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Abstract

Background: Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at 
different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical 
evidence for genetic risk stratification is lacking.

Methods: We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk 
stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible 
pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and 
by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK 
incidence and mortality rates.

Results: There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% 
of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds 
ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% 
CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and 
highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with 
a first-degree family history of breast cancer.

Conclusions: The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The 
observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may 
be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this 
report.

Breast cancer is the most common cancer among Western 
women, with approximately 1.67 million cases diagnosed annu-
ally worldwide (1). Strategies such as endocrine risk–reducing 
medication and early detection by breast cancer screening can 
reduce the burden of disease but have disadvantages including 
side effects, overdiagnosis, and increased cost (2–4). Stratification 
of women according to the risk of developing breast cancer 
could improve risk reduction and screening strategies by target-
ing those most likely to benefit (5–8).

Both genetic and lifestyle factors are implicated in the aetiol-
ogy of breast cancer. Women with a history of breast cancer in 
a first-degree relative are at approximately two-fold higher risk 
than women without a family history (9). Rare high-risk muta-
tions particularly in the BRCA1 and BRCA2 genes explain less than 
20% of the two-fold familial relative risk (FRR) (10) and account 
for a small proportion of breast cancer cases in the general popu-
lation. Low frequency variants conferring intermediate risk, such 
as those in CHEK2, ATM, and PALB2, explain 2% to 5% of the FRR. 
Genome-wide association studies (GWAS) have led to the dis-
covery of multiple common, low-risk variants (single nucleotide 
polymorphisms [SNPs]) associated with breast cancer risk (11), 
many of which are differentially associated by estrogen receptor 

(ER) status (12,13). Recently, new risk-associated variants have 
been identified in a large-scale replication study conducted by 
the Breast Cancer Association Consortium (BCAC) as part of the 
Collaborative Oncological Gene-Environment Study (COGS). SNPs 
were genotyped in over 40 000 breast cancer cases and 40 000 
control women, using a custom array (iCOGS). This experiment 
increased the number of SNPs robustly associated with breast 
cancer from 27 to more than 70 and identified additional variants 
specific to ER-negative breast cancer (14–17).

Risks conferred by SNPs are not sufficiently large to be useful 
in risk prediction individually. However, the combined effect of 
multiple SNPs could achieve a degree of risk discrimination that 
is useful for population-based programmes of breast cancer pre-
vention and early detection (8,18). In this report, we investigated 
the value of using all 77 breast cancer susceptibility loci identified 
to date for risk stratification. Previous studies of polygenic risk 
have assumed a log-additive model for combining SNPs; how-
ever, this assumption needs to be evaluated empirically. We first 
assessed whether interaction between SNP pairs could influence 
the joint contribution of genetic factors on disease risk by test-
ing for all possible pair-wise interactions between SNPs. We then 
constructed polygenic risk scores (PRSs) to capture the combined 
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effects of the 77 SNPs on overall breast cancer risk, as well as 
on the risk of ER-positive and ER-negative disease separately. We 
estimated absolute risks of developing breast cancer for different 
levels of the PRS, accounting for the competing risk of mortality 
from other causes. Effect sizes were confirmed in one large study 
(pKARMA) that was not part of any SNP discovery set. We discuss 
the degree of breast cancer risk stratification obtained in women 
with and without a family history of breast cancer.

Methods

Study Subjects and Genotyping

Study participants for the primary analyses (set 1) were 89 049 
women of European origin participating in 41 studies in BCAC. All 
studies were approved by the relevant institutional review boards, 
and all individuals gave written informed consent. Samples were 
genotyped using a custom Illumina iSelect array (iCOGS) compris-
ing 211 155 SNPs (15). For some analyses, a further 72 014 women 
in BCAC genotyped for the relevant SNPs in earlier experiments 
were included (set 2). For PRS analyses (67 054 women), studies 
that oversampled breast cancer cases with a family history (21 
995 women) were excluded. Supplementary Tables 1–3 (available 
online) show study designs and numbers of breast cancer cases 
and control women included.

Analyses were based primarily on variants reported to be 
associated (at P < 5x10-8) by COGS or previous publications, with 
either breast cancer overall or ER-negative disease. SNPs and 
regions included are summarized in Supplementary Table  4 
(available online).

Statistical Methods

Tests for pair-wise SNP*SNP interactions (departures from a 
multiplicative model) were carried out using logistic regression, 
with breast cancer as the outcome. The two SNPs were each 
coded as a categorical variable (ie, fitting a separate parameter 
for heterozygous and risk-allele homozygous genotypes), while 
the interaction term (SNP1*SNP2) was included as continuous 
covariate. All analyses were adjusted for study and seven prin-
cipal components (PC) to account for population substructure 

(15). Additional interaction tests used are described in the 
Supplementary Methods (available online).

To investigate the association between breast cancer risk and 
the combined effects of 77 SNPs, a PRS was derived for each indi-
vidual using the formula:

PRS 1 1 2 2 k k= + + +β β β βx x x xn n… …

where βk is the per-allele log odds ratio (OR) for breast cancer 
associated with the minor allele for SNP k, and xk the number of 
alleles for the same SNP (0, 1, or 2), and n = 77 is the total number 
of SNPs. Thus, the PRS summarizes the combined effect of the 
SNPs, ignoring departures from a multiplicative model (18). SNPs 
and corresponding odds ratios used in derivation of PRSs are 
summarized in Supplementary Table 4 (available online).

Logistic regression models were used to estimate the odds 
ratios for breast cancer by percentile of the PRS, with the mid-
dle quintile category (40th to 60th percentile) as the reference. 
Observed odds ratios for breast cancer by percentile of the PRS 
were compared with predicted odds ratios under a multiplica-
tive polygenic model of inheritance. Modification of the PRS by 
age or by family history of breast cancer in a first-degree rela-
tive was evaluated by fitting additional interaction terms in the 
model. All tests of statistical significance were two-sided. The 
thresholds for statistical significance are indicated below.

The absolute risk of overall breast cancer, ER-positive and 
ER-negative breast cancer for individuals in each risk category, 
was calculated taking into account the competing risk of dying 
from other causes apart from breast cancer. Approximate con-
fidence limits for the absolute risk were derived from the vari-
ance-covariance matrix of the log (relative risk) parameters in 
the logistic regression analysis. Detailed methods are provided 
in Supplementary Methods (available online).

Results

Pairwise Multiplicative SNP*SNP Interaction 
Analyses

Data on 46 450 breast cancer cases and 42 599 controls 
from 41 studies were included in the interaction analyses 

Table 1.  Observed and expected numbers of statistically significant pair-wise tests for SNP*SNP interaction at P < .01†

Type of breast 
cancer

Case-control analyses Case-only analyses‡

OBS OBS/EXP P§ OBS OBS/EXP P

All SNPs|| n = 3080 SNP pairs n = 3028 SNP pairs
All breast cancers 44 1.43 .01 45 1.49 .01
ER-positive 43 1.40 .02 39 1.29 .07
ER-negative 35 1.13 .25 37 1.22 .13
Unlinked SNPs¶ n = 2556 SNP pairs n = 2522 SNP pairs
All breast cancers 35 1.37 .04 36 1.43 .02
ER-positive 38 1.49 .01 34 1.35 .05
ER-negative 30 1.17 .21 30 1.19 .19

† 46 450 breast cancer cases and 42 599 control women were included in the analysis of all breast cancers. 27 074 breast cancer cases were included in the analysis 

of ER-positive disease and 7413 breast cancer cases were included in the analysis of ER-negative disease. n = number of single nucleotide polymorphsism (SNP) pairs 

tested; OBS = number of tests observed with Pinteraction < .01; OBS/EXP = number of tests observed with Pinteraction < .01 divided by the number of positive tests expected 

by chance, given the number of SNP pairs tested; SNP = single nucleotide polymorphism.

‡ Only results of SNP pairs not strongly associated in the control population (Pinteraction > .01 in control-only analyses) were included in the counts.

§ P value for difference between observed and expected numbers of tests, assuming each test is independent and that, under the null hypothesis, the observed 

number of statistically significant tests follows a poisson distribution. The statistical test was two-sided.

|| Some SNPs were linked, as described in the Supplementary Methods (available online).

¶ Only the most statistically significant SNP from each group of linked SNPs were included in these analyses.
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(Supplementary Table 3, available online). There was no strong 
evidence for interaction between any particular SNP pair after 
Bonferroni correction (Supplementary Tables 5–6, available 
online). Plots of expected vs observed log10 P values for SNP*SNP 
interaction tests showed slight departure from the null hypoth-
esis of multiplicative effects (Supplementary Figure  1, A and 
B, available online), and the number of statistically significant 
interactions with Pinteraction values of less than .01 was larger than 
expected by chance (Table 1). To investigate whether there was 
an excess of synergistic or antagonistic interactions, the direc-
tion of the interaction term relative to the main effects was 
examined for SNP pairs with Pinteraction values of less than .01. 
For case-control analyses, 47% of interactions were synergis-
tic and 53% antagonistic, and for case-only analyses 53% were 
synergistic and 46% antagonistic. These proportions were not 
statistically significantly different from the null expectation (P 
> .05). Meta-analysis of SNP*SNP interaction test results from 
the iCOGS dataset with those from 72 014 additional women 
in BCAC yielded similar results (Supplementary Table 7, avail-
able online). Given that no SNP pair showed strong evidence for 
departure from the multiplicative model, subsequent analyses 
were based on a PRS that included the main effects of SNPs but 
no SNP*SNP interaction terms.

Association Between PRS and Breast Cancer Risk

As predicted by the polygenic, multiplicative model, the number 
of breast cancer risk alleles and the 77-SNP PRS approximated 

a normal distribution for both breast cancer cases and control 
women (Figure 1). The odds ratios for developing breast cancer 
by percentiles of the PRS, compared with women in the mid-
dle quintile (40th to 60th percentile) are shown in Figure 2A. The 
observed odds ratios were similar to the odds ratios predicted 
under a polygenic multiplicative model; the 95% confidence 
interval (CI) included the predicted odds ratio at all points except 
the 80th to 90th percentile (Figure  2A; Supplementary Table  8, 
available online). For women in the lowest 1% of the PRS distri-
bution, the estimated odds ratio compared with women in the 
middle quintile was 0.32 (95% CI = 0.25 to 0.40). By contrast, for 
women in the highest 1% of the PRS distribution, the estimated 
OR compared with women in the middle quintile was 3.36 (95% 
CI = 2.95 to 3.83, P = 7.5x10-74). When PRS were derived separately 
for ER-positive and ER-negative disease, the corresponding odds 
ratios were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 
to 3.46), respectively (Figure  2, B and C). The log OR per unit 
standard deviation of the PRS was 0.44 (95% CI = 0.42 to 0.46) for 
overall breast cancer, 0.49 (95% CI = 0.47 to 0.51) for ER-positive, 
and 0.37 (95% CI = 0.34 to 0.40) for ER-negative disease (Table 3). 
A validation analysis including only one large study (pKARMA) 
that was not part of any SNP discovery analyses found similar 
odds ratio estimates to those in the remaining studies, except 
for the 60% to 80% and 90% to 95% categories, for which esti-
mates were higher in pKARMA (Table 4; Supplementary Table 9, 
available online). The log OR per unit SD was also similar for 
pKARMA alone (log OR per unit SD = 0.4).

The associations between PRS and breast cancer in differ-
ent age groups are summarized in Table 3 and Supplementary 
Figure 2 (available online). There was a statistically significant 
interaction between PRS and age, the association between PRS 
and breast cancer risk decreasing with age (Table 3).

A family history of breast cancer in one or more affected first-
degree relatives was reported by 18.5% of breast cancer cases and 
11.1% of control women. The odds ratio for family history was 
attenuated from 1.81 to 1.68 (12.6% attenuation) after adjusting 
for the PRS (Table 2). At younger ages (<40 years), there was less 
attenuation (from 2.90 to 2.76, 4.6% attenuation) (Table  2). The 
joint effects of the PRS and family history were largely consist-
ent with a multiplicative model (Pinteraction = .34 for the interaction 
between the PRS and family history; data not shown); however, 
we observed a stronger effect of family history for women at the 
lowest 1% of the PRS (Supplementary Table 10, available online).

The discriminative accuracy of the PRS, as measured by the 
C-statistic, was 0.622 (95% CI = 0.619 to 0.627); discrimination was 

Table 3.  Association between PRS and breast cancer risk in different age groups

All breast cancers ER-positive disease ER-negative disease

Age group* log OR† (95% CI) log OR (95% CI) log OR (95% CI)

All ages 0.44 (0.42 to 0.46) 0.49 (0.47 to 0.51) 0.37 (0.34 to 0.40)
<40 y 0.46 (0.38 to 0.53) 0.56 (0.47 to 0.65) 0.48 (0.36 to 0.59)
40–49 y 0.46 (0.42 to 0.50) 0.53 (0.48 to 0.57) 0.36 (0.29 to 0.43)
50–59 y 0.48 (0.45 to 0.51) 0.54 (0.50 to 0.57) 0.37 (0.32 to 0.43)
≥60 y 0.41 (0.38 to 0.43) 0.44 (0.41 to 0.47) 0.36 (0.31 to 0.42)

Interaction OR‡ (95% CI) Interaction OR (95% CI) Interaction OR (95% CI)
Interaction between PRS and age 0.98 (0.96 to 0.99) 0.97 (0.95 to 0.98) 0.94 (0.91 to 1.00)
Pinteraction .005 1.08x10-5  .06

* Age of breast cancer cases (age at diagnosis) and control women (age at interview). CI = confidence intervals; PRS = polygenic risk score; log OR = log odds ratio.

† log OR for association between the PRS coded as a continuous variable and breast cancer risk (per unit SD of the PRS)

‡ OR per 10 years for interaction between PRS and age.

Table 2.  Odds ratio for family history of breast cancer in first-degree 
relatives: unadjusted and adjusted by PRS and stratified by age

Age group

Unadjusted by PRS Adjusted by PRS

 % attenuation†OR* (95% CI) OR (95% CI)

All subjects 1.81 (1.69 to 1.93) 1.68 (1.56 to 2.86) 12.6%
<40 y 2.90 (2.07 to 4.07) 2.76 (1.96 to 3.89) 4.6%
40–60 y 1.88 (1.71 to 2.08) 1.72 (1.56 to 1.90) 14.1%
 ≥60 y 1.63 (1.47 to 1.82) 1.53 (1.37 to 1.70) 13.0%

* Odds ratio for developing breast cancer for women with a family history of 

breast cancer in a first-degree relative compared with women without a family 

history, adjusting for study and seven principal components. 21 865 breast 

cancer cases and 15 830 control women provided family history information. 

CI = confidence intervals; PRS = polygenic risk score; OR = odds ratio.

† Percent attenuation on log scale.
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similar when restricted to pKARMA alone, with an area under 
the curve of 0.615 (95% CI = 0.608 to 0.616) (data not shown).

Absolute Risks of Developing Breast Cancer by 
Levels of PRS

The estimated risk of developing breast cancer by age 80 years 
for women in the lowest and highest 1% of the PRS was 3.5% (95% 
CI = 2.6% to 4.4%) and 29.0% (95% CI = 24.9% to 33.5%), respectively 
(Figure 3A). For the lowest and highest quintiles of the PRS, the 
risk was 5.3% (95% CI = 5.1% to 5.7%) and 17.2% (95% CI = 16.1% to 
18.1%), respectively (data not shown). The corresponding risks of 
developing ER-positive disease were 4.1% and 15.7% for women in 
the lowest and highest quintiles, respectively, of the ER-positive 
PRS (averaged over all ER-negative PRS categories), whereas the 
highest lifetime risk for ER-negative disease was 2.4% (women in 
the highest quintile of ER-negative PRS and average ER-positive 
risk) (Figure 3). Lifetime risk of breast cancer for women in the 
lowest and highest quintiles of the PRS were 5.2% and 16.6% for a 
woman without family history and 8.6% and 24.4% for a woman 
with a first-degree family history of breast cancer (Figure 4).

We estimated the 10-year absolute risk of breast cancer at dif-
ferent ages and evaluated the age at which women at different lev-
els of the PRS reach a threshold of 2.4%, which corresponds to the 
average 10-year risk of breast cancer for women age 47 years. This 
threshold was reached at 32 years for women whose PRS is above 
the 99th percentile of the PRS, and 57 years for women in the 20th 
to 40th percentiles of the PRS, and was never reached for women 
in lower percentiles (Figure 3D). As expected, lifetime risks were 
higher, and the ages at which the 2.4% threshold was reached were 
lower for women with a family history of breast cancer (Figure 4).

Discussion

In this report, we evaluated the degree of breast cancer risk 
stratification that can be attained in women of European 

ancestry using data for 77 common genetic variants, summa-
rized as a PRS. Our results show that the PRS stratifies breast 
cancer risk in women without family history and refines genetic 
risk in women with a family history of breast cancer.

The PRS we used (sum of the minor alleles weighted by the 
per-allele log OR) is the most efficient, assuming that SNP odds 
ratios combine multiplicatively (ie, no interactions on a log-addi-
tive scale) (18). Evaluation of pairwise SNP interactions showed 
that this was a reasonable assumption. Although no individual 
interactions could be established, we observed an excess of 
multiplicative interactions at P less than .01. This could be the 
result of underlying population stratification not accounted for 
by principal components adjustment or reflect the presence of 
multiple interactions too weak to be established individually. 
A recent study also found no evidence for interactions among 
SNPs with weaker evidence for main effects (19). Although we 
did not test for higher order interactions among SNPs, consist-
ency between empirical and predicted odds ratios assuming 
multiplicative effects suggests that across all possible multiway 
interactions the overall effect is close to multiplicative.

The 77-SNP PRS was associated with a larger effect than pre-
viously reported for a 10-SNP PRS (20). For example, our odds 
ratio for breast cancer for women in the highest compared with 
the middle quintile was 1.82 (95% CI = 1.73 to 1.90) vs 1.44 (95% 
CI  =  1.35 to 1.53) for the 10-SNP PRS (20). A  potential concern 
is that the PRS was constructed using iCOGS data that were, 
in part, the basis for discovery of many of the loci. This could 
lead to some upward bias in the odds ratio estimates (winner’s 
curse); however, analyses based on a large study (pKARMA) that 
was not part of any discovery set obtained similar estimates 
indicating that any winner’s curse effect is likely to be small.

There has been little evidence of differences by age in the 
per-allele odds ratio for individual SNPs. However, we observed 
a small but statistically significant decrease in odds ratio for PRS 
with increasing age. As expected, the odds ratio for family his-
tory was reduced after adjustment for the PRS. This attenuation 
(~12.6%) was consistent with the estimated fraction of the two-
fold FRR explained by the 77-SNPs under a polygenic risk model 
(15). The joint effects of PRS and family history were consistent 
with a multiplicative model. A  stronger FRR was observed for 
women at the lowest percentile of the PRS, but this was based 
on small numbers and requires confirmation. The degree of 
attenuation of the family history odds ratio was lower below age 
40 years, as a result of the higher FRR at young ages, suggesting 
that rarer genetic variants may be more important at young ages.

We calculated the absolute risk of developing breast cancer for 
women at different levels of genetic risk according to the PRS. The 
lifetime risk for women below the first and above the 99th percen-
tile of the PRS was 3.5% (95% CI = 2.6% to 4.4%) and 29.0% (95% 
CI = 24.9% to 33.5%), respectively. UK NICE guidelines recommend 
enhanced surveillance for women with a family history with 
lifetime risk of developing breast cancer over 17% (21). Figure 3 
indicates that the PRS alone could identify approximately 8% of 
all women in the UK population at this level of risk, regardless of 
family history or other risk factors; approximately 17% of all breast 
cancer cases in the population would be expected to occur among 
these women. By contrast, the low absolute risk of breast cancer 
among women at the lowest end of the risk distribution raises 
the possibility that such women might be recommended more 
limited surveillance. Women at different levels of the PRS reach 
the same 10-year risk threshold at different ages, supporting the 
notion that using SNP profiles rather than age alone as a crite-
rion to offer routine mammographic screening could lead to more 
effective screening programs (6). The utility of such an approach 

Table 4.  Validation analyses in the pKARMA study*

Percentile of PRS, %

All studies in iCOGS 
excluding pKARMA pKARMA only

OR† (95% CI) OR (95% CI)

<1 0.29 (0.23 to 0.37) 0.48 (0.28 to 0.83)
>1–5 0.42 (0.37 to 0.47) 0.48 (0.36 to 0.63)
5–10 0.55 (0.50 to 0.61) 0.58 (0.45 to 0.74)
10–20 0.65 (0.60 to 0.70) 0.68 (0.57 to 0.81)
20–40 0.80 (0.76 to 0.85) 0.81 (0.71 to 0.94)
40–60 1 (referent) 1 (referent)
60–80 1.18 (1.12 to 1.24) 1.35 (1.19 to 1.54)
80–90 1.48 (1.39 to 1.57) 1.56 (1.34 to 1.82)
90–95 1.69 (1.56 to 1.82) 2.05 (1.70 to 2.47)
95–99 2.20 (2.03 to 2.38) 2.12 (1.73 to 2.59)
>99 2.81 (2.43 to 3.24) 3.06 (2.16 to 4.34)

* Comparison of effect sizes (odds ratios) by percentile of the polygenic risk 

score (PRS) in pKARMA (not included in the discovery set) and in all other stud-

ies (included in the discovery set). The pKARMA study comprises 4553 breast 

cancer cases and 5537 control women. Only single nucleotide polymorphisms 

(SNPs) that reached genome-wide statistical significance in a meta-analysis of 

iCOGS and previous combined genome-wide association studies were included 

in the risk score, and the effect sizes for each SNP were estimated using iCOGS 

database minus pKARMA (Supplementary Table 9, available online). PRS = poly-

genic risk score; OR = odds ratio.

† Odds ratios are for different percentiles of the polygenic PRS relative to the 

middle quintile (40% to 60%) of the PRS.
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would, however, depend on the acceptability of risk-based sur-
veillance, together with health economic considerations.

Prediction of subtype-specific breast cancer should also be 
informative for prevention (4). Recently updated NICE guide-
lines include recommendations to use endocrine treatments 
(tamoxifen and raloxifene) for primary prevention of breast 
cancer for women at moderate to high risk (21). These guide-
lines are based on risk of overall breast cancer for women with 
a family history of breast cancer. However, because these drugs 
prevent only ER-positive tumours, risk estimates incorporating 
the ER-positive PRS could better define the subset of women 
most likely to benefit. Our sample was derived from studies in 
Europe, North America, and Australia and restricted to women 
of European origin. While the results should be widely appli-
cable in these populations, additional studies will be required 
to develop and validate genetic profiles for other popula-
tions, in particular Asian and African populations, where SNP 

associations, background incidence rates and distribution of 
tumour characteristics are substantially different.

Our analysis summarized family history in terms of a single 
binary variable, but familial risk of breast cancer also depends 
on the number of affected and unaffected relatives and their 
ages. Risk prediction algorithms that combine full family history 
data with a polygenic component perform better than simpler 
models (22). It is possible to incorporate the current PRS into 
family-history based models for breast cancer, such BOADICEA, 
to improve genetic risk prediction (23).

The COGS project includes the largest set of breast cancer 
studies with both phenotype and genotype information, and 
our analysis utilized by far the largest number of SNPs with 
confirmed associations with breast cancer, including all SNPs 
discovered to date. Further refinement of the risk stratification 
should be possible through incorporating additional SNPs exhib-
iting evidence for association, but not at formal genome-wide 

Figure 1.  Distribution of the number of breast cancer risk alleles (A) and polygenic risk score residuals after adjusting the polygenic risk score (PRS) for study and seven 

principal components (B), in 33 673 breast cancer cases and 33 381 control women of European origin. The PRS approximated a normal distribution in both breast cancer 

cases and control women. The mean PRS was 0.69 for breast cancer cases and 0.49 for control women. PRS residuals are standardized Pearson’s residuals calculated 

after regression of the score on seven principal components.
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Figure 2.  Association between the polygenic risk score (PRS) and breast cancer risk in women of European origin for (A) all breast cancers, (B) estrogen receptor (ER)–

positive disease, and (C) ER-negative disease. Odds ratios are for different percentiles of the PRS relative to the middle quintile (40% to 60%) of the PRS. Odds ratios and 

95% confidence intervals are shown. Regular lines denote the observed estimates, and dotted lines the theoretical estimates under a multiplicative polygenic model 

with a standard deviation of the PRS of 0.45 for all breast cancer, 0.50 for ER-positive breast cancer, and 0.38 for ER-negative breast cancer, as derived from the estimated 

effect sizes and allele frequencies/haplotype frequencies for each locus. PRS = polygenic risk score.
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statistical significance, together with variants in genes confer-
ring intermediate or high risk (15).

The risk discrimination provided by the genetic profile, 
summarised in the PRS and family history, should be further 
improved by combining, with lifestyle risk factors, benign breast 
disease, and mammographic density (24,25,28). Although we did 
not consider lifestyle factors explicitly in this dataset, other large 
studies have found no good evidence for interactions between 
common susceptibility SNPs and lifestyle factors for breast can-
cer, suggesting that SNPs generally combined multiplicatively 
(26,27). Darabi et al. (25) estimated a C-statistic of 0.60 for life-
style risk factors including mammographic density. By compari-
son, we estimated the C-statistic for the PRS to be 0.62. Assuming 
that the multiplicative model is correct, the C-statistic would 
increase to 0.66 with the addition of the lifestyle risk factors. If 
modifiable risk factors and the PRS act multiplicatively, target-
ing public health interventions to women at higher genetic risk 
should result in a larger absolute risk reduction. For example, 
the decision to prescribe hormone replacement therapy might 
be guided by the PRS (28). Similar considerations would apply to 
risk-reducing interventions such as preventive medication and 
oophorectomy.

Some limitations of this study should be noted. Although 
the study was extremely large, the numbers of breast cancer 
cases and control women were still too limited to provide pre-
cise estimates of relative risks in the extremes of the PRS (for 
example, the highest 1%). Numbers were also limited to explore 
the effects at very young ages, and estimates were less precise 
for ER-negative disease. There was heterogeneity among the 
studies, both in population and design, but we saw no evidence 

of heterogeneity in SNP odds ratios among studies, suggesting 
that the estimates should be broadly applicable. Oversampling 
for family history could have led to a bias in the odds ratios by 
PRS, and for this reason we excluded studies that were sam-
pled on the basis of family history. Finally, we were not able 
to consider lifestyle/environmental risk factors in our model, 
as data on all of these risk factors were not consistently avail-
able across all studies. Interactions between the PRS and envi-
ronmental factors will need to be explicitly tested for in future 
studies.

In previous reports, improvement in risk discrimination 
by genomic profiling over that conferred by known risk fac-
tors was not substantial (24,29), although better discrimination 
was obtained for certain subgroups of women (30,31). Previous 
analyses, however, were based on a much smaller set of SNPs 
than included in this report. This study provides precise empiri-
cal estimates of the combined effects of multiple SNPs and the 
level of risk stratification possible. These estimates may inform 
the debate on public health utility and implementation of the 
PRS in clinical practice. Our work suggests that the PRS, particu-
larly when used in combination with other risk factors, could 
help identify subsets of women at different levels of risk, for 
whom management would differ. The PRS may facilitate early 
detection of cancers in younger women and, importantly, iden-
tify individuals at risk of specific subtypes of breast cancer. 
Finally, there is potential for a stronger impact in modifying 
environmental factors in women at higher risk of breast cancer. 
Prospective analyses of the 77 SNP PRS, in combination with 
other risk factors, will be required to validate the overall accu-
racy of risk prediction. Such a comprehensive risk prediction 

Figure 3.  Cumulative and 10-year absolute risks of developing breast cancer for women of European origin by percentiles of the polygenic risk score (PRS). Cumulative 

absolute risk of developing breast cancer for (A) all breast cancers, (B) estrogen receptor (ER)–positive disease, and (C) ER-negative disease by percentiles of the PRS; and 

10-year absolute risk of developing breast cancer for (D) all breast cancers, (E) ER-positive disease, and (F) ER-negative disease. Note different scales and PRS categories 

in the different panels. The red line shows the 2.4% risk threshold corresponding to the risk for women age 47 years who were eligible for screening, calculated as 

described in the Supplementary Methods (available online). Absolute risks were calculated using the PRS relative risks estimated as described in the Supplementary 

Methods (available online), and breast cancer incident rates and mortality from other causes obtained from the UK National Office for Statistics. For subtype-specific 

disease, the absolute risk for women in a particular PRS category for ER-positive disease and another PRS category for ER-negative disease were calculated. Information 

on proportions of tumors by ER status was obtained from the West Midlands Registry.
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algorithm could provide a powerful basis for stratified breast 
cancer prevention programs.
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Figure 4.  Cumulative and 10-year absolute risks of developing breast cancer for women of European origin with and without a family history of breast cancer by per-

centiles of the polygenic risk score (PRS). Cumulative absolute risk of developing breast cancer for women (A) without a family history and (B) with a family history, 

and 10-year absolute risk of developing breast cancer for women (C) without a family history, and (D) with a family history of breast cancer by percentiles of the PRS. 

The red line shows the 2.4% risk threshold corresponding to the risk for women age 47 years who were eligible for screening. Absolute risks were calculated using PRS 

relative risks estimated as described in Methods, and breast cancer incident rates and mortality from other causes obtained from the UK National Office for Statistics.
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