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Abstract—In this paper, we show that the vulnerability of memory
components due to data retention in the presence of soft errors
exhibit orders of magnitude variations with applications through
extensive analysis of MiBench benchmarks. Underpinning such anal-
ysis, we propose a novel application-specific design flow for joint
energy efficiency and reliability optimization. The energy efficiency is
achieved through voltage/frequency scaling (VFS), while reliability is
achieved through suitably choosing the appropriate protection policies
(L1-Cache resizing and selective ECC) for hierarchical memory
components. Fundamental to such joint optimization is a design
analysis framework, which can analyze trade-off between memory
protection policies considering the impact of VFS, and apply design
optimization algorithm to provide with an energy-efficient design,
while meeting a given reliability target. Using this framework the
proposed design flow is validated through extensive number of
application case studies based on ARMv7 processors modeled in
GEM5. We show that the joint consideration of cache resizing and
VFS can improve the L1-Cache reliability by up to 5x compared
to VFS alone, while incurring <10% energy overhead. Additionally,
using selective ECC for L2-Cache and DRAM, we show that energy
consumption can be reduced by up to 40%.

I. INTRODUCTION

Memory systems reliability is critical for the correct operation

of processors as memory constitutes a significant proportion of

modern embedded systems. However, with continued technology

scaling, different memory components in these systems are increas-

ingly becoming more susceptible to soft errors, such as single-

event upsets (SEUs) [1]. These errors manifest themselves as

perturbation of signal transfers and corruption of stored values

leading to incorrect executions in embedded systems. Operating

reliably in the presence of these errors is highly challenging,

particularly for high availability or safety-critical applications [2].

Figure 1 shows a typical memory hierarchy in a system-on-chip

(SoC). As can be seen, smaller and high-performance registers are

located in the processor core at the top of hierarchy that execute

instructions with their operands. Due to their direct performance

impact, the protection of these registers in the presence of SEUs

is generally carried out through simpler architectural duplication

techniques, such as duplication between active and unused regis-

ters [3] and 64-bit registers to store duplicated 32-bit values [5].

To store computation data at high-speed the processor core is

directly interfaced with a static random access memory (SRAM)

based Level-1 (L1) caches, such as data and instruction caches

(Figure 1). Similar to registers, these memories are expensive and

small in size. Hence, to protect L1-Cache memories, low-latency

and effective methods, such as cache resizing [6], low complex-

ity parity caching [7, 8] and cache duplication [10] have been

proposed. Next in the memory hierarchy, Level-2 (L2) caches are

connected to L1-Cache, which are slightly lower performance with

higher capacity. Due to less implications on processor performance

these caches are protected using various coding techniques, such

as multi-bit parity coding [11] and memory mapped ECC [4].

Further down the hierarchy dynamic random access memories

(DRAMs) are used as main memories (Figure 1). These are large

and high-latency memories. Information redundancy using error

correction coding (ECC) is a popular memory protection method
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Fig. 1. Microprocessor memory hierarchy

for DRAMs. However, such coding is usually associated with

overheads in terms of area and energy consumption. The overhead

increases with higher error correction capabilities, depending on

the coding word size. For example, increasing the ECC capability

of a 64b-word from single error correction double error detec-

tion (SECDED) to double error correction triple error detection

(DECTED) increases the area overheads from 15% to 25% and

increases energy overheads from 25% to 55% [11].

Existing memory protection methods for various components

in the memory hierarchy (Figure 1), such as [3, 8, 10–13], have

the following two limitations. Firstly, these methods address the

reliability improvement of a given memory component without

considering the system-wide impact of SEUs. Due to lack of such

system-wide insights, these methods cannot guarantee protection

of different components at low-cost due to conflicting design trade-

offs between memory components. Secondly, existing methods

are application-agnostic, i.e. they do not consider the impact of

application on the data retention-related vulnerabilities. To address

these limitations, we make the following contributions:

• a holistic memory vulnerability analysis showing significant

vulnerability variation, which depends on the application,

• based on the analysis a novel application-specific design

flow is proposed for suitably optimizing VFS and memory

protection policies, while minimizing energy for a given

system-wide reliability target, and

• a prototype design and analysis framework implementing the

proposed design flow, which is validated through Gem5-based

extensive simulations.

To the best of our knowledge, this is the first complete energy-

efficient design flow based on a holistic memory analysis. The rest

of the paper is organized as follows. Section II and Section III

provide memory vulnerability analysis. Based on such analysis,

Section IV proposes a energy-efficient and reliable design flow.

Finally, Section VI concludes the paper.

II. MEMORY VULNERABILITY ANALYSIS

To set up the motivation of this work, memory vulnerability

model in the presence of SEUs and its analysis are detailed.

A. Memory Vulnerability Model

Architectural reliability is usually expressed using failures in

time (FIT), which defines the total number of SEUs experienced by

an architectural component during one billion hours of operation.

The FIT of an architectural component depends on the fabrication

process and is influenced by the operating environment. Using



FIT as the architectural fault rate (λFIT ), the rate at which an

unprotected memory experiences faults per hour can be estimated

using the following equation [15]:

λ
′

mem =
λFIT

109
≈ λbits ×N , (1)

where N is the size of the memory (in bits) and λbits is the
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Fig. 2. Vulnerability of memory cells due to SEUs

logic-level fault rate in terms of the number of faults per cell per

hour. Equation (1) gives the worst-case memory system fault rate

estimation, generally used for over-engineering in safety-critical

systems. In such systems, it is assumed that a system will fail if any

storage node is corrupted. However, such assumption is pessimistic

in other systems as some memory cells are not used during

application runtime. Moreover, even if data corruption occurs in

the cells within the application, the cells may be over-written

before the fault actually takes place. To demonstrate this, Figure 2

shows the data retention lifetime of one byte of storage cells (8

bits). At time t0, data ‘x’ is written into the storage cells. At time

t1, a particle strike causes a bit-flip corrupting the stored data. At

time t2, the corrupted data ‘xe’ is read from the storage cells and

propagated to the processor core or other memory components,

which may lead to erroneous output. Therefore the data lifetime

between t0 and t2 is susceptible to corruption; we refer this as the

vulnerable time (VT). At time t3 data ‘y’ are written into the same

storage cells and mask data corruption. Hence time between t2 and

t3 is not susceptible to corruption; we refer this as invulnerable

time (IVT). From Figure 2, the effective vulnerable time of i-th

byte in the j-th vulnerable storage node (V Tij) can be expressed

as

V Tij = trdij − twr
ij , (2)

where trdij is the time of the last read operation of i-th byte storage

in the j-th storage node and twr
ij is the time of the write operation

of i-th byte storage in the j-th storage node. The total vulnerable

time (V T ) is the sum of the V Tij of each storage cell:

V T =

∑

i

∑

j

V Tij . (3)

Average vulnerable storage (Nvuln) during the application runtime

is calculated by dividing the total vulnerable time by the applica-

tion runtime:

Nvuln =
V T

Tex

, (4)

where Tex is the runtime of the application. Therefore the Nvuln

is With the given equivalent vulnerable storage size in (4), a more

realistic estimation of memory error rate (λmem) following (1) can

be expressed as

λmem = λbits ×Nvuln . (5)

Due to different patterns of memory accesses at various hierar-

chical levels, Nvuln is application-dependent, which is discussed

further in Section II-C.

B. Analysis Framework

To facilitate a holistic reliability analysis of different compo-

nents in the memory system hierarchy (Figure 1), a prototype

reliability, performance and energy analysis (RPEA) framework is

developed in Gem5 [16] as shown in Figure 3. The inputs to this

framework consist of system configuration files and benchmark

applications. With the given inputs, the RPEA framework carries

out performance analysis through the built-in GEM5 generated

performance statistics. To analyze the system energy consumption,

McPAT [17] tool is used.

To generate reliability statistics from such simulations, vulnera-

ble storage monitors were incorporated in GEM5 with to calculate

Nvuln (given by (4)) during read and write accesses in each

storage unit. Figure 4 shows the memory system architecture

and read/write monitors introduced in GEM5 for analyzing the

access information of each memory component and calculating

the vulnerable storage. As can be seen, monitors are introduced in

all read and write ports. These monitors are used to estimate the

data retention related vulnerabilities (see Section II-C).

To accelerate the simulation speed, the simulations

are executed on the Iridis3 super-computing cluster

(https://cmg.soton.ac.uk/iridis) with parallel workloads distributed

among its nodes. A python script is used to setup the analysis

framework globally and initiate simulations. In this work, the

design space consists of 24 configurations (including memory

sizes and different operating voltages), each with 24 benchmark

applications, leading to a total of 24 × 24 = 576 simulations

running simultaneously.

C. Vulnerability Analysis

In Section II-A we have shown that memory system reliability

depends on bit error rate (λbit) and vulnerable storage (Nvuln).

Assuming the operating environment does not change during the

system runtime, reliability of the memory components with a

given process library is proportional to Nvuln. Figure 5 shows the

Nvuln of memory components measured across various benchmark

applications. It can be seen that the reliability of each memory

component varies with application. For the Instruction Cache

(I-Cache), the highest Nvuln is 1.9 × 10
5 bits in the case of

“gsm toast” and the lowest Nvuln is 1.1 × 10
4 bits in the case

of “dadpcm”. For the Data Cache (D-Cache), the Nvuln ranges

from 2.4 × 10
5 bits in the case of “susan smoothing” to 6, 500

bits in the case of “bitcount”. For the L2-Cache, the highest

Nvuln is caused by “patricia” and the lowest Nvuln is caused by

“cadpcm”. Similarly for the DRAM, the lowest Nvuln is caused

by “typeset” and the highest Nvuln is caused by “stringsearch”.

These variations arise due to nature of computation carried out by

the different applications and the different in memory usage and

memory access patterns; memory intensive applications generally

have higher Nvuln than computation intensive applications.

Figure 6 compares the statistical mean of the different Nvuln

of memory components, along with their upper and lower bounds.
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(d) Main memory (DRAM)

Fig. 5. Vulnerable storage of different memory components for different MiBench
benchmark applications: (a) L1 instruction cache (I-Cache), (b) L1 data cache (D-
Cache), (c) L2-Cache and (d) DRAM

The bar shows average Nvuln, and the error line shows the range

between minimum and maximum Nvuln for a given memory

component. As can be seen, I-Cache has the lowest average and

worst-case Nvuln, while main memory (DRAM) has the highest

average and worst-case Nvuln. The spread between the highest and

the lowest Nvuln is around one order of magnitude for L1-Cache

and about three orders of magnitude for L2-Cache and DRAM.

Comparing the worst-case reliabilities, DRAM is the least reliable

memory component with the worst-case Nvuln of 2.3 × 10
7 bits,

followed by L2-Cache with the worst-case Nvuln of 1.8×10
6 bits

(a difference of up to thirteen times). This indicates that L2-Cache

and DRAM are more susceptible to failures in the presence of soft

errors. The following two observations are made: Observation 1:

The vulnerability of a component in the memory hierarchy in terms

of vulnerable storage (Nvuln) is application-specific. Memory

100,000

1,000,000

10,000,000

100,000,000

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

1,000

10,000

iCache dCache L2 Cache DRAM

V
u

ln
e

ra
b

le
 s

to
ra

g
e

 (
b

it
)

Fig. 6. Vulnerability of memory components across applications

intensive applications typically exhibit higher vulnerability, while

computationally intensive applications with less memory access

show less vulnerability. For the given benchmark applications

(Figures 5 and 6), L1-Cache shows up to one order of magnitude

variations, while L2-Cache and DRAM show up to three orders

of magnitude variations.

Observation 2: For a given application, the vulnerabilities between

components in the memory hierarchy also show variations. Due

to its size, DRAM is invariably the most vulnerable component in

the memory hierarchy, followed by L2-Cache and L1-Cache. The

variations can be significant depending the application; for exam-

ple vulnerability of DRAM is higher by up to 13x compared to

that of L2-Cache for memory intensive “stringsearch” application.

From Observation 1, it is evident that the protection of a given

memory component needs to consider application-specific impact

on its vulnerability. However, to achieve a target overall reliability

of an application it is important that such protection is carried

out for all components in the memory hierarchy considering the

relative vulnerabilities of memory components and their various

design trade-offs (Observation 2). The following sections further

investigates into the impact of low-power and reliable design

considerations on the application-specific vulnerabilities.

III. ENERGY-EFFICIENT MEMORY PROTECTION POLICIES

In this section, the energy-efficient and reliable policies: VFS,

memory sizes and their protection polices, are detailed.
TABLE I

VOLTAGE AND FREQUENCY SCALING

1.2V 1V 0.85V 0.75V

Processor core clock [19] 1 0.5 0.25 0.125

Bit error rate [20] 1 1.7 2.56 3.34

Dynamic power [19] 1 0.347 0.126 0.049

Leakage power [21] 1 0.532 0.328 0.235

A. Voltage/Frequency Scaling

Voltage and frequency scaling (VFS) is an effective low-power

design technique, widely used in modern processors. In this work,

TSMC low power 65nm technology library is used as reference

design library. Table I shows the corresponding normalized pro-

cessor core operating frequencies, soft error rates, dynamic and

leakage power consumptions at each supply voltage point. The

normalization is carried using the same values at nominal supply

voltage of 1.2-V. An empirical model based on the measurements

from test chips [9] is used to estimate the relationship between

delay and supply voltage. The corresponding soft error rates are

found out using the relationships in [20]. The leakage power

scaling ratio is technology-dependent [19]; therefore its calculation

needs an empirical model based on a test chip as shown in [9].

To enable multiple supply voltages in the SoC, it is divided

into two power domains: processor core and L1-Cache, including

instruction and data caches, are located in power domain PD1,

while the L2-Cache is placed in a separate power domain PD2.

DRAM is normally off-chip but placed in PD2 for simplicity. In

this work, VFS is only applied to PD1 as a usual practice; PD2

scaling is usually costly in terms of performance of L2-Cache and

DRAM.

B. Memory Protection Policies

The choice of memory protection policy depends on the hierar-

chical organization of memory components [6]. For most memory

components, ECC is an effective protection scheme. However, it

is not suitable for L1-Cache protection because it is the most

performance sensitive memory component; moreover, the energy

and performance overheads incurred due to ECC protection can

render diminishing returns. As L1-Cache is the least unreliable

3



component in memory hierarchy (Figure 6), simpler architectural

design choices, such as cache resizing [6] are made for its protec-

tion. In this work, L1-Cache resizing is proposed for protection of

L1-Caches, while ECC is chosen for L2-Cache and DRAM. The

protection policies is also depending on the application, where the

protection of each memory component can be switched on and off.

The impact of these protection policies is investigated next.
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Fig. 7. The impact of L1-Cache resizing on (a) L1-Cache and (b) L2-Cache
vulnerabilities

1) L1-Cache Resizing: To investigate the impact of L1-Cache

resizing on application vulnerability (Nvuln), Figure 7 shows the

Nvuln of L1-Cache and L2-Cache. As can be seen, L1-Cache

Nvuln reduces almost linearly with L1-Cache size. For example,

when L1-Cache size reduces from 32kB to 2kB, Nvuln reduces

from 210kbits to 8kbits (21× reduction in Nvuln for 16× lowered

size, Figure 7.(a)). However, the reduced Nvuln in L1-Cache due to

L1-Cache resizing causes an increase in the L2-Cache Nvuln. This

is because L1-Cache resizing moves vulnerable storage (Nvuln)

from L1-Cache to L2-Cache and makes L2-Cache less reliable.

Such increase in L2-Cache Nvuln is, however, less than the reduc-

tion in L1-Cache Nvuln. This can be explained using Figure 8. A

cache line is marked as clean when the stored data has not been

modified and a cache line is marked as dirty when the data has

been modified by the processor core. Figure 8.(a) shows vulnerable

time of clean data is duplicated on both L1- and L2-Caches.

When the cache line needs to be replaced, it simply evacuates

the data from L1-Cache. Therefore the L1-Cache vulnerable time

is reduced and the L2-Cache vulnerable time stays the same.

Figure 8.(b) shows that dirty cache line replacement triggers a

write-back, which moves the vulnerable time from L1-Cache to

L2-Cache. Therefore the reduction of L1-Cache vulnerable time

increases the vulnerable time of L2-Cache. The impact of L1-

L2 cache

L1 cache

Registers

duplicated vulnerable data

(a) the data in L1 cache is clean

L2 cache

L1 cache

Registers

L1 cache resizing moves the 

vulerable data to L2 cache

(b) the data in L1 cache is dirty

L1 cache resizing removes part of 

the duplicated vulnerable data due 

to more frequent replacement

Vulnerable Time

Fig. 8. Vulnerability under L1-Cache resizing when L1-Cache data are (a) clean
and (b) dirty

Cache resizing on energy, reliability and performance are discussed

in Section V-B.

2) L2-Cache and DRAM ECC Protection: Due to less energy

and performance impact per bit protection, ECC is used to protect

L2-Cache and DRAM in the presence of soft errors. Since DRAM

is the less reliable than L2-Cache (Section II-C), it requires

stronger ECC protection than L2-Cache. In this work, Double

Error Correction and Triple Error Detection (DECTED) code is

considered for DRAM; while Single Error Correction and Double

Error Detection (SECDED) code is employed for L2-Cache. The

impact of such ECC protection is studied in [11].

IV. PROPOSED DESIGN FLOW

Based on these analysis in Sections II and III, an application-

specific low-cost reliable design flow is proposed. Figure 9 shows

the proposed energy-efficient reliable design flow together with

the conventional design flow (right) [22]. As can be seen, the

conventional design flow is organized in three stages: design,

implementation and runtime. In the design stage, the processor

architecture, memory resources and interconnects are configured

based on the specifications, which leads to a hardware prototype

design. The system design is then synthesized and integrated in the

implementation stage, which generates the actual hardware netlist

and layout. Finally, in the runtime stage the software programs are

loaded into the hardware system for execution.
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Fig. 9. Proposed reliable design flow

The proposed design flow is integrated with the conventional

design flow and is shown on the left-hand side of Figure 9.

Similar to the conventional design flow, the proposed design

flow is organized and integrated in the design, implementation

and runtime stages. During the design stage, dynamic timing

constraint (DTC, in seconds), dynamic reliability constraint (DRC,

in FITs), the prototype hardware design of the system and the

target application software are inputs to Reliability, Performance

and Energy Analysis (RPEA) framework (Figure 3). Given the

constraints, the framework generates an application-specific worst-

case reliability metrics of the components in the memory hierarchy

using vulnerability analysis (Section II-C). For each memory

component, if the worst-case vulnerability (given by (4) and (5))

is lower than the requirement, protection policies (such as L1-

Cache resizing and selective ECC protection) for these components

are incorporated during the implementation stage. The worst-case

vulnerability analysis in the RPEA framework also generates appli-

cation Reliability, Performance and Energy Profile (RPEP), which

can be used to guide the energy-efficient reliability optimization

before runtime.

Application specific memory protection policy is achieved

through turning on/off the protection for each memory component

depending on what application the system is running. Algorithm 1
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Algorithm 1 Time- and reliability-constrained optimization for

low-cost reliable design

Require: Reliability, performance and Energy profile (RPEP) with dynamic timing constraint

(DTC) and dynamic reliability constraint (DRC)

Ensure: Energy(E), Minimum energy (Emin), Supply voltage (Vdd), L1-Cache size (SL1),

L2 ECC enable (EccENL2), DRAM ECC enable (EccENDRAM )

1: Initialize: Vdd = nominal supply voltage

2: while processor passes DTC check do

3: while L1-Cache fails DRC check do

4: reduce L1-Cache size {Ensures L1-Cache satisfies DRC}
5: end while

6: if L2-Cache fails DRC check then

7: EccENL2 = 1

8: E = E + EL2

OV H

9: end if

10: if DRAM fails DRC check then

11: EccENDRAM = 1

12: E = E + EDRAM

OV H

13: end if

14: if Energy < Emin AND processor passes DTC check then

15: Emin = E
16: SL1 = SL1

17: Vdd = Vdd

18: end if

19: reduce supply voltage

20: end while

21: return cSize, Vdd, EccENL2, EccENDRAM

shows the reliability and performance constrained low-cost reliabil-

ity optimization algorithm by using dynamic memory protection,

cache resizing and VFS control. As can be seen the inputs are:

reliability, performance and energy profile (RPEP), dynamic timing

constrains (DTC) and dynamic reliability constrains (DRC). It is

assumed that the DTC and DRC does not exceed the design time

constraints. The RPPP is generated by the analysis framework

(Figure 3) for each application under different supply voltages

and L1-Cache sizes. The algorithm begins by setting the supply

voltage to nominal supply voltage (1.2V), and checks whether the

processor meets the DTC and DRC (lines 1-2). The reliability

of L1-Cache is checked next and the L1-Cache size (SL1) is

reduced until it passes the reliability constraint (lines 3-5). This

is then followed by the DRC check of L2-Cache and DRAM. If

they fail, dynamic ECC protection is enabled by setting EccEnL2

and EccEnDRAM to 1 for L2-Cache and DRAM respectively

(lines 6-13)). When ECC is enabled for these memory components,

their corresponding ECC energy overheads are also added to the

overall energy (E). The memory protection techniques are carried

out iteratively for reduced VFS settings (lines 2-19). The system

configuration for which the energy is minimum (Emin) in each

iteration, while meeting the DTC and DRC constraints, is saved

before the next iteration. The design configuration with the lowest

energy is returned as the low-cost reliable design. As the algorithm

iterates through all configurations, the complexity is O(n), where

n is the number of configurations.

V. EXPERIMENTAL RESULTS AND CASE STUDIES

In this section, first the impact of VFS and memory protection

policies on energy and reliability trade-offs is validated, followed

by experimental results of joint optimization using the proposed

design flow (Section IV).

A. Impact of VFS

Figure 10 shows the impact of VFS on performance, power,

energy and reliability trade-offs. The results are normalized to

the nominal Vdd of 1.2V. As can be seen, the performance

measured in Instructions Per Cycle (IPC) increases marginally

with VFS. However, the power consumption reduces with Vdd

scaling. When Vdd is reduced to 1V, the power consumption

is reduced to 0.4; further scaling reduces it to 0.17 for 0.85V

and to 0.1 for 0.75V. Energy consumption also reduces with

Vdd. Note that the minimum energy consumption takes place

at supply voltage of 0.85V. The energy consumption at Vdd of
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Fig. 10. The impact of VFS on performance, power, energy and L1-Cache
reliability, normalized to nominal supply voltage of 1.2V

0.75V increases as the power consumed by PD2 starts to dominate.

Without VFS on PD2, the power consumption of PD2 is almost

the same, but the runtime increases when VFS is applied on

PD1, which leads to the increase energy consumption of PD2.

At 0.75V the increase energy consumption of PD2 surpass the

energy reduction of PD1, which leads to the increase in overall

energy consumption. Reduced Vdd also causes reliability problems

for L1-Caches as it increases the error rates in L1-Cache (λL1).

From Figure 10 it is evident that low power design using VFS

achieves power and energy reduction at the expense of L1-Cache

reliability degradation. To achieve energy-efficient reliable design,

memory protection policies (cache resizing and ECC) need to be

suitably incorporated, this is investigated next.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.20V 1.00V 0.85V 0.75V

P
e

rf
o

rm
a

n
ce

 (
IP

C
)

PD1 VDD

32kB 16kB 8kB 4kB 2kB 1kB

Fig. 11. The impact of L1-Cache resizing on performance under VFS

B. Impact of L1-Cache Resizing

L1-Cache resizing affects performance of the application be-

cause reducing the L1-Cache size increases L1-Cache misses.

Figure 11 shows that L1-Cache resizing has a significant impact

on performance under nominal supply voltage (1.2V), but VFS on

the processor core (including L1-Cache) reduces this performance

impact. At a 1.2V nominal supply voltage with a 1GHz clock, 1ns

L1-Cache latency and 8ns L2-Cache latency, the processor core

needs to wait for 8 clock cycles on an average for each L1-Cache

miss. When the supply voltage of the processor core (including

L1-Cache) is reduced to 0.85V with a 250-MHz clock, the L1-

Cache latency increases to 4ns and L2-Cache latency stays at 8ns.

Each L1-Cache miss requires only two clock cycles. Therefore a

smaller L1-Cache has less performance loss at lowered VFS.
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L1-Cache resizing also affects the energy consumption. Reduc-

ing the cache size means shutting down some cache lines, which

reduces power consumption. However, due to increased latency

(see Figure 11) the application runtime is increased. Figure 12

shows the effect of L1-Cache resizing on normalized energy

consumption averaged across benchmark applications. As can be

seen, under higher supply voltage cache resizing have smaller

impact on energy consumption. This is because under higher

supply voltage, cache consumes a significant amount of power

which offsets the energy cost due to the increase in runtime. When

VFS is applied the reduction is supply voltage reduces energy

consumption. However, when L1-Cache size is reduced the energy

consumption increases due to performance degradation.

Figure 13 shows the impact of L1-Cache resizing on reliability,

performance and energy for different benchmark applications at a

0.85V supply voltage, which is the most energy efficient operating

voltage (Figure 12). Figure 13.(a) shows the effect of L1-Cache

resizing on L1-Cache reliability. As can be seen, when the L1-

Cache size is reduced from 32kB to 8kB, there is up to a 7×

error rate reduction in the case of “patrica”, and the average error

reduction is 3×. When L1-Cache size is further reduced to 1kB,

the error rate reduction is up to 100× in the case of “rijndael dec”

and the average reduction in error rate is 30×. Figure 13.(b)

plots the effect of L1-Cache resizing on the performance of the

processor core. When L1-Cache size is reduced from 32kB to

8kB there is some reduction in performance for 13 applications;

however 11 applications exhibit small reduction in performance.

When L1-Cache size is reduced from 32kB to 1kB the impact on

performance is higher, but for 5 applications this impact is still

negligible. As can be seen, 1kB of L1-Cache is not sufficient

and 8kB of L1-Cache is a better choice for most applications

to maintain processor performance under reduced processor core

clock speed.

C. Joint Optimization of Reliablity, Performance and Energy

Figure 14 shows case studies of design optimizations (Figure 9)

for two applications “lame” and “ispell”, highlighting the design

trade-offs between L1-Cache resizing and VFS control (as shown

in Figure 1). The X-axis shows the run time of the applications.

The error rates in terms of FIT are shown in left Y-axis. The

color coded normalized energy consumption is shown on the

right (darker red to darker blue represent higher to lower energy

consumptions). A number of operating points as colored are dots

shown, each dot representing reliability, performance and energy

consumption trade-offs. The dots along each line are the results of

different L1-Cache sizes; the top one represents operating point for

32kB L1-Cache, while the lower operating points result from lower

L1-Cache sizes. Lower L1-Cache size also affects the runtime as

it increased with L1 size reduction and improves reliability due

to decreased vulnerability and fault rate (Section III-B). Different

dotted lines represent a given VFS scalings applied.

Figure 14.(a) shows the design space for the application “lame”.

Two rectangular boxes enclose two different timing and reliability

constraints (DTC of 3 and 4 seconds corresponding to DRC of

40,000 FIT and 25,000 FIT respectively). Therefore only the

operating points inside the constraint box can be selected for a

given DTC and DRC. The most energy efficient operating point is

the darkest point inside the constraint box. It can be observed that

L1-Cache resizing improves the energy efficiency by moving the

most energy efficient voltage point into the reliability and timing

constraint box. For example without cache resizing, if the DRC is

25,000 FIT the only available operating voltage is 1.2V. Reducing

the cache size to 8kB makes 0.85V viable, which is also the most

energy-efficient operating point. Similar observations can also be

made with the DRC of 40,000 FIT and DTC of 3 seconds. The

L1-Cache resizing to 16KB also makes 0.85V as the most energy-

efficient and reliable operating point. Figure 14.(b) shows that the

best operating points also varies with applications. For example,

for a DTC of 3 seconds and DRC of 40,000 FIT, 1V with 32kB
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TABLE II
OPTIMIZED ARCHITECTURAL CONFIGURATIONS OF MIBENCH APPLICATIONS WITH A DRC 25,000 FIT

VFS VFS, L1-Cache resizing, VFS, L1-Cache resizing,dynamic protection

Vdd Energy Vdd L1 Energy Saving ECC Energy Saving

Application (V) (J) (V) (kB) (J) L2 DRAM (J)

basicmath 0.85v 1.788 0.85v 32kB 1.788 0.0% off off 1.568 12.3%

bitcount 0.85v 0.396 0.85v 1kB 0.390 1.6% off off 0.342 13.7%

qsort 1.20v 0.295 0.85v 16kB 0.204 31.0% on on 0.204 31.0%

susan corners 1.20v 0.020 0.85v 4kB 0.013 34.4% on on 0.013 34.4%

susan edges 1.00v 0.040 0.85v 8kB 0.036 11.6% on on 0.036 11.6%

susan smoothing 1.20v 0.226 0.85v 8kB 0.151 33.1% on off 0.135 40.3%

djpeg 1.20v 0.020 0.85v 16kB 0.014 31.6% on off 0.012 39.0%

cjpeg 0.85v 0.059 0.85v 16kB 0.059 0.9% on on 0.059 0.9%

lame 1.20v 0.961 0.85v 16kB 0.654 31.9% on on 0.654 31.9%

typeset 1.20v 0.427 0.85v 16kB 0.349 18.4% on on 0.349 18.4%

dijkstra 1.20v 0.161 0.85v 8kB 0.126 21.9% on off 0.111 31.2%

patricia 1.20v 0.604 0.85v 16kB 0.479 20.6% on on 0.479 20.6%

ispell 1.20v 0.814 0.85v 16kB 0.613 24.7% on on 0.613 24.7%

rsynth 1.20v 1.714 0.85v 8kB 1.265 26.2% on on 1.265 26.2%

stringsearch 0.85v 0.003 0.85v 32kB 0.003 0.0% off off 0.003 11.3%

rijndael enc 1.00v 0.288 0.85v 16kB 0.262 8.9% off off 0.230 20.2%

rijndael dec 1.00v 0.277 0.85v 8kB 0.266 4.0% off off 0.239 13.9%

sha 0.85v 0.066 0.85v 2kB 0.066 1.0% off off 0.058 12.9%

crc 1.00v 1.651 1.00v 2kB 1.614 2.3% off off 1.445 12.5%

fft 1.20v 0.426 0.85v 16kB 0.314 26.1% on on 0.314 26.1%

ifft 1.20v 0.234 0.85v 16kB 0.174 25.6% on on 0.174 25.6%

cadpcm 0.85v 0.380 0.85v 4kB 0.376 1.0% off off 0.332 12.6%

dadpcm 0.85v 0.273 0.85v 4kB 0.271 0.8% off off 0.239 12.5%

gsm toast 1.20v 0.890 0.85v 16kB 0.684 23.2% off off 0.588 33.9%

L1-Cache is the most energy-efficient and reliable operating point.

Table II shows experimental results for the low-cost reliable

design optimization (Algorithm 1) applied to various MiBench

applications under the reliability constraint of 25,000 FIT. The

1st column shows the benchmark application; the 2nd main col-

umn shows minimum energy consumption under VFS and its

corresponding supply voltage which was limited by reliability

constraints; the 3rd main column shows the minimum energy

consumption under VFS when L1-Cache resizing is used which

allows the processor to operate under a more energy efficient

supply voltage point; the last main column shows the minimum

energy consumption under VFS when both L1-Cache resizing

and dynamic ECC protection are used to further reduce energy

consumption. 2nd column shows that, for some applications,

supply voltage scaling is limited by the reliability constraints of

L1-Cache, therefore reliability constrains can restrict the system

from operating on minimum energy. L1-Cache resizing mitigates

the impact of VFS on reliability; thus for all applications the

supply voltage for minimum energy consumption can be used

as shown in the 4th column. The 8th and 9th columns show

the enable signals for ECC protection of L2-Cache and DRAM.

It shows that L2-Cache and DRAM ECC protection are only

enabled in the applications where their reliability is lower than

25,000 FIT. Comparing to the processor system with only VFS,

L1-Cache resizing save upto 34% of energy, and 16% on average

across all applications. This is achieved by enabling the processor

to operate on more energy-efficient supply voltage, while still

meeting the reliability constraints. Dynamic protection of L2-

Cache and DRAM reduce energy consumption further, when used

together with L1-Cache resizing. As can be seen, it achieves energy

saving of upto 40% and on average 21% across all applications.

VI. CONCLUSIONS

A memory system analysis framework facilitating a holistic

reliability analysis was presented, showing that memory compo-

nent vulnerability varies greatly depending on the application. The

analysis further highlighted that appropriate memory sizes and

protection policies can reduce vulnerability significantly at the cost

of increased energy overheads. Based on the analysis, a design

flow is proposed with an aim of achieving energy-efficiency and

reliability through careful optimization of VFS and these policies.

The proposed design flow is evaluated through experiments in

Gem5. The design flow is expected to be useful in energy-efficient

and reliable designs for application-specific systems.
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