Design of polymer systems and surface-active agents for the improvement of cell attachment for treatment of ocular diseases
Design of polymer systems and surface-active agents for the improvement of cell attachment for treatment of ocular diseases
The degradation of eyesight is a frightening experience for individuals and unfortunately gradual loss of vision with old age is commonplace. One of the most common forms of eye disease which effects vision is Age-Related Macular Degeneration (AMD). AMD is the leading cause of blindness in the developed world and there is currently no cure for the disease. One treatment option available for the neovascular form of AMD is the injection of Bevacizumab [an anti-vascular endothelial growth factor (VEGF) drug] into the eye on a monthly basis.
Investigation into the biodegradable polymers poly(L-lactic acid) (PLLA) and poly(D,L-lactic-co-glycolic acid) (PLGA) as a possible drug delivery system with highly uniform and reproducible microspheres was developed. Under optimised parameters Bevacizumab-encapsulated PLLA:PLGA microspheres were successfully prepared with a steady release of Bevacizumab being obtained.
Additionally, fibrous scaffolds of methyl methacrylate (MMA) and poly(ethylene glycol) methacrylate (PEGM) were prepared by an electrospinning process. These MMA:PEGM co-polymers were investigated as a possible Bruchs membrane replacement and as the support for retinal pigment epithelium (RPE) transplantation. The MMA:PEGM co-polymers were functionalised with N-succinimidyl which resulted in the fibres forming a gel in vitro. Gel formation was examined further and successful RPE cell attachment and growth onto these gels was observed. Further work on surface active agents was undertaken to improve the cell adhesion, proliferation and growth of RPE cells onto these methacrylate based frameworks. An arginine-glycine-aspartic acid (RGD) peptidomimetic was prepared and reacted onto the surface of the MMA:PEGM co-polymers, however, the peptidomimetic-attached MMA:PEGM fibres offered little improvement in cell growth in comparison with N-succinimidyl–activated MMA:PEGM co-polymer fibres.
Additional attachment of the natural proteins laminin, collagen and fibronectin onto the microspheres was achieved. Attachment of these proteins prolonged the release of the dye from the microspheres and showed no cytotoxic effects when examined in-vitro.
Pitt, Darren William
54e007c9-cd15-4a7a-982b-6732b7a2a382
25 June 2015
Pitt, Darren William
54e007c9-cd15-4a7a-982b-6732b7a2a382
Grossel, Martin C.
403bf3ff-6364-44e9-ab46-52d84c6f0d56
Pitt, Darren William
(2015)
Design of polymer systems and surface-active agents for the improvement of cell attachment for treatment of ocular diseases.
University of Southampton, Chemistry, Doctoral Thesis, 233pp.
Record type:
Thesis
(Doctoral)
Abstract
The degradation of eyesight is a frightening experience for individuals and unfortunately gradual loss of vision with old age is commonplace. One of the most common forms of eye disease which effects vision is Age-Related Macular Degeneration (AMD). AMD is the leading cause of blindness in the developed world and there is currently no cure for the disease. One treatment option available for the neovascular form of AMD is the injection of Bevacizumab [an anti-vascular endothelial growth factor (VEGF) drug] into the eye on a monthly basis.
Investigation into the biodegradable polymers poly(L-lactic acid) (PLLA) and poly(D,L-lactic-co-glycolic acid) (PLGA) as a possible drug delivery system with highly uniform and reproducible microspheres was developed. Under optimised parameters Bevacizumab-encapsulated PLLA:PLGA microspheres were successfully prepared with a steady release of Bevacizumab being obtained.
Additionally, fibrous scaffolds of methyl methacrylate (MMA) and poly(ethylene glycol) methacrylate (PEGM) were prepared by an electrospinning process. These MMA:PEGM co-polymers were investigated as a possible Bruchs membrane replacement and as the support for retinal pigment epithelium (RPE) transplantation. The MMA:PEGM co-polymers were functionalised with N-succinimidyl which resulted in the fibres forming a gel in vitro. Gel formation was examined further and successful RPE cell attachment and growth onto these gels was observed. Further work on surface active agents was undertaken to improve the cell adhesion, proliferation and growth of RPE cells onto these methacrylate based frameworks. An arginine-glycine-aspartic acid (RGD) peptidomimetic was prepared and reacted onto the surface of the MMA:PEGM co-polymers, however, the peptidomimetic-attached MMA:PEGM fibres offered little improvement in cell growth in comparison with N-succinimidyl–activated MMA:PEGM co-polymer fibres.
Additional attachment of the natural proteins laminin, collagen and fibronectin onto the microspheres was achieved. Attachment of these proteins prolonged the release of the dye from the microspheres and showed no cytotoxic effects when examined in-vitro.
Text
D Pitt Thesis.pdf
- Other
More information
Published date: 25 June 2015
Organisations:
University of Southampton, Chemistry
Identifiers
Local EPrints ID: 380880
URI: http://eprints.soton.ac.uk/id/eprint/380880
PURE UUID: 24d95b7f-808f-4290-913e-f4fde757fb29
Catalogue record
Date deposited: 28 Aug 2015 11:36
Last modified: 15 Mar 2024 05:20
Export record
Contributors
Author:
Darren William Pitt
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics