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Abstract: The effect of fluorination on the conformational

and hydrogen-bond (HB)-donating properties of a series of
benzyl alcohols has been investigated experimentally by IR
spectroscopy and theoretically with quantum chemical

methods (ab initio (MP2) and DFT (MPWB1K)). It was found
that o-fluorination generally resulted in an increase in the

HB acidity of the hydroxyl group, whereas a decrease was
observed upon o,o’-difluorination. Computational analysis

showed that the conformational landscapes of the title com-

pounds are strongly influenced by the presence of o-fluorine

atoms. Intramolecular interaction descriptors based on AIM,

NCI and NBO analyses reveal that, in addition to an intramo-
lecular OH···F interaction, secondary CH···F and/or CH···O in-
teractions also occur, contributing to the stabilisation of the

various conformations, and influencing the overall HB prop-
erties of the alcohol group. The benzyl alcohol HB-donating

capacity trends are properly described by an electrostatic
potential based descriptor calculated at the MPWB1K/6-31 +

G(d,p) level of theory, provided solvation effects are taken

into account for these flexible HB donors.

Introduction

The fluorination of organic compounds to modify their proper-
ties is having a major impact in many chemistry-related fields
such as medicinal chemistry,[1] agrochemistry,[2] materials sci-

ence[3] and crystal engineering.[4] The high fluorine electronega-
tivity, with the resulting highly polarised C¢F bond and nonpo-

larisable fluorine lone pairs, is at the origin of a multitude of ef-
fects resulting from the introduction of one or more fluorine
atoms.[5] Fundamental studies aimed at improving our under-
standing of the effects of fluorination in organic compounds

are still ongoing. Significant and sometimes unexpected conse-
quences of fluorination on the physical and chemical proper-
ties of adjacent functional groups[6] or regarding C¢F mediated
inter- and intramolecular interactions, continue to be de-
scribed.[7] Organofluorine chemists are especially captivated by

the ability of fluorine to behave as a hydrogen-bond (HB) ac-
ceptor,[8] and it is now accepted, through key contributions

from Vulpetti and Dalvit[7c] as well as Laurence and co-work-
ers,[9] that organofluorine can act as a weak HB acceptor. Fur-
thermore, seminal works by Vasella, Bernet and Gouverneur

have highlighted OH···F intramolecular hydrogen bonds
(IMHBs) by using NMR techniques.[10]

Recently, we have experimentally determined HB-donating
capacities (or HB acidities) of fluorohydrins through the adap-
tation of an established[11] procedure by using FTIR spectrosco-
py.[6c] The insights revealed in this study, for example the influ-

ence of OH···F IMHB interactions on alcohol hydrogen-bond
properties, pointed out the need for comprehensive investiga-
tions on a wide range of fluorinated compounds to probe the
effects of fluorine on HB interactions in diverse chemical envi-
ronments, and to optimise HB property prediction tools.

Herein we report on the influence of ortho-fluorination on
the hydrogen-bond-donating capacity of benzyl alcohols

through a combined experimental and theoretical approach.

The experimental HB acidities (pKAHY) are presented and ration-
alised by quantum chemistry calculations, including detailed

conformational analysis, to allow insights to be gained on the
influence of the fluorine atom(s) on the conformational fea-

tures of substituted benzyl alcohols. Atoms In Molecules
(AIM),[12] Noncovalent Interaction (NCI)[13] and Natural Bond Or-
bital (NBO)[14] analyses have been performed to provide an ac-

curate description of the different IMHB interactions occurring
in the various compounds. In the final part of this work, we

show the feasibility of accurately predicting the HB acidity
values of the substrates involved by using an electro-
static-based descriptor (Va(r))[15] computed for the various mol-
ecules.
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Benzyl alcohols are common building blocks of drugs (e.g. ,
antimuscarinic drugs (fesoterodine), neuroprotective agents,

anticonvulsant agents (gastrodin)), and their conformational
preferences are still a matter of debate.[16]

An interesting effect of fluorine substitution has been re-
ported for ring-hydroxylated biogenic amines such as norepi-

nephrine (Figure 1). Depending on the position of the fluorine,
the analogues were shown to have markedly different agonist
properties.[17] Intramolecular hydrogen-bonding effects and/or
dipole-dipole repulsions between the COH and CF moieties
have been considered as factors that could result in conforma-
tional preferences that are favourable for binding to a- or b-
adrenergic receptors.[17–18] A more recent explanation involves

preferential orientation of the C¢F bond of both 2F-NE and 6F-
NE to an asparagine residue, resulting in a different presenta-

tion of the aromatic alcohol groups.[19]

Results and Discussion

Synthesis

The synthesis of substrates 1 b, 2 b, 6 b and 6 c (Figure 2) is de-
tailed in the Supporting Information. All other compounds

were purchased. Compounds 4 c, 5 c, 9 a and 9 b were only in-
vestigated computationally.

Conformational IR Analysis of the Hydroxyl Stretching
Region

The experimental data set investigated in this study is com-
posed of eight reference benzyl alcohols 1 a–8 a, eight mono-
fluorinated 2-fluorobenzyl alcohols 1 b–8 b and five difluorinat-

ed 2,6-difluorobenzyl alcohol derivatives 1 c–3 c, 6 c and 7 c.
The nOH bands of the title compounds at 25 8C in dilute CCl4

solutions are shown in Figure 3.
For most of the nonfluorinated benzyl alcohols, the nOH

region is rather complex, with two bands separated by ca.

20 cm¢1, which is indicative of different conformations. A de-
convolution of the absorption spectra in this region has there-

fore been carried out; the resulting nOH stretching frequencies
are reported in Table 1. For series a, without any ortho substitu-
ent, the low-frequency band nOH(2) peaked at 3616 cm¢1 irre-

spective of the nature of the
meta substituent. The position

of the nOH(1) absorption band is
measured at a slightly higher fre-

quency, 3629 cm¢1 for 1 a and

2 a , and 3635 cm¢1 for 3 a–6 a
(Figure 3 A, Table 1). However,

their relative intensity is depen-
dent on the substitution: where-

as nOH(2) is shown to be the main
band, the contribution of nOH(1)

Figure 1. Fluorinated norepinephrine analogues with different agonist activi-
ties.

Figure 2. Chemical structures of the benzyl alcohol derivatives under study.

Figure 3. IR spectra in the nOH stretching region of A) benzyl alcohols, B) 2-
fluorobenzyl alcohols and C) 2,6-difluorobenzyl alcohols.
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increases with increasing electron-withdrawing effect of the

meta substituent. With the nitro-derivative 6 a, the band at
3635 cm¢1 shows the largest contribution. Only one conformer

absorbing at low frequency (3617 cm¢1) is observed in the

presence of a methyl group in the a-position (7 a), whereas
when the methyl group is in the o-position (8 a) (not shown),

the band profile is similar to that of 1 a.
Within series b (Figure 3 B), the nOH bands are slightly blue-

shifted by ca. 3–10 cm¢1, and are less resolved. The nOH(1) con-
tribution appears to be higher than in series a.

With the 2,6-difluoro series c (Figure 3 C), only one stretching

nOH band is observed and its half-width is significantly smaller
than in compounds a and b. This feature might indicate that
the conformational flexibility around the hydroxyl moiety is
lost in these derivatives, which would reduce the number of

existing conformers with respect to series a and b. Similarly,
compound 8 b, having two o-substituents, exhibits a nOH

stretching band with a small half-width (not shown), closer to
the profile of compounds of series c than to the series b.

Computational Analysis

Introduction: Conformational Studies

The conformational properties of benzyl alcohol, described

either through experimental or theoretical studies, are still

a matter of debate, whereas they seem to be more established
for benzylic compounds, C6H5CH2X. When X is an alkyl group

or a halide, the C-C-C-X dihedral angle was shown to be 908,
with the C¢X bond in a plane orthogonal to the benzene

ring.[20] This perpendicular conformation minimises steric repul-
sive effects between the -CH2X group and the phenyl ring. If

the X group contains a triple bond (ethynyl or cyanide), the di-
hedral angle is near 08, with the C�C bond lying in the plane
of the phenyl ring.[21] The preference for this planar structure
has been rationalised by the presence of a stabilising CH···p HB

interaction between an aromatic CH bond and the triple bond
p-electron cloud.

Although benzyl alcohol has been the subject of extensive
experimental and theoretical studies,[16a, 22] there remains

a degree of uncertainty about the number of stable conform-
ers and their relative stabilities. The hydroxymethyl side chain
is flexible and it is generally accepted that several conformers
simultaneously exist in the gas phase, a situation similar to
benzylamine and its derivatives.[23] The main suggested con-

formers of benzyl alcohol derivatives, defined by the f
(CorthoCipsoCaO) and c (CipsoCaOH) dihedral angles, are the

gauche_gauche (g_g, also sometimes referred to as gauche_

cis), gauche_trans (g_t), planar (pl) and perpendicular (perp)
conformers (Figure 4 a,b and the Supporting Information for

further details). In monofluorinated benzyl alcohols, the intro-
duction of a methyl group at the Ca carbon was found to have

a significant influence on the preferred conformation com-
pared with o-fluoro benzyl alcohol, preferentially showing an

OH···F IMHB,[24] to 2-fluoro-a-methylbenzyl alcohol,[25] mainly

Table 1. Experimental spectroscopic features, nOH, eOH and DnOH, and HB
acidity properties, pKAHY and DGAHY, of benzyl alcohols under study.

Entry nOH(1)

[cm¢1]
nOH(2)

[cm¢1]
eOH

[L mol¢1 cm¢1]
pKAHY DGAHY

[kJ mol¢1]
DnOH

[cm¢1][a]

1 a 3629 3616 73 1.03 ¢5.9 193
1 b 3639 3624 75 1.16 ¢6.6 207
1 c –[b] 3627 117 0.94 ¢5.4 222
2 a 3629 3616 76 1.06 ¢6.1 197
2 b 3639 3623 74 1.21 ¢6.9 208
2 c –[b] 3627 108 0.86 ¢4.9 228
3 a 3635 3616 72 1.32 ¢7.5 205
3 b 3638 3623 66 1.48 ¢8.4 224
3 c –[b] 3626 107 1.21 ¢6.9 229
4 a 3635 3616 70 1.46 ¢8.3 231
4 b 3638 3622 78 1.70 ¢9.7 241
5 a 3635 3616 70 1.48 ¢8.4 213
5 b 3638 3622 77 1.67 ¢9.5 240
6 a 3635 3616 73 1.79 ¢10.2 245
6 b 3636 3621 88 1.98 ¢11.3 259
6 c –[b] 3626 123 1.69 ¢9.6 276
7 a –[b] 3617 86 0.96 ¢5.5 193
7 b 3630 3619 80 1.05 ¢6.0 201
7 c –[b] 3622 115 0.70 ¢4.0 206
8 a 3637 3619 73 0.99 ¢5.7 197
8 b –[b] 3624 110 0.94 ¢5.4 215

[a] Calculated from the nOH(2) value. [b] Not observed.

Figure 4. Benzyl alcohol conformations: a) Description of the f and c dihe-
dral angles of interest. b) Main conformations encountered in the benzyl al-
cohol structures in Newman representation along the Cipso¢Ca bond. c) Defi-
nition of proximal, distal and chelated gauche conformations for substituted
benzyl alcohols. See the Supporting Information for detailed aspects of the
nomenclature used.
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stabilised with an OH···p interaction. Theoretical calculations in
the gas phase generally attribute the absolute minimum to the

gauche_gauche conformation.[16a, b, d] However, depending on
the theoretical methods and experimental techniques selected,

different geometries have been proposed for the first local
minimum,[16a, 22] and the situation is even more challenging in
the solution state. In a previous study based on IR spectrosco-
py in CCl4 and CS2 solutions, the presence of gauche and
planar conformations was suggested, but the perpendicular

conformation could not be excluded.[22a]

Hence, to support our experimental HB measurements, a de-
tailed conformational analysis of the benzyl alcohol derivatives
was required. Following the recommendations of Basso,[26] our

analysis involved a polarisable continuum model (PCM) explic-
itly describing the hydrogen atoms to take into account the

solvation effects on the conformational equilibrium of benzyl

alcohol derivatives at the MP2/6-311 + + G(2d,p) level of
theory, after optimisation at the IEFPCM-MPWB1K/6-31 + G(d,p)

level. The results are given in Tables 2–4, wherein the theoreti-
cal frequencies of the nOH stretching vibrations are also listed,

and details of the computed relative free energies and confor-
mer populations are provided in the Supporting Information

(Table S1).

The Various Substituted Benzyl Alcohol Conformations

It should be noted that additional gauche and planar confor-
mations can be distinguished when substitution in the ortho

and/or meta position of the phenyl ring occurs. The proximal
and distal conformers are therefore defined (Figure 4 (c)) when
the hydroxyl group is oriented towards or at the opposite side

of the substituent (with the ortho substitution prevailing over
meta substitution, and with o-fluorine prevailing over o-alkyl

groups). With o,o’-difluorination, distal/proximal refers to the
position of the meta substituent. We also distinguish a gp_chel

Table 2. Calculated populations pi of the conformers of nonfluorinated
benzyl alcohol derivatives (1 a–9 a) in CCl4 medium at the IEFPCM-MP2/6-
311 + + G(2d,p) level of theory. Optimised dihedral angles f
(CorthoCipsoCaO) and c (CipsoCaOH) characterising the hydroxyl moiety orien-
tation and calculated nOH stretching frequencies (IEFPCM-MPWB1K/6-31 +

G(d,p)).[a]

Compound Conformer pi [%] f [8] c [8] nOH [cm¢1][b]

1 a g_g 82 33 60 3616
pl 18 0 180 3646

2 a g_g 61 26/36 59/61 3616
g_t 21 10/15 173/174 3645
pl 18 0 180 3645

3 a g_g 57 28/29 63/64 3618
pl 43 0/5 177/180 3646

4 a g_g 82 26/31 64/66 3618
pl 18 0/8 175/180 3645

5 a g_g 74 21 65/67 3618
pl 26 0/2 179/180 3645

6 a g_g 68 23/30 68/69 3619
pl 32 0 180 3645

7 a g_g 92 36/39 57/61 3609
g_t 8 19 174 3630

8 a g_g 78 10/69 55/66 3619
pl 14 0 180 3646
g_t 8 66 174 3626

9 a g_g 89 61/87 47/58 3615
perp 8 80 173 3618
g_t 3 22/63 174/176 3640/3623

[a] See Figure 4 for conformer definitions. When relevant, proximal/distal
conformations are grouped together. The detailed computed relative free
energies and conformer populations are provided in the Supporting In-
formation (Table S1). [b] Scaled by 3616/3972 = 0.91, the ratio between
the calculated and the experimental nOH value for benzylalcohol g_g con-
former.

Table 3. Calculated populations pi of the conformers of monofluorinated
benzyl alcohol derivatives (1 b–9 b) in CCl4 medium at the IEFPCM-MP2/6-
311 + + G(2d,p) level of theory. Optimised dihedral angles f
(CorthoCipsoCaO) and c (CipsoCaOH) characterising the hydroxyl moiety orien-
tation and nOH stretching frequencies (IEFPCM-MPWB1K/6-31 + G(d,p)).[a]

Compound Conformer pi [%] f [8] c [8] nOH [cm¢1][b]

1 b gp_g 29 69 57 3621
gp_chel 21 61 67 3626
gd_g 20 18 69 3620
pld 17 0 180 3647
perp_t 13 82 171 3627

2 b gd_g 31 14/21 69 3620
gp_chel 24 60 65/66 3624/3636
gp_g 21 67/73 56/59 3622
pld 18 0 180 3648
gp_t 2 70 165 3632

3 b pld 34 0 180 3644
gd_g 27 15 73 3621
gp_chel 17 62 68 3634
perp_t 13 85 172 3625
gp_g 10 68 61 3620

4 b gd_g 32 14/15 74/75 3621/3623
pld 24 0/1 179/180 3644/3645
gp_chel 21 61/63 68/70 3614/3638
gp_g 14 68/69 61/62 3620/3622
perp_t 9 71/82 167/172 3626/3630

5 b gp_g 34 67 62 3621
gd_g 30 12/13 76/77 3623
pld 28 0 180 3645
gp_chel 4 61 69 3632
gp_t 4 71 166 3630

6 b gd_g 35 9 79 3626
pld 27 0 180 3643
gp_chel 13 61 72 3633
gp_t 13 72 168 3629
gp_g 12 67 65 3622

7 b gp_chel 29 56/61 63/67 3601/3635
gd_t 25 17 177 3631
gp_g 22 58/69 55/60 3606/3621
gd_g 18 15 84 3610
gp_t 6 62/72 165/169 3619

8 b gp_g 80 73 63 3623
gp_chel 10 63 66 3631
gdt 10 65 179 3625

9 b gp,d_chel 83 70 65 3632
gt 16 63/78 163/170 3626
gp,s_g 1 62 67 3619

[a] See Figure 4 for conformer definitions. When relevant, proximal/distal,
anti/syn and E/Z conformations are grouped together. The detailed com-
puted relative free energies and conformer populations are provided in
the Supporting Information (Table S1). [b] Scaled by 3616/3972 = 0.91, the
ratio between the calculated and the experimental nOH value for benzylal-
cohol g_g conformer.
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conformation from a g_g conformation (Figure 4 (c)). In this
conformation, a short H···F distance can be measured (see

below). Finally, for compounds with m-OMe or m-OCF3 sub-
stituents, additional conformers occur depending on the posi-

tion of the methyl/trifluoromethyl groups relative to the
CH2OH group (see the Supporting Information for all struc-
tures). For simplicity, the conformers involving rotation along

the Ar¢OMe or Ar¢OCF3 bonds are grouped together in
Tables 2–4; a full account is provided in the Supporting Infor-
mation.

Conformational Analysis of Substituted Benzyl Alcohols

Within the series of nonfluorinated compounds 1 a–9 a
(Table 2), two or three of the various conformations evoked
above are found, depending on the studied structure. In all

cases, the g_g is systematically calculated to be the most
populated conformation, though it is the absolute energetic

minimum only for 1 a, 4 a, 6 a, 7 a and 9 a. The other com-
pounds (2 a, 3 a, 5 a and 8 a) show a planar geometry as the

most stable conformation. Our calculations confirm therefore

that the g_g conformation is by far the most (in many cases
even the only) populated of the possible gauche conforma-

tions. A perpendicular conformation is seen for 9 a only.
The computed frequencies of the nOH stretching vibrations

show that all the g_g conformers absorb at a lower frequency
than the pl, g_t and perp forms. Therefore, the observed lower

frequency absorption band was attributed to the g_g confor-
mer, with the higher frequency band containing the possible
contribution of the other conformers. This analysis is in line
with a previous attribution by Visser.[22a] No further discrimina-

tion can be achieved between the other conformers because
of the close values of their IR absorptions. Note that a scale

factor has been applied to all computed nOH values to compare
easily the experimental and the calculated nOH values for the

benzyl alcohol g_g conformer.
Within the series of o-monofluorinated compounds 1 b–6 b

(Table 3 and Table S1 in the Supporting Information), the most
abundant conformation is gauche, despite the planar structure
is slightly more stable than the most stable gauche conformer,
generally by approximately 1 kJ mol¢1. This contrasts with a pre-
vious study dealing with 2-fluorobenzyl alcohol 1 b, for which

the planar conformation was not identified as a major confor-

mer by MW spectroscopy and MP2 calculations.[24] For the o-
monofluorinated secondary benzyl alcohol 7 b, the planar con-

formation does not feature in the low-energy conformational
landscape. In its main low-energy structures, the CHOH¢CH3

bond is perpendicular to the plane of the phenyl ring, similar
to the major ethyl benzene conformation and as found previ-

ously in the gas phase by MW spectroscopy.[25] In addition, ap-

proximately 10 % of the conformers have both the methyl and
the hydroxyl groups in the gauche position. It is interesting to

note that, apart from the chelated conformer, there is little
preference for fluorine position: the proximal and distal popu-

lations are not significantly different. For the o-fluoro-o-alkyl
substrates 8 b and 9 b, the calculations predict only proximal

gauche conformations. Presumably, steric hindrance is also

a significant factor for 8 b–9 b. In all cases, the gauche confor-
mations overwhelmingly display a c-angle of approximately

608 (i.e. , g_g), whereas pl and perp conformations display a c-
dihedral angle of 1808.

Notably, all the planar conformations have a distal orienta-
tion, with a c-angle of approximately 1808. Proximal planar

conformations, with c= 1808, are not stabilised, presumably

because of a repulsive interaction between the O and F atoms.
From an IMHB perspective, one would expect to observe proxi-

mal planar conformations, with c= 08. However, a geometrical
relaxation systematically leads to a gauche conformation (gp_
chel), for which a short H···F distance can be measured. Within
series b, this distance ranges from 2.166 to 2.317 æ; that is, 10

to 16 % shorter than the sum of fluorine and hydrogen van der
Waals radii.[27] The contributions of this conformation to the
whole population vary from 4 % in 4 b (with the m-trifluorome-

thoxy substituent) to almost 30 % in 7 b (a-methylbenzylalco-
hol). In compound 8 b (o-methyl group), the chelated form rep-

resents only 10 % of the population. Conversely, in 9 b (tert-
butyl substituent), gp_chel (83 %) is significantly favoured in

comparison with the other conformations, probably because

of the steric hindrance induced by this bulky substituent.
The computed frequencies of the nOH stretching band are

similar to those of series a. Indeed, the pl conformations are
predicted to absorb at approximately 3640 cm¢1 and the g_g

forms at approximately 3620 cm¢1. In addition, the nOH stretch-
ing vibration of the gp_chel conformers absorb at 3630 cm¢1.

Table 4. Calculated populations pi of the conformers of difluorinated
benzyl alcohol derivatives (1 c–7 c) in CCl4 medium at the IEFPCM-MP2/6-
311 + + G(2d,p) level of theory. Optimised dihedral angles f
(CorthoCipsoCaO) and c (CipsoCaOH) characterising the hydroxyl moiety orien-
tation and nOH stretching frequencies (IEFPCM-MPWB1 K/6-31+ G(d,p)).[a]

Compound Conformer pi [%] f [8] c [8] nOH [cm¢1][b]

1 c g_chel 70 60 67 3618
perp_t 30 89 180 3625

2 c perp_t 40 93/94 178/179 3624
gp_chel 36 58/61 67/69 3628/3635
gd_chel 24 59/63 66/69 3626/3636

3 c gp_chel 33 62 70 3620
gd_chel 29 59 68 3618
perp_t 39 92 178 3625

4 c gp_chel 40 60/63 70/72 3618/3633
gd_chel 25 59/62 68/70 3628/3637
perp_t 35 89/91 179/180 3624

5 c perp_g¢ 46 85 71 3625
perp_t 29 92 178 3624
gp_chel 14 64 72 3624
gd_chel 12 60 70 3631

6 c perp_t 48 87/89 178/179 3624
gp_chel 31 63 74 3619/3633
gd_chel 20 60 72/73 3625

7 c g_chel 48 53/65 66/68 3612
g_g¢ 41 56 62 3623
g_t 11 58 177 3618

[a] When relevant, proximal/distal, anti/syn and E/Z conformations are
grouped together. The detailed computed relative free energies and con-
former populations are provided in SI (Table S1). [b] Scaled by 3616/
3972 = 0.91, the ratio between the calculated and the experimental nOH

value for benzylalcohol g_g conformer.
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This can explain the shape of the experimental nOH bands,
which display broad envelops with no clear maxima, as op-

posed to three distinguishable bands.
The conformational features of series c, with two ortho-fluo-

rine atoms, eventually appear to be the simplest (Table 4). Con-
sistent with the existence of only distal planar conformations

for which there is a fluorine atom in the o-position, with o,o’-
difluorination, no planar conformations are observed at all. The

electronic repulsion between the lone pairs of the oxygen and

fluorine atoms is expected to repel the hydroxyl group out of
the aromatic plane. Hence, only gauche and perpendicular con-

formations are found, the energetically favoured one depend-
ing on the chemical nature of the substituent. In this series,

the proportion of the OH···F gp_chel forms is much more im-
portant than in the b series (e.g. , from 25 % in 5 c to 70 % in

1 c). It is also interesting to compare the relative population of

the proximal and distal chelated conformations. Indeed, from
2 c to 6 c, the gp_chel conformers are slightly, but systematical-

ly, preferred over the gd_chel conformers, indicating a difference
in IMHB accepting capacity of the two ortho-fluorine atoms. Fi-

nally, it is noteworthy that, in most cases in the c series, the
gauche conformations are systematically chelated, but 7 c also

shows g_g¢ and g_t conformers.

The nOH stretching vibrations for the various conformations
of a given compound in series c are computed at closer wave-

numbers than in series a and b (from 3612 to 3637 cm¢1 in-
stead of 3606 to 3648 cm¢1). This suggests that these confor-

mations absorb at approximately the same frequencies in the
2,6-difluoro derivatives, in agreement with the narrow bands

observed experimentally, contrasting with the broad bands ob-

tained for nonfluorinated and monofluorinated compounds.

AIM and NCI Analysis

The presence of intramolecular interactions, including a possi-

ble OH···F IMHB interaction, was investigated by AIM analysis.
However, in some cases that have been described previously,

the AIM theory has been shown to fail in identifying any bond-
critical point (BCP) for an IMHB, whereas other theoretical and

experimental features were consistent with the occurrence of
such an interaction.[28] We have therefore complemented the
AIM calculations by conducting an NCI analysis.

The difference in population between chelated and nonche-

lated gauche conformers for series b and c invited analysis. It
was found that, for the relevant gp_chel conformations of
these compounds, AIM and NCI analyses do confirm the occur-

rence of an intramolecular OH···F hydrogen bond. The electron
density at the BCP, 1b, ranging from 0.010 to 0.015 e bohr¢3,

and the positive value of the Laplacian, r21b, are consistent
with an IMHB between the fluorine and the hydroxyl moieties

for gp_chel conformations of the 2-fluorobenzyl alcohols

(Table S2). For the 2,6-difluorinated benzyl alcohols, no signifi-
cant difference between 1b and r21b is found with respect to

series b, suggesting that the OH···F interaction strength is simi-
lar for the 2-fluoro- and 2,6-difluorobenzyl derivatives. Never-

theless, comparing the proximal and distal conformers, 1b is
generally found to be slightly higher when the IMHB involves

the 6-fluoro (distal) rather than the 2-fluoro (proximal) atom.
This suggests a slightly stronger interaction with the 6-fluorine
atom. Moreover, the NCI analysis also shows, for the 2,6-di-
fluorinated derivatives, that an additional CaH···F attractive con-

tribution occurs, as illustrated in Figure 5 with the example of
the 1 c g_chel conformer. This extra stabilising interaction is

clearly not possible for the chelated monofluorinated benzyl
alcohols. In addition, with two fluorine atoms in the ortho posi-

tion in series c, the g_g conformations appear as g_chel confor-

mations, to optimise the attractive OH···F and Ca···F interactions
and minimise the repulsive O···F interactions. This may explain
the significant difference in population of the gp_chel structure
between series b and c.

An estimation of the HB energy (EHB), based on the potential

energy density Vb at the BCP, has been proposed previously[29]

and was found to be 12 kJ mol¢1 in the case of CH···O IMHBs.[30]

In the compounds under study, it appears that the energies of
the IMHBs occurring between the fluorine and the hydroxyl

groups are slightly larger, ranging from 12 to 19 kJ mol¢1

(Table S2). An examination of the computed EHB values for the

various derivatives does not reveal any general trend indicat-

ing that a significant increase of HB energy occurs from mono-
fluorinated (series b) to difluorinated (series c) benzyl alcohols.
Nevertheless, comparing the proximal and distal conformers in
series c, the HB energy values are generally found to be slight-

ly higher when the IMHB involves the 6-fluoro (distal) rather
than the 2-fluoro (proximal) atom. This suggests a slightly

stronger interaction with the 6-fluorine atom.
In fact, many additional intramolecular interactions are re-

vealed by the NCI analysis occurring besides or instead of the

OH···F interaction, which may provide insight into how the dif-
ferent conformations are stabilised (Figure 6). For example, in

the planar conformation of 1 a and 1 b (Figure 6 (a)), an attrac-
tive CorthoH···O interaction is found (Table S2), with a concomi-

tant C···F repulsive contribution for 1 b. For a hypothetical plp

conformation, the NCI analysis reveals a rather large F···OH re-
pulsion, which may explain why there is no plp conformation

in series b, and no planar conformation in series c. For the
gauche conformers (Figure 6(b)), an attractive CorthoH···O interac-

tion similarly stabilises the g_g conformation. In addition, for
1 b, the ortho-fluorination now provides a weak attractive van

Figure 5. NCI isosurface plots of gp_chel benzyl alcohol conformations of
1 b,c drawn with a reduced density gradient (RDG) value of 0.6 and the blue
(attractive) green (van der Waals) red (repulsive) values ranging from ¢0.02
to 0.01 a.u. An attractive OH···F contribution is observed in 1 b, and a weak
additional CaH···F interaction is found in 1 c.
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der Waals CaH···F interaction (for the distal gauche). Conversely,
the 1 b gp_g structure is destabilised by an O···F repulsion.

Weak van der Waals CaH···F interactions also occur in the per-
pendicular forms of 1 b and 1 c (Figure 6(c)). These extra intra-

molecular interactions can also provide an explanation as to

why the g_t conformers rarely occur in the various com-
pounds. It is actually often found that starting from such a con-

former, relaxation to a planar conformation to accommodate
a stabilising CH···O interaction, or to a perpendicular conforma-

tion to minimise the O···F repulsion and favour van der Waals
CaH···F interactions, occurs.

In most, if not all cases, there are a multitude of attractive

and repulsive effects operating, and it is difficult to explain
population differences between rotamers based on simple
comparisons of interactions.

NBO Calculations

A further analysis of the conformational preferences of benzyl

alcohol derivatives was carried out through NBO calculations.
Only the benzyl, m-fluorobenzyl and m-nitrobenzyl alcohol

series with zero, one, and two ortho-fluorines (1 a–c, 3 a–c, 6 a–
c) were considered, each having zero, an intermediate, and

a large m-substituent effect, respectively. The main E(2)
n!s* in-

teraction energies are gathered in Table S3 in the Supporting

Information.

Considering the conformations exhibiting an OH···F IMHB,
the interaction energies between the nF fluorine lone pairs and

the s*OH antibonding orbital are rather small (ca. 4 kJ mol¢1),
and do not fundamentally differ from the monofluoro to the

difluorobenzyl alcohols. A slight increase of the interaction en-
ergies is observed when the chelation occurs with the 6-fluoro

substituent rather than with the 2-fluoro substituent. These
trends are in reasonable agreement with the electron densities

1b and EHB calculated at the BCP, and further clarify why the
chelated structures are not dominant in monofluorinated

benzyl alcohols.
For the planar and perpendicular conformations, the nO!

s*C1¢Ca interactions are rather weak, with E(2)
n!s* of 6–

8 kJ mol¢1. In return, hyperconjugation occurs between the sOH

and sC1¢Ca orbitals (ca. 13 kJ mol¢1 for sOH!s*C1¢Ca and

8 kJ mol¢1 for sC1¢Ca!s*OH). In addition, the weak nO!s*= CH

interaction stabilises the planar forms of series a and b slightly
(ca. 3 kJ mol¢1), and an energetically equivalent nF!s*Ca¢O in-
teraction also occurs in series b. Clearly, the aromatic system is

also available to provide a stabilising interaction with the hy-
droxyl moiety. The charge transfer from the p bonding orbitals

to the s*Ca¢O antibonding orbital shows the highest contribu-

tion (up to 30 kJ mol¢1), smaller sCa¢O!p*C=C, sCa¢O!s*C=C and
sC=C!s*Ca¢O contributions being systematically found irrespec-

tive of the considered conformation.
For the gauche conformations, the nO!s*C1¢Ca interaction is

significant, with E(2)
n!s* of 30 to 40 kJ mol¢1 in comparison with

the planar and perpendicular conformations. This may explain

the significant preference of the g_g conformation over the

corresponding g_t conformation (see above). In addition, the
pC=C!s*Ca¢O interactions are also significant, but, interestingly,

only for the fluorinated derivatives (E(2)
n!s* of 20 to 30 kJ mol¢1

for series b, c, but <10 kJ mol¢1 for series a). In summary, nu-

merous hyperconjugative interactions occur in the different
conformers of fluorinated benzyl alcohols. If an OH···F IMHB

indeed appears in some of the gauche conformers, it is clearly

not a driving force for the conformational preference, with the
nO!s*C1¢Ca, sOH!s*C1¢Ca, pC=C!s*Ca¢O interactions being at

least of the same order of magnitude.

Main Conformational Features

To sum up this section, it is shown that the conformational

preferences adopted by benzyl alcohols are significantly influ-
enced by the presence of fluorine atom(s) in the ortho posi-
tion. Without any fluorine, g_g and pl conformers represent 80

to 100 % of the relative populations in series a, with an attrac-
tive CorthoH···O interaction stabilising these conformations. An

OH···F IMHB conformer, from 4 to 83 %, appears in series b
with the presence of one fluorine atom, decreasing the relative

population of the g_g conformers, the pl population being
almost unchanged. The g_chel and perp structures represent

100 % of the population in most difluorinated benzyl alcohols.

The stabilisation of the perp conformers is due to attractive
CaH···F contacts occurring with both ortho-fluorine atoms,

whereas an OH···F IMHB with one fluorine atom and a CaH···F
interaction with the second fluorine concomitantly stabilise

the g_chel structures. The second case is almost systematically
preferred over the first.

Figure 6. NCI isosurface plots of benzyl alcohols 1 a–c drawn with a reduced
density gradient (RDG) value of 0.6 and the blue-green-red values ranging
from ¢0.02 to 0.01 a.u. The pl and some g_g conformations show an attrac-
tive CH···O contribution, whereas a weak CH···F interaction is found in the
perp and other g_g conformers.
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HB Acidity of Benzyl Alcohols

Experimental HB Acidity Measurements

The HB-donating capacity of the alcohols was determined by

using an IR method through complexation with a standard HB
acceptor, N-methyl-2-pyrrolidinone (NMP) in CCl4 at 25 8C
(Scheme 1).[31] The decrease in intensity of the nOH band with
increasing amount of NMP was measured, as well as the actual
frequency shifts, DnOH, resulting from complexation with NMP
in relation to the corresponding free nOH(2) band. The former
allows determination of the equilibrium constant of the reac-
tion, expressed as the thermodynamic HB acidity value KAHY,
and the latter is an indication of the relative strength of the

hydrogen bond that is formed. Considering homogeneous
families of compounds that do not exhibit additional specific

effects (such as steric effects or IMHB), these two experimental

parameters are generally well correlated, with DnOH then corre-
sponding to a spectroscopic HB scale.[31]

The frequency shifts, DnOH, the measured pKAHY, and the cor-
responding free energies of complexation, DGAHY, are gathered

in Table 1. An energetic range of approximately 7 kJ mol¢1 (1.3
pK units) is covered by the current data set.

Measurement of the Equilibrium Constants (KAHY)

The increase of the HB acidity, pKAHY, for the nonfluorinated

benzyl alcohols (1 a–6 a) follows the increase in the electron-

withdrawing substituent effects of R (H<MeO<F<CF3<

OCF3<NO2) in the meta position, sm.[32] Therefore, from the un-

substituted benzyl alcohol (1.03) to 3-nitrobenzyl alcohol
(1.79), the HB acidity increase represents 4.3 kJ mol¢1. With the
addition of one methyl group in the ortho- (8 a) or in the a-po-
sition (7 a), a slight decrease in pKAHY is measured (0.2 or

0.4 kJ mol¢1, respectively).
Similar trends are observed (Figure 7) in the ortho-mono-

fluorinated and o,o’-difluorinated series b and c, with respec-

tive energetic ranges of 5.3 and 4.2 kJ mol¢1. More interesting-
ly, irrespective of the nature of the meta-substituent in series b,

an increase of HB acidity values (between 0.13 and 0.24 pK
units, from 0.5 to 1.4 kJ mol¢1) is measured upon monofluorina-

tion with respect to the nonfluorinated counterpart in series a.

The fluorine atom plays its role of electron-withdrawing sub-
stituent, decreasing the electron density around the hydroxyl

moiety. With a pKAHY value of 1.98, 2-fluoro-5-nitrobenzyl alco-
hol (6 b) is the strongest HB donor in the current experimental

data set.
Conversely, further fluorination at the second ortho-position

does not lead to a further increase of HB acidity (series c),

highlighting a different behaviour. Indeed, a significant de-
crease is measured of 0.22 to 0.35 pK units in comparison with

series b, rendering the pKAHY values even weaker than for the
nonfluorinated benzyl alcohols.

Scheme 1. Experimental determination of the HB-donating capacity of the
benzyl alcohol derivatives.

Figure 7. Repartition of the pKAHY acidity of substituted benzyl alcohols upon ortho-mono- and difluorination.
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The conformational analysis has shown that the OH···F
IMHBs are not stronger in the difluorinated than in the mono-

fluorinated derivatives, but rather that the chelated forms
allow an optimal accommodation of the attractive OH···F and

CaH···F and the repulsive O···F interactions, increasing their rela-
tive populations (compare the populations of gp,d_chel con-
formers in b and c derivatives in Tables 3 and 4). This suggests
that the decrease of HB acidity in series c could originate in
the higher propensity of difluorinated derivatives to be intra-

molecularly chelated. A rational tuning of HB acidity can there-
fore be realised in such benzyl alcohols by choosing mono-

fluorination rather than difluorination, or vice versa.
A similar evolution is observed for the a-methylbenzyl alco-

hols 7, for which an expected HB acidity increase is measured
(+ 0.09) upon monofluorination, whereas the presence of

a second fluorine atom has a dramatic weakening effect
(¢0.35).

Interestingly, a decrease of HB acidity is observed upon fluo-
rination in the case of compounds 8, rather than an increase,
as found for the monofluorinated benzyl alcohols. The OH···F

IMHB contributes to the HB acidity decrease, but not in
a higher proportion than in the other monofluorinated benzyl

alcohols because the relative population of the chelated forms

are of the same order of magnitude (see below).

Measurement of the Frequency Shifts (DnOH)

The highest values of the frequency shifts, upon complexation

with NMP, are measured with the 2,6-difluoro derivatives, com-
pared with 2-fluoro and finally nonfluorinated benzyl alcohols.

This trend would suggest that the ability of the studied com-
pounds to act as HB donor with an external HB acceptor

should increase from series a to series c. However, as illustrated
in Figure 8, the pKAHY/Dn(OH) correlation breaks down for the

difluorinated benzyl alcohols, with a systematic undervaluation
of the experimental HB acidity for the observed IR shift. This il-
lustrates that pKAHY and DnOH measure two different character-

istics: the former is the equilibrium with an external acceptor,
the latter is the strength of the hydrogen bond formed. The di-

fluorinated benzyl alcohols lead to the strongest HBs with the
acceptor, but the equilibrium reaction with NMP is disturbed

by IMHB with the fluorine atoms. Compound 8 b, with its o-
methyl substituent, is also a significant outlier, probably for
steric reasons. In other words, these downward deviations
from the pKAHY/Dn(OH) correlation line, observed in a very ho-
mogeneous set of benzyl alcohols, are a clear indication of

a significant amount of IMHB conformations for the corre-
sponding compounds.

Interestingly, the dashed line in Figure 8 corresponds to the
calibration line established for a series of (non-benzylic) hy-
droxyl-containing compounds in which an upward deviation of
the benzyl alcohol 6 a remained unexplained.[31] It is now ra-

tionalised because the benzyl alcohol family finally does not

exactly fit to the hydroxyl series.

Theoretical HB Acidity Estimation

The electrostatic potential Va(r), as proposed by Kenny,[15] has

recently been shown to be an appropriate descriptor to esti-
mate the HB acidity of hydroxyl compounds[31] including fluo-

rohydrins.[6c] We have shown in fluorinated cyclohexanols that
the ability of the hydroxyl group to behave as a HB donor is

weakened when an IMHB occurs, and a concomitant decrease
of the Va(r) value is observed. It remained to be seen whether

the flexible fluorinated benzyl alcohol structures under study

could be described accurately by this theoretical descriptor.
The initial data sets[6c, 31] were considered in the gas phase at

the MPWB1K/6-31 + G(d,p) level of theory. The Va(r) value was
determined for each conformation, and the predicted pKAHY

value was then the weighted sum.
Such a treatment leads to a poor correlation between the

computed Va(r) descriptor and the experimental pKAHY HB acidi-

ty. Indeed, predicted values and experimental data differ by
¢0.31 to 0.22, with a sum square of 0.472 and a standard devi-

ation of 0.152 (not shown).
Therefore, a significant improvement of the theoretical

methodology is clearly necessary to obtain useful predicted
values. At first, such an improvement may be obtained by in-

cluding solvation effects in the calculations. Indeed, for a given
compound, the population of the different conformers can

change significantly in CCl4, hence impacting on the weighed

Va(r) value, and ultimately the predicted pKAHY values (Table 5).
The statistics are actually only slightly improved by using

either the IEFPCM or the SMD (data not shown) continuum
models, with the sum squares decreasing to 0.325 and 0.403,

and the standard deviations to 0.127 and 0.142, respectively.
Notably, the relative population of the OH···F chelated con-

formers of the 2,6-difluorinated derivatives are systematically

smaller at the MP2/6-311 + + G(2d,p) level with respect to the
MPWB1K/6-31 + G(d,p) level, whereas they are slightly higher

for the 2-fluorinated derivatives. As a consequence, the MP2
weighed Va(r) values are larger than the MPWB1K values in ser-

ies c, leading to higher predicted pKAHY values. Conversely, the
Va(r) values are lowered in series b at the MP2 level, and hence

Figure 8. Plot of pKAHY versus Dn(OH) frequency shift for benzylalcohols
(square), o-fluorobenzylalcohols (circle) and o,o’-difluorobenzylalcohols (tri-
angle). The whole series c and compound 8 b, are significant outliers from
the calibration line (full line) established with series a and b. The dashed line
was previously established for a series of hydroxyl compounds.[31]
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the predicted pKAHY values are also lowered. A further improve-

ment of the HB acidity prediction is therefore obtained at the
IEFPCM-MP2/6-311 + + G(2d,p)//MPWB1K/6-31 + G(d,p) level,

with a sum square value of 0.280 and a standard deviation of
0.112. Figure 9 illustrates the improvement of the correlation

between the experimental HB acidity and the computed Va(r)
descriptor according to the selected level of theory. However,
although a statistical improvement is found with MP2 values,

the MPWB1K values are to some extent more chemically relia-
ble. Indeed, if the observed decrease of H-bond acidity upon
o,o’-difluorination of the phenyl ring is rather equivalently esti-
mated with both methods, the increase upon o-monofluorina-

tion is much more properly described at the DFT level. On the
contrary, the MP2 method quasisystematically predicts a de-

crease of pKAHY, which is clearly opposite to the experimental
trend. For this reason, the use of IEFPCM-MPWB1K/6-31 +

G(d,p) results for the H-bond acidity prediction of fluorobenzy-

lalcohols is recommended.

Rationalisation of HB Acidity Evolution Trends

It is interesting to observe the evolution of the Va(r) descriptor

for the different conformations (Table S1). Comparing equiva-
lent conformations, there is a clear trend for the Va(r) values to

be higher for the fluorinated compounds than for the non-
fluorinated compounds. This is an expected effect of the fluo-

rine electronegativity on its surroundings. The planar confor-
mations (which are always distal in series b) generally have the

largest Va(r) values, owing to the emphasised CH···O stabilising
interaction depleting the electron density around the oxygen

atom and hence around the hydroxyl hydrogen. The fluorine
electron-withdrawing effect also operates in the perp conform-

ers (when available, compounds 1 b, 3 b, 4 b), as revealed by

the increased Va(r) values for mono- and difluorinated sub-
strates. On the other hand, as expected, g_chel conformations
show low Va(r) values because of the intramolecular hydrogen
bonding.

The observations discussed above would explain the HB
acidity increase for the monofluorinated compounds, because

the g_chel conformations are too weakly populated to have
a detrimental effect on the HB acidity, and all the other con-
formers show an increased Va(r) value. In this context, it is in-

teresting to note that the monofluorinated 8 b, which has no
pl conformation contribution due to the o-methyl group,

shows a HB acidity decrease.
For the difluorinated compounds, with the g_chel conforma-

tions being the dominant conformations, their strongly de-

creased Va(r) values explain their decrease in HB acidity. Fur-
thermore, in this series, the absence of any pl conformations

(showing high Va(r) values) further exacerbates this decrease of
HB-donating ability.

Table 5. Predicted pKAHY HB acidity 0of benzyl alcohols, calculated from
the weighted Va(r) values, estimated from either MPWB1K or MP2 popula-
tions. The difference with the experimental value is given.

Entry MPWB1K/6-31 + G(d,p) MP2/6-311 + + G(2d,p)
pKAHY (calc) DpKAHY pKAHY (calc) DpKAHY

1 a 1.04 0.01 1.01 ¢0.02
1 b 1.16 0.00 1.00 ¢0.16
1 c 0.70 ¢0.24 0.78 ¢0.16
2 a 1.07 0.01 1.06 0.00
2 b 1.14 ¢0.07 1.00 ¢0.21
2 c 0.59 ¢0.27 0.74 ¢0.12
3 a 1.45 0.13 1.44 0.12
3 b 1.60 0.12 1.47 ¢0.01
3 c 1.05 ¢0.16 1.15 ¢0.06
4 a 1.60 0.14 1.59 0.13
4 b 1.69 ¢0.01 1.55 ¢0.15
4 c 1.20 1.28
5 a 1.61 0.13 1.60 0.12
5 b 1.81 0.14 1.70 0.03
5 c 1.38 1.47
6 a 1.92 0.13 1.91 0.12
6 b 2.07 0.09 1.96 ¢0.02
6 c 1.61 ¢0.08 1.69 0.00
7 a 0.83 ¢0.13 0.82 ¢0.14
7 b 0.92 ¢0.13 0.84 ¢0.21
7 c 0.67 ¢0.03 0.72 0.02
8 a 1.03 0.04 0.89 ¢0.10
8 b 0.84 ¢0.10 0.85 ¢0.09
9 a 0.67 0.63
9 b 0.39 0.41 Figure 9. Distribution of the experimental pKAHY HB acidity of benzyl alcohols

(circle) towards the weighed Va(r) electrostatic descriptor (top: IEF-PCM/
MP2/6-311 + + G(2d,p)//MPWB1K/6-31+ G(d,p) level, bottom: IEF-PCM/
MPWB1K/6-31 + G(d,p) level). The calibration line between these two param-
eters was previously established with a series of alcohols and phenols (dia-
mond) and of fluorohydrins (triangle).
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Conclusions

A series of 25 benzyl alcohol derivatives has been investigated
by FTIR measurements and quantum chemical calculations, re-

vealing the following trends in terms of conformational prefer-
ences and HB-donating capacities.

The g_g conformers are found to be the most populated
minima within the series of nonfluorinated compounds (series

a), with significant amounts of pl conformers. An attractive

CorthoH···O interaction is found to stabilise these conformations.
The occurrence of g_t and perp conformations are found to be
more marginal.

With the introduction of one fluorine atom in the ortho-posi-

tion (series b), additional g_g conformers appear, identified as
g_chel, showing an OH···F IMHB interaction. Their occurrence

ranges from 4 to 83 % at the expense of the nonchelated g_g

conformers. The population of the pl conformers remains
almost the same as in series a.

With a second ortho-fluorine (series c), the g_chel and perp
conformations become almost the only populated forms,

whereas they were clearly less abundant in series a and b. It is
shown that both structures benefit from one (g_chel) or two

(perp) attractive CaH···F contacts, in addition to the OH···F IMHB

for the g_chel conformers.
As a result, the OH···F IMHB is not found to be the main driv-

ing force in guiding the conformational preferences of 2-fluo-
robenzyl alcohols. The population of such chelated conformers

is significant for 2,6-difluorobenzyl alcohols with the help of
a CaH···F interaction, but in competition with perp conformers

in which two CaH···F interactions occur.

An increase of HB acidity is quasi-systematically measured
upon monofluorination, because of the electron-withdrawing

effect of fluorine. This is nicely illustrated by the increase of the
electrostatic potential descriptor Va(r) values; all the conformers

contributing to the HB-donating capacity increase, except the
g_chel conformer, but its popula-
tion is not important enough to

have a significant influence on
the overall HB-donating capacity.

The tremendous loss of HB-
donating capacity upon difluori-

nation, with the corresponding
alcohol being an even weaker

HB donor than its nonfluorinated

counterpart, is less expected.
The contribution of the perp

structures in series c would lead
to a further increase in HB acidi-

ty compared with monofluori-
nated benzyl alcohols, but this is

overcompensated by the large

amount of chelated conformers.
Indeed, a significant lowering of

the computed Va(r) values for
these chelated conformers char-

acterises the HB acidity decrease
of series c.

The modulations of the HB acidity can therefore be easily ra-
tionalised by the Va(r) descriptor, by considering its evolution

along the conformational profile. Hence, our study provides
methodology to either increase or decrease the HB-donating

capacity of benzylic alcohols by judicious fluorination.

Experimental Section

Chemicals : Carbon tetrachloride solvent, of spectroscopic grade,
was kept for several days over freshly activated 4 æ molecular
sieves before use. Commercial N-methyl-2-pyrrolidinone (99.5 + %
purity) was also stored over molecular sieves in the dark to prevent
its deterioration. All benzyl alcohols were dried over 4 æ molecular
sieves for the liquid compounds and over P2O5 during their subli-
mation for the solid compounds.

FTIR spectrometry measurements : The handling of all chemicals
and their CCl4 solutions and the filling of the cells for IR measure-
ments were performed in the dry atmosphere of a glove box at RT.
IR spectra were recorded in carbon tetrachloride solutions with
a Fourier transform spectrometer (Bruker Vertex 70) at a resolution
of 1 cm¢1. An Infrasil quartz cell (l = 1 cm path length and thermo-
statted at 25.0�0.2 8C by Peltier effect regulation) was used for
the studies of HB complexation. The HB acidity, pKAHY, of the benzyl
alcohols under study were measured as described recently.[31] The
molar absorption coefficients, eOH, required for the equilibrium con-
stant measurements, were calculated for each compound at the
frequency of the absorption maxima. It is consequently an appar-
ent eOH value because the alcohol concentration is distributed over
several conformers. This conformation equilibrium is re-established
after HB complexation because the shape of this free nOH stretch-
ing band is constant, as shown in Figure 10. This apparent value
can therefore be safely used to calculate the concentration of free
alcohol, and, as a result, the HB equilibrium constant.

Computational Procedures

All DFT calculations were performed with the D.01 version of the
Gaussian 09 program applying default procedures, integration

Figure 10. IR spectra of m-trifluoromethylbenzyl alcohol (5 a) in the nOH stretching region, a) without and b, c,
d) with increasing amounts of N-methyl-2-pyrrolidinone. The spectra have been normalised on the free nOH

stretching band (3616 cm¢1) to show the consistency of its profile.
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grids, algorithms and parameters.[33] The MPWB1K functional[34] was
selected, in combination with the 6-31 + G(d,p) basis set, for the
conformational study of benzylic alcohols. These compounds
appear to be rather flexible, with two main degrees of freedom
around the f (CorthoCipsoCaO) and c (CipsoCaOH) dihedral angles, and
possibly around the meta-substituent. In the current work, we
have taken into account solvation effects by applying the polarisa-
ble continuum solvation model (CCl4 as solvent) within the integral
equation formalism (IEFPCM). Basso has demonstrated, in the case
of flexible 2-halocyclohexanols in dichloromethane, acetone and
methanol, that the use of individual spheres for the hydrogen
atoms is required to build the molecular cavity in the PCM
model,[26] for a proper description of their conformational preferen-
ces, the well-known UAHF (United Atom for Hartree–Fock) scheme,
with implicit hydrogens, led to results that opposed the NMR ex-
perimental trends. Hence, we have used the UFF cavity model,[35]

which allows hydrogen atoms to be described explicitly, during
each geometry optimisation procedure. The conformational equi-
librium of benzyl alcohol derivatives was investigated at the
IEFPCM-MPWB1K/6-31 + G(d,p) level The vibrational spectrum was
computed for each optimised structure to check that there was no
imaginary frequencies and to obtain free energies. Single-point cal-
culations were then performed at the IEFPCM-MP2/6-311 + +
G(2d,p) level. The relative populations pi [Eq. (1)] of the various
conformers were hence evaluated from the computed free ener-
gies, at the selected levels of theory, through a Boltzmann distribu-
tion. The theoretical descriptors were weighted according to these
populations.

pi ¼
e¢DGi=RTP
n
i¼1 e¢DGi=RT

ð1Þ

IMHB interactions were analysed in detail through AIM topological
analysis of the MPWB1K/6-31 + G(d,p) wave functions with the
AIM2000 program.[39] Besides the electron densities 1b and their
Laplacians r21b, the potential energy density Vb at the BCP is
often used to gain additional insights into the strength of a given
HB.[36] Indeed, the HB energy can be estimated by using Vb accord-
ing to the established relationship in Equation (2):[29]

EHB ¼ 1=2 Vb ð2Þ

The NCI topological[13] and NBO[14] analyses of the same wavefunc-
tions were performed with NCIPLOT 3.0[37] and NBO 6.0[38] pro-
grams, respectively.

The HB acidity of the compounds under study were evaluated as
recommended previously[31] through calculation of the Kenny Va(r)
descriptor.[15] It involves calculating the electrostatic potential value
along the OH bond at a distance r = 0.55 æ from the hydroxyl hy-
drogen atom, at the MPWB1K/6–31 + G(d,p) level in vacuo to use
the established calibration line [Eq. (3)]:

pK AHY ¼ 52:16 VaðrÞ¢15:94 ð3Þ
n ¼ 43, r2 ¼ 0:9812, s ¼ 0:11, F ¼ 2142
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