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Phone: +48 683283219, Fax: +48 683284751

bElectronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom

Abstract

This paper considers iterative learning control law design for plants modeled by discrete linear dynam-
ics using repetitive process stability theory. The resulting one step linear matrix inequality based
design produces a stabilizing feedback controller in the time domain and a feedforward controller
that guarantees convergence in the trial-to-trial domain. Additionally, application of the general-
ized Kalman-Yakubovich-Popov (KYP) lemma allows a direct treatment of differing finite frequency
range performance specifications. The results are also extended to plants with relative degree greater
than unity. To support the algorithm development, the results from an experimental implementation
are given, where the performance requirements include specifications over various finite frequency
ranges.

Keywords: Iterative learning control, finite frequency range design, the generalized KYP lemma,
experimental verification.

1. Introduction

Iterative learning control (ILC) has been especially developed for systems defined over a finite
duration that repeat the same task. Each execution is known as a trial, or pass, and the sequence
of operations is that a trial is completed, the system resets to the starting location and then the next
trial begins, either immediately after the resetting is complete or a period of time has elapsed since
completion of the resetting. The novel feature of this control law design method is the use information
from the previous trial, or a finite number of previous trials, to update the control input applied on
the next trial and thereby improve performance from trial-to-trial. In particular, the control objective
is to find a control input such that the corresponding output precisely tracks a reference signal that
is specified over a finite time interval.

Since the original work, widely credited to (Arimoto et al., 1984), ILC has remained as a significant
area of control systems research with, especially for linear model based designs, many algorithms
experimentally verified in the research laboratory and applied in industrial and other applications. An
overview of developments up to their dates of publication can be found in, e.g., the survey papers (Ahn
et al., 2007; Bristow et al., 2006; Wang et al., 2009), where the last of these has a particular focus on
run-to-run control as found in the chemical process industries. Applications areas include industrial
robotics, see, e.g., (Longman, 2000; Norrlöf, 2002), where the pick and place operation common in
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many mass manufacturing processes is an immediate fit to ILC, and wafer stage motion systems, see,
for example, (Heertjes and Tso, 2007). More recent applications areas include flexible valve actuation
for non-throttled engine load control (Heinzen et al., 2011) and various forms of industrial printing,
see, for example, (Barton et al., 2011; Bolder, 2015) and large dynamic range nanoprinting (Parmar
et al., 2014). Also there has been a transfer from engineering to next generation healthcare for
robotic-assisted upper limb stroke rehabilitation with supporting clinical trials (Freeman et al., 2009,
2012).

One common approach, see, for example, (Ahn et al., 2007; Bristow et al., 2006) as starting points
for the literature, to ILC design is to first apply a feedback control law to stabilize and/or produce
acceptable along the trial dynamics and then apply ILC to force trial-to-trial error convergence
of the resulting system. This is a two step design approach with separate design of the feedback
and learning filters where, for example, the ILC learning update is calculated as the inverse of the
dynamics resulting from the feedback controller design. Moreover, the ILC learning update is a
feedforward signal from the previous trial and hence does not affect the stability property of the
dynamics along the trials, that is, as the trial duration is finite, trial-to-trial error convergence can
occur for unstable dynamics but the result could be unsatisfacotry/unacceptable along the trial
dynamics. This is a two-stage design and for discrete dynamics using the lifting approach can result
in the need for computation with very large dimensioned matrices.

An alternative approach to ILC design is to use the 2D systems setting, i.e., systems that propa-
gate information in two independent directions where for ILC these directions are from trial-to-trial
and along each trial respectively. Early work in this setting used the Roesser state-space model for 2D
discrete linear systems (Kurek and Zaremba, 1993; Paszke et al., 2007). Repetitive processes (Rogers
et al., 2007) are a distinct class of 2D systems where information in the temporal domain is limited
to a finite duration and hence a more natural match to ILC. These processes make a series of sweeps,
termed passes or trials in the ILC setting, through a set of dynamics defined over a finite duration
and once each pass is complete the process resets to the starting location. On each pass and output,
termed the pass profile, is produced that acts as a forcing function on, and hence contributes to,
the dynamics of the next pass profile. The result can be oscillations that increase in amplitude from
pass-to-pass.

Repetitive processes cannot be controlled by direct application of standard systems theory and
algorithms and this has led to the development of a stability theory for them and substantial progress
on control system specification and design (Rogers et al., 2007). More recent research has used the
repetitive process setting to design ILC laws with experimental verification (H ladowski et al., 2010,
2012). The result is a one step design for trial-to-trial error convergence and transient response along
the trials and hence simultaneous treatment of the trial-to-trial error and transient response along
the trials is possible.

The new design developed in this paper considers simultaneous synthesis of both feedback and
learning controllers in an ILC scheme for error convergence and performance, starting with a new
result for monotonic trial-to-trial error convergence. This result is achieved by converting the problem
to one of stability along the trial for a discrete linear repetitive process, leading to design based on
Linear Matrix Inequality (LMI) computations. Also the benefits of this new result relative to existing
alternatives are highlighted.

As in other areas for linear systems theory and design, it is necessary to design for stability
and performance, where for the latter aspect the requirements for each case must be formulated
into design constraints. Such specifications can include regulating against the effects of exogenous
signals, penalizing regulated variables and specifying the amount of plant uncertainty allowed. In
this paper it is established that, as in other areas of standard linear systems analysis and design,
such requirements can be expressed as conditions on the maximum singular value of the frequency
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response matrix coupling the errors on successive trials.
One method, again as in standard case, would be to introduce weighting filters to emphasize

a particular frequency range, followed by design to ensure that weighted system norm is sufficiently
small. In this paper, the generalized KYP lemma is use to develop a new design method where
weighting filters are not required and hence an unnecessary increase in the controller order is avoided.
To support the analysis and design, results from experimental application to an electromechanical
system are given. Another contribution of the paper is the development of a method deal with the
case when the system to be controlled has relative degree greater than unity through the use of an
anticipative feedforward control law.

Throughout this paper, the null and identity matrices with the required dimensions are denoted
by 0 and I, respectively, and the notation X ≺ Y (respectively X � Y ) means that the matrix X−Y
is negative definite (respectively, positive definite). Also sym{M} is used to denote the symmetric
matrix M + M> and ρ(·) denotes the spectral radius of its matrix argument, i.e., if λi, 1 ≤ i ≤ q,
denotes the eigenvalues of a q × q matrix, say H, ρ(H) = max

1≤i≤q
|λi|. The superscript ∗ denotes the

complex conjugate transpose of a matrix and ⊗ the matrix Kronecker product.
Use will also be made of the following results, where the first is the generalized KYP lemma and

the second the Elimination (or Projection) Lemma.

Lemma 1. (Iwasaki and Hara, 2005) Consider matrices A, B0, Θ and

Φ =

[
−1 0
0 1

]
,Ψ =

[
0 ejωc

e−jωc −2 cos(ωd)

]
, (1)

with ωc = (ωl+ωu)/2, ωd = (ωu−ωl)/2 and ωl, ωu satisfying −π ≤ ωl ≤ ωu ≤ π. Suppose also that
det(ejωI − A) 6= 0 for all ω ∈ [ωl, ωu]. Then the following statements are equivalent.

i) [
(ejωI − A)−1B0

I

]∗
Θ

[
(ejωI − A)−1B0

I

]
≺ 0, ∀ω ∈ [ωl, ωu]. (2)

ii) There exist Q � 0 and a symmetric P such that[
A B0

I 0

]>
(Φ⊗ P+Ψ⊗Q)

[
A B0

I 0

]
+Θ≺0. (3)

Lemma 2. (Gahinet and Apkarian, 1994) Given a symmetric matrix Γ ∈ Rp×p and two matrices
Λ, Σ of column dimension p, there exists a matrix W such that the following inequality holds

Γ + sym{Λ>WΣ} ≺ 0, (4)

if, and only if the following two projection inequalities with respect to W are satisfied

Λ⊥
>

ΓΛ⊥ ≺ 0, Σ⊥
>

ΓΣ⊥ ≺ 0, (5)

where Λ⊥ and Σ⊥ are arbitrary matrices whose columns form a basis of the null spaces of Λ and Σ,
respectively.
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2. Background and problem formulation

The notation for variables in this paper is of the form wk(p), 0 ≤ p ≤ α < ∞, k ≥ 0, where w
is the scalar or vector-valued variable under consideration, α is the finite trial length and k is the
trial number. The plant dynamics is assumed to be discrete linear time-invariant and described in
the ILC setting as

xk(p+ 1) =Axk(p) +Buk(p),

yk(p) =Cxk(p),
(6)

where xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm is the output vector and uk(p) ∈ Rl is the control
input vector. Also we define z as the standard forward shift operator along discrete-time axis, i.e.,

zxk(p) = xk(p+ 1).

see, e.g., the cited papers (Bristow et al., 2006) for the details of how the z-transform can be applied
over the finite trial length without errors arising from the basic definition of this transform over an
infinite interval. Hence (6) can, under the assumption that the pair {A,B} is controllable and the
pair {C,A} observable, be equivalently represented by the transfer-function matrix

G(z) = C(zI −A)−1B. (7)

This paper considers system models where the input has no direct affect on the output and hence
they have relative degree r ≥ 1, i.e.,

CAr−1B 6= 0, and CAiB = 0,∀i = 1, 2, . . . , r−2. (8)

The form of ILC considered in this paper is shown in the block diagram of Figure 1 and consists
of a unity negative feedback control loop with controller C applied on the current trial k and the
ILC law as shown within the shaded part of this figure. In this paper no loss of generality arises

Q(z)

L(z)

C(z) G(z)ek ukyd yk

fk+1

memory

-
+

+

+ +

+

fk

Figure 1: ILC block diagram representation.

from assuming that the initial state vector on each trial is zero. The memory block in Figure 1
represents the use of previous trial information in the computation of the current trial control input
and yd denotes the supplied reference. In the literature L is often termed the learning filter and Q
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the robustness filter. All computations within the shaded part of Figure 1 are completed in the time
elapsed between the end of one trial and the beginning of the next, i.e., off-line.

The first task is to find guidelines for the choice of C, L and Q, where to improve learning and
robustness a basic rule is to choose Q as a low-pass filter whose magnitude is unity for the frequency
range where reference tracking is required and zero at all other frequencies. From the block diagram
of Figure 1, the ILC law is

Fk+1(z) = Q(z) (Fk(z) + L(z)Ek(z)) ,

and
Ek(z) = (I +G(z)C(z))−1Yd(z)− (I +G(z)C(z))−1G(z)Fk(z).

Hence, the previous trial error feedforward contribution (assuming Yd(z) = 0) to the current trial
error is

Ek(z) = −
[
(I +G(z)C(z))−1G(z)

]
F (z) = −SP (z)Fk(z),

where SP (z) = (I+G(z)C(z))−1G(z) denotes the sensitivity function and the propagation of the error
from trial-to-trial is

Ek+1(z) = Q(z) (I − SP (z)L(z))Ek(z).

Suppose now that trial-to-trial error convergence holds, where the condition for this property is
developed below, and let E∞ = lim

k→∞
Ek. Then

E∞(z) = ((I −Q(z))(I+G(z)C(z)) +G(z)Q(z)L(z))−1 (I−Q(z))Yd(z), (9)

and for ease of notation introduce

M(z) = Q(z) (I − SP (z)L(z)) , (10)

and hence
Ek+1(z)− Ek(z) = M(z) (Ek(z)− Ek−1(z)) ,

or
Ek+1(z)− E∞(z) = M(z) (Ek(z)− E∞(z)) .

Let || · ||∞ denote the H∞ norm and let σ(·) denote the maximum singular value of its matrix
argument. Then trial-to-trial error convergence has been formulated in H∞ control terms (see also,
for example, (Bristow et al., 2006; Doh and Ryoo, 2008)). Hence the trial-to-trial error converges
monotonically in k provided

‖M(z)‖∞ , sup
ω∈[−π,π]

σ(M(ejω)) < 1,

and minimizing ‖M(z)‖∞ increases the convergence speed.

Remark 1. Using (9) perfect tracking, i.e., e∞(p) = 0 over the trial length is only achieved when
Q(z) = I. This choice is, however, prone to the effects of high frequency noise and non-repeating
disturbances. Hence, Q has to be chosen as a low-pass filter with (ideally) unity magnitude for low
frequencies and zero magnitude for high frequencies, i.e., perfect tracking of the reference is achieved
in the specified frequency range and attenuated over the remainder. Specifically, when considering
high frequencies (i.e., when Q(z) = 0), (9) reduces to

E∞(z) = (I+G(z)C(z))−1Yd(z).

This means that Q-filter cut-off frequency should be larger than (or at least equal to) the desired
close-loop bandwidth. Note that in some cases, Q can be taken as a zero-phase filter and therefore
enables high-frequency attenuation without introducing any phase-lag, see, e.g., (Bristow et al., 2006;
de Roover, 1996) for a detailed treatment of this choice.

5



The structure of (10) gives that fast monotonic convergence will result if L(z) = S−1p (z). Also
the feedback controller C must ensure that (I + G(z)C(z))−1 ≈ 0. In applications, however, the
choice of C(z), L(z) and Q(z) is somewhat more complex and this problem is considered again later
in this paper.

2.1. ILC as a repetitive process

Having obtained the requirements for ILC design, a number of settings can be used to complete
the design. Previous work has shown that using repetitive process setting has advantages when
specifications beyond trial-to-trial error convergence are present. This section formulates the ILC
design problem considered in the repetitive process setting, starting with the dynamics of these
processes.

The state-space model of a discrete linear repetitive process (Rogers et al., 2007) over the pass
length α is

xk+1(p+ 1) =Axk+1(p) + Buk+1(p) + B0yk(p),

yk+1(p) =Cxk+1(p) + Duk+1(p) + D0yk(p),
(11)

where on pass k where xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm is the output vector and uk(p) ∈ Rl
is the control input vector. To complete the process description it is necessary to specify the boundary
conditions, i.e., the pass state initial vector sequence xk(0), k ≥ 1, and the initial pass profile y0(p).
In this paper, the initial state vector on each pass is taken as the zero vector and the initial pass
profile vector entries are assumed to be specified over the pass length as known functions of p.

The terms B0yk(p) and D0yk(p) in (11) represent the contributions of the previous pass profile
vector to the current pass state and pass profile vectors respectively. This inter-pass interaction is the
source of the unique control problem for these processes where the sequence of pass profiles {yk}k≥1
can contain oscillations that increase in amplitude from pass-to-pass, i.e., with increasing k. The
stability theory (Rogers et al., 2007) for these processes requires that a bounded initial pass profile
produces a bounded sequence of pass profiles, where in the strongest form this property is required
for all possible values of the pass length. In the remainder of this paper trial is replaced by pass to
conform with ILC terminology.

To formulate the ILC design problem in the repetitive process terms assume Q = I (at this stage
frequency attenuation using the Q-filer is not considered) and rewrite (10) as

M(z)=(I+G(z)C(z))−1 [G(z)C(z)G(z)L(z)+(I+G(z)C(z))(I−G(z)L(z))] ,

or

M(z) = I −G(z)
[
C(z) L(z)

]([ (I +G(z)C(z)) G(z)L(z)
0 I

])−1 [
0
I

]
.

Moreover, M(z) can be represented as a particular case of a general control configuration (Skogestad
and Postlethwaite, 2005), where the generalized plant P , i.e., the interconnection system of the
controlled system, is

P (z) =

[
P11(z) P12(z)

P21(z) P22(z)

]
=

 I −G(z)

0 −G(z)
I 0

 , (12)

which is the transfer-function matrix from [e>k u
>
k+1]

> to [e>k+1y
>
k+1]

>, where yk+1 = [(yk+1)
>(ŷk+1)

>]>.

The generalized ILC controller to be found is given by K(z) =
[
C(z) L(z)

]
and hence M(z) can

be rewritten as
M(z) = P11(z)+P12(z)K(z) (I−P22(z)K(z))−1 P21(z).
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This last formula shows that the transfer-function matrix from ek to ek+1 is given by a linear
fractional transformation (LFT) of P (z) with K(z) as the parameter. Furthermore, the state-space
representation of (12) is

xk+1(p+ 1) =Axk+1(p) +Buk+1(p),

yk+1(p) =− Cxk+1(p),

ŷk+1(p) =ek(p),

ek+1(p) =− Cxk+1(p) + ek(p).

(13)

Also, suppose that the ILC controller K is represented by the state-space model

x̃k+1(p+ 1) =AK x̃k+1(p) +
[
BK1 BK2

][yk+1(p)
ŷk+1(p)

]
,

uk+1(p) =CK x̃k+1(p) +
[
DK1 DK2

][yk+1(p)
ŷk+1(p)

]
,

(14)

which results in the controller realization K(z) = DK + CK(zI −AK)−1BK where

BK =
[
BK1 BK2

]
, DK =

[
DK1 DK2

]
.

The ILC dynamics can now be written asxk+1(p+ 1)
x̃k+1(p+ 1)

ek+1(p)

 =

A−BDK1C BCK BDK2

−BK1C AK BK2

−C 0 I

xk+1(p)
x̃k+1(p)

ek(p)

 , (15)

which is a discrete linear repetitive process state-space model of the form (11) with current trial state
vector [x>k+1 x̃

>
k+1] zero input vector and previous pass profile ek. Treated as a repetitive process, the

stability along the pass property will force the trial-to-trial error to converge monotonically to zero,
see the next section.

If an example described by (6) has relative degree r > 0, an r-step delay between its input and
output results. To overcome this problem, the previous trial error is shifted by r samples to form
an the anticipative feedforward control law (Wang, 2000). In implementation, this structure means
that the input signal modification fk(p) at time instant p is paired with the error signal ek(p+ r) at
time instant p+ r. Obviously, this is possible since the error signal from trial k is available once this
trial is complete. As a consequence this anticipative control law the transfer-function matrix of the
learning controller is taken as zrL instead of L.

The generalized plant P resulting from the above modification is

P (z) =

[
P11(z) P12(z)

P21(z) P22(z)

]
=

 I −G(z)

0 −zrG(z)
I 0

 ,
where the block P22 includes the anticipatory operator and the forward time shift is applied to the
error signal transmitted through ŷk+1 — see the 3rd equation of (13). Then, on introducing the
following notation for (15),

A=

[
A−BDK1C BCK
−BK1C AK

]
, B0=

[
BDK2

BK2

]
, C=

[
−C 0

]
, D0= I, (16)

the transfer-function matrix M(z) from ek to ek+1 is

M(z) = C(zI −A)−1B0z
r+D0 = Czr(zI −A)−1B0+D0. (17)
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Consider the term zr(zI −A)−1 and assuming (zI −A)−1 is nonsingular (zI −A)(zI −A)−1 = I,
and hence

z(zI −A)−1 = I+A(zI −A)−1.

Also
z2(zI −A)−1 = z(I +A(zI −A)−1) = zI +A+A

2
(zI −A)−1,

and therefore

zr(zI−A)−1 =

r−1∑
j=0

zr−1−jA
j
+A

r
(zI −A)−1. (18)

Rewriting A in (16) as

A = A+ BK =

[
A 0
0 0

]
+

[
B 0
0 I

] [
−DK1C CK
−BK1C AK

]
,

gives, on using (18),

Czr(zI −A)−1B0+D0=C

r−1∑
j=0

zr−1−j(A+BK)j+(A+BK)r(zI−(A+BK))−1

B0+D0.

Also for all r ≥ 0
CArB =

[
−CArB 0

]
,

and hence by (8)

C(A+ BK)r−1 =CAr−1,
C(A+ BK)r =CAr−1(A+ BK),

or

M(z) =C

r−1∑
j=0

zr−1−j(A+BK)j+(A+BK)r(zI−(A+BK))−1

B0+D0

=C(A+BK)r−1B0+C(A+BK)r(zI−(A+BK))−1B0+D0

=CAr−1B0+CAr−1(A+BK)(zI−(A+BK))−1B0+D0.

Hence, M(z) of (17) can be rewritten as

M(z) = C(zI − A)−1B0 + D0,

where the matrices in the state-space quadruple {A,B0,C,D0} are

A =(A+BK)=

[
A−BDK1C BCK
−BK1C AK

]
, B0=

[
BDK2

BK2

]
, D0=D0+CAr−1B0=I−CAr−1BDK2,

C =CAr−1(A+BK)=
[
−CAr+CAr−1BDK1C −CAr−1BCK

]
.

(19)

These matrices define a discrete linear repetitive process state-space model of the form (11) and will
be used to formulate the ILC design problem in terms of repetitive process stability theory.

The 2D/repetitive processes setting is well-established in the design and experimental validation
of ILC laws but the currently available results do have limitations that, if removed, would further
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strengthen their applicability for end users. Firstly, many of the available results, e.g., H ladowski
et al. (2010); Paszke et al. (2013) use state feedback control and therefore experimental implementa-
tion or a physical application requires that all entries in the current trial state vector are available for
measurement, or a state estimator is used, in addition to the requirement that these measurements
are not noise corrupted. Also, a static gain used as the learning filter does not enable satisfactory
performance in some cases since the same gain is used for entire frequency range. Only a limited
number of papers focus on imposing different design requirements in various frequency ranges, which
is of considerable practical significance since performance issues can differ over different frequency
ranges.

It is rarely case that a systematic procedure for designing the Q-filter is obtained. Increasing
the order of the Q-filter results in a higher order feedback and learning controller and this is not
desirable in many practical applications. Also it is common that the Q-filter has to be chosen prior
to applying the ILC design procedure and therefore it is almost impossible to perfectly choose its
bandwidth. Moreover, most of the available design algorithms can impose conservative stability
conditions since they use a constant frequency independent Lyapunov matrix condition that must
hold for the entire frequency range.

This paper continues the development of the repetitive process setting for ILC design and over-
comes the problems listed above. The design makes use of a general control configuration and allows
the computation of ILC controller by solving a stability problem for discrete repetitive processes
over finite frequency ranges. This approach is non-trivial since the conditions of finite-frequency
control impose several difficulties in the derivation. These include how to construct the state-space
representation of closed-loop system when an anticipative control law is applied and the generalized
ILC controller has full dynamic form and does not have the state vector available for measurement.
Also, some bilinear terms are decoupled and as the result the required learning and feedback con-
trollers are computed through the solution of convex optimization problems by LMIs. Moreover,
the generalized version of the KYP lemma is used to permit ILC design over finite frequency ranges.
Finally, a systematic procedure for designing the robustness filter is developed.

3. ILC design

In this section, the stability theory for discrete linear repetitive processes (Rogers et al., 2007)
is used to develop a new ILC design algorithm. The stability theory for linear repetitive processes
has been developed using an abstract model in a Banach space setting that includes all examples as
special cases. For processes described by (11) the trial-to-trial coupling is the convolution operator
for a discrete standard linear system with state-space model matrices {A,B0,C,D0}. Hence the
contribution from trial k to trial k+ 1 can be written as yk+1 = Lαyk, k ≥ 0. Also let yk ∈ Eα, where
Eα is a suitably chosen Banach space with norm denoted by || · || and let the same symbol denote
the induced norm on the bounded linear operator Lα.

Asymptotic stability for linear repetitive processes is equivalent to the existence of finite real
scalars Mα > 0 and λα ∈ (0, 1) such that ||Lkα|| ≤ Mαλ

k
α, k ≥ 0. For examples described by (11),

asymptotic stability requires that ρ(D0) < 1 and if this condition holds the sequence of trial profiles
produced will converge in k to a standard discrete linear system, termed the limit profile, with state
matrix Alp = A + B0(I − D0)

−1C. Consider, however, the special case when A = 0.5,B = 1,B0 =
−0.5 + β, C = 1 and D0 = 0. Then Alp = β and hence the limit profile is unstable in p, i.e., along
the trial when |β| ≥ 1.

The existence of examples such as the one given above is due to the finite trial length, a property of
the process and not an assumption imposed for analysis purposes. Stability along the trial prevents
such examples from arising by imposing the stability property for all possible values of the finite
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trial length. This property requires the existence of finite real scalars M∞ > 0 and λ∞ ∈ (0, 1),
which are independent of α, such that ||Lkα|| ≤ M∞λ

k
∞, k ≥ 0. Since the numbers M∞ and λ∞ are

independent of α means that the entries in {yk} converge monotonically to zero as k → ∞ and in
the ILC application this enforces monotonic trial-to-trial error convergence to zero.

The following result characterizes stability along the pass of examples described by (11).

Lemma 3. (Rogers et al., 2007) A discrete linear repetitive process described by (11) and (19) is
stable along the trial if and only if

i) ρ(D0) < 1,

ii) ρ(A) < 1,

iii) all eigenvalues of M(ejω) = C(ejωI −A)−1B0+D0, ∀ω ∈ [−π, π] have modulus strictly less than
unity.

As described above, the first condition in this last result is the necessary and sufficient condition
for asymptotic stability. This condition is independent of the along the trial dynamics and holds
even if the state matrix has eigenvalues on or outside the unit circle in the complex plane. Even if
this matrix is required to be stable in the standard discrete linear systems sense then this does not
guarantee stability along the trial. To achieve stability along the trial also requires condition iii).

The following is the first new result of this paper and its proof makes use of results in (Paszke
and Bachelier, 2013; Paszke et al., 2013).

Theorem 1. An ILC scheme described as a discrete linear repetitive process of the form (11)
and (19) is stable along the trial and hence monotonic trial-to-trial error convergence occurs if there
exist matrices S � 0, W and a symmetric matrix P such that the following matrix inequalities are
feasible [

S −W−W> W>A
A>W −S

]
≺ 0, (20)

−P −W 0 0
−W> P+A>W+W>A W>B0 C>

0 B>0W −I D>0
0 C D0 −I

≺0. (21)

Proof. Assume that (20) and (21) hold. ThenW+W>�S�0 which implies thatW is non-singular
and hence invertible. Next, rewrite (20) as[

S 0
0 −S

]
+ sym

{[
−I
A>
]
W
[
I 0

]}
≺ 0,

and a direct application of Lemma 2 yields A>SA − S ≺ 0. Hence, from the Lyapunov stability
theory for standard discrete linear systems, condition ii) of Lemma 3 holds. Next, application of
the Schur’s complement formula enables (21) to be rewritten as−P 0 0

0 P+C>C C>D0

0 D>0 C D>0 D0−I

+sym
{

Λ>WΣ
}
≺0, (22)

where
Λ=

[
−I A B0

]
, Σ =

[
0 I 0

]
,
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andW is a slack matrix variable. Moreover, (22) is in the form of (4) since Λ⊥ and Σ⊥ can be chosen
as

Λ⊥=

AB0

I 0
0 I

 , Σ⊥ ==

I 0
0 0
0 I

 .
Hence, by the result of Lemma 2, (22) holds if and only if[

A> I 0
B>0 0 I

]−P 0 0
0 P+C>C C>D0

0 D>0 C D>0 D0−I

AB0

I 0
0 I

≺0, (23)

and [
−P 0
0 D>0 D0 − I

]
≺ 0. (24)

Moreover, for (23) and (24) to hold, D>0 D0 − I ≺ 0 and hence that condition i) of Lemma 3 holds.
Moreover, (23) can be written in the form (3) where

Θ=

[
C D0

0 I

]> [
I 0
0 −I

] [
C D0

0 I

]
,

and hence (2) for this case with Θ defined above is equivalent to[
M(ejω)
I

]∗ [
I 0
0 −I

] [
M(ejω)
I

]
≺ 0, ∀ω ∈ [−π, π],

or
M(ejω)∗M(ejω) ≺ I, ∀ω ∈ [−π, π]. (25)

Hence condition iii) of Lemma 3 holds and the proof is complete.

Remark 2. The inequality (25) can be rewritten as

M(ejω)∗M(ejω) ≺ µ2I, ∀ω ∈ [−π, π],

where 0 < µ ≤ 1. Then σ(M(ejω)) < µ and by minimizing µ a higher speed of monotonic trial-to-trial
error convergence is obtained.

The advantage of this new result is that the product terms involving P, S and process state-space
model matrices are decoupled by the slack matrix variable W and this provides an additional degree
of freedom. Also this additional matrix variable is not required to be symmetric. The inequalities
in Theorem 1 are not LMIs as they are bilinear inW and the matrices defining the controller K. This
means no computationally effective method exists for checking (20) and (21). However, by using a
particular set of transformations, the inequality (21) can be converted into an LMI.

Assume that the auxiliary slack matrix variable W and its inverse are partitioned into blocks as
(see (Oliveira et al., 2002) for more details on the application of this step)

W =

[
X ?
U ?

]
, W−1 =

[
N ?
R ?

]
,

where ‘?’ is used to denote block entries in these matrices that are not involved in the deriva-
tions that follow. Also suppose, without loss of generality, that U and R are invertible and define
the transformation matrices F1 and F2 as

F1 =

[
X I
U 0

]
, F2 =

[
I N
0 R

]
, (26)
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where WF2 = F1 and introduce the notation

Ŵ =F>2 WF2 =

[
X I
Z> N>

]
, Â = F>2 W>AF2 =

[
X>A−B̃1C Ã

A−BDK1C AN+BC̃

]
,

B̂0=F>2 W>B0=

[
B̃2

BDK2

]
, Ĉ=CF2=

[
−CAr−1(A−BDK1C) −CAr−1(AN+BC̃)

]
,

(27)

where

Ã =X>AN −X>BDK1CN−U>BK1CN+X>BCKR+U>AKR, Z=X>N+U>R,

B̃1 =X>BDK1+U>BK1, B̃2=X>BDK2+U>BK2, C̃=CKR−DK1CN.

The theorem established next reformulates the result of Theorem 1 to an LMI-based characterization
for the existence of an ILC controller K represented by (14).

Theorem 2. An ILC scheme described as a discrete linear repetitive process of the form (11)
and (19) is stable along the trial and hence monotonic trial-to-trial error convergence occurs if there
exist matrices Ã, B̃1, B̃2, C̃, DK1, DK2, N , X, Z of the form (27), Ŝ � 0 and a symmetric matrix
P̂ such that the following LMIs are feasible[

Ŝ − Ŵ−Ŵ> Â

Â> −Ŝ

]
≺ 0, (28)


−P̂ −̂W 0 0

−̂W> P̂+Â>+Â B̂0 Ĉ
>

0 B̂>0 −I D>0
0 Ĉ D0 −I

≺0. (29)

Proof. Suppose that LMIs (28) and (29) are feasible. Then Ŵ + Ŵ> � Ŝ � 0 which implies

that Ŵ defined by (27) is non-singular and hence invertible. Next post- and pre-multiply (28) by
diag

{
F−12 , F−12

}
to obtain (20). Moreover, the LMI (29) results from left and right multiplying (21)

by diag {F2, F2, I, I} and its transpose, respectively. Setting P̂ = F>2 PF2, Ŝ = F>2 SF2 completes
the proof.

Suppose that the LMIs (28) and (29) are feasible. Then the following is a systematic procedure for
obtaining the corresponding controller matrices of (14).

1. Compute the singular value decomposition (SVD) of Z −X>N to obtain square and invertible
matrices U1, V1 such that Z −X>N = U1Σ1V

>
1 .

2. Choose the matrices U and R as U> = U1Σ
1
2
1 , R = Σ

1
2
1 V
>
1 .

3. Compute the matrices of the ILC controller state-space model (14) using

CK =(C̃ +DK1CN)R−1,

BK1 =U−>(B̃1 −X>BDK1),

BK2 =U−>(B̃2 −X>BDK2),

AK =U−>(Ã−X>AN +X>BDK1CN+U>BK1CN−X>BCKR)R−1,

(30)

where U−> =
(
U−1

)>
=
(
U>
)−1

.
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3.1. ILC with design specifications over finite frequency ranges

In applications terms a critical problem is to achieve the desired shape of the maximum singular
value of M(ejω) over the complete range to account for the spectra of exogenous signals, to penalize
regulated variables and to specify the amount of plant model uncertainty, see, e.g., (Inaba et al.,
2009; Tayebi et al., 2008) for further discussion on this requirement in the standard and ILC settings
respectively. A common approach to ensuring that the resulting frequency specifications are satisfied
is to include weighting filters in the general plant (12). The choice and tuning of these weighting
filters is not trivial task and their inclusion increases the order of the general plant and hence the
ILC controller, thus increasing the complexity of the design.

The objective now considered is to develop an approach for shaping the maximum singular value
of M(ejω) to meet the control specifications in different frequency ranges without introducing weight-
ing filters, where instead of considering the entire frequency range [−π, π] attention can be limited
to ω ∈ [0, π] only. Moreover, divide this frequency range into H intervals (not necessarily containing
the same number of frequencies) such that

[0, π] =
H⋃
h=1

[ωh−1, ωh], (31)

where ω0 = 0 and ωH = π. Then Lemma 1 can be applied at any frequency in any of these intervals.
The possibility to specify different performance specifications has considerable practical signifi-

cance since common performance issues occur over different frequency ranges. For example, trial-to-
trial error convergence rate is in the ‘low’ frequency range whereas low sensitivity to disturbances
and sensor noise are in ‘high’ frequency range. These objectives are included in the requirement that

σ(M(ejω)) < µh, ∀ω ∈ [ωh−1, ωh], h = 1, . . . ,H, (32)

where entire frequency range is partitioned according to (31) and

0 < µh ≤ 1, h = 1, . . . ,H. (33)

The choice of the frequency intervals and the µh are determined by knowledge of the application
under consideration.

Making use of Lemma 1 gives the following result for design to meet the specifications of (32).

Theorem 3. Consider an ILC scheme described as a discrete linear repetitive process of the form (11)
and (19). Furthermore, suppose that the entire frequency range is arbitrarily divided into H possi-
ble different frequency intervals as in (31). Then i) the resulting repetitive process is stable along
the trial, ii) monotonic trial-to-trial error convergence occurs and iii) the finite frequency perfor-
mance specifications (32) are satisfied if there exist matrices Ã, B̃1, B̃2, C̃, DK1, DK2, N , X, Z of
the form (27), Q̂h � 0, Ŝ � 0, symmetric P̂h and arbitrary chosen scalars µh satisfying (33) such
that the following LMIs are feasible [

Ŝ − Ŵ−Ŵ> Â

Â> −Ŝ

]
≺ 0,


−P̂h − Ŵ−Ŵ> ejωchQ̂h−Ŵ 0 0

e−jωchQ̂h−Ŵ> P̂h−2 cos(ωdh)Q̂h+Â>+Â B̂0 Ĉ>

0 B̂>0 −µ2hI D>0
0 Ĉ D0 −I

≺0, (34)
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for all h = 1, . . . ,H, where

ωch=
ωh−1+ωh

2
, ωdh=

ωh−ωh−1
2

.

Moreover, if these LMIs are feasible, the ILC controller (14) can be obtained from (30).

Proof. This follows that for Theorem 2 where Ψ is chosen as in (1) for each of H frequency
ranges satisfying (31) with frequency specifications given in (32). Since σ(M(ejω)) < 1 in each
frequency interval, it follows from (31) that σ(M(ejω)) < 1 holds over entire frequency range the proof
is complete.

Remark 3. Based on results in (Iwasaki and Hara, 2005), the decision variables P̂h and Q̂h have to
be Hermitian matrices. However, more recent developments in (Pipeleers et al., 2011) show that P̂h
and Q̂h can be selected as real symmetric matrices without additional conservatism, which reduces
the computational load.

Remark 4. The matrix variable Ŵ is common to all the LMI constraints in (34) and this may
introduce a level of conservatism into the design. If this is the case, one possible option is to use
piecewise constant matrix variables Q̂h � 0 and P̂h ∀h = 1, . . . ,H, over the a priori chosen frequency
ranges.

3.2. Q-filter design procedure

For ease of presentation, the discussion in this section deals with the single-input single-output
case (when the maximum singular value can be replaced by the modulus). In this case, it follows
from (10) that for low frequencies it is (relatively) easy to obtain |M(ejω)| < 1 since in this frequency
range the sensitivity function satisfies |SP (z)| ≈ 0. When the feedback becomes less effective and
|SP | ≈ 1, the learning filter L has to be chosen as the inverse of SP and if this transfer-function is
strictly proper its exact inverse is improper.

The plant G of (6) has a strictly proper transfer-function and therefore its exact inverse is im-
proper. Hence it is only possible to ensure that |Q(z)| ≈ 1 over the frequency range where L is a
good approximation to G−1. Also from Theorem 3 it is possible to determine the frequency range
where σ(M(ejω)) < 1 and perform learning over this frequency range only. The remaining frequencies
should be cut-off by the Q-filter because the inverse of the plant G is not sufficiently matched at higher
frequencies. Therefore, the Q-filter can be chosen as a low-pass filter (which can be implemented as
the zero-phase filter, e.g., by using the filtfilt routine in Matlab) with cut-off frequency equal
to ωH , i.e., the highest frequency for which the result of Theorem 3 is valid.

3.3. Design Computation

In terms of solvability, the LMI condition of Theorem 2 (and then extended to finite frequency
case in Theorem 3) is a version of the solution to the full order (the controller has the same order
as the generalized plant) dynamic output-feedback control problem first reported in the non ILC
literature by de Oliveira et al. (2002). As in this previous work, the result of Theorem 2 (and that
of Theorem 3) is obtained at the expense of imposing some constraints on the extra matrix variable,
e.g., the variable Z is defined as Z = XTN + UTR and hence some of the matrix variables in
this equation are not free. Although this still imposes some degree of conservatism on the results,
the number of free parameters in the new design procedure developed is significantly increased in
comparison with the available techniques for ILC design in the repetitive process setting (see also
the detailed explanation given in de Oliveira et al. (2002) for the non ILC case). This means that
the level of conservatism is lower when compared to alternatives.
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The solution strongly depends on the design specifications imposed on the system. As highlighted
in Section 3.2 on Q-filter design, the solution is found in relatively easy way when the performance
specifications only lie in the low frequency range since the process sensitivity function satisfies SP (z) ≈
0. When the feedback becomes less effective and SP (z) ≈ 1, the learning filter L has to be chosen
as the inverse of SP and if this transfer-function is strictly proper its exact inverse is improper.
This last fact means that it is hard to find a solution in high frequency range. Therefore the Q-
filter has to be used to cut-off these frequency ranges for which performance specification cannot be
satisfied. Conversely, to achieve greater reduction of the tracking error, SP (z) needs to be small at low
frequency. However, this can be done only at the cost of increasing of SP (z) in a different frequency
region and hence the system’s closed-loop bandwidth is reduced. This is a direct consequence of the
analytic design tradeoff associated with the feedback loop, known as the Bode waterbed effect, see,
e.g., Skogestad and Postlethwaite (2005) for more details in the non ILC case. In particular, there is
always a fundamental trade off and limitation between bandwidth, robustness and tracking error.

4. Experimental Case Study

To validate the new design procedure, the results of an experimental validation on a laboratory
servomechanism system are given and discussed. The system consists of a DC motor and the inertial
mass (brass cylinder, weight 2.03 [kg], diameter 0.066 [m], length 0.068 [m]), which are connected
through a rigid shaft. Rotational motion of the mass is exited by the DC motor, load position
is measured by an incremental encoder and the whole system operates with a PC-based digital
controller. A brake-out box contains an interface module that amplifies the control signals, which
are transmitted from the PC to the DC motor. The hardware setup includes a data acquisition
board, a command transmission unit and a computer that implements the control algorithms. The
system is fully integrated with Matlab/Simulink and operates in real-time and Table 1 gives its
basic parameters. Commonly, the angular position of the mass is considered as the output and the

Figure 2: The Modular Servo System.

Table 1: The DC motor parameters.

Rated Voltage 24 [V]

Rated Output Power 47 [W]

Rated Torque 15 [N·cm]

No Load Speed 3900 [rpm/min−1]

Rated Current 3.1 [A]

armature voltage is considered as the input and hence the plant transfer-function

G(s) =
Θ(s)

V (s)
=

K

s((Js+ b)(Ls+R) +K2)
, (35)

where K represents both the motor torque constant (Kt) and the back emf constant (Ke), J is the
total moment of inertia of the rotor (Jr) and the mass (Jm), b is the motor viscous friction constant,
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L is electric inductance and R is the electric resistance. Moreover, the armature voltage of the DC
motor is controlled by a PWM (pulse-width modulation) signal. As a result, the dimensionless control
signal u(t) is the scaled input voltage and the admissible controls satisfy |u(t)| ≤ 1. Consequently
the gain of G(s) in (35) has to be increased by a factor equal to the maximum armature voltage
vmax = 24[V].

Table 2 shows the physical parameters of the DC motor and they are used to obtain the mathe-
matical model. The transfer-function of (35) has been discretized with a sampling time of Ts = 0.01

Table 2: Physical parameters of the DC motor

Jr moment of inertia of the rotor 18·10−6[kg· m2]
Jm moment of inertia of the mass 0.0011[kg· m2]
b motor viscous friction constant 3.5077·10−6 [N·m·s]
Ke electromotive force constant 0.056 [V/rad/sec]
Kt motor torque constant 0.056 [N·m/A]
R electric resistance 2[Ω]
L electric inductance 0.001[H]

secs to give a minimal discrete linear state-space model of the form (6) with

A=

1.0 0 0
0 0.9860 0.0002
0 −0.0002 −2.481·10−8

 , B =

50.6240
2.0613
0.0119

 , C =
[

0.0845 −2.0613 0.0119
]
.

The state matrix A has two eigenvalues inside the unit circle and one on the unit circle. Hence if
lifting ILC design is to be used then a stabilizing feedback control loop must first be designed. In
the repetitive process setting a stabilizing control loop is part of the overall design.

The reference trajectory for the mass position is of duration 6.5 secs as shown in Figure 3(a) and
its frequency spectrum is given in Figure 3(b) and consists of harmonics from 0 to 2 Hz. The reference
signal consists of 6 revolutions in the positive direction, a return path, 6 revolutions in the negative
direction and then a return to the start position. Hence the cut-off frequency of Q-filter must be
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Figure 3: The reference trajectory (a) and its corresponding frequency spectrum (b).

equal or larger than 2 Hz. In the results given below the Q-filter is chosen as a six order Butterworth
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filter, which is applied using the Matlab function filtfilt, to give a zero phase behaviour and the
cut-off frequency of 2 Hz. Also 2 frequency ranges are chosen, i.e., from 0 to 1.2 Hz and from 1.2 to 2
Hz, respectively, where the first covers the reference signal bandwidth and this range is of primary
interest because these frequencies have the most affect on the convergence rate. The second range
includes those frequencies where the plant model accurately fits actual plant response and hence the
control is effective.

Executing the design procedure given in Section 3.1 gives the feedback and learning controllers
as

C=
0.9582z3 + 0.7857z2 − 0.168z − 0.04756

z3 − 0.01955z2 + 0.005592z + 0.01334
,

L=
4.544z3 + 6.16z2 − 1.603z − 0.02429

z3 − 0.01955z2 + 0.005592z + 0.01334
,

where µ1 =
√

(0.8) (upper bound on |M(ejω)| in the first frequency range - see (32) and (33)) and
µ2 =

√
(0.95) in the second range. The resulting plot of |M(ejω)| is given in Figure 4(a) and confirms

that the design specifications are met.
The designed ILC algorithm was experimentally tested over 10 trials. On completion of each trial

the corresponding root mean square (RMS) value of the tracking error was computed using

RMS =

√√√√ 1

N

N∑
p=1

e(p)2,

where N is the number of sampled data in the trial time. In Figure 4(b) the RMS value of the tracking
error is shown as a function of the trial number. As the result, this last figure confirms convergence of
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Figure 4: (a) Plot of |M(ejω)|. (b) The error convergence.

the error. To assess tracking performance, Figure 5 shows the RMS value of the tracking error plotted
against trial number and the time axis. Obviously, the largest error occurred at the time instants
when the system accelerated or decelerated. This corresponds to the low frequency behavior of the
system. This plot demonstrates the good tracking performance of the new ILC design developed in
this paper. In application implementation in discrete-time is attractive since ILC explicitly requires
the storage of the previous trial data, which is typically sampled. Therefore, this implementation
has first constructed a discrete model of the dynamics, designed the ILC controller using this model
and proceeded to implementation using a micro-controller. Moreover, the sampling and design has
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to be done once only and hence there is no need to produce a new discrete-time model prior to
each trial. Even when some conditions are changed, the ILC controller will attempt to generate a
suitable feedworward signal to compensate for the effects of these changes on performancee. This
means the control scenario has some robustness to changes in the plant parameters. For instance, see
Figure 4(b), during 6th trial an unexpected change in the input signal generated by A/D converter
occurred for a short period of time but this only caused a small increase in the tracking error and
the design has some level of robustness to some (e.g., slow) parameter changes and further research
on developing a robust version of this design should be undertaken.

5. Conclusions

In this paper a systematic procedure for the design of ILC laws using the repetitive process setting
has been developed. Using this design it is possible to avoid adding weighting filters to obtain the re-
quired frequency response matrix to meet differing performance specifications. The results have been
established by using the generalized KYP lemma to transform frequency domain inequalities over
finite and/or semi-finite frequency ranges for a transfer-function to LMIs. Experimental validation
of the results on a laboratory scale testbed have also been given.

This work has followed the majority of the ILC literature in assuming that all exogenous signals,
i.e., reference signal and disturbances, are identical from trial-to-trial and that the initial conditions
are the same for each trial and if these assumptions are violated then the achievable performance
of the ILC design can be limited. If the initial state is not reset to the same vector on each trial,
i.e., there are initial state shifts, the result could be additional transients which propagate across the
trials and hence increase the tracking error. In many cases, non-repetitive disturbances caused by
reset errors are located at high frequency rage (i.e., above the bandwidth of the reference signal) with
repetitive disturbances assumed to be completely located in the low frequency range. It is therefore
possible that the design in this paper can be developed further to remove a large part of non-repetitive
disturbances since Q-filter attenuates high frequency disturbances (see Remark 1). Also this design
should extend to the case when more feedback control effort is directed to eliminating the reset errors.
One possible approach would be to impose additional constraints (bounds) on sensitivity function to
make the feedback control part more effective and hence limit the effects of non-repetitive signals on
performance of whole control system (feedback+ILC). This is an area for possible future research, for
which the ideas in, e.g., Helfrich et al. (2010) are relevant. Also robust control should be investigated.
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The design of ILC for linear systems with higher relative degree has been the subject of consid-
erable attention, where the results currently available in literature are based on the assumption that
the learning controller is a static gain and the first Markov parameter of controlled system (i.e., CB
from the state-space triple {A;B;C}) defining the system model is known. However, the first Markov
parameter is the response at time step one for a unit pulse input at step zero and hence, in typical
situations, this parameter has zero (or near to zero) value. Therefore the solution can generate a very
high gain and can result in very poor performance and transient dynamics. An alternative solution
should include the fact that the desired trajectory must start from the first time step for which an
input at zero can influence the output. This paper has developed a systematic way to design both
learning and feedback controllers for systems with higher relative degree. It is shown that application
of anticipative control law is possible and some transformations leads to a problem form where not
all matrices of the resulting state-space model are changed.

One alternative way of designing ILC laws for strictly proper systems is given in H ladowski et al.
(2011) but this design is based on state vector augmentation. Also, the dimensions of the matrix
variables grow as the relative degree of the system increases. As a result, the controller order is also
increased and can be greater than that of the system itself . The approach developed in this paper
avoid these problems and the controller order does not increase with the plant relative degree. Also
the size of matrix variables does not increase and therefore reduces the computational load when
compared to the approach in H ladowski et al. (2011). Another approach was given in Paszke et al.
(2012) where a low-pass filter with unity DC gain and sufficiently high cut-off frequency was used
to remove a system limitation for the relative degree one case only. However, in practise it is hard
to determine sufficiently high cut-off frequency prior to design procedure and also with choosing the
order of the filter. Finally, this approach is applied when simple structure static learning and feedback
controllers are used. These are significant limiting factors in the application of this approach that
are overcome in this paper.
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