
1

A Low-cost, Radiation-Hardened Method for
Pipeline Protection in Microprocessors

Yang Lin, Mark Zwolinski, Senior Member, IEEE, and Basel Halak

Abstract—The aggressive scaling of semiconductor technology
has significantly increased the radiation-induced soft error rate
in modern microprocessors. Meanwhile, due to the increasing
complexity of modern processor pipelines and the limited error-
tolerance capabilities that previous radiation hardening tech-
niques can provide, the existing pipeline protection mechanisms
cannot achieve complete protection. This paper proposes a
complete and cost-effective pipeline protection mechanism using
a self-checking architecture. The radiation hardened pipeline is
achieved by incorporating SETTOFF-based self-checking cells
into the sequential cells of the pipeline. A replay recovery
mechanism is also developed at the architectural level to recover
the detected errors. The proposed pipeline protection tech-
nique is implemented in an OpenRISC microprocessor in 65nm
technology. A gate-level transient fault injection and analysis
technique is used to evaluate the error-tolerance capability of
the proposed hardened pipeline design. The results show that
compared to techniques such as TMR, the SETTOFF-based
self-checking technique requires over 30% less area and 80%
less power overheads. Meanwhile, the error-tolerant and self-
checking capabilities of the register allow the proposed pipeline
protection technique to provide a noticeably higher level of
reliability for different parts of the pipeline compared to previous
pipeline protection techniques.

Index Terms—Fault-Tolerance, reliability, soft errors, single-
event upset, single-event transient, timing error, fault injection.

I. INTRODUCTION

The reliability of modern integrated circuits is severely
challenged by strikes from high energy particles. A particle
strike can produce soft errors, which can be categorized
into Single Event-Upsets (SEU) and Single Event-Transients
(SET). SEUs are transient bit-flip errors that invert the state
held in memories (DRAMs or SRAMs) or sequential logic
cells (flip-flops or latches). SETs are transient voltage pulses
occurring in combinational logic. An SET become an SEU if
it is sampled by a storage element. Lower operating voltages
reduce the energy required to induce soft errors. Increased
operating speed also significantly increases the probability
that SETs are captured. These trends suggest that a dramatic
increase in the soft error rate is inevitable.

Conventionally, microprocessors used in safety-critical ap-
plications, such as space, can be protected by Triple Modular
Redundancy (TMR), [1]. However, TMR is not a viable
solution for less critical applications since its overhead (more

The authors are with Electronics and Computer Science, Faculty of Physical
Science and Engineering, University of Southampton, Southampton, UK,
SO17 1BJ.
E-mail: {yl5g09,mz, bh9}@ecs.soton.ac.uk

than 200% area and power) is far too expensive. There is room,
therefore, for compromise techniques that offer a little less
protection than TMR, but with significantly lower overheads.

Memory arrays and caches in microprocessors can be pro-
tected by conventional Error Correction Codes (ECC), which
have acceptable overheads. Protecting the general logic in the
pipeline of a microprocessor has always been a challenge as
TMR or duplication are too expensive. Previous work has
proposed using ECC to protect the Register File (RF) [2],
[3], but the ECC bits need to be calculated and read during
each operation. The performance and power overheads can
be big for the RF [4], and the situation gets worse when
there are multiple read ports and thus multiple ECC decoding
circuitry is required. In addition, Multiple-Bit-Upsets (MBUs)
and the captured SETs from combinational gates have become
a serious issue at current technology nodes [5] [6]. ECCs
cannot address SETs, and are very expensive for addressing
MBUs as they require a larger number of redundant bits.

Other techniques have been proposed to mitigate either the
SETs or the SEUs in general logic [7] [8] [9] [10] [11] [12]
[13]. However, few of these can efficiently provide full protec-
tion of the whole pipeline against both SETs and SEUs. They
are either only suitable for protecting the pipeline registers
(such as RazorII [13], SEM/STEM techniques [11]), or only
applicable in RFs (such as FERST [10]). On the other hand,
most of these techniques rely on hardware redundancies, but
are not self-checking, since errors occurring in the redundant
circuitry can still corrupt data.

In this paper, we propose a novel pipeline protection tech-
nique based on a self-checking radiation-hardened register
architecture. The technique is capable of providing cost-
effective error-tolerance for a microprocessor pipeline. Our
first contribution is the design of the self-checking register
architecture, which is developed from the SETTOFF (Soft
Error and Timing error TOlerant Flip-Flop), combined with
a self-checker [4] [14]. The self-checker mitigates any errors
occurring in the error-tolerant circuitry of SETTOFF. The over-
head of the self-checker is minimized by sharing it between
multiple SETTOFFs in a register. Our second contribution is a
pipeline protection technique which incorporates the radiation-
hardened self-checking registers into the RF, and the registers
between each stage of the pipeline (henceforth referred to
as the pipeline registers). SEUs occurring during pipeline
execution will be detected and corrected on the fly within the
register architecture. SETs and Timing Errors (TE) occurring
in the combinational gates will be detected if captured by the
pipeline registers or the RF. These errors then trigger a pipeline
replay which re-executes the operation and corrects the error



2

by re-writing the corrupted registers. In addition, the redun-
dant circuitry added for error-tolerance within the register
architecture is, in turn, protected by the self-checker and thus
total self-checking is realized. We demonstrate the pipeline
protection technique in an OpenRISC 1200 microprocessor.
A fault-analysis model is developed to evaluate the reliability
of the processor pipeline. The results show that no errors can
propagate through the pipeline into the data memory.

This paper is organized as follows: Section II introduces
the literature related to the work. Section III presents the
self-checking radiation hardened register architecture. The
design and implementation of the radiation hardening pipeline
protection technique is given in Section IV, and Section V
presents the experimental methodology and evaluation results.
Finally, the paper is concluded in Section VI.

II. BACKGROUND

Previous radiation hardening approaches fall into two main
categories. Fault avoidance techniques aim to reduce the
probability that the system is affected by particle strikes. Fault
correction techniques detect and correct faults occurring in
the system. Lin, et al proposed a fault avoidance technique
using a Schmitt Trigger (ST) to construct radiation-hardened
latches [15]. The ST-based latch has 112% higher critical
charge than a conventional latch and can be used to reduce
the SET error rate. Garg, et al also proposed a fault avoidance
technique in which diodes dissipate energy from SEUs [16].
Another approach, [17], aims to re-construct circuit logic
based on an error-analysis, to make a combinational circuit
less sensitive to soft errors. One fault correction technique,
[18], implements a coarse-grained reconfigurable architecture
to include redundancy.

In actual system designs, fault avoidance techniques and
fault correction techniques can be complementary. This section
focuses on fault correction techniques which aim to provide
cost-effective protection for microprocessor pipelines.

A. Previous pipeline protection techniques

RazorII is a pipeline protection technique proposed to
tolerate both soft errors and timing errors within the pipeline
[13]. RazorII protection relies on error-detection latches in
the pipeline registers. All the error correction is achieved
by using an architectural replay which re-executes the faulty
operation and overwrites the erroneous state. As a result of
the replay recovery process, RazorII protection may incur
large Instruction Per Cycle (IPC) overheads when the error
rate is high, and may therefore impact the overall energy
efficiency. In addition, RazorII is only suitable for protecting
the pipeline registers, but cannot protect the registers that store
the architectural state of the processor (such as the RF). Thus,
RazorII is not fully SEU-tolerant. The recovery operation
can only correct SETs and TEs that occur in the preceding
combinational gates, since they are detected during the write
cycle of the flip-flop, and the faulty operation can then be re-
executed. However, if an SEU is detected during the hold cycle
of the flip-flop, the recovery mechanism can no longer find the
last operation that wrote to the flip-flop and cannot re-execute

it to overwrite the SEU. As a result, the RF is protected by
ECC, and suffers from the usual ECC drawbacks.

Soft Error Mitigation (SEM) and Soft and Timing Error
Mitigation (STEM), [11], both utilize a variant of TMR to
mitigate SETs and SEUs. The STEM cell also adds timing
error detection. One novelty of the techniques is that they
remove error detection from the critical path, and therefore
the delay overhead is reduced, compared to the TMR flip-flop.
However, the area and power overhead of the SEM and STEM
cells is approximately the same as or slightly bigger than the
TMR flip-flop since additional recovery circuitry is added.
The large overhead makes these techniques inapplicable for
protecting the RF, and therefore they cannot achieve complete
pipeline protection.

Error detection and correction flip-flop structures to balance
performance, power and reliability of pipeline architectures
have been proposed [19]. The four flip-flops provide different
levels of error tolerance and overheads. By replacing the four
FFs in the best storage locations of a pipeline, this approach
can enhance circuit reliability with significantly lower over-
heads compared to SEM and BISER, [9]. Similar to Razor,
this approach focuses on protecting the pipeline registers rather
than the RF, as the proposed FF architectures can tolerate
SETs, but do not provide full SEU-protection.

SVFD, [20], uses stability violation checking to detect
SETs, SEUs and aging effects. The method has been imple-
mented in an OpenRISC core, but the reported area and power
overheads are 40% and 43%, respectively, somewhat greater
than achieved with SETOFF.

A Confidence-Driven Computing (CDC) model is proposed
in [21] for adaptive protection against transient faults. The
approach estimates the confidence in a computation and al-
lows repeated computations (in time or in space) to increase
confidence. CDC has low overheads compared to conventional
error-tolerant techniques, but it requires a controller to trigger
duplicate computations. It has a much larger error detection
window (multiple clock cycles) than Razor or rollback recov-
ery techniques. CDC is efficient for enhancing the reliability
of combinational logic in each pipeline stage, but does not aim
to protect dense memory blocks such as the RF.

RF protection based on the FERST hardened cell has been
proposed [10] [22]. FERST uses three C-elements to mitigate
both SEUs and SETs at the input of the latch. FERST incurs
nearly 100% area and power overheads. The main drawback
of FERST is that a C-element is added in the signal path,
which will induce a delay overhead of around 70% in 65nm
technology. This make FERST hard to use to protect the
timing-critical pipeline registers. Even in the RF, the delay
overhead of FERST can have big impact on the performance.

B. Self-checking capability

Most pipeline protection techniques do not have a self-
checking capability and so are vulnerable to soft errors in
the redundant, error-tolerance circuitry. The area and geometry
of the redundancies determine the probability that the circuit
is hit by particles, while the critical charge determines the
vulnerability of the circuit to particle strikes. On the other



3

Combinational 

Circuit
Main 

flip-flop

D Q

Clk

Comparator

Error

Flip-flop
D Q

Error

Clk+𝝳 

Clk

D 

(main flip-flop)

Clk+δ 

Q

(main flip-flop)

Error

SET pulse

δ TRD interval (δ- Dsetup - Dcomp )

t0 t0+δ-Dsetup-Dcomp

inconsistent valuesampled

Fig. 1: Time redundancy based error detection flip-flop [12].

hand, if the unprotected redundancies are in combinational
logic, such as the ECC or the majority voter in TMR, they
may produce SET pulses which can cause errors if captured
in a following stage. If the redundancy is in a state holding
element, such as the C-elements in FERST, and BISER [9],
particle strikes can produce SEUs in a similar manner to a
latch, and corrupt the whole cell.

C. Time redundancy-based error detection

Because SETs occurring in the logic blocks only manifest
themselves for a limited period of time, and will be recov-
ered automatically, Time Redundancy-based error Detection
(TRD) moves duplication into the time-domain [12] [23].
The technique is illustrated in Fig. 1. With no hardware
duplication, TRD can detect SETs that are manifest at the
input of the flip-flop with a maximum pulse width of Dtr ≤
δ − Dsetup − Dcomp, where Dsetup is the setup time of the
error flip-flop and Dcomp is the delay of the comparator. Such
SETs, if captured by the main flip-flop at t0, will recover at
t0 + δ − Dsetup − Dcomp, while the comparator will assert
an error signal due to inconsistent inputs. Similarly, timing
errors with a delay no greater than Dtr are also detected since
the correct result will be presented at the input D when the
comparison result is latched. This architecture can also detect
SEUs in the main flip-flop from t0 to t0+δ−Dsetup−Dcomp,
which is called the TRD interval. Although TRD is cost-
efficient, it cannot correct. Moreover, SEUs occurring in the
main flip-flop outside the TRD interval will escape detection.
This is dangerous, as SEUs cannot be recovered until the flip-
flop is overwritten by the next input.

III. SELF-CHECKING RADIATION HARDENED REGISTER
ARCHITECTURE

To overcome the drawbacks of the previous techniques,
we propose a novel full pipeline protection scheme. The
technique is based on a self-checking radiation hardened
register architecture that can address both SEUs occurring
inside the register, and the SETs and TEs that are captured by
the register. It has a self-checking capability that can, comple-
mentarily, protect the redundancies added for error-tolerance.
This section presents the circuit-level approach of the register

D

Error_SEU_bar

Logic 

stage L2

Logic 

stage L1

Error 

FF

D
Q

Error_SET

Q

Clk

Detection XOR

TD
input

Part I

Part II
clk

Clk + Ddxor + Dsetup

Clk_d

N

Main

 flip-flop

Logic

Correction 

XOR

SETTOFF

storage unit

Fig. 2: The architecture of SETTOFF [14].

architecture, which is developed from the SETTOFF radiation
hardened flip-flop [14], combined with a shared self-checker,
adapted from that proposed in [4].

A. SETTOFF architecture
SETTOFF is a Soft Error and Timing error Tolerant Flip-

Flop, which can recover the SEUs occurring inside the flip-
flop on the fly, and can detect the captured SETs and TEs that
originate from the preceding combinational logic gates.

The architecture of SETTOFF is shown in Fig. 2. The main
flip-flop is a conventional flip-flop. For clarity, only the last
storage unit (the inverter pair) is shown. Node N holds the state
of the inverter pair. Q is the inverted value of node N in normal
operation. The error-tolerant circuitry is divided into two parts,
which work in turn during two intervals within a clock cycle.
Part I is a TRD architecture adapted from [12]. The TRD part
works during the TRD interval which is equal to the high
clock phase. It detects errors occurring during the write cycle,
which include captured SETs and TEs at the input, and the
SEUs that flip node N during the TRD interval. On detection
of an error, Part I asserts the Error SET signal which can be
used to trigger a replay mechanism to re-execute the erroneous
write operation and overwrite the errors in SETTOFF.

Part II is the Transition Detector (TD) architecture which
works during the TD interval (the low clock phase). SEUs that
flip node N during the TD interval are interpreted as illegal
transitions and are detected by the TD. A correction XOR-gate
is used to replace the inverter driving the output Q of a conven-
tional flip-flop. In normal operation, the Error SEU bar signal
stays high, such that the correction XOR-gate acts as a normal
inverter. When an illegal transition (an SEU) is detected by the
TD, it assigns 0 to Error SEU bar. The correction XOR-gate
will then propagate N to Q to correct the SEU on the fly. A
correction glitch is generated upon correction of the SEU due
to the delay of the TD. The glitch is not a threat because, if
captured by the SETTOFF in the following stage, it will be
detected by the TRD part as an SET pulse. Notice that only the
SEUs that corrupt node N are considered, others are masked.
We discussed this in more detail previously, [4], [14].

B. Circuit-level Evaluation for SETTOFF
The SETTOFF circuit architecture was implemented in a

65nm technology. The proposed error-tolerant architecture in



4

SETTOFF was modeled in SPICE. A conventional D-type flip-
flop is used for the main flip-flop in SETTOFF. The power
consumption and performance (Clock-to-Q delay and setup
time) of SETTOFF was then measured by SPICE simulations,
with 1.2V supply voltage, and a 185MHz clock. Table I shows
the average power and performance overhead averaged over
different transition times and load capacitances. The power
consumption is measured with 10% activity rate, and the
overhead is relative to a conventional flip-flop with the same
drive strength.

TABLE I: Circuit-level evaluation results.

Power overhead Clk-to-Q delay overhead Setup time of FF
28.0% 15.3% not changed

The reliability of SETTOFF is also evaluated using fault-
injection and simulation in SPICE. Current sources are used
to simulate the collected charge induced by particle strikes at
circuit nodes. When sufficient charge is injected into a node,
it will produce an SET or an SEU, depending on whether the
node belongs to a combinational circuit or a storage element.
During the simulation, SEUs are injected into both the master
and slave latches of the main flip-flop in SETTOFF, and SETs
are injected at the input logic. The faults are injected at time
instances distributed across the entire clock period. Table II
shows the fault simulation results.

C. Register Architecture

The TRD and TD-based parts in SETTOFF provide both
SEU- and SET-tolerance for the main flip-flop. However,
the added error-tolerant architecture can itself be struck by
radiation particles and hence introduces extra vulnerability.
For the TRD part, radiation particle strikes can induce SEUs
in the error flip-flop, or SETs in the preceding comparator
in the TRD part. Such SEUs or SETs, if captured by the
error flip-flop, can generate a false Error SET signal at
the output of the TRD part. The false Error SET signal
invokes an unnecessary replay execution, but cannot corrupt
the system. The unnecessary replay operations only incur an
IPC overhead. Similarly, particle strikes in the TD-based part
may propagate to its output and hence induce an erroneous
Error SEU bar signal, which can then propagate through
the correction XOR-gate and corrupt the output of the flip-flop.
This section introduces a self-checking mechanism to address
this problem.

The architecture of an n-bit self-checking register is shown
in Fig. 3. It is constructed from n SETTOFFs and a self-
checker adapted from that in [4]. The self-checker can detect
soft errors that corrupt the TDs in each SETTOFF, by monitor-
ing the register output during the interval when TD is enabled.
One self-checker is used to monitor all the outputs of all the
SETTOFFs in the register through a parity checker. The parity
checker is constructed as an n-input XOR-tree. Any illegal
transitions occurring at the output of any single SETTOFF
will change the parity, and therefore will be detected. Upon
detection, the parity checker generates a transition at its output.

TABLE II: Transient fault injection simulation results for SETTOFF

Injected SETs 50 Injected SEUs 100
Captured SETs 41 Detected/corrected SEUs 100
Detected SETs 41

D0

Clk

Detection XOR

TD

Main

 flip-flop

SETTOFF

Clk TD

Main

 flip-flop

SETTOFF

Parity 

Checker

(XOR-

tree)

TD-checker

Detection XOR

n bits n bits

Qn-1

Dn-1

Q1

Qn-2

Q0

Self-checker

Error_SET0

Error_SETn-1

rising_tran

falling_tran

GF
Error_TD_final

Fig. 3: Architecture of an n-bit self-checking error-tolerant register.

Such transitions are then captured by the self-checker, which
asserts the Error TD final signal.

The transistor-level design of the TD-checker, Fig. 4, is
adapted from the transition detector built into SETTOFF [14].
The two delay chains of inverters and transmission gates
remain unchanged. The dynamic OR-gate for capturing the
implicit pulses generated by the delay chains is separated into
two branches, both driven by the system clock. During the
TRD interval, when the clock is high, nodes M1 and M2 are
charged, the TD-checker is disabled, and both of the outputs,
rising tran and falling tran, stay low. During the TD interval,
when the clock is low, the TD-based part of SETTOFF is
vulnerable to soft errors. Therefore, the two branches are both
enabled, to capture the pulses generated by the delay chain
for the rising and falling transitions, respectively. Any rising
transitions at the input of the TD-checker will discharge node
M1 through transistors d1 and d3, and thus will be signaled
at the output rising tran. Similarly, any falling transitions will
assert falling tran through the respective branch.

The TD-checker can distinguish correction glitches from
transitions caused by errors in the TD. A transition can only
assert one of the two outputs of the TD-checker. However, a
glitch consists of both a falling and a rising transition, and thus
will assert both outputs of the TD-checker. The two outputs,
rising tran and falling tran, are then XOR-ed to generate a
valid error signal, which is asserted when only one of its input
is high. The error signal will stay at 0 when both inputs are
0, or when both inputs are asserted due to a correction glitch.

Notice that there is a possibility that correction glitches
at the output of the register will propagate through the TD-
checker. This can be caused by the rising and falling transitions
not asserting the rising tran and falling tran signals at exactly
the same time. The time difference may lead to a positive
glitch appearing at the output of the XOR-gate. A Glitch Filter
(GF), [4], is used to filter out these glitches and generate the
final error signal Error TD final.



5

Input

d0

d3

d1 Vtg

1

d2

Vtg2

Clk
rising_tran

d3

d1
I1 I2 I3

TG1

TG2

M1

Delay chain for

 falling transitions 

Delay chain for rising transitions 

Clk
falling_tran

d2

d0
M2

Fig. 4: The transistor level design of the TD-checker.

D. Error-Tolerance Analysis of the Self-Checking Register

Table III summarizes the types of errors that may occur in
the proposed register; whether the errors can cause erroneous
outputs; whether they can be tolerated; and how they are
tolerated. The radiation induced transient faults affecting the
register can be categorized into 5 types: (1) captured SETs
originating from the preceding combinational logic. (2) SEUs
corrupting the output of the main flip-flop; (3) errors corrupt-
ing the TRD part; (4) errors corrupting the TD-based part; and
(5) errors corrupting the self-checker.

The captured SETs and the SEUs in the main flip-flop
can induce erroneous outputs at the register, but they can be
tolerated by the TRD and TD-based parts, respectively. As
discussed in Section III-C, errors corrupting the TRD part
can induce a false Error SET signal, which invokes an
unnecessary replay operation, but does not corrupt the output
of the register. Therefore, these errors do not need to be
addressed. The errors corrupting the TD-based part during the
TD interval affect the register output through the correction
XOR-gate, thus they are mitigated by the self-checker. The
self-checker can also be affected by radiation strikes. SEUs
can arise at the state-holding nodes, M1 and M2 of the TD-
checker, which will invert either of its outputs, rising tran
or falling tran, and generate a false Error TD final
signal (Fig. 4). As with the errors in the TRD part, the false
Error TD final signal does not corrupt the register output
since it will invoke a redundant recovery process. Therefore,
the self-checker does not need to be protected.

TABLE III: Error-tolerance analysis of the self-checking register.

Error type Output
Corrupt Tolerated Means

1. Captured SET Yes Yes TRD arch.
2. SEU in main ff Yes Yes TD-based arch.
3. Errors in TRD arch. No No none
4. Errors in TD-based arch. Yes Yes self-checker
5. Errors in self-checker No No none

The built-in TRD and TD-based parts in each SETTOFF in
the register allow the proposed register to tolerate an unlimited
number of Multiple-Bit Upsets (MBUs) in multiple main
flip-flops. The shared self-checker can also address MBUs

corrupting multiple TD-based parts during the same cycle.
This is because the first corruption will be detected, and the
recovery operation will then reset all the TDs in the register.
However, if an even number of upsets simultaneously corrupt
multiple TDs, they can escape detection since the parity of the
register output will not change.

E. Register Evaluation

To verify and evaluate the method at sub-system level, a
32-bit self-checking register based on SETTOFF2 was synthe-
sized in 65nm technology and simulated in SPICE. The supply
voltage was 1.2V. A 185MHz symmetric clock was used to
drive both the register (positive edge), and the error flip-flop
(negative edge) of the TRD part. The power consumption
of the self-checking register was compared to a conventional
register with the same operating conditions and drive strength.
With a 10% activity rate for a single bit, the average power
overhead of the proposed register is 33%, which is only a 5%
increase over SETTOFF2 without the self-checking capability
(Section III-B). In terms of area, a single SETTOFF2 requires
30 extra transistors. The proposed register only adds one self-
checker, shared between bits, thus the area overhead increase is
insignificant. Compared to a conventional register constructed
from flip-flops with 32 transistors each, the area overhead
of the 32-bit self-checking register is 136%. Since the self-
checker is not added to the signal path of the register, the
delay overhead of the register is comparable to that of a single
SETTOFF2, with an average value of 16.5%. Compared to a
technique such as TMR which induces over 200% power and
area overhead, the self-checking register requires over 30%
and 80% less area and power overhead, respectively.

A current source based fault-injection mechanism was used
to verify the reliability of the self-checking register. The
redundancies in the register are separated into 3 parts: the TRD
part, the TD-based part, and the self-checker. As described
in Section III-D, the TRD part and the self-checker are
not vulnerable to radiation strikes. Therefore, transient fault
injection and simulation was only carried out in the TD-based
part in each SETTOFF. Because only the errors flipping the
state held by the TD during the TD interval can corrupt the
output of the TD-based part in SETTOFF, a current source
was used to inject SEUs into the TD during the TD interval.



6

30 SEUs were injected into the TDs in each SETTOFF in
the register, thus a total of 940 errors were simulated. The
injection times of the SEUs were evenly distributed during
the TD interval. The simulation results show that of the 940
SEUs, 884 were detected by the self-checker, and only 56
errors (6%) escaped. The escapes are caused by the delay of
the parity checker, which causes the SEUs to reach the self-
checker outside the TD interval. The problem can be addressed
by using more self-checkers to reduce the number of the
SETTOFFs sharing each of them, since this would allow a
small parity checker with fewer levels of XOR-gates.

To validate the MBU-tolerant capability of the proposed reg-
ister, multiple faults were injected into the register to corrupt
multiple bits of the register simultaneously. The simulation
results demonstrate that all the MBUs are either individually
corrected on the fly at the outputs of the corrupted SETTOFFs,
or detected by the TRD parts incorporated in each bit.

Table IV compares the implementation overheads and error-
tolerance capabilities of several techniques for protecting a
32-bit register in 65nm technology. Notice that ECC is im-
plemented with SEC-DED (Single Error Correction Double
Error Detection) coding which requires 7 redundant bits for
a 32-bit register. The delay overhead of ECC is big due to
the large decoding block, therefore an extra cycle may be
required to reload the register for error correction. Due to
the C-element added into the signal path, the delay overheads
of FERST and BISER are similar to that of TMR. The area
overhead of BISER is small since it uses the existing scan
flip-flops as duplicates. STEM uses a variant of TMR which
removes the error correction from the signal path. The delay
overhead of STEM is small1. Compared with other techniques,
our proposed register incurs smaller overheads. In terms of
reliability, only the proposed register and STEM can tolerate
both SETs, SEUs, and TEs; and only the proposed register has
a self-checking capability. Errors occurring in the redundant
circuit of other techniques may either corrupt the cells directly
(e.g. FERST and BISER), or produce SET pulses (e.g. TMR,
ECC, and STEM).

IV. SELF-CHECKING HARDENED PIPELINE IN OPENRISC
The complete pipeline protection technique was realized in

the pipeline of an OpenRISC 1200 microprocessor [24]. This
is a 32-bit scalar RISC machine with a Harvard architecture
[24]. It has a 5-stage integer pipeline and a dual-port Register
File (RF) constructed from 32 general purpose registers. A
soft-error injection and analysis model has been developed to
evaluate the reliability of the microprocessor through gate-
level simulation. In this section, we present the design of
the microprocessor pipeline, the implementation procedure,
the evaluation methodology, and the results that show the
reliability of the protected processor and the error-tolerance
overhead.

A. Soft Error Vulnerability Analysis of the OpenRISC Pipeline

As discussed in Section I, the proposed technique aims
to provide a cost-effective soft error solution for a micro-

1The delay overhead of STEM was not reported by the authors in [11].

 Original 

flip-flop

ID IQ

Clk

Q

Clk

Error_trig

SEU 

injection 

block

D

Modified 

flip-flop

Error_trig

SET injection block

Fig. 5: The modified D flip-flop for error injection.

processor pipeline for use in non-safety-critical ground-level
applications, such as mobile devices. It is therefore important
to determine the most efficient way to incorporate the tech-
nique into the pipeline. This section analyses the soft error
vulnerability of the OpenRISC pipeline, on which the reliable
pipeline design is based.

The idea of the proposed pipeline protection technique is to
protect the registers within the pipeline using the self-checking
radiation-hardened register described in Section III. Only the
SETs and TEs captured by the registers can propagate through
the pipeline, therefore the pipeline protection technique can
address both types of soft error within the pipeline. However,
the large number of registers in the pipeline could mean big
overheads to protect them all. In order to achieve effective
protection, a system-level analysis was carried out to identify
the soft error vulnerability of different registers inside the
pipeline. The registers which are most vulnerable to soft errors
can then be selected for protection.

Mehdizadeh, et al presented an analysis of the fault effects
in the OpenRISC processor in [25]. They injected different
types of faults (such as stuck-at faults and bit-flips) into the
processor, and checked whether the execution results were
corrupted. Their results show that different units in OR1200
present different vulnerabilities to the injected faults. The
levels of vulnerability of different units are independent of
software execution. The register file unit, for instance, is al-
ways more vulnerable than the WB-multiplexer unit. Ebrahimi,
et al also presented an SER analysis of the OpenRISC pro-
cessor in 45nm technology [26]. Their results show that 75%
of the flip-flops within the microprocessor make negligible
contributions to the overall system SER, and by protecting
the most vulnerable 20% flip-flops, the system SER caused
by all the flip-flops can be reduced by 80%. They have also
shown that the level of vulnerability of the flip-flops, again,
has little dependency on different workloads. Based on these
observations, a system-level SER analysis was developed.

The system-level analysis was realized by using a dynamic
transient fault injection and analysis model developed from the
technique described in [27]. Transient faults were injected into
the flip-flops of the pipeline of the processor during gate-level
VHDL simulation. The simulation results were then collected
to statistically analyze the soft error effects in different parts
of the system.

Fig. 5 shows a D flip-flop cell modified for transient fault
simulation. Two fault injection blocks, one for SET injection,
and one for SEU injection are added. The SET injection block
consists of 2 modified inverters at the input of the flip-flop,



7

TABLE IV: Comparison of error-tolerance capability and overheads for 32-bit registers.

Self-checking Reg TMR ECC FERST BISER STEM DICE
Area overhead 136% 210% 206% 110% 24% 210% 100%

Power overhead 33% 210% 160% 100% 126% 210% 78%
Delay overhead 16.5% 70% 1 cycle 70% 70% - 67%
SET-tolerance YES NO NO YES NO YES NO
SEU-tolerance YES YES YES YES YES YES YES
TE-tolerance YES NO NO NO NO YES NO
Self-checking YES NO NO NO NO NO NO

such that the original input becomes an internal node, ID. The
actual input of the modified flip-flop, D, is the input of the
SET-injection block. SETs are modeled as transients at the
outputs of each inverter, which will propagate to the input of
the flip-flop. The SEU injection block is added to the output of
the flip-flop such that the original output becomes an internal
signal (IQ). The SEU injection block injects SEUs (i.e. bit-flip
errors) to the actual output of the modified flip-flop (Q), by
flipping the state of IQ.

The Error trig signal is used to activate pre-determined
faults in either of the fault injection blocks. When an SET is
activated, the SET injection block will produce an SET pulse
with pre-determined width at ID. When an SEU is activated,
IQ is inverted at Q to simulate the error, and the bit-flip is not
recovered until the flip-flop samples the new input D on the
rising-edge of the Clk, which will overwrite the bit-flip and
propagate IQ to Q.

Using this fault injection technique, an analysis was carried
out of the ORPSoc platform, which is the smallest-possible
reference system for the OpenRISC processor [24]. During
the simulation, a program was loaded into the processor and
a fault-free simulation was run to extract the correct program
outputs saved in the data memory. Afterwards, the processor
was reset and the same program run again with a single fault
(either an SET or an SEU) activated at a random time instance.
All the pre-determined faults in all the flip-flops within the
pipeline were activated one by one. When a fault propagated
and corrupted the final outputs stored in the data memory after
running the program, it was recorded as a visible soft error.

Fig. 6 shows the soft-error vulnerability results for different
registers within the pipeline, based on the execution of two
programs: quicksort and tak. Regardless of the workload, the
vulnerability levels of different registers is relatively constant.
The PC register shows the highest vulnerability. A total of
90 transient faults were injected into the PC register during
each program execution. 31 (37.8%) and 34 (34.4%) faults
caused corruptions in the execution results for quicksort and
tak, respectively. This is because faults occurring in the PC
can easily corrupt the pipeline execution by fetching erroneous
instructions. The flip-flops that store the control signals gen-
erated by the decoders in each stage of the pipeline present
the second highest vulnerability. This is because the control
signals are also critical for correct pipeline execution. Other
registers that present relatively high vulnerabilities are: the
registers that store the instruction for the ID (id insn) and IF
stages (if insn); the registers that store the operand for the
execution stage (op1 and op2); the RF; and the flag registers.

The registers that store the instructions in the EX (execu-

tion) stage (ex insn register) and the WB (write-back) stage
(wb insn register) had 0% vulnerability despite the injection of
198 transient faults in both benchmark executions. The reason
for this is that most of the control signals are decoded in the
IF and ID stages. The ex insn register is very rarely used for
instruction decoding in the EX stage, hence transient faults
occurring in the ex insn hardly affect the pipeline execution.
Similarly, wb insn is not used for the decoding process.
wb reg also manifested 0% vulnerability for both simulations.
This is because wb reg is only used for forwarding execution
results in the WB stage back into the pipeline. Most of the
time, the execution results written out from the WB stage are
stored in the RF, which is then read in the ID stage where the
execution results will be used for later instructions. Therefore
wb reg has a low vulnerability to radiation hits. It should be
noted that the low vulnerability of wb reg does not mean that
WB stage of OpenRISC is not susceptible to soft errors, since
the main storage in the WB stage, the RF and the flag registers
present high vulnerability.

B. The Radiation Hardened OpenRISC Pipeline

Based on the soft error vulnerability results presented in
Fig. 6, a pipeline protection technique was developed in the
OpenRISC 1200 microprocessor. The sequential cells, if insn,
id insn, if ctrls, id ctrls, ex ctrls, RF, flags, op1, op2, and
PC are selected for protection since they manifest the highest
vulnerabilities. The radiation hardened pipeline design of the
OpenRISC processor is shown in Fig. 7. All the combina-
tional logic blocks are represented by white boxes, while
the sequential blocks (including the flip-flops, registers, and
the caches) are represented by orange boxes. Notice that the
memory access (MEM) stage is optional and is only invoked
when a load or store instruction communicates with the data
cache. Otherwise, the instruction goes directly to the Write
Back (WB) stage after the Execution (EX) stage and writes
the execution results into the RF and the flag registers. The
blue boxes are the pipeline registers.

The pipeline architecture can be divided into speculative and
non-speculative domains. The speculative domain consists of
the IF, ID and EX stages of the pipeline. The registers and flip-
flops in the speculative domain commit speculative executions,
which do not change the architectural state of the pipeline until
the results are stored in the non-speculative domain in the WB
stage. The non-speculative domain consists of the registers
updated in the WB stage of the pipeline. These registers,
such as the RF and the flag registers, contain the intermediate
execution results and architectural states of the pipeline.



8

I-Cache

PC

id
_i

n
sn

Decoder

id-decoder

RF

id_ctrls

imm

op1

op2

op1

op2
ALU

MAC-
MUL

LSU

ex
_i

n
sn

D
-C

ac
h

e

ex-decoder

ex_ctrls

w
b

_i
n

sn

o
p

-m
u

x

w
b

-m
u

x

w
b

-r
eg wb_forward

data_w

IDIF EX WB
 

MEMIF/ID ID/EX
MEM/WB

EX/WB

SE
T_

sp
ec

pc_rb

stallpipe

flushpipe

restore

Error flip-flop 
for spec 

operations

SET_nonspec1

SET_nonspec2

SET_spec4

Erro
r_TD

_sp
ec6

Error_TD_spec5SET_sp
ec2

SET_spec1

SET_spec6

SET_nonspec1

SET_nonspec3

P
ip

el
in

e 
re

co
ve

ry
 

C
o

n
tr

o
l U

n
it

SE
T_

n
o

n
sp

ec

Self-checking radiation 
hardened register

TMR

OpenRISC

Pipeline

backup-Rd

flags

b
ac

ku
p

-
fl

ag
s

SET_n
o

n
sp

ec3

SET_nonspec2
Error flip-flop 
for non-spec 
operations

if
_i

n
sn

SET_spec1

ex
_c

tr
l

w
b

_c
tr

l

if-
decoder

if
_c

tr
l

SET_spec3

Speculative Domain Non-speculative Domain

N
o

n
-s

p
ec

u
la

ti
v

e

 D
o

m
ai

n

Error_TD_spec1

Error_TD_spec6

Error_TD_nonspec1

Error_TD_nonspec3
Error_TD_nonspec2

Er
ro

r_
TD

_s
p

ec

Er
ro

r_
TD

_n
o

n
sp

ec

Error_TD_spec1

Error_TD_nonspec2

Error_TD_spec2

Error_TD_spec3

Erro
r_TD

_sp
ec4

Error_TD_nonspec1

Error_TD_nonspec3

SET_sp
ec5

SET_sp
ec6

Fig. 7: The robust pipeline design of the OpenRISC processor

id_insn RF op1&op2 ctrl ffs flags if_insn genpc wb_reg ex_insn wb_insn
0%

5%

10%

15%

20%

25%

30%

35%

40%

L
e

v
e

l 
o

f 
V

u
ln

e
ra

b
ili

ty
 (

L
o

V
)

 

 

quicksort

tak

Fig. 6: Soft error vulnerability analysis for OpenRISC processor.

The vulnerable registers, if insn, id insn, op1, op2, the RF,
and the flag registers are all protected by the SETTOFF-
based self-checking radiation register architectures proposed
in Section III-C. The vulnerable flip-flops storing the control
signals between each pipeline stage, if ctrls, id ctrls, and
wb ctrls, are replaced by the SETTOFF architecture. In order
to realize the self-checking capability in these SETTOFF-
protected flip-flops, two self-checkers are added, with one
shared by the if ctrls and id ctrls flip-flops, and the other
shared by the wb ctrls flip-flops. The PC register is protected
by a TMR architecture since it is the most vulnerable part of
the processor.

All the Error TD signals from self-checkers for the registers
and flip-flops in the speculative domain are OR-ed together.
The resulting Error TD spec signal is fed into the pipeline
recovery control unit to trigger corresponding recovery oper-
ations. Similarly, the Error TD signals from self-checkers for
the registers and flip-flops in the non-speculative domain are
also OR-ed together and fed into the control unit.

The Error SET signals generated from the TRD part of the

SETTOFFs in each register are OR-ed together. Meanwhile,
the Error SET signals generated from the flip-flops storing
the control signals in the IF stage, ID stage, and EX stage are
also OR-ed together. The resulting signals from these OR-ed
Error SET signals are shown by the red dashed arrows. The
Error SET signals generated by the registers and flip-flops in
the speculative domain (including SET spec1 to SET spec6)
are further OR-ed together, and the final result is fed into a
shared error flip-flop for speculative operations. Similarly, the
Error SET signals generated by the registers and flip-flops
in the non-speculative domain (including SET nonspec1 to
SET nonspec3) are further OR-ed together, and the results are
fed into a shared error flip-flop for non-speculative operations.
Rather than generating a new delayed clock, we simply used
the falling edge of the system clock to drive both of the error
flip-flops. Certain constraints need to apply to the TRD part to
effectively address SETs. The realization of a sufficient TRD
interval, and the approach for meeting the constraints required
by the TRD part are further considered in Section V-B. Notice
that the two error flip-flops only capture SET error signals
during the write cycle of the registers when the TRD parts are
enabled. The two error signals, SET spec and SET nonspec,
are fed into a pipeline recovery control unit which controls the
recovery operations within the pipeline. The principle of the
recovery operations for the errors detected by the TRD parts
are described in Section IV-C.

Two back-up registers, backup rd and backup flag, are
added to back up the destination register in the RF and the
flag register, which are updated by the instructions in the WB
stage. The backed-up data is used for restoring the RF and
flag registers during the recovery operations for registers that
are updated during the WB stage (see Section IV-C for details
of the replay operation). Both of the back-up registers are



9

protected by TMR.

C. Error-Tolerance Operation in the Pipeline Architecture

Soft errors inside the pipeline can be randomly located.
However, they can be categorized into 3 types:

1) SEUs that corrupt data stored in the registers.
2) SET pulses that are produced by the combinational logic.
3) Soft errors occurring in the redundant circuitry added

for error-tolerance.
As discussed in the previous sections, errors of type (1) can

be detected and recovered on the fly at circuit level, therefore
no extra recovery operations are required.

For type (2) errors, the SETs occurring in each stage
of the pipeline will be detected by the radiation-hardened
registers incorporated in the corresponding stage when they are
captured. An architectural recovery operation is then required
for correcting such SETs. As is suggested by the two SET error
signals (SET spec and SET nonspec) generated from the two
flip-flops, there are two types of architectural replay recovery
operations which re-execute the instruction in either the EX
stage or the WB stage, depending on the following three cases:

Case (1): If an SET occurs in the IF or ID stage of the
pipeline, it will be detected by the SETTOFF-based sequential
cells incorporated in the speculative domain of the pipeline.
The detection of such SETs will assert the SET spec error
signal, which will trigger a replay operation at the beginning of
the following cycle, before the SET contaminates the register
file and the flag registers in the non-speculative domain.
Since in this case, the SET only corrupts the speculative
operations, and none of registers storing the architectural state
of the pipeline are affected, the replay operation for case (1)
will simply flush the entire pipeline, re-fetch and re-execute
the instruction in the execution stage (i.e. the instruction in
ex insn) to overwrite the captured SET.

Fig. 8 shows an example timing diagram for the recovery
process of an SET captured by the id insn (Case (1)). PCn
stands for the PC value for instruction INSNn. Here the INSN3
captured by the id insn at the rising clock edge of cycle
3 is corrupted by an SET occurring in the decoder in the
IF stage. If the pipeline is unprotected, the ID stage of the
pipeline will decode the erroneous INSN3 stored in id insn
during cycle 3, and generate erroneous control signals to
corrupt the execution stage. The corrupted execution results
will then be forwarded to the registers in the non-speculative
domain (RF, flag registers, and wb reg). However, in the
protected pipeline, the captured SET is detected by the TRD
part in id insn at the falling clock edge of cycle 3, which
asserts the SET spec signal in the error flip-flop for speculative
operations. The SET spec signal then triggers the recovery
operation for Case (1). The recovery operation asserts the
flushpipe signal, which flushes all the pipeline registers at the
rising clock edge of cycle 4 to prevent the erroneous execution
from propagating. The stallpipe signal is also asserted to stall
the pipeline and disables all the registers from updating the
results from executing the instruction INSN3 stored in ex insn
in cycle 4. The PC is rolled back to the PC value in the EX
stage (i.e. the PC2), by the PC rb signal. When the new PC

value becomes available at cycle 6, the pipeline starts fetching
the new instruction and normal operation resumes (the NOP
instruction does not contain any valid executions). The SET is
not repeated in the IF stage during the re-execution in cycle
8, so that id insn captures the correct INSN3 after the replay.
The recovery process for Case (1) ensures that the errors in
all pipeline registers in the speculative domain are overwritten
during re-execution to prevent them corrupting the WB stage.

Case (2): If an SET occurs in the EX stage, it can corrupt
the non-speculative registers, such as the RF, the flag register,
and the wb ctrl flip-flops during the WB cycle. The recovery
operation in this case will re-execute the instruction in the
WB stage (i.e. the instruction in wb insn) to re-write the RF,
the flag register, and the wb ctrl flip-flops. However, unlike
the replay operation in Case (1), the intermediate data and the
architectural state of the pipeline might have been corrupted
by the SET. These data and pipeline states may be used as
operands or other operation conditions during the re-execution.
Therefore for Case (2), the RF and the flag register need
be restored using their back-up registers before the recovery
operation is committed.

Fig. 9 depicts an example timing diagram for the recovery
process of an SET captured by the RF (Case (2))2. When
the execution in the EX stage is about to write its results
into the destination register (Rd) in RF and the flag register,
both Rd and the flag register are saved into their back-up
registers before they are updated. resultn and flagn stand for
the execution results and the flags generated by the INSNn in
the EX stage. In cycle 3, the captured result4 in Rd is corrupted
by an SET occurring in the EX stage. The SET nonspec signal
is asserted upon detection which invokes the recovery process
for Case (2). The pipeline is flushed and stalled while the PC
is rolled back to the PC value in the WB stage (i.e. PC4), to
re-fetch and re-execute the instruction in wb insn (i.e. INSN4)
which corrupts the RF. In addition, Rd and the flag register are
restored by the back-up registers in cycle 4 to ensure that the
system state is consistent with the original execution during
the re-execution. In cycle 10, Rd is re-updated and recovered
by the re-execution. The recovery process for Case (2) ensures
that the all SETs captured in the WB cycle can be mitigated.

Case (3): A third circumstance happens when a captured
SET is detected while a branch instruction is executing. Fig.
10 shows the timing diagram for Case (3). PC2(brc) is the PC
value for the branch instruction brc. PC100 is the branching
address. In OpenRISC, the branch operation is committed in
the ID stage to force the PC to jump to the branching address.
Therefore an invalid PC (PC3(dg)) is forwarded into the
pipeline before the branching PC, to fetch INSN3. A dangerous
situation can happen if an error is detected when INSN3 is in
the ex insn. In this case, re-fetching the instruction in ex insn
only forwards PC3(dg) into the pipeline, therefore the branch
instruction stored in PC2(brc) will not be executed during the
replay. This results in the branch operation not being detected
during the re-execution, such that the processor fails to jump to
the branching address. The problem is solved by monitoring

2Control signals (flushpipe, stallpipe, PC rb) are not shown in Fig. 9 since
they operate as shown in Fig. 8.



10

Clk

INSN1 INSN2

INSN1ex_insn NOP

INSN1wb_insn NOP

SET_spec

flushpipe

stallpipe

PC3 PC4 PC5PC PC2

NOP

PC2

NOP

NOP

NOP

PC3

INSN2

NOP

NOP

INSN0

INSN0

INSN0

INSN3

PC4 PC5

INSN2 INSN3

INSN4

NOP INSN2

PC_rb

1 2 3 4 5 6 7 8 9

INSN2

PC6

10

recovered
id_insn INSN3

INSN2 INSN3 NOP NOP INSN2INSN1 INSN3 INSN4 INSN5if_insn INSN4

NOP

NOP

NOP

Fig. 8: Timing diagram of the pipeline recovery operation for Case (1)

Clk

INSN5id_insn NOP

INSN5ex_insn NOP

wb_insn NOP

SET_nonspec

PC6 PC7 PC8PC PC5 PC4

NOP

NOP

NOP

PC5

NOP

NOP

NOP

INSN4

INSN4

INSN4

PC6 PC7

INSN4 INSN5

NOP INSN4

NOP NOP

1 2 3 4 5 6 7 8 9

INSN6

backup-Rd result3

Rd

backup-flag

flag

INSN3

INSN3

INSN3

INSN2

INSN2INSN1

result3result2 result3

result2

flag2 flag3

flag2

flag4

flag3

flag3

PC8

INSN6

INSN5

INSN4

result4

flag4

PC9

INSN7

INSN6

INSN5

result5

flag4

flag5

result4

10 11

restore Rd

restore flag

result4
recovered

INSN6if_insn NOP NOPINSN5 INSN4 INSN5INSN7INSN4 INSN6 INSN7 INSN8

Fig. 9: Timing diagram of the pipeline recovery operation for Case (2)

the branch operation within the pipeline, and when such a
situation occurs, the branch PC in the WB stage (PC2(brc)
in this case) is replayed as is shown in Fig. 10. The error is
corrected in cycle 11 in id insn.

Most of the SETs detected by the TRD part are transient
errors that will not occur again during the re-execution. In such
cases, the recovery process can successfully recovers the error
at one time. If other SETs occur during the replay operation,
they will be detected and will trigger further replays until no
error is detected.

Errors of type (3) include errors that corrupt the TRD part;
the TD-based part; and the self-checker.

The errors that corrupt the TD-based part are detected by the
self-checkers, which will also be recovered by the replay re-
covery mechanism for errors of type (2). The errors generated
from the speculative domain will assert the Error TD spec
signal (see Fig. 7), which will then trigger a replay execution
to flush the pipeline, re-fetch and re-execute the instruction in
the EX stage. The errors from the non-speculative domain will
assert the Error TD nonspec signal, which triggers a replay
execution that replays the instruction in the WB stage. During
both replay operations, all the pipeline registers and flip-flops
storing the control signals will be re-written, such that all the
TD-based parts in these cells are reset. The errors generated
from the TD-based part of these cells will be recovered after
the replay, when normal operation can resume. Nevertheless,

if an error is detected from the TD-based parts in the RF
or the flag register, the Error TD signal will also trigger a
reset signal to reset the TD-based parts in the corresponding
register which generates the error, besides triggering the replay
operation. This is because the RF and the flags might not be
updated during the replay, such that the reset of TD may not be
triggered automatically. The erroneous TD-based part can stay
corrupted unless the reset operation for the TD is explicitly
executed.

The errors corrupting the TRD part and the self-checker may
produce a faulty error signal, triggering an unnecessary recov-
ery process. However, such errors do not corrupt the pipeline
execution results. Therefore, no extra recovery operations are
involved.

V. EXPERIMENTAL SETUP AND RESULTS

A. Implementation Details and Error-tolerance Overheads

The OpenRISC processor with the proposed radiation hard-
ened pipeline architecture was synthesized to a 65nm technol-
ogy, with 1.2V supply voltage and 185MHz clock frequency.
The transistor level implementation of SETTOFF and the
self-checker which construct the radiation hardened register
architecture, were characterized as new cells using Synopsys
Liberty NCX. The behavioral model of the OpenRISC 1200
processor was re-designed to incorporate the new pipeline
architecture described in Section IV, and was then synthesized



11

Clk

INSN1 brc INSN3

INSN1

if_insn

id_insn NOP

INSN1ex_insn NOP

wb_insn NOP

SET_spec

flushpipe

stallpipe

PC2(brc) PC3(dg)PC PC1

NOP

PC2(brc)

NOP

NOP

NOP

NOP

PC3(dg)

brc

NOP

NOP

NOP

INSN0

INSN0

INSN0

INSN0

INSN3

PC100 PC101

brc INSN3

INSN100

NOP brc

NOP NOP

PC_rb

1 2 3 4 5 6 7 8 9

brc

PC102

INSN101

INSN3

brc

10

PC100

INSN100

brc

INSN1

PC101

INSN101

INSN100

INSN3

brc

INSN100

11 12

INSN3

PC102

Fig. 10: Timing diagram for pipeline register recovery with branch instruction (Case 3)

to cell level using the characterized technology library. The 32-
bit pipeline registers and the registers in RF were replaced by
the 32-bit proposed radiation hardened registers. Gate-level
simulation was carried out, based on the ORPSoc platform
which provides the smallest-possible reference system for
testing the processor [28].

The implementation details of the SETTOFF2-based
radiation-hardened OpenRISC processor are summarized in
Table V. The results come from evaluating only the core of
the processor; the power consumption and area of other parts
of the processor, such as the caches and memory were not
considered. The total error-tolerance area overhead and power
overhead for the radiation-hardened OpenRISC processor are
26.7% and 17.8%, respectively, and break down as follows:
the incorporated replay recovery architecture and the TRD
circuitry of all SETTOFF2s incur 13% more area and 2.4%
more power consumption. A total of 956 buffers were inserted
into the pipeline to achieve the timing constraint for the TRD
parts. The inserted buffers incur 1.5% extra area and 0.5%
more power consumption in respect to the whole processor
core. A total number of 1219 SETTOFF2s and 39 self-
checkers were incorporated. These self-checking architectures
incur an area overhead of 12.1% and a power consumption
overhead of 14.7%. The system-level implementation overhead
is analyzed and compared with other techniques in Section
V-D.

B. Setting TRD and TD Intervals and Clock Management

Only one clock is used for driving both the system flip-flops
(by using the positive clock edge), and the error flip-flops
in the TRD part (by using the negative edge of the clock).
The TRD and TD intervals of the incorporated SETTOFF
architectures are hence decided by the frequency and the duty
cycle of the clock.

The choice of the TRD and TD intervals is based on
providing desirable SET and SEU coverage. The two intervals
formed by the two clock phases represent a trade-off between
SET- and SEU-tolerant capabilities. A bigger TRD interval
allows more SETs with bigger widths to be addressed, while
a bigger TD interval can detect and correct more SEUs on
the fly. Since the SEUs that are not corrected during the TD

TABLE V: Radiation hardened processor implementation details

Technology node 65nm
Frequency 185MHz
Supply Voltage 1.2V
Temperature 25◦C
Total Area (µm) 121939
Total Power (mW) 22.4
No. of SETTOFF2s incorporated 1219
No. of self-checkers incorporated 39
Area Overhead of the self-checking arch. 12.1%
Power Overhead of the self-checking arch. 14.7%
Replay Recovery Area Overhead 13%
Replay Recovery Power Overhead 2.4%
Number of Buffers inserted for TRD 956
Buffer Area Overhead 1.5%
Buffer Power Overhead 0.5%
Total Error-tolerance Area Overhead 26.7%
Total Error-tolerance Power Overhead 17.8%

interval will still be addressed during the TRD interval, the
aim is then to provide a sufficient TRD interval to efficiently
reduce both the SET and SEU failure rate of the SETTOFF.
The widths of the potential SET pulses are the main factors
for determining the TRD interval. As reported in [29], the
mean and the standard deviation of the width of the SET
pulses in 65nm technology are 530ps and 150ps, respectively.
According to the circuit-level evaluation results for SETTOFF
presented in [14], a minimum 800ps TRD interval was chosen
because it can reduce the SET failure rate of the SETTOFF
to 0 in 65nm technology. With an 800ps TRD interval, the
SEU failure rate of the SETTOFF is also reduced to 0 since
it covers all the correction glitches.

Finally, buffers were inserted into the shortest path of
the combinational logic in each pipeline stage to satisfy the
shortest path constraint of the TRD technique for all the incor-
porated radiation-hardened cells. The buffers that provide the
maximum delay with minimum power consumption and area
occupation were chosen to minimize the incurred overhead.

C. Reliability Analysis for the Radiation Hardened Processor

The reliability and the implementation overheads of the pro-
posed radiation-hardened processors were evaluated through
gate-level simulations. The transient fault injection technique



12

TABLE VI: Reliability analysis results for the radiation hardened OpenRISC

Faults injected into the original cells Faults injected into the
redundancies

Program 4050 1411
Errors in original

OpenRISC
Errors in radiation hardened

OpenRISC
Errors in radiation hardened

OpenRISC
quicksort 306 0 0

tak 305 0 0
matrix multiplication 354 0 0

and the simulation methodology used for analyzing the error
vulnerability of the original OpenRISC described in Section
IV-A were used for evaluating the reliability of the radiation-
hardened processor. However, besides injecting transient faults
into the original cells, the same method was also used to inject
transient faults into the redundant circuitry of the processor
added for error-tolerance. To be specific, the transient faults
injected into the redundant circuitry include:

• SEUs injected into the transition detectors to corrupt the
TD-based parts in SETTOFFs.

• SEUs injected into the error flip-flops to corrupt the TRD-
based parts in SETTOFFs.

• SEUs injected into the TD-checkers to corrupt the self-
checkers in the self-checking registers.

• SEUs injected into the backup registers for the RF and
flag register.

Three programs, quicksort, tak and a matrix multiplication
program, were used for the fault simulation. The evaluation re-
sults are compared with the reliability results of an unprotected
OpenRISC processor. Table VI shows the number of transient
faults injected into each processor and the visible errors
occurring in the data memories after running the programs.
The same 4050 faults (including both SETs and SEUs) were
injected into the original cells of each of the two processors.
In order to carry out a comprehensive fault analysis and
reliability evaluation, the locations of these faults cover all
the vulnerable registers (the ones identified in Section IV-A)
inside the pipeline. Also, the occurrence times of the injected
faults are randomly distributed across the entire clock cycle,
and both SETs and SEUs were simulated for each bit of the
vulnerable registers. All the injected faults incur 306, 305, and
354 errors in the original processor for the quicksort, tak, and
matrix multiplication programs, respectively. All these errors
however, are mitigated in the protected OpenRISC processor.
Specifically, 287 errors of the 306 errors occurring in the
quicksort program were recovered on the fly, while the rest (19
errors) were recovered by replay operations. Of the 305 errors
occurring in the tak program, 290 were recovered on the fly
and 15 errors were recovered through the architectural replay.
344 of the 354 error occurring in the matrix multiplication
were recovered on the fly and the other 10 errors were
recovered by the replay operations. In addition, the transient
faults injected into the redundant circuitry in the protected
processor were also tolerated and did not induce any soft errors
into the outputs of the programs.

D. Comparison with Razor and SEM/STEM Pipeline Protec-
tion

Both the RazorII pipeline protection technique and our
proposed pipeline protection technique utilize an architectural
replay recovery operation, which costs extra operation cycles
and induces an IPC overhead. However, in our pipeline pro-
tection technique, most of the SEUs were detected in the TD
interval and are recovered on the fly. As the fault-injection
results showed in Section V-C, 93.8%, 95.1%, and 97.2% of
the injected faults were recovered on the fly for quicksort,
tak, and matrix multiplication programs, respectively. The
replay operation is only triggered at a fairly low rate, at an
average of 4.6% for the three programs. This is because replay
is only required for correcting the captured SETs or TEs
during the TRD interval. RazorII uses a conventional replay
recovery mechanism and all the errors are recovered through
re-execution. This means that the RazorII technique would
need to recover 100% of the detected errors by using the replay
operation. Therefore, the proposed pipeline protection induces
a much smaller IPC overhead than the conventional replay
recovery mechanism used in RazorII.

On the other hand, RazorII and SEM/STEM pipeline pro-
tection techniques cannot protect the WB stage of the pipeline
and the registers that store the architectural states of the system
during the WB stage, such as the RF and the flag registers.
This is because RazorII cannot efficiently address SEUs, and
the error-tolerance overhead is too big for SEM/STEM to
protect the RF. Instead, they typically use a stabilizer buffer
or register before the WB stage to make the WB stage non-
timing-critical. Therefore the TEs occurring in the WB stage
are not considered. This also guarantees that no errors are
forwarded into the RF during the recovery process since
the RF does not have SET/TE tolerance capability (see [30]
[11] [13]). However, SETs occurring during the WB write
cycle can still corrupt the registers that are updated during
the cycle. The proposed pipeline protection eliminates this
extra stabilizer and shrinks the pipeline depth compared with
the previous pipeline protection techniques. Both the SETs
occurring during the WB write cycle, and the SEUs occurring
in the registers updated during the WB write cycle are tolerated
by the incorporated proposed registers.

In terms of implementation overheads, the results in our
previous paper show that a single SETTOFF has less or
similar area, performance, and power consumption overheads
compared to other radiation hardened techniques [14]. Specif-
ically, the power overhead of SETTOFF is 28%, which is
comparable to RazorII (28.5% to 30%). The replay recovery



13

TABLE VII: The SEU-tolerant capabilities of the self-checking
register-protected RF and the SEC-DED-protected RF (D: Detection.
C: Correction).

No. of SEU-induced MBUs 1 bit 2 bits more than 2 bits
SEC-DED-protected RF D + C D N/A

Self-checking RF D + C D + C D + C

feature implemented in the SETTOFF-protected pipeline is
similar to that used for Razor pipeline protection, therefore the
implementation overheads incurred by the two replay features
should also be comparable (although the replay feature in
SETTOFF technique is much less frequently triggered since
most faults are recovered on the fly). Razor used ECC for pro-
tecting the RF, therefore the power consumption overhead of
the RF will be significantly larger than that of the SETTOFF-
based pipeline protection, but the area overhead in Razor RF
could be smaller. (See Section V-E for detailed RF overhead
numbers.) The overall pipeline protection overheads of the two
techniques should be comparable based on these observations.
The SEM/STEM pipeline protection technique induces a much
bigger overhead, similar to TMR.

E. Comparison with ECC-based RF protection

It has been demonstrated that the our radiation hardened reg-
ister can efficiently protect the RF. The most commonly used
ECC is SEC-DED coding which can correct single bit errors
and detect double errors. Although a later SEC-DED coding
technique, [31], improved the multiple-bit error-tolerance ca-
pability, it requires a large number of parity bits and therefore
induces high area and power overheads. Compared with the
conventional SEC-DED RF protection technique, the proposed
RF protection significantly improves the MBU-tolerance ca-
pability since each bit inside the protected RF has its own
built-in error-tolerant circuitry. In addition, previous research
indicates that the majority of MBUs occurring in the RF are
caused by the captured SETs originating in the combinational
gates (such as the read and write logic) in the RF [32]. This is
because the combinational logic has a high degree of fanout,
and the majority of the cell area within the RF is consumed
by the read and write logic. As a result, the proposed pipeline
technique can provide a noticeably better error-tolerance than
ECC, since ECC is not SET-tolerant.

Table VII summaries the error-tolerance capability of the
2 register files. The SETTOFF technique can provide better
MBU-tolerance than the SEC-DED coding technique.

TABLE VIII: Implementation overheads of the robust RFs in 65nm.

Overheads (%) Area Power Performance
Proposed RF 78% 46% 15.2%

SEC-DED-protected RF 30% 90% 470%

The implementation overheads of the two techniques for
protecting the 32×32-bit RF in the OpenRISC are summarized
in Table VIII. The ECC-protected RF is implemented with
the SEC-DED code, which can correct single-bit errors and
detect double-bit errors. Assuming a 10% activity rate for each

bit, the SEC-DED-protected RF incurs an average 90% power
overhead during a write cycle, while the proposed register
consumes an average of 46% extra power. The self-checking
RF incurs a delay overhead of 15.2% due to the extra loads
added for error-tolerance. The delay overhead of the SEC-
DED-protected RF is big due to the large decoding block
at the read port, therefore extra cycles may be required to
reload the register for error correction. The area overheads
of the two robust RFs are estimated based on the number
of transistors. For protecting a conventional 32×32-bit RF
that is constructed with 11618 equivalent NAND-gates, the
SEC-DED technique requires 3442 extra equivalent NAND-
gates whereas the SETTOFF technique requires 9106 extra
equivalent NAND-gates. It should be noted that these results
are derived for an RF with only 1 read port. The area and
power overhead of the SEC-DED technique will increase
significantly for protecting an RF with multiple read ports.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a complete pipeline protection
mechanism realized on an OpenRISC microprocessor. The
pipeline protection is achieved by incorporating SETTOFF-
based self-checking cells into the most vulnerable sequential
cells of the pipeline. A pipeline replay recovery mechanism is
also developed at the architectural level to recover the errors
detected by the hardened cells. The entire pipeline is protected,
both SETs and SEUs occurring in each stage of the pipeline are
detected by fault-tolerant cells in the corresponding stages. The
proposed robust OpenRISC microprocessor was implemented
in 65nm technology for evaluation. A cell-level transient fault
injection and simulation technique was used to automatically
inject SETs and SEUs into different parts of the pipeline
and to record errors caused by the injected faults. The fault
simulation results show that the proposed processor pipeline is
robust to both SEUs and SETs occurring in different pipeline
stages. The overheads of proposed technique for protecting
the pipeline registers are smaller than or comparable to the
previous low-cost techniques, while the power and perfor-
mance overhead for protecting the RF is noticeably smaller
than conventional ECC. Future work will focus on developing
reliable systems which can satisfy both aggressive power and
performance requirements.

REFERENCES

[1] M. Favalli and C. Metra, “TMR voting in the presence of crosstalk faults
at the voter inputs,” Reliability, IEEE Transactions on, vol. 53, no. 3,
pp. 342 – 348, Sept. 2004.

[2] P. Montesinos, W. Liu, and J. Torrellas, “Using register lifetime predic-
tions to protect register files against soft errors,” in Dependable Systems
and Networks, 2007. DSN ’07. 37th Annual IEEE/IFIP International
Conference on, 2007, pp. 286–296.

[3] T. Slegel, I. Averill, R.M., M. Check, B. Giamei, B. Krumm, C. Kry-
gowski, W. Li, J. Liptay, J. MacDougall, T. McPherson, J. Navarro,
E. Schwarz, K. Shum, and C. Webb, “IBM’s S/390 G5 microprocessor
design,” Micro, IEEE, vol. 19, no. 2, pp. 12–23, 1999.

[4] Y. Lin and M. Zwolinski, “A Cost-Efficient Self-Checking Register Ar-
chitecture of Radiation Hardened Designs,” in International Symposium
on Circuits and Systems (ISCAS), 2014.

[5] N. Seifert, B. Gill, V. Zia, M. Zhang, and V. Ambrose, “On the Scal-
ability of Redundancy based SER Mitigation Schemes,” in Integrated
Circuit Design and Technology, 2007. ICICDT ’07. IEEE International
Conference on, 2007, pp. 1–9.



14

[6] S. Buchner, M. Baze, D. Brown, D. McMorrow, and J. Melinger,
“Comparison of error rates in combinational and sequential logic,”
Nuclear Science, IEEE Transactions on, vol. 44, no. 6, pp. 2209 –2216,
Dec. 1997.

[7] T. Calin, M. Nicolaidis, and R. Velazco, “Upset hardened memory design
for submicron cmos technology,” Nuclear Science, IEEE Transactions
on, vol. 43, no. 6, pp. 2874 –2878, Dec. 1996.

[8] S. Whitaker, J. Canaris, and K. Liu, “Seu hardened memory cells for a
ccsds reed-solomon encoder,” Nuclear Science, IEEE Transactions on,
vol. 38, no. 6, pp. 1471–1477, 1991.

[9] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Robust system
design with built-in soft-error resilience,” Computer, vol. 38, no. 2, pp.
43–52, 2005.

[10] M. Fazeli, S.-G. Miremadi, A. Ejlali, and A. Patooghy, “Low energy
single event upset/single event transient-tolerant latch for deep submi-
cron technologies,” Computers Digital Techniques, IET, vol. 3, no. 3,
pp. 289–303, 2009.

[11] N. Avirneni and A. Somani, “Low overhead soft error mitigation
techniques for high-performance and aggressive designs,” Computers,
IEEE Transactions on, vol. 61, no. 4, pp. 488 –501, Apr. 2012.

[12] L. Anghel and M. Nicolaidis, “Cost reduction and evaluation of a
temporary faults detecting technique,” in Design, Automation and Test
in Europe Conference and Exhibition. Proceedings, 2000, pp. 591 –598.

[13] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull,
and D. Blaauw, “RazorII: In situ error detection and correction for PVT
and SER tolerance,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 1,
pp. 32 –48, Jan. 2009.

[14] Y. Lin, M. Zwolinski, and B. Halak, “A Low-Cost Radiation Hardened
Flip-Flop,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2014.

[15] S. Lin, Y.-B. Kim, and F. Lombardi, “Design and performance evaluation
of radiation hardened latches for nanoscale cmos,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 19, no. 7, pp.
1315–1319, July 2011.

[16] R. Garg, N. Jayakumar, S. Khatri, and G. Choi, “Circuit-level design
approaches for radiation-hard digital electronics,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 17, no. 6, pp.
781–792, June 2009.

[17] K.-C. Wu and D. Marculescu, “A low-cost, systematic methodology for
soft error robustness of logic circuits,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 21, no. 2, pp. 367–379, Feb
2013.

[18] D. Alnajjar, H. Konoura, Y. Ko, Y. Mitsuyama, M. Hashimoto, and
T. Onoye, “Implementing flexible reliability in a coarse-grained recon-
figurable architecture,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 21, no. 12, pp. 2165–2178, Dec 2013.

[19] H.-M. Chou, M.-Y. Hsiao, Y.-C. Chen, K.-H. Yang, J. Tsao, C.-L. Lung,
S.-C. Chang, W.-B. Jone, and T.-F. Chen, “Soft-error-tolerant design
methodology for balancing performance, power, and reliability,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. PP,
no. 99, pp. 1–1, 2014.

[20] G. Yan, Y. Han, and X. Li, “Svfd: A versatile online fault detection
scheme via checking of stability violation,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 19, no. 9, pp. 1627–1640,
Sept 2011.

[21] C.-H. Chen, D. Blaauw, D. Sylvester, and Z. Zhang, “Design and
evaluation of confidence-driven error-resilient systems,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 22, no. 8,
pp. 1727–1737, Aug 2014.

[22] M. Fazeli, A. Namazi, and S. Miremadi, “Robust register caching: An
energy-efficient circuit-level technique to combat soft errors in embed-
ded processors,” Device and Materials Reliability, IEEE Transactions
on, vol. 10, no. 2, pp. 208 –221, June 2010.

[23] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue
nanometer technologies,” in VLSI Test Symposium, 1999. Proceedings.
17th IEEE, 1999, pp. 86 –94.

[24] OpenCores, “OpenRISC 1000 architecture manual,” Apr. 2006. [Online].
Available: http://opencores.org/openrisc,overview

[25] N. Mehdizadeh, M. Shokrolah-Shirazi, and S. Miremadi, “Analyzing
fault effects in the 32-bit openrisc 1200 microprocessor,” in Availability,
Reliability and Security, 2008. ARES 08. Third International Conference
on, Mar. 2008, pp. 648 –652.

[26] M. Ebrahimi, A. Evans, M. Tahoori, R. Seyyedi, E. Costenaro,
and D. Alexandrescu, “Comprehensive analysis of alpha and neutron
particle-induced soft errors in an embedded processor at nanoscales,”
in Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014, March 2014, pp. 1–6.

[27] M. Zwolinski, “A technique for transparent fault injection and simula-
tion,” Microelectronics Reliability, pp. 797–804, 2000.

[28] J. Baxter, “ORPSoC - OpenRISC Reference Platform SoC.” [Online].
Available: http://opencores.org/openrisc,orpsocv2

[29] R. Harada, Y. Mitsuyama, M. Hashimoto, and T. Onoye, “Measurement
circuits for acquiring set pulsewidth distribution with sub-fo1-inverter-
delay resolution,” in Quality Electronic Design (ISQED), 2010 11th
International Symposium on, 2010, pp. 839–844.

[30] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: a low-power
pipeline based on circuit-level timing speculation,” in Microarchitecture,
2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International
Symposium on, Dec. 2003, pp. 7 – 18.

[31] P. Reviriego, S. Pontarelli, A. Evans, and J. Maestro, “A class of sec-
ded-daec codes derived from orthogonal latin square codes,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 23, no. 5,
pp. 968–972, May 2015.

[32] J. A. Blome, S. Gupta, S. Feng, and S. Mahlke, “Cost-efficient soft error
protection for embedded microprocessors,” in Proceedings of the 2006
International Conference on Compilers, Architecture and Synthesis for
Embedded Systems, ser. CASES ’06. ACM, 2006, pp. 421–431.

Yang Lin received his B.S. degree in electronic
information science and technology from Jilin Uni-
versity, China, in 2009, and MSc degree with distinc-
tion in System on Chip in 2010 from the University
of Southampton, UK, where he has been working
towards a Ph.D. degree since October 2010. His
research interests include fault-tolerant design tech-
niques and methodologies.

Mark Zwolinski received the B.Sc. degree in elec-
tronic engineering and the Ph.D. degree in electron-
ics from University of Southampton, Southampton,
U.K., in 1982 and 1986, respectively. He is cur-
rently a Professor in the School of Electronics and
Computer Science, University of Southampton. He
has authored two textbooks and has co-authored a
third. He has written over 180 papers in the areas of
EDA and test. His current research interests include
high-level synthesis, fault tolerance, and behavioral
modeling and simulation. Dr. Zwolinski is a Fellow

of IET and BCS and Senior Member of IEEE and ACM.

Basel Halak received his B.S. degree from the
school of Electronics Engineering in Damascus Uni-
versity, Syria in 2001, and his MSc and PhD degrees
in Microelectronics system design from Newcastle
University, UK in 2005 and 2009, respectively. In
2011, he joined the University of Southampton, UK,
where he is currently pursuing his research interests
in dependable systems on a chip, fault tolerance
techniques, and VLSI circuits for communications.
He has published a monograph and more than 25
refereed papers.


