The University of Southampton
University of Southampton Institutional Repository

Proximal bodies in hypersonic flows

Proximal bodies in hypersonic flows
Proximal bodies in hypersonic flows
Hypersonic flows involving two or more bodies travelling in close proximity to one another are encountered in several important situations. The present work seeks to explore one aspect of the resulting flow problem by investigating the forces experienced by a secondary body when it is within the domain of influence of a primary body travelling at hypersonic speeds.

An analytical methodology based on the blast wave analogy is developed and used to predict the secondary force coefficients for simple geometries in both two and three dimensions. When the secondary body is entirely inside the primary shocked region, the nature of the lateral force coefficient is found to depend strongly on the relative size of the two bodies. For two spheres, the methodology predicts that the secondary body will experience an exclusively attractive lateral force if the secondary diameter is larger than one-sixth of the primary diameter. The analytical results are compared with those from numerical simulations and reasonable agreement is observed if an appropriate normalization for the relative lateral displacement of the two bodies is used.

Results from a series of experiments in the T5 hypervelocity shock tunnel are also presented and compared with perfect-gas numerical simulations, with good agreement. A new force-measurement technique for short-duration hypersonic facilities, enabling the experimental simulation of the proximal bodies problem, is described. This technique provides two independent means of measurement, and the agreement observed between the two gives a further degree of confidence in the results obtained.
0022-1120
209-237
Laurence, Stuart J.
c9870caa-b37e-4ee1-b4a4-3b348c2f9bc0
Deiterding, Ralf
ce02244b-6651-47e3-8325-2c0a0c9c6314
Hornung, Hans G.
131c8c37-3ba4-4171-94e8-090290f3b83d
Laurence, Stuart J.
c9870caa-b37e-4ee1-b4a4-3b348c2f9bc0
Deiterding, Ralf
ce02244b-6651-47e3-8325-2c0a0c9c6314
Hornung, Hans G.
131c8c37-3ba4-4171-94e8-090290f3b83d

Laurence, Stuart J., Deiterding, Ralf and Hornung, Hans G. (2007) Proximal bodies in hypersonic flows. Journal of Fluid Mechanics, 590, 209-237. (doi:10.1017/S0022112007007987).

Record type: Article

Abstract

Hypersonic flows involving two or more bodies travelling in close proximity to one another are encountered in several important situations. The present work seeks to explore one aspect of the resulting flow problem by investigating the forces experienced by a secondary body when it is within the domain of influence of a primary body travelling at hypersonic speeds.

An analytical methodology based on the blast wave analogy is developed and used to predict the secondary force coefficients for simple geometries in both two and three dimensions. When the secondary body is entirely inside the primary shocked region, the nature of the lateral force coefficient is found to depend strongly on the relative size of the two bodies. For two spheres, the methodology predicts that the secondary body will experience an exclusively attractive lateral force if the secondary diameter is larger than one-sixth of the primary diameter. The analytical results are compared with those from numerical simulations and reasonable agreement is observed if an appropriate normalization for the relative lateral displacement of the two bodies is used.

Results from a series of experiments in the T5 hypervelocity shock tunnel are also presented and compared with perfect-gas numerical simulations, with good agreement. A new force-measurement technique for short-duration hypersonic facilities, enabling the experimental simulation of the proximal bodies problem, is described. This technique provides two independent means of measurement, and the agreement observed between the two gives a further degree of confidence in the results obtained.

This record has no associated files available for download.

More information

Published date: November 2007
Organisations: Aerodynamics & Flight Mechanics Group

Identifiers

Local EPrints ID: 380619
URI: http://eprints.soton.ac.uk/id/eprint/380619
ISSN: 0022-1120
PURE UUID: 5f79aeaa-3c92-4996-8d72-0e7048ef7a96
ORCID for Ralf Deiterding: ORCID iD orcid.org/0000-0003-4776-8183

Catalogue record

Date deposited: 09 Sep 2015 11:01
Last modified: 15 Mar 2024 03:52

Export record

Altmetrics

Contributors

Author: Stuart J. Laurence
Author: Ralf Deiterding ORCID iD
Author: Hans G. Hornung

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×