Communicating Process Architectures 2015
1
P.H. Welch et al. (Eds.)

Open Channel Publishing Ltd., 2015

© 2015 The authors and Open Channel Publishing Ltd. All rights reserved.

14
A.D. Brown et al. / Discrete event-based neural simulation using the SpiNNaker system

A.D. Brown et al. / Discrete event-based neural simulation using the SpiNNaker system
15

Discrete event-based neural simulation using the SpiNNaker system
Andrew BROWN a
, Jeff REEVE a, Kier DUGAN a and Steve FURBER b
a Department of Electronics & Computer Science, University of Southampton, UK
b School of Computer Science, The University of Manchester, UK
 ADVANCE Abstract. SpiNNaker is a computing system composed of over a million ARM cores, embedded in a bespoke asynchronous communication fabric. The physical realization of the system consist of 57600 nodes (a node is a silicon die), each node containing 18 ARM cores and a routing engine. The communication infrastructure allows the cores to communicate via short, fixed-length (40- or 72-bit), hardware-brokered packets. The packets find their way through the network in a sequence of hops, and the specifics of each route are held (distributed) in the route engines, not unlike internet routing. On arrival at a target core, a hardware-triggered interrupt invokes code to handle the incoming packet. Within this computing model, the state of the system-under-simulation is distributed, held in memory local to the cores, and the topology is also distributed, held in the routing engine internal tables. The message passing is non-deterministic and non-transitive, there is no memory coherence between the core local memories, and there is no global synchronization. This paper shows how such a system can be used to simulate large systems of neurons using discrete event-based techniques. More notably, the solution time remains approximately constant with neural system size as long as sufficient hardware cores are available.
Keywords. SpiNNaker, event-driven simulation, distributed simulation, neural simulation
Introduction

SpiNNaker (Spiking Neural Network Architecture) is a million-core distributed computing engine, conceived to enable the real-time simulation of ensembles of a billion biological neurons. The principles employed by the system to achieve this are different from most simulators, allowing near analogue representation of neurons, whilst restricting the communications to discrete events.

In this paper, we first outline the hardware of the system, showing how a network of compute nodes may be interconnected via an asynchronous interconnect fabric, and how this interconnect supports effective point-to-point communication of the neural system. The second section illustrates how an arbitrary network may be mapped onto the fixed, physical topology of the compute node mesh. Finally we illustrate - briefly - how the machine can produce useful simulations of large neural networks.
The project was inspired by biology and designed from the outset to address two research issues:
· How can massively-parallel computing resources accelerate our understanding of brain function?

· How can our growing understanding of brain function point the way to more efficient parallel, fault-tolerant computation?

1. SpiNNaker Architecture
Before describing the system in detail, it is important to put SpiNNaker into perspective: it is not "just another massively-parallel machine". It is a large number (around a million) of relatively small (ARM9, no floating point) cores embedded in a powerful (bisection bandwidth 250 Gb/s) bespoke hardware communication fabric. These cores communicate via fixed-size, small, hardware packets, and the compute carried out is almost entirely interrupt driven. Two consequences arise from this: (1) To interface sensibly with a user (or another system) requires the addition of specialized links "to the outside" (not described here; [8] contains details), and (2) It is in no sense a general-purpose computing machine. You cannot take an existing conventional codebase, however elegantly structured, and simply port it to the SpiNNaker environment. The event-based nature of the compute means that any application for SpiNNaker has to be stripped right back to the underlying mathematics and re-cast in a manner sympathetic to the operating principles of SpiNNaker. That aside, when used in its intended application arena, the system is capable of exploiting its intrinsic parallelism extremely well.
1.1 The Computing Torus
[image: image1.jpg]

The high-level structure of a SpiNNaker system is shown in Figure 1 (for the sake of clarity, a only a 64x64 torus is shown). Each compute node has six bi-directional asynchronous communications links, and the system consists of a 2-D plane of triangularly connected nodes, the opposite edges of which are identified so that the overall structure creates the toroid shown. The system is designed to be scalable, so that tori - or, indeed, any topological structure - can be created. There are hard limits of 6 links per node and 216 nodes (much of the performance derives from the hardware components of the system, and nodes are required to have a unique 16-bit identifier). The torus was chosen so that every node in the system will see an isotropic and homogeneous environment, but aside from that it possesses no special properties. (We also acknowledge that in a system of a million cores, it is unreasonable to expect 100% functionality out of the box [9]. Equally, components will inevitably fail during the lifetime of the system, and fault tolerance has been built in at several levels of the design so that the system will degrade gracefully in the face of deteriorating hardware.) Further details may be found in [1,2].
[image: image2.jpg]

A maximum size SpiNNaker engine thus consists of 65,536 nodes; each node contains 18 ARM9 cores, 128MByte node-local SDRAM and a router; each core is configured as a Harvard architecture with 64k DTCM and 32k ITCM. When awoken (sees section 2), the cores comprising the system run at a relatively modest 200MHz.
1.2 Nodes
[image: image3.jpg]

The internal structure of a single node is outlined in Figure 2. A system NoC (Network on Chip) connects all the resources; router, core farm, access to the node-local SDRAM, and a small number of other components: 32k+32k system ROM and RAM, an Ethernet port (in principle, SpiNNaker IO can utilise 57,600 Ethernet links), watchdogs and counters.
1.3 Cores
The system is fabricated with 18 ARM9 cores per node. These are electrically identical, but on power-up, a (deliberate) hardware race elects one core as the "monitor" - a kind of overseer - and another 16 as "workers". Redundancy is thus built in here - a node can tolerate one non-functioning core and still be 100% behaviourally sound. The system will automatically configure itself so that any node with at least one worker is able to participate in computation. The sixteen worker cores per node provide another four bits of address space, supporting 2(16+4) = 1,048,576 uniquely addressable cores in the full system.
1.4 The memory Map
[image: image4.jpg]

Everything in SpiNNaker is memory-mapped, as in Figure 4: each core sees a full 32-bit address space. Within this, each core has local private instruction and data memory (see Figure 3(b)), and node-local SRAM and SDRAM. It is possible for a core to communicate with its peers in a node via this shared address space, but it is the responsibility of the user to handle any potential memory contention. Within a node, access to other node resources (section 1.2) is also available via the address space through the NoC. The only communication between nodes is via messages.
1.5 Packets
The hardware messaging system gives the system its power. Packets "hop" from node to node under the control of the router (section 1.6) in each die. There are four different types of message, all of the same physical size (40 or 72 bits). Two types are used for setting up the system, and one is concerned solely with data exfiltration - these are explained fully in [2,3]. The remaining packet type is called a multicast (MC) packet, and is used to convey simulation information around the system under simulation during execution. The internal structure of an MC packet is shown in Figure 5, where the source detail is defined by software convention.
1.5.1 [image: image5.jpg]i

[SiS
]

Address Event Representation
SpiNNaker is an event-based simulation system. The neural network is distributed amongst the available cores (in principle, each physical core may support up to 211 neurons - see Figure 5), and the connectivity represented by the routing table entries on each node. The central idea behind address event representation (AER) [4] is that packets contain only their source address. The knowledge of how the target may be reached is embedded in the route tables along the packet trajectory - each route table needs only know from whence a packet came to derive where to send it. Prima facie this may seem an inefficient way of routing information, but in simulation problems where devices typically have massive fanouts (in the case of biological neurons, fan-outs of O(104) are common), the AER technique allows packets to be forwarded and/or duplicated at every node along a path, creating a kind of dynamic Steiner tree of packet flow.
1.6 The Router
[image: image6.jpg]= =

iyl

=
[yl

Packet Rauter
=

i

1T

The structure of the node router is shown in figure 6. It consists of a tertiary CAM, the output of which is fed directly into a target RAM. On receipt of a packet, the first 32 bits are fed into the CAM. (The CAM data is compressed, and may contain "don't care" elements.) If a match is found, the corresponding RAM entry is used to dictate what the router does with the packet. The RAM data is n-hot bit encoded in two fields: The first 6 bits indicate the ports the packet is to be transmitted to; the subsequent 18 indicate which of the node-local cores is to receive the packet. In principle, then, a packet may be duplicated up to 24 times (if necessary) by each node through which it passes. Irrespective of the target type (port or core) the "hop delay" of a packet transit is around 200ns.
1.7 Mapping the System Under Simulation onto the SpiNNaker Cores
This is far from obvious - the placement of devices to nodes has repercussions on packet latency and the utilisation of the routing tables. Like almost everything else in SpiNNaker, these are hardware and thus cannot be overfilled. The placement and routing aspect of system configuration is carried out offline by initialisation software, and the resulting tables subsequently uploaded. If a routing table becomes full the system is unable to contain the internal representation of the problem topology, and the simulation fails. Equally, if the dynamic traffic load down any specific link exceeds the maximum capacity, packets can be dropped by the system.
The role of the offline configuration software is outlined in Figure 7.

2. Operation

Here we describe how a simulation may progress once the necessary tables and structures have been set up within the machine. The neural network under simulation can be considered, in the abstract, as a directed graph. The vertices of the graph are the neurons, and these may possess internal state. The edges of the graph represent signal paths between the devices. These are necessarily directed edges representing uni-directional channels, as is usual in discrete simulation. It is sometimes useful (and SpiNNaker allows one) to associate state with the channels as well as the devices. The topology of the neural network is arbitrary.
The simulation engine itself consists of a set of nodes, each containing a number (between one and sixteen) worker cores, interconnected via a fixed topology of communication channels (6 bi-directional channels per node).

The configuration subsystem maps the neural network onto the cores of the simulation engine, allocating a unique 32-bit identifier to each device (see Figure 5) and loading the routing tables in the engine, so that the topology of the neural network is represented, in distributed form, in the route tables.

[image: image7.jpg]Mormbrano Pofantial (mv)

oy

0

e

o ow v o
Normalizedinput (i)

= ¢ i N (b) =
/ ——spiaker
] /
b é 1
R |

Ignoring for the moment the matter of interfacing to the outside world, or applying any kind of stimulus to the neural circuit, let us examine what happens when a packet arrives at a node:
· [image: image8.jpg]spiNNaker -

Fiing Rate (spike/seq)

B R A b) 12345575 smwnniies
(a) i [ms) (b) Input Current (nA/nf)

The router decides if the packet is to be directed through the node, and copied onto any of the output links.

· The router decides if the packet is to be copied to any of the worker cores in that node.

· When a packet is delivered to a core:

· The router copies the packet data into a (memory-mapped) core-local register.

· The core program counter is loaded with the address of a "handler".

· The core is started.

[Prior to this, everything has been controlled by asynchronous hardware. Subsequent to this, control is taken by user-defined software handler, representing the behaviour of the neuron, loaded into the core-local ITCM during configuration.]
· The handler recovers the packet data from the register, and executes, possibly

· Modifying the internal state of the neuron it represents

· Sending out more packets derived from the behaviour of the neuron
· The handler returns to the scheduler, which will cause the core to go to sleep when the task queue is empty.
Note that once a packet has been launched (the handler loads the data into a register and invokes a low-level "send") the handler has no notion of the position of the packet at any time or its arrival time.
The parallel hardware nature of the system means that, at any moment of wallclock time, a large number of packets may be simultaneously in flight: the low-level communication fabric in SpiNNaker is asynchronous, and one way of visualising the system behaviour from a traffic perspective is to think of every link as a kind of FIFO. These are embodied (mainly) in the routing engine on each node (Figure 2), and the combined size of all the (virtual) link FIFOs attached to each node is around 11. Thus for the full machine (57600 nodes) it is possible - in principle = to have 57600 x 11 = 633600 packets in flight simultaneously. This figure is an unrealistic upper bound: any perturbation from uniformity at this level will cause packets to be dropped. The design intention is that the traffic density be kept to around 10% of this figure - 64k in flight at any point in wallclock time is reasonable.
2.1 Dropping Packets
It is in the nature of most contemporary high-performance large systems that the temporal costs of communication far outweigh that of computation, and in SpiNNaker it is entirely possible for the routing subsystem to completely overwhelm the physical links between the dies, even with the cores running at 200MHz. To overcome this problem, each physical link has a virtual FIFO associated with it, and the low-level asynchronous communication protocol allows the notion of queue back-pressure to be passed back up a communication path. This in itself is not sufficient to prevent deadlock in certain situations, so after a certain amount of wall clock time has elapsed, a router can start to dump old packets held in its (deadlocked) local queue.
Recall that a packet route may (usually will) take in several node hops, and that there is no mechanism for communication between the nodes other than packets. Thus if a node router drops a packet, it is not feasible that either the sender or the putative receiver can be sensibly informed (other than by sending another packet, which will not help the situation). However, all of SpiNNaker is event driven. When a packet is dropped by a router, the offending packet is copied to a register, and a handler awoken on the monitor core. This pushes the problem into the domain of user-controlled software: the monitor can take the dropped packet, buffer it as necessary and re-insert it into the communication fabric at a convenient time.
The router wait time before dropping a packet is programmable, so the local drop rate can be controlled (at the expense of throughput - which it turn depends upon the use-defined handler functionality) to whatever the monitor core can cope with. In practice this is an interesting balancing trick - one we have yet to thoroughly explore.
2.2 When Events Collide
What happens when an event arrives whilst a previous one is being processed? If a core is executing handler code when another hardware request is raised (in the form of another event) the core is responsible for storing the request in a priority queue, located in the DTCM. Some handlers are interruptible, some are not. (The priorities can be asserted by the user.) The monitor maintains a simple stack in its DTCM - if an interruptible handler is interrupted, the restore point is saved, but anything more complex is left to the user. An outline is given in Figure 8. The design intention of the system is that handlers are small and simple, so that data contention should be non-existent or trivial to handle for every specific case. If the system is taken away from this design intention (by user code), it is easy to cause unrecoverable difficulties. Strictly speaking, SpiNNaker is an interrupt-driven system, but the term usually carries implications of expensive overheads that are not applicable here.
3. Simulation

SpiNNaker is a simulator. The neural network is mapped onto the core farm, the topology of the network is captured in the routing tables, the behaviour of the neurons is captured by the code associated with each one in each core. Device models communicate via hardware-brokered packets, propagated through the communication infrastructure. The outstanding question is how to maintain simulated causality? Events trigger handlers, as soon as they arrive, but the wallclock time of arrival is a function of the physical signal path (about 200ns per node hop) which is completely controlled by the initialisation place and route subsystem, and has nothing to do with the neural circuitry. Given the novelty of the SpiNNaker architecture and programming model, the problem requires novel solution.
3.1 Neural Simulation

The mammalian nervous system is a remarkable creation of nature. A great deal is known about the underlying technology - the neuron - and we can observe large-scale brain activity through techniques such as magnetic resonance imaging, but this knowledge barely starts to tell us how the brain works. Something is happening at the intermediate levels of processing that we have yet to begin to understand, but the essence of the brain's information processing function probably lies in these intermediate levels. To get at these middle layers requires that we build models of very large systems of spiking neurons, with structures inspired by the increasingly detailed findings of neuroscience, in order to investigate the emergent behaviours, adaptability and fault-tolerance of those systems.
3.1.1 Biology

The nervous system is composed of neurons, which are interconnected uni-directionally via structures called axons. (Strictly, an axon is a bi-directional structure, but as in nature they are only ever driven from one end, the distinction is of little importance.) The communication quantum is the action potential, an all-or-nothing spike event that, once launched, propagates along the axon, targeting thousands of further neurons. Broadly, the functionality of a neuron is integrate-threshold-fire, resetting the internal state of the neuron and leaving it quiescent for what is known as a refractory period. Numerous numerical models of neurons have been proposed over the past decades; the Hodgkin-Huxley [5], Izhikevich [6,7] and Leaky-integrate-and-fire [10] being probably the most common. The speed of propagation varies as one would expect, but is usually a few m/s. Complex and stable computation can be performed with this model - billions of existence proofs currently inhabit the planet.
Leaving aside the difficulties of establishing the biological fidelity of any network, our task - as the designers of the SpiNNaker system - is to ensure that the temporal components of any simulation mimic faithfully the biology, and are not artefacts of place and route tools.

How might this be achieved?
3.1.2 Time Models Itself

Figure 9 shows the timeline of the life of a single action potential communicating between two neurons. The pulse is launched from neuron S, and propagates to neuron T in some biological time. After a further delay, which is some function of biology and the internal state of the neuron T, T may or may not fire. The corresponding activity in SpiNNaker is shown in Figure 10: the model of the neuron S launches a packet, which propagates to the model of neuron T along a path of a length determined by the place and route system.
Recall that each SpiNNaker node has a number of resources attached to the NoC, one of which is a (programmable) real-time clock. These clocks (two on each core) are not synchronised in any way, but are reasonably (by biological standards) stable. The user can program these clocks (we use 1ms ticks) and can supply event handlers that react to clock ticks, as distinct from to incoming packets - Figure 11.
[image: image9.emf]From the perspective of neuron T, two (types of) things are happening simultaneously and unsynchronised: S fires when it fires, and launches a packet to T. This arrives O(us) later, depending on the device layout in SpiNNaker, and triggers the "packet arrived" handler. In parallel with this, biological clock ticks are impacting on the neuron around every ms; these trigger a different kind of handler.
3.1.3 A Closer Look at the Event Handlers
Recall that event handlers in a core share memory: thus all event handlers (in a core) can access any device state held in that core. The two handlers (incoming data packet and clock tick) interact to overlay biological time onto the packet stream:

[image: image10.emf][image: image11.emf]
The overall effect of this is that the two handlers accumulate all incoming data packets, and only process them when the appropriate (biologically realistic) time has elapsed.

[image: image12.emf]This works, because biological wallclock time is modelled locally at each node (and thus each neuron modelled within it). At each time tick, the inputs are added if the age is suitable, the equations are integrated by one time step, and the neuron states are updated. Wallclock packet transit delay is negligible and ignored; biological delay is captured in the target model state. The differential equations controlling the neuron model behaviour are not stiff, and all the time constants are much greater than the biological clock tick, so just about every type of integration technique (Forward Euler, Runge/Kutta) is unconditionally stable. The system works because the delays that are simulation artefacts are "infinitely fast" compared to biology.
4. Numeric Results
Getting the timing correct must go hand-in-hand with the quantitative shape of the results if the tool is to be useful; figures 12 and 13 show comparisons of SpiNNaker output using the Izhikevich and linear-integrate-and-fire neuron models. Brian and NEST (discipline standard simulators) results are superposed, showing very good agreement. However, whereas the runtimes of the two conventional simulators obviously depend on the compute environment used to run the experiments, SpiNNaker runs in real time: 450 ms of results takes 450 ms of wallclock time to generate.
5. Other Aspects
Not covered in this paper are details of the supporting toolchain necessary to underpin the engine operation, and any description of higher-level usage. These matters can - and do - command many papers in their own right.

5.1 Simulation Models

A vast body of literature exists on the minutiae of neuron models. However, from the inception of the project, one strategic axiom has been that the behavioural subtlety embodied by neural aggregates is captured in the network topology, not the behaviour of individual neurons. Biological variability precludes much reliance in individual behaviours. Further, although the system is massively parallel, to realise our goal of 109 neurons on 106 cores, it is obviously necessary for each core to be able to model 103 neurons, and this must be serialised within the time constraints outlined in section 3.1.3. In our view, then, it is both conveniently necessary and desirable that simple neuron models are used.
5.2 Compiling and Loading Simulation Models

The code supporting the neuron behaviour is contained in the OnClockTick interrupt handler. Like all the handlers, the code is necessarily compact and fast. For this reason, it is usually (but not essentially) written in C, and cross-compiled offline to ARM binary. The handler code is the same for every core, and is uploaded to the engine during the initialisation phase - explained in detail in [2,3].
5.3 Router Tables
Derivation of the router tables (necessary to support the mapping of the topology of the network under simulation onto the physical node mesh) is performed offline by an initialisation system. This system builds an internal model of the SpiNNaker engine (see section 5.7), an internal model of the neural network, and creates a mapping between them. The technologies borrow heavily from the world of electronic design automation (automatic place and route) and have yet to be published in detail. Once the set of routing tables has been generated, they are uploaded (by exactly the same mechanism as used to distribute the simulation models - section 5.2) to define the two memory areas (RAM/CAM) in Figure 6.

5.4 Data Exfiltration

There is clearly a massive bandwidth mismatch here. The SpiNNaker engine itself is massively parallel, with a bisection bandwidth of 250 Gb/s (section 1). Current real time data exfiltration is confined mainly to the Ethernet links. Although it is in principle possible to connect a physical Ethernet link to each node, the necessary offline data concentrator would be almost as large as SpiNNaker itself. The problem is discussed in more detail in [8], but in essence, two solutions present themselves: a limited set of signals may be monitored in real time via packets sent to the node(s) connected to the outside (Figure 1), and/or data may be triaged in place and stored locally in SDRAM for later non-real time recovery.
5.5 Output post-processing

The amount of raw data generated by the simulation of a system of this complexity is both massive and largely unstructured. A widely held perspective amongst computational neuroscientists is that poring over individual time histories is unproductive, and a more useful way of analysing results is to interact with the simulation at a much higher level, for example by running the system in real time (as we do) and immersing it in some sort of virtual environment (see Figure 1) or using it in some other sort of closed loop (robotic) system.

5.6 Model Updating

The topology of the neural network graph is distributed throughout the SpiNNaker system as the entries in the routing tables. The state of the edges (synapses) and vertices (neurons) are also held in the relevant SpiNNaker nodes. These parameters can be (and are) updated in real time during the simulation. Changing the behaviour of the neuron models (modifying the handler code) or altering the neural network topology has to be done offline, and the modifications uploaded as in the initialisation phase. Although there is no practical reason why this cannot be done during a simulation (real time simulation takes as long as an experimenter wants; uploading binary data to specific nodes takes O(s)) it is hard to see how this might be achieved without compromising the integrity/fidelity of the simulation.
5.7 Reliability

The full, million core machine consists of 57600 nodes (silicon dies) mounted on 1200 boards, in 50 racks. In a system of this size and complexity, it is unreasonable to expect 100% functionality on power-up. Equally, components will inevitably fail during the lifetime of the system. SpiNNaker addresses this concern on many levels, utilising a kind of "layered fallback" defence that permits the machine to degrade gracefully in the face of point failures. [9] contains some details; a further paper is in preparation.
6. Final Comments
Revisiting the research inspiration:
6.1 How can Massively-Parallel Computing Resources Accelerate our Understanding of Brain Function?
SpiNNaker is a neural simulator - it does nothing that cannot be achieved with any conventional (cluster of) machines - at some expense. However, it performs in real time, making direct interfacing to high level virtual environments and complex peripherals (sight and sound) possible. Further, the nature of the machine means that simulation is not restricted to the processing of neural signals in isolation: geometric effects can be modelled (by overlaying a "geometry" graph onto the neural graph) as can systemic effects: applying a "drug" to the system that alters the neural thresholds or synaptic strength is easily done.
6.2 How can our growing understanding of brain function point the way to more efficient parallel, fault-tolerant computation?
Event based computing is turning out to be applicable to a far wider application portfolio than just neural simulation. Any physical problem that can be modelled as a large graph (regular or not) can be usefully analysed with an event-based machine: computational fluid dynamics, weather modelling, discrete (causal) system simulation, complex state space exploration (for example, drug discovery), image processing (tomography: medical, space-based, mineral exploration, process engineering...) the list is long, and we have more putative application domains than we have resources to explore them.
6.3 (Some of) the future

The design of SpiNNaker is a compromise on many levels: it is designed to accommodate ~109 neurons, with an average fan-in of 103. However, the connectivity is realised by the entries in the (compressed) routing tables. It is, in principle, possible to model aggregates of 106 neurons with 106 synapses, or even 1 neuron with 1012 synapses (although what this might demonstrate is unclear). However, moving this far from the design intent will cause problems elsewhere: the handlers associated with each neuron are necessarily serialised within their host core (and assumed to be "infinitely fast" from a biological point of view). Moving away from the 109:103 figure will put pressure on this design aspect, at least.
SpiNNaker has many simulator specific control parameters (buffer delays, timeouts,...) making up a complex control space. The goal of any simulation system is that the output should represent the behaviour of the system under simulation, and be free from simulator artefacts. We know that if the usage stays close to the design intention, the system is stable and produces useful results. The systematic exploration of the control space has yet to be undertaken.
6.4 In conclusion
SpiNNaker is an extremely complex system and an ambitious undertaking: it has been over a decade in bringing it to its current state, and we have received over £5M in funding to do so. To put this in perspective, a conventional high-performance machine typically costs £1k-£2k per core - to construct SpiNNaker is costing around £1 per core.
Designing software to run on a non-deterministic machine with no internal debug, visibility or control has proved to be an extremely difficult task - it is only now that were are beginning to realise the potential of the system, in both biology and other simulation areas.
References

[1]
E. Painkras, L.A. Plana, J.D. Garside, S. Temple, F. Galluppi, C. Patterson, D.R. Lester, A.D. Brown, and S.B. Furber, "SpiNNaker: A 1W 18-core System-on-Chip for Massively-Parallel Neural Network Simulation", invited paper, IEEE Journal of Solid-State Circuits, 48, no 8, pp 1943-1953. doi:10.1109/JSSC.2013.2259038
[2]
S.B. Furber, D.R. Lester, L. Plana, J.D. Garside, E. Painkras, S. Temple, and A.D. Brown, "Overview of the SpiNNaker system architecture", IEEE Transactions on Computers, 62, no 12, Dec 2013, pp2454-2467, doi 10.1109/TC.2012.142

[3]
A.D. Brown, S.B. Furber, J.S. Reeve, J.D. Garside, K.J. Dugan, L.A. Plana and S. Temple, "SpiNNaker - programming model", IEEE Transactions on Computers, 64, no 6, June 2014, pp 1769-1782 ISSN: 0018-9340 doi:10.1109/TC.2014.2329686.
[4]
M. Mahowald "An Analog VLSI System for Stereoscopic Vision" Kluwer Academic Publishers 1994 ISBN-13: 978-0792394440
[5]
A Hodgkin and A Huxley, "A quantitative description of membrane current and its application to conduction and excitation in a nerve", Journal of Physiology, pp 500-544, 1952
[6]
E.M. Izhikevich "Which model to use for cortical spiking neurons?", IEEE Transactions on Neural Networks, 15, no 5, pp 1063-1070, 2004
[7]
E.M. Izhikevich "Simple model of spiking neurons", IEEE Transactions on Neural Networks, 14, no 6, pp 1569-1572, 2003

[8]
K.J. Dugan, J.S. Reeve, A.D. Brown and S. B. Furber, "An interconnection system for the SpiNNaker biologically inspired multi-computer", IEE Computers and Digital Techniques, 7, no 3, doi:10.1049/iet-cdt.2012.0139
[9]
A.D. Brown, R. Mills, K.J. Dugan, J.S. Reeve and S.B. Furber "Reliable computation with unreliable computers", IEE Computers and Digital Techniques, doi: 10.1049/iet-cdt.2014.0110
[10]
A.N. Burkitt, "A review of the integrate-and-fire neuron model", Biological Cybernetics, 2006 95, pp1-19, doi:10.1007/s00422-006-0068-6

Acknowledgements
The research leading to these results has received funding from EPSRC (the UK Engineering and Physical Science Research Council grants EP/G015740/1 and EP/G015775/1), ARM Ltd, the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no 320689 and the EU Flagship Human Brain Project (FP7-604102).

Environment server

"World"

- Generate visual stimuli

- Manage physics

User interaction

Figure 1. The SpiNNaker computing torus.

Figure 2. Node internal structure.

(a) Silicon

(b) Die layout

Figure 3. A SpiNNaker node.

Figure 4. Node memory map.

Node local resource

no

Boot area

0xff000000

n/a

Bus error

0xf7000000

no

System ROM

0xf6000000

no

System RAM

0xf5000000

no

NoC peripherals

0xf0000000

n/a

Bus error

0xe7000000

yes

System ROM

0xe6000000

yes

System RAM

0xe5000000

yes

NoC peripherals - router tables, controller, watchdog, Ethernet

0xe0000000

n/a

Bus error

0x80000000

no

SDRAM

0x70000000

yes

SDRAM

0x60000000

n/a

Bus error

0x50000000

mixture

0x10000000

n/a

Not used

0x00410000

n/a

DTCM

0x00400000

n/a

Not used

0x00008000

n/a

ITCM

0x00000000

Buffered

Area

Address

Local peripherals - comms, counter, VIC, DMA

Core local resource

Figure 5. Internal structure of a multicast packet.

16 bits

11 bits

5 bits

..neuron

..core

..node

source...

control

byte

32 bits

8 bits

optional payload

Figure 6. Multicast router.

input CAM

16 bits

11 bits

5 bits

..neuron

..core

source node..

10

6 bit (0..5) n-hot external link indicator

18 bit (0..17) n-hot internal core indicator

32 bit 3 state CAM

1024

entries

output RAM

6

18

Figure 7. Role of the offline configuration software.

Defines the router tables for each node

1000 neurons per processor

Maps each individual neuron to a SpiNNaker core

Defines the index structures necessary in each core to allow fast retrieval of neuron and synapse state

Defines the packet handling code (interrupt handlers)

Figure 8. Interrupt controller.

Stack (resides in DTCM)

Stack controller

Queueable ?

Priority request queue

(resides in DTCM)

Interrupt request arrives

Interrupt handler executes

(Un)mask interrupt instruction

Non-queueable ?

Queueable requests pulled off the top of the priority queue in order unless.........

......... a non-queueable request jumps in and pushes the stack

Figure 9. Biology wallclock time.

Axonal delay O(ms) – fn(biological geometry)

Neuron processing time O(ms) – fn(biology & state(history))

S

T

OnClockTick:

Increment the age of all buffered packets

If any have "arrived" - i.e. their age = synapse delay (a stored parameter of the model), remove the event from the buffer and assert it onto the device equations

Integrate (one time step) the neuron state equations

end

OnPacketArrival:

Remove the packet from the router

Set packet age to 0

Store it in a buffer

end

S

T

Figure 10. Simulation time.

Neuron-neuron wallclock delay maximum O(10us) – fn(graph mapping, traffic density & engine size)

Node-node wallclock hop delay O(100ns) – fn(graph mapping & traffic density)

Axonal delay stored as parameter in synapse state local to neuron model

Neuron-core mapping – fn(graph mapping software)

Each core

Packet handling interrupt - invoked by incoming packet

Each node

Biological clock tick handling interrupt

Clocks are not phase locked

Slow O(kHz)

"(Biological) time is passing" signal

Asserted on every core

Figure 11. OnTime and OnPacket interrupts.

Figure 12. LIF neuron simulation.

Figure 13. Izhikevich neuron simulation.

� Corresponding Author: Andrew Brown, Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton, UK E: adb@ecs.soton.ac.uk

