The University of Southampton
University of Southampton Institutional Repository

Evidence for plant adaptation to a future high CO2 world

Evidence for plant adaptation to a future high CO2 world
Evidence for plant adaptation to a future high CO2 world
Plant morphology and function are sensitive to rising atmospheric carbon dioxide (CO2) concentrations, but evidence that CO2 concentration can act as a selective pressure driving evolution is sparse. Plants originating from naturally high CO2 springs are subjected to elevated CO2 concentration over multiple generations, providing an opportunity to predict how adaptation to future atmospheres may occur, with important implications for future plant conservation and crop breeding strategies. Using Plantago lanceolata L. from such a site (the ‘spring’ site) and from an adjacent ambient CO2 site (‘control’ site), and growing the populations in ambient and elevated CO2 at 700 ?mol mol-1, I have characterised, for the first time, the functional and population genomics, alongside morphology and physiology, of plant adaptation to elevated CO2 concentrations. Growing plants in elevated CO2 caused relatively modest changes in gene expression, with fewer changes evident in the spring than control plants (33 vs 131 genes differentially expressed [DE], in spring and control plants respectively). In contrast, when comparisons were made between control and spring plants grown in either ambient or elevated CO2, there were a much larger number of loci showing DE (689 in the ambient and 853 in the elevated CO2 environment). Population genomic analysis revealed that genetic differentiation between the spring and control plants was close to zero with no fixed differences, suggesting that plants are adapted to their native CO2 environment at the level of gene expression. Growth at elevated CO2 led to an unusual phenotype, with an increase in stomatal density and index in the spring, but not in control plants. Focussing on previously characterised stomatal patterning genes revealed significant DE (FDR < 0.05) between spring and control plants for three loci (YODA, CDKB1;1, and SCRM2) and between ambient and elevated CO2 for four (ER, YODA, MYB88, and BCA1). We propose that the up-regulation in spring plants of two positive regulators of stomatal numbers (SCRM2 and CDKB1;1) act here as key controllers of stomatal adaptation to elevated CO2 on an evolutionary timescale. Significant transcriptome reprogramming of the photosynthetic pathway was identified, with an overall decrease in expression across the pathway in control plants, and an increase in spring plants, in response to elevated CO2. This was followed up by physiological measurements, where a significant increase (P < 0.05) in photosynthetic capacity and regeneration rate was exhibited in spring plants, compared to control plants, at both elevated and ambient CO2 concentrations. Through this comprehensive analysis, we have identified the basis of plant adaptation to elevated CO2 likely to occur in the future.
University of Southampton
Watson-Lazowski, Alexander
5028e97f-95f7-4871-a10c-5ce50cb1d1a7
Watson-Lazowski, Alexander
5028e97f-95f7-4871-a10c-5ce50cb1d1a7
Taylor, Gail
f3851db9-d37c-4c36-8663-e5c2cb03e171
Chapman, Mark
8bac4a92-bfa7-4c3c-af29-9af852ef6383

Watson-Lazowski, Alexander (2015) Evidence for plant adaptation to a future high CO2 world. University of Southampton, Biological Sciences, Doctoral Thesis, 262pp.

Record type: Thesis (Doctoral)

Abstract

Plant morphology and function are sensitive to rising atmospheric carbon dioxide (CO2) concentrations, but evidence that CO2 concentration can act as a selective pressure driving evolution is sparse. Plants originating from naturally high CO2 springs are subjected to elevated CO2 concentration over multiple generations, providing an opportunity to predict how adaptation to future atmospheres may occur, with important implications for future plant conservation and crop breeding strategies. Using Plantago lanceolata L. from such a site (the ‘spring’ site) and from an adjacent ambient CO2 site (‘control’ site), and growing the populations in ambient and elevated CO2 at 700 ?mol mol-1, I have characterised, for the first time, the functional and population genomics, alongside morphology and physiology, of plant adaptation to elevated CO2 concentrations. Growing plants in elevated CO2 caused relatively modest changes in gene expression, with fewer changes evident in the spring than control plants (33 vs 131 genes differentially expressed [DE], in spring and control plants respectively). In contrast, when comparisons were made between control and spring plants grown in either ambient or elevated CO2, there were a much larger number of loci showing DE (689 in the ambient and 853 in the elevated CO2 environment). Population genomic analysis revealed that genetic differentiation between the spring and control plants was close to zero with no fixed differences, suggesting that plants are adapted to their native CO2 environment at the level of gene expression. Growth at elevated CO2 led to an unusual phenotype, with an increase in stomatal density and index in the spring, but not in control plants. Focussing on previously characterised stomatal patterning genes revealed significant DE (FDR < 0.05) between spring and control plants for three loci (YODA, CDKB1;1, and SCRM2) and between ambient and elevated CO2 for four (ER, YODA, MYB88, and BCA1). We propose that the up-regulation in spring plants of two positive regulators of stomatal numbers (SCRM2 and CDKB1;1) act here as key controllers of stomatal adaptation to elevated CO2 on an evolutionary timescale. Significant transcriptome reprogramming of the photosynthetic pathway was identified, with an overall decrease in expression across the pathway in control plants, and an increase in spring plants, in response to elevated CO2. This was followed up by physiological measurements, where a significant increase (P < 0.05) in photosynthetic capacity and regeneration rate was exhibited in spring plants, compared to control plants, at both elevated and ambient CO2 concentrations. Through this comprehensive analysis, we have identified the basis of plant adaptation to elevated CO2 likely to occur in the future.

Text
Thesis Alex Watson-Lazowski - Version of Record
Available under License University of Southampton Thesis Licence.
Download (7MB)

More information

Published date: May 2015
Organisations: University of Southampton, Faculty of Natural and Environmental Sciences

Identifiers

Local EPrints ID: 381161
URI: http://eprints.soton.ac.uk/id/eprint/381161
PURE UUID: 0b4746d8-b3cc-450d-8ad7-08e70de869d9
ORCID for Gail Taylor: ORCID iD orcid.org/0000-0001-8470-6390
ORCID for Mark Chapman: ORCID iD orcid.org/0000-0002-7151-723X

Catalogue record

Date deposited: 13 Oct 2015 13:22
Last modified: 25 Oct 2019 04:01

Export record

Contributors

Author: Alexander Watson-Lazowski
Thesis advisor: Gail Taylor ORCID iD
Thesis advisor: Mark Chapman ORCID iD

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×