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The evolution of the velocity derivative skewness, S(∂u/∂x), is investigated along two streamwise axes and four
transverse positions in the wake of a square-fractal-element grid. In the near-field, the produced turbulence

exhibits non-equilibrium characteristics including Cε ∼ ReαM/Re
β
L. In the far-field, the turbulence agrees with

canonical grid turbulence results and Cε is approximately constant. It is found that in the non-equilibrium
region, the value of −S(∂u/∂x) is dependent on both streamwise and transverse position, but after a sufficient
decay period, it takes on a near constant value in the far-field. It is demonstrated that the evolution Cε
approximately corresponds to that of −S(∂u/∂x), which is suggestive that some of the non-equilibrium
properties are likely a result of residual strain from the turbulence generating conditions.

The evolution of turbulence in the wake of fractal grids has received considerable attention in recent years. Interest
in this area was piqued by the study of Hurst and Vassilicos 1 who identified peculiar features in the turbulence decay
behind a series space-filling square fractal grids, including previously unobserved rapid decay of energy and evidence
of non-constant normalized dissipation scaling, Cε = 〈ε〉L/u′3, where 〈ε〉 is the mean dissipation rate of turbulent
kinetic energy, L is the integral length scale and u′ is the rms of the velocity fluctuations. Turbulence of this type
has been termed ‘non-equilibrium’ turbulence and is summarized in the review by Vassilicos 2 . It has been shown

that Cε ∼ ReαM/Re
β
L with α ≈ β ≈ 1 is a robust description of the dissipation in non-equilibrium turbulence2,3;

ReM = U0M/ν is the grid Reynolds number based on the mesh length, M , and the velocity immediately upstream
of the grid, U0, and ReL = u′L/ν is the local Reynolds number based on the integral length scale and the velocity
fluctuations.

Observations of rapid energy decay and non-constant Cε have now also been made in the near-field wakes of
regular grids3, and a square-fractal-element grid4,5. However, these studies also showed that the turbulence evolved
downstream to a region where Cε was approximately constant. In light of such findings, some researchers4–8 have
suggested that non-equilibrium turbulence does not violate our classical turbulence concepts because it is an artefact of
proximity to the grid, and that if measurements are performed a sufficient distance from the grid, many of the classical
concepts are recovered; however, this does not negate that non-canonical dynamics and energy cascades may drive the
near-field flow9. Indeed, different non-equilibrium region measurements have been shown to experience inhomogeneity
of the mean flow4,5,7, turbulent production5,10,11, transverse transport of turbulent kinetic energy5,10–12, and non-zero
Reynolds stress5,8,10,11, and it is thus inconclusive which of these mechanisms, if any, are responsible for the non-

equilibrium phenomenology. Nonetheless, it is remarkable that one dissipation scaling, Cε ∼ ReαM/Re
β
L, is repeatedly

able to approximately collapsed the non-equilibrium dissipation in several experiments, with several different grids,
and at several different wake positions.

Recently, Isaza, Salazar, and Warhaft 8 used the velocity derivative skewness,

S(∂u/∂x) =

〈
(∂u/∂x)3

〉
〈(∂u/∂x)2〉3/2

, (1)

to facilitate differentiation between the non-equilibrium near-field and the canonical far-field. They reiterated that
the canonical Kolmogorov-based phenomenology specifically applies to “systems that are far enough from initial
and boundary conditions such that they are not affected by them.”8 This, however, only deals with the asymptotic
behaviour of the turbulence and does not address the (perhaps) unexpected findings that non-equilibrium turbulence
follows some general scaling laws, nor why such laws should be present in a flow where the boundary and initial
generating conditions are still playing an important role. Isaza, Salazar, and Warhaft 8 found that close to a thick-
barred regular grid (solidity σ = 0.34, mesh length M = 101.6 mm, and bar thickness t0 = 19 mm) there was rapid
decay of energy and constant L/λ (indicative of growing Cε), but in the far-field they observed classical energy decay
and L/λ ∼ Reλ (indicative of constant Cε). They showed that turbulence in the wake of their grid transitioned
from a region where S(∂u/∂x) was changing to a region where it was constant, and that this corresponded to the
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NOTE: The wind tunnel cross-section actually has the 
corners cut off (it is an octagon).  OEM is manufacturing 
the sliding tray for grid installation, and has the dimensions
of this sliding tray.  This grid's corners should be cut to fit 
into the tray.
 
Original CAD file available upon request.  This was 
designed in Inventor 2008.

Each square in the fractal pattern has 
decreasing side lengths and thicknesses.  
The lengths are: L0 = 100.00, L1 = 55.62, 
L2 = 24.72, L3 = 11.00.  The thicknesses 
are: t0 = 6.74, t1 = 4.08, t2 = 2.48, t3 = 
1.50.  The ratio that each length changes 
by is L_R = 2.25; the equivalent ratio for 
the thickness changes is t_R = 1.65.

All dimensions are mm

FIG. 1. Schematic of a 60 cm × 40 cm region of the 120 cm × 80 cm square-fractal-element grid. The location of the two
streamwise axes investigated here are marked: (+) (y/M, z/M) = (0.0, 0.0), (×) (y/M, z/M) = (0.3, 0.0).

regions that experienced non-equilibrium and canonical grid turbulence phenomenology, respectively. Isaza, Salazar,
and Warhaft 8 suggested the changes in S(∂u/∂x) were related to residual strain from the turbulence generating
mechanisms of the grid, identifying that the flow was not free of its initial generating conditions where S(∂u/∂x) was
not constant. They then noted that such analysis had not yet been performed in the wake of fractal grids, and it
would be required to more rigorously distinguish the near- and far-fields. As such, we present the following analysis
to specifically address this concern and link the evolution of S(∂u/∂x) to that of Cε.

This letter revisits the data acquired by Hearst and Lavoie 4,5 in the wake of a square-fractal-element grid. Hearst
and Lavoie 4 distinguished the near- and far-field by identifying the location where the mean velocity, turbulence
intensity, and global isotropy became approximately independent of downstream and transverse position, which oc-
curred at x/M ≈ 20. Later, Hearst and Lavoie 5 identified the transition between near- and far-field as the location
where the scale-by-scale kinetic energy budget for grid turbulence was satisfied, again at x/M ≈ 20. They further
identified that there was non-negligible turbulent production and transverse transport of turbulent kinetic energy
for x/M < 20. However, no previous fractal study has reported the behaviour of S(∂u/∂x), as identified by Isaza,
Salazar, and Warhaft 8 .

A brief overview of the experiment is provided here before investigating the velocity derivative skewness; for more
details, see Hearst and Lavoie 4,5 . The square-fractal-element grid is composed of a series of small, three fractal
iteration, square fractals mounted to a 12 × 8 background mesh, as shown in Figure 1. The background mesh has a
mesh length of M = L0 = 100.0 mm, and thickness of t0 = 6.7 mm. The lengths of the fractal elements are Li = 55.6,
24.7, and 11.0 mm, where i = 1, 2, 3. The thicknesses of the fractal elements are ti = 4.1, 2.5, and 1.5 mm. The solidity
of the grid is σ = 0.39. Here, the downstream distance from the grid is normalized by the mesh length, M , as we have
found that this allows for reasonable collapse with other types of grids4. However, the ‘wake interaction length scale’13

for the present grid is x∗ = L2
0/t0 = M2/t0 = 1.49 m = 14.9M , which we provide for reference when comparing to

other published fractal works. We also identify that the thickness ratio, the measure of thickest-to-thinnest element in
the grid, is tr = 4.5 for the present grid. This is within the lower end of the tr range tested by Hurst and Vassilicos 1

who showed that increasing tr improves mean flow homogeneity. Nonetheless, even the tr = 17 grids used in more
recent space-filling square fractal studies11,12 produce turbulence with measurable production within the measurement
region, which, by definition, implies there are mean velocity gradients and hence global inhomogeneity.

Data were acquired in the wake of the grid at ReM = 65, 000 using constant temperature hot-wire anemometry.
In particular, a X-wire was used with a Dantec 56C-series anemometer. The wires of the X-wire were prepared
in-house with 2.5 µm tungsten wire with a ` = 0.55 ± 0.05 mm sensing length. The resolution of the probe ranged

1.4 ≤ `/η ≤ 5.6, where η = ν3/4/ 〈ε〉1/4 is the Kolmogorov microscale. Measurements were performed inside a
1.2 m × 0.8 m × 5.0 m wind tunnel in the range 3.5M ≤ x ≤ 48.5M in 0.35M steps along the y/M = 0.0 (the
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FIG. 2. Streamwise evolution of the (a) normalized mean velocity and (b) local Reynolds number along: ( ) y/M = 0.0, and
(�) y/M = 0.3.

centreline of the tunnel) and the y/M = 0.3 axes. These axes were chosen to represent cases where ∂U/∂x 6= 0 and
∂U/∂x ≈ 0, respectively. The measurement positions are shown relative to the grid geometry in Figure 1 and the
evolution of the mean velocity along these axes is shown in Figure 2(a). Transverse measurements were performed
between −2.6 ≤ y/M ≤ 2.1 in steps of 0.3M at x/M = 10, 25, 35, and 45. Measurements were acquired at 30.3 kHz
for sufficient time such that samples included a minimum of 105 integral time scales. The ∂/∂x derivatives were
calculated assuming Taylor’s frozen flow hypothesis, (∂ 〈·〉 /∂t) = U(∂ 〈·〉 /∂x), which is valid for grid turbulence14;
the maximum turbulence intensity, u′/U = 11.5%, occurred at x/M = 4.6, and it rapidly decayed to 4% by x/M = 20
and 2% at the end of the measurement domain. A sixth-order centred-difference scheme was used to numerically
compute the gradients, as per the suggestions of Hearst et al. 15 . Estimates of the uncertainties are provided as
error bars on plots and were calculated for the 95% confidence interval using the bootstrapping technique discussed
by Benedict and Gould 16 . For reference, the isotropic estimate of Reλ = u′λ/ν along the two streamwise axes is
provided in Figure 2(b) for comparison to previous studies. Note, 100 ≤ Reλ ≤ 320 for x/M < 20 which is the region
that overlaps with previous space-filling square fractals studies1,11–13. This is fairly high relative to traditional grid
turbulence experiments and does overlap with the Reλ measured in previous fractal studies.

The velocity derivatives skewness, S(∂u/∂x), is shown in Figure 3(a) along the y/M = 0.0 and 0.3 streamwise axes,
and along the x/M = 10, 25, 35, and 45 transverse axes in Figure 3(b). Along the streamwise scans, S(∂u/∂x) is
collapsed for x/M ≥ 15. The velocity derivative skewness reaches an approximately constant state for x/M ≥ 20 at
S(∂u/∂x) ≈ −0.43. The reported values of S(∂u/∂x) have been corrected for resolution bias using the methodology
of Burattini, Lavoie, and Antonia 17 for homogeneous, isotropic turbulence. The streamwise results are verified by
the transverse scans, thus identifying that S(∂u/∂x) is homogeneous, sufficiently far from the grid. Given the line
of discussion presented by Isaza, Salazar, and Warhaft 8 , the constancy of S(∂u/∂x), as well as the results presented
by Hearst and Lavoie 4,5 , identify the far-field of the flow induced by the present grid as a classical grid turbulence
far-field. The distinction between near- and far-field based on S(∂u/∂x) corroborates the distinction between these
regions made in our previous work based on transverse homogeneity scans4 and the scale-by-scale kinetic energy
budget5.

For a Reλ range that includes the present values, Ayyalasomayajula and Warhaft 18 found that the velocity derivate
skewness changed sign and then resettled to its typical far-field value when grid turbulence was subjected to a localized
strain. Here, we find that −S(∂u/∂x) grows and then becomes approximately settled, suggesting that the strain
relationship has a similar evolution8. For the present flow, we consider the strain qualitatively with respect to the
mean strain rate tensor, Sij = 1

2 (∂Ui/∂xj + ∂Uj/∂xi). Measuring all nine-terms of the strain rate tensor at every
location in the flow is difficult and uncommon in experimental investigations, however, we can qualitatively infer
where the strain is approximately constant and where it varies through measurements of ∂U/∂x, ∂U/∂y, ∂V/∂x and
∂V/∂y. Figure 2(a) shows that ∂U/∂x ≈ 0 along y/M = 0.3, and that it varies before becoming approximately zero
along y/M = 0 near x/M = 20. In both cases ∂V/∂x ≈ 0 (not shown here for conciseness). Figure 2 in Hearst and
Lavoie 4 shows transverse profiles of U , and that ∂U/∂y has a spatial dependence for the region x/M < 20, and is
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FIG. 3. Measurements of the velocity derivative skewness in the (a) streamwise direction along ( ) y/M = 0.0, and (�) y/M =
0.3, and (b) in transverse planes at (�) x/M = 10, (O) x/M = 25, (�) x/M = 35, and (4) x/M = 45

approximately zero thereafter. This can also be inferred from Figure 2(a) of the present study as U along the two
axes does not collapse until x/M ≈ 20. Figure 7(b) of Hearst and Lavoie 5 shows that the same is true of ∂V/∂y.
Hence, the region that experiences strain in the present flow corresponds to that with varying S(∂u/∂x), as suggested
by Ayyalasomayajula and Warhaft 18 and Isaza, Salazar, and Warhaft 8 .

As a variation in the strain likely influences the dissipation, we plot the relationship between Cε and −S(∂u/∂x) in
Figure 4(a). In the far-field, the mean kinetic energy dissipation rate is calculated directly from the turbulent kinetic
energy budget for grid turbulence,

〈ε〉d = −U
2

∂
〈
q2
〉

∂x
. (2)

However, in the near-field, where there is measurable production and transverse transport of turbulent kinetic energy5,
(2) is not an accurate approximation of 〈ε〉. As such, in the near-field we use the local analogue for the X-wire,

〈ε〉XW = 3ν

[〈(
∂u

∂x

)2
〉

+ 2

〈(
∂v

∂x

)2
〉]

. (3)

This is the same technique used in our earlier work4,5, and the results are not appreciably different from calculation
with the isotropic assumption 〈ε〉iso = 15ν

〈
(∂u/∂x)2

〉
. Measurements in the region x/M < 7 in Figure 4(a) are

represented by empty symbols, as it is likely that the wakes of the various grid elements are still distinct there4. For
measurements performed beyond x/M = 7, the evolution of Cε and −S(∂u/∂x) trend together, and they become
approximately constant simultaneously. Moreover, the results from both sets of measurements are collapsed. This
would suggest that once the straining of the turbulence by the grid wakes has deteriorated and S(∂u/∂x) has reached
an approximately constant value, the dissipation has similarly reached a constant state.

For completeness, we also plot Cε against the Reynolds number scaling, ReαM/Re
β
L, proposed by Vassilicos and

co-workers with α = β = 1 in Figure 4(b). Note that ReM/ReL is proportional to x/M , so this figure also represents
the streamwise evolution of Cε. Where Cε is growing, it appears well described by Cε ∼ ReM/ReL for both curves.
However, the slight curvature in the region ReM/ReL < 200 is suggestive that β < 1. Furthermore, rigorously this
relationship no longer holds in the far-field as ReM/ReL continues to evolve while Cε is approximately constant.

To summarize, based on the findings of Ayyalasomayajula and Warhaft 18 that relate changes in strain to changes
in S(∂u/∂x), we find that the non-equilibrium region in the present flow coincides with the region where the strain
is evolving and has a spatial dependence. When the strain reaches a balanced state, inferred by an approximately
constant value of S(∂u/∂x) and approximately zero mean velocity gradients in all directions as shown in previous
studies with this grid4,5, then classical grid turbulence conditions are recovered. This result corroborates the findings
of Isaza, Salazar, and Warhaft 8 for a different experimental setup, and is the first reporting of S(∂u/∂x) in the wake
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FIG. 4. Variation of the normalized turbulent kinetic energy dissipation rate with the (a) velocity derivative skewness, and the
(b) Reynolds number ratio proposed by Vassilicos and co-workers, measured along the streamwise axes ( ) y/M = 0.0, and
(�) y/M = 0.3. Empty symbols denote measurements in the region x/M < 7.

of a fractal-based generator. It also suggests that the non-equilibrium region is a consequence of residual strain from
the turbulence generation, a conclusion promoted by Isaza, Salazar, and Warhaft 8 .

Finally, we find here that a relation could be drawn between Cε and S(∂u/∂x), which would hold over the whole
range of the experiment rather than a subset. While it is difficult to draw any broad conclusions from this observation
without a clearer relationship between these turbulence parameters derived from physical arguments, it does show
that Cε trends with both small scale (S(∂u/∂x)) and large scale (ReL) parameters in the non-equilibrium region.
This suggests an interdependence between the small and large scales of the flow. While this may not be surprising
for the Reλ range of the present experiment, it does demonstrate that non-equilibrium properties are present in flows
without a significant separation of scales, suggesting that the significance of large scale properties, e.g., mean flow
inhomogeneity, cannot be marginalized.
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