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Abstract

Background: Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at
different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical

evidence for genetic risk stratification is lacking.

Methods: We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk
stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible
pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and

by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK

incidence and mortality rates.

Results: There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1%
of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds
ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95%
CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and
highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with

a first-degree family history of breast cancer.

Conclusions: The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The
observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may
be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this

report.

Breast cancer is the most common cancer among Western
women, with approximately 1.67 million cases diagnosed annu-
ally worldwide (1). Strategies such as endocrine risk-reducing
medication and early detection by breast cancer screening can
reduce the burden of disease but have disadvantages including
side effects, overdiagnosis, and increased cost (2-4). Stratification
of women according to the risk of developing breast cancer
could improve risk reduction and screening strategies by target-
ing those most likely to benefit (5-8).

Both genetic and lifestyle factors are implicated in the aetiol-
ogy of breast cancer. Women with a history of breast cancer in
a first-degree relative are at approximately two-fold higher risk
than women without a family history (9). Rare high-risk muta-
tions particularly in the BRCA1 and BRCA2 genes explain less than
20% of the two-fold familial relative risk (FRR) (10) and account
for a small proportion of breast cancer cases in the general popu-
lation. Low frequency variants conferring intermediate risk, such
as those in CHEK2, ATM, and PALB2, explain 2% to 5% of the FRR.
Genome-wide association studies (GWAS) have led to the dis-
covery of multiple common, low-risk variants (single nucleotide
polymorphisms [SNPs]) associated with breast cancer risk (11),
many of which are differentially associated by estrogen receptor

(ER) status (12,13). Recently, new risk-associated variants have
been identified in a large-scale replication study conducted by
the Breast Cancer Association Consortium (BCAC) as part of the
Collaborative Oncological Gene-Environment Study (COGS). SNPs
were genotyped in over 40 000 breast cancer cases and 40 000
control women, using a custom array (iCOGS). This experiment
increased the number of SNPs robustly associated with breast
cancer from 27 to more than 70 and identified additional variants
specific to ER-negative breast cancer (14-17).

Risks conferred by SNPs are not sufficiently large to be useful
in risk prediction individually. However, the combined effect of
multiple SNPs could achieve a degree of risk discrimination that
is useful for population-based programmes of breast cancer pre-
vention and early detection (8,18). In this report, we investigated
the value of using all 77 breast cancer susceptibility loci identified
to date for risk stratification. Previous studies of polygenic risk
have assumed a log-additive model for combining SNPs; how-
ever, this assumption needs to be evaluated empirically. We first
assessed whether interaction between SNP pairs could influence
the joint contribution of genetic factors on disease risk by test-
ing for all possible pair-wise interactions between SNPs. We then
constructed polygenic risk scores (PRSs) to capture the combined
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effects of the 77 SNPs on overall breast cancer risk, as well as
on the risk of ER-positive and ER-negative disease separately. We
estimated absolute risks of developing breast cancer for different
levels of the PRS, accounting for the competing risk of mortality
from other causes. Effect sizes were confirmed in one large study
(pPKARMA) that was not part of any SNP discovery set. We discuss
the degree of breast cancer risk stratification obtained in women
with and without a family history of breast cancer.

Methods

Study Subjects and Genotyping

Study participants for the primary analyses (set 1) were 89 049
women of European origin participating in 41 studies in BCAC. All
studies were approved by the relevant institutional review boards,
and all individuals gave written informed consent. Samples were
genotyped using a custom Illumina iSelect array (iCOGS) compris-
ing 211 155 SNPs (15). For some analyses, a further 72 014 women
in BCAC genotyped for the relevant SNPs in earlier experiments
were included (set 2). For PRS analyses (67 054 women), studies
that oversampled breast cancer cases with a family history (21
995 women) were excluded. Supplementary Tables 1-3 (available
online) show study designs and numbers of breast cancer cases
and control women included.

Analyses were based primarily on variants reported to be
associated (at P < 5x10°%) by COGS or previous publications, with
either breast cancer overall or ER-negative disease. SNPs and
regions included are summarized in Supplementary Table 4
(available online).

Statistical Methods

Tests for pair-wise SNP*SNP interactions (departures from a
multiplicative model) were carried out using logistic regression,
with breast cancer as the outcome. The two SNPs were each
coded as a categorical variable (ie, fitting a separate parameter
for heterozygous and risk-allele homozygous genotypes), while
the interaction term (SNP1*SNP2) was included as continuous
covariate. All analyses were adjusted for study and seven prin-
cipal components (PC) to account for population substructure
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(15). Additional interaction tests used are described in the
Supplementary Methods (available online).

To investigate the association between breast cancer risk and
the combined effects of 77 SNPs, a PRS was derived for each indi-
vidual using the formula:

PRS=Bx, +B,x, +...B.x ...+ B,x,

where f, is the per-allele log odds ratio (OR) for breast cancer
associated with the minor allele for SNP k, and x, the number of
alleles for the same SNP (0, 1, or 2), and n = 77 is the total number
of SNPs. Thus, the PRS summarizes the combined effect of the
SNPs, ignoring departures from a multiplicative model (18). SNPs
and corresponding odds ratios used in derivation of PRSs are
summarized in Supplementary Table 4 (available online).

Logistic regression models were used to estimate the odds
ratios for breast cancer by percentile of the PRS, with the mid-
dle quintile category (40% to 60™ percentile) as the reference.
Observed odds ratios for breast cancer by percentile of the PRS
were compared with predicted odds ratios under a multiplica-
tive polygenic model of inheritance. Modification of the PRS by
age or by family history of breast cancer in a first-degree rela-
tive was evaluated by fitting additional interaction terms in the
model. All tests of statistical significance were two-sided. The
thresholds for statistical significance are indicated below.

The absolute risk of overall breast cancer, ER-positive and
ER-negative breast cancer for individuals in each risk category,
was calculated taking into account the competing risk of dying
from other causes apart from breast cancer. Approximate con-
fidence limits for the absolute risk were derived from the vari-
ance-covariance matrix of the log (relative risk) parameters in
the logistic regression analysis. Detailed methods are provided
in Supplementary Methods (available online).

Results

Pairwise Multiplicative SNP*SNP Interaction
Analyses

Data on 46 450 breast cancer cases and 42 599 controls
from 41 studies were included in the interaction analyses

Table 1. Observed and expected numbers of statistically significant pair-wise tests for SNP*SNP interaction at P < .01t

Case-control analyses

Case-only analyses}

Type of breast

cancer OBS OBS/EXP P§ OBS OBS/EXP P

All SNPs|| n = 3080 SNP pairs n = 3028 SNP pairs

All breast cancers 44 1.43 .01 45 1.49 .01
ER-positive 43 1.40 .02 39 1.29 .07
ER-negative 35 1.13 .25 37 1.22 13
Unlinked SNPsf| n = 2556 SNP pairs n = 2522 SNP pairs

All breast cancers 35 1.37 .04 36 1.43 .02
ER-positive 38 1.49 .01 34 1.35 .05
ER-negative 30 1.17 21 30 1.19 .19

1 46 450 breast cancer cases and 42 599 control women were included in the analysis of all breast cancers. 27 074 breast cancer cases were included in the analysis
of ER-positive disease and 7413 breast cancer cases were included in the analysis of ER-negative disease. n = number of single nucleotide polymorphsism (SNP) pairs

tested; OBS = number of tests observed with P,

interaction

<.01; OBS/EXP = number of tests observed with P,

< .01 divided by the number of positive tests expected

interaction

by chance, given the number of SNP pairs tested; SNP = single nucleotide polymorphism.

$ Only results of SNP pairs not strongly associated in the control population (P

interaction

> .01 in control-only analyses) were included in the counts.

§ P value for difference between observed and expected numbers of tests, assuming each test is independent and that, under the null hypothesis, the observed
number of statistically significant tests follows a poisson distribution. The statistical test was two-sided.

|| Some SNPs were linked, as described in the Supplementary Methods (available online).

1 Only the most statistically significant SNP from each group of linked SNPs were included in these analyses.
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(Supplementary Table 3, available online). There was no strong
evidence for interaction between any particular SNP pair after
Bonferroni correction (Supplementary Tables 5-6, available
online). Plots of expected vs observed log, P values for SNP*SNP
interaction tests showed slight departure from the null hypoth-
esis of multiplicative effects (Supplementary Figure 1, A and
B, available online), and the number of statistically significant
interactions with P, . values of less than .01 was larger than
expected by chance (Table 1). To investigate whether there was
an excess of synergistic or antagonistic interactions, the direc-
tion of the interaction term relative to the main effects was
examined for SNP pairs with P, . “values of less than .01.
For case-control analyses, 47% of interactions were synergis-
tic and 53% antagonistic, and for case-only analyses 53% were
synergistic and 46% antagonistic. These proportions were not
statistically significantly different from the null expectation (P
> .05). Meta-analysis of SNP*SNP interaction test results from
the iCOGS dataset with those from 72 014 additional women
in BCAC yielded similar results (Supplementary Table 7, avail-
able online). Given that no SNP pair showed strong evidence for
departure from the multiplicative model, subsequent analyses
were based on a PRS that included the main effects of SNPs but
no SNP*SNP interaction terms.

Association Between PRS and Breast Cancer Risk
As predicted by the polygenic, multiplicative model, the number
of breast cancer risk alleles and the 77-SNP PRS approximated

Table 2. Odds ratio for family history of breast cancer in first-degree
relatives: unadjusted and adjusted by PRS and stratified by age

Unadjusted by PRS Adjusted by PRS

Age group OR* (95% CI) OR (95% CI) % attenuationt
All subjects  1.81 (1.69 to 1.93)  1.68 (1.56 to 2.86) 12.6%
<40y 2.90 (2.07 t0 4.07)  2.76 (1.96 to 3.89) 4.6%
40-60 y 1.88 (1.71t02.08) 1.72 (1.56 to 1.90) 14.1%
>60y 1.63 (1.47 t0 1.82)  1.53 (1.37 to 1.70) 13.0%

* Odds ratio for developing breast cancer for women with a family history of
breast cancer in a first-degree relative compared with women without a family
history, adjusting for study and seven principal components. 21 865 breast
cancer cases and 15 830 control women provided family history information.
CI = confidence intervals; PRS = polygenic risk score; OR = odds ratio.

1 Percent attenuation on log scale.

a normal distribution for both breast cancer cases and control
women (Figure 1). The odds ratios for developing breast cancer
by percentiles of the PRS, compared with women in the mid-
dle quintile (40" to 60™ percentile) are shown in Figure 2A. The
observed odds ratios were similar to the odds ratios predicted
under a polygenic multiplicative model; the 95% confidence
interval (CI) included the predicted odds ratio at all points except
the 80% to 90™ percentile (Figure 2A; Supplementary Table 8,
available online). For women in the lowest 1% of the PRS distri-
bution, the estimated odds ratio compared with women in the
middle quintile was 0.32 (95% CI = 0.25 to 0.40). By contrast, for
women in the highest 1% of the PRS distribution, the estimated
OR compared with women in the middle quintile was 3.36 (95%
CI=2.95 to 3.83, P = 7.5x107%). When PRS were derived separately
for ER-positive and ER-negative disease, the corresponding odds
ratios were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26
to 3.46), respectively (Figure 2, B and C). The log OR per unit
standard deviation of the PRS was 0.44 (95% CI = 0.42 to 0.46) for
overall breast cancer, 0.49 (95% CI = 0.47 to 0.51) for ER-positive,
and 0.37 (95% CI = 0.34 to 0.40) for ER-negative disease (Table 3).
A validation analysis including only one large study (pKARMA)
that was not part of any SNP discovery analyses found similar
odds ratio estimates to those in the remaining studies, except
for the 60% to 80% and 90% to 95% categories, for which esti-
mates were higher in pKARMA (Table 4; Supplementary Table 9,
available online). The log OR per unit SD was also similar for
PKARMA alone (log OR per unit SD = 0.4).

The associations between PRS and breast cancer in differ-
ent age groups are summarized in Table 3 and Supplementary
Figure 2 (available online). There was a statistically significant
interaction between PRS and age, the association between PRS
and breast cancer risk decreasing with age (Table 3).

A family history of breast cancer in one or more affected first-
degree relatives was reported by 18.5% of breast cancer cases and
11.1% of control women. The odds ratio for family history was
attenuated from 1.81 to 1.68 (12.6% attenuation) after adjusting
for the PRS (Table 2). At younger ages (<40 years), there was less
attenuation (from 2.90 to 2.76, 4.6% attenuation) (Table 2). The
joint effects of the PRS and family history were largely consist-
ent with a multiplicative model (P, ... ..., = -34 for the interaction
between the PRS and family history; data not shown); however,
we observed a stronger effect of family history for women at the
lowest 1% of the PRS (Supplementary Table 10, available online).

The discriminative accuracy of the PRS, as measured by the
C-statistic, was 0.622 (95% CI = 0.619 to 0.627); discrimination was

Table 3. Association between PRS and breast cancer risk in different age groups

All breast cancers

ER-positive disease ER-negative disease

log OR (95% CI)

log OR (95% CI)

Age group” log ORY (95% CI)
All ages 0.44 (0.42 to 0.46)
<40y 0.46 (0.38 t0 0.53)
40-49y 0.46 (0.42 to 0.50)
50-59 y 0.48 (0.45 to 0.51)
260y 0.41 (0.38 to 0.43)

Interaction OR% (95% CI)

Interaction between PRS and age 0.98 (0.96 to 0.99)

.005

interaction

0.49 (0.47 t0 0.51)
0.56 (0.47 t0 0.65)
0.53 (0.48 t0 0.57)
0.54 (0.50 to 0.57)
0.44 (0.41 to 0.47)

Interaction OR (95% CI)

0.97 (0.95 to 0.98)
1.08x10°

0.37 (0.34 to 0.40)
0.48 (0.36 to 0.59)
0.36 (0.29 to 0.43)
0.37 (0.32 to 0.43)
0.36 (0.31 to 0.42)

Interaction OR (95% CI)

0.94 (0.91 to 1.00)
06

* Age of breast cancer cases (age at diagnosis) and control women (age at interview). CI = confidence intervals; PRS = polygenic risk score; log OR = log odds ratio.
1 log OR for association between the PRS coded as a continuous variable and breast cancer risk (per unit SD of the PRS)

$ OR per 10 years for interaction between PRS and age.
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Table 4. Validation analyses in the pKARMA study”*

All studies in iCOGS
excluding pPKARMA PKARMA only
Percentile of PRS, % ORfY (95% CI) OR (95% CI)

<1 0.29 (0.23 t0 0.37) 0.48 (0.28 t0 0.83)
>1-5 0.42 (0.37 to 0.47) 0.48 (0.36 t0 0.63)
5-10 0.55 (0.50 to 0.61) 0.58 (0.45 to 0.74)
10-20 0.65 (0.60 to 0.70) 0.68 (0.57 t0 0.81)
20-40 0.80 (0.76 to 0.85) 0.81 (0.71 to 0.94)
40-60 1 (referent) 1 (referent)

60-80 1.18 (1.12 to 1.24) 1.35 (1.19 to 1.54)
80-90 1.48 (1.39 to 1.57) 1.56 (1.34 to 1.82)
90-95 1.69 (1.56 to 1.82) 2.05 (1.70 to 2.47)
95-99 2.20 (2.03 to 2.38) 2.12 (1.73 to 2.59)
>99 2.81(2.43 to 3.24) 3.06 (2.16 to 4.34)

* Comparison of effect sizes (odds ratios) by percentile of the polygenic risk
score (PRS) in pKARMA (not included in the discovery set) and in all other stud-
ies (included in the discovery set). The pKARMA study comprises 4553 breast
cancer cases and 5537 control women. Only single nucleotide polymorphisms
(SNPs) that reached genome-wide statistical significance in a meta-analysis of
iCOGS and previous combined genome-wide association studies were included
in the risk score, and the effect sizes for each SNP were estimated using iCOGS
database minus pKARMA (Supplementary Table 9, available online). PRS = poly-
genic risk score; OR = odds ratio.

1 Odds ratios are for different percentiles of the polygenic PRS relative to the
middle quintile (40% to 60%) of the PRS.

similar when restricted to pKARMA alone, with an area under
the curve of 0.615 (95% CI = 0.608 to 0.616) (data not shown).

Absolute Risks of Developing Breast Cancer by
Levels of PRS

The estimated risk of developing breast cancer by age 80 years
for women in the lowest and highest 1% of the PRS was 3.5% (95%
CI =2.6% to 4.4%) and 29.0% (95% CI = 24.9% to 33.5%), respectively
(Figure 3A). For the lowest and highest quintiles of the PRS, the
risk was 5.3% (95% CI = 5.1% to 5.7%) and 17.2% (95% CI = 16.1% to
18.1%), respectively (data not shown). The corresponding risks of
developing ER-positive disease were 4.1% and 15.7% for women in
the lowest and highest quintiles, respectively, of the ER-positive
PRS (averaged over all ER-negative PRS categories), whereas the
highest lifetime risk for ER-negative disease was 2.4% (women in
the highest quintile of ER-negative PRS and average ER-positive
risk) (Figure 3). Lifetime risk of breast cancer for women in the
lowest and highest quintiles of the PRS were 5.2% and 16.6% for a
woman without family history and 8.6% and 24.4% for a woman
with a first-degree family history of breast cancer (Figure 4).

We estimated the 10-year absolute risk of breast cancer at dif-
ferent ages and evaluated the age at which women at different lev-
els of the PRS reach a threshold of 2.4%, which corresponds to the
average 10-year risk of breast cancer for women age 47 years. This
threshold was reached at 32 years for women whose PRS is above
the 99th percentile of the PRS, and 57 years for women in the 20th
to 40th percentiles of the PRS, and was never reached for women
in lower percentiles (Figure 3D). As expected, lifetime risks were
higher, and the ages at which the 2.4% threshold was reached were
lower for women with a family history of breast cancer (Figure 4).

Discussion

In this report, we evaluated the degree of breast cancer risk
stratification that can be attained in women of European
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ancestry using data for 77 common genetic variants, summa-
rized as a PRS. Our results show that the PRS stratifies breast
cancer risk in women without family history and refines genetic
risk in women with a family history of breast cancer.

The PRS we used (sum of the minor alleles weighted by the
per-allele log OR) is the most efficient, assuming that SNP odds
ratios combine multiplicatively (ie, no interactions on a log-addi-
tive scale) (18). Evaluation of pairwise SNP interactions showed
that this was a reasonable assumption. Although no individual
interactions could be established, we observed an excess of
multiplicative interactions at P less than .01. This could be the
result of underlying population stratification not accounted for
by principal components adjustment or reflect the presence of
multiple interactions too weak to be established individually.
A recent study also found no evidence for interactions among
SNPs with weaker evidence for main effects (19). Although we
did not test for higher order interactions among SNPs, consist-
ency between empirical and predicted odds ratios assuming
multiplicative effects suggests that across all possible multiway
interactions the overall effect is close to multiplicative.

The 77-SNP PRS was associated with a larger effect than pre-
viously reported for a 10-SNP PRS (20). For example, our odds
ratio for breast cancer for women in the highest compared with
the middle quintile was 1.82 (95% CI = 1.73 to 1.90) vs 1.44 (95%
CI = 1.35 to 1.53) for the 10-SNP PRS (20). A potential concern
is that the PRS was constructed using iCOGS data that were,
in part, the basis for discovery of many of the loci. This could
lead to some upward bias in the odds ratio estimates (winner’s
curse); however, analyses based on a large study (pKARMA) that
was not part of any discovery set obtained similar estimates
indicating that any winner’s curse effect is likely to be small.

There has been little evidence of differences by age in the
per-allele odds ratio for individual SNPs. However, we observed
a small but statistically significant decrease in odds ratio for PRS
with increasing age. As expected, the odds ratio for family his-
tory was reduced after adjustment for the PRS. This attenuation
(~12.6%) was consistent with the estimated fraction of the two-
fold FRR explained by the 77-SNPs under a polygenic risk model
(15). The joint effects of PRS and family history were consistent
with a multiplicative model. A stronger FRR was observed for
women at the lowest percentile of the PRS, but this was based
on small numbers and requires confirmation. The degree of
attenuation of the family history odds ratio was lower below age
40 years, as a result of the higher FRR at young ages, suggesting
that rarer genetic variants may be more important at young ages.

We calculated the absolute risk of developing breast cancer for
women at different levels of genetic risk according to the PRS.The
lifetime risk for women below the first and above the 99 percen-
tile of the PRS was 3.5% (95% CI = 2.6% to 4.4%) and 29.0% (95%
CI = 24.9% to 33.5%), respectively. UK NICE guidelines recommend
enhanced surveillance for women with a family history with
lifetime risk of developing breast cancer over 17% (21). Figure 3
indicates that the PRS alone could identify approximately 8% of
all women in the UK population at this level of risk, regardless of
family history or other risk factors; approximately 17% of all breast
cancer cases in the population would be expected to occur among
these women. By contrast, the low absolute risk of breast cancer
among women at the lowest end of the risk distribution raises
the possibility that such women might be recommended more
limited surveillance. Women at different levels of the PRS reach
the same 10-year risk threshold at different ages, supporting the
notion that using SNP profiles rather than age alone as a crite-
rion to offer routine mammographic screening could lead to more
effective screening programs (6). The utility of such an approach
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Figure 1. Distribution of the number of breast cancer risk alleles (A) and polygenic risk score residuals after adjusting the polygenic risk score (PRS) for study and seven
principal components (B), in 33 673 breast cancer cases and 33 381 control women of European origin. The PRS approximated a normal distribution in both breast cancer
cases and control women. The mean PRS was 0.69 for breast cancer cases and 0.49 for control women. PRS residuals are standardized Pearson’s residuals calculated

after regression of the score on seven principal components.

would, however, depend on the acceptability of risk-based sur-
veillance, together with health economic considerations.
Prediction of subtype-specific breast cancer should also be
informative for prevention (4). Recently updated NICE guide-
lines include recommendations to use endocrine treatments
(tamoxifen and raloxifene) for primary prevention of breast
cancer for women at moderate to high risk (21). These guide-
lines are based on risk of overall breast cancer for women with
a family history of breast cancer. However, because these drugs
prevent only ER-positive tumours, risk estimates incorporating
the ER-positive PRS could better define the subset of women
most likely to benefit. Our sample was derived from studies in
Europe, North America, and Australia and restricted to women
of European origin. While the results should be widely appli-
cable in these populations, additional studies will be required
to develop and validate genetic profiles for other popula-
tions, in particular Asian and African populations, where SNP

associations, background incidence rates and distribution of
tumour characteristics are substantially different.

Our analysis summarized family history in terms of a single
binary variable, but familial risk of breast cancer also depends
on the number of affected and unaffected relatives and their
ages. Risk prediction algorithms that combine full family history
data with a polygenic component perform better than simpler
models (22). It is possible to incorporate the current PRS into
family-history based models for breast cancer, such BOADICEA,
to improve genetic risk prediction (23).

The COGS project includes the largest set of breast cancer
studies with both phenotype and genotype information, and
our analysis utilized by far the largest number of SNPs with
confirmed associations with breast cancer, including all SNPs
discovered to date. Further refinement of the risk stratification
should be possible through incorporating additional SNPs exhib-
iting evidence for association, but not at formal genome-wide
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Figure 2. Association between the polygenic risk score (PRS) and breast cancer risk in women of European origin for (A) all breast cancers, (B) estrogen receptor (ER)-
positive disease, and (C) ER-negative disease. Odds ratios are for different percentiles of the PRS relative to the middle quintile (40% to 60%) of the PRS. Odds ratios and
95% confidence intervals are shown. Regular lines denote the observed estimates, and dotted lines the theoretical estimates under a multiplicative polygenic model
with a standard deviation of the PRS of 0.45 for all breast cancer, 0.50 for ER-positive breast cancer, and 0.38 for ER-negative breast cancer, as derived from the estimated
effect sizes and allele frequencies/haplotype frequencies for each locus. PRS = polygenic risk score.
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Figure 3. Cumulative and 10-year absolute risks of developing breast cancer for women of European origin by percentiles of the polygenic risk score (PRS). Cumulative
absolute risk of developing breast cancer for (A) all breast cancers, (B) estrogen receptor (ER)-positive disease, and (C) ER-negative disease by percentiles of the PRS; and
10-year absolute risk of developing breast cancer for (D) all breast cancers, (E) ER-positive disease, and (F) ER-negative disease. Note different scales and PRS categories
in the different panels. The red line shows the 2.4% risk threshold corresponding to the risk for women age 47 years who were eligible for screening, calculated as
described in the Supplementary Methods (available online). Absolute risks were calculated using the PRS relative risks estimated as described in the Supplementary
Methods (available online), and breast cancer incident rates and mortality from other causes obtained from the UK National Office for Statistics. For subtype-specific
disease, the absolute risk for women in a particular PRS category for ER-positive disease and another PRS category for ER-negative disease were calculated. Information
on proportions of tumors by ER status was obtained from the West Midlands Registry.

statistical significance, together with variants in genes confer-
ring intermediate or high risk (15).

The risk discrimination provided by the genetic profile,
summarised in the PRS and family history, should be further
improved by combining, with lifestyle risk factors, benign breast
disease, and mammographic density (24,25,28). Although we did
not consider lifestyle factors explicitly in this dataset, other large
studies have found no good evidence for interactions between
common susceptibility SNPs and lifestyle factors for breast can-
cer, suggesting that SNPs generally combined multiplicatively
(26,27). Darabi et al. (25) estimated a C-statistic of 0.60 for life-
style risk factors including mammographic density. By compari-
son, we estimated the C-statistic for the PRS to be 0.62. Assuming
that the multiplicative model is correct, the C-statistic would
increase to 0.66 with the addition of the lifestyle risk factors. If
modifiable risk factors and the PRS act multiplicatively, target-
ing public health interventions to women at higher genetic risk
should result in a larger absolute risk reduction. For example,
the decision to prescribe hormone replacement therapy might
be guided by the PRS (28). Similar considerations would apply to
risk-reducing interventions such as preventive medication and
oophorectomy.

Some limitations of this study should be noted. Although
the study was extremely large, the numbers of breast cancer
cases and control women were still too limited to provide pre-
cise estimates of relative risks in the extremes of the PRS (for
example, the highest 1%). Numbers were also limited to explore
the effects at very young ages, and estimates were less precise
for ER-negative disease. There was heterogeneity among the
studies, both in population and design, but we saw no evidence

of heterogeneity in SNP odds ratios among studies, suggesting
that the estimates should be broadly applicable. Oversampling
for family history could have led to a bias in the odds ratios by
PRS, and for this reason we excluded studies that were sam-
pled on the basis of family history. Finally, we were not able
to consider lifestyle/environmental risk factors in our model,
as data on all of these risk factors were not consistently avail-
able across all studies. Interactions between the PRS and envi-
ronmental factors will need to be explicitly tested for in future
studies.

In previous reports, improvement in risk discrimination
by genomic profiling over that conferred by known risk fac-
tors was not substantial (24,29), although better discrimination
was obtained for certain subgroups of women (30,31). Previous
analyses, however, were based on a much smaller set of SNPs
than included in this report. This study provides precise empiri-
cal estimates of the combined effects of multiple SNPs and the
level of risk stratification possible. These estimates may inform
the debate on public health utility and implementation of the
PRS in clinical practice. Our work suggests that the PRS, particu-
larly when used in combination with other risk factors, could
help identify subsets of women at different levels of risk, for
whom management would differ. The PRS may facilitate early
detection of cancers in younger women and, importantly, iden-
tify individuals at risk of specific subtypes of breast cancer.
Finally, there is potential for a stronger impact in modifying
environmental factors in women at higher risk of breast cancer.
Prospective analyses of the 77 SNP PRS, in combination with
other risk factors, will be required to validate the overall accu-
racy of risk prediction. Such a comprehensive risk prediction

GTOZ ‘2T 1nBnYy Uo uoidureyinos Jo AlseAlun e /Blo'sfeulnolploxo’ puly/:dny woly papeojumoq


http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv036/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv036/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv036/-/DC1
http://jnci.oxfordjournals.org/

A . . .
Women without family history
0.30
<20
0.25 e 0-40
% ——40-60
= 020
= 60-80
F
2 015 >80
©
3
£
8 o010
£
0.05
0.00
20 25 30 35 40 45 50 55 60 65 70 75
Age,y
¢ Women without family history
0.10
<20
0.09
——20-40
0.08
——40-60
0.07
= 60-80
= 0.06 >80
2
S 0.05 —— Threshold
17
| 004
=
©
S o003 /\
‘e — 4
0.02
0.01
0.00

20 25 30 35 40 45 50 55 60 65

Age,y

Mavaddatetal. | 10 of 15

Women with family history
0.30

<20

Age,y

D Women with family history
0.10

<20
0.09

——20-40

0.08

40-60
0.07 60-80
0.06 >80
0.05 —— Threshold
0.04
0.03
0.02
0.01
0.00

20 25 30 35 40 45 50 55 60 65

Age,y

Figure 4. Cumulative and 10-year absolute risks of developing breast cancer for women of European origin with and without a family history of breast cancer by per-
centiles of the polygenic risk score (PRS). Cumulative absolute risk of developing breast cancer for women (A) without a family history and (B) with a family history,
and 10-year absolute risk of developing breast cancer for women (C) without a family history, and (D) with a family history of breast cancer by percentiles of the PRS.
The red line shows the 2.4% risk threshold corresponding to the risk for women age 47 years who were eligible for screening. Absolute risks were calculated using PRS
relative risks estimated as described in Methods, and breast cancer incident rates and mortality from other causes obtained from the UK National Office for Statistics.

algorithm could provide a powerful basis for stratified breast
cancer prevention programs.
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