The University of Southampton
University of Southampton Institutional Repository

Detecting near-surface moisture stress in Sphagnum spp.

Harris, A., Bryant, R.G. and Baird, A.J. (2005) Detecting near-surface moisture stress in Sphagnum spp. Remote Sensing of Environment, 97, (3), pp. 371-381. (doi:10.1016/j.rse.2005.05.001).

Record type: Article


Estimating near-surface moisture conditions from the reflectance spectra (400–2500 nm) of Sphagnum moss offers great opportunities for the use of remote sensing as a tool for large-scale detailed monitoring of near-surface peatland hydrological conditions. This article investigates the effects of changes in near-surface and surface moisture upon the spectral characteristics of Sphagnum moss. Laboratory-based canopy reflectance data were collected from two common species of Sphagnum subjected to drying and subsequent rewetting. Several spectral indices developed from the near infra-red (NIR) and shortwave infra-red (SWIR) liquid water absorption bands and two biophysical indices (REIP and the chlorophyll index) were correlated with measures of near-surface moisture. All spectral indices tested were significantly correlated with near-surface moisture (with r between 0.27 and 0.94). The strongest correlations were observed using indices developed from the NIR liquid water absorption features (fWBI980 and fWBI1200). However, a hysteretic response was observed in both NIR indices when the canopies were re-hydrated, a finding which may have implications for the timing of remote sensing image acquisition. The Moisture Stress Index (MSI), developed from the SWIR liquid water absorption feature also showed strong correlations with near-surface wetness although the range of moisture conditions over which the index was able to detect change was highly dependent on Sphagnum species. Of the biophysical spectral indices tested (REIP and the chlorophyll index), the most significant relationships were observed between the chlorophyll index and near-surface wetness. All spectral indices tested were species specific, and this is attributed to differences in canopy morphology between Sphagnum species. The potential for developing estimations of surface and near-surface hydrological conditions across northern peatlands using remote sensing technology is discussed.

Full text not available from this repository.

More information

Submitted date: 5 April 2005
Published date: 15 August 2005
Keywords: sphagnum, moisture, spectral reflectance, carbon balance, remote sensing


Local EPrints ID: 38111
ISSN: 0034-4257
PURE UUID: 98efdea5-2f6e-4055-a845-ac4eb03c26bf

Catalogue record

Date deposited: 05 Jun 2006
Last modified: 17 Jul 2017 15:40

Export record



Author: A. Harris
Author: R.G. Bryant
Author: A.J. Baird

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.