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Abstract

In this paper, we compare the performance of
the wave-based discontinuous Galerkin method
against the polynomial high-order finite
element method (FEM) for Helmholtz
problems. Previous studies demonstrate that
both methods lead to a control of the
dispersion error associated with low-order FEM
at high frequency. Common belief is that
compared to polynomial methods,
physics-based methods can provide a significant
improvement in performance, at the expense of
a deterioration of the conditioning. However,
the results presented in this paper indicate that
the differences in accuracy, efficiency and
conditioning between the two approaches are
more nuanced than generally assumed.
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1 Introduction

We compare the performance of the wave-based
discontinuous Galerkin method against the
polynomial high-order finite element method
(p-FEM). The methods were both devised to
tackle the so-called pollution effect
(accumulation of dispersion error) encountered
by standard Finite Element Method when
solving short wave problems. Another common
characteristic between these two methods is
that they easily allow local order refinement,
which makes them suited for p-adaptive and
hp-adaptive strategies.

The studied p-FEM replaces the low-order
Lagrange polynomials with Lobatto shape
functions [5], taking advantage of the improved
interpolation properties of this family of

(a) Plane wave. (b) Prop. spinning waves.

Figure 1: Example of solutions.

functions. As the polynomial order P is
increased, different types of shape functions
appear: vertex, edge and bubble functions (and
also face functions in 3D). Bubble functions
have no connectivity with the neighbouring
elements and can therefore be removed from
the global system using static condensation
which improves the conditioning and reduces
the memory requirements.

Wave-based discontinuous Galerkin method
(DGM) [1] uses plane waves to interpolate the
solution in each element and the continuity
between elements is weakly imposed using
numerical fluxes.

Both numerical models have been identified
as effective methods to address the pollution
effect [2,4] but, to the authors’ knowledge, they
have not been compared.

2 Description of the test cases

To assess the performance of the methods, we
use four types of solutions of the Helmholtz
equation. The propagating plane wave problem
in figure 1(a) involves a single direction of
propagation and therefore allows a detailed
study of the anisotropy of the numerical
models. The spinning wave problem in figure
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1(b) consists of spiral-shaped waves radiating
from a cylinder. All the wave directions are
equally present in the domain, which is closer
to a realistic problem compared to the first test
case. Propagating and evanescent waves are
investigated. Finally, a singular corner solution
is considered. The gradient of the solution
exhibits a singularity at the origin. The
objective with this last test case is to
investigate how the two methods behave when
confronted with such solutions. The
computational domains are discretised using
uniform triangular unstructured elements. To
generate the solutions, an inhomogeneous
Robin boundary condition is used for p-FEM
and ghost cells are used for wave-based
DGM [1].

3 Main results

Figure 2: Propagating spinning wave problem
(ka=28); factorisation memory (MB) against
condition number to achieve 1% of accuracy;
circles: wave-based DGM, squares: p-FEM
without condensation, diamonds: p-FEM with
condensation. The numbers of plane wave or
polynomial order is shown next to each point.

A first part of the study is dedicated to the
interpolation properties of the bases. The rest
of the study focuses on the numerical models
for which the following conclusions have been
drawn. For the propagating wave problems,
wave-based DGM and p-FEM are able to
achieve the same level of accuracy and similar
levels of performance. To reach the required
accuracy (1% of the relative L2-error), the
wave-based systems are not ill-conditioned
contrary to what is commonly assumed (figure
2). However, the studied physics-based method

does not provide a step change in
computational performance, even at high
frequency. When dealing with evanescent
waves, wave-based DGM becomes expensive
compared to p-FEM which costs remained
similar to that of the propagating waves. The
exponential convergence of both methods for
regular problems is lost when representing
singular solutions. However, p-FEM is more
robust and for a given mesh, the levels of
accuracy reached are higher than those reached
by the physics-based method.

Compared to wave-based DGM, p-FEM has
a more consistent behaviour for the different
types of problems. Moreover, p-FEM can
directly be used on problems with non-uniform
coefficients, whereas wave-based DGM would
require some non-trivial developments to
generalise the plane-wave basis to non-uniform
media [3].
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