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Abstract

Phenotypic differences of genetically identical cells under the same environmental conditions have been attributed to the
inherent stochasticity of biochemical processes. Various mechanisms have been suggested, including the existence of
alternative steady states in regulatory networks that are reached by means of stochastic fluctuations, long transient
excursions from a stable state to an unstable excited state, and the switching on and off of a reaction network according to
the availability of a constituent chemical species. Here we analyse a detailed stochastic kinetic model of two-component
system signalling in bacteria, and show that alternative phenotypes emerge in the absence of these features. We perform a
bifurcation analysis of deterministic reaction rate equations derived from the model, and find that they cannot reproduce
the whole range of qualitative responses to external signals demonstrated by direct stochastic simulations. In particular, the
mixed mode, where stochastic switching and a graded response are seen simultaneously, is absent. However, probabilistic
and equation-free analyses of the stochastic model that calculate stationary states for the mean of an ensemble of
stochastic trajectories reveal that slow transcription of either response regulator or histidine kinase leads to the coexistence
of an approximate basal solution and a graded response that combine to produce the mixed mode, thus establishing its
essential stochastic nature. The same techniques also show that stochasticity results in the observation of an all-or-none
bistable response over a much wider range of external signals than would be expected on deterministic grounds. Thus we
demonstrate the application of numerical equation-free methods to a detailed biochemical reaction network model, and
show that it can provide new insight into the role of stochasticity in the emergence of phenotypic diversity.
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Introduction

Phenotypic heterogeneity in populations of genetically identical

(isogenic) cells is one of the major discoveries resulting from a

systems approach to molecular and cell biology. Application of

single cell imaging techniques has demonstrated that individual

cells in clonal populations may have very different phenotypes

under the same environmental conditions [1] and that a pre-

existing subpopulation of cells may survive a sudden environmen-

tal change that is lethal to the majority of cells, such as antibiotic

treatment, thus gaining advantage [2]. These observations are

particularly important in the context of survival strategies of

bacterial pathogens. The phenotypic heterogeneity of isogenic

bacterial populations has been implicated in the emergence of

persistence and latent infection in Mycobacterium tuberculosis that

makes this bacterium one of the most dangerous pathogens of

mankind [3–5].

Phenotypic differences of genetically identical cells under the

same environmental conditions have been attributed to the

inherent stochasticity of biochemical processes [6]. According to

theoretical predictions elementary chemical reactions involved in

biochemical processes exhibit substantial stochastic fluctuations

when low numbers of reactant molecules are involved within the

small volume of a living cell. The existence of significant stochastic

fluctuations in biochemical processes has been confirmed by

numerous experiments including tracking of individual protein

molecules in individual cells in gene expression processes [7]. The

mechanism by which these fluctuations give rise to phenotypic

diversity has been a subject of intensive study. In most cases

phenotypic diversity has been attributed to stochastic fluctuations

that result in switching between different stable states of the

dynamical system occurring in a network that involves positive

feedback loops [2,8–10]. Alternatively, a network may exhibit

excitable dynamics, where fluctuations can lead to transient

excursions from a single stable state to an unstable, but slowly

decaying, excited state [11,12]. Yet another mechanism arises

when a single stable state exists in the system, and the reaction

network is effectively switched on and off according to the

availability of one of the constituent chemical species [13,14].

Here we describe a novel situation, in which a monostable or

bistable two-component system supports a persistent approximate

basal solution, owing to stochastic delays in the transcription of
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either histidine kinase or response regulator genes. However, once

a particular cell has reached a fully induced level of gene

expression there is a negligible chance that it will revert to the

basal state.

Two-component signal transduction systems (TCS) are a very

common mechanism by which bacteria sense external signals and

induce the expression of genes that govern the response to

environmental change. A particular environmental signal activates

a specific membrane-bound histidine kinase (HK), which in turn

activates its partner response regulator (RR) via phosphoryl

donation. The response regulator itself activates the transcription

of multiple genes whose products enable the bacterium’s adaptive

response to the change it has sensed. A common experimental

design is to introduce a reporter gene whose transcription is

controlled by the response regulator, and to monitor the TCS

output by measuring the number of reporter protein molecules

produced by the reporter gene. We shall do the same in the

numerical and analytical studies we present in this paper. We will

later consider two scenarios: autoregulation of the RR gene, where

RR activates its own transcription and so positive feedback is

present, and the constitutively expressed RR gene, where activated

transcription of RR is absent. It has already been shown that

stochastic fluctuations in the expression of RR and HK genes lead

to population heterogeneity with respect to the expression level of

genes regulated by the TCS. Sureka et al. [3] used flow cytometry

to show that the MprA/MprB TCS in Mycobacterium smegmatis leads

to heterogeneous activation of the stringent response regulator

Rel. that permits persistence to develop in Mycobacterium tuberculosis

[4,5]. Sureka et al. complemented their experimental observations

with numerical simulations of a stochastic kinetic model of the

TCS, demonstrating that autoregulation of the RR results in

bistable behaviour and that stochastic fluctuations in gene

expression switch the system between the two stable states

corresponding to two different phenotypes. Zhou et al. [7] had

earlier used flow cytometry to measure gene expression in single

Escherichia coli cells from a genetically identical population, in order

to study cross-activation of the RR PhoB by noncognate HKs in

the PhoR/PhoB TCS, and found a bimodal pattern of fluorescent

protein reporter gene expression. Subsequently, Kierzek et al. [15]

built the most comprehensive stochastic kinetic model of two-

component system signalling published to date and used data of

Zhou et al. to show that their model reproduces flow cytometry

distributions of TCS-regulated fluorescent protein reporter gene

expression. Further computer simulations demonstrated two

response modes of the TCS leading to population heterogeneity.

In the ‘all-or-none’ response that arises when the RR gene is

positively autoregulated, the reporter gene is expressed either at

fully induced or at basal level, and a change in the external signal

strength results in a corresponding change in the fractions of cells

expressing the gene at basal and fully induced level. Alternatively,

population heterogeneity can be observed in a ‘mixed mode’ that

occurs when the RR gene is constitutively expressed. In this

response mode one population of cells expresses the gene at basal

level, while in another cell population the gene is expressed at a

level that depends on the signal strength. The mixed mode thus

combines features of all-or-none and graded responses.

In this work we use deterministic, probabilistic and equation-

free methods to analyse the potential for simultaneous coexistence

of different phenotypes in the Kierzek, Zhou and Wanner

stochastic kinetic model of TCS signalling [15] (hereafter KZW).

The application of equation-free methods to biochemical reaction

networks has typically focused on simple models of small networks

[16,17], though there have been some studies of larger scale

networks [18–20]. Here we apply them for the first time, to the

best of our knowledge, to a detailed model of signal transduction

processes. Our results show that population heterogeneity can be

generated by a molecular interaction network even when it is not

multistationary. A deterministic bifurcation analysis of reaction

rate equations derived from the KZW stochastic kinetic model

shows that the mixed mode is absent in this framework. However,

an equation-free analysis of the stochastic model, using the

Gillespie algorithm with tau-leaping as a black-box time-stepper,

in order to find stationary states for the mean of an ensemble of

stochastic trajectories, reveals the long-term persistence of an

approximate basal solution that combines with the graded

response to produce the mixed mode. This confirms the results

of a probabilistic analysis that establishes the essential stochastic

nature of the mixed mode. The same techniques also show that

stochasticity results in the observation of the all-or-none bistable

response over a much wider range of external signals than would

be expected on deterministic grounds. In summary, our work uses

a detailed mechanistic model of the major signal transduction and

gene regulation mechanism to show that multistationarity and

positive feedback are not necessary for the emergence of

phenotypic diversity and that deterministic bifurcation analysis is

not always sufficient to explain phenotypic switching.

In the Results section we first introduce the stochastic kinetic

model that we shall be analysing, then we analyse the deterministic

reaction rate equations that govern the chemical concentrations in

the thermodynamic limit, and show that these do not permit a

mixed-mode solution. In the following subsection we analyse the

discrete stochastic system using equations for the expected

(probabilistic mean) number of molecules of each chemical species

present, and show that slow transcription of either or both of the

histidine kinase or response regulator genes can lead to persistence

of reporter gene expression at a level that is approximately basal

when it would not be expected on deterministic grounds. In the

final subsection of Results we show that equation-free methods can

locate this unexpected basal expression solution and investigate its

stability using only direct stochastic simulations. Thus we confirm

the findings of our probabilistic analysis, and also demonstrate the

potential of equation-free methods to shed light on stochastic

Author Summary

It is a surprising fact that genetically identical bacteria,
living in identical conditions, can develop in completely
different ways: for example, one subpopulation might
grow very fast and another very slowly. These different
phenotypes are thought to be one reason why bacteria
that cause disease can survive antibiotic treatment or
become persistent. This diversity of behaviour is usually
attributed to the existence of multiple stable phenotypic
states, or to the coexistence of one stable state with
another unstable excited state, or finally to the possibility
of the whole biochemical system that controls the
phenotype being switched on and off. In this paper we
describe a different scenario that leads to phenotypic
diversity in two-component system signalling, a very
common mechanism that bacteria use to sense external
signals and control their response to changes in their
environment. We use probability theory and equation-free
computational analysis to calculate the average number of
molecules of each chemical species present in the two-
component system and hence show that sporadic
production of either of two key chemical components
required for signalling can delay the response to the
external signal in some bacterial cells and so lead to the
emergence of two distinct cell populations.

Equation-Free Analysis of Two-Component System

PLoS Computational Biology | www.ploscompbiol.org 2 June 2012 | Volume 8 | Issue 6 | e1002396



effects in large complex systems where a probabilistic analysis is

too difficult to perform. In the Discussion we summarise our

findings and highlight their biological significance. The Methods

section includes mathematical details of the probabilistic and

equation-free analyses.

Results

Stochastic kinetic model
We base our stochastic kinetic model of the PhoBR TCS in E.

coli on that of Kierzek, Zhou and Wanner [15], summarised in

Fig. 1. (A detailed representation of the model in Systems Biology

Graphical Notation (SBGN) is given in [15].) We are interested in

stochastic switching of reporter gene expression, and hence in the

numbers of reporter protein molecules produced. The external

signal is modelled as the ratio of the HK autophosphorylation to

dephosphorylation rates. Dashed arrows on the diagram indicate

activated transcription of the response regulator and reporter

genes, modelled using the Shea-Ackers formalism [21], where the

reaction rate increases with the concentration of phosphorylated

RR, saturating for large [RRP] at a level much higher than in the

absence of RRP. As mentioned above, we will consider two cases:

the autoregulated and the constitutively expressed RR gene.

Transcription and translation of the response regulator, histidine

kinase and reporter genes are modelled as pseudo-first-order

reactions. The circle-headed arrows indicate HK/RR complexes

in phosphate transfer processes, according to the Batchelor &

Goulian model [22]. Included in our model but not shown in the

diagram are dimer formation and dissociation and also reporter

protein and mRNA degradation.

KZW simulated the reaction network using the Gillespie

algorithm [23] for direct stochastic simulation, and incorporating

gene replication and cell division events. The Gillepsie algorithm

updates the number of molecules Xk(t) of the kth chemical

species, using the propensity functions aj(X(t)), where aj(X(t))dt is

the probability that the jth reaction takes place in the time interval

½t,tzdt), and its associated stochiometric vector nj whose kth

component is the change in Xk caused by the jth reaction. The

propensity functions for the reactions involved in the KZW model

are given in Table 1, where X1,X2, . . . ,X12 are the numbers of

molecules of phosphorylated RR protein (RRP), mRNA of RR

(mRNA-RR), RR protein (RR), HK protein (HK), phosphorylated

HK dimer (HK2P), complex of RR and phosphorylated HK

dimer (RR-HK2P), complex of phosphorylated RR and HK

dimer (RRP-HK2), mRNA of reporter (mRNA-Rep), reporter

protein (Rep), mRNA of HK (mRNA-HK), phosphorylated RR

dimer (RR2P) and HK dimer (HK2) respectively, and

x1,x2, . . . ,x12 are the corresponding concentrations. The corre-

spondence between chemical species and model variables is also

given in Table 2 for ease of reference. The parameters c1 to c24

given in Table 1 were chosen by KZW to accord with

experimental data where available, or with validated models of

prokaryotic gene expression or, in cases where it did not affect the

qualitative results, they were chosen at will [15]. The concentra-

tion of RNA polymerase (RNAP) is fixed, at a0~30=VNA, in

order to model transcription and translation as pseudo-first-order

reactions, following KZW [15], where V is the cell volume and NA

is the Avogadro constant and we set VNA~109. The concentra-

tions of the various degradation products mentioned in Table 1 do

not influence the propensity functions and so we do not include

them as variables in our model. The external signal is modelled as

the ratio of the autophosphorylation to dephosphorylation rates

for histidine kinase, c14=c15, which we vary by keeping c14 fixed

and changing c15.

In summary, the Gillepsie algorithm consists of randomly

selecting the next reaction that occurs to be j with probability

proportional to aj(X(t)), and randomly selecting the time, t, until

that next reaction takes place from an exponential distribution

with rate parameter
P

j aj(X(t)). The vector X is updated

according to the numbers of molecules created and consumed in

reaction j, and time is increased by t?tzt [24]. Stepping forward

in time in this way gives a single realisation of the system.

Typically, many realisations are computed to give a fuller picture

of the system behaviour. KZW started each realisation at X~0 at

time t~0, and performed 10,000 realisations, each of 20,000 s

duration, for each parameter combination of interest.

KZW were interested in two sets of comparisons: autoregulation

of the RR gene versus constitutive expression, as discussed above,

and fast versus slow transcription of HK. KZW chose an operating

point for their system such that the mean steady state numbers of

RR and HK protein molecules were 3800 and 25 respectively. The

parameter values given in Table 1 are those for the autoregulated,

slow transcription case. To simulate a constitutively expressed

response regulator gene, we break the feedback loop by replacing

the first two response regulator transcription reactions in Table 1 by

the reaction promRR?mRNARRzpromRR, where prom-RR

is the promoter region of the RR gene, with propensity function c25,

where the rate constant c25 is chosen to lead to the same system

operating point in order to permit fair comparison with the

autoregulated case. KZW found that a value of c25~0:04125
accomplished this [15]. In order to isolate the effect of variability in

HK expression, KZW fixed the overall rate of transcription followed

by translation to be c6c7~3|10{5s{1. In the slow transcription,

fast translation case the rate constants were c6~10{4s{1 and

c7~0:3s{1, while in the fast transcription, slow translation case

these values were swapped. Slow transcription followed by fast

translation produces HK in bursts, while fast transcription and slow

translation leads to more continuous production [15].

Figure 1. Simplified diagram of the KZW stochastic TCS model.
(After [15].)
doi:10.1371/journal.pcbi.1002396.g001
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With autoregulation of the RR gene and fast transcription of

HK (Fig. 2a) KZW saw stochastic switching between the basal and

fully induced levels of reporter gene expression - a so-called ‘all or

none’ response. In other words, some trajectories showed very

little reporter protein present at time t~20,000s, while some

showed a large amount, and the number of reporter protein

molecules produced during the productive trajectories did not

seem to depend strongly on the external signal strength. The

picture was similar with autoregulation and slow HK transcrip-

tion, but there were fewer realisations at the activated level

(Fig. 2b). In the case of a constitutively expressed RR gene and fast

HK transcription, there was no stochastic switching - a graded

response was seen instead, where the number of reporter protein

molecules produced increased with increasing signal strength

(Fig. 2c). An interesting novel case was found when the RR gene

was constitutive, but transcription was slow, when stochastic

switching and a graded response were seen simultaneously - a so-

called ‘mixed mode’ (Fig. 2d). It is the unexpected existence of this

mixed mode that we seek to explain through our analyses below.

Reaction rate equations and deterministic bifurcation
analysis

In the thermodynamic limit where the cell volume and the

numbers of molecules of each chemical species tend to infinity, but

the concentration of each species remains constant [24], the KZW

model for the system containing an autoregulated RR gene can be

reduced to the following set of deterministic reaction rate

equations that describe mass-action kinetics for continuous real-

valued concentrations:

dx1

dt
~{k5x1{2k24x2

1z2k23x11{k12x1x12zk11x6, ð1Þ

dx2

dt
~

k2K1a0zk1K2a0x11

1zK2a0x11zK1a0zK3x11
{k4x2, ð2Þ

dx3

dt
~k3x2{k5x3{k10x3x5zk13x7, ð3Þ

dx4

dt
~{k9x4{2k22x2

4z2k21x12zk7x10, ð4Þ

dx5

dt
~{k10x3x5zk14x12{(k9zk15)x5, ð5Þ

dx6

dt
~k10x3x5{k11x6, ð6Þ

dx7

dt
~k12x1x12{k13x7, ð7Þ

dx8

dt
~

k17K1a0zk16K2a0x11

1zK2a0x11zK1a0zK3x11
{k19x8, ð8Þ

Table 2. Correspondence between chemical species and
model variables.

Chemical species
Short
name Concentration

Number of
molecules

Phosphorylated response
regulator protein

RRP x1 X1

mRNA of response regulator mRNA-RR x2 X2

Response regulator protein RR x3 X3

Histidine kinase protein HK x4 X4

Phosphorylated histidine
kinase dimer

HK2P x5 X5

Complex of RR and
phosphorylated HK dimer

RR-HK2P x6 X6

Complex of phosphorylated
RR and HK dimer

RRP-HK2 x7 X7

mRNA of reporter mRNA-Rep x8 X8

Reporter protein Rep x9 X9

mRNA of histidine kinase mRNA-HK x10 X10

Phosphorylated response
regulator dimer

RR2P x11 X11

Histidine kinase dimer HK2 x12 X12

doi:10.1371/journal.pcbi.1002396.t002

Figure 2. Results of Kierzek, Zhou and Wanner [15]. Histograms
of 10,000 realisations at time t~20,000s, as fractions of largest value: for
a) autoregulated RR gene & fast transcription of HK; b) autoregulated RR
gene & slow transcription of HK; c) constitutively expressed RR gene &
fast transcription of HK; d) constitutively expressed RR gene & slow
transcription of HK. (Adapted from [15]. Reproduced by permission of
The Royal Society of Chemistry http://pubs.rsc.org/en/content/
articlelanding/2010/mb/b906951h DOI: 10.1039/B906951H.
doi:10.1371/journal.pcbi.1002396.g002
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dx9

dt
~k18x8{k20x9, ð9Þ

dx10

dt
~k6{k8x10, ð10Þ

dx11

dt
~k24x2

1{(k23zk5)x11, ð11Þ

dx12

dt
~{k12x1x12zk22x2

4{(k21zk9zk14)x12zk15x5

zk11x6zk13x7:

ð12Þ

If the RR gene is constitutively expressed, then equation (2)

becomes

dx2

dt
~k25{k4x2: ð13Þ

The deterministic rate constants are appropriately scaled

versions [24] of those used in the stochastic kinetic model:

ki~ci for i~3,4,5,7,8,9,11,13,14,15,18,19,20,21,23, ki~ci=
(VNA) for i~1,2,6,16,17,25, ki~ciVNA for i~10,12,22,24.

In reality for this system some species remain low in number,

fluctuating between zero and a small integer number. Thus we

expect the deterministic continuous analysis based on these

equations to give clues as to the system behaviour, but to fail to

describe it adequately in some important respects.

Note that equations (8) and (9) decouple from the rest of the

system, being dependent only on the input value of x11, but not

feeding back into the remaining equations through the values of

x8 and x9. Thus the reporter protein concentration, x9, is

ultimately determined by that of the phosphorylated RR dimer,

x11.

We considered four sets of parameter values that gave every

combination of fast and slow transcription with autoregulated and

constitutively expressed RR gene. In each case we first found a

stationary solution of the reaction rate equations for a particular

value of the external signal (k14=k15~0:1) numerically and then

continued it over a range of external signals k14=k15, where k15

was varied, using the XPPAUT software package [25] to produce

a deterministic bifurcation diagram.

In the autoregulated case, the basal level of reporter gene

expression is shown at zero external signal (k14~0), where it

corresponds to the following fixed point of equations (1)–(12):

x1~x5~x6~x7~x11~0, ð14Þ

x10~k6=k8 ð15Þ

x2~
k2k1a0

k4(1zk1a0)
:x20, ð16Þ

x3~
k3

k5
x20, ð17Þ

x8~
k17k1a0

k19(1zk1a0)
:x80, ð18Þ

x9~
k18

k20
x80, ð19Þ

x4~{
k21zk9

4k22
1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

8k22

k21zk9

� �
k6k7

k8k9

s !
:x40, ð20Þ

x12~
1

2

k6k7

k8k9
{x40

� �
: ð21Þ

More generally it can be shown that the fixed points of

equations (1)–(12) are given by

x11~
k24x2

1

k23zk5
, ð22Þ

x2~
(k2K1zk1K2x11)a0

k4(1zK2a0x11zK1a0zK3x11)
, ð23Þ

x10~
k6

k8
, ð24Þ

x12~
1

2k21

k9x4z2k22x2
4{

k6k7

k8

� �
, ð25Þ

x7~
k12

k13
x1x12, ð26Þ

x8~
(k17K1zk16K2x11)a0

k19(1zK2a0x11zK1a0zK3x11)
, ð27Þ

x9~
k18

k20
x8, ð28Þ

x5~{
k22

k21
x2

4{
k9zk21

2k21
x4{

k6k7

k8k9

� �
, ð29Þ

x6~
k14

k11
x12{

k9zk15

k11
x5, ð30Þ
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x3~
k11x6

k10x5
, ð31Þ

where x1 and x4 are the solutions of the nonlinear equations

0~
1

2
k9zk15z

k9

k21
(k9zk15zk14{k12x1)

� �
x4{

k6k7

k8k9

� �

{k5x1{
2k5k24x2

1

k23zk5
z

k22

k21
(k9zk15zk14{k12x1)x2

4,

ð32Þ

0~k10 {
k22

k21

x2
4{

1

2k21

(k9zk21) x4{
k6k7

k8k9

� �� �
|

k3 k2K1a0zk1K2a0

k24x2
1

k23zk5

� �

k4 1zK1a0z(K2a0zK3)
k24x2

1
k23zk5

� �{k5x1{
2k5k24x2

1

k23zk5

0
BB@

1
CCA

{k5 k5x1z
2k5k24x2

1

k23zk5
z

k22

k21
k12x1x2

4

� �
:

ð33Þ

In the constitutive case, equations (16) and (23) become

x2~k25=k4 and equation (33) becomes

0~k10 {
k22

k21

x2
4{

1

2k21

(k9zk21) x4{
k6k7

k8k9

� �� �

k3k25

k4
{k5x1{

2k5k24x2
1

k23zk5

� �

{k5 k5x1z
2k5k24x2

1

k23zk5
z

k22

k21
k12x1x2

4

� �
:

ð34Þ

It is clear that, apart from the value of x10, the steady solutions

depend on the rates of HK translation and transcription only

through the product k6k7, which we have set to be constant. Thus

the slow and fast transcription cases have the same fixed points in

the deterministic framework. It turns out that these fixed points

also have the same stability type over the range of external signals

that we examined, and so the deterministic bifurcation diagrams

are the same for fast and slow transcription. The autoregulated

case (Fig. 3a) shows a classical bistable scenario, with a stable state

corresponding to the basal level of expression of reporter protein,

coexisting over a range of external signals (4:529|10{4
ƒ

k14=k15ƒ6:323|10{3), with a stable state corresponding to the

activated level of expression. For k14=k15v4:529|10{4 only the

basal expression solution exists, while for k14=k15w6:323|10{3

only the activated state is possible. The switch between these two

states, gives a classical ‘all-or-none’ response: in a population of

cells, for a given external signal, some will show activated

expression of reporter protein and some will show only basal

level expression. This case corresponds to Figs. 2a (fast transcrip-

tion) and 2b (slow transcription) of the KZW results, where an ‘all-

or-none’ response is indeed seen. On breaking the feedback loop

to investigate the constitutively expressed RR gene, a graded

response is seen (Fig. 3b), where the amount of reporter protein

produced rises steadily as the external signal is increased, and this

solution is stable. Both Figs. 2c and d show KZW results using a

constitutively expressed RR gene, but while they saw a graded

response in the fast transcription case (Fig. 2c) they saw a mixed

mode when transcription was slow (Fig. 2d), where the basal level

of reporter gene expression persists for at least 20,000 s in some

cells even for quite large external signals. In our deterministic

bifurcation analysis, this basal solution is absent and so there is no

mixed mode. We deduce that the mixed mode results from

stochasticity and/or discreteness.

Analysis of the discrete stochastic model
We want to find the approximate steady state of the discrete

stochastic system. It does not have true fixed points, such that X(t)
remains constant for all time. However, we can look for fixed

points of the expected value, or mean, SXT. As shown in Methods,

SXT evolves according to the differential equation

Figure 3. Bifurcation diagrams for the deterministic reaction
rate equations. The diagrams are constructed using XPPAUT for
equations (1)–(13) and the parameter values given in Results. Numbers
of reporter protein molecules produced are plotted against the natural
logarithm of the external signal ln(k14=k15), in the a) autoregulated and
b) constitutive cases, showing a bistable and graded response
respectively. Bold lines denote stable solutions and dashed lines
denote unstable solutions.
doi:10.1371/journal.pcbi.1002396.g003
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dSXT
dt

~
XM
j~1

vjSaj(X)T: ð35Þ

This is different from the reaction rate equations for the

evolution of the vector of concentrations x because

vaj(X)w=aj(vXw) in general for nonlinear aj(X) [24]. Thus

when the RR gene is autoregulated, the rates of change of the

components SXkT of the mean are

dSX1T
dt

~{c5SX1T{2c24SX1(X1{1)Tz2c23SX11T

{c12SX1X12Tzc11SX6T,

ð36Þ

dSX2T
dt

~S
c2k1azc1k2aX11

1zk2aX11zk1azk3X11

T{c4SX2T, ð37Þ

dSX3T
dt

~c3SX2T{c5SX3T{c10SX3X5Tzc13SX7T, ð38Þ

dSX4T
dt

~{c9SX4T{2c22SX4(X4{1)Tz2c21SX12T

zc7SX10T,

ð39Þ

dSX5T
dt

~{c10SX3X5Tzc14SX12T{(c9zc15)SX5T, ð40Þ

dSX6T
dt

~c10SX3X5T{c11SX6T, ð41Þ

dSX7T
dt

~c12SX1X12T{c13SX7T, ð42Þ

dSX8T
dt

~S
c17k1azc16k2aX11

1zk2aX11zk1azk3X11
T{c19SX8T, ð43Þ

dSX9T
dt

~c18SX8T{c20SX9T, ð44Þ

dSX10T
dt

~c6{c8SX10T, ð45Þ

dSX11T
dt

~c24SX1(X1{1)T{(c23zc5)SX11T, ð46Þ

dSX12T
dt

~{c12SX1X12Tzc22SX4(X4{1)T{(c21zc9zc14)

SX12Tzc15SX5Tzc11SX6Tzc13SX7T,

ð47Þ

where a~a0VNA, k1~K1=(VNA), k2~K2=(VNA)2 and k3~

K3=(VNA). If the RR gene is constitutively expressed, then

equation (37) becomes

dSX2T
dt

~c25{c4SX2T: ð48Þ

To look for a basal solution for these equations, we set c14~0

for a zero external signal, and look for solutions SXT~X(b) such

that dSXT=dtDSXT~X(b)~0. In Methods, we show that Sf (X)TD
SXjT~0~Sf (XDXj~0)T. Bearing this in mind, we find that the basal

solution for the means satisfies X
(b)
1 ~X

(b)
5 ~X

(b)
6 ~X

(b)
7 ~X

(b)
11 ~0,

X
(b)
2 ~

c2k1a

c4(1zk1a)
, (autoregulated), ð49Þ

X
(b)
2 ~

c25

c4
, (constitutive), ð50Þ

X
(b)
3 ~

c3

c5
X

(b)
2 , ð51Þ

X
(b)
8 ~

c17k1a

c19(1zk1a)
, ð52Þ

X
(b)
9 ~

c18

c20
X

(b)
8 , ð53Þ

X
(b)
10 ~

c6

c8

, ð54Þ

and that X
(b)
4 and X

(b)
12 correspond to fixed points (if such can be

found) of the equations

dSX4T
dt

~{c9SX4T{2c22SX4(X4{1)Tz2c21SX12T

z
c6c7

c8

,

ð55Þ

dSX12T
dt

~c22SX4(X4{1)T{(c21zc9)SX12T: ð56Þ

These last two equations are not in closed form, involving the

higher-order moment SX 2
4 T, and so we cannot deduce from them

whether a solution for X
(b)
4 and X

(b)
12 actually exists. If the basal

solution does exist, then we see that, with the exception of the

values of X
(b)
4 and X

(b)
12 it is the equivalent of the deterministic

basal solution with the deterministic rate constants replaced by

their stochastic equivalents.

In order to understand the stochastic behaviour, the equations

for the evolution of the mean are not sufficient. For a given

realisation of the system, the Xi must take non-negative integer

values, and this discreteness turns out to be important in

understanding the existence of basal solutions where they are

Equation-Free Analysis of Two-Component System
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not predicted by the mass-action or mean reaction rate equations.

We have SX10T~c6=c8 from equation (45). In the case of slow

transcription, where ½c6=c8�~0 (and where here and hereafter ½ �
indicates the rounded value, with half integers being rounded

upwards), the closest an individual trajectory can get to the fixed

point of the mean is at X10~0. We can now look for fixed points

of SXTDX10~0, which satisfy equations (36)–(44), (46) and (47), with

the term involving SX10T being zero in equation (39). In fact, in

the slow transcription case we have dSX10T=dtDX10~0~10{4s{1

and so if we can find a steady state for the remaining components

of SXDX10~0T, we would expect it to persist over a timescale of

approximately 104s.

Equations (43) and (44) show that the basal level of reporter

protein production occurs when X11~0, in other words when no

phosphorylated HK dimer (HK2P) is present, so we will look for a

steady state solution SXDX10~0T that also has SX11T~0 and call it

X(s). Thus we have X
(s)
10 ~X

(s)
11 ~0, and we now look for values of

the remaining components of X(s) that are consistent with this. We

are no longer restricting the external signal, c14=c15, to be zero.

However, we find X
(s)
j ~X

(b)
j for all j except j~4,10,12 for which

X
(s)
j ~0. Thus an approximate steady state X(s) can be found that

corresponds to a basal level of reporter protein production for

arbitrary values of the external signal.

For the parameter values used in our study, we find that in the

autoregulated slow HK transcription case X(s)~(0,5:42|10{3,

8:44,0,0,0,0,5:42|10{1,8:44|102,0,0,0) and in the constitutive

slow transcription case X(s)~(0,10:3,1:61|104,0,0,0,0,5:42|

10{1,8:44|102,0,0,0). In both autoregulated and constitutive

cases, these solutions are equivalent to the deterministic and mean

basal solutions except for the values of X4, X10 and X12. Thus we

expect to see the basal level of reporter protein in a proportion of

cells for all values of the external signal in the slow transcription

case for both the constitutively expressed and autoregulated RR

gene. In the constitutive case, this is the origin of the mixed mode,

and in the autoregulated case it is why the basal solution is seen at

unexpectedly high values of the external signal.

Note from equation (36) that a requirement for the existence of

an approximate discrete basal steady state with SX11T~0 is that

SX1T~0 and equation (46) shows that this in turn requires that

there be no RR-HK2P complex present (SX6T~0). Equation (6)

then implies we must have SX3X5T~0. This holds for the

majority of trajectories over long times for both slow transcription

cases, since slow transcription of HK means that the levels of

mRNA-HK is typically zero (X
(s)
10 ~0), and when that is true we

can find steady states where there is no HK protein (X
(s)
4 ~0) or

HK dimer (X
(s)
12 ~0) and hence no phosphorylated HK dimer

forms (X
(s)
5 ~0), as we have just shown.

In the autoregulated cases, if we look for steady state solutions

for the mean that have SX11T~0, then from equations (37) and

(74) we have

SX2T~
c2k1a

c4(1zk1a)
ð57Þ

and for our parameter values this gives SX2T~5:42|10{3, which

indicates that the average number of mRNA-RR molecules

present is very low and transcription of RR is slow. The closest an

individual trajectory can come to this value is at X2~0, so we look

for fixed points X (a):SXDX2~0T, with X
(a)
11 ~0, that satisfy

equations (36) and (38)–(47) with the left-hand sides equal to zero.

If we can find such a solution, we would expect it to persist over

timescales of about 104s (since (dSX2T=dt){1~(1zk1a)=

(c2k1a)~4:61|104s at SX11T~SX2T~0). Since X
(a)
2 ~0 (no

mMRNA-RR is present), and since for a basal solution we also

have no RR2P (X
(a)
11 ~0) or RRP (X

(a)
1 ~0) and thus no RRP-

HK2 (X
(a)
7 ~0), we find from equation (38) that it is consistent to

have no response regulator protein (X
(a)
3 ~0) and so again

SX3X5T~0 is satisfied. Thus in the autoregulated, fast HK

transcription case we find the approximate basal solution X(a) such

that X
(a)
2 ~0, X

(a)
j ~X

(b)
j for j~1,3,6,7,8,9,10,11, and X

(a)
4 , X

(a)
5

and X
(a)
12 correspond to fixed points of the equations

dSX4T
dt

~{c9SX4T{2c22SX4(X4{1)Tz2c21SX12Tz
c6c7

c8
, ð58Þ

dSX5T
dt

~c14SX12T{(c9zc15)SX5T, ð59Þ

dSX12T
dt

~c22SX4(X4{1)T{(c21zc9zc14)SX12Tzc15SX5T,ð60Þ

if they exist. (Again these equations involve the second order

moment SX 2
4 T, and so we cannot deduce from them the existence

of a fixed point of the mean.)

For the parameter values of our study this gives

X(a)~(0,0,0,X
(a)
4 ,X

(a)
5 ,0,0,5:42|10{1,8:44|102,75,0,X

(a)
12 ) for

the autoregulated fast transcription case. Although the terms in

SX 2
4 T prevent us from determining X

(a)
4 , X

(a)
5 and X

(a)
12 explicitly,

we see that

c14SX12T{(c9zc15)SX5T~0, ð61Þ

SX4Tz2SX5Tz2SX12T~
c6c7

c8c9
, ð62Þ

and hence, assuming that the solution does indeed exist, we must

have

X
(a)
5 ~

c14

2(c9zc14zc15)

c6c7

c8c9
{X

(a)
4

� �
, ð63Þ

X
(a)
12 ~

c9zc15

2(c9zc14zc15)

c6c7

c8c9
{X

(a)
4

� �
, ð64Þ

where X
(a)
4 is chosen such that

c6c7

c8c9
{SX4T

� �
c9z

c21(c9zc15)

c9zc14zc15

� �
{2c22SX4(X4{1)T~0 ð65Þ

holds.

Since SX 2
4 TƒSX4T2, X

(a)
4 must satisfy

c6c7

c8c9
{X

(a)
4

� �
c9z

c21(c9zc15)

c9zc14zc15

� �
{2c22 (X

(a)
4 )2{X

(a)
4

n o
ƒ0:

ð66Þ
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For the parameter values just mentioned this gives X
(a)
4 §5:59,

and from equations (63) and (64) we then see that X
(a)
5 ƒ50:5 and

X
(a)
12 ƒ5:12. Since SX 2

4 T§0, we must also have

c6c7

c8c9
{X

(a)
4

� �
c9z

c21(c9zc15)

c9zc14zc15

� �
z2c22X

(a)
4 §0: ð67Þ

This is automatically satisfied if X
(a)
4 ƒc6c7=c8c9, which is required

if equations (63) and (64) are to have non-negative solutions for

X
(a)
5 and X

(a)
12 .

Note that in the autoregulated, slow HK transcription case, we

can find an approximate basal solution X(as) that has both X
(as)
2

and X
(as)
10 equal to zero: in other words X

(as)
j ~X

(s)
j for

j~1,4, . . . ,12 and X
(as)
2 ~X

(as)
3 ~0, with the growth rates of all

components being zero except for X
(as)
2 and X

(as)
10 where the

growth rates are 4:125|10{2s{1 and 10{4s{1 respectively. For

the parameter values of our study we have X(as)~(0,0,0,0,

0,0,0,5:42|10{1,8:44|102,0,0,0).

In the case of the constitutively expressed RR gene with fast HK

transcription, no approximate basal steady state can be found. The

rapid production of mRNA-HK (X10) in the fast transcription

cases - a steady state of approximately ½c6=c8�~75 molecules from

equation (45) - ultimately leads to the production of phosphory-

lated HK dimer (X5). The rate constant, c25, for the constitutively

expressed RR gene is chosen to produce similar numbers of

reporter protein molecules to those found in an activated cell in

the autoregulated case. Thus, when phosphorylated RR dimer

(X11) is scarce, RR transcription is much faster for the

constitutively expressed than autoregulated gene. Equation (48)

gives a steady state of approximately 10 mRNA-RR molecules in

the constitutive cases, since SX2T~c25=c4~10:3, and hence RR

protein (X3) is also present at high levels. The combination of both

phosphorylated HK dimer and RR protein allows RR-HK2P

complex (X6) and hence RR2P (X11) to form and ultimately leads

to the presence of reporter protein (X9) at levels much higher than

basal.

Starting from the approximate basal solutions, we need RR

protein (X3), and prior to this mRNA of RR (X2), and HK2P (X5),

and prior to this HK protein (X4) to form before reporter protein

can be formed. This will happen only very rarely because either

X
(a)
2 and X

(a)
3 are zero (autoregulated cases) or X

(s)
4 and X

(s)
5 are

(slow HK transcription cases) or both (autoregulated slow

transcription case) and the corresponding growth rates are tiny

or zero, showing that the reactions involving these species are well-

balanced at X(a), X(s) and X(as). Thus the approximate basal

solution is expected to persist over long times for a significant

proportion of trajectories, or equivalently in a significant

proportion of cells. Only in the constitutive fast HK transcription

case is there the required combination of nonzero X3 (and X2) and

X5 (and X4) to cause the production of RR-HK2P complex (X6)

and lead within a short time for the vast majority of trajectories (or

cells) to the presence of reporter protein (X9) at levels above basal.

This is the only case in which the basal solution is not observed for

high external signals, as can be seen from Fig. 2c. Only a graded

response is observed.

The results show that slow transcription of either or both of the

HK and RR genes can lead to the persistence of the basal solution

where it would not be expected from analysis of the deterministic

reaction rate equations. The discrepancy between the determin-

istic and discrete stochastic models arises from the fact that

trajectories do not remain close to the basal level of expression for

all time in the stochastic model when the basal solution is not a

stable fixed point of the system. Rather they eventually approach

the discrete stochastic equivalent of the steady-state solution found

in the deterministic model. However, there is a delay before

transcription of HK and RR is initiated during which a near zero

level of expression is observed. HK transcription takes place at a

(stochastic) rate c6 to give mRNA-HK, which is then translated at

a rate c7X10, where X10 is the number of mRNA-HK molecules.

For fixed c6c7, if the transcription rate constant c6 is small,

transcription occurs in bursts [15]: it is delayed for a long time in

some realisations, followed by very rapid translation when the

number of reporter protein molecules climbs up quite quickly

towards its steady state value. Hence a basal level of expression is

observed for a long time in some realisations of the discrete

stochastic model. This is the origin of the mixed mode observed in

the constitutive case (Fig. 2d) for slow HK transcription initiation.

On the other hand if transcription is initiated rapidly, correspond-

ing to c6 large, the number of mRNA-HK molecules rises quickly

and production of reporter protein occurs more steadily as long as

RR is also being transcribed fast enough; thus trajectories depart

from the basal solution earlier on average. The basal expression

level is therefore not observed over long periods (Fig. 2c). Note that

the overall rate of transcription and translation of HK is the same
in both cases, namely c6c7X10. If RR is transcribed slowly then this

can also result in the basal expression level being observed over

long periods, even if HK is transcribed rapidly, and this is why we

see a persistent basal solution in the fast HK transcription

autoregulated case. Bistable behaviour of stochastic origin has also

been found in direct stochastic simulations of autoregulated gene

expression [13,14], where although mRNA transcription and

translation are either not considered, or treated as a single lumped

step, stochastic activation of the gene by binding of a protein dimer

is required before gene expression can proceed. However, in that

case, while dimer binding is sporadic, the remaining biochemical

reactions in the network are comparatively fast, so that gene

expression is effectively switched on or off by the presence or

absence of the dimer and thus proceeds in bursts. At any given

time some cells in a population would be switched off and so a

basal expression state would be found when it was not expected on

deterministic grounds, but the mechanism is different from the one

we see here, where a given cell may persist in a basal state over a

long period before transitioning to a higher level of reporter gene

expression.

The production of reporter protein at a level above basal,

ultimately requires the simultaneous presence in the system of RR

(response regulator protein, X3) and HK2P (phosphorylated HK

dimer, X5). This is much more likely to happen if both are present

in significant numbers, as is forced to occur by the forms of the

mRNA-HK and mRNA-RR growth rates in the constitutive fast

HK transcription case, than if either RR or mRNA-HK appears

only sporadically, which is true for the former if response regulator

is initially scarce and the gene is autoregulated and the latter if HK

transcription is slow. In these cases, we expect reporter protein

production to continue at basal level over long times. As the system

is stochastic there will always be trajectories that do lead to

production of reporter protein at much higher levels, and indeed

every trajectory would be expected to reach these levels if we were

to wait long enough, because eventually there would be a

stochastic fluctuation large enough to bring the trajectory into

the basin of attraction of the induced expression solution. Since

bacteria have a finite lifetime we would in practice observe

reporter protein production at induced expression levels in a

proportion of cells and at basal levels in the remainder. In the

Equation-Free Analysis of Two-Component System

PLoS Computational Biology | www.ploscompbiol.org 10 June 2012 | Volume 8 | Issue 6 | e1002396



autoregulated slow HK transcription case, both values X
(as)
3 and

X
(as)
5 are zero, so it is to be expected that after a given time a

smaller fraction of cells in this case produces reporter protein at

induced levels than in the autoregulated fast HK transcription or

constitutively expressed slow HK transcription cases, and it can be

seen from Fig. 2 that this is indeed the case. In the constitutively

regulated slow HK transcription case, the expected value of X
(s)
3

(response regulator protein) is very high at 1:61|104, and so RR-

HK2P complex (X6) and hence reporter protein (X9) will be

formed rapidly if stochastic fluctuations lead to the presence of a

few HK2P molecules (X5). Thus after a fixed length of time, we

expect a greater fraction of cells to show high levels of reporter

protein in the constitutively regulated slow HK transcription case

than in the fast HK transcription autoregulated case, where no

more than about fifty HK2P molecules are present on average at

steady state for the approximate basal solution (X
(a)
5 ƒ50:5), and

so production of RR-HK2P complex (X6) will proceed much more

slowly when occasional molecules of response regulator (X3) are

formed. Again this confirms what is seen in Fig. 2.

Equation-free determination of steady states for the
stochastic kinetic model

In the previous subsection we analysed the equations for the

time evolution of the mean SXT directly in order to find the

approximate basal solutions that give rise to the mixed mode and

to the extended range of signals over which an all-or-none

response can be seen. We were fortunate in being able to do this:

many reaction networks would be too complicated to succumb to

this approach. However, it is possible to use direct stochastic

simulations to gain information about the existence and stability of

steady states of the probabilistic mean. In this subsection we use

equation-free techniques to confirm the existence of the approx-

imate basal solutions and investigate their stability. This approach

could be extended to complex reaction networks that cannot be

analysed explicitly.

So-called ‘equation-free’ methods (see [26–28] and references

therein) are used to analyse the behaviour of dynamical systems

that are either stochastic, or alternatively, deterministic of high

dimension and with random initial conditions. The time evolution

is obtained by a numerical time-stepping algorithm, and typically

one is interested in characterising the asymptotic behaviour of the

probability density functions of the associated state variables.

Evolution equations for the probability distribution are often hard

to write down in closed form, albeit their existence is guaranteed in

most cases. However, ensembles of realisations of the dynamical

system can be obtained by running the time stepper many times

over for a given simulation time or time horizon, starting from a

probability distribution of initial conditions. From these ensembles

of realisations, moments (typically the mean and sometimes also

the variance) of the probability distribution of state variables at the

end time can be calculated. A key idea behind equation-free

methods is that, if the high-order moments evolve much faster

than (are slaved to) the low-order ones, there exists a closed

evolution equation for the first few moments of the distribution.

The method allows for the computation of steady states of, for

example, the mean values of state variables, together with the

corresponding Jacobian matrix that determines the stability

eigenvalues for them, and so a bifurcation diagram can be

constructed for these mean values. Thus all the powerful

machinery of nonlinear dynamical systems can be brought to

bear to explore systems for which explicit governing equations are

not available.

Typically the equation-free method also encompasses the

identification of fast and slow state variables and the use of

‘coarse projective iteration’ to speed up the time-stepping in large

systems. We have not implemented these aspects here, in the first

case because we did not expect any separation of variables into fast

and slow to remain valid over the entire range of parameter

regimes that we need to investigate, since we are explicitly varying

the timescales of interest in this problem, and in the second case

because the use of modified tau-leaping in the Gillespie algorithm

performs a similar role to coarse projective iteration.

Equation-free methods have been demonstrated to work well for

low-dimensional systems with tunable noise. They have also been

used to examine stochastic simulations of (bio)chemical reaction

networks in simple [16,17,29–31] and somewhat more complex

cases [18–20]. Here we extend this work, by applying equation-

free techniques to Gillespie algorithm simulations of a realistic

biochemical reaction network of moderate complexity, which

represents a significant computational challenge to the method.

In order to capture the purely stochastic near-zero solutions

involved in the mixed mode (constitutive slow transcription case)

and the extension of the basal expression level to high external

signals in the autoregulated cases, we use an equation-free method

[32] in which the Gillespie algorithm is a black-box time-stepper.

We begin by identifying microscopic and macroscopic variables

for the system. The microscopic variables are contained in the

vector X(t), denoting the number of molecules of each species at

time t. The coarse variables of our problem are then defined as an

ensemble average of X(t) over a large number, N , of realisations of

the Gillespie algorithm

Y(t)~ lim
N??

1

N

XN

n~1

X(n)(t), ð68Þ

where X(1)(t), . . . ,X(N)(t) are the values of X(t) found in the

realisations 1 to N.

A central role in the equation-free framework is played by the

coarse time-stepper

Y(tzth)~Wth
(Y(t)): ð69Þ

The operator Wth
evolves the macroscopic state from time t to

time tzth and, in general, is not available in closed form. However,

it is possible to advance the coarse variables in time using

independent microscopic runs of the Gillespie algorithm. The

coarse time-stepper is then composed from these microscopic runs

in three stages: lift, evolve and restrict [27] as described in Methods.

Once the coarse time-stepper is defined, we can find steady

states Ys of the coarse evolution (69) by computing solutions to the

equation

Ys{Wth
(Ys)~0: ð70Þ

In our implementation, we find Ys via Broyden’s iterations:

function evaluations consist in performing the lift-evolve-restrict

steps mentioned above, whereas the Jacobian at points Y is

determined numerically from the values of Wth
(YzdY) for

various small perturbations of the mean dY. By choosing the

time horizon, th, appropriately we can pick up metastable solutions

that persist, on average, for that length of time, but are not true

steady states of the system.

Equation-Free Analysis of Two-Component System

PLoS Computational Biology | www.ploscompbiol.org 11 June 2012 | Volume 8 | Issue 6 | e1002396



In practice, this turns out to be less straightforward than one

might wish. The identification of a single fixed point requires

hundreds of thousands to millions of realisations of the Gillespie

algorithm (owing to the use of a large ensemble and the

requirement for several iterations of the algorithm before

convergence), and is consequently very slow, even when the

calculations are parallelised. The error tolerance that can be

achieved depends on the number of realisations in the ensemble,

and so there is a trade-off between accuracy of the solution

detected, the time horizon required and the practical feasibility of

performing the calculation. Nevertheless, this method confirmed

the insights described in the previous subsection. In the equation-

free root-finding algorithm, we use N~1000 realisations and we

set a relative tolerance of 5|10{5 for Broyden’s method. Finally,

the time horizon th varies between 30 s and 500 s; as pointed out

in [28], we expect the results to depend upon th. Note that in

determining Wth
(Y) we use the value of X in each realisation that

is computed at the last value of t such that tvth. We typically

observe convergence of the Broyden’s method within 20 iterations,

with the exception of a few points in the calculations of induced

expression states where the solution jumps and the tolerance is met

within 50 or 60 iterations. Since we are using a relative tolerance,

our residuals never exceed 5|10{1, as the norm of our solutions

is bounded by 104.

Since the production of reporter protein, X9, is controlled by the

number of phosphorylated RR dimers present, X11, in this

subsection we use the value of Y11, the mean value of X11, to

illustrate our results. We first use the approximate basal solutions,

X(s), as an initial guess for the steady states at a very low value of

the external signal in the constitutively expressed slow and fast

transcription and autoregulated slow transcription cases, and use

Broyden’s method to find a nearby steady state. We then use this

as a starting estimate of the solution at slightly higher external

signal, converge once more to a nearby steady state, and in turn

use this to find a solution at slightly higher external signal again.

By this procedure of so-called ‘poor man’s continuation’ we aim to

trace out the dependence of the basal expression level of Y11 on

the external signal. In the autoregulated fast transcription case, our

initial guess at the lowest external signal level is X~0.

Fig. 4 shows that with the exception of the constitutively

expressed fast transcription case, a metastable basal solution with

Y11&0 persists at all values of the external signal between 10{4

and 10 for a time horizon of 300 s. When the time horizon is

increased to th~500s in both slow transcription cases, and in the

autoregulated fast transcription case, we start to see the loss of this

persistent basal solution at medium to large external signals

(Figs. 4a, b and d). The th~500s profile departs from zero for

some values of the external signal, whereas the (underlying)

th~300s profile never does. We do not see a systematic variation

of Y11 with external signal, because the level is still very low, and

there is a certain variability in the numerical results that comes

from using ensembles of stochastic trajectories. Thus, for example,

Figure 4. Timescales of persistence for approximate basal solution. Steady states are shown for the mean number of phosphorylated RR
dimer molecules, Y11, in equation (70), found using the equation-free numerical approach and poor man’s continuation, starting from the lowest
value of the external signal and an approximate basal solution or a zero solution and continuing towards higher signal values. The mean number of
molecules produced is plotted against the natural logarithm of the external signal ln(c14=c15) in the a) autoregulated fast transcription (th~300s and
500s), b) autoregulated slow transcription (th~300s and 500s), c) constitutively expressed fast transcription (th~30s and 50s) and d) constitutively
expressed slow transcription (th~300s and 500s) cases. Where the two curves coincide, the th~500s points are plotted and the th~300s points are
underlying.
doi:10.1371/journal.pcbi.1002396.g004
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no meaning should be attributed to the fact that the value of Y11 is

zero in Fig. 4d for very high external signals, while it is nonzero for

a range of signals below that: it is the fact that there are some

nonzero values that is important. Furthermore, the use of poor

man’s continuation, where the last computed solution is used as an

initial guess in the root-finding algorithm, means that we expect to

see the same value of Y11 over a range of neighbouring values of

the signal in this regime where we are looking at the first gradual

loss of stability of the metastable basal solution. Once again, no

meaning should be attributed to the clustering of values of Y11 in

this case.

In contrast to the other cases, the constitutively expressed fast

HK transcription case only supports a basal solution for short time

horizons: it is lost between th~30s and th~50s (Fig. 4c). This

broadly supports the arguments in the previous subsection, where

the basal solution was found to be absent in the constitutively

expressed fast transcription case and to persist for approximately

104s in the remaining cases. The fact that the basal solution

persists at all in the first case results from the stochastic nature of

the simulations: there will always be a short delay in the formation

of reporter protein when necessary chemical species are initially

absent. At SXT~X(s), we have X10~0 and dSX10T=dt~c6~

0:3s{1. Since at least one molecule of mRNA-HK, X10, is needed

to initiate the reaction sequence that leads to the production of

phosphorylated RR dimer, X11, and hence an induced level of

reporter protein, X9, we expect the basal solution to persist for a

time that is somewhat longer than 1=c6, which in the constitutively

expressed fast transcription case is approximately 3 s. The fact that

the solution should persist for a somewhat longer time than 3 s

results from stochastic delays in the formation of the intermediates

X5 (phosphorylated HK dimer) and X6 (RR-HK2P complex),

which are also intially absent. This agrees reasonably well with the

observed loss of the basal solution between th~30s and th~50s.

The loss of the basal solution at a high external signal at a time

horizon of only 500 s in the remaining cases is a little surprising,

but we postulate that the solution corresponding to induced

expression of the reporter gene is strongly attracting at high

external signals and so small fluctuations might be enough to move

a sufficient number of individual trajectories into the basin of

attraction of this higher solution branch so that a mean basal

solution would no longer exist.

Once an average steady state is computed via Broyden’s

iterations, it is possible to calculate the corresponding Jacobian of

the coarse time-stepper Wth
and infer the stability of the solution.

Since the number of realisations used for the root-finding

algorithm is relatively small (N~103) the resulting Jacobian

computations are affected by noise. At selected points on the

bifurcation curve, we increased the number of realisations to

N~104 and repeated the Jacobian computations 10 times.

In Fig. 5 we plot the spectra of the Jacobian evaluated at basal

solutions for various values of the external signal ln(c14=c15). One

instance (out of the 10 calculations) of each spectrum is plotted,

except for the lower panel of Fig. 5c, where two instances are

shown. In all four cases and for each of the 10 Jacobian

computations, we found that solutions with low values of the

external signal are stable. Conversely, high external signals lead to

unstable steady states in the autoregulated fast and slow

transcription cases and in the constitutively expressed slow

transcription case. In the constitutively expressed fast transcription

case we find a mixed picture for the high external signal: we

repeated the Jacobian computation 20 times in this case and of

those 11 gave a stable spectrum and 9 gave an unstable spectrum:

one example of each is shown in the lower panel of Fig. 5c. We

suggest that the difference in behaviour of the constitutively

expressed fast transcription case compared to the other three may

be due to the fact that the time horizon is much shorter - 50 s

compared to 500 s - which could make the Jacobian calculations

noisier, and that the steady state, which is effectively no longer a

persistent basal solution, is further away from zero. Since the basal

solution is expected to be only metastable at all values of the signal,

we might have expected to see instability at low signals as well as

high ones. However, in that region the higher solution branch - a

true stable solution - lies close to the basal solution and so a) it may

be hard to separate the two within our given error tolerance and b)

the unstable eigenvalue of the basal solution will lie very close to

the stability boundary and so we might classify it as stable within

our given error tolerance. Broadly speaking a basal solution that

appears stable at low external signals, but becomes unstable as the

signal increases in strength, confirms our hypothesis of metasta-

bility.

We can also investigate the existence of an induced expression

solution using equation-free techniques. Here we start with a large

external signal, and use a point in the vicinity of the solution

predicted by the deterministic reaction rate equations (1)–(13) for

induced expression of the reporter gene as an initial guess for a

steady state. Once more we use poor man’s continuation to follow

the dependence of Y11 on the external signal, but this time

tracking the solution as the external signal decreases. Any Y that

we pick is likely to persist over sufficiently short time horizons,

because we can pick a time interval so short that no reaction events

are expected to take place. What we are really interested in are

solutions Y that persist over long time horizons. However, once th

becomes greater than about 200 s, calculation times become so

long as to be impractical. We would expect to find that for long

enough th, the autoregulated cases show ‘all-or-none’ behaviour

where the activated expression solution suddenly vanishes below a

threshold value of the external signal. In the language of nonlinear

dynamics, this is a classical scenario of a subcritical bifurcation

with hysteresis. By contrast for the constitutively expressed cases,

we expect a smooth, graded, response as the external signal varies:

in other words, a stable solution that grows in amplitude as the

signal increases, but does not undergo a bifurcation. In the

autoregulated cases, we do see an ‘all-or-none’ profile at the

longest time horizon that we used, th~200s (Figs. 6a and b).

However, we actually see similar behaviour in the constitutively

expressed cases (Figs. 6c and d), though for the fast HK

transcription case there is a hint of a graded response as the

external signal decreases towards the point at which the basal

solution appears. It is possible that the algorithm fails to converge

on the induced steady state at intermediate values of the external

signal, and instead locates the approximate basal solution. (Even in

the constitutive fast transcription case, this solution may occasion-

ally be found to persist for 200 s owing to the stochastic nature of

the system, and since the root-finding algorithm is permitted quite

a large number of iterations it may pick it up.) This may be

because a larger ensemble of realisations is needed to achieve a

given accuracy of solution as th increases, as we describe below,

but in practice using very large ensembles would have required

infeasibly long run times. Interestingly we did find a graded

response at th~100s in the constitutively expressed fast transcrip-

tion case, but we lost it for lower values of the external signal when

we increased the time horizon to th~200s (see Fig. 7). Perhaps this

is indeed owing to the decreased accuracy in locating the solution.

However, we note that another run at th~100s produced an ‘all-

or-none’ profile (not shown) and that the autoregulated fast

transcription case behaved similarly despite a graded solution not

being expected there. Larger ensembles and longer run times
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would be necessary to resolve the question definitively. We have

also computed the spectra corresponding to induced expression

states for high values of the external signal, and found that they are

stable in all cases (see insets in Fig. 6).

In order to calculate the steady states Ys, we repeatedly generate

ensembles of realisations, each of which gives us a mean value Yth
.

For a given Y0, the variance of Yth
over a set of ensembles will be

greater for longer th and smaller ensembles. Thus, as th increases,

we really should use a larger ensemble of realisations to allow us to

determine steady states with sufficient accuracy. It is likely that this

would allow us to distinguish better between the behaviour in the

constitutively expressed and autoregulated cases, but in practice

this is computationally prohibitive. Furthermore, as we approach a

steady state, the time evolution of a given trajectory becomes very

slow (because there is at least one growth-rate eigenvalue close to

zero) and so extremely long time horizons would be needed to

identify the location of the steady state accurately. Nonetheless we

do pick up the basal expression state at low values of the external

signal and the induced expression state at high signals in all four

cases, thus demonstrating the ability of the equation-free method

to locate metastable and stable solutions in complex reaction

networks where explicit analysis cannot be used, but where the

time evolution of the system is accessible through a numerical

time-stepper.

Discussion

We have sought to explain the existence of the mixed-mode

response in a stochastic kinetic model of the PhoBR TCS in E. coli.

We used bifurcation analysis to show that this mixed mode was

absent in the framework of deterministic reaction rate equations

that govern the concentrations of chemical species in the

thermodynamic limit, and that it must therefore result from

stochasticity in the discrete system. We then analysed the discrete

stochastic system directly using equations for the probabilistic mean

number of molecules of each chemical species present, and showed

that slow transcription of either or both of the histidine kinase or

response regulator genes can lead the reporter gene to be expressed

at basal level in a fraction of cells within a population, even when the

external signal is so high that this would not be expected on

deterministic grounds. We confirmed this finding using equation-

free techniques that located the unexpected persistent basal

expression state and ascertained that it is unstable at high external

signals. This persistence of the basal level of reporter gene

expression is a truly stochastic phenomenon that arises because

we must wait until random processes lead both RR protein and

phosphorylated HK dimer to be present in the cell simultaneously

so that the chain of reactions that lead to the production of reporter

protein can proceed. The delay will be lengthy if either transcription

Figure 5. Stability of basal solutions. Spectrum of the Jacobian of the coarse time-stepper Wth
evaluated at basal solutions with low and high

external signals for a) autoregulated fast transcription (th~500s), b) autoregulated slow transcription (th~500s), c) constitutively expressed fast
transcription (th~50s) and d) constitutively expressed slow transcription (th~500s) cases. Eigenvalues outside the unit circle (plotted in blue) indicate
that the corresponding steady state is unstable. Eigenvalues corresponding to a spectrum that is stable overall are plotted as red circles. Eigenvalues
corresponding to a spectrum that is unstable overall are plotted as green asterisks. In a), b), d) and the upper panel of c) one instance of the spectrum
(of the 10 calculated) is shown. In the lower panel of c) two instances of the spectrum (of the 20 calculated) are shown: one stable and one unstable
example.
doi:10.1371/journal.pcbi.1002396.g005
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process is very slow, and that is why a basal level of expression can

be observed over long times. Combined with a graded response to

the signal in the case where the RR gene is constitutively expressed,

the persistent basal state leads to the ‘mixed-mode’ response

described by KZW [15]. When the RR gene is autoregulated, the

persistent basal state effectively extends the range of external signals

over which an ‘all-or-none’ response can be seen.

These findings are important for understanding the survival

strategies of bacterial pathogens. Two-component systems are the

most prevalent mechanism of transmembrane signal transduction

controlling gene expression programmes in bacteria [33]. Many of

them are global regulators responsible for major switches in cell

physiology. Thus stochasticity in the outcome of TCS regulation,

that we have analysed in detail in this work, is likely to result in the

coexistence of cells in qualitatively different physiological states.

These cellular populations would inevitably respond differently to

antibiotic treatment or immune system challenge and in many

cases one of the populations would survive. Any global gene

expression programme change leading to slow growth would slow

down drug uptake and minimise the effects of drugs that block

protein synthesis, and a change in the repertoire of surface proteins

could enable a fraction of bacteria to survive an immune system

attack. For example, a recent study shows involvement of the

DosR response regulator in regulation of global metabolism and

antibiotic response in M. tuberculosis. [34] Stochastic fluctuations in

this particular TCS could therefore lead to the emergence of

populations surviving antibiotic treatment.

Figure 6. Equation-free tracking of induced expression states. Steady states are shown for the mean number of phosphorylated RR dimer
molecules, Y11, in equation (70), found using the equation-free numerical approach and poor man’s continuation, starting from the highest value of
the external signal and a point in the vicinity of the deterministic reaction rate solution and continuing towards lower signal values. The mean
number of molecules produced is plotted against the natural logarithm of the external signal ln(c14=c15) for time horizon th~200s in the a)
autoregulated fast transcription, b) autoregulated slow transcription, c) constitutively expressed fast transcription and d) constitutively expressed
slow transcription cases. Spectra of stable steady states at the highest value of the external signal are plotted in the insets.
doi:10.1371/journal.pcbi.1002396.g006

Figure 7. Graded response in the constitutively expressed fast
transcription case. The equation-free tracking of the induced state in
the constitutively expressed fast transcription case shows a graded
response for th~100s in one run. This behaviour is lost upon increasing
the time horizon to th~200s (see also Fig. 6c).
doi:10.1371/journal.pcbi.1002396.g007
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While the role of TCS stochasticity in pathogen survival has

already been recognised [3], the analysis of possible sources of

phenotypic variation has been limited to autoregulated, bistable

systems [3]. KZW did show numerical simulation trajectories

exhibiting population diversity [15], but they did not analyse the

mechanisms underpinning the observed phenomena in detail. In

this work we demonstrate for the first time that a TCS that is not

multistable can generate bacterial population diversity at the

timescales relevant to bacterial responses. The parameter config-

uration for which this behaviour is observed in our model is

biologically plausible. Among the number of two-component

systems studied in detail, both autoregulated (e.g. PhoPQ in E. coli

[35]) and constitutive cases (e.g. ArcAB in E. coli [36]) have been

observed. According to quantitative measurements [37], the

number of histidine kinase proteins present is low and could

therefore be a source of stochastic fluctuations, as demonstrated in

our model. In numerous two-component systems, such as ArcAB

in E. coli [36], the HK gene is expressed from a different

transcription unit than the RR gene and in these cases low

expression levels can be regulated at both the transcription and

translation levels. Therefore, observed TCS architectures and

measured protein amount ranges show that two-component

systems exhibiting population diversity in the absence of autoreg-

ulation and multistability are likely to exist. Moreover, the

observed diversity of TCS architectures shows that the two-

component system is a highly evolvable regulatory network motif.

Depending on point mutations in the promoter and ribosome

binding site (RBS), different modes of response to the external

signal can be generated resulting in different distributions of

phenotypic diversity in cellular populations. These mechanisms

are likely to be subject to natural selection, especially in bacterial

pathogens where population diversity conveys significant advan-

tage. Our work shows for the first time that it is not only bistable

two-component systems that are potential sources of phenotypic

diversity in the evolution of bacterial populations. Thus experi-

mental work on the stochasticity of two-component systems should

not focus exclusively on multistable, autoregulated systems as has

been the case so far. The analysis we have presented indicates that

one should also consider the case where RR and HK genes are not

autoregulated through positive feedback and where transcription

of the HK gene is not coupled to the RR gene in an operon

structure. Our study predicts that mutations in the promoter and

RBS of this HK gene could result in population diversity and that

the population would respond to the external signal in a mixed,

rather than all-or-none fashion.

Our work has also general implications for the understanding of

molecular interaction networks other than two-component

systems. We have analysed a large-scale model of a complete

sequence of events linking external signal sensing with gene

expression and shown the emergence of population diversity that

does not derive from multistability of the system, but rather from

slow production of a constituent chemical species. This phenom-

enon is very likely to be present in molecular interaction networks

in general. The case of TCS histidine kinase indicates that noise in

the expression of a single gene producing an external signal sensor

can result in population diversity and a mixed-mode population

response to that external signal. Potential occurrence of this

mechanism should be taken into account in studies of a wide range

of signal transduction cascades both in bacterial and eukaryotic

cells.

We show for the first time, to the best of our knowledge, the use

of equation-free techniques to analyse a detailed model of a signal

transduction and gene regulatory network. Our results demon-

strate that this approach enables the application of the classical

concepts of dynamical systems theory to the analysis of realistic

stochastic models of molecular interaction networks of the cell.

The calculation of the Jacobian is particularly useful as it provides

insight into the stability of the behaviours observed in numerical

realisations of stochastic dynamics. Understanding parameter

dependencies in stochastic systems that are accessible only through

direct numerical simulation is a major challenge. Hitherto, this has

typically been attempted through time-consuming numerical

experiments, without a systematic method for evaluating changes

in the expected (probabilistic mean) system behaviour. Frequently,

observation of a particular phenomenon in simulation trajectories

brings little understanding of the underlying mechanism. Our

work shows that equation-free methods provide a systematic and

feasible solution to this problem. Our use of equation-free

techniques to investigate stochastic phenomena in a biochemical

reaction network of realistic scale demonstrates their potential for

enabling greater insight into the behaviour of highly stochastic

systems in biology, and also the challenges of scale that must be

overcome in order to do so.

To summarise, our work provides insight into the mechanisms

of emergence of phenotypic diversity in populations of genetically

identical cells. Our successful use of equation-free methods in this

context will motivate future applications of this approach for the

analysis of the stochastic dynamics of molecular interaction

networks.

Methods

Derivation of the evolution equations for the mean SXT
The rate of change with time of the vector of mean species

numbers, SXT, can be calculated from the chemical master

equation

dP(y,t)

dt
~
XM
j~1

(aj(y{vj)P(y{vj ,t){aj(y)P(y,t)), ð71Þ

where P(y,t) is the probability that X(t)~y - see [24], for example

- and M is the number of different types of chemical reaction in

the system. The mean is given by SXT~
PN

k~1

P?
yk~0 yP(y,t),

where N is the number of chemical species, and so it evolves

according to

dSXT
dt

~
XN

k~1

X?
yk~0

y
dP(y,t)

dt
,

~
XN

k~1

X?
yk~0

XM
j~1

y(aj(y{vj)P(y{vj ,t){aj(y)P(y,t)),

~
XN

k~1

X?
yk~0

XM
j~1

((yzvj)aj(y)P(y,t){yaj(y)P(y,t)),

~
XN

k~1

X?
yk~0

XM
j~1

vjaj(y)P(y,t),

~
XM
j~1

vjSaj(X)T,

ð72Þ

where it should be noted that aj(y,t) and P(y,t) are defined to be

zero if ykv0 for any k.
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Properties of Sf (X)T when SXjT is zero
Note that if SXjT~0 for some j, then we have

XM
k~1

X?
yk~0

yjP(y,t)~0, ð73Þ

and so since yj§0, Vj and P(y,t)§0, Vy, Vt, we must have

P(y,t)~0 for all y such that yjw0. Then for any function f (X) the

mean is given by

Sf (X)TDSXjT~0~
XM
k~1

X?
yk~0

f (y)P(y,t),

~
XM

k~1,k=j

X?
yk~0

f (yDyj~0)P(yDyj~0,t),

~Sf (XDXj~0)T:

ð74Þ

Composition of the coarse time-stepper
The coarse time-stepper used in the equation-free method is

composed from microscopic runs of the Gillespie algorithm in

three stages:

1. Lift: A set of N microscopic init ial condit ions

X(1)(t), . . . ,X(N)(t) is obtained from the initial coarse variable

Y(t). We note that while each X(n) is a vector of natural

numbers, the macroscopic variable Y is a vector of reals. As a

consequence, the lifting of a generic macroscopic component

Yk should return either tYks or qYkr (where t:s and q:r
denote the floor and ceiling functions, respectively). In our

implementation, the lifting of each component Yk is achieved

by drawing N samples from the following Bernoulli distribution

B(Xk; p(Yk))~

1{p(Yk) if Xk~tYks,

p(Yk) if Xk~qYkr and qYkr=tYks, where p(Yk)~Yk{tYks:

0 otherwise,

8>><
>>:

ð75Þ

As mentioned in the section on equation-free methods, the

lifting operator introduces a closure approximation. The Dirac

moment map used in [28] is a good choice when one is

interested in the evolution equation of the first moment of the

distribution, but it cannot be applied directly when the

microscopic variables take discrete values. If the microscopic

variables Xk were real numbers, the lifting would be done using

the Dirac measure d(Xk{Yk). In our case, however, the

microscopic variables Xk count the number of molecules of a

given species, so we have to use a measure over the integers,

and such measure is to be uniquely determined by its mean,

hence our choice of the Bernoulli distribution with support

ftYks,qYkrg. In order to make the problem tractable, we have

also assumed that the distribution for Xk depends only on Yk,

neglecting the effect of correlations between the numbers of

particles of different species.

2. Evolve: The microscopic initial conditions are evolved

forward with N independent runs of the Gillespie algorithm,

leading to the final conditions X(1)(tzth), . . . ,X(N)(tzth). We

use the modified tau-leaping Gillespie algorithm proposed by

Cao et al. [38]. This modification of the tau-leaping scheme is

adaptive in time and prevents the occurrence of negative

populations in the reactants: in our computations, we deem a

reaction critical if the number of permitted firings during the

current time step is less than or equal to 5 (ncƒ5). When the

time step is too small, we run 100 iterations of the unmodified

Gillespie algorithm before applying a tau-leap step. To reduce

calculation time, we only calculate X1, . . . ,X7 and

X10, . . . ,X12, because the dynamics of X8 and X9 can be

decoupled from the rest.

3. Restrict: The microscopic variables at time tzth are

averaged in order to obtain the final coarse variables

Y(tzth)~ 1
N

P
n X(n)(tzth). The restriction step is essentially

an approximation of the definition (68).
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