The University of Southampton
University of Southampton Institutional Repository

Shock-wave surfing

Shock-wave surfing
Shock-wave surfing
A phenomenon referred to as ‘shock-wave surfing’, in which a body moves in such a way as to follow the shock wave generated by another upstream body, is investigated numerically and analytically. During the surfing process, the downstream body can accumulate a significantly higher lateral velocity than would otherwise be possible. The surfing effect is first investigated for interactions between a sphere and a planar oblique shock. Numerical simulations are performed and a simple analytical model is developed to determine the forces acting on the sphere. A phase-plane description is employed to elucidate features of the system dynamics. The analytical model is then generalised to the more complex situation of aerodynamic interactions between two spheres, and, through comparisons with further computations, is shown to adequately predict the final separation velocity of the surfing sphere in initially touching configurations. Both numerical simulations and a theoretical analysis indicate a strong influence of the sphere radius ratio on the separation process and predict a critical radius ratio that delineates entrainment of the smaller body within the flow region bounded by the larger body's shock from expulsion. Furthermore, it is shown that an earlier scaling law does not accurately describe the separation behaviour. The surfing effect has important implications for meteoroid fragmentation: in particular, a large fraction of the variation in the separation velocity deduced by previous authors from an analysis of terrestrial crater fields can be explained by a combination of surfing and a modest rotation rate of the parent body.
flow–structure interactions, high-speed flow, shock waves
0022-1120
369-431
Laurence, Stuart J.
c9870caa-b37e-4ee1-b4a4-3b348c2f9bc0
Deiterding, Ralf
ce02244b-6651-47e3-8325-2c0a0c9c6314
Laurence, Stuart J.
c9870caa-b37e-4ee1-b4a4-3b348c2f9bc0
Deiterding, Ralf
ce02244b-6651-47e3-8325-2c0a0c9c6314

Laurence, Stuart J. and Deiterding, Ralf (2011) Shock-wave surfing. Journal of Fluid Mechanics, 676, 369-431. (doi:10.1017/S0022112011000577).

Record type: Article

Abstract

A phenomenon referred to as ‘shock-wave surfing’, in which a body moves in such a way as to follow the shock wave generated by another upstream body, is investigated numerically and analytically. During the surfing process, the downstream body can accumulate a significantly higher lateral velocity than would otherwise be possible. The surfing effect is first investigated for interactions between a sphere and a planar oblique shock. Numerical simulations are performed and a simple analytical model is developed to determine the forces acting on the sphere. A phase-plane description is employed to elucidate features of the system dynamics. The analytical model is then generalised to the more complex situation of aerodynamic interactions between two spheres, and, through comparisons with further computations, is shown to adequately predict the final separation velocity of the surfing sphere in initially touching configurations. Both numerical simulations and a theoretical analysis indicate a strong influence of the sphere radius ratio on the separation process and predict a critical radius ratio that delineates entrainment of the smaller body within the flow region bounded by the larger body's shock from expulsion. Furthermore, it is shown that an earlier scaling law does not accurately describe the separation behaviour. The surfing effect has important implications for meteoroid fragmentation: in particular, a large fraction of the variation in the separation velocity deduced by previous authors from an analysis of terrestrial crater fields can be explained by a combination of surfing and a modest rotation rate of the parent body.

This record has no associated files available for download.

More information

e-pub ahead of print date: 6 April 2011
Published date: June 2011
Keywords: flow–structure interactions, high-speed flow, shock waves
Organisations: Aerodynamics & Flight Mechanics Group

Identifiers

Local EPrints ID: 380733
URI: http://eprints.soton.ac.uk/id/eprint/380733
ISSN: 0022-1120
PURE UUID: b7f09b0a-269b-426b-a56e-c5d1e24e188b
ORCID for Ralf Deiterding: ORCID iD orcid.org/0000-0003-4776-8183

Catalogue record

Date deposited: 09 Sep 2015 10:33
Last modified: 15 Mar 2024 03:52

Export record

Altmetrics

Contributors

Author: Stuart J. Laurence
Author: Ralf Deiterding ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×