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Numerical simulation can be key to the understanding of the multidimensional nature of transient detonation waves. However, the
accurate approximation of realistic detonations is demanding as a wide range of scales needs to be resolved. This paper describes
a successful solution strategy that utilizes logically rectangular dynamically adaptive meshes. The hydrodynamic transport scheme
and the treatment of the nonequilibrium reaction terms are sketched. A ghost fluid approach is integrated into the method to allow
for embedded geometrically complex boundaries. Large-scale parallel simulations of unstable detonation structures of Chapman-
Jouguet detonations in low-pressure hydrogen-oxygen-argon mixtures demonstrate the efficiency of the described techniques in
practice. In particular, computations of regular cellular structures in two and three space dimensions and their development under
transient conditions, that is, under diffraction and for propagation through bends are presented. Some of the observed patterns
are classified by shock polar analysis, and a diagram of the transition boundaries between possible Mach reflection structures is
constructed.

1. Introduction

Reacting flows have been a topic of on-going research since
more than one hundred years. The interaction between
hydrodynamic flow and chemical kinetics can be extremely
complex and even today many phenomena are not very well
understood. One of these phenomena is the propagation of
detonation waves in gaseous media. While detonations prop-
agate at supersonic velocities between 1000 and 2000 m/s,
they inhibit nonnegligible instationary substructures in the
millimeter range. Experimental observations can provide
only limited insight and it is therefore not surprising
that the understanding of the multidimensionality has im-
proved little since the first systematic investigations [1,
2]. An alternative to laboratory experiments is numerical
simulations of the governing thermo- and hydrodynamic
equations. But the additional source terms modeling detailed
nonequilibrium chemistry are often stiff and introduce new

and extremely small scales into the flow field. Their accurate
numerical representation requires finite volume meshes with
extraordinarily high local resolution.

In this paper, we summarize a significant body of mul-
tiyear work [3–8] devoted to simulating multidimensional
detonations with detailed and highly stiff chemical kinetics
on parallel machines with distributed memory, especially on
clusters of standard personal computers. The objective of
all presented computations is to resolve the transverse-wave
structures, that form the characteristic cellular structures
intrinsic to detonation propagation in two and three space
dimensions, accurately and without computational ambigu-
ity. We sketch the design of AMROC (Adaptive Mesh Refine-
ment in Object-oriented C++), a freely available dimension-
independent mesh adaptation framework for time-explicit
Cartesian finite volume methods on distributed memory
machines [9, 10], and discuss briefly the locality-preserving
rigorous domain decomposition technique it employs [11].
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Figure 1: Density and temperature field of a self-sustaining
hydrogen-oxygen detonation (dCJ ≈ 1626.9 m/s, lig ≈ 1.404 mm)
calculated with the ZND theory (cf. Section 4.2). The abscissa shows
the distance behind the detonation front in mm.

The framework provides a generic implementation of the
adaptive mesh refinement (AMR) algorithm after Berger and
Colella [12] designed especially for the solution of hyperbolic
fluid flow problems on logically rectangular grids. The ghost
fluid approach is integrated into the refinement algorithm to
allow for complex moving boundaries represented implicitly
by additional scalar level set variables [13, 14]. Briefly, we
describe the employed numerical methods and the treat-
ment of the non-equilibrium reaction terms. In Section 6,
several two- and three-dimensional simulations of cellular
detonation structures in low-pressure hydrogen-oxygen-
argon mixtures simulated in purely Cartesian geometry
and with embedded static boundaries are presented. The
paper concludes by demonstrating that the high-resolution
adaptive computations allow a detailed quantitative analysis
of the observed transverse-wave patterns. It is found that
nonreactive shock wave reflection theory [15], extended to
thermally perfect gas mixtures, is applicable to classify the
observed transient triple point structures unambiguously as
transitional and double Mach reflection patterns.

2. Detonation Theory

A detonation is a shock-induced combustion wave that
internally consists of a discontinuous hydrodynamic shock
wave followed by a smooth region of decaying combustion.
The adiabatic compression due to the passage of the shock
rises the temperature of the combustible mixture above
the ignition limit. The reaction results in an energy release
driving the shock wave forward. In a self-sustaining detona-
tion, shock and reaction zone propagate essentially with an
identical speed dCJ that is approximated to good accuracy by
the classical Chapman-Jouguet (CJ) theory, see for example,
[16]. But up to now, no theory exists that describes
the internal flow structure satisfactory. The Zel’dovich-von
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Figure 2: Regular detonation structure at three different time steps
drawn on top of the triple point trajectories.

Neumann-During (ZND) theory is widely believed to repro-
duce the one-dimensional detonation structure correctly (see
e.g., Figure 1), but already early experiments [1] uncovered
that the reduction to one space dimension is not even
justified in long combustion devices. It was found that
detonation waves usually exhibit nonnegligible instationary
multidimensional substructures and do not remain pla-
nar. The multidimensional instability manifests itself in
instationary shock waves propagating perpendicular to the
detonation front. A complex flow pattern is formed around
each triple point, where the detonation front is intersected by
a transverse shock. Pressure and temperature are increased
remarkably in a triple point and the chemical reaction is
enhanced drastically giving rise to an enormous local energy
release. Hence, the accurate representation of triple points is
essential for safety analysis, but also in technical applications,
for example, in the pulse detonation engine. Some particular
mixtures, for example, low-pressure hydrogen-oxygen with
high argon dilution, are known to produce very regular
triple point movements. The triple point trajectories form
regular “fish-scale” patterns, so-called detonation cells, with
a characteristic length L and width λ (compare Figure 2).

Figures 2 and 3 display the hydrodynamic flow pattern
of a detonation with regular cellular structure as it is known
since the early 1970s, see for example, [2] or [17]. Figure 3
shows the periodic wave configuration around a triple point
in detail. It consists of a Mach reflection, a flow pattern
well known from nonreactive supersonic hydrodynamics
(see e.g., [15, 18] for details). The undisturbed detonation
front is called the incident shock, while the transverse wave
takes the role of the reflected shock. The triple point is driven
forward by a strong shock wave, called Mach stem. Mach
stem and reflected shock enclose the slip line, the contact
discontinuity.

The Mach stem is always much stronger than the incident
shock, which results in a considerable reduction of the
induction length lig, the distance between leading shock and
measurable reaction. The shock front inside the detonation
cell travels as two Mach stems from point A to the line BC. In
the points B and C, the triple point configuration is inverted
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nearly instantaneously and the front in the cell becomes the
incident shock. Along the symmetry line AD, the change is
smooth and the shock strength decreases continuously. In
D, the two triple points merge exactly in a single point. The
incident shock vanishes completely and the slip line, which
was necessary for a stable triple point configuration between
Mach stem and incident shock, is torn off and remains
behind. Two new triple points with two new slip lines develop
immediately after D.

3. Governing Equations

The appropriate model for detonation propagation in pre-
mixed gases with realistic chemistry are the inviscid Euler
equations for multiple thermally perfect species with reactive
source terms [16, 19]. These equations form a system of
inhomogeneous hyperbolic conservation laws that reads

∂tρi +∇ · (ρi�u
) =Wiω̇i,

∂t
(
ρ�u
)

+∇ · (ρ�u⊗ �u) +∇p = 0,

∂t
(
ρE
)

+∇ · ((ρE + p
)
�u
) = 0,

(1)

with i = 1, . . . ,K . Herein, ρi denotes the partial density of
the ith species and ρ = ∑K

i=1 ρi is the total density. The
ratios Yi = ρi/ρ are called mass fractions. We denote the
velocity vector by �u and E is the specific total energy. We
assume that all species are ideal gases in thermal equilibrium,
and the hydrostatic pressure p is given as the sum of
the partial pressures pi = RTρi/Wi with R denoting
the universal gas constant and Wi the molecular weight,
respectively. The evaluation of the last equation requires
the previous calculation of the temperature T. As detailed
chemical kinetics typically require species with temperature-
dependent material properties, each evaluation of T involves
the approximate solution of an implicit equation by Newton
iteration [3].

The chemical production rate for each species is derived
from a reaction mechanism of J chemical reactions as
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with ν
f /r
ji denoting the forward and backward stoichiometric

coefficients of the ith species in the jth reaction. The rate

expressions k
f /r
j (T) are calculated by an Arrhenius law, see

for example, [16].

4. Numerical Methods

We use the time-operator splitting approach or method of
fractional steps [20] to decouple hydrodynamic transport
and chemical reaction numerically. This technique is most
frequently used for time-dependent reactive flow computa-
tions. The homogeneous Euler equations and the usually stiff
system of ordinary differential equations

∂tρi =Wiω̇i
(
ρ1, . . . , ρK ,T

)
, i = 1, . . . ,K , (3)
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Figure 3: Enlargement of the Mach reflection pattern around a
periodical triple point configuration. E: reflected shock, F: slip line,
G: diffusive extension of slip line with flow vertex.

are integrated successively with the data from the preceding
step as initial condition. The advantage of this approach is
that a globally coupled implicit problem is avoided and a
time-implicit discretization, which accounts for the stiffness
of the reaction terms, needs to be applied only local in
each finite volume cell. We use a semi-implicit Rosenbrock-
Wanner method [21] to integrate (3) within each cell.
Temperature-dependent material properties are derived
from lookup tables that are constructed during start-up of
the computational code. The expensive reaction rate expres-
sions (2) are evaluated by a mechanism-specific Fortran-77
function, which is produced by a source code generator on
top of the Chemkin-II library [22] in advance. The code
generator implements the reaction rate formulas without any

loops and inserts constants such as ν
f /r
ji directly into the code.

Since detonations involve supersonic shock waves, we
use a finite volume discretization that achieves a proper
upwinding in all characteristic fields (cf. [4, 6, 7]). The
scheme utilizes a quasi-one-dimensional approximate Rie-
mann solver of Roe-type [23] and is extended to multiple
space dimensions via the method of fractional steps, see
for example, [24]. To circumvent the intrinsic problem of
unphysical total densities and internal energies near vacuum
due to the Roe linearization, cf. [25], the scheme has the
possibility to switch to the simple, but extremely robust
Harten-Lax-Van Leer (HLL) Riemann solver. Negative mass
fraction values are avoided by a numerical flux modification
[26]. Finally, the occurrence of the disastrous carbuncle phe-
nomena, a multidimensional numerical crossflow instability
that destroys every simulation of strong grid-aligned shocks
or detonation waves completely and has been documented
first by Quirk [27], is prevented by introducing a small
amount of additional numerical viscosity in a multidimen-
sional way, cf. [28]. A detailed derivation of the entire Roe-
HLL scheme including all necessary modifications can be
found in [3]. This hybrid Riemann solver is extended to
a second-order accurate method with the MUSCL-Hancock
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Figure 4: Moving wall boundary conditions for Euler equations in
one space dimension.

variable extrapolation technique by Van Leer (see [24] for a
detailed derivation).

4.1. Embedded Complex Boundaries. Higher-order shock-
capturing finite volume schemes are most efficient on rect-
angular Cartesian grids. In order to consider geometrically
complex moving boundaries within the Cartesian upwind
scheme outlined above, we use some of the finite volume
cells as ghost cells to enforce immersed boundary conditions,
cf. [13] or [29]. Their values are set immediately before the
original numerical update to model moving embedded walls
and can be understood as part of the numerical scheme. The
boundary geometry is mapped onto the Cartesian mesh by
employing a scalar level set function ϕ that stores the signed
distance to the boundary surface and allows the efficient
evaluation of the boundary outer normal in every mesh point
as �n = ∇ϕ/|∇ϕ| [30]. A cell is considered to be a valid fluid
cell within the interior if the distance in the cell midpoint is
positive and is treated as exterior otherwise. The numerical
stencil by itself is not modified, which causes a slight diffu-
sion of the boundary location throughout the method and
results in an overall nonconservative scheme. We alleviate
such errors and the unavoidable staircase approximation
of the boundary with this approach effectively by using
the dynamic mesh adaptation technique described in Sec-
tion 5 to also refine the Cartesian mesh appropriately along
the boundary. Other authors have also presented cut-cell
techniques that utilize the correct boundary flux [31, 32];
however, the proposed numerical circumventions of the
severe time step restriction in time-explicit schemes, that can
result from small cells created by the boundary intersection,
are inherently complicate and most approaches have not
been extended successfully to three space dimensions yet.

For the inviscid Euler equations (1), the boundary con-
dition at a rigid wall moving with velocity �w is �u · �n = �w · �n.
Enforcing the latter with ghost cells, in which the discrete
values are located in the cell centers, requires the mirroring of
the primitive values ρi, �u, p across the embedded boundary.
The normal velocity in the ghost cells is set to (2�w·�n−�u·�n)�n,
while the mirrored tangential velocity remains unmodified.
The construction of the velocity vector within the ghost cells
therefore reads

�u′ = (2�w ·�n− �u ·�n)�n +
(
�u ·�t

)
�t

= 2
((
�w − �u) · �n)�n + �u

(4)

Figure 5: Interpolation from interior cells to construct mirrored
values to be used within internal ghost cells (gray).

with �t denoting the boundary tangential. This construction
of discrete values in ghost cells (indicated by gray) for (1) is
depicted in one space dimension in Figure 4.

The utilization of mirrored ghost cell values in a ghost
cell center �x requires the calculation of spatially interpolated
values in the point

�̃x = �x + 2ϕ�n (5)

from neighboring interior cells. For instance in two space
dimensions, we employ a bilinear interpolation between
usually four adjacent cell values, but directly near the
boundary the number of interpolants needs to be decreased,
cf. Figure 5. It has to be underlined that an extrapolation in
such situations is inappropriate for hyperbolic problems with
discontinuities like detonation waves that necessarily require
the monotonicity preservation of the numerical solution.
Figure 5 highlights the reduction of the interpolation stencil
for some exemplary cases close to the embedded boundary.
The interpolation locations according to (5) are indicated by
the origins of the red arrows. See [7] for further details.

4.2. Meshes for Detonation Simulation. Numerical simula-
tions of detonation waves require computational meshes
that are able to represent the strong local flow changes
due to the reaction correctly. In particular, the shock of a
detonation wave with detailed kinetics can be very sensitive
to changes of the reaction behind, and if the mesh is too
coarse to resolve all reaction details correctly, the Riemann
Problem at the detonation front is changed leading to a
wrong speed of propagation. We make a simple discretization
test in order to illustrate how fine computational meshes
for accurate detonation simulations in fact have to be.
Figure 1 displays the density and temperature profile for the
frequently studied H2 : O2 : Ar Chapman-Jouguet detonation
with molar ratios of 2 : 1 : 7 in the unburned mixture with
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Figure 6: Representation of two mass fraction distributions on grids with different mesh widths for the detonation shown in Figure 1. The
dots represent the values in the center of a finite volume. The abscissas show the distance behind the detonation front in mm.

initial temperature T0 = 298 K and pressure p0 = 6.67 kPa.
Figure 6 shows the distributions of YH2O and YH2O2 according
to the ZND detonation model for this detonation discretized
with different grids. Apparently, a resolution of 4 finite
volumes per induction length (4 Pts/lig with lig ≈ 1.404 mm)
would not be sufficient to capture the maximum of the
intermediate product H2O2 correctly. This requires at least
5 to 6 Pts/lig; however, in triple points significantly finer
resolutions can be expected. As discretizations of realistic
combustors with such fine uniform meshes typically would
require up to 109 points in the two- and up to 1012 points in
the three-dimensional case, the application of a dynamically
adaptive mesh refinement technique is imperative.

5. Adaptive Mesh Refinement

In order to supply the required temporal and spatial reso-
lution efficiently, we employ the block-structured adaptive
mesh refinement (AMR) method after Berger and Colella
[12], which is tailored especially for hyperbolic conservation
laws on logically rectangular finite volume grids. We have
implemented the AMR method in a generic, dimension-
independent object-oriented framework in C++. It is called
AMROC (Adaptive Mesh Refinement in Object-oriented
C++) and is free of charge for scientific use [9] (Note
that the most recent version V2.0 of AMROC is part of
the Virtual Test Facility software [10], available at http://
www.cacr.caltech.edu/asc.). An efficient parallelization strat-
egy for distributed memory machines has been found, and
the codes can be executed on all systems that provide the MPI
library.

Figure 7: Structured AMR employs a hierarchy of successively
embedded rectangular subgrids.

5.1. Structured AMR Method. Instead of replacing single cells
by finer ones, as it is done in cell-oriented refinement tech-
niques, structured AMR methods follow a patch-oriented
approach. Cells being flagged by various error indicators
(shaded in Figure 7) are clustered with a special algorithm
[33] into nonoverlapping rectangular grids. Refinement
grids are derived recursively from coarser ones, and a hier-
archy of successively embedded levels is thereby constructed,
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see for example, Figure 7. All mesh widths on level l are rl-
times finer than on level l − 1, that is, Δtl := Δtl−1/rl and
Δxn,l := Δxn,l−1/rl with rl ≥ 2 for l > 0 and r0 = 1, and
a time-explicit finite volume scheme (in principle) remains
stable on all levels of the hierarchy. The recursive integration
order visualized in Figure 8 is an important difference to
usual unstructured adaptation strategies and one of the main
reasons for the high efficiency of the approach.

The numerical scheme is applied on level l by calling
a single-grid routine in a loop over all subgrids. The subgrids
become computationally decoupled by employing additional
ghost cells around each computational grid. Three types of
different ghost cells have to be considered in the sequential
case, see Figure 9. Cells outside of the root domain are used
to implement physical boundary conditions. Ghost cells
overlaid by a grid on level l have a unique interior cell an-
alogue and are set by copying the data value from the grid,
where the interior cell is contained (synchronization). On
the root level, no further boundary conditions need to be
considered, but for l > 0 also internal boundaries can occur.
They are set by a conservative time-space interpolation from
two previously calculated time steps of level l − 1.

Beside a general data tree that stores the topology of the
hierarchy, the AMR method requires at most two regular
arrays assigned to each subgrid. They contain the discrete
vector of state for the actual and updated time step. The
regularity of the data allows high performance on vector
and superscalar processors and cache optimizations. Small
data arrays are effectively avoided by leaving coarse level data
structures untouched when higher-level grids are created.
Values of cells covered by finer subgrids are overwritten by
averaged fine grid values subsequently. This operation leads
to a modification of the numerical stencil on the coarse mesh
and requires a special flux correction in cells abutting a fine
grid. The correction replaces the coarse grid flux along the
fine grid boundary by a sum of fine fluxes and ensures the
discrete conservation property of the hierarchical method
at least for purely Cartesian problems without embedded
boundaries. See [12] or [3] for details.

5.2. Parallelization. Up to now, various reliable implemen-
tations of the AMR method for single processor computers
have been developed, see for instance [34] or [35]. Even the
usage of parallel computers with shared memory is straight-
forward, because a time-explicit scheme allows the parallel
calculation of the gridwise numerical update, cf. [33].
However, the question for an efficient parallelization strategy
becomes more delicate for distributed memory architectures
since on such machines the costs for communication can
not be neglected. Due to the technical difficulties in imple-
menting dynamical adaptive methods in distributed memory
environments, only few parallelization strategies have been
considered in practice yet, cf. [36] or [37].

In the AMROC framework, we follow a rigorous domain
decomposition approach and partition the AMR hierarchy
from the root level on. The key idea is that all higher level
domains are required to follow this “floor-plan”. A careful
analysis of the AMR algorithm uncovers that the only parallel

Level 2
r2 = 2

Level 1
r1 = 4

Root level
r0 = 1

3 4 6 7 9 10 12 13

1

2 5 8 11

Time

Regridding of finer levels

Base level stays fixed

Figure 8: Structured AMR allows for recursively refined temporal
integration.

Interpolation
Synchronization
Physical boundary

Figure 9: Sources of ghost cell values at the boundaries of an AMR
subgrid.

operations under this paradigm are ghost cell synchro-
nization, redistribution of the AMR hierarchy, and the
application of the previously mentioned flux correction
terms. Interpolation and averaging, but in particular the
calculation of the flux corrections, remain strictly local, cf.
[3, 11]. Currently, we employ a generalization of Hilbert’s
space-filling curve [38] to derive load-balanced root level
distributions at runtime. The entire AMR hierarchy is con-
sidered by projecting the accumulated work from higher
levels onto the root level cells. Although rigorous domain
decomposition does not lead to a perfect balance of workload
on single levels, good scale-up is usually achieved for
moderate CPU counts. Figure 10 shows a representative scal-
ability test for a three-dimensional spherical shock wave
problem for the numerically inexpensive Euler equations
for a single polytropic gas without chemical reaction. Roe’s
approximate Riemann solver within the multidimensional
Wave Propagation Method [39] is used as efficient single-
grid scheme. The test was run on a Pentium-4-2.4 GHz dual
processor cluster connected with Quadrics Interconnect.
The base grid has 323 cells and two additional levels with
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Figure 10: Representative AMROC scale-up test for fixed problem
size. The abscissa shows the number of processors.

refinement factors 2 and 4. The adaptive calculation uses
∼7.0 M cells in each time step instead of 16.8 M cells in the
uniform case. The calculation on 256 CPUs employs between
∼1,500 and ∼1,700 subgrids on each level. Displayed are
the average costs for each root level time step, which
involves two time steps on the middle level and eight on
the highest. All components of the dynamically adaptive
algorithm, especially regridding and parallel redistribution
are activated to obtain realistic results. Although we utilize a
single-grid update routine in Fortran 77 in a C++ framework
with full compiler optimization, the fraction of the time
spent in this Fortran routine is 90.5% on four and still 74.9%
on 16 CPUs. Hence, Figure 10 shows a satisfying scale-up for
at least up to 64 CPUs.

AMROC’s hierarchical data structures are derived from
the DAGH (Distributive Adaptive Grid Hierarchies) package
[37] and are implemented completely in C++. A redesign
of major parts of DAGH was necessary to allow the AMR
algorithm as it was described in the previous section.
Currently, AMROC consists of approximately 46,000 lines of
code in C++ and approximately 6,000 lines for visualization
and data conversion.

6. Numerical Results

Self-sustaining CJ detonations in low-pressure hydrogen-
oxygen mixtures with high-argon dilution are ideal can-
didates for fundamental detonation structure simulations,
because they are known to produce very regular detonation
cell patterns [2]. In the following, we will simulate such
mixtures with the objective of resolving the Mach reflection
structures around triple points with high accuracy. Although
the detailed hydrodynamic shock wave structure of periodi-
cally oscillating detonations in rectangular two-dimensional
channels has been fairly well established by now [3, 40,
41], numerous open questions remain for non-rectangular
geometries and three space dimensions.

6.1. Two-Dimensional Cellular Structure. We start by repro-
ducing the detonation structure result of Hu et al. [41], utiliz-
ing the dynamically adaptive computing approach presented

(a)

(b)

Figure 11: Color plot of temperature and schlieren plot of density
on refinement in 1st half of a detonation cell.

(a)

(b)

Figure 12: Color plots of temperature and schlieren plots of density
on refinement in 2nd half of a detonation cell.

in the previous sections. As initial conditions, the analytical
solution according to the one-dimensional ZND theory for
the CJ detonation of Figure 1 is extended to multiple space
dimensions, and transverse disturbances are initiated by
placing a small rectangular unreacted pocket behind the
detonation front, cf. [40] or [3]. Throughout this paper, only
the hydrogen-oxygen reaction mechanism extracted from
the larger hydrocarbon mechanism assembled by Westbrook
[42] is used. The mechanism consists of 34 elementary
reactions and considers the 9 species H, O, OH, H2, O2,
H2O, HO2, H2O2, and Ar. According to the ZND theory,
the induction length, the distance between leading shock
and head of reaction zone in one space dimension, is
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Table 1: Breakdown of computational time for the two-
dimensional cellular structure simulation.

Task %

Fluid dynamics 33.5

Chemical kinetics 36.8

Boundary setting 26.8

Recomposition 2.4

Misc. 0.5

Total [h CPU] 2150

lig ≈ 1.404 mm for this mechanism in the above configura-
tion. The detonation velocity is ∼1626.9 m/s.

Our shown dynamically adaptive computation has effec-
tively four times higher resolution (44.8 Pts/lig) than earlier
calculations [40] and is similarly resolved as the result by Hu
et al. [41] on a uniform mesh. Unfortunately, no technical
details are reported for this simulation. In our case, the
calculation was run on a small Beowulf-cluster of 7 Pentium
3-850 MHz-CPUs connected with a 1 Gb-Myrinet network
and required 2150 h CPU time (12.8 days wall time).

We simulate a physical time of 800 μs. After an initial
period of ∼200 μs, the simulation starts to exhibit very
regular detonation cells with oscillation period ∼32 μs.
Exploiting the spatial periodicity, we concentrate on the
high-resolution simulation of a single cell. The calculation
is done in a frame of reference attached to the detonation
and requires just the computational domain 10 cm × 3 cm.
The adaptive run uses a root level grid of 200 × 40
cells and two refinement levels with r1,2 = 4, where
∼3550 root level time steps (automatically chosen based on
CCFL ≈ 0.95) with average Δt0 ≈ 0.225μs are taken (All
computations herein used time steps automatically chosen
based on the largest Courant-Friedrichs-Lewy (CFL) number
CCFL encountered throughout the last root level time step.
In evaluating CCFL, our practical implementation considers
all hierarchical time steps, yet only adjustment of Δt0 is
permitted. This choice avoids having to deal with additional
steps during the recursive integration procedure, cf. Figure 8.
If the maximal CFL number exceeds a given threshold, the
software has the capability of repeating the entire root level
time step.) A physically motivated combination of scaled
gradients and heuristically estimated relative errors is applied
as adaptation criteria. These criteria are used similarly to
generate the refinement of all computations throughout
this paper (see [3, 7] for details). Note that in order to
simulate the shock wave patterns around the triple points,
it suffices to concentrate the computational expense on the
detonation front. The flow behind a detonation is basically
supersonic, and resolution can be dropped downstream
without affecting the approximation of the front structures.
Two typical snapshots with the corresponding refinement
close to the end of the simulation, when the oscillation is
perfectly regular, are displayed in the Figures 11 and 12.

A breakdown of the computational time spent in the
computationally most expensive parts for this simulation
is given in Table 1. The numerical integration is split into
the two main steps of the fractional step method: the fluid

Table 2: Breakdown of the computational time for the first three-
dimensional rectangular structure simulation.

Task %

Fluid dynamics 36.7

Chemical kinetics 20.3

Boundary setting 38.4

Recomposition 1.9

Misc. 2.7

Total [h CPU] 3800

Figure 13: Isolines of density on refinement levels.

dynamic update and the integration of the reactive source
term. A ratio between these portions of 1.1 is in good agree-
ment with timings reported by Oran and coworkers [40]
and underlines that a reasonable load-balancing is achieved
without considering the number of subcycling time steps
in the source term integration in the workload estimation
explicitly. The third important portion in Table 1 is the time
for setting the ghost cell values at subgrid boundaries, which
is dominated (∼90%) by parallel synchronization.

6.2. Three-Dimensional Cellular Structure. On 24 Athlon-
1.4 GHz double-processor nodes (2 Gb-Myrinet intercon-
nect), our approach allowed a sufficiently resolved com-
putation of the three-dimensional cellular structure of a
hydrogen-oxygen detonation. The maximal effective resolu-
tion of this calculation is 16.8 Pts/lig and the run required
3800 h CPU time (3.3 days wall time). Our adaptive results
are in perfect agreement with the calculations by Tsuboi et al.
[43] for the same configuration obtained on a uniform mesh
on a superscalar vector machine. A snapshot of the regular
two-dimensional solution of the preceding section is used to
initialize a three-dimensional oscillation in the x2-direction
and disturbed with an unreacted pocket in the orthogonal
direction. We use a computational domain of the size 7 cm×
1.5 cm × 3 cm that exploits the symmetry of the initial data,
but allows the development of a full detonation cell in the
x3-direction. Again, we simulate a physical time of 800 μs.
The AMROC computation uses a two-level refinement with
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Figure 14: Schlieren plots of density, mirrored at x2 = 0 cm for visualization, 5.0 cm < x1 < 7.0 cm.
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Figure 15: Schematic front view of the periodic triple point line
structure. The gray square shows the situation of (a) of Figure 14;
the black dotted square corresponds to (b) at the same time.

r1 = 2 and r2 = 3 on a base grid of 140 × 12 × 24 cells (cf.
Figure 13) and utilizes between 1.3 M and 1.5 M cells, instead
of 8.7 M cells like a uniformly refined grid. 3431 root level
time steps with average size Δt0 ≈ 0.233μs are taken. Note
how Table 2 clearly reflects the increased expense in solving
the hydrodynamic equations in three space dimensions.

After a settling time of about 20 periods (t ≈ 600μs), a
regular cellular oscillation with identical strength in x2- and
x3-direction can be observed. In both transverse directions,
the strong two-dimensional oscillations is present and forces
the creation of rectangular detonation cells of 3 cm width.
Like in the two-dimensional case, the oscillation period
is ∼32 μs. The transverse waves form triple point lines in
three space dimensions. During a complete detonation cell,
the four lines remain mostly parallel to the boundary and

hardly disturb each other, cf. Figure 14. The characteristic
triple point pattern can therefore be observed in all planes
perpendicular to a triple point line. Each triple point line is
driven forward by a Mach stem line into an incident shock
region. A region that is a Mach stem in one direction can be
either a Mach stem or an incident shock in the orthogonal
direction. The same is true for the incident shock, and
we consequently have three different types of rectangular
shock regions at the detonation front: Mach stem-Mach stem
(MM), Incident-Incident (II), and mixed type regions (MI)
[44]. An MM region is bounded only by Mach stems and
expands in the x2- and x3-direction. An II rectangle is formed
only by incident shocks and shrinks in both directions. The
MI region is of mixed type and expands in one direction,
while it shrinks in the other. Figure 15 displays the different
rectangular shock regions for a specific snapshot. It depends
on the initial flow field whether the upper or the lower
situation of Figure 14 appears in the simulation. Unlike
Williams et al. [44], who presented a similar calculation for
an overdriven detonation with simplified one-step reaction
model, we notice no phase-shift between both transverse
directions. In all our computations, only this regular three-
dimensional mode or a purely two-dimensional mode with
triple point lines just in x2- or x3-direction did occur. The
three-dimensional mode of propagation, called “rectangular-
mode-in-phase”, has also been found in experiments with
hydrogen-oxygen CJ detonations [45].

In order to verify the independence of the numerical
solution from the computational grid, we carry out a
similar three-dimensional simulation on a grid rotated by
45 degree and utilize periodic boundary conditions in
the x2- and x3-directions. The domain has the size 7 cm
× 3

√
2 cm × 3

√
2 cm and the base grid the resolution

140 × 34 × 34. With a two-level refinement with factors
r1 = 2 and r2 = 3 and time step parameters as before,
the simulation has the same effective resolution as the
previous one and is consequently about four times more
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(a)

(b)

Figure 16: Schlieren plots of YOH in the first half of a detonation
cell for a rectangular (a) and a diagonal (b) structure simulation,
5.0 cm < x1 < 7.0 cm.

expensive. The lower graph of Figure 16 shows a typical
snapshot that corresponds well to the situation shown in
the upper graph, which illustrates that the “diagonal-mode-
in-phase”, sometimes observed in experiments, is only a
different, boundary-condition-dependent, appearance of the
same three-dimensional mode of oscillation. Diagonal and
rectangular oscillation are simultaneously present in the
periodic situation depicted in Figure 15, and it depends only
on the size and orientation of the observation window which
oscillation type is actually seen. The graphs of Figure 16 show
schlieren plots of the mass fraction for YOH overlaid by a blue
isosurface of the density, which visualizes the induction
length lig. The induction length shows significantly larger
variations than in the two-dimensional case. The oscillation
period is identical in two- and three space dimensions
which underlines that the basic two-dimensional instability
is exactly preserved in three space dimensions, but that its
manifestation in the hydrodynamic flow field is different.

(a)

(b)

Figure 17: Schlieren plots of the density for a detonation diffracting
out of the two different tubes. (a) Detonation failure for the width
8 λ, (b) re-ignition for 10 λ.

6.3. Structure of Diffracting Detonations. Experiments have
shown that the behavior of planar CJ detonations propagat-
ing out of tubes into unconfinement is determined mainly
by the width of the tube. For square tubes, the critical tube
width has been found to be of the order of 10-times the
cell width, that is, 10 λ [17]. For widths significantly below
10 λ, the process of shock wave diffraction causes a pressure
decrease at the head of the detonation wave below the limit
of detonability across the entire tube width. Hydrodynamic
shock and reaction front decouple and the detonation decays
to a shock-induced flame. This observation is independent
of a particular mixture. While the successful transmission of
the detonation is hardly disturbed for tubes widths 	10 λ,
a backward-facing wave reignites the detonation in the
partially decoupled region for widths of ∼10 λ and creates
considerable vortices.

We are interested in the decoupling of shock and reaction
and also in the reignition phenomenon. Therefore, we sim-
ulate the two-dimensional diffraction of the H2 : O2 : Ar CJ
detonation for the tube widths 8 λ and 10 λ. A periodically
reproduced snapshot of the regular oscillating detonation of
Section 6.1 propagating into unreacted gas at rest is used
as initial condition. This is a reasonable idealization for
the flow situation in real detonation tubes directly before
the experimental setup. The symmetry of the problem is
exploited by simulating just one half.

The adaptive simulations utilize a base grid of 508× 288
cells and use four levels of refinement with r1,2,3 = 2, r4 = 4.
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(a)

(b)

Figure 18: Density distribution on refinement levels after the
detonation has left the tube (a) and distribution of computational
domain to 48 CPUs (b) for 10 λ.

(a)

(b)

Figure 19: Schlieren plots of the density (left) show the partial
decoupling of shock and reaction zone in the bend at t = 200μs (a)
and the reflected transverse re-ignition wave at t = 250μs (b). The
corresponding dynamic refinement is shown in the right graphs.

Figure 20: Triple point trajectories for the regular oscillating
hydrogen-oxygen detonation propagating through a 60-degree pipe
bend of 5 λ. The upper graph is an enlargement of the triple point
trajectories in the bend.

The calculations correspond to a uniform computation with
∼150 M cells and have an effective resolution of 25.5 Pts/lig in
the x1-direction (with respect to the initial detonation). Both
runs are stopped at tend = 240μs after 730 root level time
steps, with average step size Δt0 ≈ 0.329μs, when the flow
situations of interest are clearly established. The complete
decoupling of shock wave and flame front for 8 λ is visible in
the upper graph of Figure 17, while the lower graph clearly
exhibits the re-ignition wave. It is interesting to note that the
re-ignition wave itself is a detonation. The triple point tracks
for 10 λ (not shown) uncover that it has developed out of the
transverse wave of an initial triple point.

The enormous efficiency of the refinement is visualized
in the upper graph of Figure 18 for the setup with tube
width 10 λ. At tend, the calculation shown in Figure 18 uses
∼3.0 M cells on all levels, where ∼2.4 M cells are inside
one of the 2,479 grids of the highest level. The bottom
graph of Figure 18 displays the complexity of the domain
decomposition (indicated by color) to the 48 processors.
These simulations were also run on the same parallel
computer system as the three-dimensional computations and
required ∼4500 h CPU (3.9 days wall time).

6.4. Propagation through a Pipe Bend. In order to demon-
strate the enormous potential of the entire approach even
for non-Cartesian problems, we finally discuss a case study
that combines highly efficient dynamic mesh adaptation with
the embedded boundary method sketched in Section 4.1.
A two-dimensional regularly oscillating detonation similar
to Section 6.3 but with initial pressure p0 = 10.0 kPa and
λ = 1.6 cm is placed into a pipe of width 5 λ. The pipe
bends at different angles and has the inner radius 9.375 λ.
First, we consider the bending angle ϕ = 60◦. When the
detonation propagates through the bend, it gets compressed
and consequently overdriven near the outer wall, but a
continuous shock wave diffraction occurs near the inner wall.
Similar to the simulation of Section 6.3, the diffraction causes
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(a) (b)

(c) (d)

Figure 21: Color plots of the temperature for the regular oscillating hydrogen-oxygen detonation propagating upwards a pipe bend of width
5 λ. Snapshots are taken in 50 μs intervals and start at t = 100μs (a).

a pressure decrease below the limit of detonability that leads
to a continuous decoupling of shock and reaction front. This
effect is visible particularly in the second graph of Figure 21
at t = 150μs. The detonation exits the bend before the decay
to a flame occurs across the entire tube width. A reignition
wave arises from the successfully transmitted region and
reinitiates the detonation in the decoupled area, see third
graph of Figure 21 and first schlieren graph of Figure 19
for t = 200μs. It propagates in the direction normal to the
pipe middle axis and causes a strong shock wave reflection
as it hits the inner wall, compare last graph of Figure 21 and
second schlieren graphs of Figure 19 for t = 250μs. After
the partial reignition event, the front structure converges
back to the initial oscillation with five regular cells across
the tube width. Figure 20 shows the simulated triple point
trajectories through the course of the entire simulated time
of tend = 400μs and the convergence back to the equilibrium
state can be inferred.

This simulation uses a base grid of 1200 × 992 cells,
four levels of refinement with r1,2,3 = 2, r4 = 4, and
has an effective resolution of 67.6 Pts/lig. Approximately
7.1 M to 3.4 M cells on all and 4.8 M to 1.8 M cells on the
highest level are used instead of ∼1,219 M in the uniform

case. The number of subgrids on the highest level varies
between ∼2,600 and ∼800. The calculation was run on 64
dual-processor nodes of the ASC Linux cluster at Lawrence
Livermore National Laboratory and required nevertheless
∼70,000 h CPU (∼23 days wall time), due to the necessary
high local resolution in space and time. Approximately
4000 time steps were taken on the root level, yielding an
average root level time step of Δt0 ≈ 0.1μs, but note that
due to automatic time step steering based on CCFL ≈ 0.6
the used root level time steps vary between ∼0.085 μs and
∼0.120 μs. The extraordinary high efficiency of our mesh
refinement approach in capturing only the essential features
near the detonation front is illustrated by the right graphs
of Figure 19. The effective resolution at the detonation front
is so high that the simulation succeeds in capturing even
secondary triple points throughout the entire run. Figure 22
shows a zoom into a triple point as it enters the bend and all
features are fully resolved.

6.5. Triple Point Analysis. The high resolution of the last
simulation admits a considerable refinement of the triple
point pattern introduced in Section 2. We start by analyzing



Journal of Combustion 13

(a) (b)

(c) (d)

Figure 22: Successively enlarged schlieren plots of the density on refinement regions at t = 150μs for the detonation propagating through
the pipe bend. The simulation resolves the detailed structure around each triple point, cf. Figure 23.

the shock reflection pattern around a triple point for the
perfectly regularly oscillating detonation before entering the
bend, which obviously also corresponds to the flow situation
of Section 6.1. In order to carry out a quantitative Mach
reflection pattern analysis, it is necessary to map the velocity
field of the simulation into a frame of reference attached
to the triple point. However, the reliable estimation of the
triple point speed v from a single output time step is
nonapparent. When evaluating v, we take advantage of the
fact that the triple point is formed at the tip, where the Mach
stem intersects the incident region, and that the oblique
shock relations [15] between two points in regions A and B
(cf. Figure 24) close to the triple point must hold true. We
require only the two relations

ρAuA sin
(
φB
) = ρBuB sin

(
φB − θB

)
, (6)

pA + ρAu
2
A sin2(φB

) = pB + ρBu
2
B sin2(φB − θB

)
. (7)

Inserting (6) into (7) allows the elimination of uB sin(φB −
θB), which yields

uA = 1
sinφB

√
√
√
√ρB

(
pB − pA

)

ρA
(
ρB − ρA

) . (8)

As the gas is initially at rest, the triple point velocity is v =
−ua, and φB , the angle of inflow, is given as the angle between
Mach stem front and the triple point trajectory, which can be
measured from visualizations such as those shown in Figures
25 and 26.

Figure 23 zooms into the situation shortly before the
collision of two triple points. The enlargement shows clearly
that the shock wave pattern around each triple point is
of double Mach reflection (DMR) (aka “strong”) type. As
depicted in Figure 24, the essential flow features around triple
point T are inflow (A), region B behind the Mach stem M,
transverse wave region (C), and region D downstream of the
incident shock I. Regions B and C are separated by the slip
line S, a contact discontinuity. Regions C and D are separated
by the reflected shock R. The characteristic for the DMR
pattern is a high supersonic velocity in region C that leads
to the formation of a further shock R′ creating a secondary
triple point T′ on the transverse wave. The very weak slip line
S′, emanating from T′ between regions E and F, can hardly be
inferred. Note that the reflected shock R is the incident shock
I′ for the secondary triple point T′.

Since the triple point is far ahead of the reaction region,
changes in mixture are neglected in evaluating the Mach
number M in the triple point pattern. As it can be expected in
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p/p0 ρ/ρ0 T [K] u [m/s] M
A 1.00 1.00 298 1775 5.078
B 31.45 4.17 2248 447 0.477
C 31.69 5.32 1775 965 1.153
D 19.17 3.84 1487 1178 1.533
E 35.61 5.72 1856 901 1.053
F 40.61 6.09 1987 777 0.880
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Figure 23: States of a double Mach reflection structure shortly
before the next collision in a regularly oscillating CJ detonation in a
H2 : O2 : Ar/2 : 1 : 7 mixture at initially 298 K and p0 = 10 kPa.
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Figure 24: Sketch of a triple point with double Mach reflection
structure.

a DMR [15],MC is clearly greater than 1. A further important
quantity for triple point structures is the strength S of the
transverse wave [19] that is defined as

S := pC − pD
pD

. (9)

20 25 30 35 40

(a)

37 38 39 40

(b)

Figure 25: (a) Cellular structure after the bend (shown rotated)
for ϕ = 15◦, (b) triple point re-initiation with change from TMR
to DMR. The physical time steps 200 μs, 210 μs, and 220 μs are
displayed.

For the present computation, S is rather constant
throughout one regular detonation cell and varies marginally
around 0.65.

6.6. Triple Point Structures under Transient Conditions. The
diffraction and compression of the detonation wave at the
bend leads to changes of the transverse wave strength S.
While the state C behind the reflected shock R remains
initially unchanged, the change in geometry alters the
incident state D. Near the inner bend wall (upper boundary
in Figure 25), the incident pressure pD drops, leading to
a considerable increase in S. The resulting triple point
structure is of strengthened DMR type with larger deto-
nation cells (cf. upper graph of Figure 25) and increased
Mach number MC. In the compression region near the
outer wall (lower boundary in Figure 25), however, pD
increases drastically leading to a considerable decrease of S.
As a consequence, the flow in region C decelerates and the
secondary shock R′ between C and E is no longer necessary
for a stable configuration. The triple point now exhibits
a transitional Mach reflection (TMR) or “weak” pattern.
Characteristic for the TMR structure is that the flow in region
C is just barely supersonic with respect to T [15]. TMR
structures are also found in the diffraction region when a
sufficiently large angle ϕ causes partial detonation failure.

The lower graph of Figure 25 depicts the interesting case
of triple point reinitiation behind the bend for ϕ = 15◦. The
new triple point in the center of the graph is formed as a weak
structure (TMR) but strengthens into a DMR after its first
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Figure 26: (a) Cellular structure immediately after the bend (shown
rotated) for ϕ = 30◦, (b) triple point quenching and failure as SMR
at 140 μs and 150 μs simulated physical time.
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Figure 27: Transition boundaries of shock wave reflection phenom-
ena for the nonreactive H2 : O2 : Ar mixture at initially 298 K and
10 kPa.

collision. Figure 26 visualizes the quenching of triple points
at the outer bend wall that occurs for all larger values of ϕ.
As can be inferred from the lower graph of Figure 26, failing
triple points with vanishing trajectories seem to exhibit a
weak structure.

6.7. Transition Criteria of Mach Reflection Phenomena. The
two-dimensional oblique jump conditions [15] are satisfied

across each discontinuity depicted in the sketch of Fig-
ure 24. We solve the resulting nonlinear system of equations
numerically under the assumption that the composition
of the H2 : O2 : Ar mixture is invariant, but note that the
temperature dependency of the material properties is fully
considered. It is well known (cf. [15]) that changes in Mach
reflection type occur when the flow in certain regions of the
triple point structure becomes supersonic in the frame of
reference of the triple point T or T′. Any Mach reflection
requires a supersonic flow in region B measured in the frame
of reference of the primary triple point, that is, MT

B > 1, while
for MT

B < 1 a regular reflection (RR) occurs. A single Mach
reflection (SMR) pattern encompassing just the four states
A to D is found for MT

C < 1; for MT
C > 1 a transitional or a

double Mach reflection pattern occurs. In a DMR, the flow in
C is also supersonic in the frame of reference of the secondary
triple point T′ (MT′

C > 1), however, it is subsonic with MT′
C <

1, in a TMR. Consequently, the secondary triple point T′

is not fully developed in a TMR and the discontinuities R′

and S′ are absent. For given inflow velocity v, the transition
points MT

B/C = 1 are unique and can be determined rather
easily by solving the corresponding set of oblique shock
relations. The evaluation of the TMR/DMR transition point
MT′

C = 1 is more involved as knowledge of the velocity vector
�a of T′ relative to T is required. The oblique shock relations
between C and D readily yield an ≡ 0; however, the tangential
velocity at of T′along R is a free parameter that needs to be
specified separately.

Figure 27 visualizes the transition boundaries of the
different shock wave reflection phenomena evaluated numer-
ically for varying inflow Mach number. Since the estimation
of the exact minimally possible value of at in a DMR is
a considerable problem in itself, the TMR/DMR transition
line is evaluated for the fixed value at = 100 m/s, which
puts a reasonable upper transition boundary on the TMR
region (dotted in Figure 27). Specially geared to detonations,
results are displayed for the relative transverse wave strength
S. We use the simulation results discussed in Sections 6.5
and 6.6 as a first verification for the found quantitative tran-
sition boundaries. Throughout an unperturbed detonation
cell only the DMR structure occurs, which is confirmed
by plotting (with stars) the point at the end of a cell (cf.
Figure 23) and an additional one immediately after triple
point collision. The open circles mark the triple point
reinitiation visualized in the lower graph of Figure 25, and
the transition boundaries clearly confirm the transition from
TMR to DMR. The failing triple point, shown in the lower
graph of Figure 26, is marked with closed triangles indicating
that the SMR pattern seems unstable for a detonation
substructure and occurs only immediately before the triple
point disappears.

7. Conclusions

We have described an efficient solution strategy for the
numerical simulation of gaseous detonations with detailed
chemical reaction. Beside the application of the time-
operator splitting technique and the construction of a robust
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high-resolution shock capturing scheme, the key to the
high efficiency of the presented simulations is the appli-
cation of a block-structured adaptive mesh refinement
method and its parallelized implementation in our software
framework AMROC. AMROC provides the required high
local resolution dynamically and follows a parallelization
strategy tailored especially for the emerging generation of
distributed memory architectures. An embedded boundary
method utilizing internal ghost cells extends the framework
effectively to non-Cartesian problems.

Two- and three-dimensional detonation structure simu-
lations for hydrogen-oxygen-argon mixtures have been dis-
cussed in detail, where all temporal and spatial scales relevant
for the complex process of detonation propagation and
cellular structure formation from subscale Mach reflection
patterns were successfully resolved. All presented simulation
results have been obtained on Linux-Beowulf-clusters of
moderate size. The reliability of the mesh adaptation method
has been verified for periodically oscillating detonation
structure simulations in a frame of reference attached to
the detonation front. While the savings from dynamic
mesh adaptation are necessarily modest for these types of
simulations, they have been demonstrated to be enormous
for detonation structure simulations in more complex
geometries that have to be carried out in an Eulerian frame
of reference. Depending on the required maximal resolution,
increasingly larger savings in mesh size can be achieved.
The large-scale two-dimensional structure simulations in
pipe bends exhibit reductions of the finest mesh size of at
least a factor of 250 and up to 680. These computations
have an effective resolution that captures even secondary
triple points reliably throughout the whole simulation and
allows the unambiguous classification of the Mach reflection
structures around triple points. Under two-dimensional
transient conditions, transitional (aka “weak”) and double
Mach reflection patterns (aka “strong” structures) have been
observed.

Nonreactive but thermally perfect shock wave reflection
theory was used successfully to predict the transition bound-
aries between Mach reflection patterns depending on the
inflow velocity. Exemplary transient triple points structures
from the simulations are compared with the theoretical
results and good agreement between observed and predicted
Mach reflection type is found. Future work in understanding
the occurrence of Mach reflection patterns in self-sustained
detonation waves will concentrate on deriving a physical
estimate for the smallest possible relative tangential velocity
at between primary and secondary triple point in a double
Mach reflection in real gases to complete the theoretical
model and on comparing the substructures of the regularly
oscillating situations in two and three space dimensions.
First detailed investigations [8] indicate that the fully three-
dimensional case shows lower values for S and therefore a
transitional rather than a double Mach reflection as basic
propagation pattern. This result also suggests that fully
predictive detonation simulations in general will have to
be carried out in three space dimensions. Since it was
demonstrated that our computational approach permits the
accurate numerical simulation of detonation structures in

technically relevant two-dimensional devices and the study
of idealized three-dimensional configurations on current
capacity computing systems, this ultimate goal might already
be attainable on available petaFLOPS supercomputers.

As an outlook on computational detonation research in
general, we finally want to mention that the quantification of
the influence of diffusive processes on the detailed structure
of the primary slip line and its extension (denoted F and G in
Figure 3) in Mach reflection patterns in detonation waves has
recently received some attention. This topic is of particular
interest for mixtures that lead to very irregularly oscillating
cellular structures, for example, hydrocarbon fuels, cf. [46,
47]. The slip line is formed by a shear layer flow that is
unstable to perturbations (which is commonly known as
a Kelvin-Helmholtz instability). A fully converged solution,
that predicts the physically accurate behavior of this shear
layer at all subscales, cannot be obtained with an inviscid
model. For the resolutions and second-order scheme used
in this paper, stability and structure of the triple point slip
lines are still clearly determined by the numerical diffusion
introduced by the approximation; yet under increasingly
finer grid resolution a point is invariably reached from which
on the correct physical diffusion needs to be considered.
Instead of the Euler equations (1), the fully reactive Navier-
Stokes equations (cf. [16]) need to be employed, which
can be accomplished technically rather easily for detonation
wave simulation by supplementing the presented numerical
method with a conservative approximation of the physical
diffusion fluxes and incorporation of an additional stabil-
ity condition. Utilizing such an approach in AMROC in
combination with an upwind scheme of very high order,
we have recently succeeded in performing a large-scale two-
dimensional adaptive computation that resolves all physical
length scales along the slip line of an isolated transitional
Mach reflection pattern that is created by the reflection of
a planar detonation wave at an inclined wedge [48]. Note
that this pseudo-DNS (A true direct numerical simulation
(DNS) would require accurate resolution of all physical
length scales involved. This is presently not feasible for the
thickness of the shock waves, which is of the order of three
to five mean free path lengths.) result has been obtained for
the simplified case of a single exothermic reaction between
two calorically perfect gases and not for a realistic chemical
reaction mechanism, as used throughout this paper.
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