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Abstract 

This paper evaluates the suitability of the ECOSSE model to estimate soil greenhouse gas  

fluxes from short rotation coppice willow (SRC-Willow), short rotation forestry (SRF-Scots 

Pine) and Miscanthus after land-use change from conventional systems (grassland and 

arable). We simulate heterotrophic respiration (Rh), nitrous oxide (N2O) and methane (CH4) 

fluxes at four paired sites in the UK, and compare them to estimates of Rh derived from the 

ecosystem respiration estimated from eddy covariance (EC) and Rh estimated from chamber 

(IRGA) measurements, as well as direct measurements of N2O and CH4 fluxes. 

Significant association between modelled and EC-derived Rh was found under Miscanthus, 

with correlation coefficient (r) ranging between 0.54 and 0.70. Association between IRGA-

derived Rh and modelled outputs was statistically significant at the Aberystwyth site (r = 

0.64) but not significant at the Lincolnshire site (r = 0.29). At all SRC-Willow sites, 

significant association was found between modelled and measurement-derived Rh (0.44 ≤ r ≤ 

0.77); significant error was found only for the EC-derived Rh at the Lincolnshire site. 

Significant association and no significant error were also found for SRF-Scots Pine and 

perennial grass. For the arable fields, the modelled CO2 correlated well just with the IRGA-

derived Rh at one site (r = 0.75).  No bias in the model was found at any site, regardless of 

the measurement type used for the model evaluation. 

Across all land-uses, fluxes of CH4 and N2O were shown to represent a small proportion of 

the total greenhouse gas balance; these fluxes have been modelled adequately on a monthly 

time-step. This study provides confidence in using ECOSSE for predicting the impacts of 

future land-use on greenhouse gas balance, at site level as well as at national level. 
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Introduction 

The interest in using bioenergy crops as an alternative energy source to fossil fuels, and to 

reduce greenhouse gas (GHG) emissions, has increased in recent decades (Hastings et al., 

2014). The commitment of the European Union is to increase the percentage of energy from 

renewable sources to 20% of total energy consumption by 2020 (EU, 2009). Under the 

Climate Change Act 2008 (Great Britain, 2008), the UK government committed to reduce 

GHG emissions by 80% in 2050 compared to 1990 levels; the use of bioenergy could 

contribute to this target using dedicated ‘second generation’ (2G) lignocellulosic 

crops/plantations, including short rotation coppice (SRC), Miscanthus and short rotation 

forestry (SRF) (Somerville et al., 2010; McKay, 2011; DECC, 2012; Valentine et al., 2012). 

Consequently, a substantial land-use change (LUC) may occur, and it might have 

considerable environmental and economic impact (Fargione et al., 2008, Searchinger et al., 

2008; Gelfand et al., 2011).  

Carbon dioxide (CO2) emissions of bioenergy had previously been assumed to be zero 

(Gustavsson et al., 1995; UK, 2008) on the assumption that emissions during combustion are 

balanced by the carbon (C) uptake during the growth of these bioenergy plantations, but this 

fails to take account of GHG emissions following land use change and subsequent crop 

growth. To this end, it is important to assess the GHG balance of bioenergy crops, 

particularly during the first years after conversion.  

Two approaches have been widely used to monitor CO2 fluxes: eddy covariance (EC) and the 

enclosure (or chamber) method. Eddy covariance (McMillen, 1988; Aubinet et al., 2012) is a 

technique developed to estimate land-atmosphere exchange of gas and energy at ecosystem 

scale. The measured CO2 flux, known as net ecosystem exchange (NEE), includes ecosystem 

respiration (Reco) which consists of heterotrophic (Rh) and autotrophic (Ra) respiration, and 
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gross primary production (GPP) at ecosystem scale. As photosynthesis only occurs during 

daylight hours, the night time flux is typically used to partition the NEE signal between GPP 

and Reco. A flux-partitioning algorithm that defines a short-term temperature sensitivity of 

Reco is applied to extrapolate CO2 fluxes from night to day (Reichstein et al., 2005).  In a 

plant removal experiment (Hardie et al., 2009), the total Rh from the whole soil profile was 

found to be approximately between 46 and 59% of the total Reco. Abdalla et al. (2014) used 

these values to simulate Rh from selected European peatland sites using a soil process-based 

model, ECOSSE. 

Enclosure methods have been developed to measure CO2 efflux from soil; these methods 

involve covering an area of soil surface with a chamber and the soil CO2 efflux can be 

determined using two main modes: dynamic (closed or open) and closed static. In the former 

mode, a steady stream of air is pumped directly in to the chamber (Christensen, 1983; Skiba 

et al., 1992). The latter mode simply involves closing the chamber for approximately 20-60 

min, and taking gas samples at intervals for analysis (Hutchinson and Mosier, 1981), or 

circulating the chamber air through a non-destructive infrared gas analyser for approximately 

2 minutes (IRGA) (Norman et al., 1992; Smith and Mullins, 2000). Several studies have used 

the closed chamber method combined with root exclusion methods, tree grilling or stable 

isotopes to understand the relative contribution of Rh and Ra to total soil respiration (Rtot) 

under different land uses. 

Byrne et al. (2006) demonstrated that Ra under grassland soil in Ireland accounted for 

approximately 50% of Rtot during the summer months and 38% during the rest of the year. 

Pacaldo et al. (2013) reported a contribution of Ra of about 18-33% of Rtot under SRC-

Willow at three different development stages in the USA. In a study on commercial farms 

located across the UK, Koerber et al. (2010) reported a contribution of Rh on Rtot for wheat of 

approximately 32% from January to May, 79% from June to September and 67% from 
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October to December. A meta-analysis of soil respiration partitioning studies reported values 

for the ratio Rh/Rtot for forest soils as ranging from 0.03 to 1.0 (Subke et al., 2006). Overall, 

the ratio was higher for boreal coniferous forests than temperate sites. In temperate, mixed 

deciduous forests ranges for Rh/Rtot of 0.3-0.6 were reported (Gaudinski et al., 2000; Borken 

et al., 2006; Millard et al., 2010; Heinemeyer et al., 2012). Several studies have also shown 

that bioenergy plantations have low nitrous oxide (N2O) emissions compared to agricultural 

crops because of their lower nutrient requirements, thus reducing the fertiliser requirements, 

and more efficient nutrient uptake , thus increasing competition with microbial organisms of 

N2O production (Flessa et al., 1998; Hellebrand et al., 2010; Drewer et al., 2012).  

Methane (CH4) is another important GHG that may be a substantial component of the GHG 

balance from several terrestrial ecosystems (van den Pol-van Dasselaar et al., 1999). In 

agricultural systems, soil is typically a small net source or sink for CH4 (Boeckx et al., 1998). 

Bioenergy crops usually present either a small CH4 sink (Hellebrand et al., 2003; Kern et al., 

2012), or a small CH4 source (Gelfand et al., 2011). The magnitude of the CH4 flux is 

typically much smaller than CO2 and N2O, in both agricultural soils (Boeckx and Van 

Cleemput, 2001) and bioenergy crops (Hellebrand et al., 2003). However, very few studies 

(Hellebrand et al., 2003; Gelfand et al., 2011; Kern et al., 2012) have reported on the 

contribution of CH4 emission from bioenergy systems, increasing uncertainty in the direction 

of this small flux (Zona et al., 2014). 

Several factors control the GHG emissions of both bioenergy and conventional crops, such as 

site management; e.g. fertilisation (Crutzen et al., 2008; Hellebrand et al., 2008; Hellebrand 

et al., 2010), previous land use (Smith and Conen, 2004) and climatic conditions (Flessa et 

al., 1995; Hellebrand et al., 2003). Despite the high variability of the GHG fluxes, to our 

knowledge only one study in the UK (Drewer et al., 2012) has reported on all three GHG 

fluxes (CO2, N2O and CH4) from soils under bioenergy crops (Miscanthus and SRC-Willow) 
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and, in particular, after transition from former conventional systems. To fill this gap, soil 

models are a useful tool to predict GHG fluxes when site measurements are not available, 

especially when studying the effects of the change in land use over time and under different 

climatic conditions over large areas.  

However, soil models need to be extensively tested under a range of climates and soils before 

being applied under conditions different from those used to parameterise and calibrate the 

model itself. In fact, model evaluation involves running a model using input values that have 

not been used during the calibration process, demonstrating that it is capable of making 

accurate simulations under a wide range of conditions (Moriasi et al., 2007). A model can 

only be properly evaluated against independent data and a useful model should be able to 

simulate those data with some degree of accuracy (Smith and Smith, 2007). 

Although several soil models have been developed for conventional agricultural and forest 

systems, most of them have not been fully parameterised and effectively tested for 

application on 2G bioenergy crops, such as Miscanthus, SRF and SRC (Dimitriou et al., 

2012; Borzęcka-Walker et al., 2013; Robertson et al., 2014). Here we focus on the 

applicability of the process-based model ECOSSE to predict soil CO2 (heterotrophic 

respiration), N2O and CH4 after transition from conventional to bioenergy crops.  

The ECOSSE model was developed mainly to simulate the C and nitrogen (N) cycles using 

minimal input data on both mineral and organic soils (Smith et al., 2010a,b). The ECOSSE 

model has been previously evaluated across the UK to simulate the effect on soil C of land-

use change to SRF (Dondini et al., 2015a), Miscanthus and SRC-Willow (Dondini et al., 

2015b), to simulate soil N2O emissions in cropland sites in Europe (Bell et al., 2012; Smith 

et al., 2010b) and CO2 emissions from peatlands (Abdalla et al., 2014). 
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This paper evaluates the suitability of ECOSSE for estimating soil GHG fluxes from SRC-

Willow, SRF-Scots Pine and Miscanthus soils in the UK after land-use change from 

conventional systems (grassland and arable). Based on previously published 

recommendations, a combination of graphical techniques and error statistics have been used 

for model evaluation (Moriasi et al., 2007). Model testing is often limited by the lack of field 

data to which the simulations can be compared (Desjardins et al., 2010). In the present study, 

the model is evaluated against two years of observations at 4 locations in the UK, comprising 

1 transition to SRF-Scots Pine, 3 transitions to SRC-Willow and 2 transitions to Miscanthus. 

Modelled GHG fluxes from conventional systems have also been evaluated against field 

measurements (3 grassland and 2 arable fields). 

 

Materials and Methods 

ECOSSE model 

The ECOSSE model includes five pools of soil organic matter (SOM), each decomposing 

with a specific rate constant except for the inert organic matter (IOM) which is not affected 

by decomposition. Decomposition is sensitive to temperature, soil moisture and vegetation 

cover; soil texture (sand, silt and clay), pH and bulk density of the soil along with monthly 

climate and land-use data are the inputs to the model (Coleman and Jenkinson, 1996, Smith 

et al., 1997). The ECOSSE model is able to simulate C and N cycle for six land use 

categories of vegetation: arable, grassland, forestry, semi-natural, Miscanthus and short 

rotation coppice willow (SRC-Willow). 

The vegetation input to the soil (SI) is estimated by a subroutine in the ECOSSE model 

which uses a modification of the Miami model (Lieth, 1972), a simple model that links the 
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climatic net primary production of biomass (NPP) to annual mean temperature and total 

precipitation (Grieser et al., 2006). For a full description of the ECOSSE model and the plant 

input estimates refer to Smith et al. (2010a) and Dondini et al., 2015b. 

The minimum ECOSSE input requirements for site-specific simulations are: 

Climate/atmospheric data: 

• 3

0 year average monthly rainfall, potential evapotranspiration (PET) and temperature, 

• M

onthly rainfall, temperature and PET. 

Soil data: 

• I

nitial soil C content (kg ha-1),  

• S

oil sand, silt and clay content (%),  

• S

oil bulk density (g cm-3),  

• S

oil pH, 

• S

oil depth (cm) 

Land-use data: 

• L

and use for each simulation year. 
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The initialisation of the model is based on the assumption that the soil column is at steady-

state under the initial land use at the start of the simulation. Previous work has used SOC 

measured at steady state to determine the plant inputs that would be required to achieve an 

equivalent simulated value (e.g. Smith et al., 2010a). This approach iteratively adjusts plant 

inputs until measured and simulated values of SOC converge. In the absence of additional 

measurements, estimated plant inputs were calculated from a feature built in the ECOSSE 

model which combine the NPP model Miami (Lieth, 1972; Lieth, 1973), land-management 

practices of the initial land use and measured aboveground biomass (details are given in 

Dondini et al., 2015b).  

 

Data 

In 2011-2013, four sites were sampled in Britain using a paired site comparison approach 

(Keith et al., 2014; Rowe et al., 2015). The sites and the relative measurements contribute to 

the ELUM (Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial) project (Harris 

et al., 2014). Each site consisted of one reference field (arable or grassland, depending on the 

previous land use of the bioenergy fields) and one or more adjacent bioenergy fields 

(Miscanthus, SRC-Willow, SRF-Scots Pine), for a total of 6 transitions to bioenergy at four 

site across UK (Table 1). A full description of the sites can be found in (Drewer et al., 2012; 

Drewer et al., 2015; McCalmont et al., 2015; Harris et al., 2015).  

At each bioenergy and reference field, the NEE data were obtained from continuous EC 

measurements (McMillen, 1988; Aubinet et al., 2012) using open path IRGAs (LI-7500) and 

sonic anemometers. All details regarding the EC data corrections, quality control, footprint 

and gap filling procedures can be found in Aubinet et al. (2003). The night time fluxes were 

used to partition the NEE flux measurements into GPP and Reco (Reichstein et al., 2005). 
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Soil GHG fluxes were measured on a monthly basis at eight points randomly distributed 

within each field. Soil CO2 fluxes were measured using an IRGA connected to an SRC-1 soil 

respiration chamber (PP Systems, Amesbury, MA). Measurements of soil CH4 and N2O 

fluxes were made using a static chamber method (approx. 30 litres) with the addition of a 

vent to compensate for pressure changes within the chamber during times of sampling. Gas 

samples were analysed by gas chromatograph (GC). All details regarding the chamber data 

can be found in Case et al. (2014), Drewer et al. (2012) and Yamulki et al. (2013). 

Measurements of soil C, soil bulk density and soil pH to 1 m soil depth, as well as 

information on the land-use history, were collected for each field (Keith et al., 2014; Rowe et 

al., 2015). Soil texture was measured for each site up to a depth of 30 cm; values to 1 m soil 

depth were extracted from the soil database (1 km resolution) described in Bradley et al. 

(2005), which is a collated soils dataset for England and Wales, Scotland and Northern 

Ireland. Air temperature and precipitation data at each location were extracted from the E-

OBS gridded dataset from the EU-FP6 project ENSEMBLES, provided by the ECA&D 

project (Haylock et al., 2008). This dataset is known as E-OBS and is publicly available 

(http://eca.knmi.nl/). For each location, monthly air temperature and precipitation for the 30 

years before measurements started were used to calculate a long-term average (Table 2). At 

each site, air temperature and precipitation were collected during the entire study period and 

monthly values were used as input to the model. Monthly PET was estimated using the 

Thornthwaite method (Thornthwaite, 1948), which has been used in other modelling studies 

when direct observational data have not been available (e.g. Smith et al., 2005; Dondini et 

al., 2015a). 
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Model evaluation and statistical analysis 

Monthly simulations of soil CO2, N2O and CH4 fluxes were evaluated against monthly 

chamber measurements. In addition, the soil CO2 predicted by the ECOSSE model was 

compared to estimates of Rh derived from the NEE measured by the EC.  

At each site, the ECOSSE model has been run for the reference field (i.e. no land-use 

transition) and the bioenergy crop field (i.e. following transition from the reference land 

cover). The reference fields have been run for the conventional crop (arable, grassland) with 

no land-use change and the length of the simulations has been defined by the age of the 

plantation. At the bioenergy sites, the model has been run for the reference fields 

(conventional crop) with land-use change to bioenergy crop; the length of the simulations 

was based on the time after transition to bioenergy crop. Measured soil characteristics and 

meteorological data have been used as inputs to drive the model (see above for input details), 

and the results of the simulations were compared to the GHG fluxes measured at the sites.  

We expected a monthly underestimate of the soil CO2 flux simulations because the ECOSSE 

model simulates Rh (from living micro-organisms + decomposition of old C sources i.e. 

saprotrophic), while the CO2 fluxes measured at the sites represent the total CO2 efflux from 

the soil profile (Ra + Rh, chamber measurements) or NEE (EC measurements). In order to 

compare the modelled and measured Rh, we estimated the Rh as a proportion of the measured 

CO2 flux, depending on the measurement type (except EC data), vegetation type and growing 

season. 

The eddy covariance measurements of NEE were used to derive Reco; to our knowledge, only 

the study by Abdalla et al. (2014) has reported estimates of Rh from Reco. Abdalla et al. 

(2014) applied the approach proposed by Hardie et al. (2009) for peaty soils and reported a 

contribution of Rh to Reco of 46-59%. 
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To represent the variations in Rh throughout the year, Abdalla et al. (2014) assumed that Rh 

was at the lowest value of the range (46% Reco) during the summer (June-August), the 

highest value (59% Reco) during the winter (December-February) and at the mean value 

(52.5% Reco) during the rest of the year (March-May and September-November). In the 

present study we used the same approach of Abdalla et al. (2014) to derive Rh from EC 

measurements from all land-use systems.  

Chamber measurements represent the total CO2 flux from the soil as the sum of Ra and Rh, 

with the exception of grassland where exclusion of full leaves from the chamber is difficult 

and therefore above ground plant respiration is also included in the measurements. We 

conducted a literature review to determine the partitioning of Rtot measured by the chambers 

under different vegetation types. Additional experiments within the ELUM project were also 

undertaken to directly quantify Rh and Ra at selected network sites (data not shown); where 

available, we used the Rh site data to estimate Rh from Rtot measured by the chambers 

(Lincolnshire – Miscanthus, West Sussex – SRC-Willow, Aberystwyth – Miscanthus). An 

overview of the data source and the monthly proportion of Rh for each vegetation type and at 

each site are shown in table 3. 

A quantitative statistical analysis was undertaken to determine the coincidence and 

association between measured and modelled values, following methods described in Smith et 

al. (1997) and Smith and Smith (2007). The statistical significance of the difference between 

model outputs and experimental observations can be quantified if the standard error of the 

measured values is known (Hastings et al., 2010). The standard errors (data not shown) and 

95% confidence intervals around the mean measurements were calculated for all field sites. 

The degree of association between modelled and measured values was determined using the 

correlation coefficient (r). Values for r range from -1 to +1. Values close to -1 indicate a 
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negative correlation between simulations and measurements, values of 0 indicate no 

correlation and values close to +1 indicate a positive correlation (Smith et al., 1996). The 

significance of the association between simulations and measurements was assigned using a 

Student’s t-test as outlined in Smith and Smith (2007). 

Analysis of coincidence was undertaken to establish how different the measured and 

modelled values were. The degree of coincidence between the modelled and measured values 

was determined using the lack of fit statistic (LOFIT) and its significance was assessed using 

an F-test (Whitmore, 1991) indicating whether the difference in the paired values of the two 

data sets is significant. The EC measurements were not replicated, so the coincidence 

between measured and modelled values was determined using the mean difference (M), 

calculated as the sum of the differences between measured and modelled values and divided 

by the total number of measurements (Smith et al., 1997). The variation across the different 

measurements was then used to calculate the value of Student’s t and compared to the t-

distributions (two-tailed test) to obtain the probability that the mean difference is statistically 

significant. All statistical results were considered to be statistically significant at p<0.05. 

 

Results 

The ECOSSE model was evaluated by comparing the outputs to the EC-derived and IRGA-

derived Rh fluxes from eleven fields over four sites, representing the following land-use 

systems: grassland (permanent), arable (barley), Miscanthus, SRC-Willow and SRF-Scots 

Pine. 
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Soil CO2 fluxes under Miscanthus were measured at two sites, Lincolnshire and 

Aberystwyth. At both sites, the modelled Rh followed the same seasonal pattern of measured 

data (Fig. 1). At the Lincolnshire site, a statistically significant association between modelled 

and EC-derived Rh (r = 0.54) was found, but a small significant bias in the model simulations 

when tested against the EC-derived Rh was also found (Table 4). On the other hand, the 

IRGA-derived Rh did not correlate well with the modelled outputs (r = 0.29) but no bias was 

found in the model simulations (Table 4). 

At the Aberystwyth site, significant association between modelled and measurement-derived 

Rh was found, regardless the type of measurement used. A slightly higher correlation 

coefficient was calculated correlating the modelled Rh with the EC-derived Rh (r = 0.70) 

compared to the one arising from the correlation with the IRGA-derived Rh (r = 0.64). No 

significant error between simulated and IRGA-derived Rh was found for this site, but a bias 

in the model was found when it was tested against the EC-derived Rh (Table 4). 

The model performance to simulate soil CO2 fluxes under SRC-Willow was tested against 

measurements taken at three sites: Lincolnshire, West Sussex and East Grange (Fig. 2). At all 

sites a good agreement was found between simulations and measurement-derived Rh with r 

values ranging from 0.44 to 0.77. Also, no significant error between simulated and 

measurement-derived Rh was found, with the exception of the EC-derived Rh at the 

Lincolnshire site (Table 4). 

Model performance to simulate soil CO2 fluxes under SRF-Scots Pine has been evaluated 

against data collected at the East Grange site (Fig. 3). The modelled outputs followed the 

same pattern of the measured values and the statistical analysis showed good correlation with 

both IRGA- and EC-derived Rh. Moreover, we found no statistically significant error 

between modelled and measured values as well as no bias in the model (Table 4).  
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Model simulations of soil Rh have also been evaluated for conventional crops (arable and 

grassland). Overall, the simulated CO2 follows the same pattern as the measured values at all 

sites (Fig. 4 and 5). The statistics highlighted a significant correlation (ranging between 0.48 

and 0.87 across all sites and measurements types) and no significant error between modelled 

and measured values as well as no model bias under perennial grass (Table 4). For the arable 

fields, the modelled CO2 was significantly correlated to the measured value just for the 

IRGA-derived Rh at the Lincolnshire site (r = 0.75); however no bias in the model was found 

at any site, regardless of the measurement types used for the model evaluation (Table 4). 

Monthly fluxes of CH4 and N2O were shown to be highly variable, both spatially and 

temporally, across all land uses, so we present an example of the correlation between 

modelled and measured soil N2O and CH4 fluxes for each land use. Both N2O and CH4 are 

very small fluxes and the model outputs were within the errors of the measurements, for both 

GHGs and at all sites (data not shown). However, low correlation between measured and 

modelled values has been found for the majority of the sites, ranging from -0.02 to 0.61 for 

N2O and from -0.29 to 0.53 for CH4. The high variability of the measured N2O and CH4 

fluxes led to a statistically significant error between simulated and measured values at most 

of the study sites (Table 5 and 6).  

 

Discussion 

Soil CO2 emissions under Miscanthus have been quantified at two sites (Lincolnshire and 

Aberystwyth) using two different sampling methods (EC and IRGA methods). At both sites, 

we found a high correlation between measured and modelled Rh, ranging from 0.54 to 0.60, 

except for the IRGA values at Lincolnshire site (r = 0.29, Table 4). The lack of association at 

this site was mainly due to differences between modelled and IRGA-derived Rh in the year 
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2013 (Fig. 1b). In April 2013, the soil was harrowed and disked to break up the rhizomes for 

improved yield, so the system was out of balance; the farmer also applied waste wood 

products, which led to high CO2 emissions, undetected by the model (May-August 2013 in 

Fig. 1b) since this was not included in the management file. In the ECOSSE model, the 

patterns of C and N debris return during the growing season follow a standard exponential 

relationship, as originally derived by Bradbury et al. (1993). Any alteration, such as 

harrowing or waste application, cannot be easily entered by the user. The scope of the present 

study is to evaluate the model using independent data which has not been used to develop the 

model. Therefore, we deliberately chose not to apply any modifications to the model to fit the 

measured data. However, the model was able to simulate independent data derived from two 

different sources with a good degree of accuracy. 

Soil CO2 emissions under SRC-Willow and SRF-Scots Pine plantations have been quantified 

using the same sampling methods. At all sites, the modelled Rh significantly correlated with 

all types of measurements, showing no significant error between measured and modelled 

values (Fig. 2).  

The model has also been tested against CO2 fluxes measured under conventional crops. At all 

three grassland sites (West Sussex, Aberystwyth and East Grange), the measured CO2 fluxes 

correlate significantly with the modelled values and the statistical analysis showed no error 

between measured and modelled values, and no bias in the model (Fig. 5). This is a striking 

result which underlines the good quality of the data provided for the model evaluation, as 

well as the good model performance to simulate soil CO2 fluxes. 

Under grassland, Rh derived from the IRGA measurements does not always show a high 

correlation with the modelled values, particularly during the summer months (Fig. 5). This 

lack of correlation is mainly due to the difficulties in the separation of soil respiration from 
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grassland, due to the possible inclusion of vegetation within the chamber. When deriving Rh 

from grassland, we estimated that 60% of the measured CO2 can be attributed to plant (leaf) 

respiration, as reported by Byrne and Kiely (2006), but this crude estimate doesn’t always 

reflect the field conditions. For an accurate quantification of the proportion of the CO2 

derived from the plant occluded in the chambers, field experiments would be needed to 

explicitly quantify plant respiration and biomass. 

The analysis of the soil Rh fluxes from the arable fields reveals reasonable model 

performance at the Lincolnshire site, while at the East Grange site, correlation between 

modelled and measured IRGA values was poor (Table 4). This discrepancy between 

modelled and measurement-derived Rh appears to be due to the nature of the source data; in 

fact, the IRGA-derived Rh is estimated from a single data point which is taken to represent 

monthly CO2 fluxes. Therefore, the monthly CO2 flux might not be properly represented if 

high flux variation occurred within the month. Another explanation could also be the 

discontinuity of the IRGA measurements taken at the East Grange site (Fig. 4b). The latter 

hypothesis is supported by the Rh results of the arable field at the Lincolnshire site. In fact, 

the IRGA measurements at the Lincolnshire site have been taken over a 2-year period, and 

the statistical analysis shows a good correlation against the model output (r = 0.75; Table 4). 

Therefore, we conclude that the low correlation at the East Grange arable field is mainly due 

to the variability and quantity of the measurements, and that the model accurately describes 

the CO2 emissions from arable crop. 

Generally, the model was able to predict seasonal trends in Rh at most of the sites; however, 

the model occasionally over/underestimated the flux values during the warm weather in 

spring and summer. This is particularly evident at the Lincolnshire site, resulting in a high 

mean difference between modelled and EC-derived Rh (Table 4). Despite using a generic 

method to estimate Rh from Reco, therefore providing a challenging test for the model, we 
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found no significant mean difference between modelled and EC-derived Rh at 3 sites (for a 

total of 4 land uses), proving that the model adequately simulates soil processes under 

different land-use systems and climate/soil conditions.  

Low correlation between measurements and model simulations arose predominantly when 

comparing model outputs against the IRGA-derived dataset; this is mainly due to the nature 

of the measurements (single data point representing total monthly CO2 flux), an aspect not 

related to the soil processes described in the model. However, it is to notice that the IRGA-

derived Rh has been estimated from direct measurements of total soil respiration and the 

degree of correlation between measured and modelled Rh is also related to the Rh:Rtot ratio 

adopted. On the other hand, the EC-derived Rh was estimated from the Reco during daytime, 

which is a modelled flux driven by air temperature and other environmental factors. Further 

model evaluation should be based on comparison of the model output with direct 

measurements of soil Rh fluxes, possibly using automatic chambers on soil plots where roots 

have been excluded. This measurement technique would provide continuous Rh 

measurements which would be directly comparable to the model outputs and therefore would 

provide a more accurate evaluation of the performance of the model. However, given the 

very limited input data used to run the model and the number of sites/locations used for the 

model evaluation, we conclude that the simulations are robust and the model adequately 

simulate soil CO2 fluxes under five land-use systems.  

Model simulations of N2O and CH4 fluxes resulted in low correlation and association at most 

of the study sites (Table 5 and 6), which is expected with such low fluxes, and does not 

represent a failure of the model. In fact, the measured N2O and CH4 fluxes are pooled from 

sample data points containing outliers and extreme variation between sample points in each 

site, which results in a high standard error of the measured values. But the N2O and CH4 flux 

simulations are within the 95% confidence interval of the measured values, showing that the 
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model cannot be improved to better fit these data, and suggesting that the lack of correlation 

between modelled and measured values is due to the high variation in the measured fluxes, 

which is a common phenomenon verified in many N2O (e.g. Oenema et al., 1997; Skiba et 

al., 2013; Cowan, 2015) and CH4 flux measurement experiments (Parkin et al., 2012; Savage 

et al., 2014). Moreover, if the measured values do not show any seasonal trend, a significant 

correlation with the model outputs cannot be obtained (Smith and Smith, 2007) and low 

correlation is expected. 

Measured fluxes of CH4 were shown to be negligible across all land-uses and their 

contribution to the total GHG balance, when converted to CO2 equivalent, was on average 

less than 0.2%, except for the Miscanthus field at the Aberystwyth site (3% of the total GHG 

balance). The high mean value recorded for Miscanthus in 2012 is driven by one replicate 

with very high CH4 production and there was large standard error associated with the 

measurements. In general, CH4 production or consumption was negligible also for this field. 

 Across all land uses, measured fluxes of N2O represent a small proportion (< 1.5%) of the 

total GHG balance, with the exception of the arable field at the Lincolnshire site and the 

Miscanthus field at the Aberystwyth site (6% of the total GHG balance over the two years 

measurement period at both fields). Due to technical issues and issues regarding access to 

sites for sampling, the dataset for the arable and SRC-Willow fields at East Grange is missing 

a substantial number of months and therefore it was not possible to determine the annual 

GHG balance.  

Despite the very low values of the CH4 and N2O fluxes, and their small contribution to the 

total GHG balance at all experimental sites, both fluxes have been modelled adequately on a 

monthly time-step and no improvements can be made to the model with the available flux 

data.  
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In this study, all major GHG fluxes from five land-use systems were reasonably well-

estimated using the ECOSSE model. The results from this evaluation exercise show that 

ECOSSE is robust for simulating GHG fluxes from cropland, grassland, SRC-Willow, SRF-

Scots Pine and Miscanthus (and transitions from the former two land uses to the latter three 

energy crops). This validation builds confidence that the model can be used to investigate the 

impacts of land-use transitions spatially in the UK, and to investigate the effects of 

converting large areas to grow bioenergy crops.   
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Figure legends 

 

Figure 1: Eddy covariance derived (dotted line with diamond markers), IRGA 

derived (filled triangle) and modelled (solid line with circle markers) monthly 
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heterotrophic CO2 (Rh) under Miscanthus plantations during the measurement 

period. 

Figure 2: Eddy covariance derived (dotted line with diamond markers), IRGA 

derived (filled triangle) and modelled (solid line with circle markers) monthly 

heterotrophic CO2 (Rh) under SRC-Willow plantations during the measurement 

period. 

Figure 3: Eddy covariance derived (dotted line with diamond markers), IRGA 

derived (filled triangle) and modelled (solid line with circle markers) monthly 

heterotrophic CO2 (Rh) under SRF-Scots Pine plantation during the measurement 

period. 

Figure 4: Eddy covariance derived (dotted line with diamond markers), IRGA 

derived (filled triangle) and modelled (solid line with circle markers) monthly 

heterotrophic CO2 (Rh) under arable plantations during the measurement period. 

Figure 5: Eddy covariance derived (dotted line with diamond markers), IRGA 

derived (filled triangle) and modelled (solid line with circle markers) monthly 

heterotrophic CO2 (Rh) under grassland plantation during the measurement period. 

 

 

Tables 

Table 1 

              

Site Land use 
Latitude, 
longitude 

Establishment 
year 

Carbon (%) Nitrogen (%) 
Bulk 

density
(g cm-3)
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West Sussex 
  

SRC-Willow  50.9,-0.4 2008 0.63 0.17 1.50 

Grassland 50.9,-0.4 2000 0.53 0.17 1.55 

  
 East 

Grange 
 
  

SRF-Scots 
Pine 

56.0,-3.6 2009 0.95 0.18 1.47 

Grassland 56.0,-3.6 2009 1.30 0.17 1.49 

SRC-Willow  56.0,-3.6 2009 1.57 0.17 1.38 

Arable 56.0,-3.6 pre 1990 1.37 0.18 1.57 

Lincolnshire 
 
 

SRC-Willow  53.1 - 0.3 2006 1.26 0.11 1.41 

Miscanthus 53.1 - 0.4 2006 1.30 0.13 1.53

Arable 53.1 - 0.5 pre 1990 1.47 0.13 1.37 

Aberystwyth 
 

Miscanthus 52.4,-4.0 2012 0.98 0.25 1.21 

Grassland 52.4,-4.0 pre 2007 1.16 0.26 1.45 

Table 1: Details of soil C, soil bulk density and soil pH to 1 metre soil depth, as well 
as information on the land-use history at the study fields. Soil texture to 1 m soil 
depth was extracted from the soil database (1 km resolution) described in Bradley et 
al. (2005). 
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Table 2 

  Aberystwyth East Grange Lincoln West Sussex 

Month 
Rain 
(mm) 

Temperature 
(C°) 

PET 
(mm) 

Rain 
(mm) 

Temperature 
(C°) 

PET 
(mm) 

Rain 
(mm) 

Temperature 
(C°) 

PET 
(mm)

Rain 
(mm) 

Temperature 
(C°) 

PET 
(mm)

January 152 4 15 103 3 11 48 4 13 80 5 16 

February 112 4 17 72 3 15 37 4 17 54 5 18 

March 124 5 29 74 5 27 41 6 30 55 7 30 

April 86 7 45 53 7 47 43 9 48 46 9 48 

May 82 10 69 61 10 72 45 12 73 47 12 73 

June 93 13 89 60 13 96 56 14 97 48 15 95 

July 105 15 101 67 14 105 49 17 112 49 17 110

August 114 14 93 77 14 96 55 17 103 52 17 103

September 121 13 71 84 12 70 49 14 76 60 15 79 

October 174 10 46 100 9 43 55 11 46 99 12 51 

November 171 7 27 94 5 22 53 7 25 88 8 29 

December 168 4 17 91 3 12 51 4 14 86 6 18 

 

 

Table 2: Long-term (30 years) monthly rainfall, temperature, potential evapotranspiration 
(PET). Monthly rainfall and temperature were extracted from the E-OBS dataset (Haylock et 
al., 2008; http://eca.knmi.nl/). Monthly PET was estimated using the Thornthwaite method 
(Thornthwaite, 1948). 

 

Table 3 

    Arable  
SRC-

Willow  
Miscanthus Grassland 

SRF-Scots 
Pine  

    
(Koerber et al., 

2010) 
(Pacaldo et 
al., 2013) 

  
(Byrne and 

Kiely, 
2006) 

(Millard et 
al., 2010) 

Lincolnshire 

January 32% Rtot 75% Rtot 41% Rtot*     

February 32% Rtot 75% Rtot 41% Rtot*     

March 32% Rtot 75% Rtot 85% Rtot*     

April 32% Rtot 75% Rtot 85% Rtot*     

May 32% Rtot 75% Rtot 85% Rtot*     

June 79% Rtot 75% Rtot 85% Rtot*     

July 79% Rtot 75% Rtot 44% Rtot*     

August 79% Rtot 75% Rtot 44% Rtot*     

September 79% Rtot 75% Rtot 44% Rtot*     

October 67% Rtot 75% Rtot 44% Rtot*     

November 67% Rtot 75% Rtot 41% Rtot*     

December 67% Rtot 75% Rtot 41% Rtot*     

West Sussex 
January   82% Rtot*   60% Rtot†   

February   82% Rtot*   60% Rtot†   
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March   82% Rtot*   60% Rtot†   

April   82% Rtot*   60% Rtot†   

May   82% Rtot*   60% Rtot†   

June   82% Rtot*   40% Rtot†   

July   82% Rtot*   40% Rtot†   

August   82% Rtot*   40% Rtot†   

September   82% Rtot*   60% Rtot†   

October   82% Rtot*   60% Rtot†   

November   82% Rtot*   60% Rtot†   

December   82% Rtot*   60% Rtot †   

Aberystwyth 

January     62% Rtot* 60% Rtot†   

February     62% Rtot* 60% Rtot†   

March     36% Rtot* 60% Rtot†   

April     36% Rtot* 60% Rtot†   

May     36% Rtot* 60% Rtot†   

June     36% Rtot* 40% Rtot†   

July     36% Rtot* 40% Rtot†   

August     36% Rtot* 40% Rtot†   

September     36% Rtot* 60% Rtot†   

October     36% Rtot* 60% Rtot†   

November     62% Rtot* 60% Rtot†   

December     62% Rtot* 60% Rtot†   

East Grange 

January 32% Rtot 25% Rtot   60% Rtot† 61% Rtot 

February 32% Rtot 25% Rtot   60% Rtot† 61% Rtot 

March 32% Rtot 25% Rtot   60% Rtot† 61% Rtot 

April 32% Rtot 25% Rtot   60% Rtot† 61% Rtot 

May 32% Rtot 25% Rtot   60% Rtot† 61% Rtot 

June 79% Rtot 25% Rtot   40% Rtot† 61% Rtot 

July 79% Rtot 25% Rtot   40% Rtot† 61% Rtot 

August 79% Rtot 25% Rtot   40% Rtot† 61% Rtot 

September 79% Rtot 25% Rtot   60% Rtot† 61% Rtot 

October 67% Rtot 25% Rtot   60% Rtot† 61% Rtot 

November 67% Rtot 25% Rtot   60% Rtot† 61% Rtot 

December 67% Rtot 25% Rtot   60% Rtot† 61% Rtot 

Table 3: Contribution of heterotrophic respiration (Rh) on total respiration (Rtot) at 
the study sites. 

 *Values derived from direct measurements on root-exclusion plots 

†Where Rtot is 60% of measured CO2 to account for plant respiration 
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TTable 4 

Land-use 
system 

Miscanthus SRC-Willow 
SRF-
Scots 
Pine 

Grass Arable 

Site 
Aberyst

wyth 
Lincoln

shire 
West 

Sussex 

East 
Grang

e 

Lincol
nshire 

East 
Grange 

West 
Sussex 

Aberyst
wyth 

East 
Grang

e 

Lincol
nshire 

Eas
t 

Gra
nge 

Measuremen
t type 

E
C 

IR
GA  

E
C 

IR
G
A  

E
C 

IR
GA 

IRGA  
E
C 

IR
G
A 

E
C 

IR
G
A 

E
C  

IR
G
A 

IRGA  IRGA  
E
C 

IR
G
A  

IRG
A  

r = 
Correlation 
Coeff. 

0.
7
0 

0.6
4 

0.
5
4 

0.2
9 

0.
77 

0.7
5 

0.73 
0.
7
0 

0.4
4 

0.
6
6 

0.
62 

0.
87 

0.
48 

0.52 0.54 
0.
5
0 

0.7
5 

0.0
3 

t = Student's t 
of r 

4.
6
5 

3.9
2 

2.
8
8 

1.4
4 

3.
99 

5.4
1 

3.72 
4.
3
2 

2.3
2 

4.
1
0 

3.
60 

5.
33 

2.
66 

2.85 2.98 
1.
9
1 

5.3
1 

0.1
2 

t-value at 
(p=0.05) 

2.
0
7 

2.0
7 

2.
0
9 

2.0
7 

2.
20 

2.0
7 

2.18 
2.
0
9 

2.0
7 

2.
0
7 

2.
08 

2.
26 

2.
07 

2.07 2.08 
2.
2
0 

2.0
7 

2.1
6 

LOFIT = 
Lack of Fit  

                                    

F  
N
/
A 

0.8
8 

N
/
A 

0.4
2 

N/
A 

0.5
1 

0.60 
N
/
A 

0.5
5 

N
/
A 

0.
40 

N/
A 

0.
50 

1.47 1.14 
N
/
A 

0.6
1 

0.2
7 

F (Critical at 
5%) 

N
/
A 

1.6
0 

N
/
A 

1.5
8 

N/
A 

1.5
8 

1.84 
N
/
A 

1.5
8 

N
/
A 

1.
61 

N/
A 

1.
58 

1.60 1.61 
N
/
A 

1.6
0 

1.8
0 

M = Mean 
Difference 
(Kg 
C/ha/month) 

1
3 

-  
2
6
0 

 - -3 -3 -  
2
3
3 

 - 
-
1
0 

-  
-

10
4 

-  -  -  
5
3
0 

  -  

t = Student's t 
of M 

1.
8
9 

-  
4.
8
0 

 - 
-
0.
57 

-
0.5
7 

-  
6.
1
4 

 - 
3.
6
0 

-  
-
2.
23 

-  -   - 
5.
5
4 

  -  

t-value 
(Critical at 
2.5% - Two-
tailed) 

2.
2
3 

-  
2.
0
9 

 - 
2.
20 

2.2
0 

 - 
2.
0
9 

-  
2.
0
7 

-  
2.
26 

-  -  -  
2.
2
0 

  -  

Number of 
Values 

2
4 

24 
2
2 

22 13 25 14 
2
1 

22 
2
4 

23 11 24 24 23 
1
3 

22 14 

Table 4: ECOSSE model performance at simulating heterotrophic respiration (Rh) at the study 
sites. Comparison of model outputs with EC-derived and IRGA-derived Rh. Association is 
significant for t > t-value (at p=0.05). Error between measured and modelled values is not 
significant for F < F-value (critical at 5%). Mean difference is not significant for t < t-value 
(Critical at 2.5% - Two-tailed). 
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Table 5 

Land-use 
system 

Miscanthus SRC-Willow 
SRF-
Scots 
Pine 

Grass Arable 

Site 
Aberys
twyth 

Lincol
nshire 

Lincol
nshire 

East 
Grang

e 

West 
Sussex 

East 
Grange 

West 
Sussex 

Aberys
twyth 

East 
Grang

e 

Lincol
nshire 

East 
Grang

e 
r = 
Correlation 
Coeff. 

0.34 -0.15 -0.13 0.12 -0.02 0.19 0.25 0.06 -0.12 -0.20 0.61 

t = 
Student's t 
of r 

1.72 0.64 0.66 0.48 0.08 0.86 1.24 0.30 0.56 0.97 3.25 

t-value at 
(p=0.05) 

2.07 2.10 2.06 2.12 2.06 2.08 2.06 2.07 2.08 2.07 2.10 

LOFIT = 
Lack of Fit            

F 0.37 3.34 54.66 22.62 0.37 40.75 0.62 0.68 312.92 0.43 0.25 

F (Critical 
at 5%) 

1.63 1.69 1.59 1.74 1.59 1.63 1.59 1.62 1.63 1.60 1.69 

Number of 
Values 

24 20 26 18 26 23 26 24 23 25 20 

Table 5: ECOSSE model performance at simulating N2O fluxes at the study sites. 
Association is significant for t > t-value (at p=0.05). Error between measured and modelled 
values is not significant for F < F-value (critical at 5%).  

 

Table 6 

Land-use 
system 

Miscanthus SRC-Willow 
SRF-
Scots 
Pine 

Grass Arable 

Site 

Aberys
twyth 

Lincol
nshire 

Lincol
nshire 

East 
Grang

e 

West 
Sussex 

East 
Grange 

West 
Sussex 

Aberys
twyth 

East 
Grang

e 

Lincol
nshire 

East 
Grang

e 
r = 
Correlation 
Coeff. 

0.31 0.28 0.18 0.53 0.18 0.53 0.27 0.51 0.41 -0.29 0.05 

t = 
Student's t 
of r 

1.52 1.28 0.88 2.51 0.91 2.68 1.40 2.81 1.91 1.44 0.20 

t-value at 
(p=0.05) 

2.07 2.09 2.07 2.12 2.06 2.10 2.06 2.07 2.10 2.07 2.10 

LOFIT = 
Lack of Fit            

F 0.33 3.61 6.50 0.53 0.61 2.38 0.30 0.34 4.09 0.66 0.76 

F (Critical 
at 5%) 

1.62 1.65 1.60 1.74 1.59 1.63 1.59 1.62 1.63 1.62 1.69 

Number of 
Values 

24 22 25 18 26 23 26 24 23 24 20 

Table 6: ECOSSE model performance at simulating CH4 fluxes at the study sites. 
Association is significant for t > t-value (at p=0.05). Error between measured and modelled 
values is not significant for F < F-value (critical at 5%).  


