
Concurrent scale interactions in the far-field of a turbulent mixing layer
O. R. H. Buxton and B. Ganapathisubramani 
 
Citation: Physics of Fluids 26, 125106 (2014); doi: 10.1063/1.4903970 
View online: http://dx.doi.org/10.1063/1.4903970 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pof2/26/12?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Internal wave energy radiated from a turbulent mixed layer 
Phys. Fluids 26, 096604 (2014); 10.1063/1.4895645 
 
Experimental study of spectral energy fluxes in turbulence generated by a fractal, tree-like object 
Phys. Fluids 25, 110810 (2013); 10.1063/1.4819351 
 
The interaction between strain-rate and rotation in shear flow turbulence from inertial range to
dissipative length scales 
Phys. Fluids 23, 061704 (2011); 10.1063/1.3599080 
 
Velocity field analysis in an experimental cavitating mixing layer 
Phys. Fluids 23, 055105 (2011); 10.1063/1.3592327 
 
Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in
turbulent shear flow. II. Experimental results 
Phys. Fluids 18, 035102 (2006); 10.1063/1.2166448 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  152.78.130.228 On: Fri, 28 Aug 2015 08:57:52

http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/995386005/x01/AIP-PT/PoF_ArticleDL_081915/1_AIP-ALLstatic1640x440-umbrella.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=O.+R.+H.+Buxton&option1=author
http://scitation.aip.org/search?value1=B.+Ganapathisubramani&option1=author
http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://dx.doi.org/10.1063/1.4903970
http://scitation.aip.org/content/aip/journal/pof2/26/12?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/26/9/10.1063/1.4895645?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/25/11/10.1063/1.4819351?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/23/6/10.1063/1.3599080?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/23/6/10.1063/1.3599080?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/23/5/10.1063/1.3592327?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/18/3/10.1063/1.2166448?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/18/3/10.1063/1.2166448?ver=pdfcov


PHYSICS OF FLUIDS 26, 125106 (2014)

Concurrent scale interactions in the far-field of a turbulent
mixing layer

O. R. H. Buxton1,a) and B. Ganapathisubramani2
1Department of Aeronautics, Imperial College London, London, United Kingdom
2Aerodynamics and Flight Mechanics Research Group, University of Southampton,
Southampton United Kingdom

(Received 4 August 2014; accepted 1 December 2014; published online 22 December 2014)

The interaction between the large- and small-scales in the self-similar region of a
nominally two-dimensional planar mixing layer is examined at a centreline Reynolds
number Reλ ≈ 260 (where Reλ is the Reynolds number based on Taylor microscale).
Particle image velocimetry experiments are performed at two different spatial resolu-
tions, one that captures the range from integral scale (L) to Taylor microscale (λ)
and the other that captures the range from Taylor microscale to the Kolmogorov
length scale (η), simultaneously. It is found that the amplitude of the small-scale
fluctuations (scales < λ) is modulated by the large-scale velocity fluctuations (scales
> λ). Negative large-scale fluctuations (i.e. large-scale fluctuations that are less than
the local mean) are found to coincide with regions where an increase in the amplitude
of the small-scale fluctuations is found. This amplification effect, of the small-scales
by the large-scales, is found to increase with the magnitude of the large-scale
fluctuations. By drawing an analogy between the two different spatially resolved
datasets and a large eddy simulation it is shown that the turbulent kinetic energy
flux to the sub-grid-scales (SGS) is highly sensitive to the alignment between the
fluctuating velocity vector and the gradient of the mean shear of the flow. When these
two large-scale vectors are perpendicular there is a notable increase in the small-scale
turbulent kinetic energy (TKE) flux. This small-scale TKE flux was observed to
be influenced by this large-scale alignment even for the smallest scales present,
where the correlation between u1 and u2 has vanished (SGS scale < λ/8). C 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4903970]

I. INTRODUCTION

Turbulence is known to be a multi-scale problem, in which energy is transferred from the mean
flow into turbulent kinetic energy at large-scales and dissipated into heat at the small-scales via a
mean cascade of energy from the large- to the small-scales.1–3 It has long been suggested that the
small-scales of turbulent flows are universal, but there is a distinct interaction between the large-
and small-scales. Some recent results, primarily in wall-bounded turbulent shear flows, point to the
significance of these interactions.4–9 However, very little information is available on these interac-
tions in other forms of shear flows. In this study, we aim to examine the nature of this interaction
between large- and small-scale velocity fluctuations in a turbulent free shear flow.

Winant and Browand10 stated that “the region between two parallel streams moving at different
speeds is the simplest free shear flow which can be considered.” The planar mixing layer can
be divided into three regions. The first region is characterised by the growth of small ampli-
tude disturbance waves, with the highest growth rate observed at the most unstable frequency
due to the Kelvin-Helmholtz instability. In the second region, these waves grow into discrete,
Kelvin-Helmholtz roller vortices and the third region sees these vortices interact by rolling around
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each other and eventually “pairing.”11,12 This mechanism is similar to that observed in other shear
flows such as a circular jet.13 These rollers are observed to pair by amalgamation and co-rotation of
neighbouring rollers and far downstream the mixing layer eventually attains a self-similar state in
which a broad range of fluctuations from the large-scale rollers down to the dissipative length scales
are present.10,14–19 It is in this self-similar region that we aim to examine the interactions between
large- and small-scale velocity fluctuations. Pradeep and Hussain20 examined the perturbation of
Oseen vortices with small-scale fluctuations and observed that low amplitude perturbations were
primarily amplified at the periphery of the vortex cores. This study therefore aims to examine the
types of interactions that occur between the large roller type vortices and the smaller scale and more
random turbulent fluctuations in the self-similar region of a planar mixing layer.

A variety of researchers have examined the small-scales in different types of turbulent flows
(for example, Siggia,21 Kerr,22 Ruetsch and Maxey,23 Jiménez et al.,24 Vincent and Meneguzzi,25

Mullin and Dahm,26 and Ganapathisubramani et al.27). Results indicate that the small-scale struc-
tures are in the form of “worms” (for enstrophy) surrounded by “sheets” of dissipation. These
small-scale structures are approximately 6-10η (where η is the Kolmogorov length scale) in diam-
eter (or thickness) and extend up to the Taylor microscale (λ) in length (or size). Therefore, the size
of these structures is substantially smaller than the integral length scale (L) of the flow. Researchers
have also noted that these tubes and sheets appear to be concentrated around larger scale structures
(that are larger than Taylor microscale). However, the exact nature of this relationship between
dissipative scale structures and larger scale flow structures remains unknown.

The study of Bandyopadhyay and Hussain28 was the first study (and perhaps the only) that
presented an examination of the interaction between large- and small-scales in several different
shear flows, including wall-bounded shear flows such as boundary layers and free shear flows such
as mixing layers, wakes, and jets. The authors examined short time correlations between the low and
high frequency components of hot wire time series data. Correlations were made between the low
pass filtered (low frequency) time series data with the envelope of the high frequency component
and found a significant degree of coupling between the scales across all shear flows. This coupling
between the scales was observed to be maximised when the high frequency and low frequency
signals were concurrent.

This relationship between the large- and small-scales is of great importance in the application
of large-eddy simulations (LES) to turbulent flows. In LES, one separates the motion into small-
and large-scales by spatially filtering the velocity field with a kernel29 and must therefore model
the sub-grid-scale (SGS) stresses of the small-scale turbulent fluctuations. Meneveau and Katz29

extensively reviews the various models that are used and their validity/accuracy in numerical data.
Meneveau30 acquired single point measurements in order to test a variety of SGS models and

using joint moments between filtered velocity and real (measured) SGS stresses enabled both turbu-
lent kinetic energy (TKE) and enstrophy dissipation to be captured over a significant range of filter
widths. Subsequent experiments in a turbulent jet,31 a cylinder wake,32,33 and a square duct34,35 have
revealed further statistical information on the geometry, alignment tendencies, and intermittency of
the SGS turbulence. Further, O’Neil and Meneveau32 showed that large-scale organised structures
within a turbulent free shear flow are shown to have a significant impact on the statistical distribu-
tion of SGS TKE dissipation, even at filter scales well inside the inertial range. van der Bos et al.34

examined the effect of the smallest (SGS) scales on the inertial range structures of turbulence using
holographic particle image velocimetry (PIV) in a turbulent square duct flow, away from the wall.
The separation of scales was achieved by spatially filtering the data with a box filter of size 30 Kol-
mogorov (dissipative) length scales. It was shown that the SGS stresses had a significant effect on
the evolution of the filtered velocity gradients. Additionally, the study showed that commonly used
SGS models, such as the Smagorinsky,36 non-linear and mixed models successfully reproduced
the real SGS stress effects in strain dominated regions of the flow but failed in other, rotationally
dominated regions.

In this study, we examine the interactions between large- and small-scale velocity fluctuations
in the self-similar region of a turbulent mixing layer. PIV experiments are performed at two different
spatial resolutions, one that captures the range from the integral length scale (L) to the Taylor
microscale (λ) and the other that captures the range from the Taylor microscale to the Kolmogorov
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length scale (η), simultaneously. These data are then utilised to explore the interactions between the
large- and small-scales.

II. EXPERIMENTAL FACILITY, METHODS, AND DETAILS

The PIV experiments in this study were conducted in the old recirculating water tunnel facility
in the Department of Aeronautics at Imperial College London. The facility had a working section
of width 700 mm, length 9 m, and the water was filled to a depth of 600 mm. A nominally two
dimensional planar mixing layer was produced by means of placing a perforated metal sheet, 50%
open area ratio, on one side of a splitter plate of length 1.25 m and thickness, h = 20 mm, that was
placed just downstream of the water tunnel’s contraction. Both boundary layers along the splitter
plate were tripped with a 1 mm diameter wire and the boundary layers were given a streamwise
distance of 800 mm over which to develop along the splitter plate. The splitter plate had a 4◦

triangular trailing edge appended to it in order to generate the mixing layer.
The experiments were carried out in the streamwise-cross-stream planes (x1 − x2 directions).

Throughout this paper, (U1, U2, U3) and (u1, u2, u3) denote the instantaneous and the fluctuating
velocity components in the streamwise (x1), cross-stream (x2), and spanwise (x3) directions. The
quantities denoted within angled brackets, ⟨·⟩, represent the ensemble mean.

The inflow condition of the two boundary layers immediately upstream of the 4◦ trailing edge
is presented in Table I. The Reynolds number of the mixing layer based on the convection ve-
locity (Uc = [UHS

∞ +ULS
∞ ]/2, where UHS

∞ and ULS
∞ are the freestream velocities on the high- and

low-speed sides of the mixing layer, respectively) and the splitter plate thickness is Reh = 5020,
and the Reynolds number based on the Taylor microscale is Reλ ≈ 260 at the centreline of the mea-
surement location. The measurement location was chosen as it was within the self-similar region
of the mixing layer, meaning that the turbulence is fully developed, and the mixing layer is not
constrained by the sidewall boundary layers, which is the case further downstream in the facility.
The centre of this measurement location is approximately 2 m downstream of the splitter plate’s
trailing edge which corresponds to 100h. Figure 1 shows the profiles of the planar mixing layer
self-similarity function of Pope37 at two separate streamwise locations within the flow. These pro-
files are compared to the dataset of Buxton et al.38 which is a direct numerical simulation of the far
field of a mixing layer with comparable Reynolds number based on Taylor microscale (Reλ = 220
at the centreline). There is a slight discrepancy for this profile but this can be attributed to a lack of
statistical convergence due to the fact that it was produced from only three statistically independent
snapshots. Nevertheless, the collapse of these profiles (to within the statistical noise) is illustrative
of a self-preserving flow.

A customised PIV setup was constructed in order to capture data at two different spatial resolu-
tions simultaneously. The PIV system consisted of a 200 mJ, 532 nm, Nd:YAG laser (Litron Nano
L 200-15) and four 2048 × 2048 pixel resolution CCD cameras (TSI PowerView 4M Plus). Three of
the cameras were mounted below the floor of the water tunnel facility and were fitted with Sigma
105 mm lenses with an aperture setting of f/2.8. The final camera was mounted on a carriage above

TABLE I. Table summarising the condition of the two boundary layers
immediately upstream of the 4◦ trailing edge of the splitter plate.

Low speed
side (.LS)

High speed
side (.HS)

Freestream velocity, U∞ (ms−1) 0.19 0.38
Boundary layer thickness, δ99 (mm) 59.4 78.6
Displacement thickness, δ∗ (mm) 4.73 8.64
Momentum thickness, θ (mm) 3.25 6.30
Shape factor, H = δ∗/θ 1.45 1.44
Reθ =U∞θ/ν 590 2110
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FIG. 1. Profiles of the self-similarity variable, f (ζ) as a function of ζ (defined in Pope (Ref. 37)) for two separate x1 locations
within the mixing layer. This is overlaid against the direct numerical simulation (DNS) data of Buxton et al. (Ref. 38) from a
mixing layer at a similar Reλ.

the water channel and fitted with a Nikon 50 mm lens with an aperture setting of f/2.8. The camera
setup is illustrated in Figure 2.

The flow was seeded with polyamide (specific gravity 1.1) particles of diameter 7 µm. In order
for the particles to faithfully track the smallest scale fluctuations within the flow, the Stokes number
must be less than one, i.e. St = τR/τF ≪ 1, where τR is the response time of the particle and τF
is the response time of the flow.39 Since this study is concerned with measuring the dissipative
scale fluctuations within the flow, τF = τη = (ν/⟨ϵ⟩)1/2, i.e. the Kolmogorov time scale which is

FIG. 2. Schematic of the synchronised PIV setup.
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calculated to be 65 ms. Considering very low Reynolds number flow around a sphere, the response
time of the particle can be given by τR = dp

2 ρp

18µ , where dp is the particle diameter, ρp is the particle
density, and µ is the dynamic viscosity of the fluid (water) and is calculated to be 2.6 µs, and hence
the St ≪ 1 condition is comfortably met.

In order to maintain the synchronisation between all four cameras, which were connected via
two frame grabbers and were liable to “skip” a frame at higher acquisition rates, and the laser,
data were acquired at 0.3 Hz, and immediately written to disk. A suitable separation between the
two laser pulses, ∆t, for both the top camera (low resolution vector field) and the bottom cameras
(high resolution vector fields) was found to be 800 µs, giving a mean streamwise pixel displacement
of approximately 25 pixels for the bottom cameras and about 4 pixels for the top camera. Note
that this ∆t was obtained through a trial-and-error procedure where the objective was to maintain
a high quality vector field in the high resolution field of view while maximising the mean pixel
displacement in the low resolution field of view.

One thousand image pairs were captured for all four cameras and were processed using the
recursive correlation algorithm in the TSI Insight software. The initial interrogation area was
128 × 128 pixels and the final interrogation area was 32 × 32 pixels for both the top and bottom
cameras, with a 50% overlap. A post-processing code was written to validate the vectors and replace
spurious ones with either valid secondary peaks or interpolated using a 3 × 3 local mean technique.
The number of spurious vectors was less than 3% in both the high and low resolution fields. Finally,
the vectors from both the high and low resolution fields were then interpolated onto a regular Carte-
sian grid using a bi-linear interpolation method. This was done in order to orient the large-scale
Field-Of-View (FOV) to the small-scale fields.

The total field size for the top camera (large-scale field) is 188 mm × 188 mm and is
20.6 mm × 20.6 mm for the bottom cameras (high resolution fields). The spatial resolution for the
large-scale field of view is 3.25 mm × 3.25 mm, with adjacent vectors separated by 1.625 mm due
to the 50% overlap. The resolution for the small-scale fields of view is 0.37 mm × 0.37 mm (which
is comparable to the thickness of the laser sheet), with adjacent vectors separated by 0.19 mm. This
is comparable to the sub-Kolmogorov scale resolution achieved in the study of Tanaka and Eaton.40

Throughout this paper, quantities with the superscript L have been computed from the large-scale
low-resolution field of view and quantities with the superscript S have been computed from the
small-scale high-resolution fields of view.

As the variation of ⟨U⟩ with x1 is negligible within the large-scale low-resolution FOV, and
even more so in the small-scale high-resolution FOVs, mean profiles for each FOV are calculated
as a function of x2 only. Figures 3(a) and 3(b) show the mean streamwise velocity profile and
the Reynolds stress profiles, ⟨uiu j⟩, respectively, at the measurement location (the solid lines are

(a) (b)

FIG. 3. (a) Mean velocity profile, ⟨U1⟩(x2) for the low-resolution FOV and the high-resolution FOVs at the measurement
location (centred at 100h downstream of the trailing edge of the splitter plater). (b) Mean Reynolds stress profiles ⟨uiu j⟩
within the large-scale field of view. The mean and Reynolds stress profiles computed from the high resolution FOVs are
shown as solid lines.
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computed from the small-scale FOVs). The quantities in Figure 3 are normalised by the convection
velocity (Uc) and are clearly typical of a planar mixing layer, c.f. Townsend.41 The vorticity thick-
ness of the mixing layer, defined as δω = (UHS

∞ −ULS
∞ )/ ∂⟨U1⟩

∂x2

���max
,14 is 125.0 mm (6.25h). A good

agreement is observed between the large- and small-scale FOV data. The three small-scale FOVs
are positioned slightly to the high speed side and are therefore just above the peak mean Reynolds
stresses, but are nonetheless within an active region very close to the peak.

At the measurement location, the Taylor microscale is calculated to be 10.6 mm and the Kol-
mogorov length scale, η =

�
ν3/⟨ϵ⟩�1/4

= 0.27 mm, where ⟨ϵ⟩ is the mean rate of dissipation of
turbulent kinetic energy. The estimate for the mean rate of dissipation in this study uses the approx-
imation of locally axisymmetric turbulence42 and the correction method of Tanaka and Eaton.43 In
order to define an appropriate integral length scale (L), separate experiments were performed in
which two adjacent cameras were used in the low-resolution configuration in order to compute the
auto-correlation function for the streamwise velocity fluctuations. We define the integral scale, L, as
the streamwise distance at which the auto-correlation function crosses zero. This was computed to
be equal to 222 mm, hence, the streamwise extent of the large-scale FOV is approximately 0.75L.
More details of these experiments can be found in Buxton,44 including uncertainty estimates and
quantification. Table II summarises all the essential experimental parameters at the downstream
measurement location.

Figure 4 shows the location of the three high resolution FOVs within the low resolution
FOV. The contours are of U1 and the vectors have components of (U1 −Uc) and U2 from the low
resolution FOV. The left inset shows contours of U1 from the low resolution FOV in the region
encompassed by the central high resolution FOV and the right inset shows the contours of U1 from
the high resolution FOV itself. It can be seen that there is an excellent agreement between the two.
This agreement is further illustrated by the mean profiles from the three high resolution FOVs being
superimposed onto the low resolution FOV mean profile in Figure 3(a).

III. SEPARATION OF SCALES AND ANALYSIS PROCEDURES

Figure 5 shows the dissipation spectrum of a turbulent mixing layer at a Taylor Reynolds
number that is similar to the one examined in this study, produced from the data of Buxton et al.38

It is observed in this figure that the peak in the dissipation spectrum occurs at or close to the Taylor

TABLE II. Table summarising the experimental condition in the down-
stream measurement location.

Freestream velocity, UHS
∞ 0.38 ms−1

Freestream velocity, ULS
∞ 0.19 ms−1

Integral length scale, L 222 mm
Taylor microscale, λ 10.6 mm
Kolmogorov scale, η 0.27 mm

Large-scale FOV 188 × 188 mm2

0.75L × 0.75L
18λ × 18λ

696η × 696η

Large-scale resolution 3.25 mm
12η

Small-scale FOVs 20.6 × 20.6 mm2

0.09L × 0.09L
1.95λ × 1.95λ

76η × 76η

Small-scale resolution 0.37 mm
1.37η
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FIG. 4. Example PIV vector fields. The contours are of U1, the streamwise velocity, and the vectors have components of
(U1 −Uc) and U2 (with only alternate vectors displayed for ease of presentation), the cross-stream velocity. The insets show
a close up of the U1 contours of the centre high resolution field of view from the low resolution vector field (left) and high
resolution vector field (right).

microscale. Therefore, this length scale can thus be considered to “anchor” the dissipation spectrum
for this particular flow, hence, λ is considered to be a suitable first estimation for a “cut-off” length
scale with which to examine the interaction between the large-scale and small-scale fluctuations.

The large-scale low-resolution FOV is thus filtered to remove all contributions to the fluc-
tuations at length scales smaller than λ (note that this λ is calculated from the small-scale high-
resolution FOV). Conversely the small-scale high-resolution FOVs are filtered to remove the contri-
bution of all fluctuations at length scales greater than λ. The additional benefit of implementing a

FIG. 5. Dissipation spectrum of the streamwise velocity fluctuations. The vertical lines show the different filters employed
to separate the large- (uLλ

1 ) and small-scales (uSλ
1 ). Data from Buxton et al. (Ref. 38).
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FIG. 6. Top: original signal, uL
1 (x1). Middle: low wavenumber component of original signal, uLλ

1 (x1). Bottom: high
wavenumber component of original signal, uL0

1 (x1). uLλ
1 (x1) + uL0

1 (x1) = uL
1 (x1).

low pass filter on the large-scale low-resolution FOV is to eliminate the noisier high wavenumber
fluctuations.

The separation of the scales is achieved by means of a running mean filter. It has been previ-
ously shown that although a running mean filter does not have a sharp spectral cut-off, the choice
of filter has no qualitative effect on the results observed in the modulation of the small-scale fluc-
tuations by the large-scales, and vice versa.8 The top trace of Figure 6 shows a typical raw signal
of uL

1 (x1) from a low-resolution FOV vector field, the middle trace is the low frequency component
of the signal, uLλ

1 (x1), and the bottom trace is the part that is composed of fluctuations of length
scale λ or less, uL0

1 (x1). The low frequency part and the “Λ < λ” part sum to give the original
signal, i.e., uL0

1 (x1) + uLλ
1 (x1) = uL

1 (x1). A similar approach was taken for the small-scale FOV such
that uS

1 = ũS
1 + uSλ

1 , where ·̃ implies convolution with the (running mean) filter kernel, and thus, uSλ
1

consists of the high frequency content of the small-scale FOV velocity. In a spectral sense, uSλ
1 can

thus be thought of as

uSλ
1 ≈ F

−1 �US(κ)	 where US(κ) =



0 ∀ |κ | ≤ 2π
λ

F
�
uS

1

	
∀ |κ | > 2π

λ
,

(1)

where F denotes the Fourier transform and κ is a two dimensional wavenumber vector consisting of
components κi. This approximation would of course be an equality if a sharp spectral filter was used
instead of a running mean filter, however, due to spectral leakage associated with the aperiodicity
of PIV data, a running mean filter is instead chosen. The same filter was also applied to the u2
fluctuations in both the small-scale and large-scale FOVs.

This manuscript presents concurrent analyses representative of the interactions between large-
and small-scale fluctuations through conditional statistics. The methodology employed is similar
to that employed by Liu et al.,31 and is illustrated in Figure 7. The figure illustrates the stencils
for both the large-scale and small-scale FOVs. A region of space that fills a square within the
plane of data extending from −∆L/2 to ∆L/2, where ∆L is the stencil spacing for the large-scale
FOV, in both the x1 and x2 directions from the (i, j)th node is defined. This region of space will
subsequently be referred to as the conditional window. The statistics, whether they be zeroth order,
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FIG. 7. Schematic illustrating the concurrent grids of the large-scale FOV and small-scale FOV PIV datasets.

first order moments etc., are then conditioned upon the velocity fluctuation of the (i, j)th node of the
large-scale FOV data.

In the field of computational fluid dynamics (CFD), a LES is defined as a technique that “con-
sists in solving the set of ad hoc governing equations on a computational grid which is too coarse
to represent the smallest physical scales.”45 One thus separates the fluid motion into small- and
large-scales by spatially filtering the velocity field with a kernel,29 solving for the large-scales on a
coarse grid and modelling the effects of the small (sub-grid) scales. The statistics of the small-scale
FOV data within the conditional window can thus be thought of as being analogous to the sub-grid
scales of a LES (which are modelled) and the data in the large-scale FOV can be considered to be
analogous to the resolved portion.

IV. SCALE INTERACTIONS SEPARATED BY THE TAYLOR LENGTH SCALE

Figure 8 shows conditioned probability density functions (pdf s) of the small-scale fluctuations
uSλ

1 (a) and (b) and uSλ
2 (c) and (d) conditioned on the sign of the large-scale fluctuations uLλ

1 (a)
and (c) and uLλ

2 (b) and (d). The small-scale fluctuations are computed as the mean value within
the conditional window of a large-scale fluctuation which is typically around 100 small-scale mesh
nodes. It can be seen that there is an increased tail in the pdf s along with a reduced modal peak
for the case of uLλ

1 being negative or uLλ
2 being positive. Evidently, there must be an anti-correlation

between u1 and u2 since the TKE production term for a free shear flow is −u1u2∂⟨U1⟩/∂x2, which
must be positive for the flow to be self-preserving. The correlation coefficient between uSλ

1 and uSλ
2

is ρu1u2 = −0.413, whereas it is ρu1u2 = −0.581 for the correlation between uLλ
1 and uLλ

2 . This is
reflected in the contrasting effects of concurrent negative uLλ

1 leading to an increase in small-scale
activity and negative uLλ

2 leading to an attenuation of small-scale activity in comparison to the
positive fluctuations.

The location of the small-scale FOV is just to the high speed side of the location of peak
Reynolds stresses within the mixing layer. A mechanism whereby a positive uLλ

2 fluctuation thus
brings with it fluid containing an increased level of small-scale turbulent activity can be postulated.
This would evidently be coupled to a negative uLλ

1 due to the requirement that the turbulent flow is
self-preserving at the region in which this measurement location is situated. The opposite behav-
iour is expected in the low speed side of the mixing layer in which case a negative (downwards)
uLλ

2 , on average coupled to a positive uLλ
1 , fluctuation will convect with it a region of increased

small-scale turbulent activity. This mechanism is perhaps too simplistic though. All of the pdf s of
Figure 8 show an asymmetry in which the small-scale activity is preferentially amplified for nega-
tive small-scale fluctuations (e.g., uSλ

1 conditioned on negative uLλ
1 ) or positive fluctuations (e.g., uSλ

2
conditioned on uLλ

2 ). The r.m.s. profile of Figure 3, which shows that there is higher turbulent
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FIG. 8. Probability density functions of the small-scale fluctuations conditioned on the sign of the large-scale fluctuations.
(a) uSλ

1 conditioned on uLλ
1 . (b) uSλ

1 conditioned on uLλ
2 . (c) uSλ

2 conditioned on uLλ
1 . (d) uSλ

2 conditioned on uLλ
2 .

activity to the negative x2 direction of the small-scale measurement location tells us nothing about
the sign of these fluctuations.

Figure 9 illustrates the joint pdf s between the large-scale fluctuations uLλ
1 and the variance of

(a) uSλ
1 and (b) uSλ

2 . Again, the variance of the small-scale fluctuations is computed from the data
present in the conditional windows illustrated in Figure 7. Both figures show that the variance of the
small-scale fluctuations, a measure of the “roughness” of the small-scale turbulence, is dependent
not only upon the sign of the large-scale fluctuations but also their magnitude. The contours clearly
slope from low variance to high variance as the large-scale velocity fluctuation is altered from high

FIG. 9. Joint probability density functions between (a) σ
uSλ

1
and (b) σ

uSλ
2

and the large-scale u1 fluctuations.
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magnitude positive values (high momentum fluctuation) to high magnitude negative values (low
momentum fluctuation). This suggests that not only are negative uLλ

1 fluctuations concurrent with
increased small-scale turbulent activity but also positive uLλ

1 fluctuations are concurrent with atten-
uated small-scale activity. The dependence of the small-scale turbulent activity on the magnitude of
the large-scale fluctuations and not just the sign, adds further weight to the notion that the convec-
tion model for this scale interaction is overly simplistic. Figures 9(a) and 9(b) are both plotted on the
same scale, with the same contour levels of the joint pdf s and thus reveal the striking quantitative
similarity between the joint pdf between uLλ

1 and the variance of uSλ
1 and uSλ

2 . A similar feature is
also observed in the amplitude modulation effects of wall bounded flows.8,9,46

For a LES, the filtered LES equations for an incompressible flow can be written as

∂ũ
∂t
+ ũ · ∇ũ = − 1

ρ
∇p̃ + ν∇2ũ − ∇ · τ∆, (2)

∇ · ũ = 0, (3)

where ·̃ indicates convolution with the spatial filter employed in the LES, often denoted as G∆(x).
Equation (2) also includes the term ∇ · τ∆, the divergence of the sub-grid scale stress tensor which
itself is defined as

τ∆pq =Iupuq − ũpũq. (4)

Due to the intrinsic closure problem of turbulence τ∆pq must be modelled, preferably in terms of the
resolved velocity field. Since the small-scale fluctuations essentially introduce extra dissipation of
TKE, τ∆pq is often modelled using an “eddy viscosity” model, i.e.,

τ∆pq = −2νT S̃pq, (5)

νT = νT (x, t) , (6)

where νT is the (artificial) eddy viscosity.
The energy flux to the unresolved sub-grid scales is subsequently given by

Π(∆) = −τ∆pq S̃pq. (7)

If we assume that our coarse grid “cuts off” our fluctuations at a length scale that is within the
inertial range of turbulence then the Richardson-Kolmogorov phenomenology implies that there is
an equilibrium dissipation meaning that the energy flux transferred to the sub-grid scales is equal to
the dissipation rate of those sub-grid scales. That is to say that Π(∆) = ϵ∆.

For this study, we choose an analogue to the small-scale dissipation that avoids a direct compu-
tation from the velocity gradient tensor in order to reduce the effect of noise incurred through
numerical differentiation of the high-resolution velocity field.47 “One of the cornerstone assump-
tions of turbulence theory”48 is that dissipation can be considered to scale as ϵ = Cϵu′3/L, where
Cϵ is a constant, u′ is the r.m.s. velocity fluctuation, and L is an integral length scale. Converging
third order statistics is hard due to the retention of a quantity’s sign. This is particularly true when a
limited sample of data is available, typically 100 or so small-scale mesh nodes are available for each
large-scale mesh node. Instead, we exploit the definition of the Taylor microscale, namely,

λ
2 =

2u′2(
∂u1
∂x1

)2
 . (8)

Further, if we assume that the small-scale velocity gradients are isotropic, which is reasonable since
the measurement location is in the self-similar region of the flow, we can estimate the dissipation as

ϵ = 15ν
(

∂u1

∂x1

)2
(9)

and thus neglecting numerical coefficients, we obtain

ϵ ∼ ν

(
u′

λ

)2

. (10)
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FIG. 10. Joint pdf between the dissipation analogue, ν
(
uSλ

1 /λ
)2

and the concurrent large-scale fluctuations.

We thus choose ν(uSλ
1 /λ)2 as our analogue to dissipation, and hence energy flux to the small-scales,

with a higher variance being indicative of “rougher” small-scale turbulence and a higher rate of
dissipation resulting from the increased velocity gradients.

The joint pdf between this dissipation analogue and the concurrent large-scale velocity fluctua-
tions is presented in Figure 10. The dissipation analogue is normalised by the mean dissipation rate
estimate for the measurement location within this flow which can be seen to be significantly larger
than the value of our dissipation analogue. This is due to the fact that Eq. (8) is formulated using
the r.m.s. velocity fluctuation, which in the Richardson-Kolmogorov phenomenology of turbulence
is dominated by smaller wavenumber components (length scales greater than λ). Nevertheless, our
dissipation analogue is dimensionally similar to the dissipation rate and a similar qualitative behav-
iour is observed to Figure 9. There is a slope in the contours of the joint pdf from lower dissipation
concurrent with high magnitude positive fluctuations to higher dissipation concurrent with high
magnitude negative velocity fluctuations.

Figure 11 shows pdf s of the small-scale u1u2 Reynolds stress component conditioned on
the sign of the large-scale fluctuations; (a) uLλ

1 and (b) uLλ
2 . As mentioned previously, the u1u2

component of the Reynolds stress tensor plays the most significant role in the transfer of energy
from the mean flow to turbulence in a free shear flow due to its presence in the TKE produc-
tion term. The majority of TKE production takes place in the large-scales (low wavenumbers) of
the Richardson-Kolmogorov phenomenology of turbulence (e.g., Batchelor49) however, some TKE
production still takes place at smaller length scales. The pdf s are plotted on semi-log axes and it
can be seen by virtue of the large focus of data close to u1u2 = 0 that there is little TKE production
at length scales Λ < λ. However, the tails are significantly extended for negative uLλ

1 / positive uLλ
2

fluctuations, both the negative and the positive tails. Negative uLλ
1 fluctuations are thus concurrent

with both increased positive and negative TKE production at small (sub-grid) scales.
Tennekes and Lumley48 noted that there was some evidence to support the notion that vortices

whose principal axes were “roughly” aligned with the principle axis of the mean strain in a flow
with mean shear are more effective at transferring energy from the mean flow into turbulence. It is
thus desirable to see if the same is true for large-scale cross Reynolds stresses uLλ

1 uLλ
2 . Figure 12

shows the way in which the alignment of the Reynolds stress can be formulated as

θuv = arctan *
,

uLλ
2

uLλ
1

+
-

; −π ≤ θuv ≤ π. (11)

The Reynolds stresses are divided into four quadrants according to the sign of uLλ
2 and uLλ

1 , similar
to the way in which they are categorised in wall bounded flows. For both uLλ

1 > 0 and uLλ
2 > 0, then
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FIG. 11. Probability density functions of the small-scale u1u2 Reynolds stress component conditioned on (a) the sign of uLλ
1

and (b) conditioned on the sign of uLλ
2 .

angle θuv is bounded by 0 and π/2 and similarly, for uLλ
1 > 0 and uLλ

2 < 0, known as a “sweep” in
wall bounded flows, then θuv is bounded by 0 and −π/2. The other two quadrants are categorised as
π/2 < θuv ≤ π for uLλ

1 < 0 and uLλ
2 > 0, which are known as “ejections” in wall bounded flows, and

−π ≤ θuv < −π/2 for uLλ
1 < 0 and uLλ

2 < 0. The example presented in Figure 12 is of the last kind
with both uLλ

1 < 0 and uLλ
2 < 0.

An angle θ ∂⟨U1⟩
∂x2

can also be formed as the arctangent of the (non-dimensionalised) mean ve-

locity gradient profile (as a function of x2) and this is also marked onto the figure. Subsequent
analyses will present the angle of the large-scale Reynolds stress component relative to this angle
θ ∂⟨U1⟩

∂x2

, which will again vary between −π and π. Thus, using the example of Figure 12, the angle

θ ∂⟨U1⟩
∂x2

− θuv ′ is defined as

θ ∂⟨U1⟩
∂x2

− θuv ′ = θ ∂⟨U1⟩
∂x2

− (2π + θuv) (12)

FIG. 12. Schematic illustrating the Reynolds stress angle, θuv which ranges from −π < θuv < π. In the example illustrated,
both the u1 and u2 fluctuations are negative, with magnitudes u and v, respectively, thereby forming a negative value of
θuv. The angle formed as the arctangent of the cross-stream gradient of the mean velocity profile is marked on as θ ∂⟨U1⟩

∂x2

. In

subsequent analyses, the angle formed between θ ∂⟨U1⟩
∂x2

and θuv is used. This is also defined as varying from −π to π, hence,

in the current example, the Reynolds stress angle would be formulated as 2π + θuv thus meaning that θ ∂⟨U1⟩
∂x2

− θuv would be

a negative angle whose magnitude is less than (but close to) π.
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FIG. 13. Joint probability density function between the Reynolds stress angle, θuv and (a) σuSλ
1

and (b) σuSλ
2

.

since the reference angle has been rotated by θ ∂⟨U1⟩
∂x2

in the anti-clockwise (positive) sense. Angles

bounded by −π ≤ θ ∂⟨U1⟩
∂x2

− θuv ′ < 0 thus require θ ∂⟨U1⟩
∂x2

− π ≤ θuv < θ ∂⟨U1⟩
∂x2

, etc.

Figure 13 presents a joint pdf between θuv, the Reynolds stress angle, and the variance of the
small-scale fluctuations, (a) uSλ

1 and (b) uSλ
2 . It can be seen that the contours are maximised at an

angle of θuv ≈ −0.47 (≈ −27◦), at which angle the contours stretch to a much higher σuSλ
1

value
than at other Reynolds stress angles. There is a second peak located at θuv ≈ 2.65 (≈152◦). The
joint pdf is clearly periodic and the second peak, at the positive value of θuv, can be seen to spill
over into the region for which θuv ≈ −π. These two peaks, at which there is an observed increase in
small-scale activity, are observed to be the same in both Figures 13(a) and 13(b) for the uSλ

1 and uSλ
2

fluctuations, respectively. The highest small-scale activity is observed for the peak at the positive
angle, i.e., θuv ≈ 2.65. It is clear, however, that no physical significance can be attributed to the
Reynolds stress angles associated to maximum small-scale activity other than the fact that they are
in anti-phase to one another.

Figure 14 shows the contours of a similar joint pdf to that of Figure 13(a) replacing the Reynolds
stress angle with θ ∂⟨U1⟩

∂x2

− θuv ′, which is the Reynolds stress angle relative to the arctangent of the

FIG. 14. Joint probability density function between the difference between the Reynolds stress angle, θuv, and the mean
velocity gradient angle and σuSλ

1
.
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mean velocity gradient. The contours look similar to those of Figure 13 except that the locations of
the peak small-scale activity have been transformed to approximately ±π/2. It can thus be concluded
that small-scale activity is greatly amplified when the large-scale velocity fluctuation is aligned
perpendicularly to the mean velocity gradient of the mixing layer. The highest small-scale activity is
observed for θ ∂⟨U1⟩

∂x2

− θuv ′ ≈ −π/2, corresponding to a positive value of θuv, or an “ejection” event in

wall bounded terminology. Whilst Tennekes and Lumley48 suggested that there was some evidence
that vortices whose principal axes are aligned with the mean velocity gradient are more efficient at
transferring energy from the mean flow into turbulence, Figure 14 very clearly shows that preferential
perpendicular alignment between the Reynolds stress component and the mean velocity gradient
leads to a significant amplification of small-scale activity.

V. SCALE DEPENDENCE

The analyses of Sec. IV were focused on the joint and conditioned statistics of the small-scale
activity conditioned on the large-scale fluctuations when the scales were separated by the Taylor
length scale. Intrinsically, the location at which the large-scales and small-scales are separated is an
arbitrary choice; the rationale in Sec. IV was that choosing the Taylor length scale meant that the
contribution to the dissipation of TKE was split into two groupings of length scales that contributed
similarly to the total dissipation rate, approximately 50% each at this Reynolds number. However,
it was noted that the correlation coefficient between uSλ

1 and uSλ
2 was ρu1u2 = −0.413. The signif-

icant degree of correlation in the small-scales shows that there is still a contribution to the TKE
production term, −u1u2∂⟨U1⟩/∂x2, from fluctuations of length scale less than the Taylor microscale.
In order to determine whether there is a non-local scale interaction between large-scales and very
small-scales, separated in wavenumber space, it is necessary to observe the effect of filter length on
the correlation coefficient ρu1u2.

Figure 15 shows a plot of ρu1u2 against filter length, Λ, where this is the size of the running
mean filter used in order to separate out the smallest scales in the small-scale FOV. Only length
scales smaller than Λ are allowed to pass. For comparison, the value of ρu1u2 for the large-scales,
e.g. uLλ

1 and uLλ
2 , is −0.581. Typically, a 5% tolerance is required in a miscellany of scientific

disciplines before results can be accepted as being statistically significant. Figure 15 shows that for
Λ/λ = 0.12, or a filter width of approximately one eighth the Taylor microscale, the (magnitude of
the) correlation coefficient between uS

1 and uS
2 falls below the 5% value and can thus be considered

to be reflective of ρu1u2 ≈ 0. It should be noted that this filter size is still significantly above the

FIG. 15. Correlation coefficient, ρu1u2, between uS
1 and uS

2 fluctuations filtered at different length scales, Λ.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  152.78.130.228 On: Fri, 28 Aug 2015 08:57:52



125106-16 O. R. H. Buxton and B. Ganapathisubramani Phys. Fluids 26, 125106 (2014)

noise threshold of the small-scale data, as documented in Buxton,44 and this lack of correlation is
thus not due to the uncorrelated noise dominating but due to the decay of the TKE production term.

Saddoughi and Veeravalli50 define a correlation coefficient spectrum as outlined in Eq. (13) in
which Ei j is the power spectral density of uiu j and κ1 is a streamwise wavenumber.

R12(κ1) = − E12(κ1)
[E11(κ1)E22(κ1)]1/2 . (13)

This spectrum is shown to decay to R12(κ1) ≈ 0 as κ1 → ∞ such that the TKE production term has
disappeared for the dissipative range of scales. It is shown that in the range of κ1 for which a −5/3
decay is present for both E11(κ1) and E22(κ1) with κ1 the spectrum of the correlation coefficient,
R12(κ1) is observed to decay with a −2/3 slope with respect to κ1. Whilst Figure 15 is not directly
comparable to R12(κ) due to the inclusion of all length-scales smaller than filter length Λ it can be
seen that there is a clear decay in ρu1u2 with Λ. Furthermore, direct comparison between the data
of Saddoughi and Veeravalli50 (in the outer layer of a very high Reynolds number boundary layer,
Reλ ≈ 1450) and the present study shows that for the inertial range the correlation coefficient decays
from a value of 0.4 (Eq. (13) is inclusive of the negative sign) to zero. This is matched in Figure 15,
with a decay in values of ρu1u2 = −0.413 to ρu1u2 ≈ 0. Saddoughi and Veeravalli50 also noted that
small-scale anisotropy penetrates to higher κ1 in flows with a higher mean shear explaining the
observation that ρu1u2 ≈ 0 is not observed until Λ = λ/8.

The pdf s of Figure 8 show a difference in the distribution of small-scale fluctuations that lie
concurrently with either low momentum (negative) or high momentum (positive) uL

1 fluctuations.
A way of quantifying this difference is by means of the Kullback-Leibler divergence (KLD).51

The KLD, DKL (P∥Q), is a non-symmetric measurement of the difference between two probability
distributions and is defined as

DKL (P∥Q) =
 ∞

−∞
ln


p(x)
q(x)


p(x) dx, (14)

where p(x) and q(x) are probability density functions of a random variable x. It originated from
information theory and can thus be thought of as a loss of information when one tries to model a
“true” distribution, p(x), with a modelled distribution, q(x). In general, it does not commute and
thus DKL (P∥Q) , DKL (Q∥P) and is always non-negative.

Figure 16 shows a plot of the KLD against filter size in which the pdf p(x) is that of the uS
1

fluctuations conditioned on the concurrent large-scale fluctuation being negative, uLλ
1 < 0 and q(x)

FIG. 16. Kullback-Leibler divergence, DKL (P∥Q) for the difference between pdf s of uS
1 fluctuations conditioned on the

sign of uL
1 fluctuations when filtered at various length scales, Λ.
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is the pdf of the uS
1 fluctuations conditioned on uLλ

1 > 0. It is thus a measure of the loss of infor-
mation in modelling the pdf of the small-scale fluctuations, filtered at length scale Λ, conditioned
on negative large-scale fluctuations by the pdf conditioned on positive large-scale fluctuations. The
decreasing value of KLD as Λ is decreased is thus a consequence of the concurrent large-scale fluc-
tuation having a diminishing effect on the distribution of the small-scale fluctuations at increasingly
small length scales. However, the value of the KLD when the filter length is Λ/λ = 0.12 is still
approximately 40% that for when the initial demarcation between scales, at the Taylor length scale
was used. It is thus clear that the concurrent large-scale fluctuations still influence the small-scale
fluctuations even when the correlation between uS

1 and uS
2 has essentially vanished. The mechanism

is the same at the smallest scales as it is for the intermediate scales with a concurrent negative
uLλ

1 fluctuation tending to amplify small-scale activity and a concurrent positive uLλ
1 fluctuation

attenuating the small-scale activity.

VI. FURTHER DISCUSSION AND CONCLUSIONS

A series of PIV experiments were carried out in the far-field of a turbulent planar mixing layer
within a water tunnel facility that captured large- and small-scale velocity fluctuations simulta-
neously. The large-scale low-resolution FOV had a resolution of 12η, where η is the Kolmogorov
length scale, the small-scale high-resolution FOVs, which are contained within the low-resolution
FOV and detailed in Figure 4, had a resolution of 1.3η. In this way, it was possible to resolve the
flow field at both the large-scales and the small-scales simultaneously.

The velocity fluctuations within these two fields of view were used to examine the scale inter-
actions in the far-field of turbulent mixing layers. The interaction between two different ranges
of scales is explored. First, the fluctuations are separated into large- and small-scale fluctuations
using a running mean filter that defines the large-scales as those greater than the Taylor microscale
(uLλ

1 ) and the small-scales are those that are smaller than the Taylor microscale (uSλ
1 ). Conditional

pdf s were used to investigate the co-dependence of the large- and small-scale fluctuations. The
distribution of uSλ

1 is found to be wider when conditioned on negative large-scale fluctuations
than conditioned on positive large-scale fluctuations, and correspondingly, when conditioned upon
large-scale fluctuations of the u2 component of velocity of the inverse sign. This suggests that there
is some interaction between the large-scale fluctuations and the small-scale fluctuations, whereby
negative large-scale fluctuations tend to magnify the amplitude of the small-scale fluctuations con-
tained within themselves. Similar findings have been found in studies in wall bounded turbulent
flows in which the sign of the large-scale fluctuations has been shown to affect the amplitudes
of the small-scales.6,7 This study goes further and shows that both the sign and magnitude of the
concurrent large-scale fluctuations are observed to affect the small-scale activity, with high magni-
tude, positive uL

1 fluctuations leading to an attenuation and high magnitude, negative uL
1 fluctuations

leading to an amplification.
The orientation of the large-scale u1u2 Reynolds stress component with respect to the mean

velocity gradient was observed to be of great significance. When the vector formed by uL
1 and uL

2 is
observed to be perpendicular to the mean velocity gradient this was shown to significantly increase
the small-scale activity and (analogously) the TKE flux to the smallest scales, with the highest flux
only possible in this configuration. A slight increase in the TKE flux was observed for Q4 Reynolds
stress events, or “sweeps” in wall bounded terminology.

It was then shown that this effect of amplitude modulation of the small-scales by the large-
scales is also present down to significantly smaller length scales than merely the Taylor microscale.
The filter length scale at which the correlation between uS

1 and uS
2 fell below 5% was shown to

be Λ ≈ λ/8. When these fluctuations, which are now purely dissipative and not responsible for the
transfer of energy from the mean flow into turbulence, are conditioned on the large-scales (those
greater than λ) the same amplification of small-scale activity was found concurrent to negative uL

1
fluctuations. The degree of this interaction was quantified by means of the Kullback-Leibler diver-
gence, which is a measure of information lost in describing a “true” statistical distribution with a
modelled one. This KLD was found to be approximately 40% of that for Λ = λ, indicating a reduced
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but still appreciable interaction between the large and smallest scales in the flow. It was also shown
that the highest TKE flux from these very small-scales to the smallest scales present in the flow
was also still overwhelmingly increased when the concurrent large-scale Reynolds stress vector was
aligned perpendicularly to the mean velocity gradient of the flow.

As it was shown that the correlation coefficient between the small-scale u1 and u2 fluctuations
is approximately zero, we may assume that the flow is locally isotropic when viewed at these
length-scales. This is a prerequisite for the Kolmogorov52 theorem of universal scaling of the dissi-
pative scales in turbulence with the kinematic viscosity, ν and the mean dissipation rate, ϵ , only.
These results show that the smallest-scales in fact “feel” the large-scale fluctuations in addition to
ν and ϵ . The physical mechanism by which this scale modulation manifests itself is unclear from
the concurrent results of this study. In order to investigate the cascade of “information” from the
large-scales to the small-scales, it is necessary to observe the time/phase lag that maximises these
scale interactions which forms the basis of our future work. In this case, it may be possible to link
these scale interactions to coherent structures present within the planar mixing layer. The obser-
vation of greatly amplified small-scale activity when the large-scale velocity fluctuation is aligned
perpendicularly to the mean velocity gradient (Figure 14) is consistent with the ideas of the role of
coherent structures in a planar mixing layer presented in Hussain.53
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