3D-LIVE — 3D-LIVE Interactions through Visual Environments Project N. 318483

D3.3 3D-LIVE platform modules Date 13/3/2015

SEVENTH FRAMEWORK
PROGRAMME

D3.3 3D-LIVE platform modules

Deliverable data

Deliverable no & name D3.3 3D-LIVE platform modules
Main Contributors CERTH
Other Contributors ARTS, CYBER, IT-IN
Deliverable Nature P
Dissemination level PU Public X
op Restricted to other programme participants (including the
Commission Services)
RE Restricted to a group specified by the consortium (including
the Commission Services)
co Confidential, only for members of the consortium (including
the Commission Services)
Date 30/3/2015
Status Final

3D-LIVE Consortium Dissemination: Public 1/133



3D-LIVE — 3D-LIVE Interactions through Visual Environments Project N. 318483

D3.3 3D-LIVE platform modules Date 13/3/2015
23/06/2015
Document history
Version | Date Author /Reviewer Description
S. Asteriadis .
V0.1 21/11/2014 D. Zarpalas Initial Structure and Input
V0.2 01/12/2014 | A.Doumanoglou Further contributions
D.Zarpalas, _—
V0.3 12/12/2014 S Asteriadis, Further contributions
A. Doumanoglou
V0.4 15/12/2014 | A. Doumanoglou Further contributions.
V0.5 19/12/2014 | J. Vatjus-Antilla Cyber contributions
V1.1 19/12/2014 | A. Doumanoglou Review and edit
V1.2 8/1/2015 D. Zarpalas Content restructuring and update
V1.3 11/2/2015 D. Zarpalas Content restructuring
V14 27/02/2015 Contributions in section Network monitoring and
N. Vretos . .
adaptive compression
M. Lazaridis, . st . . .
V1.5 27/02/2015 Adding 1™ version of traceability matrix
C. Athanasiadis
V1.6 271212015 i}r\e/'?c: éus-Antllla, N. Integrated contributions from CYBER
D. Zarpalas - .
V17 28/2/2015 N. Vretos Updated traceability matrices
V1.8 6/3/2015 N. Vretos Updated traceability matrices
Updated traceability matrices
V19 10/3/2015 | o, Puseard M.
Integrated ARTS contribution
V1.10 11/3/2015 S. Crowle, N. Vretos Integrating ARTS and IT-innov input
V111 11/3/2015 N. Vretos, D. Zarpalas | Overall refinement
Added input from ARTS and IT-innov about 3D scene
V1.12 13/3/2015 N. Vretos, D.Zarpalas ) )
modelling and references about golf physics. Overall

3D-LIVE Consortium Dissemination: Public 2/133



3D-LIVE — 3D-LIVE Interactions through Visual Environments Project N. 318483

D3.3 3D-LIVE platform modules Date 13/3/2015
refinement.
V2.1 18/3/2015 x.n?illrlgtos, I Vatjus- Added input in traceability matrix from CYBER.
V2.2 19/03/2015 D. Zarpalas Minor modifications towards finalization
V2.3 30/03/2015 D. Zarpalas, P. Daras Final modifications.

3D-LIVE Consortium

Dissemination: Public

3/133



3D-LIVE — 3D-LIVE Interactions through Visual Environments Project N. 318483

D3.3 3D-LIVE platform modules Date 13/3/2015

Contents
1 EXECUTIVE SUMMARY ..ottt ettt ettt e ettt s e s be st e e st e e s abe e s abe s s nbe e sabeeabeeesbaeereeebeas 5
1.1 SUMMARY OF 3D -LIVE PROJECT ..uiii ittt ettt ettt ettt ettt e et e e ettt e e et e e e et e e e etae e e e eabaeeesenveens 5
1.2 PURPOSE AND SCOPE OF THE DOCUMENT ....eeiiitiieeiitieeeeitteeeestteeeeetteeeeeaseeeesstesesassseessnssseesissesesasseeesans 5
1.3 RELATED 3D-LIVE DOCUMENTS ....cciitiiiitiiiitie e itee e itee s stee e streesteesstseesteesstseesteessaseesanessseeessneessseessnessseeens 6
14 BRIEF WORK PACKAGES DESCRIPTION .....uvveitieiiteeeiteeesteesitseesseessssesssessssseesssssssseesseessssesssesssssessnsssseeans 6
15 STRUCTURE OF THE DELIVERABLE .....citttiitie e ittt e ittt steeestte e s veestte e staeestee s staeesnaesstbaesnteesnneesnnessnneesneeesans 11
2 3D-LIVE CORE TECHNOLOGIES .......ocoti ettt ettt ettt ettt sate s srae e sba e sraeearne e 12
2.1 SENSORS ...ttt it itttee ettt e e eettee et ettt e e e eetteeeeetbeeeseabeeeeataeeeabaeeeaasbeeeaaabaeeeabbeeeaaabbeeeabeeeeabbeeeaattteeeanrreeeabreeas 14
211 Human Sensing iN 3D-LIVE ..o 14
2.1.2  Location SENSING iN 3D-LIVE .......c.ocoiiiiiice ettt sre e eas 16
0 TG T AU o [T Y= 3 T SR 17
2.1.4  Weather CONAItIONS SENSING ....ccviiiiiieireie et e e et et e e te e teesaesreesreesreesreeeas 17
2.2 SPORTS EQUIPIMENT 1tviiiiiiiiiititiieee e e s ittt it s e e e s setbbba e s s e e st e bbb bt e e s e e e s s e bbb b e e e e e s s e abb b b eeeeessesbbbbaeeeesessabbbnees 18
2.3 GAME SERVER ...ccc ittt e iitttte sttt e e ettt e e s ette e e e sttt e e e et e e e s tteeeaasbeeeeaateeeeaaeeeeeasbeeeeanseeeeasaeeeeasbeeeeanneeeenrneeens 19
2.4 RABBITMQSERVER ....ceiittiiitite it st siit sttt ettt ssb e st e st st e s abe e a1t e e st e s s e e et e e e s beeenbeennbeeanbeennteas 21
2.5 ENVIRONMENTAL OBSERVATION SERVICE & ENVIRONMENT RECONSTRUCTION SERVICE ............... 22
2.5.1  Environmental ODSErVALION SEIVICE ......cc.iiiviiiiee ettt ettt et srre e sbte e sraeesbr e e sreeesrae e 22
2.5.2  The Environment RECONSIFUCLION SEIVICE.......cccuiiiviciie ittt ettt ettt see e srre e srreesare e 22
2.6 AAUDIO SERVER .. .veiiiittie e ettt e sttt e e ettt e e e etee e e stte e e e etbeeeaeataeeesbbeeeaatbeeeeaabessesbbeeeeasbeeeeanseeeessteeesasbeeenns 29
2.7 BD-LIVE CAPTURER ... .utitiiittiee e ettt e eettee e ettt e e ettt e e e ttee e e ettt e e e eabaee e e ebbeeeeeabaeeeeabeeeesbbeeeaasbeeeeasseeeesnseeens 30
2.8 INDOOR GAME CLIENT ...ttiiieiitiee e e sttt e e sttt e e s sttt e e e e tee e e s at e e e s sttt e e e astaseesasseeaessteeeeanseeeessraeeesseeeesnseeeeesnnns 34
2.8.1  RealXtend Game ClHIENT ........coiiieiiec ittt tre e st e e stae e sbte e steeesabeesaaeesrreeas 34
R B O [0 11| A C =141 O 11T o P 41
2.9 3D-LIVE OUTDOOR GAME CLIENT .. .uttiieiitiee e ittt e e eittee e s sttre e e eteeeesstteeeessbeeessnseeaessaesesasssesssnsnsesssseeas 65
2.9.1 Created With Java and ECHPSE .......ccveiiiiecice ettt re e 65
2.9.2  Created WIth UNILY3D.......ccoooiiii ettt be e be e e esreenreenas 66
b2 O I XU o1 (o X O3 [ = N PR ORRRRTR 70
2.11  EXPERIMENTS MONITORING (EXPERIMONITOR OR ECCDASHBOARD)......ccvevitirieiinieriereeienieneeiennes 71
3 3D-LIVE INNOVATIVE TECHNOLOGIES. ...ttt 74
3.1 HUMAN RECONSTRUCTION AND ANIMATION L...uuiiieiiiiieeiiiereeiiteeessteeeeesneeessasesessssreessnssseessnssesssssenas 75
311 AVALAE ANIMATION ..eciiiiiie e e ettt eat e st e e et e e s hbe e sare e sbbeesbbeestaeesbbeesbeeesbbeesbaeearreens 75
TN 1 =1 (o] T 4 1=T (o 1o SRS 77
3.1.3  Outdoor USEr avatar AnIMALION .........c..covvieiiieeie e cee e et cee e ee e sre e et e e sreeesaae e sreeesbaeesreeesreeesreeesreeeas 78
3.1.4 Real-time, 3D-Reconstructions of MOVING hUMANS..........ccccvviviiriiniice e 80
3.1.5 Evaluation of 3D-RECONSIIUCTION .....c.veeiuiiiiiiiceeie ettt ere s stee et sree e erae e sree e sree s sreeesbeeesreeesreeans 85
3.2 ACTIVITY RECOGNITION IN 3D-LIVE ...ttt e 86
3.2. 1 SPEEU BSHIMALES. ... vtttk b et b et b etk b et bbb e re st 87
3.2.2  ACHIVILY PEITOIMANCE ...t e b bbbt e e s b et sbe et e s e 88
3.3 DATA COMPRESSION AND TRANSMISSION ......cciutiieeiittieeeeiteeeesitteeeesteeeeessseeesssbeeessssreessasssesssssessesssseens 94
Compression of HUMan 3D-RECONSIIUCTIONS ..........ooiiiiuirieeieie ettt 94
3.4 NETWORK MONITORING AND ADAPTIVE COMPRESSION ......ccciiuiiieeiiieeeeiieeeeitteeeesitreeeseteeeeesnseeeesnsveeas 98
3.5 EVALUATION METRICS ..oiiiittiieeiitiee e ettee e s ettt e e ettt e e e etteeeastbaeeeantaeeesabbaeesasbaeesaabaseessbeeesasteeeesnbeneessrenas 103
4 TRACEABILITY MATRIX ..ottt ettt ettt sttt stee et e stae s eate s sae e sbte s saaeesbee s sraeesntessrressnaesanes 106
5 (D] RSO0 1] [0 ] SRR 123
B APPENDIX A ittt et eb e e e ae e ebee e ebeeeabbeeabeeeabbeestaeeabbeearaeeatreeas 124
7 F N g o N[ 1 G = 128
8 REFERENGCES ...ttt ettt ettt ettt et e et e et e e bt e e ebeeebe e e ebeeesbteeabeeebeeesbeeebeeesbeeesreens 132

3D-LIVE Consortium Dissemination: Public 4/133



3D-LIVE — 3D-LIVE Interactions through Visual Environments Project N. 318483

D3.3 3D-LIVE platform modules Date 13/3/2015

1 Executive Summary

This deliverable provides a deep, technical description of the modules of the 3D-LIVE platform.
Specifically, analysis is based on requirements elicited through extended experimentation procedures in
the project, feedback received from end users (through the 3D-LIVE co-creation activities) and technical
requirements defined by the 3D-LIVE designers. The descriptions provided in this deliverable cover the
whole gamut of 3D-LIVE activities, both regarding software engineering and hardware selections. The
analysis of the 3D-LIVE platform modules is intended to address the development of similar applications
and, thus, use-case specific descriptions have been avoided and only added to specify the particular utility
of a function or component. To that aim, a generic architecture is given and, only where necessary, use

case-specific explanations are added.

1.1 Summary of 3D-LIVE Project

The 3D-LIVE project aims at developing and experimenting on a User Driven Mixed Reality and
Immersive platform, connected to EXPERIMEDIA facilities (FIRE testbeds), in order to investigate the
Future Internet (FI) requirements to support Real-Time immersive applications, as well as to evaluate
associated services both in terms of Quality of Experience (QoE) and Quality of Services (QoS). The
main objective of 3D-LIVE is to explore 3D/Media technologies and Internet of Things (10T) in order to
construct applications bringing together real and virtual environments, among distant users with varying
requirements. The combination of FIRE testbeds and Living Labs will enable both researchers and users
to explore Future Internet capabilities to enter the Tele-Immersive (T1) application market and to establish
new requirements for Internet technology and infrastructure. It is expected that, combining FI technology
and TI market, will promote and accelerate the creation and adoption of innovative applications based on

FI Services.

1.2 Purpose and Scope of the document

Until today (M28), the consortium has attained a series of achievements: The first and second prototypes
of the platform have been delivered and their functionalities have been described in D3.3.1 (D3.1 after
DoW amendment) and D3.3.2 (D3.2 after DoW amendment), respectively. The third prototype of the
platform has been finalized (M25) and, currently, it is being evaluated through LIVE 3 activities. This
deliverable givesa thorough description of all building components of the platform; through this technical
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description, it is expected that researchers, designers and developers will be provided with an analytical,
technical methodology for building tele-immersive applications, following a multi-faceted strategy,
driven by technical and user-related requirements. The final prototype (3™ will be documented in D3.4
(D3.3.4 before DoW amendment) (M30).

After all the technical details of sections 2 and 3, the traceability matrix is presented in section 4, to
provide insights on how the modules were implemented based on updated requirements, gathered from
technical feedback during the live experimentation. More information about this iterative development

approach can also be found in D3.2 and D3.4.

1.3 Related 3D-LIVE Documents

AD(1). 3D LIVE  DoW

AD(2). 3D LIVE D1.1 Investigate and Formalise an Experiential Design Process
AD(3). 3D LIVE D1.1 Study and Create the Holistic User Experience Model

AD(4). 3D LIVE D2.1 Report on the Conceptual Design of the 3D-LIVE Platform
AD(5). 3D LIVE D2.2 Report on the Needs and Requirements of the 3D-LIVE Platform
AD(6). 3D LIVE D3.3.1 First Prototype of the 3D-LIVE platform

AD(7). 3D LIVE D3.3.2 Second prototype of the 3D_LIVE platform

AD(8). 3D LIVE D4.1 First Report on the experimentation & evaluation of the 3D-LIVE Tele-

Immersive Environment

1.4 Brief work packages description

Three main activities have been considered in 3D-LIVE: i) Concept Modelling (WP1), ii) Exploration
and Prototyping (WP2 & WP3) and iii) Experimentation and Evaluation (WP4). WP5 and WP6 are
continuously active during the project, as they support dissemination/exploitation activities (WP5) and
management (WP6). 3D-LIVE is following an iterative procedure in these activities, with all three of

them giving feedback to one another, in a closed-loop fashion. This has been organized into 3 prototypes
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of the platform (prototypes 1,2 & 3), corresponding pilot activities (LIVE 1,2 & 3).
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Figure 1: Functional description of work packages
Positioning in the current deliverable

Work package 3 (after contractual amendment following EC recommendations), consists of the following

tasks:

e T3.1: 3D reconstruction in real time (Leader: CERTH, Partner: IT Innovation)

e T3.2: Activity Recognition, through data fusion of visual and other sensorial data (Leader:
CERTH, Contributors: IT Innovation, ARTS, SportsC, CYBER)

e T3.3: Data compression and transmission (Leader: CERTH, Contributors: ARTS, SportsC, Cyber)

e T3.4: Rendering and Visualization (Leader: ARTS, Partners: CERTH)

e T3.5: Integration into the 3D-LIVE Tele-Immersive Environment (Leader: ARTS, Cyber)

e T3.6: Network monitoring and content adaptation (Leader: IT-IN, Contributors: CERTH, ARTS,
SportsC, Cyber)

Tasks T3.1-4 and T3.6 (newly added task) are related to technical components that group tools, modules,
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functionalities, communication protocols and interfaces, which are integrated through Task 3.5.
Consequently, this deliverable gives a complete description of activities performed through tasks T3.1-4
and T3.6, with D3.3.1 (D3.1 after DoW amendment) , D3.3.2 (D3.2 after DoW amendment) and D3.4
(first, second and third prototype description) focusing on activities related to T3.5, integration and

functional interdependencies of the ecosystem building blocks.

Figure 2 presents the generic concept behind the 3D-LIVE deployment. The specific logic has been
followed across all implementation and experimentation cycles of the project.

= =

3D-LIVE server ——
OUTDOORS II

= =

Figure 2: High level description of the 3D-LIVE platform, differentiating the modules to indoors and outdoors

As can be seen in Figure 2, the 3D-LIVE platform is deployed in 2 settings, involving completely
different user and system requirements:

1. Indoor environments
2. Outdoor environments

Indoor and outdoor environments are the physical locations where the 3D-LIVE users are residing. They
both consist of the following building components: Acquisition, User Applications and Rendering.
Additionally to these two deployments, the external data exchange tool handles weather data fetching and
includes a mechanism for sharing evaluation metrics for the modules. Central to the 3D-LIVE ecosystem
is the 3D-LIVE server, responsible for handling data communications, network monitoring and game
server applications.
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Specifically, the building components of the 3D-LIVE platform are summarized as follows (refer to
Section 1.5 for a detailed description).

External
Component Type Component Name Indoor  Outdoor Data
Exchange
Sensor Microsoft Kinect X
Sensor Motion Sensors X
Sensor Gyroscope X
Sensor RGB Cameras X
Sensor GPS Sensor
Sensor Microphone X
Sensor Weather Conditions Sensor (Sensordrone)
Equipment Ski Simulator X
Equipment Treadmill
Equipment Golf equipment
Equipment Mobile devices
Equipment Headsets X
Equipment CAVE Systems, Wide displays
Equipment Sound Systems
Equipment Touch screens
Equipment Recon / AR Masks
Software 3D-LIVE Capturer
Software Game Client X
Software Game Server X

3D-LIVE Consortium
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Software Environmental Observation Service (EOS) X
Software Environment Reconstruction Service (ERS) X
Software RabbitMQ Server X
Software EXPERImonitor X

Table 1: 3D-LIVE building components

The components mentioned above constituted the starting points of 3D-LIVE for the development of a
dynamic ecosystem and the creation of novel instruments in 3D human reconstruction, compression and
transmission, content adaptation to available bandwidth and activity analysis. Moreover, the 3D-LIVE
consortium proposes solutions regarding environment reconstruction (weather and 3D modelling) and
voice communications; all the above can be used as part of an overall methodology for highly innovative
tele-immersive experiences. Specifically, in order WP3 to build the innovative 3D-LIVE tele-immersive
platform, the components of Table 2 were developed, where the degree of innovation is also mentioned,
associated with each of them.

Task Module Degree of innovation

3.1 | 3D modelling of the scene INTEGRATION OF EXISTING
TECHNOLOGY

Weather data fusion INTEGRATION OF EXISTING
TECHNOLOGY & NEW
METHODOLOGY

Avatar animation RESEARCH, INTEGRATION
OF EXISTING TECHNOLOGY
& NEW METHODOLOGY

Real time, 3D reconstruction of moving humans RESEARCH

3.2 | Speed estimates NEW METHODOLOGY
Activity performance RESEARCH
3.3 | Voice communication INTEGRATION OF EXISTING
TECHNOLOGY
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Communication protocols INTEGRATION OF EXISTING
TECHNOLOGY
Compression of human 3D reconstructions RESEARCH
Audio data compression & transmission INTEGRATION OF EXISTING
TECHNOLOGY
3.4 | Interplays among input devices and sensors INTEGRATION OF EXISTING
TECHNOLOGY
User interface INTEGRATION OF EXISTING
TECHNOLOGY
3.6 | Network monitoring & Adaptive compression RESEARCH
All | Evaluation methodology of 3D-LIVE modules NEW METHODOLOGY
WP3

Table 2: Degree of innovation for different 3D-LIVE components

In the following sections, the above building components are analysed with regards to the services
offered, the supporting technologies, along with the reasoning behind the choices made in the project.

1.5 Structure of the Deliverable

Contrary to D3.1, D3.2 and D3.4, this deliverable describes the 3D-LIVE platform modules
independently of its use-cases (jogging, ski, golf). However, given the different game engines used in the
scenarios (jogging: RealXtend, ski/golf: Unity3D) some of the modules are described based on the game
engine used. Furthermore, when certain functionality tailored to use-case specific requirements needs to
be highlighted, proper explanations are given. The structure of this deliverable is as follows: Section 2
presents the technologies that constitute the basis for the 3D-LIVE deployment: it gives an analytical
technical description, aligned with the rationale behind choices in software and hardware tools made by
the 3D-LIVE consortium. It describes all the deployment components of the 3D-LIVE platform and the
implemented modules, along with details of their implementation. In the cases where the implemented
modules constitute research and technological advancements of the 3D-LIVE project, beyond existing
technologies and methodologies, details of their implementation are described in Section 3 (while
references are given in Section 2 wherever necessary). Section 4 explains, in the from a traceability
matrix, the development’s evolution based on the updated requirements gathered in the course of the 3D-
LIVE’s official experiments. Finally, section 5 offers the conclusions of this work.
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2 3D-LIVE core technologies

Figure 3: 3D-LIVE Platform deployment

In this section, the 3D-LIVE Platform deployment, whose conceptual model is described at the 3D-LIVE
document D2.1 “Report on the conceptual model of the 3D-LIVE platform”, is discussed. In other words,
what follows here is the description of how the conceptual model is actually deployed in software &
hardware. The 3D-LIVE platform deployment is given in Figure 3. The different components of Figure 3
are separated in two categories: server side components (Server Setup) and client side components
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(Indoor/Outdoor Setup). Server side components include the Messaging Server, the Game Server, the
Audio Server, the Network Monitor and Adaptation Service, the Environment Reconstruction Service and
the EXPERImonitor. For the indoor users, client side components include Sensors, the Indoor Game
Client, the Audio Client and the User Capturer software, while for Outdoor users they include Sensors,
the Environment Observation Service, the Audio Client and the Outdoor Game Client. One key element
in Figure 3, which takes part in almost all interactions among the different components, is the Messaging
Server. The Messaging Server used in 3D-LIVE is realized by RabbitMQ (section 2.4). RabbitMQ is a
messaging broker, enabling easy realization of network messaging across different applications based on
the publisher/subscriber model. Any application that has to publish information to others can publish on
RabbitMQ and then RabbitMQ will replicate the message to its subscribers. In the beginning, it all starts
with sensorial acquisition, being either motion sensing and 3D data capturing of the indoor users or GPS
locations and motion sensing from the outdoor ones. Sensorial acquisition (section 2.1) is performed via
User Capturer and the Game Clients (sections 2.8, 2.9), with each component being responsible for a
different kind of sensors, as will be discussed later in this document. 3D Reconstruction (section 3.1.4)
and activity recognition (section 3.2) is performed by the User Capturer and the information is distributed
to the Game Clients via RabbitMQ messaging. The functionalities of the User Capturer software are
realized by the 3D-LIVE Capturer (Section 2.8) component. Prior distributing 3D-Reconstruction data,
the User Capturer software queries the Network Monitoring and Adaptation Service (section 2.12) about
the data’s compression level. To accomplish the latter, the Network Monitoring and Adaptation Service
communicates with the Network Monitoring Clients (section 2.12) in order to determine the performance
of the network. Then, the suggestion about the 3D-Reconstructed data’s compression level is made
available to User Capturer via the Messaging Server. The Game Server (section 2.3) is the component
being responsible for maintaining the game state and syncing game clients. Game data is exchanged
between the game server and game clients. In addition, a separate Audio Server (section 2.6) is
responsible for audio communications. Indoor and outdoor users use specific audio clients (section 2.10)
that are aligned with the audio server. This enables user interaction during gameplay. The Environment
Reconstruction Service (ERS) obtains data from the Environmental Observation Service (EOS) (section
2.5) through RabbitMQ, fuses the information with the data provided from the internet and outputs to the
RabbitMQ. The weather data, which is the output of ERS, is consumed directly by the game clients. As
mentioned before, in 3D-LIVE, real-time monitoring of technical Quality of Service (QoS) metrics are
collected along the whole game pipeline. This responsibility is carried out by EXPERImonitor (section
2.11). EXPERImonitor collects QoS metrics by the following components: 3D-LIVE Capturer, Indoor &
Outdoor Game Clients, and the Game Server. The metrics are then logged and post-processed to evaluate
the 3D-LIVE platform.
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In the following subsections, each of the individual core components of Figure 3 is described in detail. In
summary, this includes: Sensors (2.1), Game Server (2.3), RabbitMQ Server (2.4), Environment
Reconstruction Service & Environment Observation Service (2.5), Audio Server (2.6), 3D-LIVE Capturer
(2.7), Indoor Game Client (2.8), Outdoor Game Client (2.9), and Audio Clients (2.10), EXPERImonitor
(2.112).

2.1 Sensors

Sensors, in 3D-LIVE, refer to any hardware module responsible for human sensing, location acquisition,
audio input and real-time weather conditions sensing.

2.1.1 Human Sensing in 3D-LIVE
Microsoft Kinect Depth Sensors:

The Kinect RGB-D sensor features i) a regular RGB camera and ii) a depth sensor, consisting of a stereo
pair of an InfraRed (IR) projector and an IR camera (monochrome CMOS sensor), with a baseline of
approximately 7.5cm. The depth values are inferred by measuring the disparity between the received IR
pattern and the emitted one, which is a fixed pattern of light and dark speckles. The Kinect driver outputs
a N, x Ny =640x480 depth grid with a precision of 11 bits at 30 frames/sec. The RGB image is provided
in the same resolution and frame rate with the depth data. According to the technical description in the
Kinect-ROS (Robot Operating System) wiki', the RGB camera’s horizontal Field of View (FoV) is
approximately 58°, while the depth camera’s horizontal FOV is approximately 63 ° and vertical FoV is

! http://www.ros.org/wiki/kinect_calibration/technical
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approximately 45 °. Microsoft officially specifies that the Kinect’s depth range is 1.2—3.5 meters, but it
can be experimentally verified that the minimum distance can be as low as 0.5 meters and the maximum
one can reach 4 meters. Essentially, the IR projector and camera constitute a stereo pair, hence the
expected precision on Kinect’s depth measurements is proportional to the square of the actual depth. The
experimental data presented in the ROS wiki? confirm this precision model, showing a precision of
approximately 3mm at a distance of 1 meter and 10mm at 2 meters. The accuracy of a calibrated Kinect
sensor can be very high, of the order of x1mm. Additionally, the Microsoft Kinect v2.0 Sensor provides
Improved body tracking, Higher depth fidelity and 1080p HD video. Microsoft Kinect v2.0 was utilized
in the 3 3D-LIVE Prototypes for improved body tracking enhancing the performance of the activity
recognition module to respond to the users’ feedback of erroneous speed estimates in the jogging
scenario.

Suitability in 3D-LIVE: The Microsoft’s Kinect sensor has attracted the attention of many researchers,
as well as home enthusiasts, due to a series of advantages: accuracy, realtimeness (30Hz), reasonable
range (suitable for the 3D-LIVE applications), lowcost (suitable for Low-Cost deployments in 3D-LIVE),
portability. In 3D-LIVE, Microsoft Kinect has been used to perform motion capturing for avatar
animation (Section 3.1.1), 3D-Reconstruction (Section 3.1.4) and Activity Recognition (Section 3.2).

Wii Balance Board by Nintendo:

The Wii Balance Board is a game controller manufactured by Nintendo, which is an accessory for the Wii
and Wii U game consoles. It is shaped like a household body scale, powered by four AA batteries, and
connected by Bluetooth. It contains four pressure sensors that are used to determine the user’s weight and
centre of balance (the projection of the centre of mass on the surface of the Balance Board).

2 http://www.ros.org/wiki/openni_kinect/kinect_accuracy
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According to the manufacturer, the system’s ability to measure weight is probably more accurate than a
typical bathroom scale. The pressure sensors can accurately measure up to 150kg and the physical
structure can withstand a maximum force equivalent to about 300kg.

As this device is not designed for computer use, we use the GlovePIE middleware in order to read the

sensor’s data.

Suitability in 3D-LIVE: This device is a low-cost system (suitable for Low-Cost deployment in 3D-
LIVE) that allows to measure accurately user’s centre of balance. It will allow a dynamic control of the

avatar for indoor user for the ski scenario, providing a much more immersive way to interplay.
Inertial Measurement Unit (IMU) EXL-S3 by EXEL.:

The EXL-S3 sensor is an Inertial Measurement Unit manufactured by EXEL. It is a motion sensor whose
task is to calculate the orientation and displacements of a body in space. Thanks to the Micro-Electro-
Mechanical-Systems (MEMS) technology implemented in computer chips, they are small and low-energy
consuming. They are not suitable for inertial navigation (including x,y,z coordinates) calculation. This
would require a double integration of the accelerometer signal, so even small errors sum up very fast (few
seconds). This drift could be corrected using other external data (GPS, Kinect...).

The gyroscope captures all rotations in space. Calculating the orientation is a single step of integration,
generating a drift over time, but that can be controlled. The static accuracy of the gyroscope is 0.5
degrees, and the dynamic accuracy is about 2 degrees. The data transmission rate is 100Hz. Data are sent
wirelessly using Bluetooth technology. Battery is internal and battery life is about 4 hours. The housing
form is 54x33x14.

Suitability in 3D-LIVE: In 3D-LIVE, only the gyroscope orientation provided by the IMU is used. EXL-
S3 has good orientation performance in terms of accuracy and transmission rate, suitable for the needs of
3D-LIVE. Moreover, it uses Bluetooth technology and thus it can be directly connected to a smartphone
for using inside the outdoor game client application.

2.1.2 Location sensing in 3D-LIVE
Global Positioning System

In 3D-LIVE, the scenario needs led us towards the choice of embedded GPS systems inside Smartphones
and Tablets for outdoor users. More specifically, in the outdoor jogging scenario a standard Android
Smartphone GPS was used along with integrated Assisted-GPS (A-GPS) functionality. The device
containing the GPS functionality was chosen to be Samsung Galaxy S2+ (SGS2+) which supports a
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variety of position tracking technologies, including also GLONASS. The accuracy of location tracking
using the SGS2+ in city environment of Oulu was measured to be up to £5m. For the Golfing scenario, a
Sony XPeriaZ?2 tablet was chosen, as it supports American and Russian GLONASS systems for a better
accuracy. The location accuracy measured during experiments was about 4 meters in average. For the
Skiing scenario, the Samsung Galaxy S4 was deployed, supporting GPS, A-GPS and GLONASS as well.
Accuracy measured during experiments was about 3meters at low speeds and 8 meters at higher speeds.

Suitability in 3D-LIVE: The devices chosen are perfectly suited for 3D-LIVE-applications because of
low-cost, reasonably accurate embedded GPS tracking, light weight and good battery life.

2.1.3 Audio sensing
Microphones

General-use headsets with built-in microphones have been practically used in all scenarios. Standard off-
the-shelf Procaster BH-03 Bluetooth headset was used in jogging scenario both indoors and outdoors.
Logitech H600 (Bluetooth wireless headset) was used in both skiing and golfing scenario by indoors
players, while a wired headset was used outdoor in order to let all the Bluetooth bandwidth for motion
Sensors.

Suitability in 3D-LIVE: The headsets used in the project have microphones with substantially good
noise-cancelation characteristics , and suit well the scenarios where people need communicate with each
other in noisy environments.

2.1.4 Environment sensing

Two sources of environmental information are used. The wide-area sensing data is used for outdoor-
situation (e.g. weather conditions) simulation in the virtual environment. This data is provided by a 3"-
party service, the Open Weather Map (OWM), which is a Web-based service and provides free weather
data from more than 40,000 weather stations and from global meteorological broadcast services. The
mobile sensing data are obtained via a wearable sensor device (SensorDrone) that is placed on the body
of the outdoor player. Such mobile sensing data represent the most localised environmental information
and has high-frequency updates.

Suitability in 3D-LIVE: OWM is a weather data and forecasting service, which provides open-access
Web APIs. It offers a wide range of weather data, including precipitation, wind, clouds, temperature, etc.
Most importantly, the offered APIs allows one to obtain on-demand weather data of a given point (i.e.
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coordinate), which is a desired feature of 3D-LIVE Environment Reconstruction Service (ERS).
SensorDrone is a good wearable environmental sensor device, given its small size, reasonable range of
environmental metrics, and low costs. It has integrated sensors for measuring temperature, humidity,
pressure, proximity, illumination and colour intensity. The product comes with an Android SDK allowing
custom app development to feed measurement data to any Android-compatible phone via Bluetooth.

2.2 Sports Equipment
Treadmills

e Low-Cost Jogging deployment, Thessaloniki: A Treadmill 2063CA (speed 1-16km/hr and incline O-
15%) was purchased.
e High-End Jogging deployment, Oulu: A MT15 Carl Lewis fitness incline treadmill was purchased.

Suitability in 3D-LIVE: Given that there are no strict specifications about the treadmills within 3D-
LIVE scenarios, the abovementioned ones are well suited for the purposes of the system.

Ski simulators

e Low Cost Ski Deployment, Thessaloniki: A Balance board (Fit Plus with Balance Board Wii)
e High End Ski Deployment. Ski simulator in LAVAL.: Basic Ski Simulator by PRO SKI — Simulator :

The system has a support system and fixtures for ski-poles. The movement takes place in one plane. It is
made of four wheels fixed on a pan, which roll in two curved runners. An elastic bands based system
provides six intensity levels. This model is not equipped with sensors, so we used an IMU that we are
already using for other purpose (EXL-S3 sensors).

Suitability in 3D-LIVE: This model of the PRO SKI-Simulator series is suitable for beginners as well as
for advanced skiers. The intensity adjustment allows adapting to any type of user pattern. It provides
smooth simulation of ski movements, and was used in several other virtual reality projects. It seems to be
the compromise chosen by researchers for a high-end control and a reasonable price (around 800 euros),
allowing sportive training as well as gaming input.

Golf equipment

e For the golfing scenario, users could use two kinds of clubs: an Iron 6 with carbon shaft and a putter.
While the outdoor user hits normal golf balls, the indoor user plays with practice air balls (lighter
than normal balls to prevent any accident inside the simulator). The outdoor player has a caddy, on
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which he can attach the tablet.

Suitability in 3D-LIVE: using clubs with carbon shaft do not disrupt motion sensors, since devices using
MEMS technology can be affected by ferromagnetic materials.

2.3 Game Server

In 3D-LIVE two different game engines have been used while targeting different scenarios. The jogging
scenario is supported by a game engine developed using the RealXtend platform, while the golfing and
skiing scenarios are supported by a game engine developed using Unity3D. Details supporting this choice
are provided in D3.2, Section 2.2. This decision affects both Game Servers and Game Clients (sections
2.8 and 2.9). Regardless of the development platform, the two Game Servers share common
responsibilities: communications management, game state tracking, game client synchronization and
game engine data flow. In the rest of the section, in-depth details are given for the responsibilities and the
implementation of each Game Server.

RealXtend Game Server

e The RealXtend architecture is built upon client-server architectural model. In client-server model
tasks are split between clients, which request services, and servers provide services assets for the
clients. In a game specific scenario a service can range from simple location update of a game
component or downloading an asset for example a texture or 3D-mesh. This model enables
lightweight client application installer, but on the other hand it requires reliable and relatively high
bandwidth network connection to the server if large amounts of graphical assets are required to load
for the client. After the possibly lengthy initial asset loading, client only needs to update the user
input to the server which has very miniscule bandwidth requirement. Download bandwidth
requirement is also relatively low after the initial asset download, only needing to update current
state of game objects in the game scenario from server to client.

The server handles all the heavy lifting in realXtend architecture. The clients send their user input
which is then used in the server to calculate the physical and graphical effects in the gameplay. This
is called server authoritative gameplay mechanic. The server gathers all the input data from the
clients on one frame, calculates the state of the objects and then sends the modified data back to the
clients. Example data contained in the updated state sent by the server contains: objects’
position/rotation/scale, physical impulses causing game object trajectory change, object velocity
updates and other physical characteristic changes. The clients continuously do interpolation between
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successive states and update their local gameplay status according to the server’s status. This
interpolation helps to smoothen the game under bad network conditions, where some network
packages might arrive late or possibly never. RealXtend uses Ogre3D as its underlying render
engine. Ogre3D is open sourced and updated by hundreds of community users. It is one of the most
actively developed open sourced 3D engines to date.

Suitability in 3D-LIVE: RealXtend client-server architecture allows centralized asset management
and lightweight client installation for the jogging scenario which enables easy and centralized
modifications and deployment of new assets, as required in 3D-LIVE.

Unity Game Server

The Unity3D server was used for the skiing and golfing scenarios. It handles various essential
features: user registration, game client disconnection/reconnections, game play, game data storage
and monitoring. The server is made of two main parts: “pregame” and “in game”. In the “pregame”
part, the server can be set up and is not running. The parameters that can be set include: the number
of players, which users can join the game and data analysis activation (connection to the
EXPERImonitor (section 2.11) and logging players’ positions). By pressing the “Go” button, the
server will be running, waiting for players to join the game. When the players are ready, the server
starts synchronizing the game state between users. It will manage game state changes in accordance
with users’ progression or through server side control (only for debugging). The server is saving
game data, thus when a player reconnects after a disconnection it will reload those data. The last
feature is the monitoring of the game: choose experiment options (enable/disable full body 3D
reconstruction, put gates on the slope for the ski scenario), manually change game phase in case of
trouble and end the experiment.
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Figure 4: Ski Unity3D Game Server

Suitability in 3D-LIVE: As Unity3D is a cross platform engine, clients can be easily connected
regardless of their platform. As indoor users and outdoor users are never using the same platform,
(considering tablets, Smartphones and computers) this is really relevant.

2.4 RabbitMQServer

The RabbitMQ server is a message brokering system that implements the exchange and delivery of
messages using the Advanced Message Queuing Protocol (AMQP). RabbitMQ is a well-established and
proven AMQP message broker that provided robust messaging by offering concurrent message
processing in an environment that supports clustering, federation and highly available message queues.

Suitability in 3D-LIVE: The AMQP messaging protocol and RabbitMQ server implementation was
selected for use in a number of the network messaging scenarios within 3D-LIVE (for example, skeleton
updates and experimental metrics delivery) where reliable and acknowledged delivery of data across the
network was required. The RabbitMQ/AMQP solution was also considered to be advantageous to the 3D-
LIVE as it provides network communication that is accessible from a range of technical platforms used in
3D-LIVE (including Java, C# and C++).
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2.5 Environmental Observation Service & Environment Reconstruction Service

2.5.1 Environmental Observation Service

The Environmental Observation Service (EOS) is an Android app developed in 3D-LIVE project. EOS
app is installed on out-door player’s Android mobile and paired with Sensordrone® device via Bluetooth.
The EOS app provides user interfaces to control (i.e. start/stop) Sensordrone device and measurement
data. In particular the EOS app displays the real-time measurements on screen and streams them along
with other sensing data from Android phone (e.g. GPS location data) to remote Environment
Reconstruction Service (ERS, see below).

Suitability in 3D-LIVE: EOS app provides an easy to use interface that enables gathering and streaming
environmental data from Sensordrone and integrated sensors of Android phone in real time. Ultimately it
is this data (once aggregated and fused by the ERS) that provides high resolution environmental effect
data for the 3D-LIVE game engine to use in the rendering of weather effects in the virtual environment.

2.5.2 The Environment Reconstruction Service

The Environment Reconstruction Service (ERS) is an on-line application that provides real-time
environment effect data for the 3D-LIVE game engine during game play. This is achieved through the
provision of a) an environmental sensor aggregation services and b) the real-time aggregation and fusion
of sensor data that can be translated into effect parameters on demand, via a web based query. In the 3D-
LIVE project, we acquire environmental data from two primary source types: fixed, wide area, on-line

% http://sensorcon.com/products/sensordrone-multisensor-tool
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sources (such as Open Weather Map®) and dynamic, wearable environment sensors (such as the
SensorDrone). This provides us with varying degrees of data ‘resolution’ which we aggregate into a

common model and fuse using a rapid interpolation process.
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Figure 5: Environment Reconstruction Service

AMQP bus

The ERS consumes environmental data from fixed site and dynamic locations using a common data API
via a RabbitMQ/AMQP messaging server. The environmental sensor data types captured by the ERS

* http://openweathermap.org/

3D-LIVE Consortium

Dissemination: Public

23/133



3D-LIVE — 3D-LIVE Interactions through Visual Environments Project N. 318483

D3.3 3D-LIVE platform modules Date 13/3/2015
include:
Temperature Degrees Celsius
Humidity Relative humidity (in degrees)
Rain/snow fall Millimetres/minute
Cloud coverage As a percentage of the visible sky

Wind speed and | In miles/hour and degrees (0 to 360)
direction

Illumination (local only) | In Lux

Wind speed and | In miles/hour and degrees (0 to 360)
direction

Table 3: Environmental sensor data types captured by ERS

Fusion of all environmental data is performed using a common (real-time capable) interpolation method
often used by in geo-sensor data research: the Inverse Distance Weighting (IDW) interpolation (see Resch
etal., 2010° and Xia, Y. et al, 2011° for further information). Interpolated values are then used to provide
effect data that includes quantitative (and qualitative) information regarding the local weather conditions

® Resch, B., Blaschke, T., Mittlboeck, M. (2010) Live Geography: Interoperable Geo-Sensor Webs Facilitating the Vision of
Digital Earth. Int. Journal on Advances in Networks and Services. Vol. 3. No. 3 & 4. IARIA.2010.

® Xia, Y., Kuang, L., Li, X. (2012) Accelerating geospatial analysis on GPUs using CUDA. Journal of Zhejiang University
Science Computers and Electronics. December 2011. Vol. 12. Issue 12. p990-999.
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(using GPS as the point of interpolation during query).

The ERS provides a number of metrics to the EXPERImonitor (section 2.11) during 3D-LIVE run-time.
These are summarised in the table below. For more detailed information on these metrics, please see the
deliverable entitled D4.1: Report on the experimentation and evaluations of the 3D-LIVE Tele-Immersive

Environment.

QoS metric for evaluation | Explanation
of ERS
Effect Query Rate Reports the rate at which the ERS receives effect queries

from the 3D-LIVE rendering engine.

Effect type requests

Reports (nominally) on the effect type generated as a result
of the ERS query made by the 3D-LIVE rendering engine.
The difference in time between the query and the effect
type result returned provides a synthesized metric indicating
time required by the ERS to process the query.

Environment data sources
(various)

The ERS consumes a variety of environmental
measurements using a common environment metric model
(see above). In LIVE 1 and LIVE 2 experiments, these
values were passed on to the EXPERImonitor to allow
comparison of the ‘raw’ environment samples compared
with those interpolated by the modeller.

Environment modeller
(interpolated) effects

The ERS interpolates all ‘raw’ environment data received
from its clients using an Inverse Distance Squared function.
When the 3D-LIVE rendering engine requests an effect,
these interpolated values are provided both as quantitative
and categorical values. The quantitative values are also
passed on to the EXPERImonitor .

Table 4: QoS metrics for evaluation of ERS

The following figures present example data sets captured during the LIVE 2 skiing experiment using the

EOS/Sensordrone client — the data was collected by the EXPERImonitor during experimentation.

3D-LIVE Consortium

Dissemination: Public 25/133




3 3D-LIVE — 3D-LIVE Interactions through Visual Environments Project N. 318483

D3.3 3D-LIVE platform modules Date 13/3/2015

Sensordrone temperature (Celsius)
40

35

25 \
20 _M

15 = Centigrade
10
0
I- 1 I. I. I. I. I. I. I- I. I. I. I. I. I. I. I- I. 1 I.
MmN NN o N OO N OO N MO Mmoo oMnmonomonomononom
QYRR eeee
R A R A A S S S S S S S N S
L = i T T e s s e s I
O OO O0OO0DO00OD0D0D0OO0O00D0D00O0 00O Oo
AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN NN

Note: the relatively high temperature at the start of this series is the result of the device being held by the
hand and in the sun during the initial set up of the ski run. The lower temperatures reflect the real outdoor

temperature as measured by 3™ party temperature displays on the slope (it was a hot, sunny day).
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Sensordrone luminance (lux)
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Note: in this run, the Sensordrone was not well fixed to the skier, causing it to move around and sometimes

face internally towards the user (blocking access to direct sunlight). This data is later smoothed by IDW; see
below.

Figure 6: Data collected by EOS/Sensordrone client

The following figures provide examples of IDW smoothing based on both OWM and Sensordrone data as
it was captured and used to produce effect data.
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Interpolated temperature (Celsius)
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Figure 7: Sensordrone and Interpolated temperature values received by ERS at runtime

In the figures above, we see the interpolated temperature values (derived from location based queries
received by the ERS at run-time) are presented. The overall series provides a smoothing of the more

variable Sensordrone data (there seem to be two location based ‘hot spots’ where the query location is
proximal to a density of high temperature samples).
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Figure 8: Sensordrone and Interpolated luminance values received by ERS at runtime

A similar smoothing can be seen with the noisy data sent from the (unsecured) Sensordrone during an
experimental run. Whilst the local luminance data did indicate sunny day conditions (as high peeks) it
was clear that the light sensor was pointing inwards a considerable amount of the time. This result

provided us with important guidance relating to securing the Sensordrone to the user for future
experiments.

Suitability in 3D-LIVE:

The ERS provides a light-weight and well aligned approach to delivering real-time environmental effect
information to the 3D-LIVE gaming environment. Its design was developed with a view that multiple
environment data sources (of varying implementation) could send data using a common data format that
can be swiftly and reliably connected. Here we leveraged the RabbitMQ/AMQP communication service
(already used for other 3D-LIVE communication) for this purpose. Consumers of the ERS effect data also
use the RabbitMQ/AMQP API to easily access the latest environment effects using a location-based
query.

2.6 Audio Server

Initially various Voice Over Internet Protocol (VoIP) applications were considered; Teamspeak, Ventrilo
and Mumble. RealXtend (section 2.3) already contained mediocre support for mumble audio protocol
when the decisions were made. This, in conjunction with Mumble being the only open-source software
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with permissive licensing, had a heavy impact on the resulting decision. Eventually, Mumble was chosen
for voice transmission between indoor and outdoor clients. Mumble is a low latency and low bandwidth
audio protocol which supports positional audio via Celt, Speex and Opus codecs. Mumble’s network
bandwidth requirements depend greatly on the audio quality settings. With no positional audio data
mumble consumes about 15.8kbit/s on average. The default quality with positional audio takes up to
60kbit/s of bandwidth which is still acceptable for an average 3G mobile connection used in 3D-LIVE
project. Mumble uses client-server architecture, which means it might end up bandwidth bound with
extensive amount of users on one channel compared to peer to peer competitors but considering the
scenario where concurrent users on same audio channel will remain under few hundred users, this is not a
problem. In the Skiing and Golfing scenarios, initially, another solution was experimented (i.e. the
Unity3D VoiceChat plugin), but it was found to cause trouble in terms of latency and Framerate to the
mobile outdoor game client. Finally, the common technical choice was to use Mumble in all scenarios.

Suitability in 3D-LIVE: Easy to use, open-source and permissive licensing is well suited for project like
3D-LIVE. Protocol also works on mobile devices and desktops and scalability allows mobile usage on
3G- and 4G-networks.

2.7 3D-LIVE Capturer

The 3D-LIVE Capturer application is the realization of the user capturer software (section 2) in the indoor
setup. The application comes in two versions: the full and the stripped down, targeting different cost
solutions. The full version targets the low end setup that allows for 3D-Reconstructions of the users. On
the other hand, the stripped down version targets the high end setup that supports user representation via
avatar animation. 3D-LIVE Capturer captures user skeleton information using one or more Microsoft
Kinect Sensors. When using more than one Kinects, the application will fuse the skeleton information
obtained from the multiple Kinects into one final skeleton using the skeleton merging algorithm described
in section 3.1.2. Skeletal information is used afterwards by the indoor game clients (section 2.8) in order
to perform animation of the users’ avatars. Special skeleton filter algorithms were developed and
integrated in 3D-LIVE Capturer in order to further enhance the avatar’s animation quality (section 3.1.1).
Furthermore, the application is able to perform Activity Recognition for the use cases of Jogging and
Skiing evaluating the user performance. The activity recognition algorithms used are described in detail
in section 3.2. As described earlier, what the full version includes in addition, is the ability to capture and
reconstructs 3D full-body representations of users, in real-time (section 3.1.4). These 3D reconstructions
are then compressed and transmitted over the network to the game clients (section 3.3). The user skeletal
data and the Activity Recognition Results are also transmitted in real-time to the game clients.
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EXPERImonitor Quality metrics are also calculated upon request and are streamed to the provided
EXPERImonitor Server. Particularly, the reconstruction’s visual quality is evaluated with the method
described in section 3.1.4 in real-time. The compressed mesh is also evaluated for its visual quality with
the same method. All the parameters of the 3D-Reconstruction process and mesh compression are
configurable within the application’s user interface. The 3D-LIVE Capturer, while running, provides
visual inspection of the Kinect depth and color streams along with skeletal information. Moreover, full-
body 3D reconstruction visualization is provided in the full version. Activity recognition results are also
displayed on-screen during the live capture. The performance of 3D-LIVE Capturer is critical for real-
time immersive interactions and thus it is highly optimized for speed. It makes heavy use of multi-core
CPU multithreading and algorithm parallelization for nVIDIA GPUs via CUDA. This enables for high
reconstruction frame rates (up to 8 fps), high reconstruction streaming framerates (up to 8 fps) and
minimum network delays. All the above is achieved via parallelizing the whole pipeline of capturing-
reconstruction-compression-transmission, activity recognition as well as QoS metric calculation. Below,
in Figure 9, two sample screenshots from the 3D-LIVE capturer are depicted.
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Figure 9: 3D-LIVE Capturer. Left: Skeleton tracking. Right: Full 3D reconstruction of moving human

Early versions of the 3D-LIVE Capturer utilized Primesense’s OpenNI’ and NITE to interface with
Microsoft Kinects. During the early stages of the 3D-LIVE project, Microsoft Kinect SDK was rather
immature (or even nonexistent) and OpenNI was the only, open and free, available option. After the first
3D-LIVE experiments took place, users reported low avatar animation quality, which was due to OpenNI
skeleton capture and tracking quality. When the project advanced, the Microsoft Kinect SDK was mature
enough and had already started to show skeleton tracking results of interesting quality in other
applications. Consequently, CERTH, in order to address the users’ feedback of low animation quality
decided to replace the OpenNI/NIiTE Kinect interface of the stripped down 3D-LIVE Capturer with

” Primesense was recently bought by Apple and an official link of OpenNi is, thus, not currently available.
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Microsoft SDK, before the LIVE 3 experimentation cycle. Indeed, the latest version of the stripped-down
3D-LIVE Capturer that targets the high end setup, utilizes Microsoft Kinect SDK v1.8% which, along with
the overall avatar animation quality, is by far superior to what was obtained by the previous interface.

In order to verify the appropriateness of this transition, CERTH conducted an objective evaluation of the
two SDKs (MS SDK vs OpenNl), through EXPERImonitor metric analysis. This analysis is presented in
Appendix B. Apart from the objective evaluation presented in Appendix B that vote in favour of the
Microsoft SDK, using MS SDK in general it has additional benefits:

- is free to download & use,

- has both native C++ interface as well as .NET interface to use with C# and other .NET languages,
- recognizes and tracks moving people using skeletal tracking,

- determines the distance between an object and the sensor camera using depth data.

- captures audio using noise and echo cancellation or finds the location of the audio source,

- enables voice-activated applications by programming a grammar for use with a speech recognition
engine.

Additionally, in the LIVE 3 experimentation cycle for the low-end setup, CERTH added the newly
released Kinect v2.0, to support the full version of the 3D-LIVE Capturer with improved body tracking
(thus allow for the enhancement of the avatar’s motion animation of the high end users), which enhanced
further the performance of the activity recognition module relying on skeletal data. This was done in
order to respond to the users’ feedback of erroneous speed estimates in the jogging scenario.

® http://www.microsoft.com/en-us/download/details.aspx?id=40278
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2.8 Indoor Game Client

The indoor game client is one of the most important components of the 3D-LIVE platform deployment.
This is due to the fact that the main responsibility of the indoor game client is the visualization of the
virtual environment and the users’ avatar or 3D reconstructed representation. All the users experience the
sports activity and interact in a shared virtual space realized by the game client. Game clients integrate
features such as environment reconstruction, avatar animation, 3D reconstruction rendering, game play
mechanics via the activity recognition module’s results, voice communication (for the skiing and golfing
scenarios in early prototypes), user input via sensors (e.g. Wii, Pro ski simulator) and visualization of the
weather and activity recognition results. Overall, for all the 3D-LIVE scenarios the whole game scenario
is realized by the game clients.

2.8.1 RealXtend Game Client

For the indoor game clients of the jogging scenario the open source RealXtend virtual world platform was
chosen. RealXtend speeds up the development of the global standardized 3D internet of virtual worlds by
making the best technology available to everyone. With RealXtend networked multiuser 3D applications
can be created, as the RealXtend SDK is a complete 3D multiuser application development kit. It is a
modular framework that can be used both to run standalone applications (for example a single player
game or a CAVE installation) and networked worlds. The same codebase is used both for server and
client which are just different configurations. RealXtend uses Ogre3d for rendering and Qt for Ul and
several other things. It has a mature built-in development and design environment and API, allowing the
developers to implement required extensions for 3D-LIVE. RealXtend already contains a powerful avatar
animation system and game state synchronization as a baseline. The open source nature of the platform,
along with its advanced network synchronization technology, allowed 3D-LIVE for extending the
platform’s functionality in order to support synchronized 3D reconstruction rendering in real-time.
Moreover, the well-defined user interface developing tools, which are also included, allowed to build
easy to use and responsive Ul frontends for the 3D-LIVE application.

The RealXtend game client mainly handles the visualization and input handling of the game application.
The user is introduced to the jogging scenario by the main user interface which indicates proper ways to
interact with the program. Even though all the large game assets are loaded from the server, all the user
interface elements and gameplay logic is locally available. Two different modes were implemented in
RealXtend Game Client: a) indoor user mode b) observer mode. Therefore, the user decides if his/her
client acts as indoor runner application or as an observer who just observers other runners without
interaction via clicking the appropriate button. The application has been designed so that all the
initializations for avatar animation, connection to the server, downloading of all the required game assets
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and starting positions for each jogger are done automatically (R0-32). User body animations are captured
when user decides to start the course on a treadmill.

When the connection and initialization is made to the game server, client application starts the gameplay
scripts, which update the user interface with speed (R0-11) and distance travelled information, create
weather queries and update the user position on the race score-table. Since collaborative running is
emphasized, people are encouraged to talk to other runners and inform them about when to start running
through the course. Indoor users can see other users animating realistically in real-time either through
avatar representation, predefined animations (R0-5) or through full human 3D-reconstruction (R0-9) (See
also sections 3.1.1, 3.1.3, 3.1.4 for technical details). Finally, when users have agreed to start the
collaborative running and finished the course, every user receives a final qualitative analysis of their
running performance, based on a set of rules calculated by an algorithm using the captured skeleton data
as source of information (R0-12) (See section 3.2.2). Users can then compare their “quality” of running
with other users through voice over IP (R0-25).

Suitability in 3D-LIVE: RealXtend can be setup both as server and client in one executable and all new
features are synchronized properly across the server and the clients without separate testing. RealXtend is
open source and free to use for everybody. A wide variety of C++ libraries are supported and fast user
interface prototyping is made possible by using internal scripting language (javascript).

3D modelling of the scene

The jogging-scenario venue is located in Finland, in the city of Oulu. A nine block 3D-model of the
venue was created accurately to immerse indoor users to the virtual Oulu scenery. The Blender3D
modelling software was used to model the venue to resemble the real life counterpart. Blueprints of the
city area were used with extensive photographing and height data to achieve the correct scale (RO-6).
Final touches were made in the rendering engine to match the scale with the avatars. The venue contains
city hall, green park and central meeting point of Oulu pedestrians, which was also used as a starting and
finishing point of the jogging scenario run. With accurate mapping and realistic scale, indoor runners get
better immersed in the twilight zone. An image of the virtual venue is shown in Figure 10 and a real life
comparison in Figure 11.
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Figure 10: Image of the virtual venue.

Figure 11: Image of the real life venue

Interplay among input devices in 3D-LIVE

At the start of the scenario, where the avatar has been spawned on the virtual location at the start of the
course, avatar controlling is very straightforward. For the indoor user, Microsoft Kinect(section 2.1.1) has
a leading role in controlling the user’s avatar. The application receives the Kinect skeleton data captured
by 3D-LIVE Capturer (section 2.7) via the RabbitMQ Server (section 2.4). The skeleton data are then
used to animate the user’s avatar using the animation algorithm described in section 3.1.1. Moreover, the
application also receives the user’s speed estimation via RabbitMQ as it was calculated by the 3D-LIVE
Capturer using the speed estimation algorithm described in section 3.2.1. Avatar then proceeds to run
through predefined route at the virtual city of Oulu at the speeds reported by the speed estimation module
while being animated via the skeleton data captured by the kinect. If any problematic situations occur
throughout the course, backup controllers were implemented by using keyboard and mouse. WASD-
buttons from the keyboard control the direction where avatar moves, spacebar makes the avatar jump over
obstacles and pressing the right mouse button activates mouselook controller mode, which allows
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changing the direction that the avatar is facing. F-Button enables and disables the flight mode.

Controlling the outdoor jogger avatar can only be done by connecting the Android smartphone with 3D-
LIVE application. GPS position is transmitted to the centralized service which is used by other realXtend
clients to update the outdoor avatar location in the virtual world seen by indoor joggers.

User interface in 3D-LIVE

The indoor game client is designed to be handled with mouse and keyboard found in all desktop
computers but interactions are kept minimal. The majority of the input required is at the start of the
application and in the main menu. Main menu requires basic input of server address, port and protocol but
also the address of the RabbitMQ Server (section 2.4) where Kinect data is read when captured. After
these basic input fields are set, the user selects if he is going to join the jogging experiment as observer or
as jogger. These options are shown in Figure 12 and Figure 13.

Figure 12: Main menu with address input fields

QL 3DLIVE Jogging Soeging

Figure 13 Main menu with capturer input fields.

At the start of the experiment, when users have entered the virtual world, user interface is a non-
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interactive data display. This is because the user has no chance to interact with the user interface when
running on the treadmill.

Rendering and Visualization

3D-scene is rendered using open source Ogre3D rendering engine which is incorporated as core renderer
in RealXtend platform. It can visualize lots of dynamic 3D graphical effects in high framerates and it can
overlay the graphics with Ul elements defined for the jogging scenario. The Graphical effects
implemented include: dynamic day-night cycles, dynamic shadows according to sun position and
volumetric clouds, which visualize cloud coverage retrieved from the weather data server. The Rain effect
was implemented as a post-processing effect. Visualizing the weather conditions indoors as part of the
3D-scene immerse users better to the scenario, than reading all the data from 2D user interface elements.
Some of the weather data are displayed on the Ul if the user is interested in them. Data elements in the
user interface include: weather data from the actual venue, distance travelled, user’s position and speed.
User interface elements from the actual racing conditions are shown in Figure 14.

Figure 14: User interface showing data for user.

The rendering algorithms implemented in the RealXtend indoor game client are able to render and
animate pre-created avatar assets as well as render time-varying textured human 3D-reconstructed
meshes. Indoor users can see their own avatar representation performing accurate animations of their
movements from a 3" person view. This is accomplished with the aid of 3D-LIVE Capturer (section 2.7),
which streams user skeleton data, 3D reconstructions and activity evaluation results to the network via
RabbitMQ. The users’ competitor’s avatars are also rendered inside the virtual environment. For the
competitor outdoor jogger this corresponds to an avatar that performs predefined animations while for the
competitor indoor jogger it may be either an avatar that closely resembles the movements of the actual
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jogger or a 3D-reconstruction that realistically depicts him/her.

Pathfinding (jogging route calculation)

In the jogging scenario Android GPS location data is already heavily filtered to acquire the most precise
location currently available when queried from the Android system, therefore no additional GPS filtering
was done client side to improve location accuracy. Setting the avatar on the virtual world on the other
hand was not directly matched with a simple translation from GPS coordinates to virtual world XZ-
coordinates. Location reported by android system was not always aligned with the roads, therefore simple
closest match algorithm was implemented in order to place avatar on top of the road in virtual world. The
Closest-match algorithm is visualized in Figure 15.

L]

kel O

Figure 15: Closest-match location algorithm visualized.

Pathfinding for indoor user is much simpler due to absence of GPS inaccuracies. Indoor joggers followed
the predefined path created by checkpoints therefore indoor jogger position was changed solely according
to speed parameter captured by 3D-LIVE Capturer (section 2.7). Following strictly the predefined path
from one checkpoint to another, initially generated large amounts of collisions between avatars, therefore
we introduced little error to the path, which is explained in more detail in the next section.

Collision avoidance

Collision avoidance was used in jogging scenario to make jogger avatars run on less crowded paths from
checkpoint to checkpoint. This was accomplished by introducing little bit of randomness to the chosen
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path where avatars were destined to run through the course. Course was generated by placing a
checkpoint throughout the course and avatars found their way through the course by sequentially running
through these checkpoints. Changing the actual checkpoints to so called checkareas, where avatars did not
focus on one point but more like focused to find their own way to the random spot in this specific
checkarea, made avatars to differ in their paths just enough to minimize collision count with each other.
This fairly easy method is computationally invisible and caused no lag, nor slowdowns for the rest of the
system. Route selection system with collision avoidance using check areas is shown in Figure 16.

Checkarea 1 Checkarea 4

Checkarea 2 Checkarea 3

Figure 16: Route selection for two avatars using checkareas.

Deployment - Visualization

For the deployment of the indoor game client of the jogging scenario, apart from typical displays that
were used in the Low-Cost indoor cases, 3D-LIVE also utilised:

e CAVE system

The RealXtend indoor game client was deployed in Oulu University labs of Center of Internet Excellence
(CIE) cave. Cave was created using three 1280x800 video projectors for wide field of view, and
virtualized as one big display. This setup allowed user to immerse to the virtual world with close to 180
degree horizontal field of vision. Picture of the CIE cave is shown in Figure 17.
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Figure 17: CIE cave used in jogging scenario.

e Wide displays

The 3D-LIVE jogging scenario has also been deployed to normal wide screen.

2.8.2 Unity 3D Game Client

The indoor game client applications for golfing and skiing scenarios have been created using Unity3D, a
cross-platform game engine. The Unity3D indoor game client has been developed as a single application
that is able to support both scenarios via configuration. The indoor game client’s features can be divided
in two main parts: pre-game features and in-game features. Pregame features include the settings menu,
user instructions and pregame room. In the settings menu, the user can set his profile data, select the
sensory devices that will be used, and enter the IP address of the server he wants to join. The user can
read some instructions before to join the pregame room, where he will be waiting for other players to join
the game, until they are all there to start. In game features include everything that makes the game. The
user will see a virtual representation of each player in the virtual environment. Through the user interface,
he can see additional information about the game (e.g.: the length of his last shot in the golf scenario),
environmental data or the positioning of other players. The application will use the sensors that have been
chosen in the settings menu to interact with the virtual environment. The rendering will be done in
accordance with the choices made in the settings menu. Finally, the indoor application communicates
with Unity3D server in order to synchronize all game data (player positions, game state, game phases)
and with the RabbitMQ server for everything related to external modules (see section 2.4).
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Audio

In the indoor game client application, there are two uses of audio: player communication and ambient
sounds.

For player communications, the indoor users use a separate application as described in sections 2.6 and
2.10.

Additionally, ambient sounds are also implemented in order to enhance the immersion. For the ski
scenario, those sounds are essential as the users are using immersive display device. Those devices can
bring some cyber sickness. Generate appropriate stimulus for the other sense tend to decrease the
sickness.

Interplay among input devices in 3D-LIVE

As already mentioned in the beginning of the section, the indoor users can use various devices to
interplay. Those controls can be chosen in the setting menu of the indoor game client.

e Ski scenario :

For the skiing scenario, indoor users can interplay by controlling the direction and the speed of their
avatar. Four different ways of avatar direction control were developed:

- When the user did not select any device, she will control her avatar’s direction using the keyboard.
By pressing A or D the player can respectively make a turn to the left or to the right.

- If no device is selected and a game controller is plugged (such as an Xbox controller) she will be
able to use the joystick to turn left or right.

- The Wii Board can be used by selecting it in the settings menu. The controller must be connected
by Bluetooth to the controller, and the GlovePIE middleware running with a Wii Board
configuration. By switching her weight to the left or right, she can respectively make a turn to the
left or to the right.

- The Pro Ski Simulator can be used by selecting it in the settings menu. The EXLs sensor must be
connected by Bluetooth to the controller, and the EXLs_datasender middleware running.

The avatar’s speed control follows a solely physics based implementation influenced by metrics and data
captured by the Microsoft Kinect (section 2.1.1). Thereby, the speed can be controlled only if a kinect is
used. The first way to control the speed of the avatar is by doing the movement of pushing on the ski
poles. As the avatar is animated, the implementation of the internal physics engine detects when the poles
are hitting the ground. When it does, a force is added to the avatar, making it go faster. The second way is
by using the Activity Recognition (section 3.2) feature of the 3D-LIVE Capturer (section 2.7). It
calculates the bending ratio of the user. As the skier controller behaviour is physic-based, when the user
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bends, it decreases the frontal area of the skier® and therefore also the aerodynamic drag force. This
results into accelerating the skier and the maximum speed that can be achieved is increased.

¢ Golfing scenario:

For the golfing scenario, indoor users can interplay by hitting the ball and by making game related
choices in the indoor game client application.

Indoor users can use two types of a golf club: Iron 6 and putter. Both of them are equipped with an IMU
sensor (section 2.1.1) of which the data are used to control a shot during the strike phase. The strike phase
can be divided in three parts. First the player can target the direction where he wants to shot by rotating
the club around the shaft axis. Then he can do free shots to train until he stops moving when he is ready.
Finally he can perform his “real” shot in which the sensor will measure the speed of the club head at
impact in order to simulate the shot in the virtual world.

During the game, indoor and outdoor players need to interact at several moments: when they are ready to
play, when they must choose the best between their two golf balls and when their ball is out of bounds or
lost. This is accomplished via on-screen buttons. An indoor user can choose to use a support screen or
not. If she uses it, the main screen will only display the 3D environment and the support screen will
display interactive GUI (e.g.: minimap or buttons). If he didn’t choose to use a support screen, both 3D
environment and interactive GUI will be displayed on his single wide screen.

Values found from Sighard F.Hoerner, Fluid-Dynamic Drag : practical information on Aerodynamic drag and hydrodynamic

resistance, 1965°
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3D modeling the scene:
Ski
a) Low poly mesh of the slope

In order to make consistent the wide area environment in the virtual scene, we had two opportunities:
integrating a mountain sky box in the scene or create a low resolution textured mesh of the mountains
surrounding our slope. Using the first solution, it would have increased the performances in-game, but
unfortunately the skybox of the real mountain was very hard to acquire, and it would have been
impossible to create consistent weather effects over a skybox. Consequently, a 3D model has been created
thanks to Google Earth and Sketchup’s low resolution model extraction.
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Actual Slope Area

18km wide
model

Figure 18: Wide area model and actual slope representation integrated

b) High poly mesh of the slope.

In order to accurately reproduce the Schladming Planai | black run, we secured use of 1x1m resolution
3D geometry of the mountain range from and with the agreement of the governmental authority of
Steirmark™. In its raw form, the data we were provided was too large and not in the correct format to use
directly within the Unity3D.

19 http://www.verwaltung.steiermark.at/cms/ziel/74837988/DE
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Figure 19: Editing Schladming Planai | 3D Geometry with MeshLab

A pre-processing phase that included clipping and point cloud data conversion was therefore required.
We used MeshLab (http://meshlab.sourceforge.net/) to clip the data set (6.7 million points initially) and
then compute normal and reconstruction polygons from the point cloud.

Then, using Blender graphics software (http://www.blender.org/), a 1024x1024 height-map of the model
was created. To do this, we put an orthographic camera on the top of the model with a resolution of
1024x1024, and set its orthographic scale to fit the model’s limits. A shadeless material with a texture
was used and set its type to blend. Its colour band was set from black to white and completely opaque. All
mapping axis were set to “Z” and the projection was set to “flat”. We changed the colour management

settings to “Linear” in order to have a linear relation between height and greyscale. The final step was to
set the output format to TIFF.
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Figure 20: Height map of the high poly model of the slope

Then we used the terrain creation built-in Unity3D module in order to import the image and then get a
good quality terrain. As the model is 1300 meters wide, 1 pixel represents 1.27 meters which fits to the
accuracy of the measurement of the slope. Unity3D provides some tools in its terrain module, which
allowed erasing some defects (mostly local irrelevant heights) by smoothing. Trees were also manually
textured and added using those tools. Then we added the snow effect thanks to the “ATS Snow Suite”
free package, which affects both terrains and 3D models.
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Figure 21: From top left to bottom right: Texturing — Adding trees — Adding snow — Full model

The final step was the addition of several objects in order to enrich the environment. Indeed, even if the
natural environment was real-based, it was not sufficient to provide a good user experience. Users need
visual information that will make them feel immersed in the virtual world and in the game. For this
purpose, three types of elements were created:

- Real elements: By using Google Earth and on the site pictures we were able to design buildings or
other elements that are present along the ski course: houses, snow making machine, telecabin, etc.

- Game play related: Checkpoints, safety net to define slope limits and gates.

- Promotion: banners were also added with the logos of partners. It was considered important to
provide visibility for all participants of the project during public presentations.
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Figure 22: Houses along the ski course
Golf:

The golf scenario took place on the golf of Laval. Course number one is used for the experiments, as it is
an easy one close to the clubhouse.

e

Figure 23: Topographical survey of the green in Laval golf course

Using Google SketchUp and an accurate topographical survey of the green provided by the staff of the
golf of Laval, we created a first model. Despite the efforts, the model wasn’t clear enough.
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Figure 24: From topographical survey to 3D Model using Google Sketchup

Some faces were not set in a proper way, which could create inconsistent behaviour when it comes to
physics simulation. Those errors were removed manually using Blender.

Figure 25: Final model of the green.

Modelling of the fairway was more complicated because of only one available bad quality image of the
course, without any data (scale, heights).
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Figure 26: Approximates contour level lines of the course

The fairway was modelled using Blender, trying to have as few polygons as possible. Indeed, this is a
large area where a highly accurate model is not required for simulation. On the contrary, the green model
should be pretty accurate, because the putting physics require higher precision to get a good simulation.

Figure 27: Final model of the course n°1.

Physics simulation

Unity3D has a built-in physics engine that calculates several things: collision, friction, forces, velocity
and others. Physics is calculated in a separate thread and updated at a fixed rate. This allows a precise
simulation but impose not overloading the thread. On each object that we want to have physics
simulation, we add a “rigidbody” Unity3D component, which allows controlling its speed or adding
forces. In our applications, there are two main uses of the physic engine: contact with the ground and
aerodynamics. The aim is not having perfect realistic behaviour, as the number of parameters to take into
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account is too high. Instead, a conceiving simulation is enough. The only requirement is that the users
believe it is real and feel engaged in the game as if they were really playing on the course. Empirical
measurements allowed us to refine our algorithms to get a simulation as close as possible to reality. As a
result, during Live 3, none of our golfers noticed an inconsistent behaviour of their virtual strikes, while
for ski the users reported that the runs were smooth and enjoyable.

Skier (SKiing):

For each avatar a “controller” script was developed that performs the physics simulation, in order to
provide a control as realistic as possible.

Wheel collider (Skiing):

The simulation of the contact between skis and the snow is made using a Unity3D component called
“WheelCollider”. It is normally used in driving games to simulate the behaviour of cars. It allows to
easily simulate sliding. A full realistic simulation was impossible because the hardware used does not
measure how the player is putting her weight on her feet. Indeed, on the pro ski simulator this data is not
measured and on the Wii Balance Board it would have no meaning as users can’t reproduce the ski
movements. WheelColliders were set up experimentally in order to get a behaviour close to reality while
remaining easy to handle for a gaming purpose.

Speed estimation (SKiing):

The speed of the skier (when she doesn’t use her poles) is the result of the gravity, the friction between
the skis and the snow and friction between the air and the skier. Gravity will boost the skier while both
frictions will slow him down. The equations describing the forces applied to the skier are given below:

Snow/Ski friction intensity: Frricrion = p X M X Vgjer
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Aerodynamic friction intensity : F, .., = % A X Cy X p X Vepior®

where:

- W is the kinetic coefficient of friction between snow and waxed ski. Its value is about 0.1,

- m s the mass of the skier with his equipment

- Vskier IS the speed of the skier.

- A x Cd is the frontal area times drag coefficient. According to already mentioned “Fluid Dynamic
Drag” study, this product goes from 0.84 for a person standing up and 0.46 for the tuck position.

The “controller” script implements speed estimation by using the abovementioned physics equations. The
tests performed on the slope showed that the simulation is relevant: an indoor user can perform a
downhill on our 1.2km slope in 1 minute 7 seconds and a professional skier on the slope achieves a 1
minute and 10 seconds time. Considering that the user in the virtual world has better conditions, we can
confirm that the simulation is accurate.

Golf ball (Golfing):

For golf, an appropriate script was developed to handle strike simulation and ball physics taking into
account the following concepts from physics:

Bounciness

In order to handle the contact between the ground and the ball, the Unity3D components “rigidbody” and
“physics material” were employed. Physics material permits to control the bounciness of the ball: 80% of
the kinetic energy of the ball is absorbed when it touches the ground. The “rigidbody” allows setting the

1 Raymond A. Serway, & Jerry S. Faughn. College Physics Sixth Edition. Pacific Grove: Thomson Learning Inc, 2003: 102.
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friction of the ball when rolling on the grass of the fairway or the green.

Flight

The golf ball’s flight is not a simple ballistic trajectory. Due to the shape of the golf ball and its
movements during the flight, the trajectory is more complex.

When a golf ball is hit, the speed of the ball, the shot angle and speed of rotation are determined. Those
parameters influence the ball’s trajectory as well as the behaviour of the ball when it falls to the ground.
The first phenomenon that applies is the drag and lift. Drag is a force opposite to the ball’s motion while
the lift force acts perpendicular to the path. They satisfy the following equations:

1
Farag = _Epair XS X CqXV?
1 2
Fige = =5 Pair X SX G XV

Where S is the reference area (projected area), Cq and C, are the coefficients of drag and lift, pair the
density of air and V is the velocity of the ball. As the golf ball is a sphere, the lift is not due to the
geometry of the ball (as it would be the case with an airplane wing), but to the Magnus effect.

Obviously, the ball undergoes the laws of gravity as well. When a spinning ball moves through the air, it
will change the speed of the airflow around it asymmetrically. On the one side, it accelerates the air by
pushing it away resulting into a local pressure decrease. On the other side, it is opposed to the movement
of air resulting into local pressure decrease. Consequently, as the pressure becomes higher on the one side
of the ball when compared to the other, a force called lift appears. The higher the speed of rotation, the
more significant this force becomes.
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Figure 28: Magnus effect representation

The direction of the lift force depends on the orientation of the ball’s rotation. For almost all the shots, the
rotation is from the front to the rear (due to the inclination of the club) generating an upward effort that
will blow up the ball. If the ball also rotates along a vertical axis, the trajectory of the ball is changed to
one of the sides: we then say that the ball has an effect (e.g.: hook, slice...).

This is where dimples on golf balls come into account. Those dimples create micro-disruption generating
a turbulent flow. It increases a bit drag force and significantly lift forces. So even if the ball is slowed, it
is “flying” more and thus goes further thanks to the dimples.
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Figure 29: Effect of dimples on the air flow*

The complex part of the simulation is to determine the equation of both drag and lift coefficients. Indeed,
there is no theoretical equation, but only laws based on experimental measurement. From various
studies™, we pulled out models giving the drag and lift coefficients:

C, = 0.23 + 0.35W
C, = 0.4W 04

2TwTr

Where W is the rotation rate: W = "
ball

12 http://guernseydonkey.com/?p=7438

13 P.W.Bearman, J.K.Harvey, Imperial College of Science and Technology, Canada — Golf Ball Aerodynamics, The
Aeronautical Quaterly, 1976 ; K.Maehara, K.lhara, H.Shimosaka, M.Inoue, A.Kasashima, Bridgestone Sports, Japan - Golf
Ball, United States Patent n°05916044, 1999
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Figure 30: Drag and lift coefficient models

In the application the golf ball’s flight is simulated by applying all forces to the ball regarding its velocity
and rotation.

User Interface
As indicated above, the game application is divided in two main parts: pre-game and in-game.

The pre-game part contains three things: settings menu, instructions and the “GO” button that start the
Game.

I Instructions

GO

Figure 31: Start screen (Home) of the Unity3D indoor game client application

By clicking on the “Settings” button, the user gains access to all the available application settings that
configure the underlying mechanisms developed in the indoor game client application. Most of the
settings are the same between both scenarios, except for scenario-dependent devices. The navigation
mechanism implemented inside the settings menu is kept as user friendly as possible. The “Back™ button
brings the user back to the previous window, while the “Home” button redirects the user to the start
screen.
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/SettingsMenu

S

Figure 32: The settings menu of the Unity3D indoor game client application

The devices to be used in-game are chosen from the “Devices” menu. The available devices depend on
the profile selection being either “high end” or “low end” which can be set from the “Profile” menu. All
the buttons are designed to be easily readable and clickable, as those screens are also the same on tablets
and smartphones.

/SettingsMenu/Devices

n
-

e o

Figure 33: Devices menu on Unity3D Indoor game client application for a High-End user

A device is enabled/disabled by turning it on or off as shown in Figure 34.
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/SettingsMenu/Devices/CAVE

Figure 34: Turning Cave Device Support ON or OFF in Unity3D indoor game client application

When clicking the “GO” button in the home page, the player joins the game room, where (s)he will be
waiting other players.

Waiting the others

Figure 35: Game room of the Unity3D Indoor game client application

When all players have joined the game room, the server will load the game level, reaching the second part
of the application which contains in-game features. As each in-game user interface is different regarding
the scenario, they are described separately below.

Ski:
As indoor users are on a ski controller (Wii Balance Board or Pro Ski Simulator), there is no interactive
elements on the user interface. During game phases where players can just talk, weather information

acquired from the ERS (section 2.5) is displayed. Moreover, the player’s name is displayed on top of each
avatar.
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Figure 36: Unity3D ski indoor game client application with weather information

During the run, all the players’ path trajectories along with timestamps are saved in-memory. Upon
finishing the run the see the results of the race, with their rank position, nationality flag and time to finish
the track.

Figure 37: Unity3D ski indoor game client application with ranking information

After the ranking being displayed, a 2D replay of the race is shown based on the recorded data gathered
during the race. Each player is represented by the flag of his nationality.
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FINAL RESULTS

Figure 38: Unity3D ski Indoor game client showing a replay of the race

During gameplay, in order to display short information or instructions (e.g.: countdown), pop-up
messages are displayed for a short time. During the race, the player can also see various pieces of
information: speed, position, compass and delay when passing checkpoints.

«

- e

Figure 39: Unity3D ski indoor game client application with countdown pop-up message and race Ul

Since for the ski scenario a player can use various types of displays, we created a customizable User
Interface compatible with all types of displays: Oculus DK1 or 2, CAVE, SAS3+ (by CLARTE) and
standard monitors. This module allows us to quickly adapt the Ul to a new device by changing positions,
scales, and the camera used for display. To handle this adaptive interface, an architecture of basic 3D Ul
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elements has been defined. Each basic 3D element is attached to a specific camera or game object at a
predefined distance. Thanks to that process a Ul element can be displayed on any device. The parameters
to set for those elements are: Texture, Position, Rotation, Object Parent, Text and they can be updated
dynamically. When we deploy on different rendering devices, we just instantiate the same elements, but
change the initial position or parent object. The fact our User Interface is made with 3D elements
strengthen the feeling of immersion in the application as we feel the Ul objects in the virtual world.

Figure 40: Unity3D ski indoor game client's customized User Interface: CAVE (left), simple monitor (top right), Oculus
Rift (bottom right)

Golf:

In the golf scenario, an indoor user can optionally use a support screen. This means that all 2D user
interface items (text, map, buttons) will be displayed on the support sreen, and the main screen will
display all the 3D content. In the case that the support screen is not used, both 2D and 3D content is
displayed on the unigue monitor.

For the indoor player the visualization of the following features was developed:

- The score with scramble choices
- History of previous events like shots or ball choices
- User names on top of avatars
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- Pop-up messages that give instructions and information
- The position of the hole and the balls thanks to 3D indicators
- The club the user is playing with

Figure 41: Unity3D golf indoor game client
When a player strikes the ball, the ball creates a trail that permits to view its trajectory based on the
physics described in section 0. All the players can see it, so that even the remote players know where their

mates shot.

Hole 1 Par 4 Shot 1

Figure 42: Unity3D indoor game client: Ball trajectory after a ball shot

When the player’s ball has stopped, the map pops for all users, showing where the ball is on the course as
well as the remaining distance of the ball to the hole. The player finishes her turn by pressing the button
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“Next”.

Hole 1 Par 4 Shot 2 T D o siiince

Figure 43: Unity3D golf indoor game client: choosing the ball to start the next shot

When both players have finished their turn, they are asked to choose the ball, from which they will start
the next shot. They see the map with each ball’s position and remaining distance to the hole. They ought
to click on the same button to start the next shot. If a player shot out of bounds, the other ball is
automatically chosen, and if both are, the players start from the previous shot location.

Trou 1 Par 4 Tir 1

13:56 Benjamin hits 139m with
the iron
_  14:01 David hits 180m with the

Figure 44: Unity3D golf indoor game client: choosing the ball to start the next shot

When a player puts the ball in the hole, the game is finished. A final screen shows all important data
relative to their performance as well as a mini map showing the trajectory of the scramble ball.
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Congratulations ! Game finished

Goifing Experience

Par

Benjamin has put the ball in the hole !

Longest stroke : 180 m, by David
Shortest stroke : 4.65 m, by Benjamin

Scramble : Ball choices

3 balls from Benjamin were chosen
1 bals from David were chosen

Figure 45: Unity3D golf indoor game client: Final Results

Suitability in 3D-LIVE: Unity3D is a powerful engine that has efficient built-in tools. The physics
engine enables accurate simulations, the rendering engine is reliable and the networking module is easy to
use and fit real-time conditions. Implementing a custom feature is also simple if needed. And all of those
capabilities are available regardless of the platform.

2.9 3D-LIVE Outdoor Game Client
2.9.1 Outdoor Game Client with Java and Eclipse

For the outdoor jogging scenario a custom Android application was developed and deployed. The
application was kept simple and the main focus was on reliability of the data transmission from the
smartphone to the indoor clients. The outdoor jogger game client application’s user interface has a basic
interface for the user to see the route and his/her position on the map. The GPS data is transmitted to the
indoor game clients. The corresponding outdoor jogger’s avatar is then appropriately placed in the virtual
world according to the algorithm described in 0 in order to be seen by the indoor joggers. The outdoor
game client application only has one large button on the main view which enables the GPS location
reporting and activates the map shown on the Ul. Figure 46 shows the main elements of the outdoor
application’s user interface.
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AQulu Cathedral 4,

9 GPS location data
<=> Display GPS location statistics.

* Profile
<> Setup profile data.

n Sensors
" Sensors track jogger body movements.

Connected!

Touch to stop GPS service

Figure 46: Mobile application used in jogging scenario.

2.9.2 Outdoor Game Client with Unity3D

Exploiting Unity3D’s cross platform capabilities, the mobile outdoor game client applications for golfing
and skiing were created with it, also following the same structure as the respective indoor game clients.
Similarly, the outdoor game client for golfing and skiing is made of two parts: pre-game and in-game. As
the pre-game features are the same with the indoor game clients, we will only focus on the in-game
features (see section 2.8.2 for Unity3D indoor game client details) of the outdoor game client.

Audio

The audio system is only used for communication, using the separate Mumble application connected to
the Mumble Server (see section 2.10).

Interplay among input devices in 3D-LIVE

Mobile applications are using their internal GPS with high accuracy mode to send the user’s position to
the server. Then, the outdoor avatar is positioned at the corresponding location in the virtual world. In the
ski scenario, the outdoor avatar’s position (and therefore the GPS coordinates) is used to trigger game
phase changes, such as the end of the player’s meeting before the race. For the golfing scenario, the
outdoor users use a golf club with an EXL-S1 IMU on (prototype version of the EXL-S3, see section
2.1.1) to acquire motion data. This is working the same way as the indoor one (see section 0).
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As the outdoor ski game client application is connected to a HUD with an on-board Android system, it
receives inputs made on the wrist wireless controller from the HUD application. This is used to start the
race when the players are ready.

User Interface
Ski

The outdoor application for the ski scenario doesn’t have a user interface during the game. Indeed, the
skier is using a HUD in which the user interface is displayed. The main duty of the outdoor game client
application is to handle features such as networking or GPS location. The only visible information on the
phone is the replay of the race. Implementing the view of the replay on the phone involves interaction of
the outdoor game client with the server in-order to retrieve the recorded race data and render the replay
on-screen.

During the experience useful information about the game is displayed in the HUD respecting the same
game flow:

First the user must enter a game area, corresponding to the zone surrounding the slope (it can be at the
bottom or at the top of the slope). This will automatically trigger the meeting phase, where remote skiers
are represented and animated.

You 1 Dan

2 Lukas
3‘ Welcome to the HUD

Please make your way to a game area.

Meet the skiers

Figure 47: Welcome screen and Meeting screen of the HUD

Once the meeting is over, navigation directions to the starting gate are provided to the outdoor skier. As
long as he skies down he can get closer to the gate and to the other players.
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Figure 48: Starting Gate with pins of other players visible in the HUD

Once the outdoor user is at the starting gate, she can ask her competitors whether they are ready and
trigger the countdown thanks to her wrist controller.

Ready to start?
S9N

VE S H Q

Waiting for race start

Figure 49: Triggering the start of the race thanks to wrist controller

The race can start. The screen can either be hidden for safety reasons or a bird’s eye view can be
displayed at lower speeds to see the progress of other racers on the slope, until everyone reaches the
finish line.

Your time: 1m:56s Finished

Figure 50: Bird's eye view and finsih line during a race

At the bottom of the slope, a podium is shown with remote users on it. The scores can be displayed or
hidden thanks to the wrist controller. By turning her head around the user’s HUD will automatically
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adjust virtual world’s render view in order to always be consistent with real mountains locations.
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1" Lukas
2" Dan
1" None yet
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Figure 51: Final results. The remote player happy on the podium

Golfing:

The mobile application for golfing is pretty similar to the indoor one. The main difference is that
the outdoor doesn’t see the virtual environment but has an augmented view (augmented reality):

(s)he can see the indoor player’s avatar, golf balls and their trajectories.

Regarding 2D user interface elements, it contains the same content as the indoor game client
application. In addition, two other features were implemented to the outdoor game client:

- Locating the ball after a shot: when she performs her shot, the outdoor player has to go to the
ball’s landing spot in order to get its precise position. He can press the “Lost ball” button if the
ball is lost, or press the “In the hole” button if she succeeds to put the ball in the hole.

- Repositioning the ball if the indoor ball is chosen: in this case the player will see an augmented
target on the ground where she needs to put the baII forthenext shot

Figure 52: Unity3D outdoor app for golfing — measuring ball position
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Suitability in 3D-LIVE: Using Unity3D for the outdoor mobile applications was pretty reliable. Indeed,
as it is a cross platform engine, we saved a lot of time by using modules we already implemented for the
indoor apps. Moreover we didn’t need any transition module to connect the application to the server.

Masks

In the Live 3 Skiing prototype the Recon Snow 2 smart goggles were deployed. This device is running a
custom Android OS and applications developed for Android are directly compatible with the goggles.
Consequently using Unity3D to develop a custom HUD application was an obvious decision.

To handle the important amount of data to transmit in real time between the HUD and the phone, a WiFi
pairing solution has been chosen. Information, Scores, Positions, Orientations and skeletons of the
players, are shared using JSON formatting and UDP socket communications. In the Live 3 Skiing
prototype we deployed the Recon Snow 2 smart goggles. This device is running a custom Android OS
and applications developed for Android are directly compatible with the goggles. Consequently using
Unity3D to develop a custom HUD application was an obvious decision.

Figure 53: HUD + wrist controller

To handle the important amount of data to transmit in real time between the HUD and the phone, a WiFi
pairing solution has been chosen. Information, Scores, Positions, Orientations and skeletons of the
players, are shared using JSON formatting and UDP socket communications.

2.10 Audio Client

As described in section 2, for audio communications in the Jogging scenario and in the last prototypes of
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Skiing and Golfing an external audio server, called mumble has been used. The usage of this server
requires the indoor/outdoor users to have a separate application installed in their hardware platform,
called the Mumble Application. This application serves communications.

For indoor users the mumble application has deployment binaries for desktop computers while for the
outdoor users that use a smartphone, the android mumble application is used. In both cases, either desktop
deployment or smartphone deployment, the Mumble application runs in the background thread of the
computer/smartphone and captures voice data when specific threshold of sound amplitude is exceeded.

Even though mumble is light weight this previously mentioned method conserves energy and bandwidth
when using mobile devices.

2.11 Experiments Monitoring (EXPERImonitor)

The EXPERImonitor is a framework focused on the management of experiment content that allows
developers to explore the relationship between QoS and QoE in complex distributed multimedia systems.
The tool is specifically designed to support the observation of systems where user-centricity, mobility, ad
hoc participation and real-time access to information are critical to success.EXPERImonitor uses a hybrid
data model that combines formal reporting of QoS and QoE data types. The hybrid approach provides the
ability to collect large quantities of measurement data (e.g. service response times, network latency, user
satisfaction, etc) whilst allowing for exploration of causation between observations within such data (e.g.
user satisfaction in relation to service response time).

The ability to efficiently traverse experiment content between QoS and QOE is an essential capability for
evaluation of complex socio-technical systems. Data exploration can provide indications of factors that
influence each other and is used to segment data for further investigation and analysis. With ever growing
big data sets generated by Internet systems, EXPERImonitor can significantly reduce the time from
observation to insight.
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Figure 54: Example screenshot from the EXPERImonitor web dashboard

EXPERImonitor is a web service with a web-based admin interface and a REST API which connects to
clients via RabbitMQ in order to receive high-volume monitoring data. Client APIs are available in
multiple languages (Java, Android, C#, C++, Ruby). The web interface offers a live view of incoming
metric data and a data explorer view for completed experiments. Data may also be exported to CSV files
for further analysis in more specialised tools.

The software was developed primarily in the EXPERIMEDIA project but has been deployed and
technically enhanced in collaboration with the 3D-LIVE project.

Suitability in 3D-LIVE: The EXPERImonitor was selected as the experimental management system as it
is well aligned with the procedural and technical experimental requirements of the 3D-LIVE project.
Specifically, the EXPERImonitor provides experimental monitoring service that offers a machine
processable method for formally specifying QoS and QoE metrics data that is compatible with the data
capture requirements of the 3D-LIVE UX model. Additionally, the EXPERImonitor provides a real-time
experiment monitoring dashboard that allows the experimenter to view experimental data live as the
experiment progresses, allowing for rapid verification of experiment data. Finally, the EXPERImonitor
provides experiment data aggregation and export so that data collection for analysis is expedited.
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2.12 Network Monitoring and Adaptation Service & Network Monitoring Client

As briefly described in section 2, the Network Monitoring and Adaptation Service has a twofold role in
the deployment of the 3D-LIVE platform. Firstly, to monitor the network performance of the 3D-LIVE’s
infrastructure. Secondly, to provide suggestions about the compression level of the 3D-Reconstruction
data by taking into account the network performance measurements. The suggestions are based in a rule-
set that aims to provide the best user immersion possible under the restrictions imposed by the network.
The suggestions may favour visual quality or frame update rate (later, in section 3.4, being referred as
speed). Whatever the preference is, the Network Monitoring and Adaptation Service will never propose
compression levels that result into extremely low update rates of the 3D-Reconstructed data at the Game
Clients. The suggested compression levels are finally consumed by 3D-LIVE Capturer (section 2.7) in
which they are used to determine the compression parameters to be fed into the Mesh Compression
algorithm for compressing 3D-Reconstructions. This component constitutes innovative 3D-LIVE
technology, which has never been studied before in the context of Tele-Immersion systems. Vital details
about the internals of the module are given in section 3.4.
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3 3D-LIVE innovative technologies

In the previous section all the deployment components of the 3D-LIVE platform were described along
with details of their implementation in the case where they constitute application and integration of
existing state-of-the-art methodologies. On the other hand, in the hereby section the modules that
constitute research and technological advancements of the 3D-LIVE project, beyond existing
technologies and methodologies, are described with in-depth details. Advances beyond existing
technologies and/or adaptation strategies to the 3D-LIVE needs are thoroughly given, along with the
technical metrics (Quality of Service) that were defined to evaluate the performance of the 3D-LIVE
modules. For the relationship between tracked QoS metrics and the related QOE metrics, please, see D4.1.

3D-LIVE advanced the state of the art in many areas related to tele-immersion technologies, evident from
the following publications:

e S. Asteriadis, A. Chatzitofis, D. Zarpalas, D. Alexiadis, P. Daras, “Estimating human motion from
multiple Kinect Sensors®, Mirage 2013, 6th International Conference on Computer Vision / Computer
Graphics Collaboration Techniques and Applications, June 67, 2013, Berlin, Germany
e A. Doumanoglou, S. Asteriadis, D. Alexiadis, D. Zarpalas, P. Daras, “A Dataset of kinect-based 3D
scans®, 11th IEEE IVMSP Workshop: 3D Image/Video Technologies and Applications, Yonsei
University, Seoul, Korea, 10-12 June 2013
e A. Doumanoglou, D. Alexiadis, D. Zarpalas, P. Daras, “Towards Real-Time and Efficient
Compression of Human Time-Varying-Meshes”, IEEE Transactions on Circuits and Systems for
Video Technology, issue 99, 2014
e A. Doumanoglou D. Alexiadis, S. Asteriadis, D. Zarpalas, P. Daras, “On human Time-Varying Mesh
compression exploiting activity-related characteristics”, IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 2014. 4-9 May, Florence, Italy

e B. Poussard, S. Richir, J. Vatjus-Anttila, S. Asteriadis, D. Zarpalas, P. Daras, “3DLIVE: A Multi-
Modal Sensing Platform Allowing Tele-Immersive Sports Applications”, 22nd European Signal
Processing Conference (EUSIPCO 2014), Lisbon, Portugal, 2-5 Sept. 2014

e D. Alexiadis, D. Zarpalas, P. Daras, “Fast and smooth 3D reconstruction using multiple RGB-Depth
sensors”, IEEE International Conference on Visual Communications and Image Processing, VCIP
2014, Dec 7-10, Valletta, Malta

e D. Alexiadis, A. Doumanoglou, D. Zarpalas, P. Daras, “A case study for tele-immersion

communication applications: from 3D capturing to rendering”, IEEE International Conference on
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Visual Communications and Image Processing, VCIP 2014, Dec 7-10, Valletta, Malta
e S. Crowle, A. Doumanoglou, B. Poussard, M. Boniface, D. Zarpalas, P. Daras “Dynamic Adaptive
Mesh Streaming for Real-time 3D Teleimmersion”, submitted in the 20th International Conference on
3D Web Technology, (Web3D 2015), June 18-21, Heraklion, Greece.

3.1 Human reconstruction and animation

For the indoor users, depending on the available number of Kinect depth sensors and the quality of
network (see section3.4) two different methods for user representation in the Tele-Immersive
environment have been used in 3D-LIVE: Simple avatar animation, replicating human movements and
full body 3D-Reconstructions of humans. The first case will be explained in the following subsections:
avatar animation using the Kinect skeleton information and fusion of multiple skeletons captured from
different Kinect sensors to handle occlusion issues and offer more accurate motion information, which
will also be augmented with the process for animating the avatar of the outdoor users. The 3D-
Reconstruction case that has been employed in the low-cost indoor case, will be presented in detail in
section 3.1.4.

The human reconstruction and animation module uses Microsoft Kinect Depth Sensors (Section 2.1) and,
for the outdoor runners, GPS data (2.1), while implementation is integrated in 3D-LIVE Capturer (2.7)
and processing is made in Indoor Game Clients (2.8).

3.1.1 Avatar animation

As already discussed in section 2.7, for raw joint positions and orientation extraction, the Microsoft SDK
framework has been used for the 3" prototype. The Kinect offers skeleton data at 30 frames per second.
Each skeleton frame contains pose and orientation information for all the joints of the user. For each joint
orientation, a quaternion in the global coordinate system is used. From human skeleton extraction, avatar
animation is performed via skeletal animation retargeting (avateering). Animation Retargeting refers to
animating 3D characters using the reference Kinect motion capture data. The Kinect’s joint orientations
are applied to the avatar’s bones in the global coordinate system taking into account the hierarchical
placement of the bones. Thus, the order at which the skeleton joints are updated matters, depending on the
avatar’s hierarchical construction. Bones that are lower in the hierarchy are updated first due to the fact
that the orientations are given in absolute coordinate system. Otherwise, the child bones would be
transformed because of the rotation of the parent bones. To accomplish skeletal animation retargeting, the
initial position of the avatar is set to T-pose, as depicted in Figure 55.
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Figure 55: Skeleton in T-Pose

In this pose, skeleton orientations provided by Microsoft Kinect SDK are considered to be reference
quaternions. Let those quaternions be denoted as qginectmic- Moreover, on the one hand, let the
quaternion g;,;; describe the initial bone orientation for an arbitrary bone of the 3D avatar in its initial
pose, i.e. in T-pose. On the other hand, let g be MS SDK’s quaternion describing the orientation of the
corresponding joint at an arbitrary time-point. Then, applying skeletal animation retargeting is equivalent
to setting the orientation of each bone of the avatar t0 q * qxjectmic * Qinic--  S€€ also [F. Destelle,
2014] and [K. Apostolakis, 2013] for similar techniques in skeletal animation retargeting.

In order to improve the animation quality, CERTH implemented a set of skeleton filters, aiming to aid the
low quality of the captured skeletons offered from the raw capturer. The skeleton filters implemented
inside 3D-LIVE Capturer are the following:

1. Flipped Orientation Filter: it corrects any 180° wrong orientation estimation especially on the legs.
2. Jitter Filter: Filters out any joint position/orientation jitter.

3. Calibration Filter: The filter aims to provide a more accurate mapping between the skeleton provided
by the kinect and the animated avatar itself. The users are required to stand in a T-Pose and this is
automatically detected by the application. Then, the filter would transform the kinect skeleton
appropriately, so that a T-Pose captured by the kinect matches a T-Pose of the avatar.

4. Anthropometric Filter: Some times, the captured skeleton’s legs would be turned inwards resulting
into a totally unnatural position of the avatar. This would prevent this effect from happening.

5. Smooth Orientation Tracking Filter: This will make the avatar not follow the user's movement by
100%. On the contrary it would only follow user's movement up to a certain degree resulting into
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smoother ending avatar poses.

6. Yaw Cancel Filter: This filter cancels any yaw bone rotation.

7. Natural Pose Filter: This filter smoothes the overall pose to a certain degree. Very awkward and
unnatural poses get smoothed to less awkward and more natural poses.

3.1.2 Skeleton merging

One of the core components of the 3D-LIVE architecture involves accurate extraction of human motion
parameters. One of the toughest bottlenecks, related to non-wearable sensors, however, has to do with
their significant sensitivity to occlusions or self-occlusions (Figure 56). For the above reason, in 3D-
LIVE, CERTH investigated a multiple Kinect sensor approach, where each user is being tracked by more
than one Kinect sensor, each having a different point of view, to allow for more robust skeleton extraction
and tracking, allowing for a more pleasant animation of the user’s avatar. Initially, the skeletons obtained
by the different Kinects are filtered to isolate only the ones that correspond to an existing human. This is
done in order to eliminate potential falsely detected skeletons in the background. A population of n
candidate positions p;jnk around each joint j, for every Kinect sensor Kk is initialized, and each of these
units is translated accordingly in the 3D space. In subsequent frames, each point p;, is assigned a weight
Wjnk, Which depends on two factors (equation 1): the distance of each candidate position from the
corresponding observation s;jx (the actual measurement of Kinect sensor k for joint j) and a series of
confidence values, modelled as non-linear functions of heuristics, namely the joints’ expressivity, their
distances on the z-axis from the corresponding values of sensor’s depth map and the possibility that Sjx
belongs to a limb with expected posture. These factors are non-linearly fused by following a Mamdani
Fuzzy-Inference-Scheme [Mamdani, 1975] delivering an overall confidence equal to 4;x . Confidence and
distance values define weight wj

Wink = Zk{Aj’k}_le —ISjk=Pjnkl a

After each iteration t, a roulette wheel selection scheme [Chipperfield, 1995] is followed, encouraging
more promising positions. The algorithm converges to a few candidates after a number of iterations,
which give the final joint position. More details can be found in the 3D-LIVE paper “Estimating Human
Motion from multiple kinect sensors” [Asteriadis, 2013], that was presented in Mirage 2013, 6th
International Conference on Computer Vision / Computer Graphics Collaboration Techniques and
Applications by CERTH.
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Figure 56: Human Skeleton from 3 different angles with occlusion, and the resulting skeleton, using joints from proper

sensors.

3.1.3 Outdoor user avatar animation

In the outdoor user case when no other sensors but GPS-sensor was available, a predefined animation was
used to move avatar around the virtual venue. Rendering engines contain some basic walking and running
and idle animations, which were blended and interpolated to avatar GPS position changes to smoothly
animate the avatar in the virtual world.

Pre-recorded animations were used in different ways depending on the scenarios. For instance in the
Golfing and Jogging scenarios the animation is set function of the GPS inputs. The user speed influences
the reading speed of the animation file and the speed of relocating the avatar on teh ground. For the ski
scenario, animations of turns are available. So regardless the user is indoors or outdoors, the trajectory of
the avatars’ reference point is studied and, when a turn is detected, the proper animation is triggered
depending on the amplitude of the turn.

About the animation based on wearable sensors, we can distinguish two cases:

- The Golfing swing animation
- The Avatar fused animation

The Golfing swing animation is the reading of a predefined swing animation based on real actual activity
of the golfer. Indeed while taking a strike, the golfer’s movement is recorded in real time by the inertial
sensor attached to his golf club. This data provides us with a consistent value to use to animate a swing
movement on the avatar. Thanks to this technique a user can see exactly when the remote player is taking
his strike or training in real time.

The avatar fused animation is the combination of bones rotations coming from inertial sensors attached to
the user’s body and predefined animations. Within 3D-LIVE we experienced attaching four sensors to the
body of one user to allow basic interactions. We proposed to attach one sensor on the torso, which is the
reference sensor. In fact all the other orientations will be compared to this one in order to animate the
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bones of the avatar in local referential, allowing animations of the user in any position in the real world.
One sensor is attached to the head, one other on the shoulder and the last one on the arm. Our fusion
algorithm allows us to animate an avatar with predefined animations apart from the bones described
above.

Consequently it allows a player running the 3D-LIVE mobile application to get his avatar animated in
remote applications. One part of the skeleton animated with predefined animations function of the current
activity of the player, and another part animated thanks to the real actual movements of the player.

Figure 57: Head and arm animated with live sensors' data. Other parts of the avatar reading predefined animations

Based on the above technical description and the elicited user requirements (see D3.2 & D3.4), a series of
technical Quality of Service metrics have been extracted in order to individually assess the usefulness and
performance of the human 3D-Reconstruction & animation components (Table 5):

QoS metric for evaluation | Explanation
of Avatar Animation

Skeleton Confidence (%) Reports on confidence regarding whether 3D posture of
human body is a replica of the actual one. This is inferred
through confidence values delivered through the Capturer
Application and is an inherent part of Microsoft SDK and
OpenNi.

Skeleton quality (mm) Reports on quality regarding whether avatar parts correspond
to the actual point cloud of the user. This is measured through
comparing Capturer’s inferred skeletal z-positions with the
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corresponding z-values in the same (x,y) position.

Skeleton Jerkiness (mm) Metric that uses motion for motion-related metrics extraction.
The more natural a motion is (less jerky), the more reliable it
is that it follows real motion of the user. It is measured as the
variance of motion within a small time window.

Avatar virtual X and Z- Reports avatar location in virtual world for tracking and
location (3D world replication purposes. This metric can be translated to GPS
coordinates) position and can be compared to outdoor jogger actual GPS

location to know how much virtual location differs from
actual location.

Avatar virtual longitude Actual latitude and longitude of the outdoor avatar in the

and latitude location virtual world, to be compared with the positions provided by

(digital degrees) the GPS of the mobile devices. This provides some indication
about the path accuracy of outdoor users rendered in the
game.

Table 5: QoS metrics for evaluating animation

3.1.4 Real-time, 3D-Reconstructions of moving humans

A major sense of tele-immersion is offered in 3D-LIVE, through the real-time visualization of the actual
appearance (i.e. 3D-Reconstruction) of the indoor users. Thus, the very challenging problem of real-time
robust 3D-Reconstruction of humans has been thoroughly investigated within 3D-LIVE, as this is a major
scientific focus of CERTH.

Although accurate 3D-Reconstruction methods from passive RGB cameras can be found in the literature
[Vogiatzis, 2007][Furukawa, 2009], they are not applicable in Tl applications, since they require a
processing time of several minutes per frame. Other, mainly visual hull-based methods [Franco, 2009],
are quite fast, yet, they lack the ability to reconstruct concavities. Regarding methods that use active
direct-ranging sensors [Curless, 1996], they have not been used in real-time applications; instead, they are
applied off-line to combine range data captured by a single sensor.

Most of the relevant real-time Tl-oriented approaches [Vasudevan, 2011] [Maimone, 2011] fuse partial
3D data only at the rendering stage, in order to synthesize intermediate 2D views. In [Vasudevan, 2011],
a high quality TI system is described, including an accurate method for the generation of multiple depth-
maps from stereo clusters, which are then combined at the rendering stage to synthesize views for given
viewpoints. A similar TI system is described in [Maimone, 2011], where the depth-maps are captured by
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multiple Microsoft Kinect sensors. On the other hand, a Kinect-based 3D-Reconstruction system is
presented in CERTH’s previous work in [Alexiadis, 2013] that produces a single full 3D mesh,
independently to the rendering stage. However, the explicit mesh “zippering” technique of that method
may reject a significant amount of the captured information during the described “hard” procedure of
decimating overlapping mesh regions. Moreover, it does not produce watertight and manifold meshes,
which is a pre-requisite in 3D-LIVE applications. In the following, the steps followed for 3D-
Reconstruction of moving humans in the 3D-LIVE platform, are presented. The proposed methodology
has a number of innovations that were derived from the needs of the project, they have been implemented
and are now used as part of the 3D-LIVE ecosystem. For a full analysis of the method, the reader is
referred to 3D-LIVE’s paper [Alexiadis, 2014], that was presented in the IEEE Visual Communications
and Image Processing Conference (VCIP), 2014 and was selected among the conference’s best papers.

1. Capturing setup and calibration: The RGB-Depth data are acquired by 4 Kinect sensors, placed
in a circular spatial arrangement that provide full-body 360° coverage of a human. In order to
accurately estimate the internal parameters of each single Kinect, the method of [Herrera, 2012] is
used. For the external calibration of the system, a simple, yet efficient method has been
proposed in 3D-LIVE, that makes use of a large planar chessboard surface. The idea is based
on the detection of a large number of 3D point correspondences in sets of sensors. Then, the
extrinsic parameters are estimated for all cameras in an all-to-all manner.

2. Raw point reconstruction: Thresholding follows for foreground (human) extraction. Each
foreground pixel of each depth map is reconstructed in 3D and its raw 3D normal is calculated
through Step Discontinuity Constraint Triangulation (SDCT) [Alexiadis, 2013].

3. Confidence-based 3D smoothing: Instead of using the zippering method applied in CERTH’s
previous work [Alexiadis, 2013], which resulted to the loss of a significant portion of information
and did not make use of measurements’ quality criteria, a weighted smoothing approach for dealing
with overlapping (coming from neighbouring sensors) adjacent surface regions has been
investigated within the frame of 3D-LIVE. In particular, confidence values for each point were
defined and a novel technique for smoothing (using surface normal) was introduced.

4. Scalable volumetric reconstruction: The characteristic volumetric function of the surface is
extracted, implicitly defined as the iso-surface at an appropriate level. For this purpose, a Fourier
Transform (FT)-based approach was followed [Kazhdan, 2005].

5. Texture-mapping: In 3D-LIVE, a confidence scheme was employed for ‘colouring’ the extracted
Iso-surfaces, using RGB information from every sensor’s colour camera.

The major differences between CERTH’s previous work on this subject (not within 3D-LIVE) with the
3D-LIVE method can be summarized as:
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e In [Alexiadis, 2013], the explicit mesh “zippering” method may reject a significant portion of the
captured information during the ‘“hard” procedure of decimating overlapping mesh regions.
Moreover, it does not produce watertight and manifold meshes.

e However in [Alexiadis, 2014], the captured data are fused in a weighted manner, based on the
confidence of the corresponding depth measurements, and data are implicitly fused to generate
manifold watertight meshes. The above improvements result in superior visual quality, at higher
frame rates, both significant factors of tele-immersive experience.

Experimental Results

The experiments were ran on a PC with an i7 processor (3.2GHz), 8GB RAM and a CUDA - enabled
NVidia GTX 560. When performing full-body 3D-Reconstruction, skeleton fusion can only be performed
from kinects placed in horizontal orientation, since skeleton capture cannot work when the kinects are
placed vertically. During 3D-LIVE experiments, 4 Microsoft kinects were used for 3D-Reconstruction
from which only one is placed horizontally. The rest would be placed vertically in order to be able to
sufficiently cover the human space. Thus, skeleton fusion in this case was not utilized. Please note that
skeleton information in the case of 3D-Reconstruction is only required for the activity recognition module
(thus, not for avatar animation), and that in order to offer visually pleasant 3D-Reconstructions of the
users, we have avoided to capture the user with occlusions (i.e. in the jogging scenario we have removed
the panel of the treadmill). In the 3" prototype the skeleton information would be acquired by a Microsoft
Kinect 2 as discussed in section 2.1.

“Skiing” sequence of 3D-LIVE: Reconstruction results for a specific frame of a person on a ski
simulator are given in Figure 58. This is a frame of the sequence that 3D-LIVE through CERTH has
contributed to MPEG-3DGC database, available at:
https://www.gti.ssr.upm.es/~mpeg/3dgc/3Dmodels/. In this figure, the reconstructed
raw points are illustrated, rendered using triangles generated by SDCT [Alexiadis, 2013] (left image),
along with the output of the confidence-based smoothing operation (middle) and the volumetric
reconstruction (right). The noise in the raw point-set (left image), as well as the effect of “Z-fighting”
surfaces is obvious. On the other hand, the smoothed point-sets (middle) define a smooth surface.
However, the triangular surface obtained by SDCT, although visually more pleasant, is non- manifold and
contains cracks and holes. Therefore, a final watertight and manifold surface (right) is reconstructed using
the volumetric method.

3D-LIVE Consortium Dissemination: Public 82/133



3D-LIVE — 3D-LIVE Interactions through Visual Environments Project N. 318483

D3.3 3D-LIVE platform modules Date 13/3/2015

Figure 58: Raw, stitched and final reconstruction

Textured reconstruction results are also given in Figure 59. It is clear that the final reconstruction results

contain much less artifacts and are visually superior.

Figure 59: Raw, smoothed and final reconstruction

Using the same sequence, Figure 60 provides some comparative results with the “zippering” method of
[Alexiadis, 2013]. One can verify that a) the proposed method produces reconstructions with fewer
artifacts and moreover, b) the method of [Alexiadis, 2013] can benefit from the proposed weighted
smoothing method. In terms of time requirements, high reconstruction rates, close to 10 fps, can be

achieved.

Figure 60: From left to right a) Raw SDCT reconstruction, b) Output of CERTH’s previous work [Alexiadis, 2013], c)
Output of [Alexiadis, 2013] after applying the proposed weighted smoothing method, d) watertight volumetric

reconstruction [Alexiadis, 2014]

Experimental results using the Huawei/3DLife dataset (http://mmv.eecs.qmul.ac.ukimmge2013/) are reported in the
following figures. Figure 61 presents results for a specific frame of the “Xenia” sequence. The raw
textured point-set is presented on the left, followed by the output of the smoothing operation and the final,
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confidence-based watertight reconstructed mesh.

Figure 62: a) Raw SDCT reconstruction, b) Output of [Alexiadis, 2013], ¢) Output of [Alexiadis, 2013] after applying

the proposed weighted smoothing method, d) watertight volumetric reconstruction

Figure 63: Results for two frames and two point-views

Figure 62 provides comparative results with the “zippering” method of [Alexiadis, 2013]. Finally,
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Figure 63 presents the reconstruction results for two frames of the “Stavroula” sequence.

3.1.5 Evaluation of 3D-Reconstruction

Given that the evaluation of 3D-Reconstruction has not been addressed before, CERTH has formalized
this by introducing a method that compares the visual quality of the reconstructed mesh with a high
quality capture of the subject via a high quality camera. Comparison will be based on the visual quality of
the 3D-Reconstruction from an arbitrary viewpoint, i.e. a viewpoint different from the ones of the Kinects
used for the creation of the 3D-Reconstruction. The metric is based on Peak Signal To Noise Ratio
(PSNR). Apart from the 4 Microsoft Kinects being used for 3D-Reconstruction, the capture setup is
equipped with an additional RGB camera. This RGB camera is calibrated in its intrinsic parameters.
Additionally, it is calibrated in its extrinsic parameters with respect to the rest of the Microsoft Kinects. In
the 3D-LIVE Capturer software, the 3D reconstructed mesh is rendered from a viewpoint defined by the
camera’s extrinsic parameters and projected to the image plane via the camera’s intrinsic parameters. This
operation is hardware accelerated via OpenGL rendering in an off-screen buffer. The resulted rendered
image of the 3D-Reconstruction is then used to compute its PSNR with respect to the reference image
obtained by the camera itself. The PSNR computation is evaluated in two forms. The first form is
instantaneous, i.e. independently per frame, as if computing PSNR between two images. On the other
hand, the second form is sequential. The PSNR is computed between two video sequences (i.e. the PSNR
is computed over the whole sequence of frames like in a video). This evaluation was introduced into QoS
metrics, as described in Table 6.

QoS metric for evaluation of | Explanation
Real time, 3D-Reconstructions
of moving humans

Reconstruction Instantaneous | This is a way to evaluate aesthetic quality of the
PSNR (dB) reconstructed mesh. An extra, calibrated camera is placed
as part of the setup. Human’s 3D-Reconstructions from
kinect sensors (depth + RGB), are virtually projected on
the corresponding 2-D plane and compared against RGB
values returned by this camera.

Reconstruction Sequence | Gives an overall aesthetic result of a whole session of
PSNR (dB) interaction, by computing the PSNR as in video sequences.
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Table 6: QoS metrics for 3D-Reconstruction

3.2 Activity Recognition in 3D-LIVE

3D-LIVE adopts a multi-modal approach for Activity Recognition. Wearable and non-wearable
technologies are interchanged, in order to give a full framework of activity reports. These are further
exploited by the 3D-LIVE ecosystem in various ways: Feedback to the user, input to the rendering
engine, scenario evolution. The Figure 64 below is illustrative of the 3D-LIVE approach:
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Figure 64: Activity Recognition in 3D-LIVE

This module uses Microsoft Kinect Depth Sensors (Section 2.1), wearable sensors (2.1) and, for the
outdoor runners, GPS data (2.1) while implementation is integrated in 3D-LIVE Capturer (2.7) and
processing is done in Indoor Game Clients (2.82.8).
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3.2.1 Speed estimates

Using Kinect depth sensors: Using three-dimensional information retrieved with the use of the Kinect
sensor, it is possible to extract information related to user’s speed, either through exact calculations
(jogging) or through indicates correlated to speed (ski). Below is 3D-LIVE’s approach conducted by
CERTH to speed estimation through Kinect-based information.

Jogging: Prior to evaluating a jogger’s activity, the type of activity has to be defined. In 3D-LIVE, we
make an automatic distinction among four basic categories, which require a speed estimation module: 1.
Running, 2. Jogging, 3. Walking, 4. Standing still. To this aim, a training set of known pairs of
parameters (z;, u) has been recorded, with z; being feet’s average depth (z) position, and u corresponding
to actual treadmill speeds. A first-order regression model, mapping first order positive derivatives dz/dt to
u is found using least-squares and this is subsequently used, for unknown data, in order to calculate user
speed in a generic and easy to implement way and, thus, avoid complex solutions for extracting it from
the treadmill itself. Thresholds are defined in order to infer whether user is standing still, walking,
jogging or running and, for the two last cases, proper heuristics and fuzzy machines are triggered for
activity evaluation.

Skiing For the outdoor user’s avatar, its speed estimation is calculated from the distance and time
difference of two sequential GPS points. The avatar’s running speed and the predefined animation’s
speed are modified accordingly to match real life motion.

The problem in the ski scenario is that GPS positions are updated on average every second (with
differences of up to 4 seconds). With the skier reaching speeds of 28m / s we are obliged to predict the
path trajectory of the skier and correct it as a function of GPS data received. Not predicting the trajectory
would result an error of about 20 meters, which would be considered too much. The objective is to obtain
an avatar in the virtual world that keeps a minimal error with respect to the actual position of the skier
while having a behaviour that seems realistic for indoor users.

To improve the accuracy of the signals received by the Smartphone, we integrated a Kalman filter. Its
prediction model is based on simple kinematics equations and the observation model is fed by new
incoming GPS data, in order to reduce the noise of the raw signal.

Each time GPS data is received, an invisible virtual ski controller (the same used to simulate indoors

players’ avatars), called "Ghost" is teleported at the coordinate received. It is allocated a speed
(corresponding to the speed to get to the point of the previous point received) and a direction
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(corresponding to the direction described by the GPS coordinate received and the previous one). The
following positions of the "ghost” are then calculated in the virtual world in the same way that is
simulated for the behaviour of indoor player.

The avatar of the outdoor user in the virtual world seeks to achieve the position and velocity (direction
and intensity) of the "ghost". When the "ghost" and the avatar are not in the same place at the same speed,
the avatar will change its speed to reach the “ghost”. In order to have a plausible behaviour for indoor
players who will ski with him, the maximum acceleration of the controller has been limited. This way, if
the avatar and the "ghost" are found to have a significant position or speed difference, the avatar will take
time to recover the delay. But the experience of players using simulators will be good since they will not
see any strange behaviour.

To further increase the accuracy of speed estimation for the outdoor user, we used an IMU (section 2.1.1)
that is attached to the torso of the skier. The orientation of the "ghost" is then defined by the orientation of
the IMU. Unfortunately, we were not able to test and validate the outdoor usage of the IMU, as it was
very difficult to set up for experiments in the Schladming site.

3.2.2 Activity performance

Kinect-based data: A set of metrics describing body posture was first defined, in order to assist in the
implementation of fuzzy and crisp rules that were used for indoor activity performance evaluation. The
feedback of this procedure is given in the form of messages, delivered, on the fly, to the indoor user
whose activity is being tracked by Kinect Sensors. Figure 65 and Table 7 show the joints extracted by the
Kinect sensor, while Table 8 and Table 9 are illustrative of the metrics used.

Figure 65 Joints tracked by the Kinect sensor

ID Joint
Py Head
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P, Neck

P3 Left Shoulder
P4 Left Elbow
Ps Left Hand

Ps Right Shoulder
P, Right Elbow
Ps Right Hand
Pg Torso

P1o Left Hip

P11 Left Knee

P, Left Foot

P13 Right Hip

P14 Right Knee
Pis nght Foot

Table 7 Joint IDs tracked by the Kinect sensor

Metric Calculation

HipsAngle Angle formed by line segment P1,P13 with the horizontal axis

ArmBones Average of angles formed by vectors P3P, - P,Psand vectors PgP; — P7Pg

ArmSide Average of angles formed by vectors P3P, — P,Pgand vectors PgP7 — PoPg

KneeAngle Average of angles formed by vectors P13P14 — P14P15 and vectors P1oP11 —
P11P12

LeanForw Angle formed by vector P,Pg with the vertical axis

Table 8: Calculation of body metrics for Jogging activity recognition
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Metric Calculation

ArmSide Average of angles formed by vectors P3P, — P,Pgand vectors PgP7 — PoPqg

KneeAngle Average of angles formed by vectors P14P13 — P14P15 and vectors P3Py —
P11P12

Bending Average of angles formed by vectors PP, — P1oP11 and vectors PP, —
P13P14

TorsoUpright | Angle of P,Pgwith the horizontal axis

LegsLean Average of angles of P1;P19and P14P13 with the horizontal axis

KneeDist Distance between P14 and P13 normalized with the average leg length

Table 9: Calculation of body metrics for Skiing activity recognition

By knowing the relevant positions of body joints, CERTH proposed the use of fuzzy logic'* for
estimating performance scores of sports activities; In particular, we defined variables of body metrics and
we defined two or three fuzzy sets for each: LOW, MED(IUM) and HIGH, with MED being optional (see
Appendix A for the corresponding values). Similar, performance (output) of the Fuzzy Inference System
was modelled by two fuzzy sets (LOW and HIGH) from 0 (bad performance) to 100 (excellent
performance). In the jogging scenario, fuzzy sets for extremes (LOW,HIGH) were modelled by ramp
membership functions (MFs), while Triangles were used for MED sets. On the other hand, in the skiing
scenario MEDIUM fuzzy sets were modelled by Gaussian membership functions (MFs), while
Sigmoidals were used for low and high sets. Below are the rules used in the module:

Jogging:
RULE 1: if HipsAngle is LOW then JogEvaluation is HIGH
RULE 2: if HipsAngle is HIGH then JogEvaluation is LOW

¥ The FuzzyLite library V5.0 was used: http://www.fuzzylite.com/
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RULE 3: if ArmBones is LOW then JogEvaluation is LOW
RULE 4: if ArmBones is HIGH then JogEvaluation is LOW
RULE 5: if ArmBones is MED then JogEvaluation is HIGH

RULE 6: if ArmSide is LOW then JogEvaluation is HIGH
RULE 7: if ArmSide is HIGH then JogEvaluation is LOW

RULE 8: if LeanForw is LOW then JogEvaluation is HIGH
RULE 9: if LeanForw is HIGH then JogEvaluation is LOW

RULE 10: if KneeAngle is LOW then JogEvaluation is LOW
RULE 11: if KneeAngle is HIGH then JogEvaluation is HIGH

Walking: speed between 1,5 km/h and 5.5 km/h
Jogging: speed between 5.5 km/h and 7.5 km/h

Running: speed above 7.5 km/h

RULE 1: “if KneeAngle is MEDIUM and Bending is MEDIUM and ArmSide is MEDIUM and TorsoUpright is LOW and
LegsLean is HIGH and KneeDist is HIGH then EvalSki is HIGH”

RULE 2: “if KneeAngle is HIGH and Bending is HIGH and (ArmSide is LOW or ArmSide is HIGH) and TorsoUpright is
HIGH and LegsLean is LOW and KneeDist is LOW then EvalSki is LOW”

The system for Jogging is ‘Takagi-Sugeno-Kang’ while for Skiing is of type ‘Mamdani’, with min and
max t-norm and s-norm used for the AND and OR operators. For every Rule, implication is done using
the ‘min’ operator, while the ‘max’ operator is employed for aggregation. Finally, defuzzification for the
‘Mamdani’ model is done using the Centre of Gravity of the output while for the ‘Takagi-Sugeno-Kang’
is done using the Weighted Average of the output. The models and their parameters were chosen after
extensive experimentation with a sufficient amount of pre-recorded motion capture data.
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Doing Jogging Now

Your current, jogging performance is: 72 .53%

Figure 66: Demo of Activity Recognition for Jogging

gur feetlow to save energy
ging Performance: 83.7 %

Figure 67: 3D-LIVE Capturer performing Jogging Activity Recognition

However, apart from activity scores, the 3D-LIVE activity recognition component also gives feedback to
the user with regards to what must be improved to increase his/her performance. To that aim, CERTH
employed a series of anthropometric rules, based on expected body posture, depending on the activity.
Apart from the fuzzy reasoner described above, different types of feedback are also given to the user for
different cases:

Jogaing, Case 1: speeds between 5.5 and 7.5 kim/hour

Warnings are issued if:

-HipsAngle is too large

-ArmBones do not form an angle close to 90°

-ArmSide angle is too big (arms should be as close to the torso as possible)
-LeanForw angle is too big (the torso must be upright while running)

-Maximum value of KneeAngle, over a period of 30 frames, is too large (feet should be close to the ground to save energy)

Joqgging, Case 2: speeds between 5.5 and 7.5 klm/hour

Similar rules with Case 1, with the exception of the maximum value of KneeL.ift, over a period of 30 frames, that should be

3D-LIVE Consortium Dissemination: Public 92/133



3D-LIVE — 3D-LIVE Interactions through Visual Environments Project N. 318483

D3.3 3D-LIVE platform modules Date 13/3/2015

larger than in case 1.

-ArmSide angle must be within certain limits

-TorsoUpright angle should be small enough.

-KneeAngle angle should not exceed a certain value

-Bending angle should not exceed a certain value (the skier’ waist must be in a bending position)

-Minimum value of LegsLean over a period of 30 frames should be small enough as legs should be leaning sideways while
skiing.
-KneeDist should also be large enough, since knees should have a certain distance with each other while skiing.

At the end of each session, an average performance score, as well as a list of suggestions to the skier are
presented as feedback for better performance at the next session.

QoS metric for | Explanation
evaluation of Activity
Analysis based on Kinect
data

Skeleton Confidence (%) | Reports on confidence regarding whether 3D posture of human
body is a replica of the actual one. This is inferred through
confidence values delivered through the Capturer Application
and is an inherent part of Microsoft SDK and OpenN!i.

Skeleton quality (mm) Reports on quality regarding whether avatar parts correspond to
the actual point cloud of the user. This is measured through
comparing Capturer’s inferred skeletal z-positions with the
corresponding z-values in the same (x,y) position.

Skeleton Jerkiness (mm) | Metric that uses motion for motion-related metrics extraction.
The more natural a motion is (less jerky), the more reliable it is
that it follows real motion of the user. It is measured as the
variance of motion within a small time window.

Table 10: Activity analysis QoS

For a technical explanation of the above metrics, please, see D4.1 (report on the experimentation &
evaluations of the 3D-LIVE Tele-Immersive Environment).
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3.3 Data compression and transmission
Compression of Human 3D-Reconstructions

Given that the “heaviest” data to be transmitted is the human 3D-Reconstruction data, CERTH has
conducted research in 3 different techniques for time-varying mesh (TVM) compression, a specific topic
that is largely unexplored by the research community so far. In the first one, entitled “Towards Real-Time
and Efficient Compression of Human Time-Varying Meshes” (published in IEEE’s TCSVT,
[Doumanoglou 2014 (A)]) a novel skeleton-based approach to Human Time-Varying Mesh (TVM)
compression is presented. We attempt to address the Human TVM compression problem inspired from
video coding by using different types of frames and trying to efficiently remove inter-frame geometric
redundancy utilizing the recent advances in human skeleton tracking. The overall approach focuses on
compression efficiency, low distortion and low computation time enabling for real time transmission of
Human TVMs. It efficiently compresses geometry and vertex attributes of TVMs. Moreover, this work is
the first to provide an efficient method for connectivity coding of TVMs, by introducing a modification to
the state-of-the-art MPEG-4 TFAN [K. Mammou 2009] algorithm. This work also proposes a method for
motion-based coding of Human TVMs that can further enhance the overall experience when Human
TVM compression is used in a Tele-Immersion (TI1) scenario. This work, given its high novelty has been
presented in the 105th MPEG Meeting, and more specifically in the 3D Graphics Group ISO/IEC
JTC1/SC29/WG11 Coding of Moving Pictures and Audio with input document m30537*°Jul-Aug 2013,
Vienna.

In the second one, entitled “ON HUMAN TIME-VARYING MESH COMPRESSION EXPLOITING
ACTIVITY-RELATED CHARACTERISTICS”, presented at IEEE’s ICASSP conference,

% http://wg11.sc29.org/doc_end_user/documents/105_Vienna/wg11/
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[Doumanoglou 2014 (B)] the potential of exploiting activity related global features in order to improve
the performance of the existing human Time-Varying Mesh (TVM) compression scheme of
[Doumanoglou 2014 (A)] is presented. The paper introduces a strategy for selecting the most appropriate
I-Frame that will serve as a reference frame for the encoding of EP-Frames, exploiting activity-related
characteristics, given that in 3D-LIVE the users perform specific activities (i.e. ski and jogging). Two
different strategies are presented, using a skeleton-matching criterion and a periodicity measurement
metric based on human skeleton. Results show that the concept is sound, but they also reveal the
sensitivity of the proposed methods to the skeleton quality (which is offered by the available Kinect
SDK3s).

Lastly, in the paper entitled “A case study for tele-immersion communication applications: from 3D
capturing to rendering” key aspects related to next-generation tele-immersion applications are analyzed,
studying the end-to-end chain from 3D capturing of remote users to rendering. Key modules include 3D-
Reconstruction and mesh compression. In this paper the reconstructed geometry, along with the vertex
attributes, is compressed using the open source static mesh compression scheme OpenCTM. The texture
images of the mesh are separately compressed using H.264 video coding. A wrapper for the openH264
(http://www.openh264.org/) library was developed and used for that purpose. The tele-immersion
pipeline performance with respect to the various parameters was in detail evaluated with respect to visual
quality and real-timeness. An advantage of the system is its scalability, since both the 3D-Reconstruction
and compression modules are scalable and adaptable to the characteristics of the users’ workstations and

the network. This work was presented at IEEE’s VCIP conference.
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The main differences between the different compression schemes are highlighted (with green color the

advantages and with red the disadvantages) in Table 11:

TCSVT / ICASSP methods VCIP method

Highly novel: Introduces a chain of
innovative ideas, giving a practical proof of
concept that efficient inter-frame redundancy | Efficient combination of robust and
exploitation in TVMs is possible and | established methods.

establishing ground for further
Improvements.

1
Exploits  temporal  redundancy  fully
- Better compression ratio / distortion
performance

Exploits temporal redundancy only for
2
textures

e Relies on robust extraction of high-
level features (i.e. Kinect based
skeleton information).3

e Only for moving humans

e Does not rely on the extraction
of high-level features.
e More generic

More complex and  computationally
4

: Simpler > Faster
expensive

Highly novel Not novel but mature and stable.

Table 11: Comparison between TCSVT/ICASSP and VCIP compression method
[ For both geometry and color
2 Via established video coding schemes
B Current technology does not guarantee robust human skeleton extraction

¥ Near real-time with current technology
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In 3D-LIVE live experiments, the compression method presented at VCIP was favored against the one
of TCSVT/ICASSP for the following reasons:

* ltis an efficient combination of robust and established methods

* Itissimpler and faster compared to the TCSVT/ICASSP method

However, on bad network conditions, where packet loss can occur, both methods suffer from the
fact that the decoding of a frame relies on the successful decoding of previous frames, since they both
exploit inter-frame redundancy. This problem is non-trivial and a variant of the VCIP method was
developed to face the new challenge. The new method replaces the H264 video codec with a static

JPEG image compressor, in an effort to reduce the fragility of the algorithm on bad network quality.

The implementation of the compressor side of this module is integrated in 3D-LIVE Capturer (section
2.7) while the decompressor is implemented and deployed to the Indoor Game Clients (section 2.8).

QoS metric for Explanation
evaluation of 3D-
Reconstruction Data
Compression

Reconstruction Reports on the rate at which reconstructed frames are
Compression FrameRate | compressed. The value is measured in frames per second.
(FPS)

Reconstruction Average | Reports on the compression ratio of the compressed mesh. This
Compression Ratio is a natural number calculated as (uncompressed size) /
(compressed size). This metric is calculated as a running average
since the beginning of the experiment.

Average Reconstruction | Reports on the time it takes to compress a 3D-reconstructed
Compression Time (sec) | mesh. It is measured in seconds and is calculated as a running
average since the beginning of the experiment.
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Compressed Reports on the quality of the compressed reconstruction. Refer
Reconstruction vs to section 3.1.5 for details.
Reference RGB Camera
Instantaneous PSNR
Compressed Reports on the quality of the compressed reconstruction. Refer
Reconstruction vs | to section 3.1.5 for details.
Reference RGB Camera
Sequence PSNR

Table 12: QoS metrics for Compression of 3D-Reconstructions

3.4 Network monitoring and adaptive compression

A network monitoring module has been specified for the purpose of optimising the transmission of the
most intensive network data used in the 3D-LIVE system: the full body reconstruction data. Before
transmitting the data to the receiving user on the network, the data compressor reduces the overall size of
the frame by compressing the data is a lossy fashion; the higher the compression level, the lower the
quality of the reproduced full body reconstruction viewed by the receiver. However, the smaller the size
of the frame data sent to the end user, the greater the potential for higher frame rates. Typical payloads of
a compressed frame, compressed at different levels, is described in Table 13:

Full body compression level Typical payload (in bytes)
High ~163k/frame
Medium ~192k/frame
Low ~244k/frame

Table 13: Typical payloads of a compressed frame at different compression levels

The network monitoring module attempts to optimise the rate at which frames can be sent and received
during a 3D-LIVE game by capturing network conditions between the sender and receiver and selecting
the appropriate level of data compression without causing an unnecessary drop in overall visual quality.
This is done by monitoring the two primary factors that impact frame throughput: first network latency;
second: bandwidth (for further information on network monitoring, see D4.2: Second report on the
experimentations and evaluations of the 3D-LIVE Tele-Immersive Environment).
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Figure 68: Network monitoring architecture

Additionally, in the context of T3.6, the compressor employed in 3D-LIVE was equipped with adaptive
capabilities by varying its parameters according to the feedback obtained though network monitoring. The
compressor’s parameters are controlled via network messages emitted by the network monitoring module.
The compressor has 3 different pre-saved configurations for 3 different levels of compression / visual
quality modes (namely LOWQ, MEDQ, HIGHQ). The names of the levels refer to the corresponding
visual quality of the compressed mesh. Thus, HIGHQ refers to a compressed reconstructed mesh of
HIGH visual quality and low compression ratio. Similarly, LOWQ refers to a compressed mesh of LOW
visual quality, thus high compression ratio. The compressor’s performance is controlled through 2
different parameters: JPEG Image Quality and Geometry Vertex Precision. The JPEG Image Quality
factor is a percent factor that controls the visual quality of the compressed textures of the reconstructed
mesh and is proportional to the resulted compressed texture size, i.e. the higher the factor the larger the
size. Geometry vertex precision is measured in millimeters and controls the precision at which the
reconstructed mesh’s vertex coordinates are encoded. Higher precision results into better visual quality
and higher filesize. Content adaptation for the case of 3D reconstructed time-varying meshes is achieved
by varying the parameters of the new compressor according to Table 14: Compressor Parameters:
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JPEG Image Quality (%) Directly affects the quality of the texture
proportional to the compressed size.

Geometry Vertex Precision (mm) Directly affects the quality of the mesh. Implicitly
has impact on compressed size. The higher the
precision the greater the data size.

Table 14: Compressor Parameters
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Experimental results for different compression parameters are presented at Table 15 for 4 different sequences. The results depict: PSNR, Average
Compression Ratio (CR) per frame and Average FileSize (in KB) per frame. The different configurations (compression parameters) are depicted in Table 16.

SEQUENCE PSNR CR SIZE PSNR CR SIZE PSNR CR SIZE PSNR CR SIZE PSNR CR SIZE PSNR CR SIZE

aldoum-Ski 16,47 63,81 59,55 16,76 51,75 73,42 16,84 44,81 84,79 1691 39,90 9521 16,96 33,37 113,84 17,05 28,45 133,55

aldoum-Ski2 17,05 63,31 60,02 17,38 51,26 74,12 17,53 4435 8567 1766 39,60 9594 17,67 33,02 115,07 17,77 28,24 134,53

dalexiad-Ski 15,08 71,37 53,23 1541 57,11 66,53 15,67 49,23 77,17 15,77 43,67 87,01 15778 36,19 104,98 1594 31,10 122,16

dalexiad-Ski2 16,12 67,31 56,45 16,45 5499 69,09 16,54 47,96 79,23 16,61 4333 87,68 16,72 36,00 105553 16,73 31,16 121,93

AVERAGE 16,18 66,45 57,31 16,50 53,78 70,79 16,65 46,59 81,72 16,74 41,63 91,46 16,78 34,65 109,86 16,87 29,74 128,04

Table 15 Compression Experimental Results

JPEG Image Quality (%) Geometry Vertex Precision (d) (mm)

CONFIG1 5 0.015
CONFIG2 10 0.012
CONFIG3 15 0.012
CONFIG4 20 0.010
CONFIG5 30 0.008
CONFIG6 40 0.001

Table 16: Compression Configurations
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The PSNR metric presented at Table 15 was computed with the same methodology as described in
section 3.1.5. The compressed mesh was rendered in an off-screen buffer according to an external RGB
camera’s calibration parameters and the resulted image was compared against the original captured image
from the camera via PSNR. From the above experimental table we chose to assign LOWQ to CONFIG1,
MEDQ to CONFIG2 and HIGHQ to CONFIG6, mainly taking into account the visual impact of the
compression parameters to the reconstructed mesh. Below, screenshots for the sequences “dalexiad-ski2”
and “aldoum-ski2” are presented for subjective visual quality evaluation among with the corresponding
compression level, the PSNR metric measured for the whole sequence and the average Compression
Ratio (CR) per frame for the sequence.

HIGHQ PSNR: 16.7 dB/CR: 31 MEDQPSNR: 16.4dB/CR:55 LOWQ PSNR: 16.1dB/CR: 67

Figure 69: Compressed reconstructions from the “dalexiad-Ski2" sequence
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HIGHQ PSNR: 17.7dB,CR: 28  MEDQ PSNR: 17.3dB, CR: 51  LOWQ PSNR: 17.0 dB, CR: 63

Figure 70: Compressed reconstructions from the “aldoum-Ski2" sequence

In conclusion, we see that the results of the adaptive compressor vary in both compression ratio and
visual quality terms, enabling for real-time tele-immersion experience under varying network quality
conditions. Thus, the requirement for content adaptation in 3D-LIVE is fulfilled. Finally, all the work in
3D-LIVE for T3.6 has been documented in detail and submitted for publication in the 20th International
Conference on 3D Web Technology, (Web3D 2015: http://web3d2015.web3d.org/):

S. Crowle, A. Doumanoglou, B. Poussard, M. Boniface, D. Zarpalas, P. Daras “Dynamic Adaptive Mesh
Streaming for Real-time 3D Teleimmersion”.

3.5 Evaluation metrics

A wide range of metrics have been captured during the course of the 3D-LIVE experimentation. These
metrics were collected from many of the technical modules that execute at run-time whilst running the
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3D-LIVE system. The logical metric model used to represent this data is depicted in the entity
relationship diagram of Figure 71.

MetricGenerator Experiment

MetricGroup . Entity

1 1

1.* 1.%

Report MeasurementSet Attribute

I

1 1.*

Metric Measurement

|
v b

MetricType Unit

Figure 71: Logical metric model

In this model, the objects of experimental observation (referred to as ‘Entities’) are de-coupled from the
agent (the EXPERImonitor software client) making the observations. Entities themselves must contain one
or more Attributes that are the subject of actual instrumentation and measurement activity. We can consider
the data management structures that support the collection of data representing attributes from either a ‘top-
down’ perspective (starting from Metric Generators) or from a ‘bottom-up’ view point, starting with a data
collection type (the Measurement Set type) that is mapped directly to an attribute of interest. Here we will
take the latter approach and start by directly linking data sets to an attribute.

The Measurement Set type holds a set of measurements that specifically relate to an attribute and in addition
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has associated with it a metric meta-data indicating its Metric Type (nominal; ordinal; interval or ratio) and
its Unit of measure. In the diagram above, we see two instances of Measurement Sets (each uniquely
identified by a UUID value) which are mapped directly to the attributes of interest.

Moving up the data hierarchy, the next level of logical organisation is the Metric Group — a container
used to perform one level of partitioning for collections of measurements that relate (for example, video
rendering metrics). Metric Groups themselves are collected together by the top level data organisation,
the Metric Generator. The Metric Generator represents system-level components that generate metrics,
for example it may be useful to differentiate server and client based metric generators. An additional
mapping, similar to that used to link measurement data sets to attributes is specified linking metric
generators to entities under observation since it is likely that individual systems will be deployed to
observe different entity types. EXPERImonitor client software must send their specification of the metrics
they are going to provide the EXPERImonitor in this way. Using this approach, the experimenter has a
means by which to understand which clients are performing what kind of measurements, and what they
relate to within the experimental venue.

3D-LIVE software components formally described their metrics using this model and transmit the data,
via a RabbitMQ server, to the EXPERImonitor during the experiment. Metrics reported by the various
3D-LIVE system components are described throughout this document in the related QoS metric tables.
Readers interested in further details of these metrics are referred to the 3D-LIVE UX model and reports
on the 3D-LIVE experiments, as described in deliverable D4.1: Report on the experimentation and
evaluations of the 3D-LIVE Tele-Immersive Environment. Further information on the EXPERImonitor
can also be found in section 5.9 of the 3D-LIVE deliverable D1.2: ‘Report on the Study and Creation of
the Holistic User Experience Model” and also a more detailed architectural discussion can be found in the
EXPERIMEDIA deliverable ‘D2.1.6 Second Blueprint Architecture’.
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4 Traceability matrix

In the following tables details are provided about the evolution of the 3D-LIVE platform along the
different experimental phases.

In Table 17, the addressing of the different project requirements is depicted in terms of actions taken and
prototype integration.

Project Requirement: Create a geo-technical model of the experimentations sites
respecting textural, mechanical and atmospheric properties of the real environments.

Action: A 1 meter accurate topology of each site has been created and imported into
the rendering engines. Buildings and important surrounding elements have been
created and textured in order create the most consistent experience for the users.
Wide area models have been generated to reinforce the immersion of players in the
actual 3D scene (mountains, far fields ...etc.). The Physics properties of the terrains
have been studied and set up to match the activity of the users depending on the
virtual surface of interactions. (Ballistic behaviour for golf, friction of the ground,
etc.)Weather effects were also included in the context of the ERS queries. (Section
2.8)

Evaluation: The behaviour has been experimented and validated by users who did
interact in a natural way with the system, without complaining about visual and
physical inconsistencies during Live #3.

Addressed in Prototype: Ski Live #1, Ski Live #3(updated), Golf Live #1, Jogging
Live #1
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Project Requirement: Apply visual weather effects live in the 3D environment.

Action: An Environment Reconstruction Service (section 2.5) was created to
aggregate local weather data with two types of sensing technologies: Open Weather
Map( using closest weather stations) and Sensordrone (using local sensors inputs).
The service was then queried by applications and a visual effects model has been set
2. up to generate weather changes in the game for: Clouds, light intensity, rain, snow,
temperature, humidity and wind. (Section 2.8)

Evaluation: Apart from the Golf scenario, the visual effects were matching real
weather conditions. In the golfing scenario the closest OWM station was 100km
away.

Addressed in Prototype: Ski Live #1, Golf Live #1, Jogging Live #1

Project Requirement: Allow Real time transmission of game data.

Action: The game engines chosen for the development of the 3D-LIVE platform
come with a network architecture very suitable for real time game data transmission.
All the game data was then transmitted over the different clients using the standard
&l game engine protocols (game state synchronization) via UDP communications.
(Sections 2.3, 2.8 and 2.9)

Evaluation: Game state synchronization worked fine. No inconsistency was noticed
during experiments. Though, no technical evaluation on latency was performed.

Addressed in Prototype: Ski Live #1, Golf Live #1, Jogging Live #1
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Project Requirement: Allow game rendering on different platforms (Mobile
devices, Smart goggles, PCs, HMDs, CAVESs).

Action: The Unity3D game engine has the ability to deploy on multiple platforms
including mobile devices and immersive systems such as Head Mounted Displays or
Cave Automatic Distributed Environments and Smart Goggles. Some game adaptions
based on platform specifics were required in order to run the same content on
4. different machines allowing tele-immersive mixed reality experience. An adaptive
GUI system has been implemented in order to react to user activities in the virtual
environment depending on the platform (head tracking inputs, GPS inputs, resolution
and screen types, image distortion). (Section 2.8)

Evaluation: All the platforms targeted were evaluated. The scenario had an
implementation for each of the platforms running smoothly.

Addressed in Prototype: Ski Live #3, Golf Live #2, Jogging Live #2
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Project Requirement: Integrate a set of sensory-motor interfaces to enrich in real
time user experience.

Action: All the sensory interfaces were selected to allow the transmission of wireless
data at the highest possible rate. To allow natural user interactions and force
5. | feedbacks, the solution chosen was to select real equipment for users (golf clubs, ski
simulator, treadmill indoors - golf clubs, ski equipment outdoors). (Section 2.1)

Evaluation: The interactions were quite natural and provided acceptable feedbacks
in real time according to the experiments.

Addressed in Prototype: Ski Live #1, Golf Live #2, Jogging Live #1

Project Requirement: The avatars of the outdoor players must perform appropriate
animations.

Action: Use avatar with predefined animations for smooth idle, walking, running
6. animation transitions. (See section 2.8.1)

Evaluation: The avatars of the outdoor players performed smooth animations during
the live experiments.

Addressed in prototype: Jogging Live #1

Project Requirement: Comparative Statistics must be displayed after a game.

Action: Collect activity recognition data and display performance for each runner
after the experience. (See section 3.2)

Evaluation: The users’ running performance is displayed after the experience. Users
compared these results after game while chatting.

Addressed in prototype: Jogging Live #2 and updated in Jogging Live #3.
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Project Requirement: Enhance the quality of the skeleton in occluded areas.
Action: Developed Skeleton Merging algorithm from multiple kinects (See section
3.1.2).

8.

Evaluation: Skeleton tracking is improved in occluded cases. Furthermore, the
performance of the module was improved due to addressing R1-5 (D3.4, section 6.1)
Addressed in Prototype: Ski Live #1

Project Requirement: Evaluate the performance of the users’ activity.

Action: Developed Activity Recognition Algorithm for both Jogging and Skiing (See
section 3.2).

9 Evaluation: This requirement’s development evolved through different prototypes
according to user feedback. Eventually, again according to user feedback, the final
prototypes integrated a robust and working solution for evaluating user’s activity and
estimating user’s speed as necessary.

Addressed in Prototype: Ski Live #1, Jogging Live #1

Project Requirement: Reconstruct Humans in Real-Time.

Action: Developed 3D-Reconstruction algorithm and integrated it in 3D-LIVE
Capturer (See section 3.1.4).

10.

Evaluation: Positive user feedback acknowledges the value and quality of the
module as well as its successful integration in 3D-LIVE applications.
Addressed in Prototype: Jogging Live #1
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Project Requirement: Allow 3D-Reconstruction to be transmitted over the network.

Action: - Developed 3D-Reconstruction Compression Algorithms and integrated it
in 3D-LIVE Capturer.
- Added Compressed 3D-Reconstruction network streaming support in
3D-LIVE Capturer

11.

- Developed 3D-Reconstruction Network receiver / decompressor

(See section 3.3)

Evaluation: Transmission/reception of reconstructions was successfully integrated in
3D-LIVE applications.

Addressed in Prototype: Jogging Live #1

Project Requirement: Provide evaluation metrics for 3D-Reconstruction pipeline

Action: Added initial EXPERImonitor metrics about 3D-Reconstruction pipeline

12. | Evaluation: Initial evaluation metrics for 3D-Reconstruction pipeline successfully
reported to EXPERImonitor.(See D4.1 Section 5.1.10)

Addressed in Prototype: Jogging Live #1

Project Requirement: Evaluate the quality of 3D-Reconstruction.

Action: Developed method for quality evaluation of 3D-Reconstructions and
integrated it in 3D-LIVE Capturer. (See section 3.1.4) The evaluation is reported via
EXPERImonitor.

13.
Evaluation: The algorithm was successfully integrated in 3D-LIVE Capturer and the

reconstruction evaluation metric is successfully reported to EXPERImonitor in real-
time.

Addressed in Prototype: Jogging Live #2

3D-LIVE Consortium Dissemination: Public 111/133



3D-LIVE — 3D-Live Interactions through Visual Environments Project N. 318483

D3.3.3 3D-LIVE platform modules Date 10/01/2014

Project Requirement: New EXPERImonitor requirements set from T3.6 inclusion.

Action: Added new 3D-Reconstruction EXPERImonitor metrics in 3D-LIVE
14. | Capturer (See D4.1)

Evaluation: The new metrics were successfully reported to EXPERImonitor .

Addressed in Prototype: Jogging Live #3

Project Requirement: With T3.6 a new EXPERImonitor metric “Reconstruction

Receiving Framerate” was added.

Action: Updated 3D-Reconstruction Network receiver / decompressor to report new

15. | ExPERImonitor metric.
Evaluation: The new metric was successfully reported to EXPERImonitor .
Addressed in Prototype: Jogging Live #3
Project Requirement: Evaluate the visual quality of compressed 3D-
Reconstructions to address the needs of newly added task T3.6.
Action: Added evaluation of the quality of the compressed 3D-Reconstruction in 3D-
LIVE Capturer (See section 3.1.4).

16.

Evaluation: The algorithm was successfully integrated in 3D-LIVE Capturer and the
reconstruction evaluation metric is successfully reported to EXPERImonitor in real-
time.

Addressed in Prototype: Jogging Live #3
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Project Requirement: Network monitoring & Content Adaptation (according to
newly added task T3.6).

Action: Added support for Adaptive Mesh Compression in 3D-LIVE Capturer (See
17. | section 3.3).

Evaluation: This feature although implemented for Ski Live #3, it was never put into
practice during the live experiments.

Addressed in Prototype: Ski Live #3

Table 17: 3D-LIVE Platform Evolution: Project Requirements

Finally, similar to Table 17, Table 18 below depicts the most important technical feedback across the
evaluation of the different prototypes. (i.e. observations of 3D-LIVE’s technical people during LIVE
experiments). As before, the table depicts the new requirements that were formulated in response to this
feedback, the actions taken to meet the new requirements the evaluation of the actions and the prototypes
that integrated the changes required to meet the new requirements.

Technical Feedback (Ski Live #2): 3D-LIVE capturer crashes after long continuous
use.

New Requirement: Develop a more robust capturing platform to avoid system
crashes and enhance the user experience.

Action: Fixed a memory leak in 3D-LIVE Capturer’s code.

Evaluation: The 3D-LIVE Capturer application did not suffer from the same error
again.

Addressed in Prototype: Jogging Live #1
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Technical Feedback (Ski Live #1): Users reported that sometimes their Ski score
would be reported as “NaN”.

New Requirement: Increase the robustness of the activity recognition and score
calculation algorithm for the ski case.

2.
Action: ldentified and fixed the bug in ski activity recognition module. (Section 3.2)
Evaluation: This error did not occur again.
Addressed in Prototype: Ski Live #2
Technical Feedback (Jogging Live #1): The requirement for all clients to
disconnect from the EXPERImonitor service before each experiment is inconvenient.
New Requirement: New EXPERImonitor experiments should be able to be
performed without clients disconnecting the EXPERImonitor service.

3.

Action: Updated 3D-LIVE Capturer & Game Clients to EXPERImonitor APl v2.0.

Evaluation: The new API integration successfully allowed for new experiments to
be conducted without disconnecting from EXPERImonitor .

Addressed in Prototype: Jogging Live #2
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Technical Feedback (Jogging Live #2): 3D-Reconstruction visual evaluation
algorithm involves manual calibration steps and contains some minor
synchronization issues between Kinect and Camera Capturing.

New Requirement: Automate the calibration process and enhance the
synchronisation between Kinect & Camera.

4. | Action: Updated 3D-Reconstruction’s Visual Quality Evaluation algorithm
accordingly, fixed the capturing synchronization issues, and integrated it in 3D-LIVE
Capturer. (See section 3.1.4)

Evaluation: The calibration process was successfully automated (no more manual
calibration steps involved) and sync issues were eliminated.

Addressed in Prototype: Jogging Live #3

Technical Feedback (Jogging Live #2): Need to have backup solutions for
EXPERImonitor metric logging.

New Requirement: Add EXPERImonitor logging capabilities to 3D-LIVE Capturer.

Action: Update 3D-LIVE Capturer accordingly.

Evaluation: Logging capabilities were successfully integrated in 3D-LIVE Capturer.

Addressed in Prototype: Jogging Live #3
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Technical Feedback: In the ski scenario 3D-reconstruction was inconsistent with

the subject’s movements in terms of mirroring.

New Requirement: 3D-Reconstruction needs to map the actual user orientation.

Action: Updated Unity3D reconstruction rendering script to mirror 3D-
Reconstruction accordingly.

Evaluation: 3D-Reconstruction’s rendering was made consistent with user
orientation.

Addressed in prototype: Ski Live #3

Technical Feedback (Ski Live #1): Voice Delays in Golf and Ski applications are
decreasing the framerate of game clients.

New Requirement: Improve the Voice communications using Unity3D to cancel
delays and improve framerate in Game Client.

Action: Initially worked on multithreading of voice compression/decompression with
7. | Unity3D. Finally, Mumble was used for all use cases as it was found to be a more
stable and reliable solution. (See sections 2.6, 2.8, 2.9 and 2.10)

Evaluation: Delays were not noticeable anymore during the games. The game
clients’ framerates were not affected anymore. (~60FPS for indoor game client, ~30
FPS for outdoor game client).

Addressed in Prototype: Ski Live #3
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Technical Feedback (Ski Live #1): Reconnection problems after crash / network
failure.

New Requirement: Guarantee the full recovering of the game in the case of network
failure / disconnection from game server.

8. | Action: Implement game state saving and recovery, both server side and client side.

Evaluation: Under poor network conditions some networks some disconnections did
occur. Automatic reconnections from game clients to the game server worked
flawlessly, keeping the status of the game consistent.

Addressed in Prototype: Golf Live #2

Technical Feedback (Ski Live #1): The skier controller script does not respect
physics calculations on virtual slope.

New Requirement: Make the virtual skier controller more accurate depending on
topology of the slope.

Action: Developed a new controller script that included ski physics while taking into
account activity recognition results (sections 2.8.2 and 3.2).

Evaluation: The time and speeds to go down any slope were closer to reality,
respecting the topology of the terrain. Activity Recognition results (section 3.2)
allowed users to better control their turns and speeds on the slope.

Addressed in Prototype: Ski Live #3
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Technical Feedback (Golf Live #2): Upon indoor user trials, the balls are thrown
too far away in the golf course.

New Requirement: Rework physics to feed ball ballistic equations with adjusted
values.

10. | Action: The coefficients in ballistic equations were adjusted to result consistent
strokes via empirical tests on the golf course. (See section 2.8.2)

Evaluation: None of the users reported inconsistent actions with respect to what they
are actually able to do in real life.

Addressed in Prototype: Golf Live #3

Technical Feedback (Ski, Golf Live #1): Connectivity issues of outdoor game client
when network coverage is poor.

New Requirement: Ensure proper connectivity when network coverage is poor.

Action: An attempt to make more a more robust connection process in Unity 3D was
made.

11.
Evaluation: In case of bad network coverage, the outdoor game client disconnects

from the server anyways. An automatic reconnection is in place, but it cannot connect
if the network conditions are really poor.

Addressed in Prototype: Not addressed. In case of bad network conditions, a "local
game mode" might be necessary.
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Technical Feedback (Ski Live #1): The ski controller script for the outdoor user
does not work correctly in high speeds.

New Requirement: Develop a new algorithm to allow tracking the outdoor skier at
high speeds.

Action: A new algorithm was developed by merging gaming techniques to GPS and
12. | optionally IMU sensors, allowing tracking and predictions of user’s path depending
on topology of the slope and the activity of the skier. (See sections 2.8.2 and 2.9.2)

Evaluation: The stripped version (without IMU) was used during experiments. It
allowed a very acceptable tracking of users depending on topology of the slope.
Adding the IMU was only tested and validated in the lab.

Addressed in Prototype: Ski Live #3

Technical Feedback (Ski Live #1): Reception of RabbitMQ data on mobile devices
requires java specific implementation.

New Requirement: Implement a Java RabbitMQ library to retrieve ERS and
Skeleton data for mobile devices.

13. : - . . . : . .
Action: Specific RabbitMQ implementation was made for mobile devices to retrieve

skeleton and ERS data on Android.

Evaluation: Everything run smoothly.

Addressed in Prototype: Ski Live #2
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Technical Feedback (Golf Live #1): Bluetooth bandwidth insufficient when using a
stereo wireless headset and IMU sensors.

New Requirement: Find a way to simultaneously use IMU Bluetooth sensors and
allow voice communications with users.

14. | Action: A wired audio headset was deployed instead of a Bluetooth one, to save
bandwidth for the IMU sensors.

Evaluation: Everything run smoothly. The users did not complain about the wired
headset.

Addressed in Prototype: Golf Live #2

Technical Feedback (Golf Live #1): The motion sensors EXEL S1 are drifting
much after a few golf strokes.

New Requirement: Preserve IMU sensors from drifting after strikes.

15.
Action: Sensors EXEL S1 were replaced by sensors EXEL S3. (See section 2.1.1)

Evaluation: Not evaluated in Golf.

Addressed in Prototype: Ski Live #3
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Technical Feedback (Golf Live #1): Motion sensors EXEL S1 error while using
putters or ferromagnetic clubs.

New Requirement: Control the error while using IMU sensors attached to golf
clubs.

16. | Action: For the indoors users there was no need to do anything since the error
occurred only on one unused axis. For the outdoor users only Carbon shafts were
used in order to get a consistent orientation of the club on the field.

Evaluation: The error has not been reproduced in this new configuration.

Addressed in Prototype: Golf Live #3

Technical Feedback (Jogging Live #2): Jogging scenario Ul displays speed
information incorrectly.

New requirement: Display speed information correctly.

Action: Calculate correct speed from GPS positions for outdoor jogger and display

17.
speed for indoor joggers calculated by 3D-LIVE Capturer. (See section 3.2.1)

Evaluation: Ul correctly handles speed calculations. Outdoor speed still somewhat
erratic due to variance in GPS accuracy and location updates.

Addressed in prototype: Jogging Live #3.

3D-LIVE Consortium Dissemination: Public 121/133



3D-LIVE — 3D-Live Interactions through Visual Environments Project N. 318483

D3.3.3 3D-LIVE platform modules Date 10/01/2014

Technical Feedback (Jogging Live #1): Incorrect in-game response to the users’
physical efforts in Jogging Live #1.

New requirement: Balance the users’ physical efforts with their impact in the virtual
world.

Action: Check and calibrate real movement to match the avatar in the virtual world.
18. | Performed calibration procedure using realXtend and virtual Oulu city to match the
speed and avatar movement to the real speed of the runner.

Evaluation: Users still felt movements of the avatar are not up to par what they did
in real life. This problem is further addressed in LIVE3. Slight adjustment of speed
vector seems to have fixed the initial perception of sluggish avatars.

Addressed in prototype: Jogging Live #2 and Jogging Live #3

Technical Feedback (Jogging Co-Creation): Users do not want to wait for any
configuration to happen before the run. Just equip and start running.

New requirement: Zero configuration on start-up.

Action: Launching the realXtend server and clients for jogging scenario

19. ) . . i
automatically initializes various protocols and devices.

Evaluation: After the loading phase, the users are immediately able to start using the
application.

Addressed in prototype: Jogging Live #1.

Table 18: 3D-LIVE Platform Evolution: Technical Feedback
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5 Discussion

In this deliverable all the 3D-LIVE core technologies have extensively been described. Details about the
interaction between the modules and some architectural clues have also been given, explaining the
rationale behind the decisions and the suitability in the 3D-LIVE project (Section 2). In addition, low-
level and in-depth details about the highly innovative technologies that are integrated in the 3D-LIVE
modules have been provided. Both existing and innovative technologies were orchestrated and combined
to form the first well-designed, stable and reliable mixed-reality platform that can be used as a reference
for future research and development, either by the scientific community or by the cutting-edge industry.
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Fuzzy inference model for Jogging:

VARIABLE: HipsAngle

Range: 0.0 —90.0

TERM: LOW

Type: Ramp(20,0)

TERM: HIGH

Type: Trapezoid(0,20,90,90)

VARIABLE: ArmBones

Range: 0.0 — 180.0

TERM: LOW Type: Ramp(90.0, 0.0)
TERM: MED Type: Triangle(0.0, 90.0, 180.0)
TERM: HIGH Type: Ramp(90.0, 180.0f)

VARIABLE: ArmSide

Range: 0.0 — 180.0

TERM: LOW

Type: Trapezoid(0.0, 0.0, 35.0, 80.0)

TERM: HIGH

Type: Trapezoid(35.0, 80.0, 180.0, 180.0)

VARIABLE: KneeAngle

Range: 0.0 - 90.0

TERM: LOW

Ramp(75.0, 0.0)

TERM: HIGH

Trapezoid(0.0, 25.0, 180.0, 180.0)

VARIABLE: LeanForw

Range: 0.0 — 180.0

TERM: LOW

Type: Ramp(25.0, 0.0)

TERM: HIGH

Type: Trapezoid(0.0, 25.0, 180.0, 180.0)
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VARIABLE: JogEvaluation

Range: 0.0 -1.0

TERM: LOW

Type: Ramp(1.0, 0.0)

TERM: HIGH

Type: Ramp(0.0, 1.0)

Table 19: Fuzzy inference model for Jogging
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Fuzzy inference model for Skiing:

VARIABLE: KneeAngle Range: 0.0 — 180.0
TERM: LOW Type: Gauss (110.0, 10)
TERM: MEDIUM Type: Gauss (140, 10)
TERM: HIGH Type: Gauss (170, 10)
VARIABLE: Bending Range: 0.0 — 180.0
TERM: LOW Type: Gauss (90.0, 15.0)
TERM: MEDIUM Type: Gauss (130.0, 15)
TERM: HIGH Type: Gauss (170, 15)
VARIABLE: ArmSide Range: 0.0 — 180.0
TERM: LOW Type: Gauss (10.0, 10.0)
TERM: MEDIUM Type: Gauss (40.0, 10.0)
TERM: HIGH Type: Gauss (70,10.0)
VARIABLE: TorsoUpright Range: 0.0 — 30.0
TERM: LOW Type: Gauss (2.0, 5.0)
TERM: HIGH Type: Gauss (15,5.0)
VARIABLE: LegsLean Range: 0.0 — 20.0
TERM: LOW Type: Gauss (2.0,5.0)
TERM: HIGH Type: Gauss (6.0, 5.0)
VARIABLE: KneeDist Range: 0.0-1.0
TERM: LOW Type: Gauss (0.2, 0.6)
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TERM: HIGH Type: Gauss (0.5, 0.6)
VARIABLE: EvalSki Range: 0.0-1.0
TERM: LOW Type: Gauss (0.1, 0.1)
TERM: MEDIUM Type: Gauss (0.5, 0.1)
TERM: HIGH Type: Gauss (0.9, 0.1)

Table 20: Fuzzy inference model for Skiing

The Ramp, Triangle and Trapezoid functions are depicted in the figures below. The Gauss function
represents a Gaussian distribution with Gauss(m,s) having mean m and standard deviation s.

Figure 74: Ramp(a,b) function with a>b Figure 75: Ramp(a,b) function with a < b:

Figure 73: Trapezoid(a,b,c,d) function ~ Figure 72: Triangle(a,b,c) function 127133




7

3D-LIVE — 3D-Live Interactions through Visual Environments Project N. 318483

D3.3.3 3D-LIVE platform modules Date 10/01/2014

Appendix B

Following section 2.7, in this appendix we present the evaluation results of the two SDKs (MS SDK vs
OpenNl), through EXPERImonitor metric analysis on skeletal data. The definitions of the relevant
EXPERImonitor metrics are provided in the relevant Table 5. The evaluation was performed in 3
different datasets. Two datasets (namely MS-SDK #1 and MS-SDK #2) were used for Microsoft SDK
evaluation and another one was used for evaluating OpenNI. On the Microsoft SDK datasets we have
also evaluated the skeleton filters reported in section 3.1.1. The results of the EXPERImonitor metric
analysis is shown as bar graphs in Figure 76.
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Figure 76: EXPERImonitor metric analysis on skeletal data between Micrososft SDK & OpenNI.

As shown in Figure 76 above, for the skeleton confidence metric, both APIs provide similar performance
of negligible difference. However, for the rest of the metrics (Skeleton Jerkiness and Skeleton Quality)
the MS-SDK, especially when enhanced with the skeleton filters, provides lower (thus better) metric
values resulting into improved performance. Specifically, for the Skeleton Quality metric the
improvement gained from the use of MS-SDK is significant and orders of magnitude better. In
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conclusion, this metric analysis supports that the replacement of OpenNI with MS-SDK provides skeletal
information of higher accuracy, especially when combined with the CERTH proposed skeleton filters,
thus the requirement of the users’ for better avatar animation has been fulfilled.
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