

� initializing the messages according to the received code sequence as well as the channel model;

and

� only considering the zero-syndrome scenario of Eq. (7.19).

We assume furthermore the transmission of all-zero codewords for facilitating simulations. Let us

consider the decoding example detailed in Section 7.6, where the channel error inflicted is P = XIIIIII,

which is equivalent to (1 0 0 0 0 0 0) according to the Pauli-to-quaternary mapping. Since we are

transmitting an all-zero codeword, i.e. v = (0 0 0 0 0 0 0), the received codeword is y = (1 0 0 0 0 0 0).

For codeword decoding, the initialization step of Eq. (7.46) takes into account the received sequence

235



y, as follows:

mâ
vt→ci =

{

0.74, if â = yt

0.0867, otherwise ,
(B.2)

where â ∈ {0, 1, ω, ω} is the tth hypothetically transmitted bit. Furthermore, the Probability Density

Function (PDF) of m̌âs
ci→vt , which is computed in Step 4 of the horizontal message exchange (Eq. (7.56)

and (7.57)), is calculated by only using Eq. (7.19).

Analogous to the codeword-based counterpart of the non-binary QLDPC decoding, the codeword-

based counterpart of our modified non-binary decoding of Section 7.6 also considers only the zero-

syndrome scenario of Eq. (7.41). The resultant decoding algorithm is equivalent to running the

conventional (codeword) classical GF(4) decoding over the first m/2 rows of the equivalent PCM of

Eq. (7.40). However, in the conventional classical GF(4) decoding we have âs = Ĥit × â, while for

QLDPC decoding we use âs = Ĥit × â.



List of Abbreviations

AWGN - Additive White Gaussian Noise

APP - A-Posteriori Probability

BCH - Bose-Chaudhuri-Hocquenghen

BCJR - Bahl-Cocke-Jelinek-Raviv

BER - Bit Error Rate

BIBD - Balanced Incomplete Block Design

BP - Belief Propagation

BSC - Binary Symmetric Channel

BSD - Block Syndrome Decoder

CDF - Cyclic Difference Family

CC - Convolutional Code

CCC - Classical Convolutional Code

CPTP - Completely-Positive Trace-Preserving

CNOT - Controlled-NOT

CSS - Calderbank-Shor-Steane

EA - Entanglement-Assisted

EACC - Entanglement-Assisted Classical Capacity

EAP - Edge Appearance Probability

EG - Euclidean Geometry

EPR - Einstein-Podolsky-Rosen

EXIT - EXtrinsic Information Transfer

FAP - Factor Appearance Probability

FER - Frame Error Rate

FFT - Fast Fourier Transform

GHZ - Greenberger-Horne-Zeilinger

GM - Generator Matrix

IFFT - Inverse Fast Fourier Transform
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IRCC - IRregular Convolutional Code

LDGM - Low Density Generator Matrix

LDPC - Low Density Parity Check Code

LLR - Log Likelihood Ratio

LUT - Look-Up Table

MAP - Maximum A-Posteriori

MI - Mutual Information

ML - Maximum Likelihood

NSD - N -qubit SuperDense

PCM - Parity Check Matrix

PSK - Phase-Shift Keying

QAM - Quadrature Amplitude Modulation

QBER - QuBit Error Rate

QC - Quasi-Cyclic

QCC - Quantum Convolutional Code

QECC - Quantum Error Correction Code

QIRCC - Quantum IRregular Convolutional Code

QKD - Quantum Key Distribution

QLDPC - Quantum Low-Density Parity Check Code

QSC - Quantum Stabilizer Code

QVA - Quantum Viterbi Algorithm

QTBC - Quantum Tail-biting Block Code

QTC - Quantum Turbo Code

RX - Receiver

SC - Spatially-Coupled

SD - SuperDense

SISO - Soft-In Soft-Out

SNR - Signal-to-Noise Ratio

TC - Turbo Code

TCM - Trellis Coded Modulation

TRW-BP - Tree-ReWeighted Belief Propagation

TTCM - Turbo Trellis Coded Modulation

TX - Transmitter

URC - Unity Rate Code

URW-BP - Uniformly-ReWeighted Belief Propagation

WER - Word Error Rate



Glossary

Abelian Group A multiplicative group G is Abelian iff ∀a, b ∈ G, a× b = b× a.

Basis Basis of a vector space V is a set of linearly independent vectors {|v1〉, . . . , |vn〉} such that

any vector |v〉 in the vector space V can be written as a linear combination of the basis vectors

{|v1〉, . . . , |vn〉}, i.e. |v〉 =
∑

i ai|vi〉.

Bell-Basis Measurement Bell-basis measurement is a joint measurement on a 2-qubit composite

system for the sake of detecting the orthonormal Bell states.

Bell States The orthonormal 2-qubit states given by:

1√
2
(|00〉 + |11〉) , 1√

2
(|00〉 − |11〉) ,

1√
2
(|01〉 + |10〉) , 1√

2
(|01〉 − |10〉) ,

are known as the Bell state, named after John S. Bell, which are also referred to as the Einstein-

Podolsky-Rosen (EPR) pairs.

Centralizer The centralizer of a stabilizer code is a set of elements which commute with the stabilizer

generators. It is denoted as C(H), where H is the stabilizer group of the stabilizer code.

Clifford Operator An n-qubit Clifford operator V preserves the elements of the Pauli group under

conjugation such that for P ∈ Gn, VPV† ∈ Gn.

Clifford Transformation An n-qubit Clifford transformation V maps an n-qubit Pauli group Gn
onto itself under conjugation such that VGnV† = Gn.
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240 B. Simulation of QLDPC Decoding

Coherence Time Coherence time may be defined as the time duration over which a qubit retains

its coherent quantum state.

Commute Two operators A and B commute if and only if A×B = B ×A.

Coset If G is a group, and H is a subgroup of G, and g ∈ G, then gH = {gh : h ∈ H} is a left coset

of H in G, and Hg = {hg : h ∈ H} is a right coset of H in G.

Decoherence Decoherence is the undesirable entanglement of qubits with the environment, which

perturbs the fragile superposition of quantum states, thus leading to the detrimental effects of noise.

The overall decoherence process may be characterized either by bit-flips or phase-flips or in fact

possibly both, inflicted on the qubits.

Degeneracy Pauli errors which differ only by the stabilizer group have the same impact on all

the codewords and therefore can be corrected by the same recovery operations. This is known as

degeneracy.

Depolarizing Channel The depolarizing channel characterized by the probability p inflicts an n-

tuple error P ∈ Gn on n qubits, where the ith qubit may experience either a bit flip (X), a phase flip

(Z) or both (Y) with a probability of p/3.

Dimension of Vector Space The number of elements in the basis set of the vector space V is

defined to be the dimension of V .

Dual Code If G and H are the generator and parity-check matrices for any linear block code C,

then its dual code C⊥ is a unique code with HT and GT as the generator and parity-check matrices

respectively.

Dual-Containing Code Code C with parity check matrix H is said to be dual-containing if it

contains its dual code C⊥, i.e. C⊥ ⊂ C and HHT = 0.

Eigenvector An eigenvector of a linear operator A is a non-zero vector |v〉 such that Av = v|v〉,
where v is a complex number known as the eigenvalue of A.

Entanglement-Assisted Classical Capacity The Entanglement-Assisted Classical Capacity (EACC)

of a quantum channel quantifies the capacity limit of reliable transmission of classical information over
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a noisy quantum channel, when an unlimited amount of noiseless entanglement is shared between the

transmitter and the receiver.

Fidelity Fidelity is a measure of closeness of two quantum states.

Greenberger-Horne-Zeilinger (GHZ) Greenberger-Horne-Zeilinger (GHZ) state is an N -qubit

entangled state for N > 2 given by:

|GHZ〉 = 1√
2

(

|0〉⊗N + |1〉⊗N
)

.

Hashing Bound Hashing bound determines the code rate at which a random quantum code facili-

tates reliable transmission for a particular depolarizing probability p.

Hermitian Matrix Hermitian matrix (also called self-adjoint) is a square matrix, which is equiva-

lent to its conjugate transpose, i.e. A = A†.

Hilbert Space A d-dimensional Hilbert space is a d-dimensional complex vector space with an inner

product, and hence a norm. It is denoted as Cd.

Inner Product Inner product is a function, which takes two complex-valued vectors |a〉 and |b〉 as
input and yields a complex number as the output. More explicitly, we have:

(|a〉, |b〉) = [a∗1, . . . , a
∗
n]









b1
...

bn









=
∑

i

a∗i bi.

Inner product (|a〉, |b〉) is conventionally written as 〈a|b〉, where the bra notation 〈v| represents the

dual (adjoint or hermitian conjugate) of |v〉.

Noise Limit The noise limit of a quantum depolarizing channel is the maximum tolerable channel

depolarizing probability.

Normalizer Normalizer of a stabilizer code is a set of elements which commute with the stabilizer

generators. It is denoted as N(H), where H is the stabilizer group of the stabilizer code.

Outer Product The outer product of a ket and a bra vector |a〉〈b| is a linear operator, whose action

on a vector |v〉 is defined as follows:

(|a〉〈b|) (|v〉) = |a〉〈b|v〉.
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More specifically, |a〉〈b| maps all input vectors |v〉 to |a〉 multiplied by the scalar product 〈b|v〉. The

corresponding matrix for the linear operator |a〉〈b| may be computed in C
2 as follows:

|a〉〈b| =
(

a1

a2

)

(

b∗1 b∗2

)

=

(

a1b
∗
1 a1b

∗
2

a2b
∗
1 a2b

∗
2

)

.

Pauli Group A single qubit Pauli group G1 consists of all the Pauli matrices together with the

multiplicative factors ±1 and ±i, i.e. we have:

G1 ≡ {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}.

Pauli Operators The I, X, Y and Z Pauli operators are defined by the following matrices:

I =

(

1 0

0 1

)

, X =

(

0 1

1 0

)

,

Y =

(

0 −i
i 0

)

, Z =

(

1 0

0 −1

)

,

where the X, Y and Z operators anti-commute with each other.

Positive Operator A positive operator A is defined to be an operator such that for any vector |v〉,
the inner product (|v〉, A|v〉) is a real and non-negative number. If (|v〉, A|v〉) > 0 for all |v〉 6= 0, then

A is said to be positive definite.

Projector The outer product of a unit vector |a〉 with itself, i.e. Pa = |a〉〈a|, is said to be a project

on to the state |a〉, as shown in Figure B.1.

|v〉

|a〉〈a|v〉|a〉

Figure B.1: Geometric interpretation of the projector operator.

Furthermore, P2
a = Pa and a complete set of orthogonal projectors in n-dimensional Hilbert space

is a set {P1, . . .Pm} such that
∑m

i=1Pi = 1.



243

Quantum Interleaver An N -qubit quantum interleaver is an N -qubit symplectic transformation,

which randomly permutes the N qubits and also applies single-qubit symplectic transformations to

the individual qubits.

Stabilizer Code An [n, k] quantum stabilizer code, constructed over a code space C, which maps

the information word (logical qubits) |ψ〉 ∈ C
2k onto the codeword (physical qubits) |ψ〉 ∈ C

2n , where

C
d denotes the d-dimensional Hilbert space, is defined by a set of (n − k) independent commuting

n-tuple Pauli operators gi, for 1 ≤ i ≤ (n − k). More specifically, the corresponding stabilizer group

H contains both gi and all the products of gi for 1 ≤ i ≤ (n − k) and forms an Abelian subgroup of

Gn. A unique feature of these operators is that they do not change the state of valid codewords, while

yielding an eigenvalue of −1 for corrupted states.

Stabilizer Group see Stabilizer Code.

Symplectic Condition If a = (a1, . . . , an), b = (b1, . . . , bn), a
′ = (a′1, . . . , a

′
n) and b′ = (b′1, . . . , b

′
n),

then the symplectic condition between (a′|b′) and (a|b)1 is defined as:

〈(a′|b′), (a|b)〉S = a′bT − b′aT = 0. (B.3)

Symplectic Inner Product If a = (a1, . . . , an), b = (b1, . . . , bn), a′ = (a′1, . . . , a
′
n) and b′ =

(b′1, . . . , b
′
n), then the symplectic inner product (also called twisted product or symplectic product)

between (a′|b′) and (a|b) is defined as:

〈(a′|b′), (a|b)〉S = a′bT − b′aT. (B.4)

It can also be represented as (a′|b′) ⋆ (a|b).

Tensor Product Given two vector subspaces A and B with dimensions m and n respectively,

then the tensor product A ⊗ B yields an mn dimensional vector space, whose elements are linear

combinations of the tensor products |a〉 ⊗ |b〉 of elements |a〉 of A and |b〉 of B. More explicitly, let

|a〉 = a1|0〉+ a2|1〉 and |b〉 = b1|0〉+ b2|1〉, then we have:

(

a1

a2

)

⊗
(

b1

b2

)

=













a1b1

a1b2

a2b1

a2b2













.

Tensor product |a〉 ⊗ |b〉 may also be abbreviated as |a〉|b〉, |a, b〉 or |ab〉.

Trace Trace of a square matrix A is the sum of its diagonal elements, i.e. tr(A) =
∑

iAii.

1Solid vertical bar, i.e. |, denotes the concatenation operation, e.g. concatenation of a and b is given by (a|b).



Trace Distance Trace distance between two operators A and B is given by:

||A−B||1 = tr

{

√

(A−B)†(A−B)

}

Trace distance is a measure of separation between two quantum states with density operators ρ and

σ. Equivalent quantum states have ||ρ− σ||1 = 0, while orthogonal states have ||ρ− σ||1 = 2.

Twisted Product see Symplectic Inner Product.

Unbounded Minimum Distance The unbounded minimum distance of a code implies that its

minimum distance increases almost linearly with the interleaver length.

Unitary Operator An operator U is unitary if UU † = I, where U † is the adjoint (hermitian

conjugate) of U and I is identity matrix. Unitary operator preserves the inner product.
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[103] L. Ioffe and M. Mézard, “Asymmetric quantum error-correcting codes,” Phys. Rev. A, vol. 75,

p. 032345, Mar 2007.

[104] P. Sarvepalli, A. Klappenecker, and M. Rotteler, “Asymmetric quantum LDPC codes,” in IEEE

International Symposium on Information Theory, pp. 305 –309, july 2008.

[105] Y. Fujiwara and V. Tonchev, “A characterization of entanglement-assisted quantum low-density

parity-check codes,” IEEE Transactions on Information Theory, vol. 59, pp. 3347–3353, June

2013.

[106] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal, “Entanglement-assisted classical

capacity of noisy quantum channels,” Phys. Rev. Lett., vol. 83, pp. 3081–3084, Oct 1999.

[107] A. Holevo, “On entanglement-assisted classical capacity,” J. Math. Phys., vol. 43, no. 9,

pp. 4326–4333, 2002.

[108] S. Bose, V. Vedral, and P. L. Knight, “A multiparticle generalization of entanglement swapping,”

Phys. Rev. A, vol. 57, no. quant-ph/9708004. 2, pp. 822–829, 1998.

[109] A. Chiuri, S. Giacomini, C. Macchiavello, and P. Mataloni, “Experimental achievement of the

entanglement-assisted capacity for the depolarizing channel,” Phys. Rev. A, vol. 87, p. 022333,

Feb 2013.

[110] P. Kaye, R. Laflamme, and M. Mosca, An introduction to quantum computing. Oxford University

Press, 2007.

[111] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without in-

equalities,” American Journal of Physics, vol. 58, pp. 1131–1143, Dec. 1990.



BIBLIOGRAPHY 253

[112] Z. Shadman, H. Kampermann, C. Macchiavello, and D. Bruss, “Optimal super dense coding

over noisy quantum channels,” New Journal of Physics, vol. 12, July 2010.

[113] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell system Technical Jour-

nal, vol. 27, pp. 379–656, July 1948.

[114] J. Kliewer, S. X. Ng, and L. Hanzo, “Efficient computation of EXIT functions for non-binary

iterative decoding,” IEEE Transactions on Communications, vol. 54, pp. 2133–2136, December

2006.

[115] S. X. Ng, O. Alamri, Y. Li, J. Kliewer, and L. Hanzo, “Near-capacity turbo trellis coded modula-

tion design based on EXIT charts and union bounds,” IEEE Transactions on Communications,

vol. 56, pp. 2030 –2039, December 2008.

[116] S. ten Brink, “Convergence behaviour of iteratively decoded parallel concatenated codes,” IEEE

Transactions on Communications, vol. 49, pp. 1727–1737, October 2001.

[117] M. El-Hajjar and L. Hanzo, “EXIT charts for system design and analysis,” IEEE Communica-

tions Surveys Tutorials, pp. 1–27, 2013.
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