A Personalised Reader for Crowd Curated Content

Gabriella Kazai, Daoud Clarke,
Iskander Yusof
Lumi
{gabs,daoud,iskander}@Ilumi.do

ABSTRACT

Personalised news recommender systems traditionally rely
on content ingested from a select set of publishers and ask
users to indicate their interests from a predefined list of top-
ics. They then provide users a feed of news items for each
of their topics. In this demo, we present a mobile app that
automatically learns users’ interests from their browsing or
twitter history and provides them with a personalised feed of
diverse, crowd curated content. The app also continuously
learns from the users’ interactions as they swipe to like or
skip items recommended to them. In addition, users can
discover trending stories and content liked by other users
they follow. The crowd is thus formed of the users, who as a
whole act as the curators of the content to be recommended.

Categories and Subject Descriptors

H.4.m [Information Systems Applications|: Miscella-
neous

Keywords

Recommender system, crowd curation, social filter, mobile

1. INTRODUCTION

Online content is growing at an unprecedented rate, with
millions of news stories, blogs, videos, and a wide range
of publisher and user generated content being added every
day. Users typically navigate this space with the help of
search engines, via social media, or through services like RSS
feeds, content aggregators or recommender systems. With
the proliferation of smart phones, access to this content is
shifting away from search engines to consuming content di-
rectly within apps. As a result, a number of mobile content
apps have been developed, including well known commer-
cial systems like Feedly, Prismatic or Pinterest!, as well as
research prototypes like Focal [2], PEN [1] and others, e.g.,
[4, 3]. However, these apps rely on users manually defining
their topics of interest, based on which articles from selected
publishers can be pushed to them.

1feedly .com, getprismatic.com/news, uk.pinterest.com

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s).
RecSys’15, September 16-20, 2015, Vienna, Austria.

@ 2015 ACM. ISBN 978-1-4503-3692-5/15/09

DOI: http://dx.doi.org/10.1145/2792838.2796552.

Matteo Venanzi
Lumi and University of Southampton
matteo@Ilumi.do

7% The New Yorker
Jonathan Ive
of Apple

K88 w126 Apple

nd the Future

In recent months, Sii »nathan Ive, the
forty year-old Yor vice-president of
design at Apple—wh sed o play rugby in

secondary sghool, a stilhas a
bench-prg Ik 1t he carries a little
sheepis! be ged to someone
else—has ibed nself as both “deeply,

Figure 1: Full view of a recommended article and
screenshots of user swipe actions to like or skip

Our system, called Lumi Social News?, is not limited to
specific publishers, but aims to provide users a personalised
feed of diverse, crowd curated content, including long tail
and user generated content. It automatically learns users’
interests either from their public Twitter feed or from public
pages in their browsing history. The generated user model
is then matched against the stream of incoming content,
consisting of public pages visited or tweeted by the crowd
(the community of users) or ingested via RSS.

Instead of showing the user a list of recommendations that
is typical in recommender systems, Lumi displays a single
recommended item at any given time. This item is picked
from a given time window of ingested content, where the
selection is based on the item’s relevance to the user as well
as its popularity on social media, i.e., Twitter and Facebook.
Figure 1 shows an example recommended article.

The header image is picked based on image quality and
positioning in the original text, which is followed by the title
and the full text of the article. In the case of a video, the
video itself is positioned at the top, followed by the title
and any textual description if available on the original site.
The top three users who liked the recommended item are
listed below the content, ordered by similarity to the user.
Finally a list of related articles are shown, based on content
similarity.

To get to the next recommendation, the user needs to ei-
ther like or skip the current item by swiping left or right on
the screen, respectively (see Figure 1). All liked items are

2android.lumi.do



saved by the system and can be accessed through the user’s
profile area. The liked/skipped actions are used to continu-
ally update the user’s model, thus learning more about the
user’s evolving interests and filtering or boosting recommen-
dations based on the user’s feedback actions.

Lumi also supports a social network, where users can fol-
low each other and discover interesting content that was
liked by those they follow. Recommendations on who to fol-
low are based on the relevance of the suggested user’s liked
items to the current user’s interests as well as based on ex-
isting social links in the user’s Twitter network.

2. SYSTEM OVERVIEW

The system uses a graph processing architecture, simi-
lar to that of Twitter’s Storm, where each node is a pro-
cess and data is passed around from node to node. This
is driven by a need for real-time processing, as opposed to
processing offered by Hadoop-like tools. The topology of a
graph is specified dependent on its function. For example,
a bootstrapping graph is designed for real-time processing
of large-scale browsing or twitter data at signup in order to
create a user model as quickly as possible. The front-end is
implemented for Android phones in Java, which connects to
the back-end via an API. The main system components are:

e Ingestion: Ingestion nodes process a number of incom-
ing streams of content from RSS, Twitter and public
pages from user visits. The content is rendered, passed
through a quality filter and subsequently a range of fea-
tures and media are extracted. An SVM classifier is
used to assign a category label, e.g., business or tech-
nology. Named entities are extracted using multiple
open-source tools, e.g., NLTK and OpenNLP3. Top
ranking entities are assigned as topic tags. Data is
stored in Cassandra® and Elasticsearch®. Note that
for additional privacy, user’s browsing data are stored

completely anonymously and separately from their Twit-

ter data, and no link is made between the two.

e Bootstrapping: At signup, the public pages in a new
user’s browsing history or Twitter feed are analysed
and an initial user model is built. We build separate
models for their browsing data and for their Twitter
data. The only time the two sets of data can be con-
nected is when the user is online and makes a request
for recommendations, thus to maintain this level of
privacy we need to generate separate models.

o User model update: Users’ models are updated based
on their ongoing online activities, e.g., Twitter feed, as
well as based on their in-app actions, e.g., when they
read, swipe to like or swipe to skip a recommended
item, and when they share a recommendation.

e Trending content: Trending content is identified by
monitoring social media, e.g., likes on Facebook and
tweets on Twitter. In addition, we use clustering to
detect breaking stories, i.e., when the same story is
being published across multiple outlets.

e Offline recommender: Ingested content is passed through

a Content Based (CB) and a Collaborative Filtering
(CF) based recommender, which calculates relevance

3github.com/nltk, opennlp.apache.org/
4cassandra. apache.org/
Selastic.co/products/elasticsearch

scores for each user model and stores their top rec-
ommendations. This is run as a background process
which generates recommendations for users even when
they are not online, so that they don’t miss out on
interesting content.

e Online recommender: When an Android client requests
new recommendations, the top ranking items are re-
turned from across a number of different sources, in-
cluding the offline recommendations store, the latest
trending stories as well as the freshest content ingested
in the last few hours. The ranking function then takes
into account both the relevance of an item, its fresh-
ness and its popularity.

e Related content: Same stories from multiple outlets
are clustered together and can be served to the user
as related items. Articles based on broader topical
similarity are also linked together. Other articles from
the same site may also be of interest to the user and
may also be shown below the recommended article.

e Suggested user to follow: We recommend users to fol-
low based on the relevance of the items they liked to
the current user or based on existing links between
them on Twitter.

At the time of writing, we are conducting online exper-
iments with real users, using an A/B testing framework.
Among others, we are experimenting with different recom-
mender algorithms and trending story detection methods
and different Ul features. We are tracking the quality of
our recommendations as reflected in likes, skips and reading
times, averaged across users and plotted over time.

3. CONCLUSIONS

The presented system is the first in its class to provide
personalised feeds by non-intrusively learning users’ inter-
ests and responding to their feedback actions when reading
recommended items. The assessment of how recommender
systems may perform in this setting with noisy and sparse
data and online user feedbacks is the key challenge to deliver
this service.

4. ACKNOWLEDGMENTS

Lumi is a result of the efforts of a great team, see
https://lumi.do/about/team.

S. REFERENCES

[1] F. Garcin and B. Faltings. Pen recsys: A personalized
news recommender systems framework. NRS 13, pages
3-9. ACM, 2013.

[2] F. Garcin, F. Galle, and B. Faltings. Focal: A
personalized mobile news reader. RecSys’14, pages
369-370. ACM, 2014.

[3] A. Said, J. Lin, A. Bellogin, and A. de Vries. A month
in the life of a production news recommender system.
In Proc. Workshop on Living Labs for IR Evaluation,
pages 7-10. ACM, 2013.

[4] M. Tavakolifard, J. A. Gulla, K. C. Almeroth, J. E.
Ingvaldesn, G. Nygreen, and E. Berg. Tailored news in
the palm of your hand: A multi-perspective transparent
approach to news recommendation. WWW’13
Companion, pages 305-308, 2013.



