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Abstract Combining items from social media streams,

such as Flickr photos and Twitter tweets, into mean-

ingful groups can help users contextualise and consume

more effectively the torrents of information continu-

ously being made available on the social web. This task

is made challenging due to the scale of the streams and

the inherently multimodal nature of the information

being contextualised.

The problem of grouping social media items into

meaningful groups can be seen as an ill-posed and appli-

cation specific unsupervised clustering problem. A fun-

damental question in multimodal contexts is determin-

ing which features best signify that two items should

belong to the same grouping.

This paper presents a methodology which approaches

social event detection as a streaming multi-modal clus-
tering task. The methodology takes advantage of the

temporal nature of social events and as a side benefit,

allows for scaling to real-world datasets. Specific chal-

lenges of the social event detection task are addressed:

the engineering and selection of the features used to

compare items to one another; a feature fusion strat-

egy that incorporates relative importance of features;

the construction of a single sparse affinity matrix; and

clustering techniques which produce meaningful item

groups whilst scaling to cluster very large numbers of

items.

The state-of-the-art approach presented here is eval-

uated using the ReSEED dataset with standardised eval-
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uation measures. With automatically learned feature

weights, we achieve an F1 score of 0.94, showing that a

good compromise between precision and recall of clus-

ters can be achieved. In a comparison with other state-

of-the-art algorithms our approach is shown to give the

best results.

Keywords Social Event detection · Clustering

methods · Scalability · User-generated content

1 Introduction

In their June 2013 WWDC keynote, Apple announced

a new photo collection feature for their iOS mobile

operating system. With the evocative tag-line “Life is

full of special moments. So is your photo library”, Ap-

ple noted the importance of clustering social streams

by their belonging to some real life event. This, along

with the plethora of mobile and desktop applications

which offer some degree of event detection in user photo

streams, demonstrates that detecting events in multi-

media streams can have both real and practical utility

for end users.

If detection and clustering by events within pri-

vate collections is useful, detecting events and cluster-

ing items in a multi-user social media context should

also have practical benefits. For example within the EU

funded ARCOMEM project [20] we have been explor-

ing how such techniques can be applied to the archiv-

ing and contextualisation of collective memories of cer-

tain events. Within this context, challenges of scale and

noise inherent in non-curated collections must be ad-

dressed to create meaningful groupings of social media

artefacts which afford the user the ability to better un-

derstand, consume and contextualize social streams.
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This work presents an approach to achieving clus-

tering of social media artefacts into “Social Events”. We

use the definition of a “Social Event” from the Social

Event Detection (SED) challenge of the 2013 MediaE-

val benchmark [18]:

Events that are planned by people, attended by

people and the media illustrating the events are

captured by people. A social event of interest can

be specified in terms of event-related metadata

(e.g., location, time, venue, and performers), ex-

ample tags or other social information, example

media items (images), or a combination of the

above.

The novel approach developed in this work builds

upon our submission to the 2013 SED challenge which

was briefly outlined in a working notes paper [21], by

further developing the underlying theory, performing

detailed comparative evaluation, and discussing insights

into the problem. The approach is grounded in the

idea that social multimedia can be considered to be

a temporal stream of data, and that stream of data

has a structure or pattern that is a result of the na-

ture of real-world (social) events that result in mul-

timedia items being shared. In particular, the notion

that users tend to share multimedia artefacts repre-

senting an event around the same time as each other

is exploited to aid both effective and efficient cluster-

ing. In particular this notion enables scalability of the

proposed approach by limiting the amount of data that

needs to be considered at any given time. The follow-

ing points summarise the novel combination of features

that make up our approach:

– Efficient metadata-based feature extraction using a

fast inverted index.

– Multimodal features and distance metrics coupled

with effective weighting schemes used to construct

a sparse affinity matrix.

– Exploration of two clustering techniques which clus-

ter events using this affinity matrix; namely a mod-

ified DBSCAN that consumes affinity matrices, and

Spectral Clustering.

– Development of an incremental event clustering tech-

nique which enables the base clustering techniques

to be used at scale, whilst at the same time exploit-

ing the temporal nature of the data.

The approaches and techniques proposed in this work

are evaluated using the ReSEED dataset [19], together

with the evaluation methodology first proposed for the

first task (Task 1) of the the Social Event Detection

(SED) challenge of the 2013 MediaEval benchmark [18].

The proposed technique is shown to achieve state-of-

the-art performance under the conditions of this eval-

uation. The key challenge of the evaluation is to orga-

nize a large collection of Flickr photos into social event

groupings.

The ReSEED dataset contains a large and diverse ar-

ray of Flickr images corresponding to a heterogeneous

assortment of different social events and social event

types. Each image in the dataset is accompanied with

additional metadata. Namely, the Flickr photos are guar-

anteed to include accurate: Flickr photo IDs, user IDs

and time posted (the server-time at which the image

was uploaded). The photos also contain, albeit with

varying degrees of accuracy: location information, the

time stamp1 according to the capture device (or user),

and textual information including the title, tags and

a free-text description. Further details on the dataset

and the MediaEval SED evaluation methodology can

be found in Section 2.2.

The remainder of this paper is structured as fol-

lows: the following section places this work in context

by exploring other techniques in Social Event Detec-

tion (SED). Section 3 describes our approach in de-

tail including a broad overview of our feature weight-

ing, fusion and clustering strategies. Section 4 describes

the dataset and experimental framework of the SED

task, including evaluation metrics and more details on

the feature weighting and cluster parameter selection

process. Section 5 provides experimental results, com-

parative evaluation, and discussion. The final section

provides a summary of the major points of note from

the experiments, together with concluding remarks and

thoughts on how the limitations of this work may be

addressed in the future.

2 Multimedia Social Event Detection

As outlined by Scherp et al [22] there is a great deal

of interest in detecting multimedia related to high level

events in which humans participate. A subtype of such

events are the Social Events the MediaEval Social Event

Detection task asks participants to detect. The chal-

lenge distinguishes Social Events as those events which

were “planned by people, attended by people and that

social media depicting the events are taken by people”.

This calls for events beyond such definitions as birth-

day party and towards more specific definitions such as

Sina’s 30th Birthday Party.

When attempting to organise multimedia items into

those belonging to the same social events, temporal

and spatial metadata is the most powerful indicator

of event membership. It is clear that if the true time

and true location of a multimedia item could ever be

1 called time taken in the task



Detection of Social Events in Streams of Social Multimedia 3

known with complete accuracy, and if an assumption

is made that all the multimedia items being processed

represent events, then the clustering of items into social

events would be made far easier in most contexts. This

is stated explicitly in the problem definition provided

by Becker et al [1] who say that an event is something

that: “... occurs in a certain place at a certain time...”.

Indeed, it is difficult to imagine two items of multimedia

taken in the same place at the same time which would

not in some sense depict the same social event.

However, a strong edge case of this statement is a

restaurant which might have many, though separate,

groups of people in the same evening. Though the restau-

rant is one physical location, it is reasonable to assume

that each table in the restaurant might be host to differ-

ent social events. Therefore two multimedia items from

two different groups, though geographically and tempo-

rally similar, should not be assigned to the same social

event. This edge case highlights the issue of scale —

namely, if an event occurs across a large enough space,

sub geographic locations within that space could fea-

sibly hold unrelated events. This means precise geo-

graphic and time information alone cannot help us dis-

tinguish events in these scenarios. It is worth noting

that a study by Zandbergen and Barbeau [31] showed

geographical accuracy of mobile camera phones has a

root mean square accuracy of 12.5 meters when used

outdoors and 21.6 metres indoors, so there is a real is-

sue with co-located simultaneous events.

This issue notwithstanding, precise geographic and

time information can almost perfectly achieve most of

the desired goals in a standard SED task. Many of

the approaches to social event detection highlight time

and geographic location as the most important dimen-

sions of separation in their solutions. A majority of the

other efforts either explicitly or implicitly handle cases

where time and location of information are noisy or

non-existent.

In the remainder of this section we explore relevant

prior work in the area of social event detection (SED).

We then focus in detail on the techniques presented for

the SED task in MediaEval 2013 [18], the benchmark

against which the techniques in this work were origi-

nally evaluated. Finally, we reflect on the similarities of

the prior-art to our own technique which is presented

in Section 3.

2.1 Prior work outside of MediaEval

Zaharieva et al [30] proposed a system that attempts to

achieve detection of specific social events as defined by a

textual, temporal and geographic query. The approach

demonstrates a common pipeline approach wherein all

multimedia items are grouped through a sequence of

unimodal clustering steps. Firstly, an initial clustering

is attempted which uses the temporal and spatial infor-

mation of the multimedia items. Further spatial clus-

tering is then attempted by detecting geographic words

used in the image tags and description. The detected

clusters are then compared to the specifications of the

cluster query.

Petkos et al [15] proposed a multimodal cluster-

ing approach for the detection of social events. In their

baseline approach the authors used an aggregated affin-

ity matrix coupled with spectral clustering. This is sim-

ilar to our spectral clustering approach. In their second

approach the authors use pairwise similarities over all

modalities to predict a “same cluster” classifier which

takes a vector of distances from an image to all other

images as the classifier feature vector. However, both

their approaches are inherently incapable of scaling to

larger multimedia datasets. They either rely upon ex-

haustively holding all multimedia items to be clustered

in memory, or they expect a distance vector to be calcu-

lated for each item to be clustered which incorporates a

given items distance to all other items being clustered.

Both demonstrate reasonable results, but were not ap-

plied to sets of data larger than 100,000 items.

Reuter and Cimiano [17] propose a more direct and

scalable solution to social event detection. They high-

light a set of features which might commonly exist in

social multimedia items including: time of capture, time

of upload, geo location, title, description and tags. They

then implement a procedure where a database of seen

items along with their event assignment are held. When

a novel document is to be assigned to an event, an initial

coarse query using searchable features such as textual

components and time is used to receive a set of can-

didate items. Custom distance metrics for each feature

and a distance fusion strategy is then used to calculate

a distance between the new item and possible candidate

items. Pre-trained SVM classifiers are then used to de-

cide whether the item is more likely to belong to a new

event, or whether it actually belongs to the event of one

of the candidate items. This approach does not have the

scale limitations present in Petkos et al [15], however,

the use of a classifier to establish cluster membership re-

lies explicitly on a representative training sample which

portrays a similar item to item distance distribution.

To cluster novel multimedia items in an ever changing

stream might require a re-training of this classifier; this

would be especially true over longer time-scales than

are tested with current data, where language and fash-

ions can change significantly.

An earlier work in the detection of social events

by Becker et al [1] explores a multimodal event detec-
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tion approach coupled with an incremental, one pass

and scalable clustering approach. They highlight the

main features against which events can be discovered,

proposing the use of relatively straightforward distance

metrics for each feature. They also highlight the impor-

tance of a scalable, single pass incremental clustering

technique if clustering is to be used as the method of

detecting events. It is understood that social multime-

dia is often produced in a data stream context, with

novel items arriving over time which might belong to

older clusters or which might be part of a new, pre-

viously unseen cluster. They outline a clustering tech-

nique which holds a record of previous clusters and at-

tempts to assign a novel item to that cluster based ei-

ther on similarity to a cluster’s “centroid” multimedia

item, or more directly through the feature comparison

to each of the documents currently held in a cluster.

2.2 At MediaEval 2013

As mentioned in the introduction, the MediaEval 2013

SED task (challenge 1), involved performing a full clus-

tering of a multimedia dataset of images collected from

Flickr. Subsequent to the MediaEval event, the data

has since been released openly and is now know as

ReSEED [19]. The entire dataset consists of 437,370

creative-commons images uploaded between January

2006 and December 2012. Each image is assigned to

an event using the techniques described by Reuter and

Cimiano [17] in order to create a gold-standard ground

truth of 21,169 events (covering everything from large

sporting events to birthday barbecues). Each image has

a varying amount of metadata associated with it; for ex-

ample, 95.6% of the images contained associated tags,

whereas only 45.9% contained geographic information.

The dataset is split into two parts: a training set of

306,159 images and ground-truth (70% of the data) for

training/optimising techniques, and a test dataset with

131,211 images (30%) for testing. During the MediaEval

task, the ground-truth for the test dataset was withheld

by the organisers. Teams submitted the raw clustering

results for the test-set, which was then compared to the

ground-truth by the organisers, who used three mea-

sures of clustering performance: F1 score, Normalised

Mutual Information (NMI) and Divergence from a Ran-

dom Baseline [5]. Further details on these measures can

be found in Section 4.1. During the original MediaEval

2013 SED task, 10 approaches attempting to cluster

the data were submitted. Here we describe a few of the

noteworthy approaches.

Nguyen et al [13] presented an approach which is

rooted in a notion of how events are populated on social

networks, namely that:

1. Users generate the multimedia item at the time in

which the event occurs;

2. The user uploads, annotates and shares the media

into a social network.

The approach directly capitalises on the principle

that no one user can be in multiple events at a given

time. Images are firstly separated by user, and within

user sets separated into events by time according to

a fixed threshold. Once these user based separations

are made, between user sets are merged if they share

location information, similar time taken and text (tag /

title / description) information. Apart from the explicit

treatment of time as a first-pass mode of separation,

their approach did not explore custom feature metrics

nor weightings.

Many other techniques, achieving reasonable results

though not as good as the one described by Nguyen

et al [13] followed a similar logic [16, 32, 10], perform-

ing some initial clustering based on user, time and loca-

tion information, and later performing merging based

on heuristic rules or other information such as text.

Another interesting approach is that of Schinas et al

[23]. This technique starts by creating an index of im-

ages and detecting candidate images against this index

which might be part of an event. Against these candi-

dates they apply a feature comparison technique, result-

ing in a graph of image adjacencies. They then apply a

network clustering algorithm called SCAN [29], which

has some similarities to the DBSCAN [6] algorithm used

in this work (see Section 3.2.1).

3 Our Approach

The goal of social event detection is to find groupings

of social multimedia items such that the grouping of

items represent social events. As described above, the

majority of existing techniques work by posing the SED

problem as a problem of data clustering. The rationale

for this is that if suitable features can be extracted to

describe the items, then computed similarities between

features should indicate how related pairs of items are.

The underlying assumption for detecting social events

is then that items belonging to the same social event

should be similar (or more concretely have similar fea-

tures). To date, most proposed SED techniques have

assumed that they are working with static, monolithic

datasets. However, in actuality data items in the SED

context have a highly temporal nature that we believe

can be exploited to both aid the effectiveness and effi-

ciency of event detectors.

The overarching strategy of the techniques which we

describe in this section are based on the idea of treating
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SED as an unsupervised streaming data clustering task.

As a basis for group related media items (using stan-

dard clustering techniques), our approach constructs a

square symmetric sparse affinity matrix whose elements

represent the pairwise similarity of two items of social

media computed from a number of feature modalities.

However, rather than attempting to cluster an entire

dataset in one go, we additionally leverage the notion

that the data can be seen as a stream of media items

uploaded over time. We hypothesise that this stream

contains an embedded structure that occurs from the

way users upload and share media items as a result

of real-world social events. More specifically we believe

that users tend to share multimedia artefacts represent-

ing an event around the same time as each other, and

that it is common for an event to have items gener-

ated which relate to it over some set period of time,

after which items belonging to that event are never

posted again. To validate this hypothesis, we used the

ground-truth dataset of the ReSEED dataset to gen-

erate the hourly distribution of uploads event for each

event. Analysis of these distributions indicates that the

most common events are captured by a single period

of uploading within a time period of one hour. To illus-

trate the nature of these distributions, Figure 1 contains

sparkline representations of a random sample of 495

distributions (from 3044 unique distributions extracted

from the ReSEED training data). Each sparkline was

computed using a bin-size of 1 hour, shows a period

of two weeks from the initial image upload of an event

and has been max-normalised to remove the effect of

the number of photos belonging to an event.

The idea that the act of uploading of media items as-

sociated with a particular event takes place over a short

period of time can be leveraged in the design of an algo-

rithm for grouping the data. In particular, we can pose

the solution to the problem as a streaming algorithm

that is allowed to forget groupings previously made af-

ter a period of time (because these groupings are highly

unlikely to ever see new items added to them). More

specifically, we propose an approach in which we con-

sider time window on the data stream and incremen-

tally cluster the data within that window by assigning

data to a pool of previously discovered clusters or cre-

ating new clusters within the pool. If a cluster becomes

stable (i.e. it hasn’t changed over a period of time) it

can be forgotten and be removed from the cluster.

A benefit of the streaming approach is that only me-

dia items within a time window need to be considered

at any point in time, and they only need to be compared

to a small set of existing events. This obviously aids in

the scalability of the algorithm. However, even when

we consider only the media items within a relatively

short time window, the creation of the affinity matrix

scales poorly. If n is the number of items, the construc-

tion of the affinity matrix is a time consuming O(n2)

operation. Therefore, the first stage of our process is

the efficient construction of such an affinity matrix via

a constrained initial selection of images that might be

related. This is followed by a feature comparison step

to compute the affinities. Once feature comparison is

achieved, a single affinity matrix is constructed through

a weighted affinity matrix summation operation.

The following sections provide more details on each

part of our approach. Firstly, we describe the construc-

tion of the affinity matrices in Section 3.1. We then pro-

vide a discussion of the clustering techniques we’ve used

in our approach in Section 3.2. Finally, in section 3.3

we describe how we construct a streaming algorithm

on top of the affinity matrix construction and cluster-

ing techniques.

3.1 Affinity Matrix Construction

The construction of affinity matrices in a dense man-

ner is computationally intractable for the large num-

bers of images that appear in social streams. However,

we can exploit the fundamental sparsity of the social

data source to produce affinity matrices in a scalable

manner.

For the 300, 000 Flickr images in the ReSEED train-

ing dataset there exist 14, 000 ground truth events, or

clusters. The average number of items per cluster in

the training set is therefore ≈ 20 (although the actual

distribution is highly skewed). From this information

we hypothesize that the similarity between most ob-

jects must be 0 if similarity is a reasonable indication of

cluster membership. This in turn implies sparsity of the

affinity matrix. Inducing this sparsity after the feature

extraction and comparison of the social media objects

(as described in the next section) is an approach with-

out merit — inducing sparsity after feature compar-

ison would mean that the image to image comparison

will already be performed thus implying a computation-

ally expensive operation must be performed potentially

needlessly.

To address this issue, we construct a Lucene2 index

of the items to be clustered. The items are indexed using

their metadata. Each field of metadata is given a field in

the Lucene index. Then, for each item in the dataset we

construct a custom Lucene query based on the item’s

metadata, receiving an artificially limited number of

documents. We then extract features and compare dis-

tances using only the top documents returned by this

2 http://lucene.apache.org/core/

http://lucene.apache.org/core/
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1

Fig. 1: Illustrations showing the temporal distribution of the uploading of media items corresponding to a specific

event (based on the ReSEED training data). The data in each sparkline is max-normalised and each graph shows

a 2 week period from the first uploaded image of an event. Upload events were binned into 1 hour time slots in

order to compute the frequency.

query. For the purposes of our experiments described

in Sections 4 and 5 we limited the maximum number of

items retrieved to 200. Once the work is done to con-

struct this Lucene index, this operation has a complex-

ity of O(n) which allows a much faster construction of

the affinity matrix. This process of limiting the number

of retrieved items is similar in spirit to the blocker or

candidate generator described by [17]. However, in our

embodiment, it is used in a rather different way as we’re

using it specifically for item-item comparison whereas

Reuter and Cimiano specifically use it in the context of

comparing a social media item against a set of indexed

event descriptions.

3.1.1 Multi-modal Affinity

The Flickr images being clustered into social events are

inherently multi-modal. These modalities include time

information (both posted and taken), geographic infor-

mation, textual information (tags, descriptions and ti-

tles) as well as the visual information of the Flickr pho-

tos themselves. Any of these modalities might serve as

a strong signal of cluster membership. Photos taken in

the same place, or at the same time, or containing simi-

lar text might all serve as strong indication of these pho-

tos being of the same event. However, on their own the

features might also serve to confuse unrelated events,

for example, two events happening on a Friday, but one

in Nottingham and one in London.

Therefore, the first stage in the construction of a

unified affinity matrix is a separate affinity matrix for

each of these features, while the second step is the in-

telligent combination of the affinity matrices.

Inspired by Reuter and Cimiano [17] we use a nor-

malised logarithmic similarity function for our two time

features, although we additionally set negative similar-

ities to zero to ensure sparsity of the affinity matrix:

simtime(t1, t2) = max(1− log(|t1 − t2|)
log(tnorm)

, 0) (1)

where t1 and t2 are the times of the items being com-

pared and tnorm is the normalisation factor. Any differ-

ence between the times of the items that exceeds tnorm
will result in a similarity of zero. For all our experi-

ments, tnorm was set to the length of a year (in our

implementation this was measured in minutes, and the

times t1 and t2 were expressed as minutes since the

Epoch). We also used the same form of truncated nor-

malised logarithmic similarity function for geographic

Haversine distance between the geo-coordinates of two

items, g1 and g2:

simgeo(g1,g2) = max(1− log(Haversine(g1,g2)

log(gnorm)
, 0)

(2)

The normalisation factor gnorm forces Haversine dis-

tances beyond the normalisation factor to count as be-

ing infinitely far, or as having 0 similarity. In our ex-

periments, the gnorm was set to a distance of 10000

metres.

For the textual features we use the TF-IDF score

with the IDF statistics calculated against the entire

corpus of Flickr objects. We also (briefly) experimented

with SIFT visual features (using locality sensitive hash-

ing to compare feature matches [8]) for image feature

affinity matrix construction, however, we found this fea-

ture only made F1 scores worse in the training set. For

all the experiments presented in this work, the visual

features are completely ignored in all runs against the

test set. We do however discuss visual features further

in Section 7.
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If any given feature is missing or empty for either

object represented by a particular cell in the affinity

matrix, for the purpose of the sparse affinity matrix it

is treated as being “not present” rather than having

0 similarity. The distinction here is important for the

process of combining the separate affinity matrices for

each feature. In essence, our approach is to use the aver-

age feature value for any case where the actual value is

unknown (as is common in the matrix completion and

recommender system literature). Full details of how this

is achieved are given in Section 4.2 where we describe

different experimental approaches to building the fused

affinity matrix.

While Reuter and Cimiano [17] constructed vectors

of similarity, we choose to fuse the similarity features

into a single similarity score to construct a fused affin-

ity matrix. This single, sparse affinity matrix makes

for easy application of existing techniques like spectral

clustering as well as for efficient implementations of DB-

SCAN.

We experimented with various feature-fusion tech-

niques to combine these affinity matrices, including:

product, max, min, and average; amongst which the av-

erage strategy was found to work best. We also explored

different feature weightings by performing a search across

the simplex between each feature weighting. We discuss

the search strategy in further detail in Section 4.2 along

with the related search to find optimal parameters for

the clustering techniques discussed in the next section.

3.2 Event Clustering

The exact number of social events in a given corpus

cannot be known accurately in advance, and may be

difficult to accurately estimate. This is especially true

in a streaming corpus where the number of clusters is

inherently dynamic and fluctuates over time. To help

cluster images in such a context, and therefore detect

events, we explored two clustering techniques which

work without an explicit prior number of clusters, k.

In this section we review these techniques. It should be

noted that there are many techniques we could chosen

to explore, but we decided to focus on two very differ-

ent, but exemplary, techniques for clustering without

apriori knowledge of the number of clusters or cluster

size. The results later in the paper indicate that there

is little difference in performance between these two ap-

proaches.

The first technique we consider is a simple yet pow-

erful modification of the classic DBSCAN algorithm,

implementing a fast version of the neighbourhood selec-

tion stage for sparse affinity matrices. Secondly, we ex-

plore spectral clustering techniques, exploiting the spar-

sity of the affinity matrix to discover a data projection

which aims to better separate clusters.

3.2.1 DBSCAN

The Density-based Spatial Clustering of Applications

with Noise (DBSCAN) algorithm was initially proposed

by Ester et al [6]. It has been applied to handle large-

scale data problems [29] over numbers of data points

which other clustering methods fail to handle. DBSCAN

can be implemented as a one pass algorithm, requir-

ing only a function which can define which individual

data items are within a neighbourhood of given starting

data item. Such an operation can be implemented effi-

ciently given appropriate indexing structure. Therefore

DBSCAN enjoys O(n log(n)) complexity as compared

to O(nk log(n)) complexity of k-means or the O(n3)

time complexity of the eigenvector decomposition re-

quired for spectral clustering (described below). Other

one pass algorithms have been attracting a great deal of

attention [11] to meet the challenges of clustering large

datasets.

These efficiency benefits aside, DBSCAN:

1. Successfully finds clusterings with arbitrary shape

(as compared to the spherical-Gaussian distributions

implicit in k-means);

2. Does not require an explicit statement of the num-

ber of clusters expected;

3. Can report that a given data item is likely noise

rather than a member of a cluster.

The basic DBSCAN algorithm defines the ε-neigh-

bourhood of a data point p as a number of points, Nε(p),

within ε of p:

Nε(p) = {q ∈ D | dist(p, q) ≤ ε} (3)

However a more general definition of DBSCAN re-

quires only the points within some neighbourhood p

— a notion which is potentially independent of mea-

surements of distance. A point can be seen as being

densely surrounded, and therefore within a cluster, if

|Nε(p)| ≥ minPts, where minPts is the second variable

of DBSCAN. Two points p and q are directly density-

reachable if p is densely surrounded and q ∈ Nε(p), and

are said to be generally density-reachable if there are a

chain of points between p and q such that each point in

the chain is directly density reachable from the previous

point. The generally density reachable property is not

symmetric. If one were to start at q, a point on the edge

of the cluster. p would not be density reachable because

q itself would not be considered to be directly density

reachable to any point (being on the edge of a cluster).

However, by starting at p, which is part of the cluster,
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one could find q. Therefore the final definition is that

of density connected points p and q which are density

reachable to some shared point o. A cluster in DBSCAN

is a collection of points which are all mutually density

connected to one another.

In our affinity matrix DBSCAN algorithm, we ex-

ploit the structure of a sparse matrix and a threshold to

create an efficient neighbourhood function. The param-

eters of our affinity matrix DBSCAN approach are the

threshold of affinity used to define the ε-neighbourhood

function against an affinity matrix and the minPts

parameter which defines how many neighbours are re-

quired for a point to be considered density-reachable.

We describe how values for these parameters were se-

lected which were optimal for the detection of social

events in Section 4.2.

3.2.2 Spectral Clustering

Spectral clustering [24, 12] is an algorithm that was

shown to achieve state-of-the-art performance for a range

of tasks, from image segmentation [24] to community

detection [25]. This technique treats the clustering prob-

lem as one of graph partitioning on the similarity graph

between objects. The algorithm projects the objects via

Singular Value Decomposition into a reduced dimension

space which aims for maximal separation of clusters.

Because of this, spectral clustering is useful when data

dimensionality is high. Spectral clustering also has an

inbuilt ability to detect the number of clusters in a given

dataset making it useful when this cluster count can-

not be easily predicted. The algorithm is also appealing

because it is grounded by spectral graph theory [4].

The spectral clustering algorithm [27] works as fol-

lows: we start with the affinity matrix W , the diago-

nal matrix D with elements equal to the row sums of

W and the graph Laplacian L. A few Laplacians ex-

ist depending on the partitioning problem we aim to

solve. For example, the Lrw = I − D−1W Laplacian,

is used to find a clustering such that a random walk

in the graph rarely changes cluster memberships. The

solution to this random walk cluster partition problem

is NP-hard in the general case. The spectral clustering

algorithm solves a relaxed version of this problem by

finding the k eigenvectors of L with the smallest eigen-

values (ignoring 0 valued eigenvalues).

The selection of these k small eigenvectors is sim-

ple when cluster boundaries are clear, but as datasets

become more realistic the distribution of eigenvalues

changes and the transition from a small eigenvalue to

a large value becomes less well defined. In our work

we choose to threshold the max-normalised eigenval-

ues and choose small eigenvalues up to some threshold,

eigenthresh relative to the normalised difference to the

first non-zero eigenvalue, λ2. Formally we choose the

first (smallest) k eigenvalues such that:

k = maxi(
λi − λ2
λmax

< eigenthresh) (4)

where λmax is the value of the largest eigenvalue. The

objects are clustered with a standard clustering algo-

rithm in this reduced space, in our solution we choose

DBSCAN with a ε-neighbourhood function which uses

a thresholded cosine distance between elements in the

eigenvector space.

The parameters of our spectral clustering approach

are the threshold of eigenvalue selection, the thresh-

old of the cosine distance function for the DBSCAN

ε-neighbourhood check and the minPts parameter for

determining density-reachability (see Section 3.2.1). We

describe how values for these parameters were selected

which were optimal for the detection of social events in

Section 4.2. Further details on spectral clustering can

be found in the tutorial by Von Luxburg [27].

3.3 Incrementally Clustering the Media Stream

Spectral clustering requires the eigendecomposition of

the Laplacian of the affinity matrix. The calculation

quickly becomes intractable for datasets over 100, 000

items. Our sparse affinity matrix DBSCAN is a rel-

atively efficient algorithm and can easily cluster the

number of items in the ReSEED dataset in memory.

However, even DBSCAN has limits in terms of perfor-

mance. In its unmodified form it requires the affinity

matrix of the entire space to be held in memory, which

will eventually become intractable with large numbers

of items.

As mentioned previously, social media data arrives

as a stream, with items being uploaded over time. We

make the explicit assumption that items which depict

an event will start being uploaded at some point in

time, continue being uploaded for some period of time,

and then stop being uploaded. In this section we pro-

pose an incremental clustering technique that takes ad-

vantage of the streaming nature of social media data in

order to both improve clustering performance as well

as to respond to the scaling challenges.

Given our assumption about the temporal distribu-

tion of uploads belonging to an event, coupled with the

data items appearing in stream, our incremental clus-

tering algorithm proceeds as follows: Firstly, a small

window of size C1 of our whole dataset of size N is

clustered such that |C1| ≤ N and C1 is small enough

to allow for easy clustering. The portion of data which

is clustered represents some block of data uploaded to
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the system sequentially in time. We then consume more

data and perform the clustering again but this time on

a window C2 such that |C2| = 2 ∗ |C1|. We might no-

tice that certain clusters detected in the original C1 re-

main stable when re-detected in C2. This stability can

be defined as a cluster whose members do not change

whatsoever between the clustering of C1 and C2. A re-

laxed form defines stability as paired clusters with high

overlap or similarity metrics (see Section 4.1). Regard-

less, once a set of clusters ci are identified as stable,

items in that cluster are removed and not involved in

future rounds of clustering. Therefore in future itera-

tions, a data window C3 might be clustered such that

|C3| = |C2| −
∑
i |ci| + |C1| — i.e. the window size is

increased to include more elements, but data elements

in the stable clusters ci are not clustered again. As il-

lustrated in Figure 2, this results in the increase of the

effective number of items being clustered as new items

arrive, but will also result in a gradual decrease of items

to be clustered as clusters are identified as stable. By

using this incremental scheme we were able to success-

fully apply the spectral clustering algorithm to a large

set of 300, 000 items unlike Petkos et al [15] who also

applied a spectral clustering technique to event detec-

tion, but on a comparatively small sample size of 40, 000

items.

4 Experimental Framework and Parameter

Optimisation

In this section we highlight the procedures undertaken

to calculate parameters for the various algorithms used

to detect social events. Firstly, the quality metrics of

the social events being detected are described, includ-

ing the ground truth and the cluster quality metrics

used. Secondly cluster parameter and feature weight

optimisation is discussed, using the quality metrics to

search for optimal parameters on a training set of data.

4.1 Evaluating Social Event Detection

Our approach to detecting social events is a complete

subdivision of data into clusters, such that each cluster

represents an event and all items in a given dataset

belong to a single event. To measure the quality of these

clusters, they are compared to some set of true data

subdivisions. This ground-truth is created by detecting

Flickr images which contain last.fm machine tags and

using the eventIds of these tags to create a set of images

with known event subdivisions [17].

Given this ground-truth information, evaluating the

quality of a particular set of detected social events re-

mains non-trivial. In the ReSEED dataset used in the

MediaEval 2013 SED challenge, two main cluster qual-

ity metrics were used to judge whether items clustered

by participant algorithms represented events identified

in the ground truth. These were the Normalised Mutual

Information (NMI) and the harmonic mean of precision

and recall, or F1 score. The divergence of F1 and NMI

from a random baseline [5] was also calculated.

In the following description of these metrics in the

context of a clustering task, we consider two document

assignment sets X and Y , both holding partitions of

the same set of N documents. X = {x1, . . . , xK} is

the clustered document assignments made by our algo-

rithm; each xk represents the set of documents assigned

to a specific cluster. Y = {y1, . . . , yJ} is the set of true

classes assigned from the ground truth; each yj repre-

sents the set of documents actually generated from each

event.

4.1.1 Normalised Mutual Information

The NMI evaluation metric between X and Y is calcu-

lated as follows:

NMI(X,Y ) =
I(X,Y )

[H(X) +H(Y )]/2
(5)

I(X,Y ) =

X∑
x

Y∑
y

P(x, y) log2

P(x, y)

P(x)P(y)
(6)

H(X) = −
X∑
x

P(x) log2(P(x)) (7)

where I(X,Y ) calculates the mutual information as-

signment the interval [0, 1]. Given that the X and Y

share the same documents, I(X,Y ) is high when most

documents grouped in cluster xk are likely to be also

generated by event yj . This metric fails when |X| ≈ N ,

i.e. there are very many clusters each with few items.

Although such an X partitioning may not match the

correct clusters of Y , I(X,Y ) will tend to be high re-

gardless because xk clusters are likely to only contain

items of a single event yj by virtue of having few items.

To correct for this the NMI(X,Y ) metric weights I(X,Y )

by the class and cluster entropy, H(X) which is high

when |X| ≈ N .

4.1.2 Harmonic mean of precision and recall

The F1 score, F1(X,Y ), takes a non-information theo-

retic approach, concentrating instead on the true-positives

(TP(X,Y )), false-positives (FP(X,Y )), true-negatives

(TN(X,Y )) and false-negatives (FN(X,Y )). TP(X,Y )

is defined as the total number of times the pairs of doc-

uments in each xk exist as a pair in a given yj . By exten-

sion, FP(X,Y ) is the total number of times the pairs
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1) Cluster initial window 2) Grow window, cluster again 3) Identify and remove stable clusters

...

4) Continue, ignoring stable clusters

Fig. 2: Illustration of how the incremental clustering scheme works. The leading edge of the temporal window

(denoted by the right-edge of the purple box) moves forwards at a different rate to the trailing edge (the left edge

of the purple box) which moves forwards once stable clusters are identified.

appearing in each xk do not appear in any given yj .

FN(X,Y ) is the number of pairs found in each yj which

do not appear in any xk and TN(X,Y ) is the number of

pairs of items which do appear in any yj which also do

not appear in any xk. Using these values we can define

the precision (Pre(X,Y )), recall (Rec(X,Y )) and the

F1(X,Y ) as:

Pre(X,Y ) =
TP(X,Y )

TP(X,Y ) + FP(X,Y )
(8)

Rec(X,Y ) =
TP(X,Y )

TP(X,Y ) + FN(X,Y )
(9)

F1(X,Y ) =
Pre(X,Y )Rec(X,Y )

(Pre(X,Y ) + Rec(X,Y ))
(10)

Precision measures, from all pairings in X (both true

and false pairings according to Y ), what proportion of

the pairings were correct pairings. Intuitively precision

captures how likely a given cluster would be to only con-

tain items from a single event. Serving as a counterpart,

recall captures what proportion of the true pairings in

Y were correctly paired together in X. Intuitively, re-

call captures the likelihood of items being placed in the

same cluster when they should have been. The F1 met-

ric is the harmonic mean of these two factors, measuring
a trade off between the two.

Although both these evaluation metrics have intu-

itive and theoretical backing, De Vries et al [5] showed

that clusters with high F1 or NMI could still be poor

representations of clusters for a given underlying use-

case. They recommended a final divergence from ran-

dom metric which could be used with any given clus-

ter evaluation technique. The divergence from random

score is calculated by computing a score for a given

X and comparing it to the score achieved for X ′ =

{x′1, . . . , x′K} where |X| = |X ′| and |xk| = |x′k| for all

k, but the actual document assignment across X ′ is

randomised. If the resulting score of X ′ is similar to

that of X, or equivalently if divscore = score(X,Y ) −
score(X ′, Y ) is small, then it can be better argued that

a given cluster assignment X is actually no better than

random assignment and therefore poor.

Experimentally we found both NMI and divNMI met-

rics were high and varied little in various feature weight-

ing and cluster parameter configurations. The F1 metric

however differed significantly from the divergence divF1
,

demonstrating a high overall difference when cluster

quality was low upon inspection. Therefore, for the se-

lection of feature weightings, the tuning of parameters

and the final experiments (as discussed in the following

sections), we show the F1, divF1 and NMI metrics.

4.2 Feature Weightings and Clustering Parameters

In Section 3 we introduced the notion of feature weight-

ings and cluster algorithm parameters. Here we discuss

a search strategy for selecting values for those weight-

ings and parameters which are optimal for the social

event detection task.

For feature weightings, once the affinity matrices for

each modality are constructed (see Section 3), our goal

becomes the calculation of a combined affinity matrix

W whose cells wij represent the fused similarity of the

ith image with the jth image. This is achieved by cal-

culating a weighted sum of the feature affinities W (f)

whose cells w
(f)
ij hold the affinity of two images for all

features, f ∈ Fij , where Fij represents all features f

which have some non-zero value for both images i and

j. Therefore we calculate the combined affinity using
weighted sum fusion:

wij =

F∑
f

pfw
(f)
ij ,

F∑
f

pf = 1 (11)

where pf is the weight of a given feature f . The fi-

nal affinity matrices produced by this process are used

by the clustering techniques discussed in Section 3.2.

Optimal values of pf were found using a search across

the simplex of features. More concretely, we iterate over

points on a regular grid as applied to an |F |-dimensional

hypercube with 4 divisions per axis. We treat each com-

ponent of the coordinates of each grid point on this hy-

percube as the un-normalised values for each weighting

pf . Each component of the point on the hypercube grid

is then normalised such that that Equation 11 holds

(obviously certain combinations of un-normalised val-

ues will result in the same normalised values; we just

ignore these repeated combinations). In the case where

|F | = 3 (i.e. when there are 3 features) the pf grid
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(a) The 2 simplex search points (b) Time taken vs Tags vs Descriptions (c) Time Taken vs Geo vs Time Posted

Fig. 3: Grid search for learning feature weightings. (a) shows the search points on a 2-simplex (3 features). (b)

and (c) show the divF1
scores when 3 features are weighted differently and all other features are weighted as 0.

The scores are averaged across random sets of 5000 training images.

points searched can be seen in Figure 3a. It should be

noted that this search approach performs a denser sam-

pling of weight combinations in the middle of the space

(where weights are more evenly distributed across all

features); we chose this strategy because we believed

that a balance of features would likely help the cluster-

ing. However, the feature weighting learned for our ex-

periments (described in the next section) indicate that

this is not the case for all features, and that the bias

towards the centre of the weighting-space might well be

sub-optimal.

To find the best pf weighting combination, the fol-

lowing procedure was followed. For each grid point on

the weightings hypercube, a combined affinity matrix

was constructed for a randomly selected but contigu-

ous range of 5000 data items from the ReSEED train-

ing set of 300, 000 data items. This limited number of

items was chosen to make the parameter search task

tractable, though a similar strategy could be followed

using incremental clustering to find parameters. A non-

optimal configuration of the DBSCAN clustering tech-

nique was then applied and the clusters generated were

scored using the divF1
. Further, for each search point,

this procedure was repeated 10 times, each time select-

ing a different random range of 5000 data items. The

average divF1
across these random sets was used as the

score for a particular weighting combination. Example

divF1 distributions across sets of 3 features can be seen

in Figure 3b and Figure 3c. From these figures we can

see that the space of scores based on feature weightings

is non-convex.

To find optimal cluster parameters, a given feature

weighting is first selected. For that feature weighting,

using the affinity matrix constructed for a set of 5000

items, a linear search was applied to each of the cluster

parameters which needed to be optimised for a partic-

ular experiment. This is repeated 10 times. The limits

and step for the linear search for each cluster parameter

is detailed in Table 1.

To reflect the non-linearity between, and within, fea-

ture weightings and cluster parameters the final con-

figurations used for the experiments on the test set

were chosen in two ways. The first approach optimised

the cluster parameters using feature weightings derived

from the average weightings of the top 1000 (in terms

of divF1
) feature combinations. These are the “average-

weight” experiments presented in Table 2. The second

approach optimised the cluster parameters for each of

the top 1000 best feature combinations, selecting the

best weighting and cluster parameter pair. These are

the “best-weight” results in Table 2. These results are

discussed further in the next section.

5 Experimental Results

Our experiments are performed using the ReSEED dataset.

This allows comparative evaluation against other state-

of-the-art techniques. ReSEED is a good dataset to

test with because it contains a sample of a range of

Table 1: The ranges of linear search for each cluster

parameter

Parameter start stop step

DBSCAN ε 0.3 0.55 0.05
DBSCAN minPts 1 5 1
SPECTRAL eigenthresh 0.6 0.75 0.05
SPECTRAL COS-DBSCAN ε -1 -0.4 0.1
SPECTRAL COS-DBSCAN minPts 1 5 1
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highly diverse event types, which helps ensure that the

techniques being evaluated have general applicability

to real-world data. As with any real-world dataset, we

have to be aware that the data is highly noisy and that

the ground-truth does have errors. Also, we have to

be aware that the ReSEED dataset in particular has a

sampling bias as only photos belonging to events are in-

cluded (although this is actually not such a problem, be-

cause there is a high proportion of single-item events).

This is discussed in more detail in Section 7.

Using the search scheme described in the previous

section we generated 4 parameter configurations which

were applied to the ReSEED test set. The average-

weight feature weighting was {w(taken) = 0.257, w(posted)

= 0.217, w(geo) = 0.183, w(desc) = 0.089, w(tags) =

0.207, w(title) = 0.046}. For DBSCAN (see Section 3.2.1)

the average weight configuration used an ε = 0.45 and

a minPts = 3 while for spectral clustering (see Sec-

tion 3.2.2) the configuration used eigenthresh = 0.7

and the cosine-similarity DBSCAN applied to the spec-

tral clustering data used ε = −0.65 and minPts =

3. The best-weight feature weighting was {w(taken) =

0.375, w(posted) = 0.0, w(geo) = 0.125, w(desc) = 0.125,

w(tags) = 0.375, w(title) = 0.0}. In this best-weight con-

figuration DBSCAN used ε = 0.5 and a minPts = 3

and spectral clustering used eigenthresh = 0.75 and

cosine-similarity DBSCAN with ε = −0.6 andminPts =

3. All our submitted configurations used the incremen-

tal clustering technique discussed in Section 3.3 with

a window increment size of 3000. The results of these

configurations is presented in Table 2 and compared

with all the other MediaEval SED 2013 participants.

We show better results than all participants and a sub-

stantially better result than most.

6 Discussion

The results shown in Table 2 illustrate that our tech-

nique is very strong when applied to the ReSEED dataset.

The performance is also very consistent across the three

cluster metrics presented; many of the other techniques

seem to have reasonable NMI scores, but relatively poor

F1 and divF1
scores. The Spectral clustering algorithm

has a strong theoretical grounding, however, our results

indicate that DBSCAN outperforms the Spectral clus-

tering by a few percent across all metrics. The overall

high scores for DBSCAN indicate that the feature sim-

ilarities must by themselves provide a high amount of

separability between items belonging to different events.

It is difficult to justify the reduction in performance

for the Spectral approach, however, it could simply be

down to parameter choice, which is made harder by

Table 2: Official results from MediaEval 2013 SED task

using the ReSEED dataset. Our 4 submitted runs are

presented last and the names are highlighted in bold.

The best result for each cluster quality metric over the

runs is also highlighted.

Group/Technique F1 NMI divF1

CERTH-ITI(1) [16] 0.5698 0.8743 0.5049
CERTH-ITI(2) [23] 0.7031 0.9131 0.6367
UPC [10] 0.8833 0.9731 0.8316
UNITN [13] 0.9320 0.9849 0.8793
TUWIEN [32] 0.78 0.94 -
ADMRG [26] 0.812 0.954 0.758
ISMLL [28] 0.8784 0.9655 -
NTUA [14] 0.2364 0.6644 -
VIT [7] 0.1426 0.1802 0.0724
QM [2] 0.78 0.94 -
DBSCAN (best-weight) 0.9454 0.9851 0.8865

Spectral (best-weight) 0.9114 0.9765 0.8534
DBSCAN (average-weight) 0.9461 0.9852 0.8864
Spectral (average-weight) 0.9024 0.9737 0.8455

the additional parameters that the Spectral clustering

algorithm introduces over plain DBSCAN.

In terms of the features used in our approach, by

looking at the performance of the different feature weight-

ing combinations we can make the following observa-

tions:

– Time taken appears to be the most important fea-

ture.

– The time posted and geographical features seem to

hold a lot of the same information.

– The tags hold more useful information for clustering

than the titles and descriptions.

In terms of overall performance, it is instructive to

look beyond the NMI (and other metrics), and dig a

little deeper into the how the clusters extracted by our

approach differ from the ground-truth. Table 3 shows

the key first order statistics of the clusters from our ap-

proach (specifically the DBSCAN (average-weight) con-

figuration) and the ground truth. Our approach clearly

tends to overestimate the number of clusters in the data

and creates almost 4 times as many single-item clusters

than the ground truth would suggest should exist. This

is confirmed by looking at Figure 4, which shows the

distribution of cluster sizes for clusters with 1 through

50 items. We hypothesise that the biggest single reason

for the large number of single-item clusters is a lack of

overlap between features. In-particular, analysis shows

that a large number of these items have no tags — of

the items assigned to a single cluster, only 36.0% have a

tag, whereas the for complete dataset 95.6% have tags.

The plots in Figure 4 also show that our technique

completely fails to create any clusters with exactly two
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Fig. 4: Histograms of the distribution of cluster sizes for

clusters of between 1 and 50 items for both the ground-

truth and our approach. Note the logarithmic scale on

the y-axis.

items; this is purely an artefact of the parameters of the

DBSCAN algorithm (specifically minPts) and similar-

ity measures used to create the sparse affinity matrix.

Beyond clusters with two items, the overall distribution

of cluster sizes between our approach and the ground-

truth is similar; although not shown in the figure, the

tail-ends of the distribution are also similar, right up

to the largest cluster (which as shown in Table 3 has a

remarkably similar number of items).

6.1 Computational complexity

DBSCAN is much faster than spectral clustering; in our

experiments in the previous section running DBSCAN

with precomputed affinities using the incremental ap-

proach resulted in run times of little over 2 minutes.

Spectral clustering (implemented using ARPACK) on

the other-hand took several hours. As mentioned pre-

viously, our DBSCAN implementation can scale to the

size of the ReSEED test set, and so it is possible to com-

pare the non-incremental DBSCAN against the incre-

mental version. Interestingly, the non-incremental ver-

sion is actually slightly faster (around 1m40s) in this

case, although the performance (F1=0.945; NMI=0.985;

divF1
=0.887 for the average-weight configuration) is not

significantly different. The difference in speed is due to

the additional overheads of the incremental clustering

relative to the (very fast) clustering algorithm. With

larger datasets this would swing to favour incremen-

tal clustering, especially if the affinity matrix becomes

Table 3: Comparison of clusters formed using our

technique (DBSCAN (average-weight)) against the Re-

SEED ground-truth.

Ground Truth Our approach

No. clusters 6287 9215
Min. cluster size 1 1
Max. cluster size 1409 1454
Mean cluster size 20.87 14.24

Median cluster size 7 1
No. 1-item clusters 1036 4748

so large that it could not be held in memory. Affinity

matrix construction is faster with the incremental ap-

proach as fewer items have to be indexed and compared.

For spectral clustering, the time and space require-

ments of the algorithm meant that it was infeasible

to cluster the dataset in a reasonable amount of time,

and that the incremental approach was the only op-

tion. The insignificant difference in clustering perfor-

mance between the incremental and non-incremental

DBSCAN algorithms is a strong additional indicator

that our assumptions about the clustered temporal na-

ture of uploads belonging to an event is reasonable.

6.2 Comparisons with other similar techniques

Of the work outside of MediaEval 2013, the technique

by Becker et al [1] follows a methodology closest to

the one described in this work. A key difference ex-

ists in the formulations of the feature distance metrics

used. Their feature distances are more direct compar-

isons, whereas ours try to highlight the importance of

graph sparsity by encoding quick dropoffs in the fea-

ture distance functions. Also, while both the clustering

techniques described are incremental, ours re-performs

clustering on overlapping blocks while forgetting previ-

ously discovered clusters, never allowing additions to be

made to them if they are considered stable. Our explicit

forgetting of completed clusters matches the nature of

multimedia social streams in that it is common for an

event to have items generated which relate to it over

some set period of time, and then never have items

posted to it again. By not holding previously clustered

items at all, whether in their raw form or in an aggre-

gated form, our technique exploits an efficiency which

is unattainable if previous clusters are held and checked

for every future multimedia item in the stream. In terms

of performance, Becker et al report NMI scores of up

to 0.94 on their test data (which is different from Re-

SEED, but has many similarities). We cannot draw any

further conclusions about relative performance to our

technique due to the different datasets and because, as

shown in Table 2, a high NMI does not necessarily indi-

cate effectiveness with respect to other cluster metrics,

nor does it necessarily indicate a good clustering [5].

Within MediaEval 2013, the approach by Schinas

et al [23] has many similarities to our own, although it

does not take into account the incremental/streaming

nature of the problem. The initial indexing stage has

some similarities with our Lucene index step described

in Section 3.1, and the resultant graph of image adja-

cencies is conceptually similar to our aggregated affin-

ity matrix (see Section 3.1.1). The overall performance
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of this approach is quite a lot worse than ours, espe-

cially with respect to the F1 and divF1
metrics. Possi-

ble reasons for this could include poor choice of feature

weightings and the lack of consideration of the temporal

nature of the data.

Although our approach achieves the best score against

all metrics, the approach presented by Nguyen et al [13]

shows results that are competitive. The relative close-

ness of the scores to our approach indicates that high

quality social event detection on the ReSEED dataset

can indeed be achieved in many different ways. We do

however believe that our attention to the streaming na-

ture of the problem gives us an advantage.

7 Conclusions and Future Work

We have presented and evaluated an end-to-end system

for multi-modal social event clustering of social multi-

media streams. By posing the problem as a streaming

one, and developing an incremental approach to clus-

tering, coupled with custom feature comparison metrics

and weighted feature-fusion techniques, we are able to

detect events in a dataset of Flickr images in a man-

ner that is both highly accurate and scalable. Our re-

sults suggest that the weighting of features plays an

important role in achieving high performance. To this

end, exploring non-grid-search based schemes for opti-

mal feature weighting detection would be an interesting

future avenue of research. Beyond this, a feature weight

selection scheme which could be learnt online might also

be able to better deal with the potential heteroscedas-

ticity present in social media streams. Another possible

avenue of research would be to consider more advanced

affinity aggregation techniques (e.g. [3]).

7.1 Is event detection solved?

Evaluation of our technique using the ReSEED dataset

indicates that we are very close to reaching a perfect

segmentation of events, with the mutual information

clustering measure reaching over 98%. However, we must

be wary of over-fitting and also be aware that the dataset

is likely to contain some mistakes as a result of the orig-

inal human-provided event annotations that were used

to construct it. The nature of the ReSEED dataset rep-

resents a scenario where every social media item was

relevant, and every item belonged to one and only one

event. This represents a significant bias in the dataset

and is an important indicator that there is still further

work to be done. An important next step in future work

should explore other incarnations of social event detec-

tion, including query-led approaches where only certain

items in the stream are relevant, and hierarchical ap-

proaches where individual social media items might be-

long to multiple events at different granularities of time

and space. To do this, we need to consider how a dataset

exhibiting these features might be constructed that will

allow for effective comparative experimentation.

7.2 What about visual features?

Our brief experiments with SIFT features in the early

phases of this work was largely unsuccessful and led to

us concentrating on features extracted from the meta-

data. From our results it is clear that the metadata fea-

tures are particularly powerful in the context of social

event detection, however, this isn’t a good reason not

to explore visual features further in the future. In par-

ticular, we believe that visual features could be used to

help in situations where the metadata is poor or sparse

(such as for images with zero tags). Our particular em-

bodiment of affinity graph construction using hashed

SIFT features undoubtedly worked well for cases where

there were near identical images belonging to an event.

However, it would also very easily confuse images as be-

longing to the same event if they contained a visual sim-

ilarity characterised by a few matching SIFT features

(regardless of their spatial arrangement). The key to us-

ing visual features is likely to be to use (combinations

of) features that are suitable for the task. In particular,

we should consider image similarity at a number of lev-

els: global similarity (for example using GIST features

or a multiscale spatial pyramid of dense features like

PHOW) might help capture the context of an event;

local features (like SIFT) could identify (with suitable

spatial constraints) common objects in the scene; and

facial descriptors and similarity metrics could identify

common individuals across images. Even with this lay-

ered approach to visual features it is likely that these

features would have to be carefully moderated with re-

spect to the available metadata, and that a much more

dynamic technique (than weighted sum fusion) for com-

bining the affinity matrices would be required.
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