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Abstract

Probabilistic forecasts from discrete choice models, which are widely used in

marketing science and competitive event forecasting, are often best evaluated

out-of-sample using pseudo-coefficients of determination, or pseudo-R2s. How-

ever, there is a danger of misjudging the accuracy of forecast probabilities of

event outcomes, based on observed frequencies, because of issues related to

pseudo-R2s. First, we show that McFadden’s pseudo-R2 varies predictably with

the number of alternatives in the choice set. Then we evaluate the relative

merits of two methods (bootstrap and asymptotic) for estimating the variance

of pseudo-R2s so that their values can be appropriately compared across non-

nested models. Finally, in the context of competitive event forecasting, where

the accuracy of forecasts has direct economic consequence, we derive new R2

measures that can be used to assess the economic value of forecasts. Through-

out, we illustrate using data drawn from UK and Ireland horse race betting

markets.
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1. Introduction

Decision makers often face choices between different alternatives Ai, i =

1, . . . , n, with payoffs xij depending on the future state of the world Wj , j =

1, . . . ,m. Normative models of decision making indicate that the decision maker

should select the option with the highest expected utility,

EU(Ai) =

m∑
j=1

p(Wj)U(xij), (1)

where p(Wj) is the probability of future state Wj occurring and U(xij) is the

utility of outcome xij if alternative Ai were selected and state Wj occurred.

Clearly, to determine which alternative is associated with the maximum ex-

pected utility it is important to develop accurate estimates of the utility values

U(xij). In addition, rather than simply predicting which state of the world

is most likely to occur, it is important to accurately forecast the probabilities

of the different states of the world, p(Wj). It is the means of improving such

probabilistic forecasts derived from discrete choice models that forms the focus

of this paper.

The importance that organizations attach to accurate probabilistic forecasts

is highlighted by the significant growth in the adoption of prediction markets.

These are essentially internal betting markets that attempt to tap into the

dispersed ‘wisdom of the crowd’ to produce probability forecasts for a range

of possible future events. They have been used by many companies such as

Hewlett Packard, Eli Lilly, General Electric, and Google to predict a variety of

uncertain outcomes, from the likelihood of the success of new products to the

probability of meeting project deadlines (Plott & Chen, 2002; Cowgill et al.,

2009). Forecasts derived from prediction markets can be combined with other

information (e.g., data concerning the characteristics of products that have been

successful in the past or previous completion times) in an attempt to derive

accurate probabilistic forecasts. Discrete choice models, such as conditional

logit (CL) and multinomial probit, are ideal for performing this function and

are widely applied in probabilistic forecasting. Their primary use has been
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in predicting individuals’ choices from a range of alternatives, so they have

been employed in consumer choice and marketing (Lin & Sibdari, 2009) and

econometrics (Maddala, 1983), but have also been adopted in such diverse fields

as epidemiology (Breslow & Day, 1994), operations research (Cheng & Stough,

2006), and the forecasting of competitive events (Smith & Vaughan Williams,

2010).

The development of novel and sophisticated discrete choice methods, par-

ticularly to improve the accuracy of forecast probabilities, has received a great

deal of attention (e.g., Liu, 2011; Abe, 1999). In general terms, probabilistic

forecasts are regarded as being accurate when the relative frequencies of ob-

served events match the forecast probabilities (Maddala, 1983). However, there

has been relatively little consideration in the literature to the manner in which

probabilities derived from discrete choice models are evaluated out-of-sample,

yet this is essential for maximizing the accuracy of probabilistic forecasts. A

key property of any means of evaluating the accuracy of forecast probabilities

is its comparability across empirical models (Kv̊alseth, 1985). Otherwise, the

researcher cannot be certain whether differences in the evaluation arise because

of changes in the model’s predictive power or because of confounding factors,

such as properties of the data. Comparability is also reliant on being able to

assign degrees of uncertainty to forecast point estimates, in order to ensure

that conclusions drawn from evaluating measures of accuracy are statistically

significant and hence robust to randomness.

In linear models, the coefficient of determination R2 is widely used as a mea-

sure of a model’s ability to explain variation in the data, and thus the accuracy

of the model’s forecasts. The properties of R2 and when and how it should

be employed are now well-understood (e.g., Kv̊alseth, 1985; Draper & Smith,

1998), although with some caveats in the case of out-of-sample forecasting (Arm-

strong, 2001). However, in this paper, we are concerned with the out-of-sample

forecasting accuracy of choice models, which are nonlinear. Measures such as

information criteria would be useful for assessing predictive accuracy in this

case, but only if one were interested in the accuracy of specific event predic-
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tion, such as binary win/loss predictions. This is not our focus. Rather, we are

concerned with the calibration of probability forecasts. In such settings, pseudo-

R2s, which are equivalent measures to R2 for nonlinear models, are generally

recommended (e.g., Greene, 2012; Maddala, 1983). In fact, in any environment

where one seeks to use probability predictions to make pecuniary gain (e.g.,

in options, futures, spread trading and betting markets), it can be shown that

there is a direct link between increases in pseudo-R2 values and out-of-sample

returns (e.g., Benter, 1994; Lessmann et al., 2012).

Despite the literature’s focus on the use of pseudo-R2s to assess the out-of-

sample forecasting accuracy of choice models, there is little consensus regarding

the properties and appropriate application of pseudo-R2s for this task. To begin

with, there are significant differences between R2s and pseudo-R2s. So, while

pseudo-R2s are commonly reported (Cheng & Stough, 2006; Schnytzer et al.,

2010), their usage is seldom justified (Veall & Zimmerman, 1996), and there

are still many unresolved issues associated with them. First, unlike R2, there

is no single definition of pseudo-R2 that is universally employed. Rather, a va-

riety of measures has been proposed, which may have different interpretations

(Menard, 2000). Second, they are not necessarily comparable across different

datasets. Finally, the distributions of R2s are complex and depend on unknown

parameters (Ohtani, 2000). For pseudo-R2s, this issue is exacerbated because

not only are the distributional properties of pseudo-R2s different to those of

R2, they also depend on the particular definition of pseudo-R2 employed and

the choice of model. Consequently, while pseudo-R2s are often reported, they

are seldom accompanied by standard errors (Press & Zellner, 1978), meaning

significance tests are often ignored. The above considerations have serious con-

sequences for the development of accurate discrete choice models because they

impact effective evaluation of the forecasting accuracy of these models. Since

these issues are rarely examined, there is a significant danger of selecting a

sub-optimal model or misinterpreting the relative forecasting ability of different

discrete choice models.

One of the many applications for discrete choice models is in the forecasting
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of competitive event (CE) outcomes (e.g., Lessmann et al., 2009, 2012). A

CE is a contest between at least two rival participants, where (generally) one

winner is declared and the outcome is uncertain, such as political elections or

sporting events. Probabilistic forecasting in this context involves estimating

the probability of the various competitors winning. Often, these events are

associated with markets for betting or trading on their outcome, e.g., betting

markets in the case of sporting events (Sung et al., 2012), or prediction markets

for political contests or for outcomes associated with business policies (Wolfers

& Zitzewitz, 2006). Since the outcomes of CEs are of particular interest for

economic (in the case of sporting events or business policies) or policy reasons

(elections), the forecasting of CEs is a prominent subject in the literature (e.g.,

Schnytzer et al., 2010).

The standard modeling approach is to view competitors as alternatives in a

choice set with the winner being the participant whose attributes lead it to being

‘preferred’, hence, the suitability of discrete choice models. While the typical

motivation for pseudo-R2 in out-of-sample forecast evaluation is as a measure of

improvement from the null model (where each alternative is considered equally

likely) to the fitted model (e.g., Benter, 1994; Franck et al., 2010), a more useful

measure would be improvement of the fitted model from a model based on the

forecasts of prices from the associated market. In the case of prediction markets,

this would be the degree to which the fitted model (incorporating the prediction

market prices together with information from other data sources, such as the

probability of meeting project deadlines in the past) improves on the probability

forecasts derived directly from the prediction market prices. Such a measure,

which we call relative pseudo-R2, would be of value because there would be a

direct link between relative pseudo-R2s and the economic value of the forecast

probabilities derived from the fitted model. Most importantly, this metric would

be comparable across different market settings.

In this paper, we address the above unresolved issues related to pseudo-R2s

and illustrate these points empirically with data drawn from CEs. Throughout

the paper we refer to the CL model, which is the most widely-used in this
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context, although our findings readily extend to other discrete choice models.

We show that at least one commonly reported pseudo-R2 measure is not robust

to changes in the number of alternatives in each event. Consequently, in order

for discrete choice models to be comparable using these measures across non-

nested models or across models evaluated on different datasets, we suggest a

rescaling of the pseudo-R2. We also demonstrate, with an example from CEs, a

potential misinterpretation that may arise from the bias if this rescaling is not

employed.

We also describe means of conducting significance tests for comparing pseudo-

R2 values from different forecasting models. In particular, we describe two

methods for obtaining estimates of the variance of pseudo-R2 measures, the

bootstrap and asymptotic methods, and find that they both produce estimated

variances that are reasonably close. Consequently, either method could be used

to conduct significance tests for comparing pseudo-R2 values.

In addition, we define relative pseudo-R2s that measure the improvement of

a fitted model from a model based on the forecast prices in the associated betting

or prediction market (in the context of out-of-sample forecasting of CEs). This

provides a comparable metric across different market settings, and shows that

there is a relationship between relative pseudo-R2s and the economic value of

forecast probabilities, a finding that has important implications for assessing

the efficiency of financial markets.

Throughout the paper we illustrate the value of the approaches and measures

we introduce using data drawn from horserace forecasting. These data contain

the essential features of all complex choice modelling problems, including differ-

ent numbers of alternatives (horses) in different choice sets (races). In addition,

they offer the advantage, for the purpose of illustrating the applicability of the

techniques we suggest, that a certain point in time (the end of the race) all

uncertainty is resolved and we are able to assess the accuracy of forecasts. In

addition, the associated betting markets provide us with a means of assessing

the economic value of forecast probabilities.
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2. The conditional logit model, pseudo-R2s, and dependence on the

number of alternatives

2.1. The conditional logit model

The conditional logit (CL) model (McFadden, 1974) is employed to estimate

or forecast the probability of each alternative being chosen (based on attributes

of the alternatives) in situations where a decision maker or ‘nature’ selects a

specific alternative from a number of competing alternatives. The utility of

each alternative i in event j is given by

Wij = β>xij + εij , (2)

where β = (β1, β2, . . . , βm)> are the coefficients of the attributes xij , and εij is

an independent error term. There are likely to be many independent factors that

contribute to the error term and, consequently, the central limit theorem can be

used to justify the assumption that the εij are normally distributed, resulting in

a probit specification. However, to make the forecast probabilities tractable, it

is generally assumed that the error term has a double exponential distribution

f(x) = exp[−x− exp(−x)] (Maddala, 1983); in practice, the difference between

logit and probit models is small (Judge et al., 1985). The probabilities are then

given by

pij = Pr(Wij > Wkj , k = 1, 2, . . . , nj , k 6= i) (3)

=
exp(β>xij)∑nj

k=1 exp(β>xkj)
,

where nj is the number of alternatives. The coefficients are estimated by max-

imum likelihood:

lnL =

N∑
j=1

nj∑
i=1

yij ln pij , (4)

where yij = 1 if alternative i is chosen, yij = 0 otherwise, and N is the total

number of choice problems. We denote the maximized log-likelihood function

by lnL(β̂).
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2.2. Pseudo-R2s

The coefficient of determination R2 is a popular goodness-of-fit measure in

linear models. Varying between 0 and 1, it has multiple interpretations: (i) the

proportion of variation explained by the model, (ii) the square of the correla-

tion between predicted and observed values, and (iii) the improvement from a

null model (with no independent variables) to the fitted model. For nonlinear

models, a range of alternative pseudo-R2 measures have been proposed. The

motivation for these is primarily interpretation (iii) above, i.e., improvement

from null to fitted model. CL is an example of a model estimated by maxi-

mum likelihood, and in fact, for any model estimated by maximum likelihood,

pseudo-R2s that satisfy this criterion can be defined.

The most widely used measure (e.g., Franck et al., 2010) is the McFadden

(1974) pseudo-R2, which is given by

R2
M = 1− lnL(β̂)

lnL(0)
, (5)

where lnL(0) is the lnL of the null model, where each alternative is assigned

the same probability of being chosen:

lnL(0) =

N∑
j=1

ln(1/nj). (6)

An alternative is the Maddala (1983) pseudo-R2, given by

R2
D = 1− exp{−(2/N)[lnL(β̂)− lnL(0)]}. (7)

The McFadden pseudo-R2 has a maximum value of 1, while the maximum value

of Maddala’s is R2
D = 1− exp{(2/N) lnL(0)}. Nagelkerke (1991) proposed that

Maddala’s definition be rescaled so that it takes a maximum of 1, but the original

definition actually has the desirable property of alternatives independence (see

the next section), so we would not recommend this rescaling. In this paper

we consider only these two definitions of pseudo-R2, which are the two most

popular, but our results are readily extended to other versions that have been

proposed (e.g., Nagelkerke, 1991).
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A major concern in probabilistic forecasting is that of evaluating the accu-

racy of forecast probabilities. We believe that pseudo-R2s are the most funda-

mentally important tool for assessing the performance of discrete choice models

designed to forecast the probabilities of future events. Maximizing pseudo-R2

is equivalent to maximum likelihood, where the criterion essentially chooses the

set of parameters which maximizes the probability of observing the particular

set of alternatives that are observed ex post. It is especially important in choice

models to maximize the model probability for the alternative that is eventually

chosen. For example, from the perspective of an organization, it is important

when estimating the probability of success of various products, to maximize

the model probability of success for the product that turns out to be successful

(from a range of possible products), as this will increase the chance that this

product has the highest expected utility and is then the one that is selected. In

addition, the forecast probability of success of this product is likely to affect the

level of investment from the organization.

Equally, in probabilistic forecasting of CEs, it is important to maximize the

probability for the eventual winning competitor, since a decision of whether or

not and how much to bet on that competitor will depend on the predicted ‘edge’

to a bet on that competitor pj/qj , where qj is some baseline probability that the

model is being compared against (the null probability later in this section, and

the market probability in section 4). Indeed, this is an approach advocated by

Benter (1994), who is reported to be the most successful bettor of all time. He

recommends the application of CL models (incorporating a range of explanatory

variables) to develop forecasts of the winning probability for each competitor

and emphasizes the role of pseudo-R2 as a measure of the ‘explanatory power’

of a model. He indicates that pseudo-R2 is the best means he has found for

comparing the efficacy of alternative models. In addition, it has been shown that

probabilities estimated by maximum likelihood yield maximum in-sample return

(on investments based on these forecast probabilities) to a log utility investor

(Johnstone, 2011). Moreover, increases in out-of-sample returns generally result

directly from an increase in pseudo-R2 (Lessmann et al., 2012). Note that the
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emphasis here is on the accuracy of the probabilities derived from discrete choice

models, rather than a binary classification of win/lose (chosen / not chosen). It

is a common misconception in forecasting of CEs that the goal above all else is

to pick winners, whereas it is easy to demonstrate that maximizing edge is the

key to success. Therefore, traditional measures of forecasting accuracy such as

percentage of correct classifications are significantly less relevant in this context.

2.3. Dependence on the number of alternatives

When comparing two or more competing models, a problem may arise when

the models are compared over different data. Specifically, the datasets might dif-

fer in their underlying characteristics. This could arise when subsets of data are

sampled, or when data is split into training and holdout samples. For example,

Hyndman & Koehler (2006) give the example from time series of scale-dependent

measures being compared across datasets with different scales. Menard (2000)

shows that the Maddala pseudo-R2 has a dependence on the base rate in logis-

tic regression models. A specific example in discrete choice modelling is that,

depending on how the data are sampled, the average number of alternatives

available to each subject may vary. For example, in CEs, we might seek to

analyze variations in the predictability of horseraces depending on the number

of horses in each race. Here, we sample alternative datasets depending on the

number of runners in each race. Consequently, the average number of competi-

tors will be different in each dataset. This presents us with a problem, as we

cannot adequately assess the predictability of these events by comparing R2s

over these samples using the McFadden pseudo-R2. We now demonstrate this.

Recall that the motivation behind pseudo-R2s is that they measure the de-

gree of improvement from the null to the fitted model. Null model probabilities

are 1/nj , since without predictors we cannot make any distinction between al-

ternatives. Suppose that, for each set of alternatives j, our model assigns a

probability of pj = fj/nj to the eventual chosen alternative, i.e., model proba-

bilities have an ‘edge’ fj ≤ nj over the null probabilities. In this way, pseudo-R2s

can be evaluated for their dependence on (or independence from) the number
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of alternatives. These dependencies are given in the following proposition (for

a proof, see Appendix B).

Proposition 1. If the model probabilities assigned to the eventual chosen alter-

native are pj = fj/nj, then the McFadden and Maddala pseudo-R2s are given

by

R2
M =

ln f̃

ln ñ
, (8)

R2
D = 1− 1/f̃2,

respectively, where ñ =
(∏N

j=1 nj

)1/N

and f̃ =
(∏N

j=1 fj

)1/N

are the geometric

means of the number of alternatives and of fj, respectively.

Here, f̃ can be viewed as the part of R2 that measures the accuracy of

probabilities derived from the model. In each case, as f̃ increases, so do the R2s.

However, the McFadden version has a predictable dependence on the number

of alternatives: as nj increases, R2
M decreases in proportion to ln ñ. Hence, in

order to define an unbiased, rescaled McFadden pseudo-R2, we multiply R2
M by

ln ñ, i.e.,

R̃2
M = (ln ñ)

[
1− lnL(β̂)

lnL(0)

]
. (9)

Note that this definition now has a maximum of ln ñ, rather than 1. The

Maddala pseudo-R2 is already independent of nj .

We now show empirically that the Maddala and rescaled McFadden R2s are

unbiased by fitting CL models on subsets of horserace betting data categorized

by the number of runners in each race. The data employed are final bookmaker

odds (market prices) from 6064 horserace betting markets in the UK and Ireland

in 2009 and 2010 (for a description of UK betting markets, see Appendix A).

These models have just one independent variable, which is the log of winning

probability as implied by market prices; the coefficient of this variable is given

by β. The results are presented in Table 1 and Figure 1.

Clearly, the Maddala and rescaled McFadden R2s vary in a consistent man-

ner as the number of alternatives is changed, while the standard McFadden
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Figure 1: A comparison of pseudo-R2s across subsets of choice data categorized by the number

of alternatives in each event.
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version is inconsistent. In particular, there appears to be an increasing trend in

the forecast accuracy of odds-implied probabilities as nj is increased, but this

trend is not captured by the standard McFadden version (note that f̃ maps al-

most perfectly onto the rescaled McFadden pseudo-R2). We confirm this in two

ways: first, we fit linear regressions of R2
D −R2

M and R2
D − R̃2

M on the number

of competitors; gradients are given by 0.0174 (t = 10.67, p = 0.00) and -0.0035

(t = 0.20, p = 0.42), respectively, i.e., the difference between the Maddala and

McFadden R2s increases with the number of alternatives while the difference be-

tween the Maddala and rescaled McFadden R2s does not. Second, we compare

the trends in pseudo-R2s with two alternative measures of forecasting accuracy,

used by Franck et al. (2010), the ROC area and the Brier score. We observed a

monotonic relationship between pseudo-R2 and these information criteria, with

the ROC area increasing with number of alternatives and the Brier score de-

creasing (a small Brier score indicates high forecast accuracy). The result here

is that, had we interpreted the results only with reference to the McFadden R2,

we might have concluded that forecast accuracy does not change with number

of alternatives, which is clearly incorrect. In summary, forecasters must take

great care when comparing pseudo-R2s between models fitted on different data.
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In particular, the specific definition of pseudo-R2 employed must be appropri-

ate. A similar analysis could be carried out to test the consistency of other

definitions.

3. Comparing probabilistic forecasts from different models: distribu-

tional properties of pseudo-R2s

3.1. Bootstrapping pseudo-R2s

A common problem in forecasting is how to compare models that either (a)

consist of different predictor variables (are non-nested), or (b) are evaluated on

different datasets, or a combination of both. It is straightforward to compare

forecasts from nested models (where one of the models includes all the inde-

pendent variables from the other model) evaluated on the same data (with a

likelihood ratio test, for example). However, it is significantly more difficult to

compare the accuracy of non-nested models or out-of-sample forecasts evaluated

on different data. Such comparisons are important because it is often the case

in probability forecasting that one is trying to select the ‘best’ model from a

number of candidate models (e.g., models incorporating different independent

variables). One possibility is to directly compare measures of forecast accuracy,

such as pseudo-R2s or the ROC area or Brier score mentioned above. Without

standard error estimates, a model may be selected over another simply because

its pseudo-R2 is apparently higher. However, the model with the higher pseudo-

R2 could have a higher standard error (perhaps because it was estimated on a

smaller dataset) and statistical tests may indicate that it is not in fact superior.

This is particulary important in discrete choice modelling, where the inappropri-

ate selection of one model over another (perhaps containing different predictor

variables) may lead the researcher to mis-specify the behavioral factors influ-

encing the consumers’ choices. Clearly, a statistical test for differences in the

pseudo-R2 values requires their distributions, which are complex and depend

on unknown parameters. However, it is possible to carry out significance tests

by estimating the distribution of pseudo-R2s, and we demonstrate two methods
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here. The first is to adopt an M -bootstrap approach (Efron, 1979), as recom-

mended by Ohtani (2000) for ordinary R2s. The bootstrap is commonly used

when the theoretical distribution of a statistic is complicated, which is the case

for the CL model. Suppose we have fitted CL models to two datasets, D1 and

D2, consisting of N1 and N2 events, respectively. The M -bootstrap method

proceeds as follows:

1. Randomly sample N1 events, with replacement, from D1, to form a new

dataset BD1. Similarly, randomly sample N2 events, with replacement,

from D2, to form a new dataset BD2.

2. Fit CL models on BD1 and BD2 and record the resulting values of pseudo-

R2.

3. Perform M iterations of steps 1 and 2.

4. The sample means, µ(R2
1) and µ(R2

2), and sample variances, s2(R2
1) and

s2(R2
2), of the sets of M pseudo-R2s are used to derive a standard normal

test statistic,

z[µ(R2)] =
[
µ(R2

1)− µ(R2
2)
]
/
√
s2(R2

1) + s2(R2
2), (10)

which can be used to test the alternative hypothesis that the probabilities

derived from one model are more accurate than those derived from the

other, against the null hypothesis of no difference.

3.2. The asymptotic distribution of pseudo-R2s

An alternative, much faster, method for estimating the distribution of a

pseudo-R2 is to estimate its asymptotic distribution, i.e., the expected distribu-

tion as the number of events tends to infinity. Hu et al. (2006) derive analyti-

cally the asymptotic distribution of the Maddala pseudo-R2 in the multinomial

logit model (a discrete choice model that is similar to the CL model). Here,

we adapt their analysis to derive the asymptotic distribution of the McFad-

den pseudo-R2, our own rescaled McFadden pseudo-R2 specified above, and the

Maddala pseudo-R2 for the CL model (for an outline proof, see Appendix B).
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Proposition 2. Assume that the independent variables xij, j = 1, 2, . . . , N ,

i = 1, 2, . . . , nj are independent and identically distributed random m-vectors

with finite second moment (i.e., E[x2
ij ] finite). Let

H1 = E[lnnj ], (11)

H2 = −E

[
nj∑
i=1

yij ln pij

]
,

and let

Σ =

V ar(nj) η

η ε

 , g1 =
1

lnλ

 H2

λ lnλ

1

 , (12)

g2 =

 1
λ

1

 , g3 =
2e2H2

λ2

 1
λ

1

 ,

where

λ = E[nj ],

η = E

[
nj

nj∑
i=1

yij ln pij

]
+ λH2, (13)

ε = E

[
nj∑
i=1

yij(ln pij)
2

]
−H2

2 .

Then, as N →∞,

√
N
[
R2
M − (1−H2/H1)

]
→d N(0, σ2

1),
√
N
[
R̃2
M − (H1 −H2)

]
→d N(0, σ2

2), (14)

√
N
[
R2
D − (1− e2(H2−H1)

]
→d N(0, σ2

3),

where σ2
i = g>i Σgi for i = 1, 2, 3.

The above proposition gives the asymptotic distribution of the pseudo-R2s.

Hence, to obtain the estimates of the variance of point estimates of these pseudo-

R2s, we can replace the unknown quantities with consistent estimators. So,

denote by n̄, ñ, and s2(n) the arithmetic mean, geometric mean, and sample

16



variance of the number of alternatives, respectively, i.e.,

n̄ = (1/N)

N∑
j=1

nj ,

ñ =

 N∏
j=1

nj

1/N

, (15)

s2(n) =
1

N − 1

N∑
j=1

(nj − n̄)2.

Then, let

Σ̂ =

s2(n) η̂

η̂ ε̂

 , ĝ1 =
1

ln n̄

 Ĥ2

n̄ ln n̄

1

 , (16)

ĝ2 =

 1
n̄

1

 , ĝ3 =
2e2Ĥ2

n̄2

 1
n̄

1

 ,

where

η̂ = (1/N)

N∑
j=1

nj

nj∑
i=1

yij ln pij + n̄Ĥ2, (17)

ε̂ = (1/N)

N∑
j=1

nj

nj∑
i=1

yij(ln pij)
2 − Ĥ2

2 .

Here

Ĥ2 = −(1/N)

N∑
j=1

nj∑
i=1

yij ln pij . (18)

Then estimates of the variance of the McFadden, rescaled McFadden, and Mad-

dala pseudo-R2s are given by

s2(R2
M ) =

1

N

(
ĝ>1 Σ̂ĝ1

)
,

s2(R̃2
M ) =

1

N

(
ĝ>2 Σ̂ĝ2

)
, (19)

s2(R2
D) =

1

N

(
ĝ>3 Σ̂ĝ3

)
,

respectively.
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3.3. An empirical comparison of the asymptotic and bootstrap methods

We now verify the two methods by estimating variances of the three pseudo-

R2s described above. It has been shown that the bootstrap method overesti-

mates standard errors in large samples for standard logistic regression, relative

to the asymptotic distribution (Teebagy & Chatterjee, 1989). Here, we com-

pare values estimated from the bootstrap and asymptotic distribution methods

on the same real data, which are described in section 2. This time odds from

two different markets (exchange and bookmaker) are used. We again fit CL

models with just the log of odds-implied probability as the single explanatory

variable; the coefficient of this variable is β. From the results presented in Table

2, it is clear that both methods produce reasonably similar estimates, with the

differences not being significant according to F tests for difference of variances.

Since the asymptotic method is very fast to calculate, we would therefore recom-

mend that pseudo-R2s are always reported with a measure of dispersion, so that

comparing two non-nested models can always be carried out with a significance

test.

4. Pseudo-R2 as a predictor of the economic value of a discrete choice

model

4.1. Probabilistic forecasting of competitive events

We now turn to a specific application of discrete choice models: probabilistic

forecasting of CEs for identifying and measuring the degree of inefficiency in

betting markets. CEs, such as horseraces, usually have an associated market

for trading on the outcome. From the prices available in the market (the odds),

it is possible to obtain ‘public’ forecasts of the probabilities of each outcome.

If these probabilistic forecasts are inaccurate, then the market is inefficient.

Skilled forecasters are able to exploit this inefficiency for profit (e.g., Benter,

1994). We argue that, in this context, the primary interpretation of pseudo-R2s,

as improvement from the null to fitted model, is misleading. This is because we

can easily specify a ‘public’ model that has a single variable, which is the log

18



Table 2: A comparison of the asymptotic and bootstrap methods for estimating the distri-

butions of the McFadden, rescaled McFadden, and Maddala pseudo-R2s, with F -tests for

difference of variances.

Market type Exchange Bookmaker

Number of events 6064

Total number of

competitors

62224

Mean number of

competitors

10.3

lnL(0) -13686.0

β̂ 1.06 1.21

lnL(β̂) -11137.0 -11195.0

Asymptotic

R2
M 0.186 0.182

S.E.(R2
M ) 0.00446 0.00448

R̃2
M 0.420 0.411

S.E.(R̃2
M ) 0.0104 0.0105

R2
D 0.569 0.560

S.E.(R2
D) 0.0090 0.0092

Bootstrap

R2
M 0.186 0.182

S.E.(R2
M ) 0.00455 0.00455

R̃2
M 0.421 0.411

S.E.(R̃2
M ) 0.0103 0.0103

R2
D 0.569 0.560

S.E.(R2
D) 0.0089 0.0090

F6063,6063(R2
M ) 1.041 1.033

F6063,6063(R̃2
M ) 1.028 1.035

F6063,6063(R2
D) 1.031 1.037

of odds-implied probabilities (the model we used in sections 2 and 3), and this

model supersedes the null model that has no variables at all. Rather, pseudo-
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R2 in this context should measure the improvement of the relevant model over

the public, where the model contains both the log of odds-implied probabilities

together with variables that it is believed are not fully discounted by the public.

In this section we define such a measure, which we call relative pseudo-R2,

and link it directly to the model’s ‘edge’, i.e., the economic significance of the

inefficiency identified by the model.

Recall that our dataset consists of N events, where each event j is between

nj ≥ 2 competitors; for each event, there is one winner, given by yij = 1, with

yij = 0 otherwise. ‘Decimal odds’ are denoted by Dij > 1, with dij = 1/Dij

denoting market prices. The decimal odds represent the potential return to a

bettor from a bet on competitor i in race j, with a winning bet of $1 returning

Dij if the bet wins. If the bettor assigns winning probabilities pij , the expected

profit from a $1 bet is pijDij−1. Denote the winning probability that the bettor

assigns to the eventual winner by pj , its market price dj , its decimal odds Dj ,

and the winning probability as implied by the odds qj = dij/(1 + Bj), where

the ‘over-round’ Bj =
∑nj

i=1 dij − 1 represents the market’s transaction costs.

Then expected profit from a bet on this competitor, or ‘edge’, is given by

Wj =
pj

qj(1 +Bj)
− 1. (20)

Now, we define the relative McFadden and Maddala pseudo-R2s by

R̄2
M = 1− lnL(p)

lnL(q)
, (21)

R̄2
D = 1− exp{−(2/N) [lnL(p)− lnL(q)]},

where the log-likelihood of the bettor’s and the public models are given by

lnL(p) =

N∑
j=1

nj∑
i=1

yij ln pij , (22)

lnL(d) =

N∑
j=1

nj∑
i=1

yij ln qij ,

respectively. Defined in this way, the relative pseudo-R2s measure the degree

of improvement over the public odds for the winning competitor, which we now

show is directly related to the bettor’s realized edge (profit per $1 bet).
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Substituting (20) into (21), we can write the relative McFadden pseudo-R2

as

R̄2
M =

lnGM(1 +Wj) + lnGM(1 +Bj)

lnGM(Dj) + lnGM(1 +Bj)
, (23)

where GM(xj) =
(∏N

j=1 xj

)1/N

denotes geometric mean. As in section 2, this

has a dependence on the data: in this case, the average over-round and average

odds of the winner. So, we define the relative rescaled McFadden pseudo-R2 by

¯̃R2
M = (lnGM(Dj) + lnGM(1 +Bj))R̄

2
M = lnGM(pj/qj). (24)

Then this measure has a log-proportional relationship with average edge. Re-

arranging,

GM(pj/qj) = e
¯̃R2
M . (25)

Similar relationships for the Maddala pseudo-R2 are

R̄2
D = 1− 1

GM(1 +Wj)2GM(1 +Bj)2
, (26)

GM(pj/qj) =
1√

1− R̄2
D

.

These relative pseudo-R2s are a novel tool for evaluating and comparing prob-

abilistic forecasts of competitive events, since they allow us to quantify the

relative gain of the out-of-sample probability forecasts of a model over those of

the relevant benchmark, which is the public model and not the irrelevant null

model.

4.2. Relative pseudo-R2s in betting markets

To illustrate the usefulness of relative pseudo-R2s, we conduct analysis us-

ing real betting market data. We train a number of CL models on a dataset

consisting of 18040 horse races from the years 2007-2009, and the results are

presented in Table 3. Each model includes a transformation of the public odds

(LN FIXED ODDS PROB), which itself adds some predictive power over and

above the raw odds-implied probability, along with a successively increasing set

of independent variables based on fundamental information pertaining to the
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horse’s winning chances, such as its lengths beaten in past races, speed in past

races, ability of the jockey/trainer and weight carried. With model coefficients

βk fixed from the in-sample data, we then evaluate the probability forecasts

derived from each model on a holdout set of 6309 races from 2010, and cal-

culate relative pseudo-R2s over this data (Table 4). To illustrate how relative

pseudo-R2s derived from a model are related to its economic importance, we

simulate a Kelly betting strategy (Kelly, 1956) on the outcomes of each race in

the holdout set using the actual market prices available. A proportion of capital

equal to max((pijDij−1)/(Dij−1), 0) is bet on each horse, which is the amount

that maximizes the log of expected returns from the bet (it is assumed that the

bookmaker will take bets of any size).

The first column in Table 4 is based on the qij directly, without any model.

Hence, the relative pseudo-R2s are 0 and no betting opportunities are found.

Each of the other models are effectively being compared with this one. The

relative pseudo-R2s here are small, so we present them as percentages, but

they translate into increasingly large expected and actual profits, which are

determined from the pij and from the identity of the winning horse, respectively

(odds-implied number of wins are determined assuming win probabilities are

qij). Note that while the expected profits increase consistently as the number of

predictor variables is increased, actual profits are subject to the natural variance

in the data, and therefore do not necessarily increase monotonically. However,

because relative pseudo-R2s increase consistently with expected profits and have

a natural interpretation of 0 being no expected profits, it is clear that the relative

pseudo-R2s can be used as an indicator of the economic value of the model.

In this section we have demonstrated that direct relationships can be de-

rived between forecast probabilities estimated by CL models containing multi-

ple predictor variables, and relative pseudo-R2 measures. These relationships

are crucial because they represent the economic value of forecasting models and

can be used to assess the economic significance of any market efficiency that

the models unearth. They also contribute to an understanding of the context

in which pseudo-R2s should be reported. In a broader range of problems, the
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context-specific public model might be replaced by other types of ‘base’ model

that are not simply the 1/n null model. For example, an organization, wishing

to maximize their subjective expected utility from their decision making, might

already be in possession of hard data on some possible courses of action, such as

their current practices. In this case, it might be more appropriate to compare

their forecasts with their existing data, in which case it is the relative expected

gain that is important; in a choice model context this could be measured by

relative pseudo-R2.

5. Conclusion

In this paper, we have described and evaluated properties of pseudo-R2s as

a measure of accuracy of probabilistic forecasts from discrete choice models.

These are a class of models primarily employed to predict choices made by indi-

viduals, and thus have applications in marketing, public choice (e.g., healthcare

provision), econometrics, operations research, and other areas. While R2 in or-

dinary least squares linear regression is a widely-used and well-justified measure,

the same is typically not true of pseudo-R2s, but these are nevertheless invalu-

able measures of forecast accuracy, particularly in the context of competitive

events. We have shown both theoretically and empirically that at least one of

the definitions of pseudo-R2 (McFadden’s definition) is not robust to variations

in the number of alternatives in each event. We have therefore suggested a

rescaling to correct for the resulting bias. This has important implications for

the comparability of pseudo-R2 measures across models, particularly non-nested

models or models tested on different datasets, and comparability is a key desir-

able property of any forecast evaluator. We have also described two methods for

estimating the variance of pseudo-R2s so that their values can be statistically

compared: the bootstrap and asymptotic methods. A comparison of the two

methods on real-world data demonstrates that the estimates that they produce

are reasonably close, so we would recommend that the faster asymptotic method

is used. Finally, in a specific application to the forecasting of competitive events,
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we have derived simple relationships between relative pseudo-R2 measures and

the expected profit to a trader from betting on competitive events. This rela-

tionship is crucial because choice modelling is often employed in the context of

competitive events in order to assess market efficiency, an important concern

with implications for the health of markets as allocative mechanisms.

Our findings contribute to an understanding of the use of pseudo-R2s, and

our results suggest that the common practice of simply reporting these without

a justification or without standard errors when comparing them across models

is not advisable. Moreover, the methods described in this paper (rescaled Mc-

Fadden pseudo-R2, bootstrap and asymptotic methods for standard errors, and

relative pseudo-R2) are crucial when the pseudo-R2 itself is the value of interest

in hypothesis testing; for instance, in comparing the out-of-sample predictive

power of discrete choice models, or evaluating the efficiency of speculative fi-

nancial markets. Accurate probabilistic forecasting is a desirable goal in any

context, but it is particularly important to be able to assess that accuracy in a

consistent and intuitive manner. This paper helps achieve this consistency by

providing a more rigorous understanding of the value of pseudo-R2s in evaluat-

ing probabilistic forecasts from discrete choice models.

Appendix A. A description of UK betting markets

The two major types of betting market in the UK are bookmakers and

exchanges, together accounting for 94% of horserace betting turnover (over £5.7

billion) in the year to March 2010 (Gambling Commission, 2010). In bookmaker

markets, bettors place bets at fixed odds set by the bookmaker. The bettor must

accept the odds currently offered by the bookmaker or the unknown starting

price (the odds available at the close of the market). Bookmakers have the

highest operating costs (e.g., maintaining an estate of betting offices) so their

margins are typically higher than exchange markets. Bets can be placed at

racetracks (on-course market) as well at betting offices around the UK or online

(off-course market). Prices are distinct in the on-course and off-course markets
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until 10 minutes before the race starts, at which point the two markets converge.

A betting exchange is an online platform that allows bettors to back horses

to win or to lay them to lose. Bets are only matched when two or more bets

of the appropriate stake and odds are made, with the exchange automatically

pairing backers and layers to settle bets. Exchanges typically have lower margins

than bookmakers. For more information on exchanges, see Smith & Vaughan

Williams (2008).

Appendix B. Proofs

Proof of Proposition 1. For the McFadden pseudo-R2,

R2
M = 1−

∑N
j=1 ln [f(nj)/nj ]∑N
j=1 ln(1/nj)

=

∑N
j=1 ln f(nj)∑N
j=1 lnnj

(B.1)

=
ln
∏N
j=1 f(nj)

ln
∏N
j=1 nj

=
ln f̃

ln ñ
.

For the Maddala pseudo-R2,

R2
D = 1− exp

−(2/N)

 N∑
j=1

ln{f(nj)/nj} −
N∑
j=1

ln(1/nj)


= 1− exp

−(2/N) ln

N∏
j=1

f(nj)

 (B.2)

= 1−

 N∏
j=1

f(nj)

−2/N

= 1− 1/f̃2.

Lemma. Assume that the independent variables xij, j = 1, 2, . . . , N , i =

1, 2, . . . , nj, are independent and identically distributed random m-vectors with
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finite second moment (i.e., E(x2
ij) finite). Let

H1 = E[lnnj ], (B.3)

H2 = −E

[
nj∑
i=1

yij ln pij

]
.

Then, as N → ∞, R2
M →p 1 − H2/H1, R̃2

M →p H1 − H2, and R2
D →p 1 −

exp [2(H2 −H1)].

Proof.

R2
M = 1− (1/N) lnL(β̂)

(1/N) lnL(0)

= 1−
(1/N) lnL(β)− (1/N)

[
lnL(β)− lnL(β̂)

]
(1/N)

∑N
j=1 ln(1/nj)

(B.4)

= 1−
(1/N)

[
lnL(β)− lnL(β̂)

]
(1/N)

∑N
j=1 lnnj

−
(1/N)

∑N
j=1

∑nj

i=1 yij ln pij

(1/N)
∑N
j=1 lnnj

.

Similarly,

R̃2
M = (1/N)

N∑
j=1

lnnj + (1/N)

N∑
j=1

nj∑
i=1

yij ln pij (B.5)

− (1/N)
[
lnL(β)− lnL(β̂

]
.

Finally, letting f(x) = (1/2) ln(1− x),

f(R2
D) = (1/N) lnL(0)− (1/N) lnL(β̂) (B.6)

= (1/N)

N∑
j=1

ln(1/nj)− (1/N) lnL(β)

+ (1/N)
[
lnL(β)− lnL(β̂

]
= −(1/N)

N∑
j=1

lnnj − (1/N)

N∑
j=1

nj∑
i=1

yij ln pij

+ (1/N)
[
lnL(β)− lnL(β̂)

]
.
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By the law of large numbers, as N →∞,

(1/N)

N∑
j=1

lnnj →p H1, (B.7)

−(1/N)

N∑
j=1

nj∑
i=1

yij ln pij →p H2.

Moreover, Hu et al. (2006) show that, as N →∞,

(1/N)
[
lnL(β)− lnL(β̂)

]
→p 0. (B.8)

Hence, as N →∞, R2
M →p 1−H2/H1, R̃2

M →p H1 −H2, and f(R2
D)→p H2 −

H1. So, by the continuous mapping theorem, as N →∞, R2
D →p f

−1(H2−H1),

i.e., R2
D →p 1− exp[2(H2 −H1)].

Proof of Proposition 2. Define Zj = (nj ,Wj), where

Wj =

nj∑
i=1

yij ln pij . (B.9)

Then the Zj form an independent and identically distributed random sequence

with

µ = E[Zj ] = (n̄,−H2) (B.10)

and Cov(Zj) = Σ. To see this, note that it follows immediately that

Cov(nj , nj) = V ar(nj), (B.11)

Cov(nj ,Wj) = η,

and

Cov(Wj ,Wj) = E[W 2
j ]− E[Wj ]

2

= E

( nj∑
i=1

yij ln pij

)2
−H2

2 (B.12)

= E

[
nj∑
i=1

yij(ln pij)
2

]
−H2

2 .
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By the central limit theorem (in two dimensions),

√
N(Z̄ − µ)→ N(0,Σ). (B.13)

Let

φ1(x1, x2) = 1 +
x2

lnx1
,

φ2(x1, x2) = lnx1 + x2, (B.14)

φ3(x1, x2) = 1− exp [2(− lnx1 − x2)] .

Applying the delta method with φi, i = 1, 2, 3, to (B.13) gives

√
N
[
φi(Z̄)− φi(µ)

]
→d N

(
0,∇φi(µ)>Σ∇φi(µ)

)
. (B.15)

From the Lemma, and since

∇φ1(x1, x2) =

− x2

x1(ln x1)2

1
ln x1

 ,

∇φ2(x1, x2) =

 1
x1

1

 , (B.16)

∇φ3(x1, x2) =

 2
x1
e2(− ln x1−x2)

2e2(− ln x1−x2)

 ,

the results in (14) follow.
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