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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING
School of Electronics and Computer Science

Doctor of Philosophy

TECHNIQUES AND VALIDATION FOR PROTECTION OF EMBEDDED
PROCESSORS

by Jedrzej J. Kufel

Advances in technology scaling and miniaturization of on-chip structures have caused
an increasing complexity of modern devices. Due to immense time-to-market pressures,
the reusability of intellectual property (IP) sub-systems has become a necessity. With the
resulting high risks involved with such a methodology, securing IP has become a major
concern. Despite a number of proposed IP protection (IPP) techniques being available,
securing an IP in the register transfer level (RTL) is not a trivial task, with many of the
techniques presenting a number of shortfalls or design limitations. The most prominent
and the least invasive solution is the integration of a digital watermark into an existing
IP. In this thesis new techniques are proposed to address the implementation difficulties
in constrained embedded IP processor cores.

This thesis establishes the parameters of sequences used for digital watermarking and
the tradeoffs between the hardware implementation cost, detection performance and
robustness against IP tampering. A new parametric approach is proposed which can
be implemented with any watermarking sequence. MATLAB simulations and experi-
mental results of two fabricated silicon ASICs with a watermark circuit embedded in an
ARM R© Cortex R©-M0 IP core and an ARM R© Cortex R©-A5 IP core demonstrate the trade-
offs between various sequences based on the final design application. The thesis further
focuses on minimization of hardware costs of a watermark circuit implementation. A
new clock-modulation based technique is proposed and reuses the existing circuit of an
IP core to generate a watermark signature. Power estimation and experimental results
demonstrate a significant area and power overhead reduction, when compared with
the existing techniques. To further minimize the costs of a watermark implementation,
a new technique is proposed which allows a non-deterministic and sporadic generation
of a watermark signature. The watermark was embedded in an ARM R© Cortex R©-A5
IP core and was fabricated in silicon. Experimental silicon results have validated the
proposed technique and have demonstrated the negligible hardware implementation
costs of an embedded watermark.
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Chapter 1

Introduction

”The general infringement of all types of intellectual property (IP) has become
a major problem. In 1998, ..., it was estimated that the cost of IP infringement
approaches $1 billion per day. ... 20% of all infringements of electronic designs
occur at external points of vulnerability, caused by the ease with which end-products
can be reverse engineered, copied or simply stolen.”

VSI Alliance1

1.1 Motivation for IP Protection

The problem of hardware piracy has become a major issue, with billions of dollars worth
of Intellectual Property (IP) being stolen every year. It has now reached the extent that
it is an imperative for major technology providers to protect their IP to prevent this.
Continuous technology scaling has led to an ongoing reduction in transistor minimum
size and therefore the ability to pack more circuitry on a single silicon die [2]. The
complexity of circuits containing IP is also increasing and this is a direct cause of the so-
called design (productivity) gap, with immense time-to-market pressures and shorter
design cycles [3]. It is therefore desirable to source or re-use complex sub-systems from
external IP suppliers, such as processors, and integrate them into an Application Specific
Integrated Circuits (ASIC) along with any new design blocks. This led to the approach
of design reuse being in common use Figure 1.1. Based on a system specification, circuit
designers can take necessary components from an in-house IP library or from third
party IP providers [4]. To incorporate innovation in successive system-on-chip (SoC)

1The Virtual Socket Interface (VSI) Alliance supports the needs of the industry for design reuse, and
investigates the ways to reduce the technology and business barriers in order to accelerate the industry
transformation [1]. The main goal of the VSI Alliance is the specification of a set of hardware and software
interfaces, formats, and design practices for the creation of functional blocks that enable the efficient and
accurate integration, verification, and testing of multiple blocks on a single piece of silicon [1].

1
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Figure 1.1: Design-reuse methodology.

designs, new IP components can also be created and included using this methodology.
With such an approach, designers can exploit this reuse-based methodology to build
an IP core in a much more efficient and faster way, than ”design-from-scratch” [4].
In Figure 1.2, the conventional ”design-from-scratch” register-transfer level (RTL) and
reuse-based methodologies are compared, based on the SoC design costs. As can be
seen, with an IP reuse-based approach significant costs reduction can be achieved.
Nevertheless, the IP sub-systems are often supplied as unprotected design files that
SoC integrators can use without any complication of their design flow. Due to the
lack of appropriate mechanisms which prevent an access to a design by a third party,
the IP protection (IPP) has become critically important as in many cases the value of
the IP is significant and relatively unprotected. As a result of theft, cloning and other
nefarious techniques, auditing the presence of an IP in finished products is becoming
an important and increasing challenge for IP providers to protect their designs. Reverse
engineering techniques can be used to prove the presence of specific IP but the process
is slow and costly [5,6]. It is therefore considered desirable to identify and prioritize IP
candidates to be short-listed for more thorough investigation.

1.2 Research Focus

The modern electronics market is occupied in a great measure by hand-held mobile
devices, such as smartphones or tablets. One of the cornerstones of these devices is
the battery life. This causes tremendous pressure on new technologies to optimize
the trade-off between cost, performance and power. Embedded processors used in
such mobile devices [4], are increasingly constrained in terms of circuit area and power
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Figure 1.2: Impact of design-reuse on SoC design costs [7].

consumption to satisfy these requirements. IP protection techniques in general increase
the hardware implementation costs such as area and power consumption which leads
to reduced battery life. Furthermore, the applicability of such techniques is influenced
by the design level in which they are implemented. The VSI Alliance [1] proposes
several techniques for IP protection at various design levels, such as hard, firm and soft,
but they are not all equally applicable. Trade-offs exist between the value (perceived or
real) of an IP, difficulty of implementation of the protection scheme, and the resulting
usability of the protected IP, by both the integrator and the end user [5]. The use
of soft IP is often the most desirable, as it offers IP owners and SoC integrators the
greatest level of flexibility. As IP protection techniques are implemented at an early
stage of development, the original design flow approach can be retained. The methods
for the protection of soft IP can be divided into two groups, where the architecture
of a watermark circuit is closely related to the knowledge of a system and detection
techniques, namely invasive and non-invasive. Invasive detection techniques require
access to device internals, such as input and output (I/O) ports, memories and a full or
partial knowledge of a system. Since, the final system architecture may not be known,
an IP owner lacks a sufficient knowledge to be able to use such detection techniques
and prove an IP infringement. In non-invasive detection techniques, the knowledge of
a system’s internals is significantly reduced and access to those internals is often not
required. Other sources of information, also known as side-channel parameters, such
as electromagnetic (EM) field radiation and power consumption can be used to detect
an embedded watermark.

Although techniques based on analysis of EM field offer a high degree of detectability,
the work presented in this thesis focuses on non-invasive power analysis techniques for
identification and protection of embedded processor soft IP cores with the minimization
of hardware implementation costs, such as area and power overheads .
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Figure 1.3: Block diagram of the current state-of-the-art digital watermark
circuit.

1.3 State-of-the-Art

In recent years, various techniques for the protection of soft IP cores have been proposed
through an integration of a digital signature, known as a digital watermark. Such digital
signatures are usually a finite sequence of symbols, characteristic of the IP and act as a
unique and exclusive identifier [5].

1.3.1 System Architecture

The current state-of-the-art digital watermark technique implements a redundant stand-
alone circuit in a soft IP core. Therefore, such circuit has no impact on the functionality
of the original IP. In Figure 1.3, a device with numerous soft IP sub-systems is illustrated.
The watermark circuit is embedded in one of the IP components and consists of two
circuits: the watermark generation circuit (WGC) and the watermark power pattern
generator (WPPG) [8]. The WGC generates a digital pattern, known as the watermark
sequence. It can be represented as a string of binary data, where each bit acts as a trigger
for the WPPG in consecutive clock cycles. For example, when a watermark bit is ′1′, the
WPPG is activated and consumes a significant portion of dynamic power. Otherwise,
when a bit is ′0′, the WPPG is idle and no power consumption occurs. Based on the
deterministic charge and discharge pattern of the WPPG logic, the digital watermark
signature is generated and can be further subjected to various detection techniques.

1.3.2 Watermark Detection

The watermark circuit generates a specific power pattern which is superimposed on
a device power consumption. Such a unique power pattern must be detected by an
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IP supplier, to determine if an IP infringement has occurred. The technique known as
Correlation Power Analysis (CPA) [9] analyses the dynamic current variations on the
supply voltage rail and is used to identify the digital watermark. It is a non-invasive
technique and no additional dedicated connections to the input or output (I/O) ports
of a device are required. The CPA is the current state-of-the-art detection technique for
power watermarks and does not require any knowledge of an original IP architecture.
However, due to the nature of the CPA algorithm a significant power consumption
is required to generate a strong and detectable signal. Therefore, the current state-
of-the-art digital watermark architecture consists of a large redundant WPPG circuit.
This causes a considerable area and power overheads and has a significant impact on
reduction of a device battery life.

1.4 Research Objectives

The research work presented in this thesis achieves the following:

• The most cost efficient watermarking sequences in terms of area and power
overheads and detection performance.

The watermark architecture found in the literature uses maximum length se-
quences, generated with Linear Feedback Shift Registers (LFSR). The impact of
other watermarking sequences on area, power and detection performance has not
been investigated and is addressed in this work.

• Minimization of watermark circuit hardware implementation costs.

The current state-of-the-art digital watermark requires an implementation of a
redundant and a significant size WPPG circuit, to be detected with the CPA de-
tection technique. This causes a substantial increase in both area and power over-
heads. Therefore, this work investigates new digital watermark implementation
techniques and architectures.

• Improvement of a digital watermark robustness against unauthorized use.

Digital watermark circuits must demonstrate high robustness against various
types of IP attacks. The robustness of the current state-of-the-art digital water-
mark is significantly impaired, due to a large WPPG circuit which leads to its high
visibility in the system. Henceforth, the proposed watermark architectures and
implementations are analyzed in terms of such robustness throughout this work.
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1.5 Contributions

The research presented in this thesis has contributed to the following:

• The characterization of watermark sequences, supported by theoretical analysis
and validations through simulations and experiments on FPGA and ASIC, in
terms of hardware implementation costs and detection performance.

• Identification of the most cost-efficient sequences for embedded power water-
marks in the context of a SoC implementation.

• Clock-modulation based implementation technique, which removes the need of
the significant size WPPG circuit, to reduce the area overhead of the power wa-
termark circuit.

• An instruction-based activation of the WGC in a clock-modulation based imple-
mentation, for minimization of area and power overheads of the power watermark
circuit.

• The first integration of an embedded power watermark in the ASIC implementa-
tion.

1.6 Thesis Structure

The thesis is composed of seven chapters. Chapter 1 presents the motivation and focus
of this research and identifies the current state-of-the-art power watermarking technique
for the protection of a soft IP. Furthermore, the research objectives are presented and
the contributions of this work are summarized.

Chapter 2 provides a comprehensive review of the methodologies for IP protection.

Chapter 3 introduces the principles of digital watermarking and gives an overview of
third party IP attacks against watermarks embedded in an IP.

Chapter 4 expands on the fundamentals of the CPA algorithm and presents the char-
acterization of watermark power patterns with their intrinsic parameters. It analyzes
various architectures and sequences and demonstrates a strong relationship between
the choice of a watermark sequence and the hardware implementation costs and detec-
tion performance. The theory is validated with experimental FPGA and ASIC results.
Furthermore, the chapter discusses the effect of process variation (PV) on detection per-
formance, in the context of commercial embedded processors in a SoC implementation.

Chapter 5 presents a novel watermark generation technique where clock-gate elements
of an existing system are modulated with the watermark sequence. The technique is
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validated through experiments on ASIC and demonstrates a significant area reduction,
without compromising the detection performance. The improved robustness against
IP attacks is demonstrated.

Chapter 6 creates the fundamentals for zero area and power overhead watermark im-
plementation for embedded IP cores. It combines the cost-efficient watermark patterns
found in Chapter 4, and reuses the clock-modulation technique introduced in Chapter
5, to activate the watermark generation with specific instructions. The simulations
and silicon validations demonstrate an approximately zero area and power overheads,
without compromising the detection performance.

Chapter 7 concludes the research work presented in this thesis with concise summa-
rization of contributions and improvements to the current state-of-the-art digital power
watermarking techniques and discusses further research directions in the area of power
watermarking and IP protection for embedded processors.





Chapter 2

Literature Survey

Intellectual property protection (IPP) has become an important topic with the increasing
trend of design reuse approach and modularity of IP blocks. The advantage of these
techniques are faster time-to-market and product cycles, however, it poses significant
challenges to IC designers. This chapter provides a general overview of the method-
ologies for IP protection, classified as deterrent, protection and detection, defined by
the VSI Alliance [5]. Each protection scheme is analyzed based on its applicability,
drawbacks and design tradeoffs in reuse-based commercial ”soft” IP designs.

The rest of this chapter is organized as follows. The IP protection approaches are
briefly discussed in Section 2.1. It is followed by the summarization of the types of
design levels in a design flow in Section 2.2. The digital fingerprinting techniques
are discussed in Section 2.3 and the invasive and non-invasive digital watermarking
techniques are discussed in Section 2.4 and Section 2.5, respectively. The chapter is
concluded in Section 2.6.

9
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2.1 IP Protection Approaches

2.1.1 Deterrent

The deterrent approach provides exclusivity to the IP originator for a specific period of
time through patents, copyrights, trade secrets, contracts or lawsuits. It may deter the IP
infringement from occurring, however it does not provide any physical protection [5].

2.1.2 Protection

The protection mechanism prevents unauthorized use of an IP and imposes a high
degree of security through encryption and licensing agreements. Encryption available
in current electronic design automation (EDA) tools is often far from universal and
pain-free [5]. A common practice widely adopted in the industry is to encrypt a source
code, written in a hardware description language (HDL) such as Verilog or VHDL.
However, such an approach may enforce the use of a particular design platform and
may not be acceptable to many SoC designers and integrators, who prefer the flexibility
of various design tools during the design flow [10]. Another solution is simply to release
an IP information in indirect form, such as GDSII, to make masks for the complete chip
or in the form of programmable devices, such as FPGAs [5]. Nonetheless, access to a
complete design is greatly limited and reduces the marketability of such a product.

2.1.3 Detection

Piracy of an IC occurs at fabrication facilities, due to the full access to a design and
sophisticated tools. The protection of an IP can be achieved through an addition
of digital fingerprints or digital watermarks. Digital fingerprinting, also known as
passive watermarking, is based on the integrated circuit identification (ICID) [11]. A
unique ID for each IC is generated and allows a design house to gain a post-fabrication
identification of manufactured ICs. Therefore, it prevents a foundry from producing
more chips than specified. Digital watermarking, regarded as an active form of IP
watermarking, intentionally embeds digital information into an IP for identification
purposes, without altering its functionality. The information consists of an author’s
name, company name or other message closely related to an IP supplier. If necessary,
such information can be further used to prove that an IP infringement has occurred. The
architecture and therefore the implementation depends however on the design level
in which digital watermarks are embedded. Furthermore, the digital watermarking
detection techniques can be classified as invasive and non-invasive, and vary based
on the resources that are required to obtain a successful detection. In the rest of this
chapter, detection techniques are considered.
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Figure 2.1: Design flow levels, based on [1].

2.2 Types of Design Levels

Intellectual properties can be distinguished in various abstract levels, described also as
their ”hardness”. The VSI Alliance [1] describes such levels as soft, firm and hard (Figure
2.1). Soft IP is delivered as a synthesizable RTL description, written in a hardware
description language (HDL). The advantage of a design in this form is its flexibility,
however its performance is not fully predictable. Firm IP is delivered as a combination
of RTL, technology library, floorplan and a full or partial netlist and is optimized for
performance and area. It is more flexible than hard IP and more predictable than soft
IP, hence it provides a compromise between both. Hard IP can be delivered as a netlist,
fully placed, routed and optimized, a custom physical layout or combination of both. It
is the least flexible of all design levels and it is optimized for power, size or performance
and is mapped to a specific technology library.

2.3 Digital Fingerprinting

Digital fingerprinting techniques extract unique and usually intrinsic IC features, which
are further stored in a database. A comparison of an unknown IC with the database
is performed to determine if an IP infringement has occurred. One such feature is an
internal IC path (net) timing delay [12–14]. Its variations across the same silicon die
are caused by mask variations, while the variations across the wafer (die to die) are
introduced by process variation (PV), caused by changes in temperature and pressure
during the manufacturing process [12]. To exploit such behaviour challenge-response
pairs are generated, based on Physically Unclonable Functions (PUFs). A PUF is a
physical function that provides mapping from a device inputs to outputs and it is based
on unique fluctuations in the unclonable device material properties. The input to a PUF
is typically called a challenge, and the output from a PUF is known as a response. It
is expected that a generation of two identical PUFs is technically impossible [15, 16].



12 Chapter 2 Literature Survey

Figure 2.2: 4 NAND gates circuit based on a static current consumption mea-
surements [17].

The input ports of an IC are subjected to a digital or analog signals (challenge), and a
specific transient response waveforms are captured at the output ports (response). Each
response is unique due to the effect of process variation. The database of challenge-
response pairs is further created for future IC comparison. Another IC feature which
enables the generation of a unique ID, is static (leakage) current consumption [17]. An
example of a four NAND gate circuit is shown in Figure 2.2. Figure 2.2(b) represents
the static current of the G1 NAND gate for various input vectors. In deep-submicron
technologies the current varies from one gate to another, as shown by the scaling factor
in Figure 2.2(c). Finally, Figure 2.2(d) represents the static current consumption of an
entire circuit. As can be seen, the current varies between both ICs for the same input
vectors. Therefore, each circuit can be uniquely characterized. Figure 2.2 creates the
fundamentals for the multi-million gates designs, where the probability of a collision
of two identical IDs is negligible [17].

The digital fingerprinting techniques discussed require an access to the entire design
flow and a full knowledge of a system. Therefore, they are not feasible for the protection
of soft IP, since an IP supplier may not have such knowledge, after an IP has been
integrated as a part of a system and the chip has been fabricated.

2.4 Invasive Digital Watermarking

Invasive digital watermarking requires an access to device internals, such as I/O ports,
memories and a full or partial knowledge of a system, to detect an embedded water-
mark. The architecture of a watermark circuit is based on the design level in which
such a watermark is embedded (refer to Section 2.2).
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(a) (b)

Figure 2.3: (a) Buffer insertion technique design flow [18]. (b) An example of
buffer insertion: a) original design, b) added buffers, c) watermarked design.

2.4.1 Hard IP

In hard IP, a digital watermark is represented as physical modifications to the IC layout.
One such technique alters the placement of technology library cells through the parity
modification [19] or scattering [20, 21]. Other techniques modify the number of vias in
digital devices or bends in analog devices [22,23], based on the watermark signature. For
example, if a watermark bit is ′1′, a net is altered with an even number of vias and when
a watermark bit is ′0′, the odd number of vias is expected. Since digital devices require
additional vias to be implemented, results in [22] demonstrate that the area overhead
of the watermarked IC is approximately 12 − 13%. In analog devices, a negligible area
overhead is achieved, since the original wires are retained and only small bends must be
incorporated [23]. A post-layout parity modification technique [18], embeds additional
redundant buffers in specific nets. The design flow of such technique is shown in Figure
2.3(a). If a watermark bit is ′1′, a buffer parity in a net is odd. Otherwise it is even. In
Figure 2.3(b), nets from 1 to 6 correspond to watermark bits ′001011′. According to the
technique, nets 2, 4 and 5 do not meet the criteria of the algorithm and extra buffers
must be embedded.

Other hard IP watermarking techniques utilize the intrinsic features of physical IC
layout, obtained from EDA tools. In [24], it is shown that the possibility of any point
in a layout overlapping with a polysilicon is usually less than 15%. If n number of
watermarking points are chosen, the possibility of all these points overlapping with
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(a) (b)

Figure 2.4: Digital watermarking of a partitioning solution [25]. (a) Origi-
nal solution. (b) Solution with an embedded public and private watermark
signatures.

a polysilicon is 0.15n [24]. Due to such low probability, watermarking is viable. The
information about a polysilicon layer is extracted from a GDSII file, which contains
the data about the design layout. The experimental results in [24] demonstrate that a
similarity of 91% between the expected and obtained watermark signatures is achieved.

2.4.2 Firm IP

In a design flow, electronic design automation (EDA) tools use specific problem solving
algorithms, known as heuristics, to find a solution to a hardware optimization and
synthesis problems. Solutions which satisfy design constraints are known as the so-
lution space [25]. In a firm IP, additional constraints are applied to such optimization
problems to embed a watermark. Therefore, the solution space must be large enough
to accommodate such constraints. In [25, 26], a technique is proposed which embeds
a digital watermark in various optimization steps, such as partitioning and graph col-
oring. Partitioning [27] plays an important role in a VLSI design and can significantly
reduce the complexity of a design process, through minimization of interconnections
and delay, based on constraints such as number of nodes (balance constraint), area
and number of partitions [25]. A watermark is divided into public and private parts.
The public part is embedded in such way to guarantee its non-restricted detectability,
while the private part is shared only with an authorized person. The public part offers
the advantage of the first level of an authorship when it is matched with the expected
signature. In a partitioning solution, Figure 2.4(a), a watermark represented by an 8-bit
ASCII character is embedded by choosing 8 pairs of vertices. To embed a watermark
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(a) (b)

(c) (d) (e)

Figure 2.5: Digital watermarking of a graph coloring solution [25]. (a) Original
graph and host for a public watermark. (b) Watermark signature ′00′. (c) Wa-
termark signature ′01′. (d) Watermark signature ′10′. (e) Watermark signature
′11′.

bit ′1′, a pair of vertices is forced to be in a separate partition. To embed a watermark
bit ′0′ a pair of vertices is forced to be in the same partition. In Figure 2.4(b), two water-
mark characters are embedded. The partitions divided by the dashed line with arrow
heads represent a public watermark ’p’, while the other two partitions represent the
private watermark ’O’. The application of the proposed technique to the graph coloring
optimization algorithm is similar. To embed a watermark bit ′1′, a pair of non-adjacent
vertices (not directly connected nodes) is given the same colour. Otherwise, different
colours are used. As can be seen in Figure 2.5(a), two pairs of nodes are chosen. These
are nodes 0, 7 and 1, 8. When a watermark signature represented by a 2-bit sequence
′00′ is implemented, none of the pairs has the same colour, Figure 2.5(b). If a water-
mark signature is ′11′, the first pair (0 and 7) is coloured in yellow and the second pair
(1 and 8) is coloured in blue, Figure 2.5(e). Other techniques aimed at the hardware
optimization exist and embed a digital watermark during the partitioning [28], graph
coloring [26], template matching or operation scheduling [29] steps.

The constraint-based techniques aimed at the design synthesis embed a digital water-
mark through nodes rewiring [30], alternate scan cells connection styles [31], transform
specific local network topologies into their alternative mapped forms [32,33] or restrict
the timing of specific nets [19]. For example, given a timing of a net of 50ns, it is
further into two sub-nets with the timing of the 1st constrained to 20ns and the timing
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(a) (b)

Figure 2.6: Watermarked (a) and non-watermarked (b) design with path timing
constraint technique [19].

of the 2nd constrained to 30ns [19]. Figure 2.6, demonstrates both watermarked and
non-watermarked designs. As can be seen, it is practically impossible to notice any
structural change [19]. Therefore it is hard for a third party to tamper with a design.
However, constraint-based techniques require a partial or an in-depth knowledge of a
watermarked design to detect an embedded watermark signature.

The first implementation of a digital watermark in a state transition graph (STG) of a
finite state machine (FSM) was demonstrated in [34] and allowed the detection through
I/O ports of a device. Two properties of a watermarked STG were identified. First, ”each
state ri, 1 ≤ i ≤ m can only be reached from state ri−1”. Second, ”each state ri, 1 ≤ i ≤ m can
only be reached from state ri−1 by applying input ai” [34]. States ri represent an additional
set of states, that can be reached only through an application of a specific bit sequence.
In Figure 2.7, original and watermarked state transition graphs are shown. As can be
seen in Figure 2.7(a), if a bit sequence ai =′ 010′ is applied, the states change from qo

to q3. The STG is modified as shown in Figure 2.7(b). The additional watermark states
ri emulate the original functionality, and if a bit sequence ai =′ 010′ is applied, the
state changes from r0 = q0 to r3. Therefore, the application of a watermark sequence
causes a specific and deterministic behaviour of a system. The sequence is generated
by encrypting a unique signature string with a known key, using a public cryptosystem
tool, such as MD5 [34]. To detect an embedded watermark, outputs ports of a device are
observed, while a set of test vectors is applied to the input ports. The proposed technique
was implemented in various sized circuits and it was concluded that the area and
performance overheads are negligible for a reasonable size systems, while generating
robust watermarks [34]. Although the technique embedded a digital watermark in the
netlist level, it created the fundamentals for many future soft IP techniques.



Chapter 2 Literature Survey 17
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Figure 2.7: Original (a) and watermarked (b) state transition graphs in a FSM
watermarking [34].

2.4.3 Soft IP

Finite state machines have been used on many occasions in soft IP watermarking with
the addition of extra states as one of the approaches [35]. Enhancements to the im-
plementation algorithm have lead to the partial reuse of existing states [36, 37] and
significantly reduced the hardware implementation costs. In [36, 37], three algorithms
were proposed and it was demonstrated that only 1.7% area overhead is required in
large circuits. Further advances in the implementation algorithms allowed a complete
integration of a watermark with existing states, thus reducing the area overhead to
approximately 0% [38]. However, such techniques are only applicable in flat FSM
designs and are unsuitable for the commercial IP designs. An approximately zero-
overhead technique was proposed in [39], and reused most of an already existing
states. However, the technique lacked the possibility of direct detection once a chip has
been packaged [40]. The solution demonstrated in [40] implemented a hybrid form,
by watermarking higher (RTL description) and lower (netlist) abstraction levels of a
design [40]. While lower levels offer a more robust watermark implementation, the
detection is time consuming. To compensate, higher levels ease the verification but are
less robust. Combining RTL and netlist level description increases the robustness of a
watermark and reduces the required detection resources. In RTL description the FSM
watermarking was used, and in netlist descriptions scan cells reordering techniques
were used [41–44]. The detection algorithm asserts input test vectors and captures a
watermark signature at the output ports of a device. The technique was demonstrated
to generate low area overheads and produce highly robust digital watermarks [40]. In
recent years, the new approach to FSM watermarking has been proposed through the



18 Chapter 2 Literature Survey

Figure 2.8: Schematic diagram of watermark generation and test circuits em-
bedded in a soft IP [46].

use of genetic algorithms, to reduce the number of states. In [45], the experimental
results have demonstrated FSMs with fewer states than before watermarking.

In [46–48], another technique was proposed by embedding watermark generation and
test circuits in a single chip. Both circuits were implemented as shown in Figure 2.8.
When the test signal is ′1′, a watermark sequence is generated and propagated to the
output ports of a device. Numerous integration schemes have been demonstrated with
the watermark signature bits propagated at various points in an output pattern. For
example, a signature can be embedded in an output message as a preamble, prior to
the actual message, or can be embedded in a message in a random fashion. To protect
a watermark circuit and provide the means of RTL obfuscation, standard Verilog HDL
encoding features were used. However, as in Section 2.1.2, encryption enforces the use
of particular tools, which is not acceptable to many designers and integrators.
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(a) (b)

Figure 2.9: Original VHDL code (a) and additional ”case” statements (b) in a
memory structure watermarking [49].

In [50–53], a digital watermark is embedded in the empty positions of look-up tables
(LUT) on FPGA. The technique implements an additional redundant circuit or uses
memory structures and combinational logic, to expose the contents of LUTs to the output
ports, when a specific input sequence is applied. Figure 2.9(a) represents the original
VHDL code of a memory structure. As can be seen, not all possible combinations
are utilized which creates a space for a watermark implementation. This is shown
by additional ”case” statements in Figure 2.9(b). However, connections between the
bus and output ports may not exist after the design has been integrated in a SoC
and I/O controller blocks which manage the flow of data between an IP core and
device ports may prevent a direct detection [54]. To overcome such limitations two
techniques were proposed in [54]. First, a signature co-processor is implemented to
scan the data being fetched from the memory. Upon detection of a unique input
sequence a watermark signature is copied to the specific memory location. Second,
unused instruction op-codes are identified and additional watermark instructions are
developed. When such an instruction is executed a watermark signature is stored in
memory. Further improvements to the proposed technique were demonstrated in [55],
where the watermark insertion was improved with 3 signature distribution algorithms.
The results showed a reduction in the area overhead. Nevertheless, to extract an
embedded watermark a processor core must be held in a reset state.

2.4.4 Summary

The IP protection through the detection of an embedded digital watermark provides
a vast applicability at different levels of a design. In a hard IP level [18–24] (Section
2.4.1), a watermark is embedded through a physical modification of an IC layout.
In a firm IP level [19, 25, 26, 28–30, 32–34] (Section 2.4.2), a watermark is embedded
through application of additional constraints. Such techniques generate a tamper-
resistant watermark with a very low area overhead. The detection technique however
requires an access to a watermarked design, such as a micro photograph, GDSII file,
fully placed and routed or partial netlist. In case such knowledge is not available, access
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(a) (b)

Figure 2.10: (a) Image of a 130nm chip with an optical imaging (top) and
scanning electron microscope imaging (bottom). (b) Chip annotation after
SEM imaging [6].

to device internals is required to perform a reverse-engineering [6]. At first, a chip is
de-packaged with special acids to uncover the die. Next, metal layers of a chip are
separated and photographed using an optical imaging or scanning electron microscope
(SEM). For technology processes down to 0.25µm optical imaging is sufficient, however,
for technology processes below 0.25µm, optical imaging cannot resolve the smallest
features and SEM is required [6], Figure 2.10(a). Once all the images have been obtained
and combined, circuit extraction begins and all components, including transistors,
capacitors, diodes and other components, interconnections between layers, contacts
and vias are annotated. In the past, engineers used a ”crawl-around-on-the-floor”
technique to annotate wires and transistors, followed by drawing the schematic on a
paper, before transferring it to a software schematic editor [6]. Nowadays, special tools
are used and the annotation process is automated, Figure 2.10(b). The last step involves
the extraction of a netlist from the annotated SEM images and formulation of a flat
schematic. The physical tests of an IC, such as micro-probing may also be required
to detect an embedded watermark signature. The focused ion beam (FIB) system can
be used to scan a chip with a high resolution [56]. Additionally, the FIB system can
remove a signal wire as shown in Figure 2.11 or drill holes through metal layers to
allow connection to an internal wires. The reverse-engineering approach is however



Chapter 2 Literature Survey 21

Figure 2.11: Signal wire removal with a FIB system [57].

time consuming and requires an expensive infrastructure.

In a soft IP level (Section 2.4.3), digital watermarks are embedded in the RTL description.
The FSM watermarking is one of the most commonly used and researched soft IPP
techniques [35–44]. Other techniques embed a watermark in LUTs in an FPGA [50–53]
or memory structures [54]. Although, most of soft IP techniques allow a watermark
detection in a fabricated chip, many require an access to I/O ports or an internal memory.
Since, the final system architecture may not be known, an IP owner lacks a sufficient
knowledge to able to use such detection techniques and prove an IP infringement.

2.5 Non-Invasive Digital Watermarking

Non-invasive digital watermarking does not require any access to device internals and
the system’s knowledge is not necessary to successfully perform a watermark detection.
Techniques are based on the measurement of device specific characteristics, known as
the side-channel information such as power consumption. Therefore, an embedded
watermark is commonly known as the power watermark.

2.5.1 Power Watermark

The first power watermarking technique proposed in [58] detected an embedded wa-
termark signature from the power supply pin. This was the first technique to detect
an embedded watermark in such way. The watermark circuit was embedded in an
FPGA and consisted of two modules: watermark generator and power pattern gen-
erator (Figure 2.12(a)). The watermark generator was implemented as a small shift
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(a) (b)

Figure 2.12: (a) Power watermark block diagram [58]. (b) Threshold-based
watermark detection algorithm [58].

register and generated a watermark sequence to further control a bigger power pattern
shift register. When a watermark bit is ′1′, the power pattern shift register is enabled
and rotates all bits by a single position. This causes an instantaneous and substantial
power consumption. Otherwise, when a watermark bit is ′0′ no rotation occurs and no
additional power is consumed. The technique was implemented on FPGA. The shift
registers were an integral part of the functional logic to increase the robustness of a
watermark circuit. Therefore, if a watermark is removed the functionality of a core is
impaired. The architecture of the original design was modified in the netlist level, by
re-using existing LUTs. Two modes were distinguished: normal and watermark. In the
normal mode all LUTs are configured as originally intended. When a system is held in
a reset state, the watermark mode is asserted and the modified LUTs form a watermark
circuit. The advantage of such an approach is the reduced noise from the rest of the
system during the watermark detection. Since most of the system is inactive, the major
contributor of the power consumption is the watermark circuit.

The watermark implementation technique proposed in [58] results in a robust and a
highly tamper-proof solution. However, its applicability is solely limited to FPGAs, due
to their configurable architecture. Such an approach is infeasible in case of ASICs since
each LUT would synthesize into a number of logic gates [8]. Therefore, a stand-alone
circuit must be integrated.
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Figure 2.13: Resonance effect caused by a watermark signature generation [58].

2.5.2 Threshold-Based Watermark Detection

The first non-invasive power watermark detection techniques applied a specific post-
processing algorithms and thresholds [58]. One such algorithm is shown in Figure
2.12(b). After the quantization of the measured device dynamic power consumption,
the post-processed signal is compared with the anticipated threshold. If a signal is
above the threshold, the detected watermark signature bit is stored as ′1′. If it is below
the threshold, the bit is stored as ′0′. However, such detection algorithm is sensitive to
generated watermark signatures [59]. When a signature contains a long sequence of ′1′,
followed by a short sequence of ′0′, a resonance effect occurs. Therefore, the immediate
bit ′0′ is stored as ′1′ and leads to an erroneous detection. In Figure 2.13, such an effect is
shown. The watermark signature consists of eight consecutive ′1′ followed by a series
of ′0′. As can be seen, the 9th bit generates a significant voltage spike and it is detected as
′1′. To prevent such occurrences, a delay of a few clock cycles between consecutive bits
of a watermark signature is inserted [59]. Additionally, the generated carrier frequency
of the watermark signal may be shifted away from the frequency of a system clock,
where most of the interferences occur. The on-off keying (OOK) modulation, proposed
in [59], generates a watermark power pattern based on the following algorithm. If a
watermark bit is ′1′, five ′1′ are generated followed by five ′0′. If a watermark bit is
′0′, the operation is inverted and five ′0′ are generated followed by five ′1′. The above
techniques implement a static level of the applied threshold. This greatly reduces the
sensitivity of the watermark detection algorithm. In [60], the correlation of the measured
power signal with the approximated impulse response was proposed. The detection
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Figure 2.14: Power signal of a DES device during cryptographic operation [61].

algorithm dynamically adjusts the threshold, based on previous samples. However, as
shown in previous techniques the experimental results on FPGAs failed to detect an
embedded watermark, when its signal-to-noise ratio (SNR) was below +4dB.

2.5.3 Statistical-Based Watermark Detection

The threshold-based techniques discussed in Section 2.5.2 demonstrated that a deeply
embedded watermark power signal can not be detected, and a strong watermark power
signal must be generated leading to significant hardware implementation cost over-
heads. To overcome such limitations, detection techniques based on statistical analysis
have been introduced. Previously, such techniques have been used in the cryptographic
systems to extract a secret key, but their development and vast applicability have lead
to the implementation in the context of an IP protection. To fully understand the fun-
damentals of such techniques, it is necessary to consider their development and early
use.

2.5.3.1 Differential Power Analysis

The first non-invasive power analysis techniques aimed at detecting a secret key in
cryptographic devices used techniques such as Simple Power Analysis (SPA) and Dif-
ferential Power Analysis (DPA) [61]. The dynamic power consumed by a device is
measured, with the sampling frequency higher than the frequency of the system clock.
Multiple power samples are acquired during a single clock cycle. The measured power
signal is visually interpreted in the SPA approach and enables recognition of operations
executed during the cryptographic procedure, such as conditional branches, multipli-
cation and exponentiation. Due to power consumption variations between consecutive
clock cycles, Figure 2.14, it is possible to determine when a cryptographic procedure is
executed and distinguish consecutive steps (rounds) of such operation. However, due
to environmental and system noise, it may not always be possible to directly determine
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Figure 2.15: a) DES encryption algorithm. b) DES round function.

executed processes with a simple visual inspection. In such cases, the DPA technique
can be used with a detection algorithm described as follows [61]:

”The DPA selection function, D(C, b,KS), is defined as computing the value of
bit 0 ≤ b < 32 of DES intermediate, L, at the beginning of the 16th round for
ciphertext, C, where the six key bits entering the S box, corresponding to bit b are
represented by 0 ≤ KS < 26. ... To implement the DPA attack, an attacker first
observes m encryption operations and captures power traces, T1..m[1..k], containing
k samples each. In addition, the attacker records the ciphertexts, C1..m. ... The
attacker computes a k-sample differential trace, ∆D[1..k], by finding the difference
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Figure 2.16: DPA applied to a smart card [61].

between the average of the traces for which D(C, b,KS) is one and the average of the
traces for which D(C, b,KS) is zero. Thus ∆D[ j] is the average over C1..m of the effect
due to the value represented by the selection function D on the power consumption
measurements at point j.” [61]

The Data Encryption Standard (DES) encryption algorithm is shown in Figure 2.15(a),
[62]. It contains 16 rounds of encryption steps, during which R and L registers are
obtained, from multiple logical operations. In each round the R and L registers are
subjected to repeated transformations, such as expansion and substitution (S-box) func-
tions, Figure 2.15(b). A person who wishes to retrieve a secret key from the DES
cryptographic device must first generate and apply N random messages (plaintexts),
while capturing power signals (trace). The DPA algorithm retrieves a secret key from
the intermediate L register. The selection function, D, is applied and divides the mea-
sured power trace into two separate sets of data. The first set contains traces for which
D = 1, and the second set contains traces for which D = 0. An average trace is found
for each set, and a differential trace, ∆D, is computed by subtracting one set from the
other. If a key, KS, is incorrect, D is uncorrelated to the actual result and ∆D approaches
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0. Otherwise, if KS is correct, D is correlated to the value of the bit manipulated in the
16th round. The graph of ∆D contains spikes in the regions where D is correlated to the
values being processed [61]. In Figure 2.16, the DPA technique is applied on a smart
card. The top signal represents the averaged power trace. The next three differential
traces represent the correct (top) and incorrect (two bottom) key guesses, respectively.
Although countermeasures exist, such as utilizing a voltage regulator as an isolation
circuit, to cause the uncorrelated current consumption to the processed data [63], ex-
ternal components are usually required. Moreover, the DPA technique is able to detect
very weak signals. Although, an addition of extra noise to a system decreases the
amplitude of correlation spikes, it does not remove them completely. Furthermore,
techniques to increase the SNR of the measured power signal exist. In [64,65], the types
of noise are classified as external, intrinsic, quantization and algorithmic. External noise
is generated by a source external to a device, but is coupled with its power signal. It
can be reduced with a careful circuit design, proper equipment and filtering. Intrinsic
noise is caused by the random movement of charge carriers within conductors while
the quantization noise exists in the analog to digital converters (ADC), when an analog
signal is converted to a digital signal. Intrinsic and quantization noise are quite small
and therefore negligible. Algorithmic noise is caused by the random processing of data
bytes in a device and can be reduced if a technique can average the unbiased random
data.

2.5.3.2 Leakage-Based Differential Power Analysis

Dynamic power is the major contributor to the overall power consumption in microme-
ter technology processes. However, due to scaling in CMOS technology, the static power
has become a significant factor in deep submicron processes [66]. In the 45nm technol-
ogy process, the average contribution of the static power accounts for an approximately
24% of an entire power consumption [66]. It is expected, that with further technology
scaling the static power will become the dominant factor and detection techniques will
become more viable [66]. The leakage-based DPA (LDPA) technique [67] demonstrated
a significant dependency of a static current on the data operation execution in a two-
input NAND gate, and provided further evidence of the data dependency in inverters,
XOR and NOR gates. The conventional DPA technique applied to a 180nm device was
compared with the LDPA technique, applied to a 45nm device. It was concluded, that
the LDPA technique retrieved a secret key much faster [67]. In [68], the static power
attacks were perfomed on 3 FPGAs fabricated using 65nm, 45nm and 28nm technology
processes. Although attacks were successful, it was shown that static power attacks
were less efficient than dynamic power attacks.
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2.5.3.3 Correlation Power Analysis

The fundamental approach of the conventional DPA technique (Section 2.5.3.1), is the
computation of a distance between the means of two sets of data (difference-of-means).
In [69], a high correlation between the consumed power and the Hamming Weight 1

(HW) of the processed data was demonstrated. Several such techniques have been
proposed [69–71], where the hypothetical model of a cryptographic device was used to
detect a secret key. However, in [72] it is argued that such hypothetical model is not
necessarily correct. Experimental results on 13 cryptographic devices have shown that a
successful detection could not be performed. In [9], a different technique was proposed,
based on computation of the Hamming Distance2 hypothetical model. The technique is
known as Correlation Power Analysis (CPA) and assumes that the Hamming Distance is
highly correlated to the data being processed. The CPA computes a Pearson correlation
coefficient, ρ, as in Equation (2.1) to describe the degree of linear similarity between the
two sets of data. Therefore, it can be used for a direct comparison of the hypothetical
model, H, with the real data, W.

ρ =
cov(W,H)
σWσH

(2.1)

The CPA algorithm consists of three stages: prediction, measurement and correlation
and can be described as follows [73]:

1. The Hamming Distance for the hypothetical model is formulated. It is repeated
for all 28 possible values of a byte of a secret key, and N random words from which
N ∗ 28 Prediction Matrix is obtained.

2. The power signal is captured for X clock cycles and a single value per clock cycle
is found by taking the highest power consumption sample. It is further stored in
the N ∗ X Consumption Matrix.

3. The correlations between the column in the Consumption Matrix and all columns
in the Prediction Matrix are computed.

4. The column with the highest correlation value describes the correct key guess
associated with the column number.

The value of the correlation coefficient can range from −1 to 1, where the sign indicates
the relationship. For example, if a hypothetical model directly follows the Hamming

1Hamming Weight (HW) represents the number of ′1′ in any binary sequence. For example, a sequence
′0110′ has HW of 2, while ′1111′ has HW of 4.

2Hamming Distance represents the number of bit changes between two binary sequences. For example,
if the 1st sequence is ′0110′, and the 2nd sequence is ′1001′, all 4 bits must change and Hamming Distance
is 4.
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Figure 2.17: CPA applied to a cryptographic core on FPGA [73].

Distance of a measured power signal, the coefficient is 1. If a hypothetical model is
exactly an inversion of the Hamming Distance, the coefficient is −1. The value of
0 indicates that no linear relationship between the model and the measured signal
exists. Such value should be expected from uncorrelated noise. The CPA applied to
a cryptographic IP core implemented on an FPGA is shown in Figure 2.17. It can be
seen, that a significant peak stands out from other correlation coefficients. Therefore, the
correct key has been found. The CPA technique is argued to be more efficient and robust
than the DPA technique but requires a more in-depth knowledge about the architecture
of a system [9]. The DPA may therefore be advantageous in case of hardened chips,
where reverse engineering would be impractical [9].

Similarly to the DPA technique, CPA is a cryptographic technique with the aim of re-
trieving a secret key during the encryption process on a cryptographic device. The
knowledge about the architecture of a system is therefore required to perform a suc-
cessful detection. In case of an IP protection the watermark circuit is embedded by an
IP supplier and the hypothetical model of a watermark circuit is simply required to
successfully perform a watermark detection. Although, an IP can be embedded as a
part of a system, such in-depth knowledge is not required.

2.5.3.4 Correlation Power Analysis Watermark Detection

The first application of the CPA technique in IP digital watermarking was demonstrated
in [8]. Two types of power watermark architectures were proposed. The first, a spread-
spectrum watermark (Figure 2.18(a)) and the second, an input modulated watermark
(Figure 2.18(b). In the spread-spectrum, a watermark architecture is similar as in Section
2.5.1 [58]. The watermark generation circuit (WGC) consists of a Pseudo Random
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(a)
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Figure 2.18: (a) Spread-spectrum watermark architecture [8]. (b) Input modu-
lated watermark implementation [74].

Number Generator (PRNG), such as Linear Feedback Shift Register (LFSR) and controls
the watermark power pattern generator (WPPG). The architecture of the WPPG consists
a significant number of circular shift registers. The signal-to-noise ratio (SNR) of the
generated watermark power signal increases with the number of registers utilized in
the WPPG circuit. If a watermark bit is ′1′, the WPPG is rotated by a single register.
Otherwise, if a watermark bit is ′0′ no rotation occurs. The input modulated watermark
creates a specific power pattern, based on a set of secret and known bits [74]. The
detection algorithm, based on the CPA, can be described as follows [8]:

1. The dynamic power consumption is measured and the average value per clock
cycle is found. The data is stored in the Power Vector, Y.

2. The hypothetical model of a watermark sequence is generated and it is stored in
the Model Vector, X.

3. The Pearson’s correlation coefficient, ρ, is computed as in Equation (2.2), to obtain
a single correlation point.

ρ =

N
N∑

i=1
XiYi −

N∑
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Chapter 2 Literature Survey 31

0 500 1000 1500 2000 2500 3000 3500 4000
−0.01

−0.005

0

0.005

0.01

0.015

Watermark Model Rotation

ρ

Figure 2.19: The spread spectrum of the CPA watermark detection.

4. Since X and Y may be out of phase, X is rotated by a single clock cycle.

5. Steps 3 to 4 are repeated N − 1 times, where N is the length of a watermark
sequence.

6. Each correlation point is plotted on a graph, known as the spread spectrum.

7. If a significant peak can be distinguished and no other peaks exist, a watermark
is deemed found.

In [8], a watermark circuit was implemented on an FPGA. To generate a watermark
sequence, the WGC circuit used a 32 − bit LFSR and the WPPG circuit used 16 LUTs,
each configured as a 16-bit circular shift register. A successful watermark detection
was demonstrated with only 100 clock cycles, when an IP core was held in a reset
state. However, 250, 000 clock cycles were required, when the core was active. In
Figure 2.19, the spread spectrum is shown. The single correlation peak confirms the
successful detection of an embedded watermark and proves that the technique is a
viable non-invasive detection technique for watermarks embedded in soft IP cores.

2.5.3.5 Null Hypothesis Significance Test Watermark Detection

In [75], the combination of the CPA detection technique with a statistical analysis tool,
known as the Null Hypothesis Significance Test [76] was proposed. The simulation re-
sults implemented the WGC using the LFSR. To emulate the environmental and system
noise sources, a normally distributed random numbers were added to the generated
watermark sequence. To increase the watermark circuit SNR, the amplitude of a noise
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Figure 2.20: Correlation distributions of the null (left) and alternative (right)
hypotheses in the Null Hypothesis Significance Test [73].

signal was increased. The correlation was computed as in Equation (2.2). Since the
distribution of ρ is skewed [75], the Fisher Transform of ρ was found as in Equation
(2.3), to approximate the distribution as normal.

Fisher(ρ) = 0.5 ln
1 + ρ

1 − ρ
(2.3)

The standard deviation of Fisher(ρ), x̄, is directly related to the number of samples, N.

σ =
1

√
N − 3

(2.4)

The distribution of x̄ obtained from the non-watermarked system is known as the null
hypothesis, Figure 2.20. The threshold level found from the null hypothesis is used to
determine the percentage of successfully detected watermarks in consecutive tests. The
distribution of x̄ obtained from the watermarked system is known as the alternative
hypothesis. To determine if the null hypothesis can be rejected and therefore the alternative
hypothesis can be accepted, the z-value was computed as in Equation (2.5):

z =
x̄ − µ0

σ/
√

n
= x̄
√

N − 3 (2.5)

The x̄ is the Fisher transformed ρ. The µ0 is the mean value of the null hypothesis and
it is 0, since a watermark does not exist. The value of n is 1, as only a single x̄ is
computed. The probability of observing by chance a result, that is at least as extreme
as the one being tested, known as the p-value, is found from the z-table which contains
probabilities of the standard normal distribution [75]. Finally, the p-value is compared
against the significance level for a given test. For example, the z− value equals 1.65 and
the significance level for the test is 5%. The probability found from the z-table is 0.95053
and the p − value = (1 − 0.95053) = 0.04947(4.95%). This is less than the significance
level, hence the null hypothesis can be rejected.
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Figure 2.21: Null Hypothesis Significance Test error types: (a) Type I, (b) Type
II.

In [73], the change in the sample correlation distribution due to increase in the number of
samples is demonstrated as the reduction of standard deviation, while the mean is kept
constant. Since, it is assumed that the standard deviation of a distribution obtained
from the watermarked system is the same as the standard deviation of a distribution
obtained from a non-watermarked system, they can be standardized. It is a division
of x̄ by its standard deviation. Therefore, both distributions are a standard normal
distributions. The mean value of a watermarked distribution is however non-zero
(µ , 0), as shown in Figure 2.21(b). Comparison of a watermarked distribution with
the standard normal distribution, for which µ = 0, is required to determine whether
the null hypothesis can be rejected. If a line is drawn at the point of significance, the
distribution of the standardized Fisher transform to the left of the line represents the
null hypothesis not being rejected. Distribution to the right represents rejection of null
hypothesis and acceptance of alternative hypothesis, Figure 2.21(b). Increasing the number
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of samples causes the distribution of a watermarked system to shift to the right along
the horizontal axis, increasing the shaded area and percentage of the null hypothesis
rejection.

The technique demonstrated in [75] focuses on Type I errors, α, also known as false
alarms. In such case, a watermark is assumed as detected while it does not exist. Type
II errors, β, which have not been addressed in [75], occur when a watermark that is
present is not detected. Type I error is controlled by the significance level, however,
one can only be sure of such error when the null hypothesis is true [77]. As shown in
Figure 2.21(a), the distributions of x̄ and null hypothesis are the same. In such case,
α equals the significance level. Type II error is controlled by the statistical power of
the test. In Figure 2.21(b), statistical power equals the shaded area of the plot, hence
β = 1 − statistical power. The error rate is therefore very high. Furthermore according
to [77], it is not known which error applies without knowing if null hypothesis is true
or false. In Figure 2.21(a), error could be as little as 5%, if null hypothesis was true,
or as much as 95%, if it was false. The NHST technique has already been considered
misleading [76]. For example, with 99% of tests rejected, the statement ”99% of tests
found a watermark” is incorrect. The statement ”99% of tests rejected the null hypothesis,
hence found watermark with a given statistical significance level” is more accurate. Moreover,
when the null hypothesis is not rejected, it should not be accepted [78]. Therefore, with
99% tests rejecting the null hypothesis, the remaining 1% does not confirm or deny the
absence of a watermark.

2.5.4 Hardware Trojan Detection

The classification of hardware trojans and watermark circuits is very often interchange-
able. For example, in [74] a watermark is regarded as a hardware trojan, since it
generates a specific power pattern. The aim of a trojan circuit is to leak secret informa-
tion, such as passwords, secret keys or even sabotage the functionality of a device [79].
It is embedded by a third party, also regarded as an attacker, whose sole purpose is to
tamper with an IP design. It is a much smaller circuit and can consist of a few logic gates.
The digital watermark is a purpose built circuit, embedded in an original design by an
IP supplier, with the aim to leak an information about its existence. Since such a goal
can also be reached with a trojan circuit, it offers a viable solution to an IP protection.
To fully understand the implementation and detection techniques of a hardware trojan,
it is important to consider its fundamental principles.

2.5.4.1 Principles of Hardware Trojans

If a power measurement, M, is performed on an integrated circuit, I, that executes a
calculation, C, the measured power can be modeled by four components: mean power
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consumption, p(t; C), process noise, np(t; I; C), measurement noise, nm(t; M), and an extra
static power consumption caused by a trojan circuit, τ(t; I; C) [80]. The model of a power
trace of an original IC, rG, can be found as in Equation (2.6).

rG(t; I; C; M) = p(t; C) + np(t; I; C) + nm(t; M) (2.6)

The model of a power trace of a tampered IC, rT, with an embedded hardware trojan,
τ(t; I; C), is given by

rT(t; I; C; M) = p(t; C) + np(t; I; C) + nm(t; M) + τ(t; I; C) (2.7)

The p(t; C) is computed from measurements obtained from numerous ICs. Since it is
common in both original and trojan ICs, it can be subtracted from the computation.
The nm(t; M) is a random noise that varies with each measurement, M. Moreover, it is
the only component which depends on M and can be minimized by averaging multiple
power traces. The power trace of both ICs can be further modeled by

rG(t; I; C; M) = np(t; I; C) (2.8)

rT(t; I; C; M) = np(t; I; C) + τ(t; I; C) (2.9)

2.5.4.2 Principles of Trojan Detection

The detection of τ(t; I; C) can be represented by the following fundamental problem [80]:

”Given K genuine ICs, I1, I2, ..., IK, and process noise, np(t; I1; C), np(t; I2; C), ...,
np(t; IK; C), generated by I1, I2, ..., IK, respectively, during the execution of C, and
given an IC, IK+1, with the mean r(t; IK+1; C) obtained from multiple executions of C
(where p(t; C) has been subtracted), how can we determine if the IC, IK+1, contains
a trojan circuit?”

To distinguish an original IC from a trojan IC, the following two hypotheses must be
met [80]:

Original IC : r(t; IK+1; C; M) = np(t; IK+1; C) (2.10)

Trojan IC : r(t; IK+1; C; M) = np(t; IK+1; C) + τ(t; IK+1; C) (2.11)

This can be described by the signal characterization problem. The power signals of
both original and trojan ICs must be characterized and compared. If a difference
between the signals is significant, a trojan IC can be distinguished. Signal processing
techniques, such as Karhunen-Loève (KL) expansion, can be used to detect an embedded
trojan circuit [80]. The KL technique projects signals into their characteristic sub-
spaces and separates the process noise, np(t; I; C), from the measured signal noise.
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Figure 2.22: (a) Voltage drop caused by trojan circuit insertion. (b) Impact on
clock cycles difference by an addition of a trojan circuit [81].

Simulation results demonstrated in [80] detect trojan circuit with the area overhead of
approximately 0.01%.

2.5.4.3 Ring Oscillator Based Trojan Detection

In [81], a ring oscillator (RO) based trojan detection technique was proposed. The
technique embeds a ring oscillator network (RON) in a design. Each RO acts as a
power monitor where its output frequency depends on a propagation delay. Such
delay is further influenced by temperature, supply voltage, load capacitance, threshold
voltage, channel length, oxide thickness and transistor channel width in an IC [81].
Although the effect of temperature variations can be minimized by subjecting all ICs to
the same environment, such as temperature chamber, other parameters are susceptible
to power supply noise and process variations. The power supply noise is described
by a voltage drop. Therefore, when a trojan circuit is embedded in an IC, it increases
an overall power consumption and has the direct impact on a RO delay and output
frequency, Figure 2.22. To detect an embedded trojan circuit, the network of N ring
oscillators is distributed throughout a design, Figure 2.23(a). In [81], a 5-stage inverter
is implemented as a single ring oscillator, Figure 2.23(b). Three detection schemes
based on statistical algorithms have been demonstrated [81]: Simple Outlier Analysis,
Principal Component Analysis and Advanced Outlier Analysis. The Simple Outlier
Analysis measures the distribution of a RO oscillation cycle. If it is within a specified
range, an IC is regarded as trojan-free. Otherwise, it is assumed that a trojan circuit
is embedded. The Principal Component Analysis transforms the data from all N ring
oscillators into an uncorrelated data and reduces the dimension of a data set, using linear
combinations [82]. Each principal component describes the amount of variance in a data
set. The first component accounts for the most of variance. The variance in successive
components decreases. The first three components are represented by a 3-D space
and a three-dimensional boundary, known as the convex hull [83], is constructed [81].



Chapter 2 Literature Survey 37

(a) (b)

Figure 2.23: (a) Ring oscillator network implemented on an FPGA. (b) 5-stage
inverter ring oscillator [81].

The data points outside a convex hull represent trojan ICs. The data can be further
analyzed using Advanced Outlier Analysis to consider the relationship between ROs in
a network. Experimental results on a cryptographic IP core demonstrated three sizes of
trojan circuits [81]. The first accounted for 0.33%, the second for 0.25%, and the third for
0.17% of total area overhead. The combination of all three detection techniques achieved
a 100% successful detection rate for the first two trojans. The successful detection rate
of 80% was achieved for the third trojan circuit.

2.5.4.4 Multiple Supply Pad Trojan Detection

In [84], trojan circuits are detected through the measurement of static current con-
sumption, from multiple power supply pins. Such pins are shown as PPi j in Figure
2.24(a). To minimize the effect of process variation, a dedicated calibration process is
proposed [85, 86]. It uses on-chip calibration circuits connected directly through the
scan chain. Such calibration circuits are placed directly underneath the power supply
pins and generate a step current. The static current measurement results are repre-
sented by a 2-D graph and a statistical analysis techniques, such as regression analysis,
are applied. In Figure 2.24(b), the regression analysis of 45 ICs, fabricated in a 65nm
CMOS technology is shown. The data points are dispersed along the middle line, called
regression line. The limits are chosen based on the 3σ (3 * standard deviation). The
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(a)

(b)

Figure 2.24: (a) Block diagram of the measurement setup for multiple power
supply pin trojan circuit detection. (b) Regression analysis with uncalibrated
(left) and calibrated (right) signals for trojan circuit detection [84].

calibration process reduces the variance of data and decreases the distance between
the limit and regression lines. As can be seen in Figure 2.24(b), the detection of trojan
circuits in un-calibrated data is nearly impossible, while most trojan ICs can be detected
after the calibration process has been performed.

2.5.4.5 Multiple-Parameter Trojan Detection

The previously discussed side-channel techniques for detection of watermark or trojan
circuits are based on analysis of a single parameter, such as delay, dynamic or static cur-
rent consumption. In [87, 88], the multi-parameter trojan circuit detection technique is
proposed, which combines the dynamic current consumption, IDDT, and the maximum
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Figure 2.25: IDDT vs Fmax plot for inter (left) and intra (right) measurement
variations [87].

(a)

(b)

Figure 2.26: Experimental results of (a) 16-bit sequential trojan with a single
side-channel parameter (left) and multi-channel parameter (right) detection
schemes, and (b) 4-bit sequential trojan with a 2% (left) and 1% (right) trend
lines [88].

operating frequency, Fmax, to determine if measurements differ from the golden trend.
As can be seen in Figure 2.25, trojan ICs can be clearly differentiated from original ICs.
However, in large circuits an increased detection sensitivity is required. This is achieved
through partial activation of a system with dedicated test vectors. Furthermore, power
gating or clock gating techniques can be utilized to further enhance the detection tech-
nique. Experimental results on an Integer Execution Unit (IEU) with a 5-stage pipelined
multiplier, implemented on an FPGA, were demonstrated. Two trojan circuit were em-
bedded, represented by sequential counters occupying 256 and 4 registers, respectively.
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Figure 2.27: Trojan circuit detection with a multi side-channel parameters [88].

This accounts for 1.76% and 0.03% of total area overhead. Two sets of test vectors were
applied to execute low and high activity logic operations. The detection of the larger
trojan circuit with a single side-channel parameter is shown in Figure 2.26(a) (left). As
can be seen, a single side-channel technique is not able to distinguish trojan ICs from
original ICs. However, when both IDDT and Fmax are combined, a visible difference from
a golden trend is noticed. Detection of the smaller trojan circuit is shown in Figure
2.26(b). If a limit of 2% is chosen, only a few trojan circuits are detected (left). If a limit
is further reduced to 1%, all trojan circuits are detected. However, a small set of original
ICs is also falsely claimed to be tampered with a trojan circuit (right).

In [88], an interesting three-dimensional side-channel technique was demonstrated
which analyzes parameters, such as dynamic current, IDDT, static current, IDDQ, and
maximum operating frequency, Fmax. Figure 2.27 demonstrates the use of such parame-
ters in a 3-D plot. The clear differentiation between the original (golden) and trojan ICs
can be seen.

A similar approach proposed in [89] investigates various trojan implementation scenar-
ios with 1-dimensional (1-D) and 2-dimensional (regression analysis) statistical analyses
on FPGA, based on the ring oscillator network topology shown in Section 2.5.4.3. The
1-D analysis considers parameters, such as frequency and static current consumption
separately. However, as both parameters are highly correlated (94.4% [89]), their com-
bination is analyzed by a regression analysis. Within-die and die-to-die variation effects
are minimized through regional calibration algorithm described as follows [89]:

1. The FPGA or ASIC is divided into separate regions as shown in Figure 2.28 and
the reference IC is chosen.
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Figure 2.28: Regional RON calibration for trojan circuit detection [89].

2. The current and frequency measurements are obtained for all chips, using the
same regional ring oscillator. For example, in the top left region, RO3 is chosen for
all ICs.

3. The ratios between the measurements obtained from the reference IC and other
ICs of the same regional RO are computed.

4. The measurements from other regional ring oscillators are multiplied by the ratio
found for this specific IC and its region.

5. The steps are repeated for each region in an IC.

The 1-D uncalibrated technique demonstrates 9% and 19% trojan detection with current
and frequency, respectively. The calibration algorithm increases the detection to 83%
and 78%. The uncalibrated regression technique achieves 80% successful detection rate
while the calibration increases the detection to 100%.

2.5.5 Summary

Non-invasive detection techniques do not require any access to device internals and are
much cheaper to perform. The side-channel parameters, such as timing, electromag-
netic field radiation and power consumption can be used as sources of information.
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Figure 2.29: 3D signature of the smart card processor obtained with an electro-
magnetic field attack [92].

However, the analysis of small variations in time [90, 91] to perform cryptographic
computations requires an in-depth knowledge of a system. Techniques based on anal-
ysis of electromagnetic (EM) field [92–95] with a sensor placed close to a device allow
the characterization of each device in a unique way with a spectrum analyzer (Fig-
ure 2.29). However, in a EM-shielded ICs the external packaging must be physically
removed before performing a detection [95]. Non-invasive power analysis detection
techniques (Section 2.5) offer a viable solution to protecting commercial IP designs, since
the knowledge of the architecture is not required to successfully perform a watermark
detection. The threshold-based techniques [58–60] (Section 2.5.2) require a system to
be held in a reset state during a watermark detection. Although, physical reset pads
can be widely found on printed circuit boards (PCB), there is no guarantee that such
connectivity will always be available. Moreover, such techniques are unable to detect
deeply embedded signals and require a significant size power pattern generation cir-
cuit. For example, in [58] 92 out of 1332 LUTs on FPGA, a 6.9% of system area, are
used with each LUT configured as a 16-bit shift register. The detection of a deeply
embedded watermark power pattern is possible with the statistical-based techniques,
such as Correlation Power Analysis [8] (Section 2.5.3.4), but the architecture of a power
watermark circuit is similar and a significant size WPPG circuit is implemented to gen-
erate a strong enough power pattern. Other detection techniques for the detection of
embedded trojans have been proposed (Section 2.5.4.1), based on integration of ring
oscillator networks [81, 89], power measurements of multiple supply pads [84] or the
combination of numerous side-channel parameters [87, 88], and allow a detection of a
negligible sized circuits. However, a design knowledge is too fine and destructive IC
tests are necessary in many cases. Furthermore, an access to I/O ports is required and
usually a golden, non-watermarked IC must be identified.
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2.6 Concluding Remarks

In this chapter, various Intellectual Property Protection (IPP) schemes have been dis-
cussed. It has been demonstrated, that most IPP techniques enforce an in-depth knowl-
edge or an access to a watermarked system. Therefore, the flexibility of such techniques
is greatly reduced. However, non-invasive power analysis techniques, such as Corre-
lation Power Analysis allow IP protection through detection of an embedded digital
watermark in measured device power consumption. The great advantage of such tech-
niques is that an in-depth knowledge of an original system is not required and only
the architecture of an embedded digital watermark is necessary. Despite the significant
hardware implementation costs, the CPA remains the current state-of-the-art technique
for the protection of soft IP cores.





Chapter 3

Principles of Non-Invasive Digital
Watermarking

In Chapter 2, the methodologies for IP protection (IPP) have been discussed. It has been
shown that digital watermarking techniques implemented in the soft IP demonstrate
the highest level of flexibility. The introduction of statistical side-channel analysis tools,
such as Correlation Power Analysis, in the context of IPP has allowed IP suppliers
to distribute soft IP sub-systems, such as commercial embedded processors, and has
provided the means of non-invasive detection of embedded digital watermarks after
the chip has been fabricated. Nevertheless, watermarking for non-invasive detection
implies additional hardware costs which impact the area and power overheads and
the robustness of the final solution against third party IP attacks. In this chapter,
the principles of digital watermarking are discussed and attacks against embedded
watermarks are introduced.

The rest of the chapter is organized as follows. In Section 3.1, the in-depth analysis of
non-invasive power watermarks, such as the dynamic power consumption in digital
circuits is provided. The architecture of the current state-of-the-art power watermark
for soft IP is presented in Section 3.2, and the algorithm of the current state-of-the-art
detection technique for deeply embedded watermark power signals, such as Correlation
Power Analysis is provided in Section 3.3. Third party IP attacks are analyzed in Section
3.4. The summary and the overview of requirements for the non-invasive IPP in soft IP
through watermarking is given in Section 3.5. Finally, Section 3.6 concludes the chapter.

45
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(a) (b)

Figure 3.1: a) CMOS inverter. b) CMOS inverter switching voltage (top) and
current of PMOS (middle) and NMOS (bottom) transistors [96].

3.1 Dynamic Power Consumption in Digital Circuits

The dynamic power consumption is the cornerstone of the vast majority of side-channel
power analysis techniques. To explain the behaviour of power consumption in digital
circuits a simple CMOS inverter is shown in Figure 3.1(a). Consider the starting state
of the inverter, where the input voltage equals VDD. The load capacitance CL is fully
discharged and the output voltage equals VSS. When the input changes from ′1′ (VDD)
to ′0′ (VSS) (Figure 3.1(b), top), the PMOS transistor turns ON and charges the load
to VDD (Figure 3.1(b), middle). While the input voltage decreases the current across
PMOS transistor IP increases. Finally, the output voltage reaches the point where PMOS
transistor is in the linear regime, hence the load is charged and the IP starts decreasing
exponentially. When the input voltage increases, the PMOS starts to turn OFF while
NMOS turns ON (Figure 3.1(b), bottom). Since both transistors are instantaneously
conducting, a small current flows from VDD to VSS and is known as the short-circuit
current, ISC. In general, the inverter draws power from VDD when input state changes
from ′1′ to ′0′. One half of the power consumed by the PMOS transistor is stored in
the capacitor, while the other half is dissipated in the form of heat [96]. The energy
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delivered from the power supply, EP, is defined in Equation (3.1) [96].

EP =

∫
∞

0
I(t)VDDdt =

∫
∞

0
CL

dV
dt

VDDdt = CL ∗ VDD

∫ VDD

0
dV = CLV2

DD (3.1)

The energy stored in the capacitor, ECL , is given by Equation (3.2).

ECL =
1
2

CLV2
DD (3.2)

As the capacitor is discharged on the transition of input voltage from ′0′ to ′1′, the
energy stored in the capacitor is released into the VSS. Therefore, if a gate is observed
over N clock cycles, the energy consumption, EG, including the energy consumption of
PMOS transistor and the load, becomes

EG = NEP = NCLV2
DD (3.3)

However, since not all gates switch every clock cycle with many registers retaining
their values over long intervals, an activity factor, Ptrans, is introduced and defines
the probability of an output transition taking place. Hence the energy consumption
equation becomes:

EG = PtransNCLV2
DD (3.4)

If a digital gate switches with the frequency fclock over the interval T, the load is charged
and discharged T ∗ fclock times and the average power consumption known as the
dynamic power, Pdyn, is given by

Pdyn = PSW + PSC (3.5)

= (
T fclockPtransEP

T
) + PSC = (

TPtransCLV2
DD fclock

T
) + PSC = (PtransCLV2

DD fclock) + PSC

(3.6)

Where PSW is the switching power and PSC is the short circuit power. The Pdyn is
dominated by PSW, if ISC occurs only for a short period during each transition [97], and

Pdyn = PtransCLV2
DD fclock (3.7)

In Equation (3.7), it can be seen that Pdyn is directly dependent on Ptrans. Therefore, as
output transitions between ′0′ and ′1′, and vice versa, the dynamic power is consumed.
Such empirical behaviour creates the fundamentals for digital power watermarking.
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(a) (b)

Figure 3.2: (a) Architecture of a power watermark circuit; (b) Simulation results
of the effect of the watermark power signal on the total device power.

3.2 Power Watermark Architecture

A power watermark is a redundant circuit added to an existing IP block, with the aim
of superimposing a weak but deterministic signal on a voltage supply rail. In Figure
3.2(a), a typical embedded system is shown. Multiple IP blocks are sub-sourced from
various IP suppliers. The watermark is embedded in one of the IP blocks and consists
of two circuits: a watermark generation circuit (WGC), and a watermark power pattern
generator (WPPG) [8]. The WGC generates the watermark sequence which controls the
WPPG load circuit. Hence, the WPPG consumes power in clock cycles where the wa-
termark sequence is ′1′. Simulation results in Figure 3.2(b), demonstrate the effect of an
additional watermark circuit on device total power (in relative terms). The watermark
power signal (middle) is added to the power consumed by the embedded system (top),
and generates the device total power (bottom). Since the watermark power signal is a
much lower amplitude, it is deeply embedded in the overall device power signal. An
analytical technique is therefore required which determines the possibility and the ac-
curacy of watermark existence. Such a technique is Correlation Power Analysis (CPA)
and this has been used in this work as the fundamental watermark detection technique.

3.3 Power Watermark Detection

CPA [9] utilizes the statistical correlation technique to detect a deeply embedded power
watermark signal. The detection methodology is the same as described in Section
2.5.3.4, Chapter 2. CPA requires information extracted from the measured power con-
sumption of a device with the sampling frequency, fs, much greater than the frequency
of the system clock, fclk, i.e. fs >> fclk. The power vector, Y, is found by averaging all
the samples within a single clock cycle, Figure 3.3. The watermark model vector, X,
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Figure 3.3: The measured clock (top) and device power (middle) signals with
the sampling frequency of oscilloscope much higher than the frequency of the
system. The averaged device power (bottom) represented as a single value per
system clock cycle.

represents a watermark sequence. As both vectors must be of equal length, the water-
mark sequence is repeated many times within a vector. Next, the Pearson correlation
coefficient, ρ, between the two vectors is found as in Equation (2.2) and the detection
algorithm steps described in Chapter 2, Section 2.5.3.4 are repeated. The watermark
is only regarded as detected if a single and significant correlation coefficient can be
resolved, as shown in Figure 2.19.

3.3.1 Power Trace Length

The measured device power signal is known as the power trace. The length of the
recorded with an oscilloscope power trace depends on the specification of an oscil-
loscope and very often a memory buffer is quite limited. For example, one of the
oscilloscopes used throughout this thesis, an Agilent MSO6032 [98], allows 500k sam-
ples to be stored in a single capture. Therefore, if its sampling frequency is 50 times
larger than the frequency of the system clock, the recorded power trace contains only
10k clock cycles. In order to obtain a longer power trace a trigger must be used where

Trigger Period ≡ 0 (mod Watermark Sequence Period) (3.8)

A trigger signal is used to merge multiple power traces to create a longer power trace.
However, to combine two different power traces one must be certain that both signals
are continuous (synchronous). Therefore, each power trace must be resized to fit only
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Figure 3.4: Power trace length impact on correlation coefficients.

the full periods of a watermark sequence. Henceforth, the first and the last clock cycles
in a power trace always represent the same point of a watermark sequence in subsequent
power traces. For example, consider the binary sequence ′10011′, with the period of
5 clock cycles and assume that a trigger occurs at its 3rd clock cycle. For the ease of
understanding, an arbitrary number of clock cycles, say 12 in this example, are used to
demonstrate recorded with an oscilloscope power trace. To satisfy Equation (3.8), the
trigger occurs every 15 clock cycles, since 15 ≡ 0 (mod 3). The period of a trigger signal
is purposely selected to be larger than the period of a recorded signal, to avoid any
interference with the correlation results. Therefore, the obtained power traces are

Power trace 1 : 10011 10011 10

Power trace 2 : 10011 10011 10

Combined power trace (X) : 10011 10011 10100 11100 1110

Watermark model (Y) : 10011 10011 10011 10011 1001

If such traces are combined the continuity of a watermark sequence is disturbed, and
there is a high probability that a watermark power signal will not be detected by the
CPA algorithm, or it will be erroneously detected when it does not exist. As can be
seen, X and Y do not match when the 2nd trace is added. Therefore, to ensure that
the combined power trace retains its continuity, the recorded power traces are reduced
such that their lengths satisfy Equation (3.9).

Power Trace Period ≡ 0 (mod Watermark Sequence Period) (3.9)
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The obtained power traces are therefore:

Power trace 1 : 10011 10011 10

Power trace 2 : 10011 10011 10

Combined power trace (X) : 10011 10011 10011 10011

Watermark model (Y) : 10011 10011 10011 10011

The length of the combined power trace directly influences the detection sensitivity.
In Figure 3.4, an impact of the power trace length on ρ is shown. The trace length of
approximately 300k was chosen to demonstrate the change of ρ for short trace lengths,
and the effect of ρ stabilization for longer trace lengths. The last points on the graph
represent Figure 2.19 (when rotated). All black lines represent ρ where X and Y are not
in phase, while the red line represents ρwhere X and Y are in phase. In Figure 3.4, it can
be seen that until approximately 200k clock cycles it is impossible to find a watermark
or claim a false detection. However, after 200k clock cycles all ρ start to stabilize and
ρ obtained from X and Y not in phase tend to 0, while ρ obtained from X and Y in
phase increases and reaches a stable and a significant peak value, Figure 2.19. In all
experiments demonstrated in further chapters the length of the recorded power trace is
approximately 300k clock cycles.

3.4 Third Party IP Attacks

Intellectual property cores can be protected using various techniques discussed in Chap-
ter 2. Although many schemes are robust, provide solid security and enable a successful
watermark detection, they may still be subjected to third party IP attacks. The aims
of such attacks are ownership deadlock, forged authorship and counterfeit ownership.
The ownership deadlock occurs when an IP designer cannot provide any solid evidence
or it is not strong enough to support the ownership of an IP. The forged authorship oc-
curs when a third party tampers with an owner’s watermark and provides the proof
that it was embedded in other IP. Finally, the counterfeit ownership occurs when an
attacker’s watermark is embedded in an owner’s IP and generates a stronger signa-
ture. The means by which such security violations can be reached can be categorized
into removal attacks, finding ghosts (ambiguity attacks) and forging attacks (key-copy
attack) [49, 99, 100]. To fully understand the threats behind the attacks the general
watermarking model [101] was proposed.
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3.4.1 General Watermarking Model

The general watermarking model proposed in [101] is given as follows:

”We define a work to be a vector I = (x1, x2, ..., xn) ... We assume that there is
a function Dist(·, ·) that measures the perceptual distance between two works. A
watermark W is a sequence in W n ... A key K is a sequence of m binary bits.

In our general watermarking model, there are three algorithms, a watermark gen-
erator G, a watermark embedder E, and a watermark detector D. The watermark
generator G ... outputs a watermark given a key. We say that a watermark W is
valid if and only if it is generated from some key K by G ... The embedder E takes
an original work I and a watermark W and outputs a watermarked work Ĩ ... Given
a work Ĩ and a watermark W, the detector D declares whether W is embedded in Ĩ
... or not.”

In general, an IP supplier (owner) creates an original work IO and generates a watermark
WO with a key KO (WO = G(KO)). A watermark WO is further embedded in an original
work IO and creates a watermarked work ˜IO ( ˜IO = E(IO,WO)). To prove an authorship
of ˜IO an owner must produce a strong evidence showing that WO is embedded in ˜IO

(D( ˜IO,WO) = 1). Nevertheless, an attacker can tamper with ˜IO and generate his own
work ˜IA. The similarity between ˜IO and ˜IA must be below a certain threshold, t, to
regard both works as one (Dist( ˜IO, ˜IA) < t). If the tampered work is not similar to the
original work (Dist( ˜IO, ˜IA) > t), both works are regarded as two separate IPs.

3.4.2 Types of IP Attacks

Third party IP attacks can be categorized into removal, ambiguity and key-copy attacks
[49, 99, 100], and are discussed in more detail in this section.

3.4.2.1 Removal Attacks

Removal attacks are the main source of counterfeit attacks. The attacker aims to remove
the original watermark WO by complete elimination, such as watermark subtraction.
However, masking of a watermark signal through an introduction of additional distor-
tion into the system can also be equally successful, as the strength and the sensitivity
of a detector are significantly reduced [99]. After removal, a watermarked work ˜IO is
modified to work Ĩ, where a watermark cannot be found. Therefore, an IP owner fails
to provide a strong enough evidence.

Dist( ˜IO, Ĩ) < t D(Ĩ,WO) = 0
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In addition to watermark removal, the attacker can also embed his own watermark WA

and claim ownership.

˜IA = E(Ĩ,WA) Dist(Ĩ, ˜IA) < t D( ˜IA,WA) = 1

3.4.2.2 Ambiguity Attacks

The ownership deadlock can be reached through ambiguity attacks, where an attacker
presents another watermark. This can be achieved by embedding a new watermark, if
possible tools are available, or finding a specific pattern and presenting it as his own
watermark (ghost watermark). Since both author and attacker can prove the existence
of their own watermarks in the same IO, it is impossible to determine the genuine author
and therefore leads to a deadlock.

Owner : ˜IO = E(IO,WO) D( ˜IO,WO) = 1

Attacker : ˜IA = E(IO,WA) Dist( ˜IO, ˜IA) < t D( ˜IA,WA) = 1

Furthermore, an attacker can embed a watermark WA in a fake work I and present this
watermarked work ˆIA as his own. Next, the attacker demonstrates that WO cannot be
found in ˆIA, while WA is present. If at the same time the attacker tampers with ˜IO and
embeds his own watermark or finds a ghost watermark WA and claims its authorship,
the counterfeit attack can be executed and the ownership rights may be transferred to
an attacker (counterfeit ownership).

Author : ˜IO = E(IO,WO) Dist( ˆIA, ˜IO) < t D( ˜IO,WO) = 1 D( ˆIA,WO) = 0

Attacker : ˜IA = E(IO,WA) ˆIA = E(I,WA) Dist( ˜IA, ˜IO) < t Dist( ˆIA, ˜IO) < t

D( ˜IA,WA) = 1 D( ˆIA,WA) = 1

3.4.2.3 Key-Copy Attacks

Forged authorship is a result of key-copy attack, which is based on watermarking
other devices with an original author’s watermark. The attacker retrieves an original
watermark, WO, from an authors work and embeds it (W′O) in a different work I, not
belonging to the author. Although the author can prove the originality of his own work,
he would not be able to explain the existence of his source of security in somebody else’s
work.

W′O = G(KO) ˜IA = E(I,W′O) Dist( ˜IO, ˜IA) > t D( ˜IA,W′O) = 1
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3.4.3 Preventing IP Attacks

In [101], the following definitions are proposed to prevent the IP threats from occurring.

DEFINITION 1: A watermarking scheme is t-resistant to removal attacks if for any attacker A
and given any cover work Ĩ watermarked by W, it is computationally infeasible for A to compute
any work I′ such that Dist(Ĩ, I′) < t and D(I′,W) = 0.

The term t-resistant describes a watermarking scheme which is robust against specific
third party attacks. It considers the similarity of work Ĩ, originating from an owner, and
that same work after it was tampered with by an attacker (I′). If both Ĩ and I′ are not
similar enough (Dist(Ĩ, I′) > t), they cannot be regarded as the same work and should
be treated as two separate IPs. The term computationally infeasible follows from the
cryptography and means that a solution exists but it is too costly in terms of area,
memory, time etc. to be regarded as a viable solution, therefore, to be pursued. In [49],
the technique demonstrated that an attacker is required to re-synthesize the design after
the modification, which changes the final design (Dist(Ĩ, I′) > t). Furthermore in [39],
the watermark removal is impossible due to mixing of the watermark logic with the
test logic and therefore removal would cause a system malfunction. In general, a good
IPP technique embeds a watermarking circuit as an integral part of an IP. Hence, when
such a circuit is removed, further behaviour of a system is erroneous.

DEFINITION 2: A watermarking scheme is t-resistant to ambiguity attacks if for any attacker
A and any cover work Ĩ, it is computationally infeasible for A to compute a valid watermark W
such that D(Ĩ,W) = 1.

Ambiguity attacks can be executed in two ways. First, an attacker finds a ghost water-
mark in an owner’s work Ĩ and claims authorship. Second, an attacker embeds own
watermark and therefore two authors exist. Although it might be very hard to prevent
an attacker from finding ghost watermarks, many current watermarking techniques
claim to achieve such protection. To prevent ghost attacks from occurring, the owner’s
watermark must be stronger than the attacker’s watermark. In [49], a watermark is
extracted through the addition of extra logic into the original design. Such logic is
claimed to be more credible than any other background ghost watermarks. In [39], wa-
termark generation is associated with generating a pseudo-random number. Therefore,
it is impractical for an attacker to reverse the pseudo number generation to find ghost
watermarks [39]. Furthermore, embedding watermarks into an owner’s design is often
hard and requires special tools. Additionally, if an attacker wishes to introduce a second
watermark into the system, some reverse engineering is required especially if a design
is at the lower level in a design flow. It is time consuming and requires knowledge of
an original watermarking scheme to repeat the entire process without damaging the
former design. Furthermore, an attacker must follow the area overhead requirements
and keep the size of a counterfeit watermark to minimum [39].
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DEFINITION 3 A watermarking scheme is t-resistant to key copy attacks if for any attacker
A and any cover work Ĩ = E(I,W) for some original I and watermark W, it is computationally
infeasible for A to compute a work I′ such that Dist(I, I′) > t, yet D(I′,W) = 1.

A key-copy attack is achieved by using an owner’s signature to watermark other, lower
quality designs, and effectively diminish the truthfulness of an owner. To prevent an
attacker from embedding the owner’s watermark in an other solution, it is best to hide
a watermark in such way that it is impossible to find. To achieve such protection
the area overhead of a watermark circuit must be kept to minimum. The lower the
area overhead, the harder it is to find the source of a watermark. Another approach
involves encryption of a watermarked design and therefore makes it unreadable to
an attacker [44, 48, 49]. However, as discussed in Chapter 2, Section 2.1.2, encryption
enforces the use of a particular design platform and may not be acceptable to many SoC
designers and integrators, who prefer the flexibility of various design tools during the
design flow [10].

3.5 Summary

In this chapter the principles of non-invasive digital watermarks have been discussed.
The architecture of the current state-of-the-art digital power watermark was analyzed
in Section 3.2 and it was shown that two circuits are implemented: WGC and WPPG.
Since the generated watermark power signal is deeply embedded within the device
power consumption, the statistical analysis technique such as CPA (Section 3.3), must
be applied. However, due to the nature of the CPA algorithm the generated watermark
power signal must be strong enough to produce visible and significant correlation
peaks in the spread spectrum graph, Figure 2.19. At the same time, watermarking
of modern embedded processors is faced with two requirements. First, the area and
power overheads of the additional digital watermark circuit must be as small as possible.
Second, the superimposed watermarking signal must be relatively easy to detect, hence
the signal strength must be as high as possible. There is however a tradeoff between the
size of the watermark circuit and therefore area and power overheads and the generated
signal strength. Furthermore, due to the high transparency of the RTL design in the soft
IP level, there is a tradeoff between the area overhead and the robustness of a digital
watermark against third party IP attacks.

Reduction in area overhead increases the robustness of the watermarking technique
against removal and key-copy attacks, since it is very hard for an attacker to find an
embedded watermark. The area overhead can be minimized in both WGC and WPPG
circuits. To reduce the area overhead in WGC short binary sequences can be chosen
for watermarking. To minimize the area overhead in WPPG the number of switching



56 Chapter 3 Principles of Non-Invasive Digital Watermarking

registers must be reduced. This, however, causes the watermarking signal strength to
decrease and increases the risk of ambiguity attacks.

In embedded systems power saving is one of the fundamental requirements because
many devices are operated solely from the battery. Therefore, any additional power
required by the watermark circuit must be minimized to extend the battery life. The
power overhead can be reduced by decreasing the area overhead as discussed above.
It can also be minimized by reducing the switching activity of the watermark power
pattern and therefore the average dynamic power.

3.6 Concluding Remarks

Techniques for embedding power watermarks in the soft IP must be characterized
with very low area overheads to reduce the hardware implementation costs and to
increase the robustness against removal and key-copy attacks. In the current state-of-
the-art soft IP power watermarking technique the implementation costs and the effective
robustness are significantly reduced due to large WPPG circuit. Moreover, all recently
demonstrated power watermarking techniques (Chapter 2, Section 2.5.1) implement the
WGC as the Pseudo-Random Number Generator (PRNG), such as Linear Feedback Shift
Register (LFSR). Hence, none of the currently available techniques determines the most
cost-efficient and robust sequence for watermarking soft IPs. To reduce the ambiguity
attacks, one must be able to provide the evidence that his watermark is stronger than
other watermarks found in an IP. Therefore, the chosen watermark sequence must
produce the best correlation results with the CPA algorithm, among other watermark
sequences for the same size WPPG circuit. Addressing this issue forms part of the next
chapter.



Chapter 4

Characterization of Sequences for
Cost-Efficient Power Watermark

The first non-invasive IPP techniques embedded power watermark circuits such as the
Watermark Generation Circuit (WGC) and the load circuit, also known as the Watermark
Power Pattern Generator (WPPG) [8, 58, 74] in a target IP design. The architecture of
both circuits has not significantly changed throughout the literature and a Pseudo-
Random Number Generator (PRNG), such as the Linear Feedback Shift Register (LFSR)
is commonly used in WGC. This ensures a large number of combinations, and high level
of robustness against third party IP attacks. As a result a typical WPPG implementation
consists of circular shift register of a significant size.

In this chapter1, binary sequences for the purpose of soft IP power watermarking are
characterized and it is shown that several intrinsic parameters can be distinguished,
which have the direct impact on correlation results and hardware implementation
costs. The potential sequences for watermarking are discussed in Section 4.1. The
analysis of the Pearson correlation coefficient, which forms the basis of the Correlation
Power Analysis (CPA) technique is presented in Section 4.2. The intrinsic parameters of
watermarking sequences are drawn and further simulation results are demonstrated in
Section 4.3. The validation of simulation results on FPGA and silicon test chips is shown
in Section 4.4 and Section 4.5, respectively. The cost-efficient sequences for watermark
implementation are identified and the hardware implementation costs, such as area
and power overheads are analyzed in Section 4.6. The susceptibility of the chosen
watermark sequences to third party IP attacks is discussed in Section 4.7, while the
tradeoff between short and long sequences is analyzed in Section 4.8. The chapter is
summarized in Section 4.9 and final conclusions are presented in Section 4.10.

1The contents of this chapter have been accepted as ”Sequence-Aware Watermark Design for Soft IP
Embedded Processors” by Kufel et al in IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2015.
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(a) (b)

Figure 4.1: (a) Block diagram of the 12-bit LFSR; (b) States of LFSR in consecutive
clock cycles.

4.1 Watermark Sequences

This chapter compares two types of binary sequences, such as sequences generated with
LFSRs as demonstrated in the current state-of-the-art power watermark architecture [8],
and Barker codes. The sequences have been chosen to represent the impact of various
intrinsic parameters and lengths on the hardware implementation costs, robustness and
detection performance. Throughout this thesis, robustness is described as a measure of
the immunity of the watermarking technique against third party IP attacks. Although,
the robustness cannot be explicitly measured, it can be described as the hardness of
tampering with the watermark in relative terms. In case of detection performance, the
commonly used CPA algorithm describes detection as the ability to observe a single and
significant correlation peak in a spread spectrum (refer to Figure 2.19, Chapter 3). In this
chapter, the detection performance is given as the percentage of detected watermarks
when the Null Hypothesis Significance Test (NHST) is applied.

4.1.1 Linear Feedback Shift Register

The binary sequence generated with the LFSR is known as the maximum length se-
quence (m-sequence). The block diagram of the 12-bit LFSR is shown in Figure 4.1(a).
The feedback path can be described by the following polynomial [102]:

1x12 + 1x11 + 1x10 + 0x9 + 0x8 + 0x7 + 0x6 + 0x5 + 1x4 + 0x3 + 0x2 + 0x (4.1)

The degree of the polynomial is directly related to the length of the LFSR. The polynomial
contains ′0′ and ′1′ coefficients, where ′1′ correspond to the taps of registers which are
connected to XOR gates, shown in green in Figure 4.1(b). As can be seen, the feedback
path is a result of XOR operation of bits 12, 11, 10 and 4. The last register in the LFSR can
be used as an output and the generated sequence is known as the m-sequence (shown
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in red in Figure 4.1(b)). For N number of registers, the length of the m-sequence is
2N
− 1. For example, if a 12-bit m-sequence is used, the implementation requires 12

registers and generates a binary sequence of length 212
− 1 = 4, 095. The number of ′1′s

in any m-sequence is always one more than the number of ′0′s, since the length of a
sequence is always odd. For example, in a 12-bit m-sequence the number of ′1′s is 2, 048
and the number of ′0′s is 2, 047. Such a distribution has a direct impact on the intrinsic
parameter described as the activity factor and is discussed later in this chapter.

4.1.2 Barker Codes

The Barker codes can be characterized with high auto-correlation and low cross-
correlation properties. Such properties are ideal in terms of watermarking, due to
high rejection of a background noise signal and good correlation with the expected
watermark model, as shown later in this chapter. The Barker codes are bipolar and
contain ′1′ and ′ − 1′. For the purpose of power watermarking all Barker codes must
be transformed into the unipolar representation. This is achieved by changing all ′ − 1′

to ′0′. In Table 4.1, the most commonly used Barker codes are shown and are used
throughout this chapter.

Length Bipolar Sequence Unipolar Sequence

2 +1 -1 1 0

3 +1 +1 -1 1 1 0

4 +1 +1 -1 +1 1 1 0 1

5 +1 +1 +1 -1 +1 1 1 1 0 1

7 +1 +1 +1 -1 -1 +1 -1 1 1 1 0 0 1 0

11 +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1 1 1 1 0 0 0 1 0 0 1 0

Table 4.1: Barker codes [103, 104].

The generation of Barker codes is achieved with circular shift registers. Since no feed-
back loop exists, the N-bit Barker code requires N registers. In comparison, a 12-bit
m-sequence produces a binary sequence of 4, 095 clock cycles, while using only 12 regis-
ters. The 11-bit Barker code produces a binary sequence of 11 clock cycles and requires
11 registers. Therefore, the m-sequence architecture allows generation of much longer
binary sequences with a smaller number of registers. Although it has been demon-
strated [105] that longer Barker codes exist, such as 32-bit and 36-bit, these sequences
are not used in this work.
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4.2 Pearson Correlation Coefficient Analysis

The Correlation Power Analysis utilizes the statistical correlation technique to detect
deeply embedded power watermark signal. The correlation is computed using the
Pearson correlation coefficient, ρ, as in Equation (4.2). In this section, the modifications
to Equation (4.2) are presented, to include the intrinsic parameters of watermark se-
quences. Moreover, the comparison of detection performance of various sequences is
presented. For the conciseness and the ease of understanding the number of steps in
the expansion of Equation (4.2) have been limited. For the more in-depth step-by-step
explanation please follow Appendix A.

ρ =

N
N∑

i=1
XiYi −

N∑
i=1

Xi
N∑

i=1
Yi√

N
N∑

i=1
X2

i − (
N∑

i=1
Xi)2

√
N

N∑
i=1

Y2
i − (

N∑
i=1

Yi)2

(4.2)

In Equation (4.2), X is the watermark model vector and can be represented by a binary
sequence, Y is the power vector and contains the sampled power signal, and N is
the length of both vectors. The dynamic power of a canonical static CMOS gate is
linearly proportional to the activity factor, α (Ptrans), which defines the probability of
an output transition taking place (see Chapter 3, Section 3.1) [97]. In digital power
watermarking, the activity factor is intrinsic to a watermark sequence, and the dynamic
power is consumed in clock cycles when such sequence is ′1′. Therefore, Equation (4.2)
can be modified to incorporate the activity factor, α, of a watermark sequence. In Table
4.2, Section 4.3, various watermark sequences are considered and it is demonstrated that
the activity factor, α, differs between sequences. To compare the detection performance
of potential sequences, it is crucial to consider the α parameter. Since vectors X and Y
can be out of phase, the hypothetical watermark model, X, is rotated and correlation
computation is repeated [8]. Hence, vector X in Equation (4.2) can be substituted with
X′, which represents the rotated vector X. If both vectors are in phase, then X′ = X.
Additionally, vector Y can be represented as X + β, where X is the original vector of the
hypothetical watermark model and β is the noise present in the system, such as global
switching noise of digital IP blocks, environmental and measurement noise. Therefore,
ρ can be represented as

ρ =

N
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X′i (Xi + βi) −
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(4.3)

Since both vectors X and X′ represent a binary sequence, the sum of all terms in a vector
(
∑

Xi and
∑

X′i ) is the Hamming weight, H, of a sequence. Moreover, as both X and
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X′ represent the same but rotated binary sequence, the Hamming weight is the same.
Furthermore, if both vectors X′ and X are in phase, it is given by

N∑
i=1

X′i Xi =

N∑
i=1

Xi = H (4.4)

However, since vectors X′ and X can be out of phase, Equation (4.4) is modified by
adding the overlapping factor, θ as follows

N∑
i=1

X′i Xi = θH (4.5)

To illustrate this point, consider 2 watermark model vectors, where one is the cyclically
rotated version of the other.

X : 1111000000 1111000000 (4.6)

X′ : 0111100000 0111100000 (4.7)

N∑
i=1

XiX′i = 6 = θH θ = 6/8 = 0.75 (4.8)

The overlapping factor, θ, is 1 when both vectors are in phase, and θ < 1 when both
vectors are out of phase, including other rotations of vector X′. In Table 4.2, Section 4.3,
θMAX, is shown and describes the highest overlapping factor, θ, under the assumption
that X and X′ are not in phase. As can be seen, θMAX varies significantly between
sequences. Furthermore, the Hamming Weight, H, can be substituted as the product
of the activity factor, α, and the length N of vectors, since α = H

N . Finally, the Pearson’s
correlation coefficient, ρ, can be described as a function of activity, overlapping factor,
and both X and X′ vectors as follows

ρ(α, θ,Xi,X′i ) =

Nα(θ − α) +
N∑

i=1
(X′iβi) − α

N∑
i=1
βi

√
α(1 − α)

√
N2α(1 − α) + N(2

N∑
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(Xiβi) +
N∑

i=1
β2

i ) −
N∑

i=1
βi(2αN +

N∑
i=1
βi)

(4.9)

The terms
∑N

i=1(X′iβi) and
∑N

i=1(Xiβi) in Equation (4.9) depend on the position of ′1′ in a
watermark sequence. However, since N >> 1, Equation (4.9) can be simplified to

ρ(α, θ,Xi,X′i ) =
Nα(θ − α)√

α(1 − α)

√
N2α(1 − α) + N

N∑
i=1
β2

i

, N >> 1 (4.10)
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Figure 4.2: Influence of activity factor, α, and overlapping factor, θ, on (a) max-
imum correlation coefficient, ρPEAK, and (b) correlation coefficient difference,
ρDIFF.

By definition, in a spread spectrum a single correlation peak should be distinguishable
to consider a watermark detected [9]. The maximum correlation coefficient, ρPEAK, is

ρPEAK = ρ(α, 1) =
Nα(1 − α)√

α(1 − α)

√
N2α(1 − α) + N

N∑
i=1
β2

i

, N >> 1 (4.11)

It is expected, as shown in Chapter 3, Figure 2.19, that the highest ρPEAK occurs when
both vectors X and X′ are in phase, i.e. θ = 1. In the noiseless environment, ρPEAK is 1
for all sequences, since β = 0 and

ρPEAK = ρ(α, 1) =
Nα(1 − α)√

α(1 − α)
√

N2α(1 − α)
= 1 (4.12)

In Figure 4.2(a), MATLAB simulations of Equation (4.11) are shown with various water-
mark sequences and noise levels. The noise vector, β, consists of normally distributed
random values. The frequency spectrum is shown in Section 4.3.1, Figure 4.4(a). There-
fore, it approximates to white noise, to represent the global switching noise of digital
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Table 4.2: Parameters of Watermarking Sequences.

Watermark Bit Period activity factor Maximum
Sequence Length (clock cycles) α [%] θMAX

Barker codes

2-bit 2 50% 0
3-bit 3 66.6% 0.5
4-bit 4 75% 0.667
5-bit 5 80% 0.75
7-bit 7 57.15% 0.5
11-bit 11 45.45% 0.4

m-sequence
6-bit 63 50.8% 0.5
8-bit 255 50.2% 0.5
12-bit 4095 50.01% 0.5

IP blocks, environmental and measurement noise. Since the mean value of β is 0, the
power follows the variance, σ2. To increase the power of β (Figure 4.2(a)), the standard
deviation, σ, of the generated random values is increased. From Equation (4.11), ρPEAK

is principally influenced by the activity factor, α. Due to the parabolic shape of the graph,
watermark sequences with α ≈ 50% produce the highest ρPEAK. As the noise increases,

the term N
N∑

i=1
β2

i becomes dominant and the graph becomes flatter. The ρPEAK decreases

and watermark sequences produce similar results.

In practice, a power supply noise and measurement error give rise to undesirable
spurious correlation coefficients. If such spurious coefficients are considered as the
system noise floor, the correlation coefficient difference, ρDIFF, can be described as the
distance from ρPEAK to the noise floor, as in Equation (4.13).

ρDIFF = ρPEAK − ρ(α, θ,Xi,X′i )

=
Nα(1 − θ)√

α(1 − α)

√
N2α(1 − α) + N

N∑
i=1
β2

i

, θ < 1,N >> 1 (4.13)

The simulation of Equation (4.13) with various watermark sequences is shown in Figure
4.2(b). As expected, ρDIFF is influenced by both α and θMAX parameters. If the noise
standard deviation, σ, is increased, ρDIFF approaches 0. This means that there is no
distinctive correlation peak in a spread spectrum, and a watermark cannot be found.

In this section, the intrinsic parameters of sequences, such as the activity factor, α, and the
overlapping factor, θ, have been introduced, and their impact on correlation coefficient
values has been demonstrated. The significance of Equation (4.11) and Equation (4.13)
is the ability to design embedded power watermarks with low overheads. In the fol-
lowing sections, the sequences for power watermarks are presented and the discussion,
supported by simulation results, of differences between ρDIFF and ρPEAK is provided.
Furthermore, the detection performance of watermark sequences is established.
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(a)

(b)

Figure 4.3: Simulation results of watermark sequences comparison, based on
maximum correlation coefficient, ρPEAK.

4.3 Simulation Results

To validate the theory of Section 4.2, various watermark sequences have been simulated
and compared with the commonly used maximum length sequence (m-sequence) [8].
The summary of sequences and parameters is shown in Table 4.2. In Figure 4.2(b),
ρDIFF is highest for lowest values of θ, when X and X′ are not in phase. Therefore, the
maximum values of the overlapping factor, θMAX, are described for any given sequence
in Table 4.2, to account for other spurious correlation values which are highest for
θMAX. As can be seen, the α, and the θMAX, vary for all Barker codes. However, for
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m-sequences α decreases and tends to 50%, and θMAX is constant and equals 0.5, when
the length of the sequence increases.

4.3.1 Maximum Correlation Coefficient

The maximum correlation coefficient, ρPEAK, of watermark sequences at various noise
levels is shown in Figure 4.3(a) and Figure 4.3(b). For noise signals with relatively low
power, Figure 4.3(a), watermark sequences with α ≈ 50% produce the highest ρPEAK.
This is as expected based on results in Section 4.2, Figure 4.2(a). As the system noise
level increases, the watermark signal-to-noise ratio (SNR) decreases. Finally, it reaches
the point where the watermark power signal is too low to be reliably detected. In the
marginal case, results of ρPEAK are dictated by the robustness of a watermark sequence
against the correlation to the noise present in the system. Therefore, the results can
be considered as the noise-to-sequence correlation, ρNOISE. In Figure 4.3(b), it can be
seen that when the noise power approaches 38dB, ρPEAK of m-sequences are higher
than other sequences. As the noise level is further increased, the length of a sequence
determines the noise-to-sequence correlation, with longer sequences producing higher
ρPEAK. To understand the reason of such behaviour, consider ρ in Equation (4.2) when
no watermark is present. Vector Y, which originally represents the measured power
signal and contains the watermark model X and system noise β, is replaced with β,
since no watermark exists. If the substitution of the Hamming Weight (Section 4.2) is
followed, ρNOISE can be represented as

ρNOISE =

N∑
i=1

X′iβi − α
N∑

i=1
βi

√
α(1 − α)

√
N

N∑
i=1
β2

i − (
N∑

i=1
βi)2

(4.14)

Equation (4.14) was analyzed with watermark sequences of various lengths and α. It
was found that α had no effect on the noise-to-sequence correlation, ρNOISE, for very low
SNR between the watermark power and noise signals. Therefore, the diminishing effect
of α on correlation coefficients can be observed, as the noise power is increased.

The period of a watermark sequence (M) determines the number of frequency compo-
nents in the watermark model. Short sequences contain only a few frequency compo-
nents, Figure 4.4(b). As the length of a sequence increases, more frequency components
appear in the frequency spectrum of the watermark model, Figure 4.4(c). In Figure
4.4(a), the frequency spectrum of the noise signal obtained from simulations is shown.
If the convolution of the watermark model and noise signal is considered, Figure 4.4(d)
and Figure 4.4(e), the overlapping area between the two signals increases with the
length of a sequence. Therefore, more information contained within the noise signal is
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Figure 4.4: Frequency spectra of (a) noise β, (b) 2-bit Barker code and (c) 6-bit
m-sequence. Convolutions of (d) 2-bit Barker code and (e) 6-bit m-sequence
with noise β. Frequency spectra of convolved (f) 2-bit Barker code and (g) 6-bit
m-sequence with noise β.
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(a)

(b)

Figure 4.5: Simulation results of watermark sequences comparison based on
coefficient difference, ρDIFF.

retained, Figure 4.4(f) and Figure 4.4(g). At the same time, the correlation between the
two signals increases, which causes ρPEAK to be higher for longer m-sequences.

4.3.2 Correlation Coefficient Difference

Equation (4.13) demonstrates that ρDIFF is determined by α and θ (θMAX) parameters. It
should be noted that the highest ρDIFF occur for watermark sequences with the highest
α and lowest θMAX, Figure 4.2(b). In Figure 4.5(a), the 2-bit Barker code produces
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Figure 4.6: Spread spectra of (a, c) 12-bit m-sequence and (b, d) 11-bit Barker
code for noise with power of 6dB and 40dB, respectively.

the highest ρDIFF, since α = 50%, and θMAX = 0. Maximum length sequences (m-
sequences) produce much lower ρDIFF than most of the Barker codes, since α reduces
when M is increased and tends to 50%, while θMAX remains at 0.5. The difference
between subsequent m-sequences is minimal due to the same θMAX and similar α.
However, since longer watermark sequences contain more frequency components that
correspond with the noise signal, there are multiple correlation coefficients with values
close to ρPEAK. This causes ρDIFF to be much lower as the watermark sequence length
increases, Figure 4.5(b).

In Figure 4.3 and Figure 4.5, the relationship between ρDIFF and ρPEAK varies with power
of the generated noise signal and watermark sequences. In Figure 4.6(a) and Figure
4.6(b), the 12-bit m-sequence and 11-bit Barker code are shown, for 6dB noise signal.
As can be seen for 12-bit m-sequence (Figure 4.6(a)), ρDIFF and ρPEAK have similar
values (0.25), since the noise floor in the spread spectrum is close to 0. However, for
11-bit Barker code (Figure 4.6(b)) ρDIFF (0.27) is higher than ρPEAK (0.25). Increasing
the noise power to 40dB (Figure 4.6(c) and Figure 4.6(d)), causes ρDIFF to be of much
lower amplitude than ρPEAK, since the noise floor increases and gets closer to ρPEAK. In
Figure 4.6(c), the noise floor is of similar amplitude as ρPEAK in Figure 4.6(d). This is as
expected, since ρPEAK is higher for longer sequences, for very low SNR (Figure 4.3(b)).
However, these are separate test cases and as shown in Section 4.3.3, the threshold
levels differ based on a sequence. Therefore, as shown in Figure 4.6(d), at 40dB 11-bit
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Figure 4.7: Null Hypothesis Significance Test of simulated watermark se-
quences with 5% significance level.

Barker code is clearly detectable. However, in Figure 4.6(c) the noise floor in the spread
spectrum is too high to detect the 12-bit m-sequence.

4.3.3 Null Hypothesis Significance Test

In Section 4.3.1 and Section 4.3.2, the influence of watermark sequence length on noise-to-
sequence correlations was demonstrated. In Figure 4.3(b), results of ρPEAK are higher for
longer m-sequences as the noise level increases. However, based on results of ρDIFF in
Figure 4.5(b), other correlation coefficients exist which make the spread spectrum more
even, and no significant peaks can be distinguished, at high background noise levels. To
compare the detection performance of watermark sequences, the Null Hypothesis Sig-
nificance Test (NHST) [75] was performed for each sequence. The percentage of rejected
null hypotheses was found by applying a 5% threshold to results, where the null hy-
pothesis states that the watermark does not exists. The ρDIFF was chosen to describe the
detection performance of a watermark sequence, since it considers multiple correlation
values in a spread spectrum. If ρDIFF is above the threshold, the null hypothesis can be
rejected with 5% possibility of a false alarm. This means that there is a 5% possibility of
detecting a watermark which does not exist. To minimize the possibility of false alarms
higher threshold levels can be used. To determine the threshold for each watermark
sequence separately, the simulation was repeated 100 times with no watermark present
in the system. The null hypothesis was found by plotting a distribution of ρDIFF from
which a 5% threshold level was determined [75]. The process was repeated 10 times
and the average threshold level was found for each watermark sequence. Next, the
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Figure 4.8: Architecture of a 6-bit m-sequence power watermark circuit imple-
mented on FPGA.

watermark was added and the simulations were repeated in the same way. The thresh-
old levels were applied to each sequence, to determine the detection performance, as in
Figure 4.7. The difference between Barker codes is clearly distinguishable, however it is
not as distinctive as in Figure 4.5(b). This demonstrates the higher noise-to-sequence cor-
relations of shorter sequences. Nevertheless, as the length of sequences increases, the
null hypothesis rejection ratio decreases most quickly for longer m-sequences. When
noise reaches 46dB, most sequences approach the 5% threshold.

4.4 FPGA Validation

To verify the theory and simulation results of Section 4.2 and Section 4.3, an ARM R©

Cortex R©-M0 microprocessor IP core was implemented on a Xilinx Virtex-II Pro XC2VP30
FPGA, Figure 4.8. The FPGA was used for illustration purposes to demonstrate the rela-
tionship between the WPPG size and detection performance. Furthermore, it is used to
determine the ratio of the WPPG size between watermarking sequences. To determine
if such ratio would change if a newer device was used, consider Equation (3.7). As
discussed in Chapter 3, Section 3.1, the dynamic power consumption depends on the
activity factor, α, load capacitance, supply voltage and frequency. The α parameter is
intrinsic to a watermark sequence, hence it does not change when using other devices.
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Table 4.3: Area of Watermark Circuit Implemented on FPGA.

Watermark WPPG Registers FPGA Area
Sequence (SRL16) Slices Overhead

ARM R© Cortex R©-M0 IP core - 2,696 -

7-bit Barker code

- 4 -
8 12 0.45%

16 20 0.74%
32 36 1.34%

11-bit Barker code

- 6 -
8 14 0.52%

16 22 0.82%
32 38 1.41%

6-bit m-sequence

- 5 -
8 13 0.48%

16 21 0.78%
32 37 1.37%

8-bit m-sequence

- 5
8 13 0.48%

16 21 0.78%
32 37 1.37%

12-bit m-sequence

- 8
8 16 0.59%

16 24 0.89%
32 40 1.48%

The supply voltage is most likely expected to decrease and frequency to increase, when
moving to a newer, smaller process. As the gate capacitance decreases in newer pro-
cesses, the change in supply voltage and frequency would directly impact the amount
of WPPG registers. Nevertheless, the change of parameters would apply equally to dif-
ferent watermarking sequences and the WPPG ratio would remain constant. Therefore,
the performance of an FPGA does not directly influence such a relationship.

4.4.1 Watermark Circuit Architecture

The architecture of the watermark generation circuit (WGC) depends on the watermark
sequence. The LFSRs (Section 4.1.1) were used for m-sequences, and simple circular
shift register were used for Barker codes (Section 4.1.2). The output from the last
register (′WMARK′) serves as the clock enable signal for the watermark power pattern
generator (WPPG). The WPPG dissipates power due to shifting data in the flip-flops,
when enabled by the WMARK signal. In the Xilinx FPGA, a single look-up table (LUT)
can be configured as a 16-bit shift register (SRL16) [106]. To increase the SNR between
the watermark power signal and the system noise signal, the number of SRL16 blocks is
increased. To generate the maximum power in clock cycles when watermark sequence
is ′1′, each SRL16 block is pre-initialized with ′1010...′ sequence. In Table 4.3, the size
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Figure 4.9: Voltage measurement at the back of the FPGA board.

of the watermark circuit implemented on FPGA is shown for deterministic sequences,
discussed in Section 4.4.2.1 and various WPPG sizes.

4.4.2 Experimental Results

The operating frequency of the entire system implemented on FPGA was 10MHz. The
voltage was measured very close to the FPGA power supply pins, using an Agilent
Technologies MSO6032A oscilloscope, at a sampling frequency of 500MHz, Figure 4.9.
Therefore 50 samples per single clock cycle were averaged, to obtain the power vector,
Y. The watermark sequences discussed in Section 4.1 were evaluated while running
the Dhrystone benchmark, which is a compact and widely available benchmark in the
public domain to measure the performance of a processor. It reflects the activities of the
integer IP processor core, such as integer arithmetic, string operations, logic decisions
and memory accesses in a general computing application [107] and it is one of the
most common benchmarks used in the industry. To avoid the influence of the design
placement variation on detection performance, the design was constrained such that
the ARM R© Cortex R©-M0 microprocessor IP core and the WPPG circuit were mapped
to the same LUTs throughout the experiment. The length of both X and Y vectors
was approximately 300k clock cycles. The trigger signal was generated on FPGA with
its period of 765, 765 clock cycles. Such specific period satisfies all tested sequences
(Chapter 3, Equation (3.8)).
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Figure 4.10: FPGA experimental results of ρPEAK.
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Figure 4.11: Box plots of ρDIFF at various sizes of WPPG circuit on FPGA: (a) 64
SRL16, (b) 32 SRL16, (c) 16 SRL16, (d) 8 SRL16.

4.4.2.1 Repeatability

In Figure 4.10, FPGA measurements of ρPEAK are shown. The results match the simu-
lation results of Section 4.3, Figure 4.3(b). As the SNR between the watermark power
signal and the system noise signal is high (128 to 16, SRL16), all watermark sequences
generate similar ρPEAK. As the SNR decreases, the impact of α diminishes and the length
of the watermark sequence becomes the major factor. Therefore, longer sequences pro-
duce higher ρPEAK.



74 Chapter 4 Characterization of Sequences for Cost-Efficient Power Watermark

128 64 32 16 8
0

10

20

30

40

50

60

70

80

90

100

SRL16 Blocks

N
ul

l H
yp

ot
he

si
s 

R
ej

ec
tio

n 
[%

]

 

 

7−bit Barker code
11−bit Barker code
6−bit m−sequence
8−bit m−sequence
12−bit m−sequence

Figure 4.12: Null Hypothesis Significance Test of watermark sequences imple-
mented on FPGA, with 5% threshold level.

The simulation results in Section 4.3 have shown a clear differentiation between short
and long watermark sequences. Moreover, no significant variations have been found
between results, when simulated multiple times. However, experimental FPGA results
indicate that some watermark sequences are less repeatable than others. This means
that when the experiment is repeated multiple times, distributions ofρPEAK or ρDIFF vary
from test to test. In Figure 4.11, the variance of results is shown in terms of box plots, for
various sizes of WPPG circuit. Each box represents the combined distributions of ρDIFF,
obtained from multiple tests. As in Section 4.3.3, the ρDIFF is used, since it considers
other correlation coefficients in the spread spectrum. Nevertheless, the same variance
occurs for ρPEAK. The test was repeated 3 times for each watermark sequence and the
100 point distributions were found for each test. The FPGA was re-configured between
each test, and the delay between the start of the program and the start of the watermark
circuit was modified. This causes the noise characteristics to vary between consecutive
tests and correlate differently for some sequences. As can be seen in Figure 4.11, short
watermark sequences correlate with much higher variance for most WPPG circuit sizes.
Additionally in Figure 4.11(d), medians of very short watermark sequences do not match
the simulation results discussed in Section 4.3, Figure 4.3 and Figure 4.5. According
to the simulation results shorter watermark sequences produce higher ρDIFF, which are
not observed for 2, 3, 4, and 5 bits Barker codes. As the period of a watermark sequence
increases, the variance of results is significantly lower. Results become deterministic
and the expected behaviour can be predicted.

4.4.2.2 Detectability

To determine the detection performance, the Null Hypothesis Significance Test (NHST)
[75] was performed on FPGA measurements. The 5% threshold levels were found for
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Figure 4.13: The layout (middle), die photo (left) and the hard macro watermark
module (’W’), highlighting the watermark circuit (top right) and noise generator
(bottom right), integrated in chip I.

Figure 4.14: Layout (middle) and die photo (left) of test chip II, with the soft
macro watermark module embedded in the SoC, highlighted in yellow (right).

each watermark sequence, when a watermark signal was not present. Furthermore, the
thresholds were applied to the results in Figure 4.11 and the average null hypothesis re-
jection ratio was found, Figure 4.12. The deterministic watermark sequences discussed
in Section 4.4.2.1 are considered. Results in Figure 4.12, match the simulation results of
Section 4.3, Figure 4.7. Longer period watermark sequences such as 12-bit m-sequence
approach the threshold level much faster than shorter sequences, such as 7 and 11 bits
Barker codes. Therefore, it is possible to reduce the area and power overheads with
shorter watermark sequences, through reduction of WPPG registers (see Section 4.6).
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4.5 Silicon Validation

To aid with experimental results and investigate the impact of process variation (PV)
on watermark sequence detection results, two ASIC designs were fabricated.

4.5.1 Test Chips Overview

The test chips were fabricated through the multi-project ’Mini@sic’ scheme by Euro-
practice using the 65nm low leakage CMOS technology, with the nominal operating
voltage of 1.2V. The designs were completed using industry standard EDA tools. The
Synopsys tool suite version E-2010.12 was used during the fabrication, including De-
sign Compiler for synthesis, IC Compiler for place and route and PrimeTime and VCS
for verification. Design rule checking (DRC) and layout versus schematic (LVS) sign-off

were completed with Calibre from Mentor Graphics. The available die size for the
entire project was 2mm x 2mm, Figure 4.13.

The architecture of the embedded watermark module is the same on both test chips. In
the first design (chip I), the watermark module was integrated as a hard macro block, on
a separate power domain (’W’ in Figure 4.13). The final layout was 248 x 247µm, with
the design signed off at the maximum operational frequency of 200MHz 2. The SoC
consists of the ARM R© Cortex R©-M0 microprocessor IP core, along with an on-chip bus
and numerous commercial IP blocks including the ASCII Debug Protocol (ADP). The
Cortex R©-M0 is embedded in the SoC with the data and instruction space mapped to the
RAM memory. The ADP unit is used as a means of communication and configuration
and allows to download the program onto the on-chip memory. It communicates with
an off chip USB protocol converter over an 8-bit bus and provides read and write access
to the entire memory map of the SoC via USB. All other unmarked blocks are a part
of a separate experiment and are not relevant to this thesis. In the second design
(chip II), the watermark module was integrated from an RTL description, Figure 4.14.
Therefore, the design was propagated through the entire design flow, which is closer to
the intended usage scenario, when embedding watermarked soft IP. The chip consists
of dual core ARM R© Cortex R©-A5 microprocessor IP core and caches. The SoC, shown
as the unmarked circuitry, consists of the ARM R© Cortex R©-M0 microprocessor IP core,
ADP unit and the watermark module.

4.5.2 Watermark Module Architecture

The watermark module architecture is the same in both chips, Figure 4.15. It is a fully
compatible Advanced High Performance bus (AHB) slave, which means that it can be

2The worst case characterization corner with a critical path length of 4.777ns was estimated.
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Figure 4.15: Schematic diagram of the watermark module embedded in test
chips.

directly connected to the bus without any modifications. The hardened watermark
module integrated in chip I is shown in Figure 4.13. The watermark circuit is high-
lighted in the top right corner and implements the watermark controller (yellow), WGC
(red) and WPPG (green). As can be seen, the watermark circuit accounts for an ap-
proximately half of the area of the entire module. The configuration registers to control
the watermark circuit are mapped to the SoC RAM memory. To accommodate the
possibility of generating various watermark sequences, the watermark circuit contains
two sequence generators, which can be configured as either 32-bit LFSR or a simple
32-bit circular shift registers. The WPPG architecture contains 1, 024 registers, divided
into 32 words. Each 32-bit word can be configured separately increasing or decreasing
the strength of the generated watermark power pattern. Upon watermark sequence bit
′1′, all words are rotated. To generate the maximum switching power, words must be
configured in an alternating fashion such as given by:

1st word : FFFFFFFF (hexadecimal)

2nd word : 00000000

.

.

.

31st word : FFFFFFFF

32nd word : 00000000

For an in-depth explanation about the watermark architecture please refer to Appendix
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Figure 4.16: Silicon chips test board.

B.1. Furthermore, the watermark module implements a noise generator (Figure 4.15),
shown in Figure 4.13. The architecture is very similar to the watermark circuit and
contains a large power pattern generator (green) and a random number generator (red).
The amplitude of the generated noise can be controlled in the similar manner as the
WPPG circuit. Therefore, the noise strength varies with the pre-initialized data. The
noise generator was used in the preliminary experiments to confirm its functionality and
detection capabilities at various SNR. However, it was not used in further experiments
due to unnoticeable differences in correlation results.

4.5.3 Experimental Setup

The test board is shown in Figure 4.16. All power domains were connected using the
power jumpers and the total current consumed by the chip was measured, using the
shunt 270mΩ resistor. The operating frequency of both chips was 10MHz. The current
signal was measured as in Section 4.4.2. The aim of the experiment was the detection
of the watermark while running the Dhrystone benchmark. The Dhrystone benchmark
was executed on ARM R© Cortex R©-M0 on the SoC, on both chips. Although, on chip II
Cortex R©-A5 did not execute any program both cores, along with the on-chip bus were
active, which accounted for a significant portion of background noise in the system.
The experimental process (Section 4.4.2.1) was repeated on both test chips. The number
of test repetitions was increased to 5, to test the susceptibility of watermark sequences
to run-to-run noise variations. Additionally, 30 chips were characterized and 3 corners
were chosen: fast, slow, and typical. The impact of PV, which occurs in the foundry
during the chip fabrication was investigated. It should be noted that the measured
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Figure 4.17: Box plots of correlation coefficient difference, ρDIFF, representing
the influence of run-to-run and and process variation on watermark sequence
correlation results in test chips: (a) chip I, (b) chip II.

current consumption included the noise of the system caused by the SoC and RAM on
both chips, and the clock tree of the dual core Cortex R©-A5 on chip II.
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Table 4.4: Area and Power Reduction in ASIC

Watermark Number of Area 65nm
Sequence Registers Reduction PDYN PSTATIC PTOTAL

in WPPG Reduction Reduction Reduction
7-bit Barker code 512 74.9% 73.2% 74.8% 73.3%

11-bit Barker code 512 74.8% 75.3% 74.8% 75.2%
12-bit m-sequence 2048 - - - -
7-bit Barker code 256 74.8% 74.5% 75.7% 74.5%

11-bit Barker code 256 74.5% 75.5% 73.9% 75.5%
12-bit m-sequence 1024 - - - -
7-bit Barker code 128 74.7% 75.8% 75.7% 75.8%

11-bit Barker code 128 74.3% 77.7% 75.3% 77.6%
12-bit m-sequence 512 - - - -
7-bit Barker code 64 74.3% 76% 75.8% 75.9%

11-bit Barker code 64 73.4% 77.4% 75% 77.3%
12-bit m-sequence 256 - - - -
7-bit Barker code 32 73.4% 72.7% 73.6% 72.7%

11-bit Barker code 32 71.7% 73.1% 71.8% 73.1%
12-bit m-sequence 128 - - - -

4.5.4 Experimental Results

Results of ρDIFF obtained from both test chips are shown in Figure 4.17. First, consider
the impact of run-to-run variations, when the test is repeated many times and the chip
is re-configured between consecutive tests. This is shown by the size of the boxes in
Figure 4.17. If the area of a box is large, the variance of results is high. Otherwise, results
are consistent and a watermark sequence is deterministic. Results confirm the findings
from the FPGA platform (Section 4.4.2). Watermark sequences with short periods cause
much higher variance in results than longer period sequences. Next, consider the impact
of PV on ρDIFF. It should be noted, that the size of box plots representing the variance
of results does not differ much for most of the sequences. However, medians differ
considerably for short period sequences on both test chips. Therefore, short period
sequences are susceptible to PV, as shown on both test chips.

Experimental results demonstrate that short period sequences are not suitable for em-
bedded power watermarking, due to high variance of results and strong sensitivity to
PV. Therefore, results are non-deterministic and the expected detection performance
cannot be estimated.

4.6 Area and Power Overheads

Minimization of area and power overheads is one of the major factors of all power
watermarks implemented on embedded processors. In Section 4.3.3, various watermark
sequences were simulated and it was shown that shorter sequences produce higher null
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hypothesis rejection ratio than longer sequences, for the same noise power. The theory
in Section 4.2 and simulation results of Section 4.3 have been validated on FPGA and
test chips. Experimental results from the FPGA in Section 4.4, demonstrated that
shorter period watermark sequences, such as 7 and 11 bits Barker codes, achieve the
null hypothesis rejection ratio close to 95%, when the number of SRL16 blocks for
WPPG is 8. To achieve the similar detectability with the 12-bit m-sequence, 32 SRL16
blocks must be used. Therefore, shorter Barker codes enable area overhead reduction
of approximately 75%, by reducing the number of WPPG registers. To estimate the
power reduction, the watermark circuits were synthesized using 65nm3 technology
library. The fully placed and routed watermark circuit netlist, embedded in chip I,
was simulated using Synopsys VCS, and a value change dump (VCD) file was created
from the switching activity of the circuit. The estimate of the power consumption was
obtained with Synopsys Primetime-PX, using the VCD file obtained from simulations.
Results are shown in Table 4.4. The size of the WPPG circuit was varied, while keeping
the 75% ratio between sequences. As the size of the WPPG is reduced, the 7-bit Barker
code enables greater area and static power minimization, when compared to the 11-
bit Barker code. The 7-bit Barker code requires 7 registers, while 11-bit Barker code
requires 11 registers. However, since the activity factor, α, of the 11-bit Barker code is
lower by 12% (Table 4.2), it consumes less total power for all WPPG sizes. Furthermore,
as can be seen the total power reduction of at least 73% is achieved when using short
watermark sequences, such as 7 or 11 bits Barker codes, instead of longer m-sequences,
due to lower implementation requirements of the WPPG circuit. The reason for this is
Equation (4.11) and Equation (4.13) shown in Section 4.2.

4.7 IP Attacks and Robustness

The watermarks discussed in previous sections transmit a single bit of information, to
determine the presence of an IP. The watermark implementation followed [8, 58, 59], to
establish the influence of sequence parameters on hardware implementation costs and
detection performance. However, as the watermark can only be regarded as found or
not, the IP candidates must be short listed for more thorough investigation. Therefore,
the digital signature, such as author of a core, serial number or license agreement is
not conveyed and anyone can claim an ownership, once he detects a watermark in
a system [108]. In this section, the security of watermarks against various types of
third party IP attacks is analyzed. The security, commonly known as the robustness, is
determined by the attacks a watermark is able to withstand and the effort of an attacker.
As it is difficult to quantify the robustness of side-channel watermarks [108], this section
discusses it in relative terms [8]. In the classical cryptographic scenario an attacker aims
to retrieve a secret key. If such occurs, the security of a system is breached and allows

3TSMC 65nm low leakage technology library.
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an attacker to extract sensitive information. In case of IP watermarks, the system’s
security is not the aim of an attack, but the legal rights to an IP. This section discusses
attacks against watermarks and focuses on the most prominent approaches, such as
tampering, finding ghosts and forging. These are illustrated using the commonly
used ”Alice and Bob” scenario, often used in Cryptography, where ”Alice” and ”Bob”
denote two individuals at either end of a communications channel, with cryptographic
techniques applied to ensure their conversation is secret.

4.7.1 Tampering

Bob (attacker) can tamper with Alice’s (IP supplier) solution, by removing Alice’s
signature (watermark) and adding own signature. Due to the transparent nature of
the RTL description and unprotected design files provided to the SoC integrators, Bob
has virtually unlimited access to a design. Therefore, it is not possible to prevent Bob
from adding own watermark. However, it is crucial that Alice’s watermark circuit
is hidden, such that Bob cannot easily find it. In Section 4.6, the area overhead was
reduced with short sequences. In such case, the watermark circuit is harder to find and
remove, when compared to the current m-sequence scenario in [8]. Nevertheless, short
sequences reduce the number of combinations and brute force attacks become feasible.
Hence, the robustness against finding ghosts and forging attacks is impaired.

4.7.2 Finding Ghosts and Forging

Bob can attempt to find a ghost signature, such as specific power pattern, and claim that
an IP contains his own watermark. Furthermore, Bob can forge Alice’s implementation
and watermark other solutions, which do not belong to Alice. In such case, Bob
demonstrates that Alice’s signature is not genuine since it can be found in another IP.

The robustness of sequences against such attacks is limited to their intrinsic characteris-
tics. In case of commonly used m-sequence, the robustness increases with the number
of registers used for WGC. For example, 32-bit m-sequence is more robust than 12-bit
m-sequence, since it contains more frequency components (Figure 4.4(c)). Therefore, it
increases the number of watermark combinations. Nevertheless, based on Figure 4.12,
its detection performance must be complemented by increasing the number of WPPG
registers. However, this reduces the watermark robustness against tampering attacks
and the tradeoff occurs. The short period sequences, such as Barker codes enable the
significant hardware implementation costs reduction, for the same level of detection
performance as m-sequences, but are not as robust against finding ghosts and forging
attacks. The use of short sequences allows attackers to introduce own watermarks
(signatures), being difficult to determine which of the two watermarks is the authentic
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one. As shown in Figure 4.4(b) and Figure 4.4(c), the amount of information trans-
mitted in short sequences, such as Barker codes, is greatly reduced when compared to
m-sequences. Therefore, the number of combinations of signatures based on the use of
m-sequences is significantly larger, and it is much harder for an attacker to find ghost
watermarks and demonstrate a stronger evidence or forge author’s signature.

To overcome the limitations of short sequences, such as Barker codes, the private/public
key encryption and the cryptographic hash functions, such as MD5 [109], can be used
as in [19, 26, 35, 36, 49, 110]. However, as the encryption and the cryptographic hash
functions are used, the encoded signatures vary with conveyed messages. Hence, the
power pattern parameters, such as α and θMAX, change along with the implementation
costs, to provide a high detection performance, Figure 4.7. To ensure the most cost-
efficient parameters are utilized, the encoded signature can be generated as in [108]. In
Figure 4.18(a), the implementation algorithm is shown. The digital signature (”Cortex R©-
M0”) is encrypted with a private key, known only to the IP vendor. To reduce the length
of the output bitstream, the encrypted message is later encoded using the cryptographic
hash function (MD5). Furthermore, the hash encrypted bit sequence is used to modulate
the cost-efficient sequence. In Figure 4.18(a), the 7-bit Barker code is used for illustration
purposes. To generate bit ′1′, a full period of a 7-bit Barker code is used. To generate bit
′0′, the inverse of a sequence is used. The inverted sequence demonstrates different α
and θMAX parameters. However, the parameters complement each other (Figure 4.2(b))
and similar ρPEAK and ρDIFF results are expected, when compared with the non-inverted
sequence. In such way, the highly robust digital signature is generated. The detection
algorithm is shown in Figure 4.18(b). The device power signal (trace) is measured
with an oscilloscope. The power matrix is created by dividing a power trace, such
that each signature bit corresponds to a specific trace. The Correlation Power Analysis
is applied to each trace separately and the correlation spectra, ρPEAK and ρDIFF are
found. To demonstrate the use of such algorithm, the digital signature of Figure 4.18(a)
was simulated. The normally distributed noise of 32dB was introduced, as in Section
4.2. The size of the obtained power matrix was 128 x 300, 000 clock cycles. When a
watermark model for a particular signature bit is correct, a high positive correlation
peak can be noticed, as shown in Figure 4.18(c). Otherwise, when a model is not correct
and represents the inverted sequence, a high negative correlation peak is seen, as shown
in Figure 4.18(d). Furthermore, if a model of another sequence was used or the data
was not properly arranged, the correlation value would be close to 0. Finally, ρDIFF

corresponding to all signature bits are plotted in Figure 4.18(e). In the case that ρDIFF

have similar positive values, the correct hash encoded sequence is considered as found,
then it can be further decoded and decrypted using the public key. In Figure 4.18(f), an
error bit was introduced at the 4th bit of a hashed sequence. As can be seen, the negative
ρDIFF peak occurs and the error bit is detected. This means that the detected signature
does not match the expected signature and the IP differs from the expected IP.
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Figure 4.18: Implementation (a) and detection (b) diagrams of secure digital
signature. Detection of a correct (c) and an incorrect (d) signature bit. Correct
(e) and an incorrect (f) detection of a digital signature.

The use of the private/public key and the cryptographic hash functions ensures that
the embedded power signature is highly robust. Although the attacker may not know
the generation scheme of the digital signature, due to the limited number of signature
combinations when short sequences, such as Barker codes are considered, it is feasible
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for an attacker to record all power data and use a brute force attack, to reverse engineer
the hash encrypted message. Nevertheless, if this occurs, the IP supplier’s private key
remains uncompromised [19], and it can still be used to prove the IP infringement.
Additionally, if an attacker obtains the RTL a digital simulation of the design can be
performed to check if any registers follow a Barker code. Since, the Barker code is public
and there are only a few codes that can be used, this approach is also feasible. However,
as all Barker codes are short and require only few clock cycles for the generation,
the number of false alarms caused by other registers switching in the similar pattern
increases with the system size. Moreover, the attacker would have to inspect most of
such occurrences which may become time consuming for large designs. This is certainly
the disadvantage of using Barker codes with the watermark generation approach as
in [8], where the watermark circuit is active at all times. This issue can be addressed
by reducing the frequency of the watermark circuit active time. For example, the
watermark can be triggered with a specific system instruction, to increase the attacker’s
effort and computational time of the simulation. This is addressed in Chapter 6.

The proposed methodology, Figure 4.18, is however impractical in case of the longer
m-sequences, due to the modulation of the watermark sequence with the hash encoded
bit sequence. Nevertheless, the proposed approach requires an additional circuitry to
implement the key encrypted and hash reduced Barker code (Figure 4.18). In a typical
implementation, an extra 128-bit shift register would be required to hold the hash value
and a state machine would have to be implemented to achieve the desired modulation.
In an FPGA, such a shift register requires 8 LUTs, configured as 16-bit shift registers
(SRL16). Although the basic state machine with only few states would be sufficient, the
final hardware implementation would approximate the m-sequence approach (Table
4.3). Furthermore, an ASIC implementation would require the entire 128 registers to be
implemented.

In this section, the robustness of watermark sequences against third party IP attacks
was discussed. It was shown that m-sequences are robust against forging attacks but
require bigger area to implement significant size WPPG circuit. Shorter sequences,
such as Barker codes offer a reduced area and power overheads but are not as robust
as longer m-sequences. The robustness of shorter sequences can be improved with
the secure approach demonstrated in Figure 4.18 but the area overhead gains vanish.
The tradeoff between longer m-sequences and shorter sequences, such as Barker codes,
occurs and the watermark implementation must be reconsidered for various types and
sizes of systems.
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4.8 Application Specific Watermark Implementation

In small processors, such as microcontrollers (e.g. ARM R© Cortex R©-M0), the area over-
head of the secure short sequence (Figure 4.18) implementation may be excessive. Since,
a small WPPG is sufficient to generate a strong enough watermark power consumption,
the m-sequence approach [8] may be a better solution. In bigger processors, such as
application processors (i.e. ARM R© Cortex R©-A9), the WGC circuit has negligible impact
and the WPPG size is the main factor. Since the WPPG size increases relatively linearly
with the system size, the area overhead of the WPPG circuit for m-sequence would
certainly be larger than the area overhead of the secure short sequence implementation.
Therefore, the use of encoded Barker codes is expected to be more suitable, since it
allows both area and power overhead minimization through a reduction of the WPPG
circuit implementation.

Furthermore, in embedded systems the area and power overheads are often prioritized
and it is not viable to generate the watermark power signal at all times. In such
systems, the watermark is required to be active non-deterministically and for a short
period of time. Short sequences, such as Barker codes, offer an ideal solution to such
approach. Since an attacker must know when a watermark sequence is active and
only for a very short period, finding activation time without a full knowledge of a
system architecture is impossible. Moreover, if an attacker obtains a power signal
without any architectural knowledge, the watermark signal may be too weak to be
found, due to incorrect assumptions of the implemented architecture. Additionally,
an erroneous correlation peaks may be generated, when a watermark is not present.
Furthermore, to detect a watermark, multiple acquisitions of a power signal must
be obtained and a long trace must be created, where a watermark signal is present
continuously. When an IP owner tries to extract the embedded watermark pattern,
it uses a special trigger to combine multiple power acquisitions into a single trace,
where a watermark pattern is continuous. Such trigger is however not known to
an attacker and will significantly increase the effort required for a successful attack.
Additionally, short sequences can be implemented as in Chapter 5, to significantly
reduce the area and power overheads. The visibility of an overridden clock enable signal
due to watermark circuit can be kept to minimum since a simple XOR gate would ensure
the clock gate is modulated according to a watermark sequence. This also ensures that
if an attacker embeds his own ”always-ON” watermark they may violate the original
area and power specification, which is easily detectable. Furthermore, the watermark
embedded by an attacker can be of much lower amplitude, since they would use the
WPPG circuit to achieve the desired watermark power consumption. The IP owner
instead would use the original processor to emulate the WPPG circuit. This minimizes
the occurrence of error bits with implementation in Figure 4.18. If an attacker wishes to
understand the watermark implementation they would need to re-simulate the entire
RTL to understand the watermark activation scheme, which is not a trivial task.
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4.9 Summary

The influence of watermark sequences’ intrinsic characteristics on detection perfor-
mance, area and power overheads has not been addressed in the literature. In this
chapter, two types of sequences have been analyzed (Section 4.1). First, sequences
generated using the LFSR, as commonly found in the literature [8, 58, 59, 74]. Second,
sequences generated with a simple circular shift register, also known as Barker codes.
The in-depth analysis of the Pearson correlation coefficient, which is the fundamental
of the Correlation Power Analysis technique for the detection of deeply embedded
watermark power signals, has been been presented in Section 4.2. The intrinsic param-
eters of sequences used for watermarking have been demonstrated and their impact on
detection performance was analyzed. To estimate the detection performance the Null
Hypothesis Significance Test was applied to the CPA results. The expected behaviour
was drawn with the support of simulations and it was shown that despite higher corre-
lation peaks, longer sequences such as m-sequences generate other spurious correlation
values, which may cause uncertain detection results. Therefore, shorter sequences such
as Barker codes were demonstrated to produce much clearer spread spectra, with signif-
icant correlation peaks and much lower values of spurious correlations. The validation
of simulation results was provided on an embedded Cortex R©-M0 microprocessor core,
executing the Dhrystone benchmark. Watermark detection performance of various
binary sequences was investigated on FPGA and silicon test chips. Experimental re-
sults obtained from FPGA matched the simulation results and confirmed that shorter
sequences, such as Barker codes achieve much better detection results when compared
with longer sequences, such as m-sequence. Silicon results have demonstrated that
very short sequences, such as 2, 3, 4 and 5 bits Barker codes are sensitive to both process
variation and run-to-run variations, while longer sequences such as 7 and 11 bits Barker
codes and m-sequences are immune to either of such variations.

Furthermore, with the aid of the power estimation, based on the fully placed and
routed ASIC implementation, the area and power overheads of various watermark
architectures were compared in Section 4.6. It was shown that a significant area and
power reduction is achievable with shorter sequences, such as Barker codes, due to
much lower WPPG requirements, to achieve a comparable detection results. However,
in Section 4.7, the analysis of most prominent third party IP attacks has shown that
short sequences are far more susceptible to attacks than longer sequences, due to fewer
number of possible combinations. This makes shorter sequences vulnerable to brute
force attacks. The solution to enhance the robustness of shorter sequences was proposed
in a way of encryption. Nevertheless, this has caused the architectural gains to vanish
and the short sequence implementation to result in a similar or larger circuit, when
compared with longer sequences. Such tradeoff was analyzed in Section 4.8, and it
was concluded that longer m-sequences are more suitable in smaller circuits, such



88 Chapter 4 Characterization of Sequences for Cost-Efficient Power Watermark

as microcontrollers, whereas shorter sequences are an ideal solution for much bigger
devices, such as microprocessors.

4.10 Concluding Remarks

In this chapter, watermarking sequences have been characterized based on their intrin-
sic parameters, and have been compared in terms of detection performance, area and
power overheads. It was shown how sequence’s parameters, such as length, activity, α,
and the overlapping factor, θ, influence the correlation coefficients in a spread spectrum
graph. Using a new theoretical definition, the relationship between the watermark
sequence parameters and detection performance has been illustrated and validated
with simulations and experimental results of FPGA and ASIC designs of embedded
processors. It has been shown that the tradeoffs occur between shorter sequences,
such as Barker codes, and longer sequences, such as m-sequence, in terms of hard-
ware implementation costs and robustness against third party attacks. The tradeoffs
have been analyzed and it has been concluded that for smaller systems the commonly
used m-sequence approach is a better solution due to its robustness against third party
attacks. However, for bigger systems shorter sequences achieve better hardware imple-
mentation costs without sacrificing the robustness performance (especially when used
in conjunction with other techniques such as clock modulation, discussed in the next
chapter).



Chapter 5

Clock-Modulation Based Watermark
Power Pattern Generation

The current state-of-the-art watermark circuits [8] require a significant size WPPG load
circuit, to be detected with the current state-of-the-art Correlation Power Analysis [8,9]
detection technique. However, embedded processors are increasingly constrained in
terms of area overhead. Therefore, a technique is required which allows the mini-
mization of the WPPG load circuit, without a corresponding reduction in detection
performance. In this chapter1, such a technique is proposed and enables complete
removal of the WPPG circuit through the modulation of the clock signal in sequential
logic. Therefore, a significant area overhead reduction is achieved.

The rest of the chapter is organized as follows. The fundamentals of the proposed
technique and the watermark circuit implementation are provided in Section 5.1. The
validation of watermark implemented on silicon test chips is given in Section 5.2.
The reduction of area overhead through the application of the proposed technique is
analyzed in Section 5.3 and the improved robustness is discussed in Section 5.4. The
chapter is summarized in Section 5.5 and the final conclusions are given in Section 5.6.

1The contents of this chapter have been published in [111], as ”Clock-Modulation Based Watermark for
Protection of Embedded Processors” by Kufel et al in Design, Automation Test in Europe (DATE) Conference,
2014.

89
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Figure 5.1: Architecture of the current state-of-the-art power watermark circuit.

Figure 5.2: Timing diagram of current state-of-the-art (middle) and clock mod-
ulation (bottom) watermark architectures.

5.1 Clock Modulation Watermarking Technique

The current state-of-the-art power watermark circuit [8, 58] implements WGC and
WPPG circuits, Figure 5.1. The WGC generates the watermark sequence, WMARK,
which controls the shift enable input of the WPPG. In Figure 5.2, the timing diagram
of the watermark circuit is shown. The load register consists of an 8-bit shift regis-
ter initialized with ’1010...’ pattern (0xAA), to maximize dynamic power consumption
when WMARK is ′1′. It can be seen, that when WMARK is ′1′ the shift enable signal is
′1′. The dynamic power is consumed, due to shift operation during which all registers
change their states. Analytical techniques such as Correlation Power Analysis (Chapter
3, Section 3.3), have been reported to detect deeply embedded watermark signals [8].
However, the area overhead of the watermark circuit in Figure 5.1 is significant, when
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Figure 5.3: Clock tree of hard macro watermark module integrated on chip I.

compared to area overhead as low as 0% with techniques [34,35,39] discussed in Chapter
2, Section 2.4.3.

In Chapter 4, Section 4.4.2, results of the Null Hypothesis Significance Test have shown
that watermark detection of approximately 100% can be achieved with shorter wa-
termarking sequences, such as 7 and 11 bit Barker codes. At the same time, the area
overhead reduction of 75% is possible in comparison to the commonly used m-sequence,
while maintaining the same detection performance. Nevertheless, the WPPG already
occupies a significant area in a system. To reduce area overhead, a watermark imple-
mentation technique is proposed which controls a watermarked IP sub-module with the
watermark modulated clock signal, as shown in Figure 5.6. The size of the watermark
circuit is constant, independent on the system size and therefore the area overhead is
negligible. The technique is expected to scale with the system size and achieve simi-
lar detection performance, while maintaining a low area overhead. Furthermore, the
technique produces a watermark circuit with an improved robustness against third
party IP attacks, since the watermark logic is embedded in such way that it becomes
an integral part of a processor. Therefore, tampering with an IP, such as removal, will
cause erroneous functionality of a system. To fully understand the applicability of the
technique and its advantages, it is necessary to consider the dynamic power reduction
technique, known as clock gating.

5.1.1 Clock Gating

In digital circuits, the distribution of a clock signal on a chip, also known as a clock
tree [113], contributes a significant amount of dynamic power consumption. In Figure
5.3, the clock tree of watermark module integrated on chip I (Chapter 4, Section 4.5) is
shown. As can be seen, the clock signal is routed throughout the watermark module.



92 Chapter 5 Clock-Modulation Based Watermark Power Pattern Generation

(a)

(b) (c)

Figure 5.4: Architecture of the (a) latch-free and (b) latch-based clock gates and
(c) timing diagrams [112].

In [114], authors report that typically up to 50% of the total dynamic power is consumed
by the system’s clock signal. Since most of the processor design is sequential, with a large
number of registers being clocked, the fan-out2 of the clock tree causes high dynamic
power consumption. However, not all registers must be switched every clock cycle and
their states are retained for many cycles before the next update. During the clock cycles
where the data is only retained and does not change, an additional and redundant
dynamic power is consumed, due to the clock tree switching signal. To reduce the
dynamic power consumption, the technique known as clock gating was introduced to
switch off the parts of the design when it did not need to be updated. This is achieved
through the use of special clock gating logic cell added to the clock tree [115]. The
schematic diagrams of a typical clock gating cells, such as latch-free and latch-based
clock gates are shown in Figure 5.4(a) and Figure 5.4(b), respectively. The timing
diagram of both architectures is depicted in Figure 5.4(c). The latch-free architecture
uses a simple AND or OR gates, but all enable signals must be held constant from
the active (rising) edge of the clock until the inactive (falling) edge of the clock [112].
Therefore, the system design must meet the setup and hold times to avoid truncating the
generated clock pulse prematurely or generating multiple pulses where a single pulse is
required. Otherwise metastability may occur, where the logic level of a signal is neither
′0′, nor ′1′, and erroneous execution is expected. The latch-based architecture avoids
such restrictions and prevents any signal change during the active edge of the clock.
This is achieved by locking the state of the enable signal during the falling edge of the
clock. Therefore, the output from the latch, Latch OUT, is retained until the next falling
edge of the clock. Hence, the signal meets both setup and hold times. The clock gates are
introduced by designers during the system and block design phases [116]. In [115], the
dynamic power reduction of 33% and total power reduction of 15% are reported, when
clock gating was used in a general purpose microprocessor. Furthermore in [117], it is
shown that the dynamic power reduction of over 50% is achieved, when clock gating
technique is implemented on FPGA.

2The fan-out of a logic gate describes the number of logic gates it can drive/connect to their inputs.
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(a) (b)

Figure 5.5: Clock tree connections for (a) high, and (b) low fan-out settings [118].

5.1.2 Clock Modulation Watermark Architecture

The clock gating technique is the mainstream of the design flow for dynamic power
reduction in modern integrated circuits, such as embedded processors. The design is
divided into sections with each section clock gated separately. Since, the clock network
delivers the clock signal to most parts in a design (Figure 5.3), the number of intercon-
nections is large and differs with the design. If a high fan-out is allowed, the lower
level clock gates in the same section are not required [118], Figure 5.5(a). Therefore, the
significant power reduction is achieved, but the enable signal is constrained. In case of
a low fan-out, the additional clock gates cells (ICG) are embedded in the lower logic
levels, Figure 5.5(b). The enable signal is easier to implement but the power savings are
reduced. The clock tree distributes the clock signal throughout the chip to all sequential
logic. However, the differences in clock net lengths introduce the variance in delay be-
tween connections. To improve the timing of the clock signal, known as the clock skew,
the buffers are added [119, 120]. Nevertheless, such approach increases the capacitive
load of the clock network and contributes a significant portion of dynamic power.

The current watermarking scheme [108] requires an additional circuit to generate such
portion (or less) of power. Therefore, the clock tree can be utilized and configured to
emulate the WPPG in a watermarked design. Nevertheless, to ensure a sound robust-
ness of the proposed technique, the significant transparencies in the RTL description,
such as interconnections between various circuits, must be kept at minimum. One
such solution, which implements a watermark circuit in the top level clock gate pro-
vides two advantages. First, the number of interconnections is reduced, and second,
the generated watermark power pattern is the strongest, since the modulated clock is
propagated to the entire processor core. However, due to the modulation of the top
level clock signal the synchronization issues with other IP blocks may occur. This could
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Figure 5.6: Architecture of the proposed clock modulation power watermark
circuit.

be avoided by not modulating the blocks which interface with the rest of the system,
such as bus controllers and I/O controllers. Nevertheless, the performance issues occur
and the throughput of a watermarked processor is significantly reduced. Both issues
are further addressed in Chapter 6.

The proposed clock modulation based technique is shown in Figure 5.6. The significant
size WPPG circuit reported in previous publications [8, 58] is thus removed. The archi-
tecture of the WGC is unmodified and generates a watermark sequence, WMARK. The
original clock gate control signal, CLK CTRL, and WMARK further control the enable
signal of a clock gate of an IP block, as shown in Figure 5.6. Analogically, the original
clock signal, CLK, to the IP block is modified and replaced with the modulated clock
signal, CLK WMARK. When WMARK is ′1′, the clock gate enable is ′1′ and CLK is
propagated (CLK WMARK = CLK). When WMARK is ′0′, CLK is stopped at the clock
gate (CLK WMARK = 0). In case the watermark circuit is active during processor ex-
ecution, the entire IP block generates significant dynamic power in clock cycles when
WMARK is ′1′. However, this may require an additional synchronization between the
watermark modulated and other IP blocks, to ensure data is not corrupted, or decrease
the throughput. Moreover, the size of the IP module must be significant to generate
a strong enough watermark power signal, due to the background noise produced by
the rest of the system. In case the watermark circuit is active while the entire system
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Figure 5.7: Schematic diagram of the clock modulated watermark circuit em-
bedded in test chips.

is inactive, the watermark power is consumed entirely by clock tree buffers. As can be
seen in Figure 5.2, the clock modulation technique produces higher switching activity in
comparison to watermark architecture implementing a WPPG circuit of Figure 5.1. This
means that clock buffers switch twice in a single clock cycle during the rising and falling
edges of a clock signal. Therefore, the dynamic power consumed in a single register by
clock tree buffers is higher than the dynamic power consumed by data switching in the
same register, as shown in Section 5.3. In Section 5.2, experiments on silicon test chips
are performed, to analyze if watermark power generated in such way produces high
enough amplitude, to be detected with the Correlation Power Analysis.

5.2 Silicon Validation

To validate the technique discussed in Section 5.1, two ASIC designs (Chapter 4, Section
4.5), fabricated in 65nm low leakage CMOS technology, were tested.

5.2.1 Watermark Sub-Module Circuit Architecture

The architecture of the watermark module is the same on both chips, Figure 5.7. The
WGC contains two sequence generators which can be configured as either 32-bit Linear
Feedback Shift Registers (LFSR) or simple 32-bit circular shift registers. In experiments
presented in this section, only a single sequence generator was used, configured as
12-bit LFSR and generated 12-bit maximum length sequence at WMARK output signal.
The redundant logic circuit contains 1, 024 registers, divided into 32 words. The clock
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Figure 5.8: Spread spectra of correlation results from test chips. Chip I with
active (a), and inactive (b), watermark circuit. Chip II with active (c), and
inactive (d) watermark circuit.

signal to each 32-bit word is clock gated using the clock gate cell (ICG). The clock enable
signal of each clock gate cell is controlled by WMARK. The clock signal is propagated
through all 32 clock gates, when WMARK is ’1’. When WMARK is ′0′, the clock signal is
stopped at ICGs and no dynamic power is consumed. All registers are pre-initialized to
′0′, hence no data switching occurs. As can be seen in Figure 5.7, there is a large number
of clock buffers embedded in the WPPG registers. Such buffers consume a significant
amount of dynamic power. Therefore, the clock modulation technique from Section 5.1,
can be validated with such a watermark circuit configuration.

5.2.2 Methodology

The experimental process discussed in Chapter 3, Section 3.3 and Chapter 4, Section 4.5,
was repeated on both test chips. The Dhrystone benchmark was executed on ARM R©

Cortex R©-M0 on the SoC, on both chips.

5.2.3 Experimental Results

The spectra of correlation results are shown in Figure 5.8. Since the period of the 12-bit
maximum length sequence (212

− 1) is shorter than 300k clock cycles, the watermark
sequence was repeated multiple times within a vector, X. It can be seen, that the
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Figure 5.9: Box plots of correlation coefficient results from chip I (a) and chip II
(b), when the experiment was repeated 100 times.

correlation peak for chip I occurs at approximately the 3, 800th rotation of the watermark
sequence (Figure 5.8(a)), and at approximately the 2, 400th rotation of the watermark
sequence for chip II (Figure 5.8(c)). Since no other correlation peaks exist, the watermark
can be regarded as detected. To confirm that correlation peaks were not the result of
the correlated system noise, the watermark circuit was disabled and experiments were
repeated on both chips. As can be seen in Figure 5.8(b) and Figure 5.8(d), no correlation
peaks occurred when the watermark power pattern was not present. To investigate the
repeatability of detection results, the experiments were performed 100 times on both
chips. In Figure 5.9 correlation coefficients are shown in a form of a box plot3. It can
be seen, that medians when X and Y were not in phase is close to 0. However, when
both vectors were in phase medians are much higher and distinctive correlation peak

3The description of a box plot can be found in Chapter 4, Section 4.4.
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Table 5.1: Power Consumption of Placed and Routed WPPG Circuit

WPPG Circuit Power Consumption Total Watermark
Implementation Dynamic Static Total Dynamic Power

Clock Buffers Modulation
1.51 mW 0.404uW 1.51mW 95.6%

No Data Switching
Clock Buffers Modulation

1.80 mW 0.407uW 1.80mW 96.8%
256 Switching Registers

Clock Buffers Modulation
2.09 mW 0.407uW 2.09mW 97.2%

512 Switching Registers
Clock Buffers Modulation

2.66 mW 0.408uW 2.66mW 98%
1024 Switching Registers

can be distinguished. The variance of all results represented by the box in the figure
accounts for 95% of all correlation coefficients, with extreme values shown as dots. As
can be seen, the correlation coefficient peak is present in all experiments on both chips.
Therefore, an embedded watermark was successfully detected in all repetitions. The
redundant logic in the demonstrated experiments is a stand-alone circuit, however, in
the end application a commercial IP sub-module can be reused with similar results,
reducing the area overhead, as will be shown in Chapter 6.

5.3 Area Overhead Reduction

The area of the current state-of-the-art watermark circuit is largely occupied by the
significant size watermark power pattern generator (WPPG) load circuit, Figure 5.1. In
case of system scaling, the size of the watermark generation circuit (WGC) does not
change, while the size of the WPPG varies and increases with the system size. This
effect is caused by the Correlation Power Analysis detection technique, which requires
substantial watermark power signal to detect an embedded watermark circuit. Vari-
ous novel detection techniques have been demonstrated in recent publications [81, 88],
which detect an embedded circuit of negligible size. However, similarly to many soft
IP protection techniques [34–36,38,39], an access to watermarked design throughout an
entire design flow, or access to post-fabricated design internals are necessary for suc-
cessful detection. This is not possible for many IP suppliers. The proposed watermark
clock modulation technique enables watermark implementation at RTL description
level, with negligible area overhead, and allows post-fabrication watermark detection
with the CPA detection technique. Furthermore, the size of the watermark circuit is
the same for all systems, hence does not need scaling, since the watermark architecture
only requires implementation of the negligible size WGC.

To determine the area overhead reduction of the proposed clock modulation technique
to the current state-of-the-art watermark implementation demonstrated in Section 5.1,
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Table 5.2: WPPG Circuit Implementation Costs

Detectable WPPG Number of Area
Circuit Dynamic WPPG Circuit Registers Overhead

Power Consumption N = PLoad/(1.126uW + 1.476uW)
Increase

PLoad
0.25 mW 96 89%
0.5 mW 192 94%
1 mW 384 97%

1.5 mW 576 98%
5 mW 1921 99%

10 mW 3843 100%

Figure 5.1, the power consumption of the fully placed and routed watermark circuit was
estimated with Synopsys Primetime-PX, using 65nm low leakage CMOS technology.
The power consumption of the clock modulated redundant WPPG circuit is shown
in Table 5.1. In the top of the table, the WPPG is implemented as shown in Figure
5.7. Hence, the dynamic power consumption is caused entirely by clock buffers. This
implementation was found to account for 95.6% of total watermark circuit dynamic
power. The number of switching registers is further increased, until all 1,024 registers
switch when WMARK is ’1’. Therefore, the dynamic power consumption is caused by
both data switching and clock buffers modulation. It can be seen, that the dynamic
power consumed by clock buffers is higher than the dynamic power caused by data
switching. On average, the dynamic power consumption of a single clock buffer is
1.476uW, and data switching in a single register is 1.126uW. In Table 5.2, the number
of switching registers, N, required to implement the WPPG of Section 5.1, Figure 5.1,
is shown for various system sizes. It is based on the required WPPG dynamic power
consumption (in relative terms), to be easily detected with CPA technique. As can
be seen, approximately 580 registers are required to implement the WPPG with the
current state-of-the-art watermark architecture, to consume the same dynamic power
as the clock gated redundant circuit in Section 5.2, Figure 5.7. With the proposed clock
modulation technique, the dynamic power consumed by clock buffers can be obtained
through the modulation of clock tree buffers of existing logic, Section 5.1.2, Figure 5.6.
The WGC requires only 12 registers, hence an area overhead reduction of 98% can be
achieved. Nevertheless, the area overhead reduction depends on the system size, as
shown in Table 5.2. As can be seen, the area overhead reduction is less in smaller systems,
but still significant when compared to the WPPG based watermark implementation. In
bigger systems, the area overhead reduction is close to 100%. Moreover, watermark
implementation can be system specific. Therefore, top level IP modules or lower level
sub-modules can be modulated with the proposed technique and the power overhead
of the watermark implementation can be tailored to the system.
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5.4 Improved Robustness

One of the major cornerstones of all IP watermarking techniques is the robustness
against third party removal attacks. It is performed with the aim of removing watermark
circuit from the design. In the case of soft IP, a removal attack can be performed at the
RTL description level, due to high visibility of the system [1]. Since the current state-
of-the-art watermark circuit implements a significant WPPG load circuit, the removal
is easily performed. Moreover, as the watermark is a stand-alone circuit, removal has
no impact on the system performance.

The clock modulation technique proposed in this chapter significantly reduces area
overhead of the watermark circuit, leading to an enhanced robustness to removal at-
tacks. Furthermore, the WGC circuit can be embedded in various sub-modules and
detection capabilities of an attacker are significantly reduced. As can be seen in Figure
5.7, the proposed watermark implementation does not produce a stand-alone circuit,
and therefore the system’s functionality is greatly impaired when watermark is re-
moved.

5.5 Summary

The significant size of the WPPG circuit, which is the integral part of the current
state-of-the-art watermark circuit [8] (Chapter 3, Section 3.2) is required to be detected
with the CPA technique [8, 9]. In this chapter, the technique was proposed for the
minimization of the watermark circuit, through removal of the entire WPPG circuit
and modulation of the clock signal in sequential logic. It was shown that the clock
tree network occupies a considerable amount of the circuit, Figure 5.3, and consumes
up to 50% of the total dynamic power [114]. Hence, the generation of the watermark
power pattern through the modulation of clock gates is a suitable technique for IP
protection. If such sequential logic circuits are considered as a single sequential logic
block, it can be regarded as the WPPG load circuit with zero-area overhead. The
technique was validated on silicon tests chips (Chapter 4, Section 4.5.1), fabricated
in 65nm low leakage CMOS technology. Although the architecture of the watermark
implemented a separate stand-alone circuit, experimental setup and configuration of
the watermark circuit represent the generic case of modulating the IP processor core,
with the watermark sequence. Experimental results have confirmed the significant area
overhead reduction with the proposed technique. Furthermore, the robustness against
third party IP attacks has been improved. However, when it is implemented in an
embedded processor, the performance is impaired, due to the ′1′ and ′0′ pattern of a
watermark sequence. Moreover, synchronization issues may occur.
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5.6 Concluding Remarks

A novel clock modulation watermark technique for embedded processors has been
proposed in this chapter. The technique was validated with two ASIC designs. The
significant area reduction has been demonstrated when compared to the current state-
of-the-art watermark circuit architecture, reported in previous publications, with 98%
area reduction obtained from experimental results. The proposed clock modulation
technique has also achieved the significant increase in robustness against third party
IP attacks, such as removal attacks. However, performance and synchronization issues
occur. These issues are addressed in Chapter 6.





Chapter 6

Instruction Based Activation of
Watermark Power Pattern

In Chapter 5, the technique for the emulation of the WPPG circuit through the modula-
tion of clock gates in sequential logic was proposed. A significant area overhead reduc-
tion was achieved by complete removal of the WPPG load circuit, typically found in the
literature [8]. To compensate such a considerable power consumption, the modulated
sequential logic was considered as the zero-area overhead load circuit. Nevertheless,
the proposed clock modulation technique assumes a continuous generation of a water-
mark power pattern and power overhead costs are significant. The technique proposed
in this chapter activates a watermark circuit during specific processor instruction, to
minimize the dynamic power consumption.

The rest of the chapter is organized as follows. In Section 6.1, a brief motivation for
the work presented in this chapter is given. It is followed by the introduction of the
proposed technique in Section 6.2. The technique is validated on two ASICs, and it is
divided to two separate test cases investigated in Section 6.3 and Section 6.4, respectively.
The hardware implementation costs are discussed in Section 6.5 and the robustness is
analyzed in Section 6.6. The chapter is concluded in Section 6.7.

103
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6.1 Motivation

The clock modulation technique demonstrated in Chapter 5 allows a significant area
overhead reduction, when compared to the current state-of-the-art technique [8]. How-
ever, the dynamic power consumption is significant and synchronization between wa-
termarked and non-watermarked circuits is necessary. Furthermore, the processor’s
performance is greatly impaired. Hence, a new technique is required to avoid such
synchronization issues and minimize the power and performance overheads. In this
chapter, technique of Chapter 5 is improved by activation of the watermark circuit
during the specific processor instruction, known as Wait-for-Interrupt (WFI). This al-
lows a significant reduction of the power overhead with negligible performance, and
synchronization issues do not occur.

6.2 Proposed Watermark Circuit Instruction Based Activation
Technique

Techniques for minimization of power consumption in embedded processors, such as
clock gating and power gating are commonly used throughout the industry. The clock
gating technique (refer to Chapter 5, Section 5.1.1) allows minimization of dynamic
power consumption, by disabling the clock signal to the parts of the circuit which do not
need to be updated [115]. However, the static power consumption (short circuit power1)
is unchanged. To aid with further reduction of the static power consumption the
power gating technique is applied, where the power to the processor is removed [121].
During the normal operating mode the processor executes the application and both
dynamic and static power is consumed. However, as it is commonly known most
applications require a processor to wait for a specific signal from other devices for
extended periods. Therefore, until such a signal is received the device remains in the
low power mode using power gating techniques. In a typical processor design flow
both clock gating and power gating techniques are combined to reduce dynamic and
static power. The commonly used instruction to enter the low power mode is known
as Wait-for-Interrupt (WFI). Upon execution of such instruction a processor enters a
low power mode [122]. However, before removing the power to the processor other
active tasks must be executed to prevent the loss of data or erroneous operation, after
the circuit has been powered up. This is commonly known as the pipeline flush.

To minimize the area overhead the watermark is implemented as in Figure 6.1. The
WPPG circuit is removed as in Chapter 5. The watermark circuit is embedded in the ar-
chitectural top level clock gate circuit and generates a watermark sequence (WMARK),

1For the explanation of the source of short circuit power consumption, see Chapter 3, Section 3.1.
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Figure 6.1: Architecture of the proposed technique for clock modulation based
watermark power pattern generation with instruction based activation.

to control the enable signal of the processor clock gate. As can be seen, the orig-
inal clock gate request signal (CLK Gate Req) is overridden and replaced with the
Overr CLK Gate Req signal. The modulated clock signal, Mod CLK, drives the sequential
parts of a processor. Therefore, it emulates the WPPG load circuit.

In this chapter, two watermark activation approaches are proposed, Figure 6.2. In the
first approach (mode I), the watermark circuit is active during the processor pipeline
flush operation. Upon the execution of the WFI instruction the pipeline flush request
signal, Flush Req, is sent to multiple parts of a processor. This ensures that active
instructions are executed before the processor is power gated. In Figure 6.1, such signal
is connected to the watermark circuit controller and determines the activation of the
watermark power pattern. Since the entire system, including top and lower level clock
gates are active, the amplitude of the watermark power signal is the highest. However,
the processor is active and generates a considerable background noise. Therefore, the
signal-to-noise ratio (SNR) is expected to be much lower and may cause the watermark
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Figure 6.2: Watermark activation techniques.

detection hard to perform. In the second approach (mode II), the generation of the
watermark power pattern is performed immediately after the pipeline flush and before
the processor is power gated. As all lower level clock gates have already been switched
off, the data is retained and the clock modulation does not impact the functionality
of a processor. The generated watermark power signal is expected to be of much
lower amplitude, when compared with mode I. The number of buffers between the
top level clock gate and lower level clock gates and their capacitive load is expected to
be significant, to be sufficient for successful watermark detection. Furthermore, as the
processor is inactive the SNR is higher.

The timing diagram of both design approaches for 7-bit Barker code is shown in Figure
6.3. Additional operations between clock gating and power gating are not shown.
The timing diagram of the non-watermarked processor is shown in the top of Figure
6.3. The flush request signal (Flush Req) changes to ′1′ upon the execution of the WFI
instruction and it is registered on the next clock cycle. This indicates the beginning of
the pipeline flush operation (green). The duration of the pipeline flush depends on the
number of active instructions that must be executed, prior to processor entering the low
power mode. In Figure 6.3, the pipeline in the non-watermarked processor is flushed
within 14 clock cycles. Next, the clock gate request signal (CLK Gate Req) changes to
′1′ and the clock signal to the processor is stopped. The entire operation from the
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Figure 6.3: Timing diagram of the proposed technique for clock modulation based watermark power pattern generation with instruction
based activation during the WFI pipeline flush (middle) and immediately after WFI pipeline flush (bottom).
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active edge of the pipeline flush request to the clock cycle where the processor’s clock
is stopped requires 16 clock cycles (blue). In the first approach, the watermark circuit is
active during the pipeline flush. On the active edge of the Flush Req signal the pipeline
flush operation is requested. The watermark circuit is activated in the next clock cycle,
and the generation of the watermark power pattern begins. The generated watermark
sequence modulates the top level clock gate, indicated by the Mod CLK signal (orange).
The clock signal is propagated (Mod CLK = System CLK) when watermark bit is ′1′ and
is stopped (Mod CLK = 0) when watermark bit is ′0′. As can be seen, when watermark
is ′1′ the pipeline flush operation is active (green), and when watermark sequence is ′0′

the pipeline flush operation is stalled (red). The entire pipeline flush operation requires
23 clock cycles, which is as expected due to approximately 50% of ′1′ in the 7-bit Barker
code, such as

7 − bit Barker code Hamming Weight = 4/7 = 0.57 (6.1)

Non −Watermarked Pipeline Flush Interval = 14 clock cycles (6.2)

Expected Watermarked Pipeline Flush Interval = (14 − 1)/0.57 (6.3)

= 22.8 ≈ 23 clock cycles (6.4)

In Equation (6.3), 1 clock cycle is subtracted (14 − 1), since the watermark circuit is
enabled with 1 clock cycle delay. In the second approach, the watermark circuit is
activated after the pipeline has been flushed. The watermark circuit generates a single
period of a watermark sequence (orange). As can be seen, the first approach has
the greater impact on the processor’s performance for long intervals of a pipeline
flush. Nevertheless, it is expected that the performance impact is negligible for both
approaches in the real application. This is further discussed in Section 6.5.

To validate the proposed technique, two ASIC designs were fabricated in a 65nm low
leakage CMOS technology, with a nominal operating voltage of 1.2V, and were tested.
The designs were completed using industry standard EDA tools. The architecture of
both designs differs, hence they are discussed as two separate test cases.

6.3 Case I: Modulation of ARM R© Cortex R©-A5 Clock Signal
With ARM R© Cortex R©-M0

In the first test case, chip II introduced in Chapter 4, Section 4.5 was used. The clock
signal of the embedded ARM R© Cortex R©-A5 microprocessor core was modulated with
the software executed on ARM R© Cortex R©-M0 microprocessor core.
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Figure 6.4: Block diagram of chip II implementation for the modulation of
Cortex R©-A5 with Cortex R©-M0.

6.3.1 System Architecture

The architecture of the system is shown in Figure 6.4. As can be seen, the system is
divided into 2 separate abstraction layers. The SoC in layer 0 consists of Cortex R©-M0,
Advanced High-performance Bus (AHB), control registers and generates a clock signal
for both layers. The dual core Cortex R©-A5, Snoop Control Unit (SCU) and Advanced
eXtensible Interface (AXI) bus are located in layer 1. The memory, not shown in the
figure, is shared by both layers. The on-chip ring oscillator is used to generate the clock
signal. Through the control of layer1 ctrl control register, the modulation of layer 1
clock signal (clk axi) is possible. As can be seen in Figure 6.4, bit 4 of layer1 ctrl serves
as the enable signal (layer1 clkstop) for clk axi. Therefore, if layer1 clkstop is controlled
in a specific way the deterministic modulation of ARM R© Cortex R©-A5 can be achieved
and the proposed technique can be validated.
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(a) (b)

Figure 6.5: a) Block diagram of clock signal distribution on chip II. b) Timing
diagram of clock signals on chip II.

6.3.2 Experimental Setup

The test board shown in Chapter 4, Section 4.5.3 was used. All the power domains
were connected using power jumpers and the total current consumed by the chip was
measured, using a shunt 270mΩ resistor. The generation of the clock signal using
the on-chip ring oscillator is shown in Figure 6.5. The distribution of clock signals
on chip II is shown in Figure 6.5(a). The clock generation circuit (CLK) embedded
in SoC provides the clock signal for Cortex R©-M0 (clk bus) and dual core Cortex R©-A5
(clk axi). Additionally, the clock signal (CLK1 Out) is connected to one of the output
pins and can be used for measurement and synchronization with the internal logic. As
can be seen in Figure 6.5(b), CLK1 Out is asynchronous when compared with clk axi
and its frequency is 4 times less than the frequency of clk axi and 2 times less than
the frequency of clk bus. Therefore, the experimental process discussed in Chapter
3, Section 3.3 differs and it is modified in Section 6.4.4. The operating frequency of
Cortex R©-M0 was 72.6MHz, and the operating frequency of Cortex R©-A5 was 145.2MHz.
The current signal was measured using an Agilent DSO80204B [123] oscilloscope with
Agilent 1130A active differential probe, at a sampling frequency of 5GHz. Due to the
detection methodology (see Section 6.3.3), the average number of samples per CLK1 Out
clock was 137. Therefore, 34 samples per single cycle of clk axi were averaged, to find the
power vector, Y. The number of clock cycles obtained for a single ρ was approximately
300k.

The proposed technique activates the WGC circuit with the WFI instruction. To modu-
late the clock signal of one of Cortex R©-A5 microprocessor cores and emulate the effect
of the embedded WGC in the top level clock gate, the program executed by Cortex R©-M0
controls the switching activity of the clk axi signal. To validate mode II, the system noise
level was significantly reduced by keeping Cortex R©-A5 in the idle mode. Therefore, the
processor did not execute any program. To achieve the modulation of Cortex R©-A5 clock
signal, register layer1 ctrl was controlled with the program executed on Cortex R©-M0.
The function for the modulation of layer1 clkstop is given below.
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1 asm void modulate clock ( void )
2 {

3 LDR R0,=0 xF0C00004 / / l a y e r 1 c t r l r e g i s t e r a d d r e s s
4 LDR R1 , [ R0 ] / / l o a d c u r r e n t l a y e r 1 c t r l r e g i s t e r c o n t e n t
5 LDR R2,=0 x00000010 / / l a y e r 1 s t o p c l o c k mask
6 LDR R3,=0 xFFFFFFEF / / l a y e r 1 e n a b l e c l o c k mask
7
8 barker7 / / −−− b a r k e r 7 s e q u e n c e
9 ANDS R1 , R1 , R3 / / e n a b l e l a y e r 1 c l o c k ( watermark = 1)

10 STR R1 , [ R0 ] / / s t o r e c o n t e n t t o r e g i s t e r
11 ANDS R1 , R1 , R3 / / e n a b l e l a y e r 1 c l o c k ( watermark = 1)
12 STR R1 , [ R0 ] / / s t o r e c o n t e n t t o r e g i s t e r
13 ANDS R1 , R1 , R3 / / e n a b l e l a y e r 1 c l o c k ( watermark = 1)
14 STR R1 , [ R0 ] / / s t o r e c o n t e n t t o r e g i s t e r
15 ORRS R1 , R1 , R2 / / d i s a b l e l a y e r 1 c l o c k ( watermark = 0)
16 STR R1 , [ R0 ] / / s t o r e c o n t e n t t o r e g i s t e r
17 ORRS R1 , R1 , R2 / / d i s a b l e l a y e r 1 c l o c k ( watermark = 0)
18 STR R1 , [ R0 ] / / s t o r e c o n t e n t t o r e g i s t e r
19 ANDS R1 , R1 , R3 / / e n a b l e l a y e r 1 c l o c k ( watermark = 1)
20 STR R1 , [ R0 ] / / s t o r e c o n t e n t t o r e g i s t e r
21 ORRS R1 , R1 , R2 / / d i s a b l e l a y e r 1 c l o c k ( watermark = 0)
22 STR R1 , [ R0 ] / / s t o r e c o n t e n t t o r e g i s t e r
23 B barker7
24 }

The function starts by defining Cortex R©-M0 working registers. As can be seen, the
function is an infinite loop and generates a 7-bit Barker code. The generation of each
watermark bit is comprised of 1 logical operation (ANDS or ORRS) and a store instruc-
tion (STR). Since store instruction requires 2 clock cycles a single watermark sequence
bit requires 3 clock cycles (clk bus). After the generation of a single watermark period,
the branch (B) is performed and the watermark generation is re-executed. Similarly, the
branch instruction requires 3 clock cycles. In Figure 6.6(a), the initial part of watermark
generation is shown. As can be seen, the logical operation takes place in the 1st clock
cycle of clk bus, while store instruction is executed in the 2nd and 3rd clock cycles. First,
the address of layer1 ctrl (0xF0C00004) is pushed onto the address bus of the AHB bus
(haddr sela). On the next clock cycle, the result of the logical operation is pushed onto the
data bus of the AHB bus (hwdata sela). The result is stored in layer1 ctrl on the next active
edge of clk bus. It can be seen, that layer1 clkstop changes from 1 to 0, and the axi clk is
enabled shortly after. In Figure 6.6(b), the generation of a full period of a watermark
sequence is shown, followed by a branch instruction. As previously discussed, the
generation of a single watermark sequence bit requires 3 clock cycles. However, since
the clock signal of Cortex R©-A5 is of higher frequency, the same watermark generation
period takes 6 clock cycles of axi clk.
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Figure 6.6: Timing diagrams of the modulated Cortex R©-A5 clock signal, depicting the beginning of the program (a) and a single period
of a watermark sequence (b).
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Figure 6.7: Representation of the averaged power signal (bottom), from the
captured clock (top) and power (middle) signals in chip II.

6.3.3 Detection Methodology

In Chapter 3, Section 3.3, the power vector Y is obtained by averaging all power samples
in a single clock cycle. In Section 6.3.2, the ring oscillator is used to generate the clock
signal to various parts of a system. The output frequency of a ring oscillator depends
on a propagation delay, which is influenced by temperature, supply voltage, load
capacitance, threshold voltage, channel length, oxide thickness and transistor channel
width [81]. Although the effect of temperature variations can be minimized through
the use of the temperature chamber, other parameters are susceptible to power supply
noise and process variations. Therefore, the frequency of the generated clock signal
varies in consecutive clock cycles. To reduce such effect on detection performance
each clock cycle is considered individually. The measured with the oscilloscope power
signal is shown in Figure 6.7. To obtain the power vector Y and calculate the Pearson’s
correlation coefficient, ρ, the power measurements are post-processed as follows:

1. The synchronization point is found.

2. The number of samples, Ni, for a particular CLK1 Out clock cycle is computed.

3. Ni is divided by 4, to find the number of samples, Naxi, per clk axi clock cycle.

4. The shift ratio between CLK1 Out and clk axi is determined.

5. The power vector component, yi, for clk axi clock cycle is found and the process
is repeated for the duration of CLK1 Out clock cycle.
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6. The next clock cycle is found by adding Ni to the synchronization point.

7. Steps 3 − 6 are repeated for CLK1 Out, to find Y.

First, the synchronization point is found based on the threshold voltage in the measured
CLK1 Out signal. For example, in Figure 6.7, 2V determines the beginning of the clock
signal. Next, the number of samples, Ni, is determined for a particular clock cycle
(red dotted line). As can be seen, the first clock cycle consists of 138 samples and the
following clock cycles consist of 130 and 136 samples, respectively. Furthermore, as the
frequency of clk axi is 4 times higher than the frequency of CLK1 Out, Ni is divided by
4, to find the number of samples, Naxi, per single clk axi clock cycle (blue dotted line).
In case result is not an integer, the fractional components are not included, hence:

138/4 = 34.5 ≈ 34

The shift ratio between clk axi and CLK1 Out must be found, to determine the starting
point of clk axi clock cycle. In Figure 6.7, the shift ratio equals 0.5, which is as expected
when Figure 6.5(b) is considered. The shift ratio is given as the ratio of the number of
samples between the starting point of clk axi and synchronization point and the length
of the clk axi clock cycle. Finally, the power vector component, yi, for the particular
clk axi clock cycle is found by averaging all power samples within the clk axi clock cycle.
In Figure 6.7, 4 power vector components are found for a single CLK1 Out clock cycle.
To find the following components, Ni is added to the synchronization point. At times,
the synchronization points may not overlap, due to removal of fractional components
and various number of samples in consecutive clock cycles. As can be seen in Figure
6.7, a few samples exist between the end of the 2nd and the beginning of the 3rd clock
cycle, which are not included in the calculation of ρ. Nevertheless, the percentage of
lost data is negligible and commonly only up to a few samples may be lost per single
CLK1 Out clock cycle. The operation is repeated multiple times until the power vector
Y is found.

6.3.4 Detection Algorithm

As shown in Figure 6.6, the modulation of a Cortex R©-A5 with a Cortex R©-M0, requires
3 clk bus clock cycles and 6 axi clk clock cycles, to emulate the WPPG circuit. Since the
power vector Y represents the consumed power with respect to clk axi, 6 power vector
components (yi) represent 1 clock cycle of a watermark sequence. However, as the
phase of the clk axi with respect to a watermark sequence is not known the detection
algorithm is as follows:

1. Create a mask vector XM for the power vector Y.
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Figure 6.8: (a) Results of ρDIFF while varying the mask rotation (chip I). Spread
spectra when XM and Y are in phase (b) and are not in phase (c).

2. Mask Y to obtain the masked power vector, YM.

3. Average 6 consecutive elements in YM, to find the average power per watermark
sequence bit.

4. Find spread spectrum graph.

5. Find a single correlation coefficient difference, ρDIFF and plot as in Figure 6.8(a).

6. Rotate XM and repeat steps 2-5.

The detection algorithm requires the mask vector, XM, to be created to remove the
information about the branch instruction. Since each watermark bit requires 6 clk axi
clock cycles, XM is created as follows (for 7-bit Barker code):

Mask f or single watermark period = 1111111

Mask f or single watermark period with branch = 11111110

Mask vector (XM) :

111111 111111 111111 111111 111111 111111 111111 000000
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After the branch information has been removed from Y, using XM, the masked power
vector YM is obtained. Next, YM, is correlated with the watermark model, X, to find
the spread spectrum graph. The correlation difference, ρDIFF, is found and plotted on a
graph, Figure 6.8(a). Since the phase between XM and Y is not known XM is rotated by a
single clock cycle and the new YM is found. The process is repeated until a full rotation
of XM has been performed and all ρDIFF have been plotted on the graph, Figure 6.8(a).

6.3.5 Experimental Results

The experimental results are shown in Figure 6.8(a). As can be seen, due to rotation of
XM, ρDIFF varies and it is highest when rotation is 24. Furthermore, it can be noticed
that other high value ρDIFF elements exist. To understand this, consider the following
situation. When XM and Y are in phase the branch instruction information is removed
and the highest ρDIFF occurs. When XM and Y are not in phase the watermark informa-
tion is partially removed and it is replaced with the information of a branch instruction.
Furthermore, the rotation of XM causes the starting point to move and it can be approx-
imated to the effect of the convolution of the two signals. In Figure 6.8(c) and Figure
6.8(b) the spread spectra are shown for two XM rotations. As can be seen, when XM and
Y are not in phase (Figure 6.8(c)) ρDIFF approaches 0, due to spurious correlation coef-
ficients. Otherwise, when XM and Y are in phase (Figure 6.8(b)), ρDIFF is significantly
higher and demonstrates the successful watermark detection. This validates mode II of
the proposed technique.

6.4 Case II: Modulation of ARM R© Cortex R©-A5 Top Level Clock
Gate

In the second test case, the watermark circuit was embedded in the ARM R© Cortex R©-A5
microprocessor core, integrated as a part of a system.

6.4.1 Test Chip Overview

The test chip was fabricated using the 65nm low leakage CMOS technology, with the
nominal operating voltage of 1.2V. The design was completed using industry standard
EDA tools. The Synopsys tool suite version E-2012.12 was used, including Design
Compiler for synthesis and VCS for verification. For the ease of comparison with
previous test chips, the test chip demonstrated in this section will be considered as
’chip III’ in the rest of this thesis. The test chip is shown in Figure 6.9. It consists of a
single core ARM R© Cortex R©-A5 microprocessor IP core and caches. The SoC shown as
the unmarked circuitry in the top half of the chip layout, consists of ARM R© Cortex R©-M0
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Figure 6.9: The layout (left) of chip III and ARM R© Cortex R©-A5 integrated on
the chip (right), with the highlighted watermark circuit.

microprocessor IP core, ADP unit and numerous IP blocks. The bottom part of the
chip formed part of another experiment and it is not considered in this thesis. The
watermark circuit (see Figure 6.1) was integrated from an RTL description. Therefore,
it was propagated through the entire design flow, which is closer to the intended usage
scenario, when embedding watermarked soft IP.

6.4.2 Watermark Circuit Architecture

The architecture of the watermark circuit integrated in chip III is shown in Figure 6.1.
For an in-depth explanation please refer to Appendix B.2.

6.4.3 Experimental Setup

The test board shown in Chapter 4, Section 4.5.3 was used. The operating frequency
of ARM R© Cortex R©-A5 was 100MHz. The total current consumed by the chip was
measured, using the shunt 5.6Ω resistor and an Agilent Technologies DSO80204B [123]
oscilloscope with Agilent 1130A active differential probe, at a sampling frequency of
2GHz. The Dhrystone benchmark was executed on ARM R© Cortex R©-A5. The water-
mark activation differs from previous experiments, hence it requires new detection
methodology, discussed in Section 6.4.4.

6.4.4 Detection Methodology

The detection methodologies discussed in previous chapters consider the watermark
as active at all times throughout the duration of the experiment. Therefore, to acquire a
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Figure 6.10: The effect of WFI instruction on a processor dynamic power con-
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Figure 6.11: Power signals obtained from oscilloscope (reduced to processor
switch point from an active mode to sleep mode).

power vector Y, a simple external trigger signal can be generated using FPGA (refer to
Chapter 3, Section 3.3.1). To minimize the dynamic power overhead, the proposed tech-
nique activates the watermark circuit with the WFI instruction executed on a processor.
Therefore, the activation periods are non-deterministic and hard to predict. However,
the WFI instruction is commonly used before the processor enters a low power mode.
It is known that the dynamic power consumption is much lower after the pipeline flush
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has been performed. In Figure 6.10, the dynamic power consumption during the pro-
cessor active and sleep (inactive) modes is shown. As can be seen, the dynamic power
consumption is significantly reduced when WFI instruction is executed and the pipeline
has been flushed. Therefore, it is used as a trigger signal to detect the watermark power
pattern.

6.4.5 Detection Algorithm

In Figure 6.10, the substantial reduction in the power consumption can be noticed, when
the processor switches from the active mode to sleep mode. Although it is used to trigger
the oscilloscope measurement, the obtained power traces are not in phase (Figure 6.11),
due to background noise present in the signal, which causes the oscilloscope to trigger
at various times. However, to find power vector Y, multiple power traces must be
merged (refer to Chapter 3, Section 3.3.1). Furthermore, such signals must be in-phase
to ensure the continuity of a watermark sequence. To synchronize power traces, each
signal is processed as follows:

1. The length of each signal is reduced, to retain the power data when processor
switches from the active mode to sleep mode.

2. The reference power trace is chosen.

3. A power trace is correlated with the reference power trace.

4. A power trace is rotated and the correlation is repeated.

5. All correlation values are plotted on a spread spectrum graph.

6. A power trace is synchronized with the reference power trace, based on the highest
correlation value in a spread spectrum graph.

7. Steps 3 − 6 are repeated for other power traces.

To obtain the synchronized power traces and form a longer power vector Y, the size of
each power trace is minimized to reduce the post-processing time. To reduce the noise
present in the power signal and ease the detection of the processor mode switch point,
the moving average is applied, where several consecutive power samples are averaged
and represent a single point on a graph. The higher the number of averaged power
samples the lower the noise present in the obtained signal. However, the less accurate
the switch mode point. In this section, 10 consecutive samples have been averaged. It
was found to be sufficient to reduce noise present in the power signal. To synchronize
power traces, the reference power trace is chosen. In this section, the first power trace
was used. Next, each trace is correlated with the reference trace. Since the phase shift
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Figure 6.12: (a) Synchronized power traces. (b) Synchronized power traces
after application of moving average technique.

is not known, the currently processed signal is rotated and the correlation is repeated.
The spread spectrum graph is obtained for each trace. The maximum correlation peak
represents the synchronization point and the distance by which the power trace must be
rotated to be synchronized with the reference signal. In Figure 6.12, the synchronized
(Figure 6.12(a)) and the moving average (Figure 6.12(b)) power traces are shown. As
can be seen in Figure 6.12(b), the processor switch from the active to sleep mode is
clearly distinguishable.
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(a) (b)

Figure 6.13: Power vectors extracted from consecutive columns in a power
trace matrix. (a) Power vector Y1. (b) Power vector Y2.

To perform the watermark detection the synchronized power traces are formed as
a matrix (Figure 6.13), with rows (m) representing the number of power traces and
columns (n) representing the power samples. To obtain the power vector Y, several
power samples from each power trace are merged. For example, for 11-bit Barker
code, 11 power samples from all m rows form a longer power vector Y (Figure 6.13(a)).
Similarly, for 6-bit m-sequence 63 power samples are merged. Therefore, to obtain Y of
approximately 300k samples, 27k power traces are required for 11-bit Barker code and
5k for 6-bit m-sequence. However, since the active period of a watermark circuit is not
known, the consecutive columns in a matrix form new power vectors (Figure 6.13(b)).
The correlation is computed for each vector and plotted on a spread spectrum graph.
The process is repeated for Yn−1 power vectors.

6.4.6 Experimental Results

The experiments have been performed for both mode I and mode II implementation.
In Figure 6.14(a), the moving average graph is shown for deterministic sequences dis-
cussed in Chapter 4, for mode I. The moving average is shown, since it removes a
significant portion of noise present in the original trace. It is obtained by averaging
the traces of Figure 6.12(b). When the watermark is off, the top level clock gate is
enabled until the pipeline has been flushed. Therefore, the pipeline flush requires the
least number of clock cycles to finish, but the power consumption is highest. As can
be seen in Figure 6.14(a), when the watermark is off the amplitude is highest, but the
processor enters the sleep mode most quickly. When watermark is active, the pipeline
flush requires more clock cycles to finish, due to the modulation of the top level clock
gate. Based on Table 4.2 (Chapter 4, Section 4.3), the activity factor, α, of 7-bit Barker
code is higher (57.15%), than α of 11-bit Barker code (45.45%). Therefore, the amplitude
of the signal in Figure 6.14(a) for 7-bit Barker code is higher, than the amplitude of the
signal for 11-bit Barker code. In case of 6-bit m-sequence, the sequence starts with a
few leading zeroes. This can be noticed in the figure by a sudden drop in the signal’s
amplitude and the longest pipeline flush of all sequences. However, the pipeline flush
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Figure 6.14: Power signal moving average for (a) mode I, (b) mode II.

is too short and the processor enters the sleep mode before the watermark sequence
reaches the full period of a 6-bit m-sequence.

In Figure 6.14(b), the moving average graph is shown for mode II. When the watermark
is off, the signal is the same as in Figure 6.14(a). However, when the watermark is active
a single period is generated. As can be seen, the signals’ amplitudes are much higher
after the pipeline has been flushed. When Barker codes are compared, the amplitude
for the 7-bit Barker code is marginally higher in the first part of a signal. However, as
the 11-bit Barker code is a longer sequence, the signal is flatter and the amplitude is
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Figure 6.15: Spread spectra of correlation results for 6-bit m-sequence when
watermark circuit is active (a) and inactive (b), after the pipeline has been
flushed.
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Figure 6.16: Spread spectra of correlation results for 11-bit Barker code active af-
ter the pipeline has been flushed. (a),(b) Watermark inactive. (c),(d) Watermark
active.

higher in the last part of a signal. If a 6-bit m-sequence is considered, it can be seen that
due to much larger sequence length (Table 4.2, Chapter 4, Section 4.3), the watermark
circuit is active for longer and the watermark is clearly distinguishable. To determine
if the watermark has been found, the spread spectrum is analyzed (refer to Chapter 3,
Section 3.3). In Figure 6.15, the correlation results for 6-bit m-sequence are shown for
mode II. As can be seen in Figure 6.15(a), the significant correlation peak occurs when
watermark is active, when compared with results in Figure 6.15(b), where watermark
is off. Therefore, the watermark can be considered as detected.



124 Chapter 6 Instruction Based Activation of Watermark Power Pattern

0 2 4 6 8 10
x 10

8Frequency (Hz)

A
m

pl
itu

de

(a)

0 2 4 6 8 10
x 10

8Frequency (Hz)

A
m

pl
itu

de

(b)

0 2 4 6 8 10
x 10

8Frequency (Hz)

A
m

pl
itu

de

(c) (d)

0 100 200 300 400 500 560
Clock cycles

(e)

0 500 1000 1500 2000 2500 3000
Clock cycles

(f)

0 2 4 6 8 10
x 10

8Frequency (Hz)

A
m

pl
itu

de

(g)

0 2 4 6 8 10
x 10

8Frequency (Hz)

A
m

pl
itu

de

(h)

0 2 4 6 8 10
x 10

8Frequency (Hz)

A
m

pl
itu

de

(i) (j)

Figure 6.17: Frequency spectra of power vectors when watermark was off for
(a) 11-bit Barker code (single vector), (b) 6-bit m-sequence (single vector), (c)
11-bit Barker code (all vectors), (d) 6-bit m-sequence (all vectors). Convolution
of power signal with watermark for (e) 11-bit Barker code, (f) 6-bit m-sequence.
Frequency spectra of (g) 11-bit Barker code, (h) 6-bit m-sequence. Frequency
spectra of power vectors when watermark was on after the pipeline flush for
(i) 11-bit Barker code, (j) 6-bit m-sequence.
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Figure 6.18: Frequency spectra of the convolved power signal with the water-
mark sequence for (a) 11-bit Barker code (watermark off), (b) 6-bit m-sequence
(watermark off), (c) 11-bit Barker code (watermark on - after) and (d) 6-bit
m-sequence (watermark on - after).

Correlation spectra for 6-bit m-sequence for mode I could not be performed, since the
full period of a 6-bit m-sequence was not generated (Figure 6.14(a)). Furthermore, the
watermark could not be found in any modes for 7-bit and 11-bit Barker codes. In Figure
6.16, the spread spectra for 11-bit Barker code are shown for mode II. Results for mode
I are similar. In Figure 6.16(a), the watermark is off and no modulation of the top level
clock gate is performed. In Figure 6.16(c), the watermark is active and the top level
clock gate is modulated. As can be seen, the figures are similar and no significant
correlation peaks can be distinguished. However, it is interesting to notice that the
correlation values when watermark is active (116 − 120 on the x-axis in Figure 6.16(d)),
are higher than correlation values when watermark is off (116 − 120 on the x-axis in
Figure 6.16(b)). However, the correlation values do not cause any significant correlation
peaks and the watermark cannot be detected. To understand why this occurs, consider
the frequency spectra of power signals in Chapter 4 and Chapter 5. The watermark
circuit is active throughout the experiment. Hence, the background noise varies and
can be approximated as white noise (see Figure 4.4, Chapter 4, Section 4.3.1). The
generation of a watermark sequence is continuous and the watermark power signal
can be regarded as an additional offset added to the background noise. In this chapter,
however, the watermark sequence is active during or immediately after the pipeline
flush operation. Therefore, the frequency spectra must be reconsidered.
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The detection algorithm (refer to Section 6.4.5) merges a part of each power signal to
generate a longer power vector, Y. In Figure 6.17(a), the frequency spectrum of a single
power vector is shown, when the watermark is off. As can be seen, the spectral power
is not constant and few frequency components can be distinguished. In Figure 6.17(c),
the spectra of all power vectors obtained during the experiment are shown. Similarly,
none of the power vectors can be approximated as a white noise. The number of
columns merged to form a power vector has a direct impact on the frequency spectrum
of a vector. For example, in Figure 6.17(b) the frequency spectrum of a single power
vector is shown and in Figure 6.17(d), the spectra of all power vectors are shown, when
6-bit m-sequence is considered. As can be seen, the number of frequency components
is significantly higher, when compared with spectra for 11-bit Barker code. This is
as expected if Figure 4.4 (Chapter 4, Section 4.3.1) is considered. As can be seen,
the convolution of the background noise with 11-bit Barker code (Figure 6.17(e)) is
lower than the convolution with 6-bit m-sequence (Figure 6.17(f)). However, when
watermark is active the frequency components of watermarking sequences (Figure
6.17(g) and Figure 6.17(h)) are expected to be dominant. If the frequency spectra of
power traces when watermark is active are considered (Figure 6.17(i) and Figure 6.17(j)),
the frequency components of watermarking sequences cannot be clearly distinguished.
Furthermore, from a simple visual inspection the spectra are similar to the spectra when
watermark is off. However, if one compares the frequency spectra of power vectors
when watermark is expected to be active, it can be seen that for 6-bit m-sequence the
frequency spectra for the active watermark (Figure 6.18(d)) contain more frequency
components corresponding to the sequence (Figure 6.17(h)), than the spectra for power
vectors when watermark is off (Figure 6.18(b)). However, for 11-bit Barker code the
frequency spectra of an active watermark (Figure 6.18(c)) contain only some of the
watermark sequence frequency components, and in some cases increase the amplitude
of the noise frequency components, when compared with Figure 6.18(a). Therefore, the
correlation results do not produce significant correlation peaks, Figure 6.16. Addressing
these issues form part of future research, discussed in Chapter 7.

6.5 Hardware Implementation Costs Reduction

The instruction based activation of the watermark circuit proposed in this chapter im-
proves the hardware implementation costs of the technique introduced in Chapter 5.
The clock modulation technique demonstrated the area overhead reduction close to
100% for bigger systems, such as application processors (i.e. ARM R© Cortex R©-A5), and
close to 90% for smaller systems, such as microcontrollers (i.e. ARM R© Cortex R©-M0).
The technique proposed in this chapter allows similar area overhead reduction. The
watermark circuit implementation requires few minor modifications to the original
processor architecture in the RTL description, to override the existing signals. The
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watermark generation circuit requires only few registers to implement Barker codes or
m-sequences. Therefore, the area overhead of the proposed technique is negligible and
close to 0%. Moreover, the activation of the watermark circuit with dedicated instruc-
tion, such as WFI, allows further minimization of the dynamic power consumption.
The dynamic power consumption depends on the current program and the frequency
of the WFI instruction execution. Nevertheless, as demonstrated in Figure 6.14(a) and
Figure 6.14(b), the watermark power pattern is generated for a short period. Therefore,
it is expected that the dynamic power overhead for any program is negligible and close
to 0%.

The clock modulation technique of Chapter 5 has shown a processor performance re-
duction of approximately 50% (refer to Chapter 5, Section 5.6). The technique proposed
in this chapter builds upon the clock modulation technique, however, the performance
overhead is negligible and synchronization issues do not occur. The performance over-
head causes the increased latency of the pipeline flush operation (mode I) or adds the
delay after the pipeline flush has finished and before the processor is power gated (mode
II). It is expected, that the performance overhead is close to 0% and the synchronization
issues do not occur in any mode. However, if longer pipeline flushes occur the water-
mark is generated multiple times and the performance overhead of mode I increases.
Furthermore, mode I requires additional modifications to a processor architecture, to
prevent vital parts of a processor being modulated during the pipeline flush operation.
Mode II does not require such modifications since the processor has already finished
execution of all tasks and it is ready to enter the sleep mode. Therefore, mode II requires
less modifications of an original IP and it is a less invasive approach.

6.6 Improved Robustness

The robustness of the instruction based activation technique is inherited from the clock
modulation technique of Chapter 5. The area overhead of the watermark circuit is
negligible, which makes it harder to find in the RTL description when compared with
technique in [8]. Additionally, the watermark circuit forms part of an existing system
and its removal greatly impairs the system’s functionality. Therefore, the robustness
of the proposed technique against tampering attacks is significantly improved when
compared with the current state-of-the-art in [8]. However, due to short sequences
such as Barker codes, the number of possible combinations is reduced and brute force
attacks become feasible. Hence, the robustness against finding ghosts and forging
attacks is impaired (refer to Chapter 4, Section 4.7.1). To overcome this issue, m-
sequences can be used in mode II implementation, as demonstrated in Section 6.4.6
(Figure 6.15). However, to achieve high robustness against finding ghosts and forging
attacks longer m-sequences, such as 32-bit, must be used which is infeasible due to large
performance overhead. Furthermore, such significant delay between the pipeline flush
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operation and processor power down is easily noticeable by an attacker from a simple
RTL simulation. To overcome the limitations of Barker codes, the private/public key
encryption and cryptographic hash functions can be used as demonstrated in Chapter
4, Section 4.7.2. Determining the feasibility of such approach forms part of a future
research, discussed in Chapter 7.

6.7 Concluding Remarks

The activation of a watermark based clock modulation with the WFI instruction tech-
nique has been introduced in this chapter. The technique was validated with two
ASICs. A negligible area and power overheads was achieved, while synchronization
issues do not occur. The experimental results demonstrated the influence of watermark
sequences on processor dynamic power. A successful detection of a 6-bit m-sequence
was achieved, for one of the watermark implementation approaches. Nevertheless,
considering the robustness of the proposed technique, long period sequences such as
32-bit m-sequence are infeasible. Therefore, shorter period sequences must be used, to
avoid robustness and performance overhead issues. However, the experimental results
demonstrated that due to detection algorithm sequences such as 7-bit and 11-bit Barker
codes could not be detected. To overcome this issue, the public/private key encryp-
tion and cryptographic hash functions can be used. This ensures lower amplitude of
frequency components in the noise signal due to increased trace length and better ap-
proximation to the white noise and increased robustness against third party IP attacks.
Determining the feasibility of such approach forms part of a future research.



Chapter 7

Conclusions and Future Work

The continuous technology scaling has increased the complexity of circuit design but it
has lead to the design productivity gap and the need to accelerate the industry transfor-
mation. To shorten the design cycles and reduce design costs the design reuse approach
has been introduced into the design flow, where new design blocks are integrated along
the existing functional blocks sourced from external IP suppliers. To avoid the integra-
tion complications faced by SoC integrators, the sourced IP blocks are often supplied
as unprotected design files but lack the appropriate protection mechanisms, which pre-
vent an access to a design by a third party. As a result, the hardware piracy has become
a major problem and IP protection has become a necessity. Auditing the presence of
an IP in finished products through the application of reverse engineering techniques
is an effective solution, but the process is slow and costly. Therefore, it is desirable to
identify and prioritize IP candidates to be short-listed for more thorough investigation.
This has lead to the development of many different IP protection techniques at various
levels of the designed IP. This thesis focuses on protecting the IP in the soft level, due to
its flexibility and high susceptibility to third party attacks. The contributions provide
new techniques for minimization of hardware implementation costs of IP protection
measures in embedded processors and increase robustness against hardware piracy.
The contributions are summarized in the next section, followed the proposed areas for
future work.

7.1 Thesis Contributions

Recent research has demonstrated an integration of a circuit known as digital water-
mark, as a source of IP supplier’s information hidden in a protected IP. The information
is extracted from a device and further used to determine if an IP infringement has
occurred. The vast number of techniques for integration of digital watermark has
been proposed. The most prominent techniques modify the Finite State Machines
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(FSM) [35–40], or add a side-channel information through the implementation of a re-
dundant circuit known as power watermark circuit, to generate the deterministic power
pattern on a supply voltage rail [8,58–60]. The FSM techniques allow the hardware im-
plementation costs close to 0%, but require an access to a watermarked device internals,
such as IO ports or memory. The power watermarking techniques are less invasive and
can be detected from a simple measurement of a device power consumption. Further-
more, such techniques can be applied on a black box device, where the architecture is
not known, but the hardware implementation costs are much higher.

To ensure high robustness of a digital watermark against third party IP attacks, power
watermarking techniques implement a 32-bit maximum length sequence (m-sequence),
generated with the Linear Feedback Shift Registers (LFSR) [8,58–60]. Due to high num-
ber of possible combinations of an implemented power pattern, the detection of an
embedded watermark is infeasible, but the hardware implementation costs are high. In
Chapter 4, the first objective1 of this thesis is addressed, by determining the most cost
efficient sequences, in terms of area, power and detection, for the digital power wa-
termark implementation. To find the intrinsic parameters of watermarking sequences
and their impact on hardware implementation costs and detection performance, the
Pearson’s correlation coefficient was analyzed and two key parameters were extracted.
Sequences not previously discussed in the area of IP power watermarking, such as
Barker codes, were compared with the commonly used m-sequence. Based on the
intrinsic sequence’s parameters, MATLAB simulations have allowed to short-list the
possible candidates. To validate the simulation results the watermark circuit was em-
bedded in ARM R© Cortex R©-M0 implemented on FPGA. Additionally, the validation was
performed on the first in the literature watermark circuit silicon implementation. Two
ASICs have been fabricated (chip I and chip II), using the 65nm low leakage CMOS
technology. In the first chip, the watermark circuit was integrated as a hard macro
block on a separate power domain. The system consisted of ARM R© Cortex R©-M0 along
with on-chip bus and numerous IP blocks. In the second chip, the watermark circuit
was integrated from the RTL description which is closer to the intended scenario when
implementing a watermarked IP. The system consisted of ARM R© Cortex R©-M0, on-chip
bus and numerous IP blocks and ARM R© Cortex R©-A5 along with on-chip bus and caches.
The FPGA and silicon results have confirmed the simulation results. Furthermore, the
silicon results have demonstrated the effect of process variation on detection results.
It was concluded that very short sequences are susceptible to process and run-to-run
variations. The simulation and experimental results have allowed to determine the cost
efficient sequences for power watermarking. The area overhead reduction of at least
72% and power overhead reduction of at least 73% was achieved with the proposed 7-bit
and 11-bit Barker codes, whilst maintaining the same level of watermark detection as
commonly used m-sequence. The robustness of the proposed sequences was analyzed,
which formed part of the third objective, and it was shown that with the private/public

1All objectives are listed in Chapter 1, Section 1.4
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key encryption and hash encoding high robustness against third party IP attacks can be
achieved.

The watermarking sequences found in Chapter 4 have allowed an area and power over-
head reduction, when compared with the m-sequence approach [8], but the architecture
of the watermark circuit was the same as in the current state-of-the-art technique [8],
and required a significant size Watermark Power Pattern Generator (WPPG) load cir-
cuit. The area overhead of the watermark circuit with 7-bit or 11-bit Barker codes was
substantial. To address the second objective and reduce the hardware implementation
costs, a new technique was proposed in Chapter 5. The WPPG circuit was removed. In-
stead, the watermark circuit was used to control the switching activity of the processor
clock signal, to emulate a significant size WPPG circuit. When such technique is imple-
mented in an embedded processor, the capacitive load of the clock tree buffers is utilized
to achieve a high dynamic power consumption related to a watermark sequence. To val-
idate the proposed technique, the watermark circuit implemented on chip I was used.
To demonstrate the modulation of clock tree buffers with the watermark sequence, the
WPPG circuit was active but no data switching occurred. Therefore, the only compo-
nents contributing to a watermark power pattern were the clock tree buffers in WPPG
registers. The experimental results have shown a clear correlation peak when water-
mark was active, which indicated a successful detection. The experimental results were
repeated multiple times and 100% detection was achieved. The proposed technique
was analyzed in terms of area and power overheads and it was shown that the area
overhead is negligible, since only the WGC circuit must be implemented. Furthermore,
the technique avoids the need of watermark circuit scaling, when the size of the system
is increased. This is however not the case when the current state-of-the-art technique
is considered [8], as the WPPG determines the SNR of the watermark power signal. To
determine the power overhead of the proposed technique, the power consumption of
the fully placed and routed watermark circuit implemented on chip I was estimated
with Synopsys Primetime-Px. In smaller systems, such as microcontrollers (i.e. ARM R©

Cortex R©-M0), the power overhead reduction is close to 90% and in bigger systems, such
as application processors (i.e. ARM R© Cortex R©-A5), the power overhead reduction is
close to 100%. The robustness of the proposed technique was analyzed as a part of the
third objective of this thesis. It was demonstrated that the robustness is significantly
improved, since the watermark circuit forms an integral part of an existing circuit and
achieves a negligible area overhead.

The characterization of watermarking sequences in Chapter 4 and the proposed tech-
nique in Chapter 5 have allowed further hardware costs reduction. The clock modula-
tion technique (Chapter 5) was combined with sequences found in Chapter 4, to activate
the watermark circuit with a dedicated instruction, such as Wait for Interrupt (WFI), in
Chapter 6. Two design approaches have been proposed and were validated on two test
chips. In the first chip (chip II), the feasibility of the technique was confirmed. It was
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shown that the watermark was detected when the clock signal of ARM R© Cortex R©-A5
was modulated with the program executed on ARM R© Cortex R©-M0. In the second chip
(chip III), the proposed technique was implemented in ASIC, fabricated in 65nm low
leakage CMOS technology. Both design approaches have been tested and experimental
results for both m-sequence and Barker code demonstrated the effect of the proposed
technique on dynamic power consumption. The watermark was successfully detected
when m-sequence was used in mode II configuration. However, such sequences cannot
be used due to their intrinsic significant length. Barker codes could not be detected in
any of the proposed configurations. Therefore, experimental results were investigated
and the improvement to the technique was demonstrated, which forms part of a future
research. The proposed technique enables area and power overheads close to 0% and
avoids the synchronization issues found in Chapter 5. The robustness is significantly
improved when compared with the commonly used m-sequence technique [8], when
private/public key encryption is used.

The contributions presented in this thesis provide novel techniques for reducing the
hardware implementation costs of IP protection through digital power watermarking
for embedded processors. The thesis demonstrates the first application of a water-
mark circuit in the ASIC implementation. The conclusions drawn in this thesis are
supported through MATLAB simulations, FPGA and silicon validations and analysis
of fully synthesized circuits. It is hoped that the proposed techniques will make useful
contributions towards the protection of future embedded soft IP processors.

7.2 Future Work Directions

7.2.1 Improved Instruction Based Activation of Watermark Power Pattern

The watermark circuit activation with the WFI instruction (Chapter 6) have shown a
successful detection of a 6-bit m-sequence, but could not detect any of the Barker codes.
The analysis of frequency spectra of power signals measured with oscilloscope has
clarified why such has occurred. Since m-sequences are infeasible (refer to Chapter 6,
Section 6.6) and simple Barker codes are too short to be detected, the public/private
key encryption and hash encoding of a side-channel message with Barker codes has
been proposed. This ensures the longer period of the measured power signal, hence
better approximation of the background noise signal to the white noise, and increased
robustness against third party IP attacks. To achieve this, the watermark circuit must
employ the encryption and hash encoding of a secret message on-chip and further
modulate each bit with a watermark sequence. The technique must be analyzed in both
modes (mode I and mode II, Chapter 6, Section 6.2) for 7-bit and 11-bit Barker codes, and
hardware implementation costs such as area, power and performance overheads must
be determined. It is expected that the power and performance overheads are negligible.
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The area overhead in the ASIC implementation may be found to be significant, due to
many additional circuits such as key encryptor and decryptor and hash encoder and
decoder. To avoid such overhead in the final watermark implementation an already
hash encoded message can be stored in a register. This ensures a negligible area
overhead and improves the robustness of a watermark circuit.

7.2.2 Watermark Detection Through Power Classification

The detection technique used throughout this thesis is known as Correlation Power
Analysis (CPA) and is considered as the current state-of-the-art technique for detec-
tion of an embedded power watermark, due to high sensitivity and ability to detect
deeply embedded signals. However, as demonstrated through experimental results,
the amplitude of a watermark power pattern is considerable and usually a significant
size WPPG load circuit must be used. Techniques have been proposed to avoid the use
of such circuit, with high robustness against third party attacks, but are limited to the
modulation of the top level clock gate of a processor, due to significant dynamic power
reduction which occurs after the pipeline has been flushed. This has been used in the
experiments to trigger the measurement of the oscilloscope and capture the processor
switch point from the active mode to the sleep mode. Despite high robustness against
third party IP attacks and in case of key encryption high security of the encoded mes-
sage, such obvious power trigger may be used by an attacker and traced back to the
position of a watermark circuit. To overcome such limitations, it is necessary to generate
a watermark power pattern during the active processor mode, when an additional wa-
termark power consumption is obscured by a processor power consumption. However,
the clock modulation technique of Chapter 5 cannot be used since this would lead to
synchronization issues. Therefore, the WPPG load circuit must be considered, but the
tradeoff between the area and power overheads and robustness against detection in the
power consumption occurs, when technique of Chapter 6 is considered and must be
investigated.

In [89], the regression analysis is used to detect an embedded trojan circuit. The
technique plots two parameters, such as current consumption and frequency changes
on certain input and output paths on a feature space and uses straight lines based
on a 3σ rule as limits, to determine if a trojan has been detected. Another technique
which allows separation of two classes in a hyperplane is known as the Support Vector
Machine (SVM) [124]. The objective of the SVM is to find a separation function which
maximizes the distance between both classes. The SVM technique allows various types
of classifiers, including higher number of dimensions (hyperplane). To understand the
ability of the SVM technique consider Figure 7.1, where a 2-D space is shown when RMS
of the measured voltage and the variance is considered. Two classes can be determined.
In the first (red), the watermark signal is not present. In the second (blue), the watermark
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Figure 7.1: 2-D Feature space. Watermark active (blue) and off (red). (a) All
repetitions. (b) Repetitions averaged.

circuit is active. As can be seen, after averaging the measured signals (Figure 7.1(b))
to reduce the noise level, both classes can be easily separated and a watermark can be
detected. The use of higher dimensions and therefore multiple parameters is a viable
solution to achieve a better watermark separation and classification. The area overhead
is expected to be lower than demonstrated in Chapter 4, with the CPA technique due to
higher sensitivity of SVM, when multiple parameters are used. Nevertheless, due to a
constant generation of a watermark power pattern, the power overhead is considerable
and robustness of this technique must be compared with the robustness of the technique
proposed in Chapter 6.

7.2.3 Classification of Watermark Activation Instructions

In Chapter 6, the watermark circuit was activated with the WFI instruction. The tech-
nique demonstrates a negligible hardware implementation costs due to removal of the
WPPG circuit, but it is limited to such instruction. The classification technique proposed
in Section 7.2.2, enables the watermark circuit to be highly obscured by the system’s
power consumption but increases the area and power overheads when compared with
the technique in Chapter 6. To overcome such limitations, it is necessary to generate
a watermark power pattern non-deterministically and for a short period. To achieve
this, the activation of a watermark circuit can be triggered by other instructions, such
as multiplication. In Chapter 4, Section 4.5.2, the watermark circuit integrated in chip I
allows the activation of a watermark circuit with the multiplication instruction executed
on ARM R© Cortex R©-M0 (refer to Appendix B.1). As the multiplication is executed in
a single clock cycle and consumes a significant power, the activation of a watermark
circuit can be delayed to reduce such effect on detection results. The watermark gener-
ates a single period of a watermarking sequence and waits for another multiplication
to occur. As in Section 7.2.2, this technique cannot use the clock modulation approach
since the processor is active, which would lead to synchronization issues. However,
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the power overhead is expected to be negligible, since the watermark circuit is active
only for a short period. Nevertheless, due to WPPG circuit the tradeoff between the
area overhead, hence the increased visibility in the RTL description, and the robustness
against detection in the power consumption occurs, when technique of Chapter 6 is
considered and must be investigated.

To detect the watermark power pattern the instruction which causes the activation of a
watermark must be detected. The SVM technique can be used to detect the instruction
executed by a processor, as demonstrated in Section 7.2.2, to find the starting point of
watermark generation. Although, such a technique, if successful, allows the detection
of intrinsic processor instructions and watermark implementation may be considered
as redundant, the results may be misleading if other processor designs are considered.
Therefore, the watermark circuit is necessary.





Appendix A

Pearson Correlation Coefficient
Analysis

The Correlation Power Analysis (CPA) used throughout this thesis as the power water-
mark detection technique considers the Pearson correlation coefficient as in Equation
(A.1).
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(A.1)

X is the watermark model vector, Y is the power vector and N is the length of both
vectors. Vector Y can be considered as the sum of the watermark model, X, and the
noise present in the system, β, such as global switching noise of digital IP blocks,
environmental and measurement noise. Therefore, vector Y can be represented as

Y = X + β (A.2)

However, since the phase difference between vectors X and Y is not known, vector X
is rotated by a single value (clock cycle) and the correlation computation is repeated.
Therefore, vector X can be substituted by X′, which represents the rotated vector X.

X = X′ (A.3)

By substituting Equations (A.2) and (A.3) into Equation (A.1), the correlation coefficient
is as follows
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Since vectors X and Xi represent the same binary sequence with different phase shifts,
the sum of all terms (bits) in a vector equals the Hamming Weight, H, of a sequence.
Hence,

N∑
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Xi = H (A.6)
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X′i = H (A.7)
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X2
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For the ease of reading and conciseness consider

N∑
i=1

βi = β (A.9)

Therefore, Equation (A.5) can be represented as
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Solving Equation (A.10) further gives
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The dynamic power of a canonical static CMOS gate is linearly proportional to the
switching activity, α [97]. However, in digital watermarking, the activity factor is intrinsic
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to a watermark sequence, and the dynamic power is consumed in clock cycles when
such sequence is ′1′. Therefore, the Hamming Weight, H, can be substituted as a product
of activity α and the length of vectors, N.

H = αN (A.12)

Substituting Equation (A.12) into Equation (A.11) gives
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Furthermore, if both vectors X and X′ are in phase

N∑
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Xi = H (A.14)

However, since vectors X′ and X can be out of phase, Equation (A.14) is modified by
adding the overlapping factor, θ as follows

N∑
i=1

X′i Xi = θH = θαN (A.15)

Substituting Equation (A.15) into Equation (A.13) gives

ρ =

N2αθ + N
N∑

i=1
(X′iβi) −N2α2

−Nαβ

√
N2α(1 − α)

√
N2α(1 − α) + N(2

N∑
i=1

(Xiβi) +
N∑

i=1
β2

i ) − β(2Nα + β)

(A.16)

ρ =

N2α(θ − α) + N(
N∑

i=1
(X′iβi) − αβ)

√
N2α(1 − α)

√
N2α(1 − α) + N(2

N∑
i=1

(Xiβi) +
N∑

i=1
β2

i ) − β(2Nα + β)

(A.17)

Reducing the common N from Equation (A.17) gives

ρ =

Nα(θ − α) +
N∑

i=1
(X′iβi) − αβ

√
α(1 − α)

√
N2α(1 − α) + N(2

N∑
i=1

(Xiβi) +
N∑

i=1
β2

i ) − β(2Nα + β)

(A.18)
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Finally, substitute Equation (A.9) into Equation (A.18).

ρ =

Nα(θ − α) +
N∑

i=1
(X′iβi) − α

N∑
i=1
βi

√
α(1 − α)

√
N2α(1 − α) + N(2

N∑
i=1

(Xiβi) +
N∑

i=1
β2

i ) −
N∑

i=1
βi(2Nα +

N∑
i=1
βi)

(A.19)

The terms
∑N

i=1(X′iβi) and
∑N

i=1(Xiβi) in Equation (A.19) depend on the position of ′1′ in
a watermark sequence. However, since N >> 1, such terms along with other terms in
Equation (A.19) can be simplified and ρ becomes

ρ =
Nα(θ − α)

√
α(1 − α)

√
N2α(1 − α) + N

N∑
i=1
β2

i

, N >> 1 (A.20)

In the noiseless environment Equation (A.20) is given by

ρ =
Nα(θ − α)√

α(1 − α)
√

N2α(1 − α)
, N >> 1 (A.21)

ρ =
Nα(θ − α)

N
√
α(1 − α)

√
α(1 − α)

, N >> 1 (A.22)

ρ =
α(θ − α)
α(1 − α)

, N >> 1 (A.23)

Furthermore, if vectors X and X′ are in phase, θ is 1 and

ρ =
α(1 − α)
α(1 − α)

= 1, N >> 1 (A.24)



Appendix B

Watermark Circuits Integrated on
Test Chips

B.1 Test Chips I and II

The architecture of the watermark circuit embedded on test chips I and II, discussed in
Chapter 4 and Chapter 5 is given in this appendix.

B.1.1 Brief Description

The watermark circuit contains: watermark generation circuit (WGC), watermark
power pattern generation (WPPG) load circuit, interval counter and watermark con-
troller. Watermark generation circuit generates a watermark sequence which further
controls the switching activity of the WPPG circuit. The watermark circuit supports
3 modes of operation, such as ALWAYS ON, INTERVAL and M0 TRIGGERED. In an
ALWAYS ON mode, the watermark sequence is generated in a continuous fashion. In
an INTERVAL mode, the delay is introduced between two consecutive watermark se-
quences. In the M0 TRIGGERED mode, the watermark circuit can be triggered with the
multiplication instruction executed on ARM R© Cortex R©-M0.

B.1.2 Interface

The watermark circuit interface is AHB bus compatible. Therefore, the circuit registers
have been mapped to specific memory location and can be written to or read from
using the AHB bus. The control signals are configured as inputs. However, after the
watermark has been integrated as a part of a SoC, the control signals have been mapped
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Table B.1: Watermark Circuit Working Registers (Chips I and II)

Address Description

0xD8000000 WGC - Single Sequence Generator 0

0xD8000004 WGC - Single Sequence Generator 1

0xD8000008 Interval Counter - counter 0 initial register

0xD800000C Interval Counter - counter 1 initial register

0xD8000010 WPPG - word 0

0xD8000014 WPPG - word 1

0xD8000018 WPPG - word 2

0xD800001C WPPG - word 3

0xD8000020 WPPG - word 4

... ...

0xD800008C WPPG - word 31

to the specific memory locations. Therefore, the Ascii Debug Protocol (ADP) interface
implemented on a test chip can be used to control the watermark circuit.

The watermark circuit working registers, mapped to a SoC memory, are shown in Table
B.1.

The watermark circuit control registers are shown in Table B.2.

B.1.3 Watermark Generation Circuit

Watermark Generation Circuit contains 2 Single Sequence Generators (SSG) to generate
a watermark sequence. The SSG contains a 32-bit memory mapped register. Therefore,
the initial value is configurable. Furthermore, the SSG can be configured as a circular
shift register or Galois LFSR, to generate sequences such as Barker, m-sequence, Kasami
and Gold codes. To generate Barker code or m-sequence a single SSG is used. To
generate Kasami or Gold codes both SSG must be used and their outputs XORed.

B.1.4 Watermark Power Pattern Generator

The Watermark Power Pattern Generator (WPPG) is used to modulate the strength of
the power dissipated due to watermark sequence. The WPPG circuit integrated on
both test chips implements a 32 x 32-bit word block, where all registers are mapped to
specific memory location. During the shift operation each 32-bit word is shifted to the
next word. Since, the shift operation is circular the last word shifts into the 1st word.
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Table B.2: Watermark Circuit Working Registers (Chips I and II)

Address Description

0xD0000000 Watermark Circuit Control Register

[1:0] operating mode

01 - always ON

10 - interval

11 - M0 multiplier triggered

4 counter clock enable

5 counter count enable

8 WPPG clock enable

9 WPPG shift enable

10 WPPG shift (1), write (0)

16 WGC clock enable

17 WGC shift (1), write(0)

18 WGC shift enable

[23:19] WGC Single Sequence Generator 0 multiplexer control

[28:24] WGC Single Sequence Generator 1 multiplexer control

29 WGC output multiplexer control

31 M0 multiplier trigger pin enable (output)

0xD0000004 WGC Taps Control Register 0

[30:0] 1 - indicates the LFSR operation (uses XOR gate)

0 - indicates the shift register operation

0xD0000008 WGC Taps Control Register 1

[30:0] 1 - indicates the LFSR operation (uses XOR gate)

0 - indicates the shift register operation

0xD000000C Noise Generator Control Register

[1:0] operating mode

01 - synchronous operation with WGC and WPPG start time

10 - asynchronous operation

4 Noise Generator clock enable

5 Noise Generator shift (1), write (0)

8 Noise Seed clock enable

9 Noise Seed shift (1), write (0)

[14:10] Noise Seed multiplexer control

0xD0000010 Noise Generator Taps Control Register

[30:0] 1 - indicates the LFSR operation (uses XOR gate)

0 - indicates the shift register operation
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B.1.5 Interval Counter

The interval counter is used during the Interval mode. Therefore, the watermark circuit
is activated for a single period of a watermark sequence and then it is switched off

for a number of clock cycles determined by the interval counter. The interval counter
contains two 32-bit count down counters. The first counter determines the length of the
switch ON operation, while the second counter determines the number of clock cycles
when the watermark circuit is inactive.

B.1.6 Watermark Controller

The watermark controller is a simple state machine and supports three operating modes,
such as ALWAYS ON, INTERVAL and M0 TRIGGERED. In the ALWAYS ON mode,
the state machine activates the WGC and WPPG circuits. Therefore, the watermark
sequence is generated continuously, until a reset is asserted. In the INTERVAL mode,
both counters are pre-loaded with the initial values. The WGC and WPPG are active
during the count down of the first counter (Counter 0; the counter must be set to
N-1, where N is the period of the watermark sequence). When Counter 0 reaches
the value of 0, the WGC and WPPG circuits are disabled. Counter 1 is activated and
counts the time to the next generation of the watermark sequence (the counter must
be set to M-2, where M is the interval period). Due to the 32-bit delay counter the
minimum separation between sequences is 2 clock cycles. The maximum separation
can be up to 232+1 clock cycles. In the M0 TRIGGERED mode, the enable signal from the
multiplier circuit embedded in ARM R© Cortex R©-M0 microprocessor core is connected
to the watermark circuit (chip I only). When the enable signal is ′1′, the multiplication
instruction is executed causing a significant power consumption. Such instantaneous
power consumption can be used as a trigger signal to start power measurements. The
watermark power pattern generation can also be triggered by such signal. To prevent
the interference between the multiplication operation and the generated watermark
power pattern, the delay is introduced. The minimum delay is 6 clock cycles, while the
maximum delay is 232 + 5 clock cycles. Similarly to INTERVAL mode, Counter 1 can be
used to delay the WGC and WPPG circuits activation after the multiplication has been
executed by the core. Furthermore, Counter 0 is used to determine the active time of
the WGC and WPPG circuits.

B.1.7 Noise Generator

The noise generator was implemented as a deterministic noise source. It consists of the
Noise Seed Generator (NSG) and the Noise Power Pattern Generator (NPPG). The NSG
can be regarded as the LFSR circuit, where all registers are additionally connected as
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outputs. The architecture of the Noise Power Pattern Generator (NPPG) is similar to the
architecture of the WPPG circuit. However, instead of the coarse grain control found in
the WPPG circuit, where all words are shifted, the NPPG implements a fine grain control.
If one considers the words to create a matrix of 32 rows and 32 columns, the NPPG
allows the column-wise rotation of bits, controlled by the bits in the corresponding NSG
circuit. For example, if bit 0 in the NSG is ′1′, all bits in column 0 are rotated.

B.1.8 RTL

B.1.8.1 Top Level Wrapper

1 module WATERMARK TOKACHI ECS 3 (
2
3 / / AHB LITE INTERFACE−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 input wire HCLK,
5 input wire HRESETn, / / R e s e t ( neg a c t i v e )
6 input wire [ 3 1 : 0 ] HADDR, / / Address
7 input wire HWRITE, / / T r a n f e r D i r e c t i o n
8 input wire [ 1 : 0 ] HTRANS, / / T r a n s a c t i o n Type
9 input wire [ 3 1 : 0 ] HWDATA, / / Write Data Bus

10 input wire HREADY, / / Bus Ready
11 input wire HSEL, / / S l a v e S e l e c t
12 output wire HREADYOUT, / / S l a v e Ready
13 output wire HRESP, / / Response
14 output wire [ 3 1 : 0 ] HRDATA, / / Read Data Bus
15
16 / / M0 TRIGGER INPUT−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 input wire M0 MULTIPLIER EN , / / M0 M u l t i p l i e r Enab l e s i g n a l
18
19 / / M0 TRIGGER OUTPUT PIN−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 output wire M0 TRIGGER PIN / / M0 t r i g g e r s i g n a l c o n n e c t e d t o ou tp ut ( c a s e ) p in
21
22 ) ;
23
24 / / −−−−−−−−−−CONTROL BITS−−−−−−−−−
25
26 / / Watermark C o n t r o l l e r
27 wire [ 1 : 0 ] WC OP MODE; / / O p e r a t i o n Mode
28
29 / / Watermark G e n e r a t i o n C i r c u i t
30 wire WGC CLKEN; / / C l o c k Enab l e
31 wire WGC SHIFT WRITE ; / / S h i f t o r Wri te
32 wire WGC SHIFT EN ; / / S h i f t Enab l e
33 wire [ 4 : 0 ] WGC SSG0 MUX CTRL ; / / SSG0 Mux C o n t r o l
34 wire [ 3 0 : 0 ] WGC SSG0 SRL LFSR ; / / SSG0 S h i f t R e g i s t e r o r LFSR c o n t r o l
35 wire [ 4 : 0 ] WGC SSG1 MUX CTRL ; / / SSG1 Mux C o n t r o l
36 wire [ 3 0 : 0 ] WGC SSG1 SRL LFSR ; / / SSG1 S h i f t R e g i s t e r o r LFSR c o n t r o l
37 wire WGC MUX CTRL; / / Output MUX C o n t r o l
38
39 / / L e a k a g e C i r c u i t
40 wire LC CLKEN ; / / C l o c k Enab l e
41 wire LC SHIFT EN ; / / S h i f t Enab l e
42 wire LC SHIFT WRITE ; / / S h i f t ( 1 ) , Wri te ( 0 )
43
44 / / I n t e r v a l Counter
45 wire CNT CLKEN; / / C l o c k Enab l e
46 wire CNT CNT EN ; / / Count Enab l e
47
48 / / Noise G e n e r a t o r C i r c u i t
49 wire NOISE GEN CLKEN ; / / Noise G e n e r a t o r C l o c k Enab l e
50 wire NOISE GEN SHIFT WRITE ; / / Noise G e n e r a t o r S h i f t ( 1 ) o r Wri te ( 0 ) mode
51 wire [ 1 : 0 ] NOISE GEN OP MODE ; / / Noise G e n e r a t o r O p e r a t i o n Mode − Synchronous or Asynchronous t o

watermark c i r c u i t
52
53 / / Noise G e n e r a t o r Seed
54 wire NOISE SEED CLKEN ; / / Noise S h i f t R e g i s t e r / LFSR C l o c k Enab l e
55 wire NOISE SEED SHIFT WRITE ; / / Noise S h i f t R e g i s t e r / LFSR S h i f t ( 1 ) o r Wri te ( 0 ) mode
56 wire [ 4 : 0 ] NOISE SEED MUX CTRL ; / / Noise S h i f t R e g i s t e r / LFSR Mux C o n t r o l − f e e d b a c k l o o p
57 wire [ 3 0 : 0 ] NOISE SEED SRL LFSR ; / / Noise S h i f t R e g i s t e r / LFSR O p e r a t i o n Mode ( s h i f t r e g i s t e r o r LFSR

c o n t r o l b i t s )
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58
59 / / T r i g g e r p in c o n t r o l
60 wire TRIGGER PIN CTRL ;
61
62 / / −−−−−−−−−−MEMORY MAP PARAMETERS−−−−−−−−−
63 / / O p e r a t i o n a l r e g i s t e r s
64 localparam WGC SSG0 MAP ADDR = 32 ’ hD800 0000 ;
65 localparam WGC SSG1 MAP ADDR = 32 ’ hD800 0004 ;
66
67 localparam CNT CNT0 MAP ADDR = 32 ’ hD800 0008 ;
68 localparam CNT CNT1 MAP ADDR = 32 ’ hD800 000C ;
69
70 localparam LC MAP BASE ADDR = 32 ’ hD800 0010 ;
71
72 localparam NOISE SEED MAP ADDR = 32 ’ hD800 0100 ;
73 localparam NOISE GEN MAP BASE ADDR = 32 ’ hD800 0110 ;
74
75 / / C o n t r o l s i g n a l s
76 localparam WM CTRL MAP ADDR = 32 ’ hD000 0000 ;
77 localparam WGC CTRL0 MAP ADDR = 32 ’ hD000 0004 ;
78 localparam WGC CTRL1 MAP ADDR = 32 ’ hD000 0008 ;
79 localparam NOISE CTRL MAP ADDR = 32 ’ hD000 000C ;
80 localparam NOISE GEN CTRL MAP ADDR = 32 ’ hD000 0010 ;
81
82
83 / / −−−−−−−−−−AHB SIGNALS−−−−−−−−−−
84 reg [ 3 1 : 0 ] addr ;
85 reg wri te en ;
86 reg read en ;
87 wire a c c e s s e n ;
88
89 / / AHB a c c e s s t r a n s a c t i o n s t a r t
90 assign a c c e s s e n = HREADY & HSEL & HTRANS[ 1 ] ;
91
92 / / −−−−−−−−−−AHB DE−PIPELINE−−−−−−−−−−
93
94 always@ ( posedge HCLK or negedge HRESETn)
95 i f ( ˜ HRESETn)
96 begin
97 addr [ 3 1 : 0 ] <= {3 2 {1 ’ b0 } } ;
98 end
99 e lse

100 begin
101 addr [ 3 1 : 0 ] <= HADDR[ 3 1 : 0 ] ;
102 end
103
104 always@ ( posedge HCLK or negedge HRESETn)
105 i f ( ˜ HRESETn) begin
106 wri te en <= 1 ’ b0 ;
107 read en <= 1 ’ b0 ;
108 end else i f (HREADY) begin / / when bus i s r e a d y
109 wri te en <= a c c e s s e n & HWRITE; / / HWRITE == 1 f o r w r i t i n g
110 read en <= a c c e s s e n & ˜HWRITE; / / HWRITE == 0 f o r r e a d i n g
111 end
112
113 / / −−−−−−−−−−REGISTER M0 TRIGGER SIGNAL−−−−−−−−−−
114 reg m0 tr igger q ;
115
116 always@ ( posedge HCLK or negedge HRESETn)
117 i f ( ˜ HRESETn)
118 m0 tr igger q <= 1 ’ b0 ;
119 e lse
120 m0 tr igger q <= M0 MULTIPLIER EN ;
121
122 / / −−−−−−−−−−SELECTION DECODE−−−−−−−−−−−−
123
124 wire w m c t r l s e l ;
125 wire w g c c t r l 0 s e l ;
126 wire w g c c t r l 1 s e l ;
127 wire n o i s e c t r l s e l ;
128 wire n o i s e g e n c t r l s e l ;
129
130 wire wgc ssg0 se l ;
131 wire wgc ssg1 se l ;
132
133 wire l c s e l ;
134 reg [ 3 1 : 0 ] l c s e l d e c ;
135
136 wire c n t c n t 0 s e l ;
137 wire c n t c n t 1 s e l ;
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138
139 wire n o i s e s e e d s e l ;
140
141 wire n o i s e g e n s e l ;
142 reg [ 3 1 : 0 ] n o i s e g e n s e l d e c ;
143
144 assign w m c t r l s e l = ( addr [ 3 1 : 0 ] == WM CTRL MAP ADDR) ;
145 assign w g c c t r l 0 s e l = ( addr [ 3 1 : 0 ] == WGC CTRL0 MAP ADDR) ;
146 assign w g c c t r l 1 s e l = ( addr [ 3 1 : 0 ] == WGC CTRL1 MAP ADDR) ;
147 assign n o i s e c t r l s e l = ( addr [ 3 1 : 0 ] == NOISE CTRL MAP ADDR) ;
148 assign n o i s e g e n c t r l s e l = ( addr [ 3 1 : 0 ] == NOISE GEN CTRL MAP ADDR) ;
149
150 assign wgc ssg0 se l = ( addr [ 3 1 : 0 ] == WGC SSG0 MAP ADDR) ;
151 assign wgc ssg1 se l = ( addr [ 3 1 : 0 ] == WGC SSG1 MAP ADDR) ;
152
153 assign c n t c n t 0 s e l = ( addr [ 3 1 : 0 ] == CNT CNT0 MAP ADDR) ;
154 assign c n t c n t 1 s e l = ( addr [ 3 1 : 0 ] == CNT CNT1 MAP ADDR) ;
155
156 assign l c s e l = ( addr [ 3 1 : 8 ] == LC MAP BASE ADDR [ 3 1 : 8 ] ) ;
157
158 always@ ( ∗ )
159 case ( { l c s e l , addr [ 7 : 0 ] } )
160 9 ’ h1 10 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0000 0001 ;
161 9 ’ h1 14 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0000 0010 ;
162 9 ’ h1 18 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0000 0100 ;
163 9 ’ h1 1C : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0000 1000 ;
164 9 ’ h1 20 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0001 0000 ;
165 9 ’ h1 24 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0010 0000 ;
166 9 ’ h1 28 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0100 0000 ;
167 9 ’ h1 2C : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 1000 0000 ;
168 9 ’ h1 30 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0001 0000 0000 ;
169 9 ’ h1 34 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0010 0000 0000 ;
170 9 ’ h1 38 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0100 0000 0000 ;
171 9 ’ h1 3C : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 1000 0000 0000 ;
172 9 ’ h1 40 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0001 0000 0000 0000 ;
173 9 ’ h1 44 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0010 0000 0000 0000 ;
174 9 ’ h1 48 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0100 0000 0000 0000 ;
175 9 ’ h1 4C : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 1000 0000 0000 0000 ;
176 9 ’ h1 50 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0001 0000 0000 0000 0000 ;
177 9 ’ h1 54 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0010 0000 0000 0000 0000 ;
178 9 ’ h1 58 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0100 0000 0000 0000 0000 ;
179 9 ’ h1 5C : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 1000 0000 0000 0000 0000 ;
180 9 ’ h1 60 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0001 0000 0000 0000 0000 0000 ;
181 9 ’ h1 64 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0010 0000 0000 0000 0000 0000 ;
182 9 ’ h1 68 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0100 0000 0000 0000 0000 0000 ;
183 9 ’ h1 6C : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 1000 0000 0000 0000 0000 0000 ;
184 9 ’ h1 70 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0001 0000 0000 0000 0000 0000 0000 ;
185 9 ’ h1 74 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0010 0000 0000 0000 0000 0000 0000 ;
186 9 ’ h1 78 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0100 0000 0000 0000 0000 0000 0000 ;
187 9 ’ h1 7C : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 1000 0000 0000 0000 0000 0000 0000 ;
188 9 ’ h1 80 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0001 0000 0000 0000 0000 0000 0000 0000 ;
189 9 ’ h1 84 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0010 0000 0000 0000 0000 0000 0000 0000 ;
190 9 ’ h1 88 : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b0100 0000 0000 0000 0000 0000 0000 0000 ;
191 9 ’ h1 8C : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ b1000 0000 0000 0000 0000 0000 0000 0000 ;
192 default : l c s e l d e c [ 3 1 : 0 ] <= 32 ’ h0000 0000 ;
193 endcase
194
195 assign n o i s e s e e d s e l = ( addr [ 3 1 : 0 ] == NOISE SEED MAP ADDR) ;
196
197 assign n o i s e g e n s e l = ( addr [ 3 1 : 8 ] == NOISE GEN MAP BASE ADDR [ 3 1 : 8 ] ) ;
198
199 always@ ( ∗ )
200 case ( { n o i s e g e n s e l , addr [ 7 : 0 ] } )
201 9 ’ h1 10 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0000 0001 ;
202 9 ’ h1 14 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0000 0010 ;
203 9 ’ h1 18 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0000 0100 ;
204 9 ’ h1 1C : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0000 1000 ;
205 9 ’ h1 20 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0001 0000 ;
206 9 ’ h1 24 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0010 0000 ;
207 9 ’ h1 28 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 0100 0000 ;
208 9 ’ h1 2C : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0000 1000 0000 ;
209 9 ’ h1 30 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0001 0000 0000 ;
210 9 ’ h1 34 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0010 0000 0000 ;
211 9 ’ h1 38 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 0100 0000 0000 ;
212 9 ’ h1 3C : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0000 1000 0000 0000 ;
213 9 ’ h1 40 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0001 0000 0000 0000 ;
214 9 ’ h1 44 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0010 0000 0000 0000 ;
215 9 ’ h1 48 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 0100 0000 0000 0000 ;
216 9 ’ h1 4C : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0000 1000 0000 0000 0000 ;
217 9 ’ h1 50 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0001 0000 0000 0000 0000 ;
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218 9 ’ h1 54 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0010 0000 0000 0000 0000 ;
219 9 ’ h1 58 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 0100 0000 0000 0000 0000 ;
220 9 ’ h1 5C : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0000 1000 0000 0000 0000 0000 ;
221 9 ’ h1 60 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0001 0000 0000 0000 0000 0000 ;
222 9 ’ h1 64 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0010 0000 0000 0000 0000 0000 ;
223 9 ’ h1 68 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 0100 0000 0000 0000 0000 0000 ;
224 9 ’ h1 6C : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0000 1000 0000 0000 0000 0000 0000 ;
225 9 ’ h1 70 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0001 0000 0000 0000 0000 0000 0000 ;
226 9 ’ h1 74 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0010 0000 0000 0000 0000 0000 0000 ;
227 9 ’ h1 78 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 0100 0000 0000 0000 0000 0000 0000 ;
228 9 ’ h1 7C : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0000 1000 0000 0000 0000 0000 0000 0000 ;
229 9 ’ h1 80 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0001 0000 0000 0000 0000 0000 0000 0000 ;
230 9 ’ h1 84 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0010 0000 0000 0000 0000 0000 0000 0000 ;
231 9 ’ h1 88 : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b0100 0000 0000 0000 0000 0000 0000 0000 ;
232 9 ’ h1 8C : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ b1000 0000 0000 0000 0000 0000 0000 0000 ;
233 default : n o i s e g e n s e l d e c [ 3 1 : 0 ] <= 32 ’ h0000 0000 ;
234 endcase
235
236 / / CONTROL r e g i s t e r programming−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
237
238 reg [ 3 1 : 0 ] WM CTRL;
239 reg [ 3 1 : 0 ] WGC0 CTRL;
240 reg [ 3 1 : 0 ] WGC1 CTRL;
241 reg [ 3 1 : 0 ] NOISE CTRL ;
242 reg [ 3 1 : 0 ] NOISE GEN CTRL ;
243
244 / / C o n t r o l b i t a l l o c a t i o n s −−−−−−−−−−
245
246 / / Watermark G e n e r a t i o n C i r c u i t
247 / / b y t e 0 − mode and c o u n t e r c o n t r o l
248 assign WC OP MODE = WM CTRL[ 1 : 0 ] ; / / mode
249 assign CNT CLKEN = WM CTRL[ 4 ] ; / / C l o c k Enab l e
250 assign CNT CNT EN = WM CTRL[ 5 ] ; / / Count Enab l e
251
252 / / b y t e 1 − l e a k a g e c i r c u i t c o n t r o l
253 assign LC CLKEN = WM CTRL[ 8 ] ; / / C l o c k Enab l e
254 assign LC SHIFT EN = WM CTRL[ 9 ] ; / / S h i f t Enab l e
255 assign LC SHIFT WRITE = WM CTRL[ 1 0 ] ; / / S h i f t ( 1 ) , Wri te ( 0 )
256
257 / / b y t e 2 / 3 − watermark g e n e r a t o r c o n t r o l and t r i g g e r p in ou tp ut c o n t r o l
258 assign WGC CLKEN = WM CTRL[ 1 6 ] ; / / C l o c k Enab l e
259 assign WGC SHIFT WRITE = WM CTRL[ 1 7 ] ; / / S h i f t ( 1 ) , Wri te ( 0 )
260 assign WGC SHIFT EN = WM CTRL[ 1 8 ] ; / / S h i f t Enab l e
261 assign WGC SSG0 MUX CTRL [ 4 : 0 ] = WM CTRL[ 2 3 : 1 9 ] ; / / SSG0 Mux C o n t r o l
262 assign WGC SSG1 MUX CTRL [ 4 : 0 ] = WM CTRL[ 2 8 : 2 4 ] ; / / SSG1 Mux C o n t r o l
263 assign WGC MUX CTRL = WM CTRL[ 2 9 ] ; / / Output Mux C o n t r o l
264
265 assign TRIGGER PIN CTRL = WM CTRL[ 3 1 ] ; / / T r i g g e r p in ( o u t pu t c o n t r o l )
266
267 assign WGC SSG0 SRL LFSR [ 3 0 : 0 ] = WGC0 CTRL [ 3 0 : 0 ] ; / / SSG0 S h i f t R e g i s t e r o r LFSR
268 assign WGC SSG1 SRL LFSR [ 3 0 : 0 ] = WGC1 CTRL [ 3 0 : 0 ] ; / / SSG1 S h i f t R e g i s t e r o r LFSR
269
270 / / Noise G e n e r a t i o n C i r c u i t
271 / / b y t e 0 − n o i s e g e n e r a t o r
272 assign NOISE GEN OP MODE = NOISE CTRL [ 1 : 0 ] ; / / mode
273 assign NOISE GEN CLKEN = NOISE CTRL [ 4 ] ; / / C l o c k Enab l e
274 assign NOISE GEN SHIFT WRITE = NOISE CTRL [ 5 ] ; / / S h i f t ( 1 ) , Wri te ( 0 )
275
276 / / b y t e 1 − n o i s e s e e d
277 assign NOISE SEED CLKEN = NOISE CTRL [ 8 ] ; / / C l o c k Enab l e
278 assign NOISE SEED SHIFT WRITE = NOISE CTRL [ 9 ] ; / / S h i f t ( 1 ) , Wri te ( 0 )
279 assign NOISE SEED MUX CTRL [ 4 : 0 ] = NOISE CTRL [ 1 4 : 1 0 ] ; / / Noise random number Mux c o n t r o l
280
281 assign NOISE SEED SRL LFSR [ 3 0 : 0 ] = NOISE GEN CTRL [ 3 0 : 0 ] ; / / Noise random number S h i f t R e g i s t e r o r LFSR
282
283 always@ ( posedge HCLK or negedge HRESETn)
284 i f ( ˜ HRESETn)
285 begin
286 WM CTRL <= {3 2 {1 ’ b0 } } ;
287 WGC0 CTRL <= {3 2 {1 ’ b0 } } ;
288 WGC1 CTRL <= {3 2 {1 ’ b0 } } ;
289 NOISE CTRL <= {3 2 {1 ’ b0 } } ;
290 NOISE GEN CTRL <= {3 2 {1 ’ b0 } } ;
291 end
292 e lse
293 begin
294 WM CTRL <= ( w m c t r l s e l & wri te en ) ? HWDATA : WM CTRL;
295 WGC0 CTRL <= ( w g c c t r l 0 s e l & wri te en ) ? HWDATA : WGC0 CTRL;
296 WGC1 CTRL <= ( w g c c t r l 1 s e l & wri te en ) ? HWDATA : WGC1 CTRL;
297 NOISE CTRL <= ( n o i s e c t r l s e l & wri te en ) ? HWDATA : NOISE CTRL ;
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298 NOISE GEN CTRL <= ( n o i s e g e n c t r l s e l & wri te en ) ? HWDATA : NOISE GEN CTRL ;
299 end
300
301 / / −−−−−−−−−−MODULES INTERCONNECTIONS−−−−−−−−−−
302 / / Watermark c o n t r o l l e r
303 wire wc wgc shi f t en ;
304 wire w c l c s h i f t e n ;
305 wire w c i c c n t l d i n i ;
306 wire w c i c c n t 0 e n ;
307 wire w c i c c n t 1 e n ;
308
309 / / Watermark G e n e r a t i o n C i r c u i t
310 wire wgc lc enable ; / / Output s i g n a l from WGC c o n n e c t e d t o LC f o r LC m o d u l a t i o n
311 wire [ 3 1 : 0 ] wgc q word ; / / WGC Muxed R e g i s t e r s Output , 32− b i t Word
312
313 / / L e a k a g e C i r c u i t
314 wire [ 3 1 : 0 ] lc q word ; / / L e a k a g e C i r c u i t Muxed R e g i s t e r s Output , 32− b i t Word
315
316 / / I n t e r v a l Counter
317 wire i c c n t 0 z e r o f l a g ;
318 wire i c c n t 1 z e r o f l a g ;
319 wire [ 3 1 : 0 ] i c q i n i w or d ; / / I n t e r v a l Counter Muxed I n i t i a l R e g i s t e r Output , 32− b i t Word
320
321 / / Noise G e n e r a t o r
322 wire [ 3 1 : 0 ] noise gen q ;
323
324 / / Noise Seed ( random number g e n e r a t o r o r s h i f t r e g i s t e r )
325 wire [ 3 1 : 0 ] no i se seed q ;
326
327 / / Noise C o n t r o l l e r
328 wire n o i s e g e n s h i f t e n w i r e ;
329 wire n o i s e s e e d s h i f t e n w i r e ;
330
331 / / −−−−−−−−−−MODULES INSTANTATIONS−−−−−−−−−−
332
333 WATERMARK CONTROLLER w a t c t r l ( . CLK(HCLK) ,
334 . RESETn (HRESETn) ,
335 .OP MODE(WC OP MODE[ 1 : 0 ] ) ,
336 . WGC SHIFT EN(WGC SHIFT EN) ,
337 . LC SHIFT EN ( LC SHIFT EN ) ,
338 . IC CNT EN (CNT CNT EN) ,
339 . M0 TRIG EN ( m0 tr igger q ) ,
340 . IC CNT0 ZERO FLAG ( i c c n t 0 z e r o f l a g ) ,
341 . IC CNT1 ZERO FLAG ( i c c n t 1 z e r o f l a g ) ,
342 . WGC SHIFT ENO( wc wgc shi f t en ) ,
343 . LC SHIFT ENO ( w c l c s h i f t e n ) ,
344 . IC CNT LD INI ( w c i c c n t l d i n i ) ,
345 . IC CNT0 ENO ( w c i c c n t 0 e n ) ,
346 . IC CNT1 ENO ( w c i c c n t 1 e n ) ) ;
347
348 WGC wa t ge n c i rc (
349 .CLK(HCLK) ,
350 .CLKEN(WGC CLKEN) ,
351 . SHIFT WRITE (WGC SHIFT WRITE) ,
352 . SHIFT EN ( wc wgc shi f t en ) ,
353 . SSG0 SEL ( wgc ssg0 se l ) ,
354 . SSG1 SEL ( wgc ssg1 se l ) ,
355 . WRITE EN( wri te en ) ,
356 . SSG0 MUX CTRL(WGC SSG0 MUX CTRL [ 4 : 0 ] ) ,
357 . SSG0 SRL LFSR ( WGC SSG0 SRL LFSR [ 3 0 : 0 ] ) ,
358 . SSG1 MUX CTRL(WGC SSG1 MUX CTRL [ 4 : 0 ] ) ,
359 . SSG1 SRL LFSR ( WGC SSG1 SRL LFSR [ 3 0 : 0 ] ) ,
360 .D(HWDATA[ 3 1 : 0 ] ) ,
361 .MUX CTRL(WGC MUX CTRL) ,
362 .WGCO( wgc lc enable ) ,
363 .Q( wgc q word [ 3 1 : 0 ] )
364 ) ;
365
366 LEAKAGE CIRCUIT l c (
367 .CLK(HCLK) ,
368 .CLKEN(LC CLKEN) ,
369 . SHIFT EN ( w c l c s h i f t e n ) ,
370 . SHIFT CTRL ( wgc lc enable ) ,
371 . SHIFT WRITE ( LC SHIFT WRITE ) ,
372 . WRITE EN( wri te en ) ,
373 . SEL DEC ( l c s e l d e c [ 3 1 : 0 ] ) ,
374 .D(HWDATA[ 3 1 : 0 ] ) ,
375 .Q( lc q word [ 3 1 : 0 ] )
376 ) ;
377
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378 INTERVAL COUNTER i n t c o u n t e r (
379 .CLK(HCLK) ,
380 .CLKEN(CNT CLKEN) ,
381 . RESETn (HRESETn) ,
382 . CNT LD INI ( w c i c c n t l d i n i ) ,
383 . CNT0 CNT EN( w c i c c n t 0 e n ) ,
384 . CNT1 CNT EN( w c i c c n t 1 e n ) ,
385 . CNT0 SEL ( c n t c n t 0 s e l ) ,
386 . CNT1 SEL ( c n t c n t 1 s e l ) ,
387 . WRITE EN( wri te en ) ,
388 .D(HWDATA[ 3 1 : 0 ] ) ,
389 . CNT0 ZERO FLAG( i c c n t 0 z e r o f l a g ) ,
390 . CNT1 ZERO FLAG( i c c n t 1 z e r o f l a g ) ,
391 . Q INI ( i c q i n i w o rd [ 3 1 : 0 ] )
392 ) ;
393
394 / / Noise G e n e r a t o r
395 NOISE GEN n o i s e g e n e r a t o r (
396 .CLK(HCLK) ,
397 .CLKEN(NOISE GEN CLKEN) ,
398 . SHIFT EN ( n o i s e g e n s h i f t e n w i r e ) ,
399 . SHIFT CTRL ( noise seed q ) ,
400 . SHIFT WRITE ( NOISE GEN SHIFT WRITE ) ,
401 . WRITE EN( wri te en ) ,
402 . SEL DEC ( n o i s e g e n s e l d e c ) ,
403 .D(HWDATA) ,
404 .Q( noise gen q )
405 ) ;
406
407 / / Noise Seed
408 SINGLE SEQ GEN noise seed (
409 .CLK(HCLK) ,
410 .CLKEN(NOISE SEED CLKEN) ,
411 . SHIFT WRITE ( NOISE SEED SHIFT WRITE ) ,
412 . SHIFT EN ( n o i s e s e e d s h i f t e n w i r e ) ,
413 . SEL ( n o i s e s e e d s e l ) ,
414 . WRITE EN( wri te en ) ,
415 .MUX CTRL(NOISE SEED MUX CTRL) ,
416 .D(HWDATA) ,
417 . SRL LFSR ( NOISE SEED SRL LFSR ) ,
418 . SSGO ( ) , / / l e f t u nc o nn ec t ed

i n t e n t i o n a l l y
419 .Q( noise seed q )
420 ) ;
421
422 / / Noise G e n e r a t o r C o n t r o l l e r
423 NOISE GEN CONTROLLER n o i s e c o n t r o l (
424 .CLK(HCLK) ,
425 . RESETn (HRESETn) ,
426 . NOISE GEN OP MODE(NOISE GEN OP MODE) ,
427 . WC WGC SHIFT EN( wc wgc shi f t en ) ,
428 . NOISE GEN SHIFT ENO ( n o i s e g e n s h i f t e n w i r e ) ,
429 . NOISE SEED SHIFT ENO ( n o i s e s e e d s h i f t e n w i r e )
430 ) ;
431
432 / / −−−−−−−−−−AHB BUS READ MUX−−−−−−−−−−
433 wire [ 3 1 : 0 ] bus read mux ;
434
435 assign bus read mux [ 3 1 : 0 ] = ( { 3 2 { wgc ssg0 se l | wgc ssg1 se l } } & wgc q word [ 3 1 : 0 ] ) |
436 ( { 3 2 { c n t c n t 0 s e l | c n t c n t 1 s e l } } & i c q i n i w o rd [ 3 1 : 0 ] ) |
437 ( { 3 2 { l c s e l } } & lc q word [ 3 1 : 0 ] ) |
438 ( { 3 2 { n o i s e s e e d s e l } } & noise seed q [ 3 1 : 0 ] ) |
439 ( { 3 2 { n o i s e g e n s e l } } & noise gen q [ 3 1 : 0 ] ) ;
440
441 / / Output d a t a
442
443 assign HRDATA[ 3 1 : 0 ] = ( read en ) ? bus read mux [ 3 1 : 0 ] : 32 ’ h0000 0000 ;
444 assign HREADYOUT = 1 ’ b1 ; / / z e r o wait− s t a t e
445 assign HRESP = 1 ’ b0 ; / / no e r r o r s
446
447 assign M0 TRIGGER PIN = TRIGGER PIN CTRL & m0 tr igger q ; / / T r i g g e r p in ass ignment , r o u t e d when c o n t r o l i s 1
448
449 endmodule
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B.1.8.2 Watermark Generation Circuit

1 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2 / / WATERMARK GENERATION CIRCUIT MODULE
3 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

4 / / I n s t a n t i a t e s 2 S i n g l e Sequence G e n e r a t o r (SSG) Modules and t h e 2− to −1 MUX
5 / / In c a s e o f B a r k e r c o d e t h e SSG0 i s impl emented as as s h i f t r e g i s t e r and t h e o u tp ut MUX
6 / / r o u t e s t h e o u t put from t h e l a s t used ( s e t ) r e g i s t e r
7 / / In c a s e o f M−s e q u e n c e t h e SSG0 i s impl emented as a LFSR ( G a l o i s ) and t h e ou t pu t MUX
8 / / r o u t e s t h e o u t put from t h e l a s t used ( s e t ) r e g i s t e r
9 / / In c a s e o f t h e Gold and Kasami c o d e s f o r SSG0 and SSG1 a r e implemented as LFSRs

10 / / with v a r i a b l e l e n g t h ( f o r Gold b o t h LFSRs have t h e same l e n g t h , f o r Kasami b o t h
11 / / have d i f f e r e n t l e n g t h s ) ; t h e o u t put MUX r o u t e s t h e o u t put from t h e XOR g a t e
12 / / which XORs t h e ou tpu t o f b o t h SSGs .
13 / /

14 / / Most o f t h e c o n t r o l b i t s a r e l i k e in SSG module
15 / / The a d d i t i o n a l c o n t r o l b i t i s WGC MUX CTRL which c o n t r o l s i f SSG0 or SSG0 ˆ SSG1 i s
16 / / r o u t e d t o t h e o u tp ut o f t h e WGC ( t h i s w i l l s e r v e a s t h e c o n t r o l l i n e ( e n a b l e ) f o r t h e
17 / / l e a k a g e c i r c u i t
18 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

19 module WGC (
20
21 input wire CLK,
22 input wire CLKEN, / / C l o c k Enab l e
23 input wire SHIFT WRITE , / / Watermark G e n e r a t i o n C i r c u i t S h i f t o r Wri te
24 input wire SHIFT EN , / / WGC S h i f t Enab l e
25 input wire SSG0 SEL , / / SSG0 S e l e c t
26 input wire SSG1 SEL , / / SSG1 S e l e c t
27 input wire WRITE EN , / / SSG Write Enab l e
28 input wire [ 4 : 0 ] SSG0 MUX CTRL , / / SSG0 Mux C o n t r o l
29 input wire [ 3 0 : 0 ] SSG0 SRL LFSR , / / SSG0 S h i f t R e g i s t e r o r LFSR c o n t r o l
30 input wire [ 4 : 0 ] SSG1 MUX CTRL , / / SSG1 Mux C o n t r o l
31 input wire [ 3 0 : 0 ] SSG1 SRL LFSR , / / SSG1 S h i f t R e g i s t e r o r LFSR c o n t r o l
32 input wire [ 3 1 : 0 ] D, / / Input Data
33 input wire MUX CTRL, / / Output MUX C o n t r o l
34
35 output wire WGCO, / / WGC Output
36 output wire [ 3 1 : 0 ] Q / / Output Data
37 ) ;
38
39 / / INSTANTIATE SINGLE SEQUENCE GENERATORS
40 wire ssg0 out ; / / s i n g l e b i t d a t a from f e e d b a c k l o o p
41 wire ssg1 out ;
42 wire [ 3 1 : 0 ] ssg0 q ; / / 32− b i t d a t a from r e g i s t e r
43 wire [ 3 1 : 0 ] ssg1 q ;
44
45 SINGLE SEQ GEN ssg0 (
46 .CLK(CLK) ,
47 .CLKEN(CLKEN) ,
48 . SHIFT WRITE ( SHIFT WRITE ) ,
49 . SHIFT EN ( SHIFT EN ) ,
50 . SEL ( SSG0 SEL ) ,
51 . WRITE EN(WRITE EN) ,
52 .MUX CTRL(SSG0 MUX CTRL) ,
53 .D(D) , . SRL LFSR ( SSG0 SRL LFSR ) ,
54 . SSGO( ssg0 out ) ,
55 .Q( ssg0 q [ 3 1 : 0 ] )
56 ) ;
57
58 SINGLE SEQ GEN ssg1 (
59 .CLK(CLK) ,
60 .CLKEN(CLKEN) ,
61 . SHIFT WRITE ( SHIFT WRITE ) ,
62 . SHIFT EN ( SHIFT EN ) ,
63 . SEL ( SSG1 SEL ) ,
64 . WRITE EN(WRITE EN) ,
65 .MUX CTRL(SSG1 MUX CTRL) ,
66 .D(D) ,
67 . SRL LFSR ( SSG1 SRL LFSR ) ,
68 . SSGO( ssg1 out ) ,
69 .Q( ssg1 q [ 3 1 : 0 ] )
70 ) ;
71
72 / / −−−

73
74 / / WGC WATERMARK SEQUENCE OUTPUT MUX
75 / / For B a r k e r and M−s e q u e n c e on ly 1 SSG i s r e q u i r e d
76 / / For Gold and Kasami 2 SSGs must be XORed
77
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78 assign WGCO = (MUX CTRL) ? ( ssg0 out ˆ ssg1 out ) : ssg0 out ;
79
80 / / OUTPUT DATA MUX
81 wire [ 3 1 : 0 ] q mux ;
82
83 assign q mux [ 3 1 : 0 ] = ( { 3 2 { SSG0 SEL } } & ssg0 q [ 3 1 : 0 ] ) |
84 ( { 3 2 { SSG1 SEL } } & ssg1 q [ 3 1 : 0 ] ) ;
85
86 assign Q[ 3 1 : 0 ] = q mux [ 3 1 : 0 ] ;
87
88 endmodule
89
90
91 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

92 / / SINGLE SEQUENCE GENERATOR MODULE
93 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

94 / / Can be s e t t o implement LFSR , up t o 32− b i t ( G a l o i s LFSR ) or up t o 32− b i t S h i f t R e g i s t e r
95 / / SHIFT WRITE c o n t r o l b i t d e t e r m i n e s i f SSG i s o p e r a t i n g as SRL / LFSR or r e a d i n g in DATA from
96 / / t h e BUS ( t h e i n i t i a l DATA)
97 / / S i n c e a l l a c t i v e r e g i s t e r s w i l l r e a d in t h e DATA from t h e BUS a l l have t h e same WRITE EN
98 / / In o r d e r t o c h o o s e t h e f e e d b a c k l o o p f o r t h e LFSR ( and t h e o u tp ut ) and t h e o u tp ut f o r
99 / / t h e SRL , t h e 32− to −1 MUX i s used with MUX CTRL c o n t r o l b i t s

100 / / In o r d e r t o implement t h e LFSR , t h e f e e d b a c k i s XORed with r e g i s t e r s depend ing on t h e
101 / / LFSR l e n g t h t o be implemented , t h e r e f o r e 31 SRL LFSR c o n t r o l b i t s a r e r e q u i r e d
102 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

103
104 ‘ t i m e s c a l e 1ns / 1ps
105
106 module SINGLE SEQ GEN (
107
108 input wire CLK,
109 input wire CLKEN, / / C l o c k e n a b l e
110 input wire SHIFT WRITE , / / S h i f t ( 1 ) o r Wri te ( 0 )
111 input wire SHIFT EN , / / S h i f t Enab l e
112 input wire SEL , / / S e l e c t
113 input wire WRITE EN , / / Write Enab l e
114 input wire [ 4 : 0 ] MUX CTRL, / / Mux 32− to −1 C o n t r o l b i t s
115 input wire [ 3 1 : 0 ] D, / / Input Data
116 input wire [ 3 1 : 1 ] SRL LFSR , / / SRL LFSR C o n t r o l b i t s
117
118 output wire SSGO, / / S i n g l e Sequence G e n e r a t o r Output
119 output wire [ 3 1 : 0 ] Q / / Output Data
120 ) ;
121
122 / / S i n g l e Sequence G e n e r a t o r Output (Q) B i t s
123 wire ssgq0 ;
124 wire ssgq1 ;
125 wire ssgq2 ;
126 wire ssgq3 ;
127 wire ssgq4 ;
128 wire ssgq5 ;
129 wire ssgq6 ;
130 wire ssgq7 ;
131 wire ssgq8 ;
132 wire ssgq9 ;
133 wire ssgq10 ;
134 wire ssgq11 ;
135 wire ssgq12 ;
136 wire ssgq13 ;
137 wire ssgq14 ;
138 wire ssgq15 ;
139 wire ssgq16 ;
140 wire ssgq17 ;
141 wire ssgq18 ;
142 wire ssgq19 ;
143 wire ssgq20 ;
144 wire ssgq21 ;
145 wire ssgq22 ;
146 wire ssgq23 ;
147 wire ssgq24 ;
148 wire ssgq25 ;
149 wire ssgq26 ;
150 wire ssgq27 ;
151 wire ssgq28 ;
152 wire ssgq29 ;
153 wire ssgq30 ;
154 wire ssgq31 ;
155
156 / / Output from 32− to −1 MUX, f e d b a c k t o t h e 1 s t r e g i s t e r and a l l f e e d b a c k w i r e s t o XNOR g a t e s
157 wire feedback loop ;
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158
159 / / REGISTER BANK INSTANTIATION
160 SEQ GEN BIT WITHOUT XOR reg0 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL ( SEL ) , .

WRITE EN(WRITE EN) , .D(D[ 0 ] ) , . D Q( feedback loop ) , .Q( ssgq0 ) ) ;
161
162 SEQ GEN BIT WITH XOR reg1 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 1 ] ) , . D Q( ssgq0 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 1 ] ) , .Q( ssgq1 ) ) ;
163
164 SEQ GEN BIT WITH XOR reg2 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 2 ] ) , . D Q( ssgq1 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 2 ] ) , .Q( ssgq2 ) ) ;
165
166 SEQ GEN BIT WITH XOR reg3 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 3 ] ) , . D Q( ssgq2 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 3 ] ) , .Q( ssgq3 ) ) ;
167
168 SEQ GEN BIT WITH XOR reg4 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 4 ] ) , . D Q( ssgq3 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 4 ] ) , .Q( ssgq4 ) ) ;
169
170 SEQ GEN BIT WITH XOR reg5 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 5 ] ) , . D Q( ssgq4 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 5 ] ) , .Q( ssgq5 ) ) ;
171
172 SEQ GEN BIT WITH XOR reg6 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 6 ] ) , . D Q( ssgq5 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 6 ] ) , .Q( ssgq6 ) ) ;
173
174 SEQ GEN BIT WITH XOR reg7 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 7 ] ) , . D Q( ssgq6 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 7 ] ) , .Q( ssgq7 ) ) ;
175
176 SEQ GEN BIT WITH XOR reg8 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 8 ] ) , . D Q( ssgq7 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 8 ] ) , .Q( ssgq8 ) ) ;
177
178 SEQ GEN BIT WITH XOR reg9 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 9 ] ) , . D Q( ssgq8 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 9 ] ) , .Q( ssgq9 ) ) ;
179
180 SEQ GEN BIT WITH XOR reg10 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 1 0 ] ) , . D Q( ssgq9 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 1 0 ] ) , .Q( ssgq10 ) ) ;
181
182 SEQ GEN BIT WITH XOR reg11 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 1 1 ] ) , . D Q( ssgq10 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 1 1 ] ) , .Q( ssgq11 ) ) ;
183
184 SEQ GEN BIT WITH XOR reg12 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 1 2 ] ) , . D Q( ssgq11 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 1 2 ] ) , .Q( ssgq12 ) ) ;
185
186 SEQ GEN BIT WITH XOR reg13 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 1 3 ] ) , . D Q( ssgq12 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 1 3 ] ) , .Q( ssgq13 ) ) ;
187
188 SEQ GEN BIT WITH XOR reg14 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 1 4 ] ) , . D Q( ssgq13 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 1 4 ] ) , .Q( ssgq14 ) ) ;
189
190 SEQ GEN BIT WITH XOR reg15 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 1 5 ] ) , . D Q( ssgq14 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 1 5 ] ) , .Q( ssgq15 ) ) ;
191
192 SEQ GEN BIT WITH XOR reg16 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 1 6 ] ) , . D Q( ssgq15 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 1 6 ] ) , .Q( ssgq16 ) ) ;
193
194 SEQ GEN BIT WITH XOR reg17 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 1 7 ] ) , . D Q( ssgq16 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 1 7 ] ) , .Q( ssgq17 ) ) ;
195
196 SEQ GEN BIT WITH XOR reg18 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 1 8 ] ) , . D Q( ssgq17 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 1 8 ] ) , .Q( ssgq18 ) ) ;
197
198 SEQ GEN BIT WITH XOR reg19 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 1 9 ] ) , . D Q( ssgq18 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 1 9 ] ) , .Q( ssgq19 ) ) ;
199
200 SEQ GEN BIT WITH XOR reg20 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 2 0 ] ) , . D Q( ssgq19 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 2 0 ] ) , .Q( ssgq20 ) ) ;
201
202 SEQ GEN BIT WITH XOR reg21 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 2 1 ] ) , . D Q( ssgq20 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 2 1 ] ) , .Q( ssgq21 ) ) ;
203
204 SEQ GEN BIT WITH XOR reg22 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 2 2 ] ) , . D Q( ssgq21 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 2 2 ] ) , .Q( ssgq22 ) ) ;
205
206 SEQ GEN BIT WITH XOR reg23 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 2 3 ] ) , . D Q( ssgq22 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 2 3 ] ) , .Q( ssgq23 ) ) ;
207
208 SEQ GEN BIT WITH XOR reg24 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 2 4 ] ) , . D Q( ssgq23 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 2 4 ] ) , .Q( ssgq24 ) ) ;
209
210 SEQ GEN BIT WITH XOR reg25 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 2 5 ] ) , . D Q( ssgq24 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 2 5 ] ) , .Q( ssgq25 ) ) ;
211
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212 SEQ GEN BIT WITH XOR reg26 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (
SEL ) , . WRITE EN(WRITE EN) , .D(D[ 2 6 ] ) , . D Q( ssgq25 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 2 6 ] ) , .Q( ssgq26 ) ) ;

213
214 SEQ GEN BIT WITH XOR reg27 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 2 7 ] ) , . D Q( ssgq26 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 2 7 ] ) , .Q( ssgq27 ) ) ;
215
216 SEQ GEN BIT WITH XOR reg28 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 2 8 ] ) , . D Q( ssgq27 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 2 8 ] ) , .Q( ssgq28 ) ) ;
217
218 SEQ GEN BIT WITH XOR reg29 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 2 9 ] ) , . D Q( ssgq28 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 2 9 ] ) , .Q( ssgq29 ) ) ;
219
220 SEQ GEN BIT WITH XOR reg30 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 3 0 ] ) , . D Q( ssgq29 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 3 0 ] ) , .Q( ssgq30 ) ) ;
221
222 SEQ GEN BIT WITH XOR reg31 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT WRITE ( SHIFT WRITE ) , . SHIFT EN ( SHIFT EN ) , . SEL (

SEL ) , . WRITE EN(WRITE EN) , .D(D[ 3 1 ] ) , . D Q( ssgq30 ) , .FEEDBACK( feedback loop ) , . SRL LFSR ( SRL LFSR [ 3 1 ] ) , .Q( ssgq31 ) ) ;
223 / / −−−

224
225
226 / / FEEDBACK MUX INSTANTATION
227 wire [ 3 1 : 0 ] reg bank q ;
228
229 assign reg bank q [ 3 1 : 0 ] = { ssgq31 ,
230 ssgq30 ,
231 ssgq29 ,
232 ssgq28 ,
233 ssgq27 ,
234 ssgq26 ,
235 ssgq25 ,
236 ssgq24 ,
237 ssgq23 ,
238 ssgq22 ,
239 ssgq21 ,
240 ssgq20 ,
241 ssgq19 ,
242 ssgq18 ,
243 ssgq17 ,
244 ssgq16 ,
245 ssgq15 ,
246 ssgq14 ,
247 ssgq13 ,
248 ssgq12 ,
249 ssgq11 ,
250 ssgq10 ,
251 ssgq9 ,
252 ssgq8 ,
253 ssgq7 ,
254 ssgq6 ,
255 ssgq5 ,
256 ssgq4 ,
257 ssgq3 ,
258 ssgq2 ,
259 ssgq1 ,
260 ssgq0
261 } ;
262
263 MUX32 ssg mux ( .D( reg bank q [ 3 1 : 0 ] ) , . CTRL(MUX CTRL) , .Q( feedback loop ) ) ;
264
265 / / OUTPUT DATA
266 assign Q[ 3 1 : 0 ] = reg bank q [ 3 1 : 0 ] ;
267 assign SSGO = feedback loop ;
268
269 endmodule
270
271
272 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

273 / / 1− b i t REG with XOR g a t e
274 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

275 / / Used t o implement SRL / LFSR f u n c t i o n (XOR g a t e s used f o r f l i p − f l o p s from 1 s t t o 31 s t f o r LFSR )
276 / / Also a d d i t i o n a l MUX i s used t o c h o o s e t h e d a t a e i t h e r from t h e BUS ( in c a s e o f memory mapping )
277 / / or from t h e p r e v i o u s REG
278 / / The c l o c k can be d i s a b l e d by s e t t i n g CLK EN t o 0
279 / /

280 / / The i n p u t DATA can be r o u t e d e i t h e r from t h e BUS or from t h e p r e v i o u s REG
281 / / When i n i t i a l DATA comes from t h e BUS t h e D i n p u t i s used and SHIFT WRITE i s s e t t o 0 ,
282 / / a l s o WRITE EN i s s e t t o 1 and SEL must be 1
283 / / I f DATA comes from t h e p r e v i o u s REG t h e SHIFT WRITE i s s e t t o 1
284 / / WRITE EN and SEL a r e not i m p o r t a n t
285 / /
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286 / / S i n c e t h e whole 32− b i t REG can be implemented as e i t h e r SRL ( s h i f t r e g i s t e r ) o r LFSR t h e
287 / / a d d i t i o n a l c o n t r o l b i t SRL LFSR s p e c i f i e s which mode t h e WORD i s c u r r e n t l y in (1 f o r SRL ,
288 / / 0 f o r LFSR ) . In c a s e o f SRL mode t h e d a t a i s s h i f t e d from t h e p r e v i o u s REG, w h i l e in c a s e
289 / / o f t h e LFSR t h e d a t a from t h e p r e v i o u s REG i s XORed with t h e b i t from t h e l a s t u s a b l e REG
290 / / ( f e e d b a c k l o o p )
291 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

292
293 ‘ t i m e s c a l e 1ns / 1ps
294
295 module SEQ GEN BIT WITH XOR (
296
297 input wire CLK,
298 input wire CLKEN, / / C l o c k e n a b l e
299 input wire SHIFT WRITE , / / S h i f t ( 1 ) o r Wri te ( 0 )
300 input wire SHIFT EN , / / S h i f t Enab l e
301 input wire SEL , / / S e l e c t
302 input wire WRITE EN , / / Write Enab l e
303 input wire D, / / Input Data
304 input wire D Q , / / Data from p r e v i o u s REG
305 input wire FEEDBACK, / / Data from l a s t REG
306 input wire SRL LFSR , / / Connec ted as s h i f t r e g i s t e r ( SRL − 0) or LFSR ( 1 ) ;
307 output wire Q / / Data Out
308
309 ) ;
310
311
312 wire d s r l l f s r ; / / d a t a c o n n e c t e d d i r e c t l y from p r e v i o u s Q ( SRL ) or through XOR ( LFSR )
313
314 assign d s r l l f s r = ( SRL LFSR ) ? (D Q ˆ FEEDBACK) : D Q ;
315
316 wire d s e l ; / / d a t a c o n n e c t e d from t h e bus or D SRL LFSR
317
318 assign d s e l = ( SHIFT WRITE ) ? d s r l l f s r : D;
319
320 reg q reg ;
321
322 always@ ( posedge CLK)
323 i f (CLKEN)
324 i f ( ( SHIFT WRITE & SHIFT EN ) | ( SEL & WRITE EN & ˜ SHIFT WRITE ) ) q reg <= d s e l ;
325
326 assign Q = q reg ;
327
328 endmodule
329
330
331 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

332 / / 1− b i t REG w i t h o u t XOR g a t e
333 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

334 / / Used t o implement SRL / LFSR f u n c t i o n (XOR g a t e not n e ed ed as t h i s would be 1 s t REG f o r LFSR )
335 / / Also a d d i t i o n a l MUX i s used t o c h o o s e t h e d a t a e i t h e r from t h e BUS ( in c a s e o f memory mapping )
336 / / or from t h e p r e v i o u s REG
337 / / The c l o c k can be d i s a b l e d by s e t t i n g CLK EN t o 0
338 / /

339 / / The i n p u t DATA can be r o u t e d e i t h e r from t h e BUS or from t h e p r e v i o u s REG
340 / / When i n i t i a l DATA comes from t h e BUS t h e D i n p u t i s used and SHIFT WRITE i s s e t t o 0 ,
341 / / a l s o WRITE EN i s s e t t o 1 and SEL must be 1
342 / / I f DATA comes from t h e p r e v i o u s REG t h e SHIFT WRITE i s s e t t o 1
343 / / WRITE EN and SEL a r e not i m p o r t a n t
344 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

345
346 ‘ t i m e s c a l e 1ns / 1ps
347
348 module SEQ GEN BIT WITHOUT XOR (
349
350 input wire CLK,
351 input wire CLKEN, / / C l o c k e n a b l e
352 input wire SHIFT WRITE , / / S h i f t ( 1 ) o r Wri te ( 0 )
353 input wire SHIFT EN , / / S h i f t Enab l e
354 input wire SEL , / / S e l e c t
355 input wire WRITE EN , / / Write Enab l e
356 input wire D, / / Input Data
357 input wire D Q , / / Data from p r e v i o u s REG
358 output wire Q / / Data Out
359
360 ) ;
361
362
363 wire d s e l ; / / d a t a c o n n e c t e d from t h e bus or d a t a i n p u t
364
365 assign d s e l = ( SHIFT WRITE ) ? D Q : D;
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366
367 reg q reg ;
368
369 always@ ( posedge CLK)
370 i f (CLKEN)
371 i f ( ( SHIFT WRITE & SHIFT EN ) | ( SEL & WRITE EN & ˜ SHIFT WRITE ) ) q reg <= d s e l ;
372
373 assign Q = q reg ;
374
375 endmodule
376
377
378 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

379 / / 32− to −1 MUX
380 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

381
382 ‘ t i m e s c a l e 1ns / 1ps
383
384 module MUX32 (
385
386 input wire [ 3 1 : 0 ] D, / / Input
387 input wire [ 4 : 0 ] CTRL, / / C o n t r o l
388 output wire Q / / Output
389 ) ;
390
391 assign Q = ( (CTRL == 5 ’ b0 0000 ) & D[ 0 ] ) |
392 ( (CTRL == 5 ’ b0 0001 ) & D[ 1 ] ) |
393 ( (CTRL == 5 ’ b0 0010 ) & D[ 2 ] ) |
394 ( (CTRL == 5 ’ b0 0011 ) & D[ 3 ] ) |
395 ( (CTRL == 5 ’ b0 0100 ) & D[ 4 ] ) |
396 ( (CTRL == 5 ’ b0 0101 ) & D[ 5 ] ) |
397 ( (CTRL == 5 ’ b0 0110 ) & D[ 6 ] ) |
398 ( (CTRL == 5 ’ b0 0111 ) & D[ 7 ] ) |
399 ( (CTRL == 5 ’ b0 1000 ) & D[ 8 ] ) |
400 ( (CTRL == 5 ’ b0 1001 ) & D[ 9 ] ) |
401 ( (CTRL == 5 ’ b0 1010 ) & D[ 1 0 ] ) |
402 ( (CTRL == 5 ’ b0 1011 ) & D[ 1 1 ] ) |
403 ( (CTRL == 5 ’ b0 1100 ) & D[ 1 2 ] ) |
404 ( (CTRL == 5 ’ b0 1101 ) & D[ 1 3 ] ) |
405 ( (CTRL == 5 ’ b0 1110 ) & D[ 1 4 ] ) |
406 ( (CTRL == 5 ’ b0 1111 ) & D[ 1 5 ] ) |
407 ( (CTRL == 5 ’ b1 0000 ) & D[ 1 6 ] ) |
408 ( (CTRL == 5 ’ b1 0001 ) & D[ 1 7 ] ) |
409 ( (CTRL == 5 ’ b1 0010 ) & D[ 1 8 ] ) |
410 ( (CTRL == 5 ’ b1 0011 ) & D[ 1 9 ] ) |
411 ( (CTRL == 5 ’ b1 0100 ) & D[ 2 0 ] ) |
412 ( (CTRL == 5 ’ b1 0101 ) & D[ 2 1 ] ) |
413 ( (CTRL == 5 ’ b1 0110 ) & D[ 2 2 ] ) |
414 ( (CTRL == 5 ’ b1 0111 ) & D[ 2 3 ] ) |
415 ( (CTRL == 5 ’ b1 1000 ) & D[ 2 4 ] ) |
416 ( (CTRL == 5 ’ b1 1001 ) & D[ 2 5 ] ) |
417 ( (CTRL == 5 ’ b1 1010 ) & D[ 2 6 ] ) |
418 ( (CTRL == 5 ’ b1 1011 ) & D[ 2 7 ] ) |
419 ( (CTRL == 5 ’ b1 1100 ) & D[ 2 8 ] ) |
420 ( (CTRL == 5 ’ b1 1101 ) & D[ 2 9 ] ) |
421 ( (CTRL == 5 ’ b1 1110 ) & D[ 3 0 ] ) |
422 ( (CTRL == 5 ’ b1 1111 ) & D[ 3 1 ] ) ;
423
424 endmodule
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B.1.8.3 Watermark Power Pattern Generator

1 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2 / / LEAKAGE CIRCUIT MODULE
3 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

4 / / Implements a b i g dummy s h i f t r e g i s t e r (32 x 32− b i t WORD) , s h i f t e d in a WORD f a s h i o n
5 / /

6 / / In c a s e o f r e a d i n g from t h e BUS, t h e a p p r o p r i a t e WORD i s s e l e c t e d by d e c o d i n g t h e SEL ADDR
7 / / i n p u t . WRITE EN i s 1 and SHIFT WRITE i s 0 .
8 / /

9 / / In c a s e o f o p e r a t i n g as a s h i f t r e g i s t e r SHIFT WRITE i s 1 and t h e s h i f t i n g i s c o n t r o l l e d by
10 / / SHIFT EN which in turn w i l l be c o n n e c t e d t o t h e ou tp ut o f t h e Watermark G e n e r a t i o n C i r c u i t ,
11 / / SEL ADDR and WRITE EN a r e not i m p o r t a n t
12 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

13
14 ‘ t i m e s c a l e 1ns / 1ps
15
16 module LEAKAGE CIRCUIT (
17
18 input wire CLK,
19 input wire CLKEN, / / C l o c k Enab l e
20 input wire SHIFT EN , / / S h i f t Enab l e
21 input wire SHIFT CTRL , / / S h i f t C o n t r o l
22 input wire SHIFT WRITE , / / S h i f t ( 1 ) , Wri te ( 0 )
23 input wire WRITE EN , / / Write Enab l e
24 input wire [ 3 1 : 0 ] SEL DEC , / / S e l e c t i o n Decode
25 input wire [ 3 1 : 0 ] D, / / Input Data
26
27 output wire [ 3 1 : 0 ] Q / / Output Data
28 ) ;
29
30 / / l c w o r d Outputs
31 wire [ 3 1 : 0 ] lc word [ 0 : 3 1 ] ;
32
33 / / LEAKAGE CIRCUIT INSTANTATION − 32 X 32− b i t L e a k a g e C i r c u i t
34
35 LEAKAGE WORD lc word0 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE ( SHIFT WRITE

) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 0 ] ) , .D(D) , . D Q( lc word [ 3 1 ] ) , .Q( lc word [ 0 ] [ 3 1 : 0 ] ) ) ;
36
37 LEAKAGE WORD lc word1 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE ( SHIFT WRITE

) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 ] ) , .D(D) , . D Q( lc word [ 0 ] ) , .Q( lc word [ 1 ] [ 3 1 : 0 ] ) ) ;
38
39 LEAKAGE WORD lc word2 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE ( SHIFT WRITE

) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 ] ) , .D(D) , . D Q( lc word [ 1 ] ) , .Q( lc word [ 2 ] [ 3 1 : 0 ] ) ) ;
40
41 LEAKAGE WORD lc word3 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 3 ] ) , .D(D) , . D Q( lc word [ 2 ] ) , .Q( lc word [ 3 ] [ 3 1 : 0 ] ) ) ;
42
43 LEAKAGE WORD lc word4 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 4 ] ) , .D(D) , . D Q( lc word [ 3 ] ) , .Q( lc word [ 4 ] [ 3 1 : 0 ] ) ) ;
44
45 LEAKAGE WORD lc word5 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 5 ] ) , .D(D) , . D Q( lc word [ 4 ] ) , .Q( lc word [ 5 ] [ 3 1 : 0 ] ) ) ;
46
47 LEAKAGE WORD lc word6 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 6 ] ) , .D(D) , . D Q( lc word [ 5 ] ) , .Q( lc word [ 6 ] [ 3 1 : 0 ] ) ) ;
48
49 LEAKAGE WORD lc word7 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 7 ] ) , .D(D) , . D Q( lc word [ 6 ] ) , .Q( lc word [ 7 ] [ 3 1 : 0 ] ) ) ;
50
51 LEAKAGE WORD lc word8 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 8 ] ) , .D(D) , . D Q( lc word [ 7 ] ) , .Q( lc word [ 8 ] [ 3 1 : 0 ] ) ) ;
52
53 LEAKAGE WORD lc word9 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 9 ] ) , .D(D) , . D Q( lc word [ 8 ] ) , .Q( lc word [ 9 ] [ 3 1 : 0 ] ) ) ;
54
55 LEAKAGE WORD lc word10 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 0 ] ) , .D(D) , . D Q( lc word [ 9 ] ) , .Q( lc word [ 1 0 ] [ 3 1 : 0 ] ) ) ;
56
57 LEAKAGE WORD lc word11 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 1 ] ) , .D(D) , . D Q( lc word [ 1 0 ] ) , .Q( lc word [ 1 1 ] [ 3 1 : 0 ] ) ) ;
58
59 LEAKAGE WORD lc word12 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 2 ] ) , .D(D) , . D Q( lc word [ 1 1 ] ) , .Q( lc word [ 1 2 ] [ 3 1 : 0 ] ) ) ;
60
61 LEAKAGE WORD lc word13 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 3 ] ) , .D(D) , . D Q( lc word [ 1 2 ] ) , .Q( lc word [ 1 3 ] [ 3 1 : 0 ] ) ) ;
62
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63 LEAKAGE WORD lc word14 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (
SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 4 ] ) , .D(D) , . D Q( lc word [ 1 3 ] ) , .Q( lc word [ 1 4 ] [ 3 1 : 0 ] ) ) ;

64
65 LEAKAGE WORD lc word15 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 5 ] ) , .D(D) , . D Q( lc word [ 1 4 ] ) , .Q( lc word [ 1 5 ] [ 3 1 : 0 ] ) ) ;
66
67 LEAKAGE WORD lc word16 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 6 ] ) , .D(D) , . D Q( lc word [ 1 5 ] ) , .Q( lc word [ 1 6 ] [ 3 1 : 0 ] ) ) ;
68
69 LEAKAGE WORD lc word17 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 7 ] ) , .D(D) , . D Q( lc word [ 1 6 ] ) , .Q( lc word [ 1 7 ] [ 3 1 : 0 ] ) ) ;
70
71 LEAKAGE WORD lc word18 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 8 ] ) , .D(D) , . D Q( lc word [ 1 7 ] ) , .Q( lc word [ 1 8 ] [ 3 1 : 0 ] ) ) ;
72
73 LEAKAGE WORD lc word19 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 9 ] ) , .D(D) , . D Q( lc word [ 1 8 ] ) , .Q( lc word [ 1 9 ] [ 3 1 : 0 ] ) ) ;
74
75 LEAKAGE WORD lc word20 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 0 ] ) , .D(D) , . D Q( lc word [ 1 9 ] ) , .Q( lc word [ 2 0 ] [ 3 1 : 0 ] ) ) ;
76
77 LEAKAGE WORD lc word21 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 1 ] ) , .D(D) , . D Q( lc word [ 2 0 ] ) , .Q( lc word [ 2 1 ] [ 3 1 : 0 ] ) ) ;
78
79 LEAKAGE WORD lc word22 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 2 ] ) , .D(D) , . D Q( lc word [ 2 1 ] ) , .Q( lc word [ 2 2 ] [ 3 1 : 0 ] ) ) ;
80
81 LEAKAGE WORD lc word23 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 3 ] ) , .D(D) , . D Q( lc word [ 2 2 ] ) , .Q( lc word [ 2 3 ] [ 3 1 : 0 ] ) ) ;
82
83 LEAKAGE WORD lc word24 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 4 ] ) , .D(D) , . D Q( lc word [ 2 3 ] ) , .Q( lc word [ 2 4 ] [ 3 1 : 0 ] ) ) ;
84
85 LEAKAGE WORD lc word25 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 5 ] ) , .D(D) , . D Q( lc word [ 2 4 ] ) , .Q( lc word [ 2 5 ] [ 3 1 : 0 ] ) ) ;
86
87 LEAKAGE WORD lc word26 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 6 ] ) , .D(D) , . D Q( lc word [ 2 5 ] ) , .Q( lc word [ 2 6 ] [ 3 1 : 0 ] ) ) ;
88
89 LEAKAGE WORD lc word27 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 7 ] ) , .D(D) , . D Q( lc word [ 2 6 ] ) , .Q( lc word [ 2 7 ] [ 3 1 : 0 ] ) ) ;
90
91 LEAKAGE WORD lc word28 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 8 ] ) , .D(D) , . D Q( lc word [ 2 7 ] ) , .Q( lc word [ 2 8 ] [ 3 1 : 0 ] ) ) ;
92
93 LEAKAGE WORD lc word29 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 9 ] ) , .D(D) , . D Q( lc word [ 2 8 ] ) , .Q( lc word [ 2 9 ] [ 3 1 : 0 ] ) ) ;
94
95 LEAKAGE WORD lc word30 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 3 0 ] ) , .D(D) , . D Q( lc word [ 2 9 ] ) , .Q( lc word [ 3 0 ] [ 3 1 : 0 ] ) ) ;
96
97 LEAKAGE WORD lc word31 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 3 1 ] ) , .D(D) , . D Q( lc word [ 3 0 ] ) , .Q( lc word [ 3 1 ] [ 3 1 : 0 ] ) ) ;
98
99 / / DATA OUTPUT MUX

100 wire [ 3 1 : 0 ] q mux ;
101
102 assign Q[ 3 1 : 0 ] = q mux [ 3 1 : 0 ] ;
103
104 assign q mux [ 3 1 : 0 ] = ( { 3 2 { SEL DEC [ 0 ] } } & lc word [ 0 ] [ 3 1 : 0 ] ) |
105 ( { 3 2 { SEL DEC [ 1 ] } } & lc word [ 1 ] [ 3 1 : 0 ] ) |
106 ( { 3 2 { SEL DEC [ 2 ] } } & lc word [ 2 ] [ 3 1 : 0 ] ) |
107 ( { 3 2 { SEL DEC [ 3 ] } } & lc word [ 3 ] [ 3 1 : 0 ] ) |
108 ( { 3 2 { SEL DEC [ 4 ] } } & lc word [ 4 ] [ 3 1 : 0 ] ) |
109 ( { 3 2 { SEL DEC [ 5 ] } } & lc word [ 5 ] [ 3 1 : 0 ] ) |
110 ( { 3 2 { SEL DEC [ 6 ] } } & lc word [ 6 ] [ 3 1 : 0 ] ) |
111 ( { 3 2 { SEL DEC [ 7 ] } } & lc word [ 7 ] [ 3 1 : 0 ] ) |
112 ( { 3 2 { SEL DEC [ 8 ] } } & lc word [ 8 ] [ 3 1 : 0 ] ) |
113 ( { 3 2 { SEL DEC [ 9 ] } } & lc word [ 9 ] [ 3 1 : 0 ] ) |
114 ( { 3 2 { SEL DEC [ 1 0 ] } } & lc word [ 1 0 ] [ 3 1 : 0 ] ) |
115 ( { 3 2 { SEL DEC [ 1 1 ] } } & lc word [ 1 1 ] [ 3 1 : 0 ] ) |
116 ( { 3 2 { SEL DEC [ 1 2 ] } } & lc word [ 1 2 ] [ 3 1 : 0 ] ) |
117 ( { 3 2 { SEL DEC [ 1 3 ] } } & lc word [ 1 3 ] [ 3 1 : 0 ] ) |
118 ( { 3 2 { SEL DEC [ 1 4 ] } } & lc word [ 1 4 ] [ 3 1 : 0 ] ) |
119 ( { 3 2 { SEL DEC [ 1 5 ] } } & lc word [ 1 5 ] [ 3 1 : 0 ] ) |
120 ( { 3 2 { SEL DEC [ 1 6 ] } } & lc word [ 1 6 ] [ 3 1 : 0 ] ) |
121 ( { 3 2 { SEL DEC [ 1 7 ] } } & lc word [ 1 7 ] [ 3 1 : 0 ] ) |
122 ( { 3 2 { SEL DEC [ 1 8 ] } } & lc word [ 1 8 ] [ 3 1 : 0 ] ) |
123 ( { 3 2 { SEL DEC [ 1 9 ] } } & lc word [ 1 9 ] [ 3 1 : 0 ] ) |
124 ( { 3 2 { SEL DEC [ 2 0 ] } } & lc word [ 2 0 ] [ 3 1 : 0 ] ) |
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125 ( { 3 2 { SEL DEC [ 2 1 ] } } & lc word [ 2 1 ] [ 3 1 : 0 ] ) |
126 ( { 3 2 { SEL DEC [ 2 2 ] } } & lc word [ 2 2 ] [ 3 1 : 0 ] ) |
127 ( { 3 2 { SEL DEC [ 2 3 ] } } & lc word [ 2 3 ] [ 3 1 : 0 ] ) |
128 ( { 3 2 { SEL DEC [ 2 4 ] } } & lc word [ 2 4 ] [ 3 1 : 0 ] ) |
129 ( { 3 2 { SEL DEC [ 2 5 ] } } & lc word [ 2 5 ] [ 3 1 : 0 ] ) |
130 ( { 3 2 { SEL DEC [ 2 6 ] } } & lc word [ 2 6 ] [ 3 1 : 0 ] ) |
131 ( { 3 2 { SEL DEC [ 2 7 ] } } & lc word [ 2 7 ] [ 3 1 : 0 ] ) |
132 ( { 3 2 { SEL DEC [ 2 8 ] } } & lc word [ 2 8 ] [ 3 1 : 0 ] ) |
133 ( { 3 2 { SEL DEC [ 2 9 ] } } & lc word [ 2 9 ] [ 3 1 : 0 ] ) |
134 ( { 3 2 { SEL DEC [ 3 0 ] } } & lc word [ 3 0 ] [ 3 1 : 0 ] ) |
135 ( { 3 2 { SEL DEC [ 3 1 ] } } & lc word [ 3 1 ] [ 3 1 : 0 ] ) ;
136
137 endmodule
138
139
140 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

141 / / LEAKAGE CIRCUIT 32−BIT WORD
142 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

143 / / A s i n g l e 32− b i t WORD implements a s h i f t r e g i s t e r ( SRL )
144 / / The Data can be r e a d from t h e BUS or s h i f t e d in from t h e p r e v i o u s REG
145 / /

146 / / CLKEN ( c l o c k e n a b l e ) i s used t o s w i t c h t h e c l o c k on / o f f t o t h e whole WORD
147 / / SHIFT EN ( s h i f t e n a b l e ) i s used t o c o n t r o l s h i f t i n g o p e r a t i o n , h e n c e when SHIFT EN i s 0 , t h e
148 / / module must be s t i l l o p e r a t i o n a l in c a s e o f r e a d i n g Data from t h e BUS
149 / /

150 / / In c a s e o f r e a d i n g from t h e BUS SHIFT WRITE i s s e t t o 0 t o MUX t h e Data from t h e BUS,
151 / / WRITE EN must be 1 and SEL must be 1 as w e l l t o c h o o s e t h e WORD
152 / /

153 / / In c a s e o f s h i f t i n g from t h e p r e v i o u s REG, SHIFT WRITE i s 1 c h o s i n g t h e Data from input ,
154 / / a l s o EN ( e n a b l e ) must be 1 ( c o n t r o l l e d by watermark ) t o s h i f t ,
155 / / SEL and WRITE EN a r e not i m p o r t a n t
156 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

157
158 ‘ t i m e s c a l e 1ns / 1ps
159
160 module LEAKAGE WORD (
161
162 input wire CLK,
163 input wire CLKEN, / / C l o c k Enab l e
164 input wire SHIFT EN , / / S h i f t Enab l e
165 input wire SHIFT CTRL , / / S h i f t C o n t r o l ( s h o u l d be c o n n e c t e d t o watermark t o d e t e r m i n e s w i t c h i n g

m o d u l a t i o n )
166 input wire SHIFT WRITE , / / S h i f t ( 1 ) , Wri te ( 0 )
167 input wire WRITE EN , / / Write Enab l e
168 input wire SEL , / / S e l e c t
169 input wire [ 3 1 : 0 ] D, / / Data from BUS
170 input wire [ 3 1 : 0 ] D Q , / / Data from prev REG
171 output wire [ 3 1 : 0 ] Q / / Data out
172
173 ) ;
174
175 wire [ 3 1 : 0 ] d s e l ; / / Data from BUS or p r e v i o u s REG
176 reg [ 3 1 : 0 ] q reg ;
177
178 assign d s e l [ 3 1 : 0 ] = ( SHIFT WRITE ) ? D Q [ 3 1 : 0 ] : D[ 3 1 : 0 ] ;
179
180 always@ ( posedge CLK)
181 i f (CLKEN)
182 / / In c a s e o f s h i f t i n g − t h e mode must be s e t t o s h i f t ( SHIFT WRITE==1) , s h i f t i n g must be e n a b l e d (

SHIFT EN==1) and
183 / / t h e s h i f t c o n t r o l must be 1 ( SHIFT CTRL==1)
184 / / In c a s e o f w r i t i n g − t h e mode must be s e t t o w r i t e ( SHIFT WRITE==0) , w r i t i n g must be e n a b l e d (

WRITE EN==1) and
185 / / t h e word must be s e l e c t e d ( SEL==1)
186 i f ( ( SHIFT WRITE & SHIFT EN & SHIFT CTRL ) | ( SEL & WRITE EN & ˜ SHIFT WRITE ) ) q reg [ 3 1 : 0 ] <= d s e l [ 3 1 : 0 ] ;
187
188 assign Q[ 3 1 : 0 ] = q reg [ 3 1 : 0 ] ;
189
190 endmodule
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B.1.8.4 Interval Counter

1 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2 / / INTERVAL COUNTER MODULE
3 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

4 / / C o n t a i n s 2 32− b i t count down c o u n t e r s wi th i n i t i a l r e g i s t e r s
5 / / One o f t h e c o u n t e r s w i l l be used t o count t h e p e r i o d o f t h e watermark s e q u e n c e s i n g l e c y c l e
6 / / The o t h e r c o u n t e r w i l l be used t o count t h e i n t e r v a l be tween two c o n s e c u t i v e watermark
7 / / c y c l e s
8 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

9
10 ‘ t i m e s c a l e 1ns / 1ps
11
12 module INTERVAL COUNTER (
13
14 input wire CLK,
15 input wire CLKEN, / / C l o c k Enab l e
16 input wire RESETn , / / R e s e t n e g a t i v e edge
17 input wire CNT LD INI , / / I n t e r v a l Counter Load I n i t i a l
18 input wire CNT0 CNT EN, / / Counter 0 Count Enab l e
19 input wire CNT1 CNT EN, / / Counter 1 Count Enab l e
20 input wire CNT0 SEL , / / Counter 0 S e l e c t
21 input wire CNT1 SEL , / / Counter 1 S e l e c t
22 input wire WRITE EN , / / Write Enab l e
23 input wire [ 3 1 : 0 ] D, / / Input Data
24
25 output wire CNT0 ZERO FLAG, / / Counter 0 Zero F lag
26 output wire CNT1 ZERO FLAG, / / Counter 1 Zero F lag
27 output wire [ 3 1 : 0 ] Q INI / / Output I n i t i a l Data
28 ) ;
29
30 / / I n s t a n t i a t e 2 Counter s (1 s t − Watermark Sequence Counter ,
31 / / 2nd − C l o c k I n t e r v a l Counter )
32 wire [ 3 1 : 0 ] c n t 0 q i n i ;
33 wire [ 3 1 : 0 ] c n t 1 q i n i ;
34
35 CNT DOWN 32 REG INI wat seq count (
36 .CLK(CLK) ,
37 .CLKEN(CLKEN) ,
38 . RESETn ( RESETn ) ,
39 . LD INI ( CNT LD INI ) ,
40 .CNT EN(CNT0 CNT EN) ,
41 . SEL ( CNT0 SEL ) ,
42 . WRITE EN(WRITE EN) ,
43 .D(D[ 3 1 : 0 ] ) ,
44 . ZERO FLAG(CNT0 ZERO FLAG) ,
45 . Q INI ( c n t 0 q i n i [ 3 1 : 0 ] )
46 ) ;
47 CNT DOWN 32 REG INI i n t e r v a l c o u n t (
48 .CLK(CLK) ,
49 .CLKEN(CLKEN) ,
50 . RESETn ( RESETn ) ,
51 . LD INI ( CNT LD INI ) ,
52 .CNT EN(CNT1 CNT EN) ,
53 . SEL ( CNT1 SEL ) ,
54 . WRITE EN(WRITE EN) ,
55 .D(D[ 3 1 : 0 ] ) ,
56 . ZERO FLAG(CNT1 ZERO FLAG) ,
57 . Q INI ( c n t 1 q i n i [ 3 1 : 0 ] )
58 ) ;
59
60 / / OUTPUT DATA MUX
61 wire [ 3 1 : 0 ] q mux ;
62
63 assign q mux [ 3 1 : 0 ] = ( { 3 2 {CNT0 SEL } } & c n t 0 q i n i [ 3 1 : 0 ] ) |
64 ( { 3 2 {CNT1 SEL } } & c n t 1 q i n i [ 3 1 : 0 ] ) ;
65
66 assign Q INI [ 3 1 : 0 ] = q mux [ 3 1 : 0 ] ;
67
68 endmodule
69
70
71 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

72 / / 32− b i t COUNT DOWN COUNTER WITH 32−BIT REGISTER TO HOLD INITIAL VALUE
73 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

74 / / The Data from t h e BUS can be l o a d e d i n t o t h e I n i t i a l R e g i s t e r r e g i n i ( memory mapped )
75 / / In o r d e r t o do t h a t SEL and WRITE EN must be 1
76 / /

77 / / The c o u n t e r l o a d s t h e i n i t i a l v a l u e from r e g i n i t o r e g c o u n t when LD INI ( l o a d i n i t i a l )



Appendix B Watermark Circuits Integrated on Test Chips 161

78 / / i s 1 . When CNT EN ( count e n a b l e ) i s 1 t h e c o u n t e r c o u n t s down and when i t r e a c h e s 0 , t h e
79 / / Zero F lag i s s e t ( 1 )
80 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

81
82 ‘ t i m e s c a l e 1ns / 1ps
83
84 module CNT DOWN 32 REG INI (
85
86 input wire CLK,
87 input wire CLKEN, / / C l o c k Enab l e
88 input wire RESETn , / / R e s e t n e g a t i v e edge
89 input wire LD INI , / / Load I n i t i a l Value from INI REG t o COUNT REG
90 input wire CNT EN, / / Count Enab l e
91 input wire SEL , / / S e l e c t
92 input wire WRITE EN , / / Write Enab l e
93 input wire [ 3 1 : 0 ] D, / / Input Data
94
95 output wire ZERO FLAG, / / Count == 0 x0000 0000
96 output wire [ 3 1 : 0 ] Q INI / / Output Data
97
98 ) ;
99

100 / / R e g i s t e r s
101
102 reg [ 3 1 : 0 ] r e g i n i ; / / I n i t i a l R e g i s t e r
103 reg [ 3 1 : 0 ] reg count ; / / Count R e g i s t e r
104
105 / / S t o r e I n i t i a l Data ( i f b l o c k i s s e l e c t e d and w r i t e i s e n a b l e d )
106
107 always@ ( posedge CLK)
108 i f (CLKEN)
109 i f ( SEL & WRITE EN) r e g i n i [ 3 1 : 0 ] <= D[ 3 1 : 0 ] ;
110
111
112 / / Load I n i t i a l Data i n t o Count R e g i s t e r i f LD INI i s 1
113 / / Count down i f CNT EN i s 1
114 / / Both CNT EN and LD INI canno t be 1 a t t h e same i n s t a n c e
115
116 always@ ( posedge CLK or negedge RESETn )
117 i f ( ˜ RESETn )
118 reg count <= {3 2 {1 ’ b1 } } ;
119 e lse begin
120 i f (CLKEN)
121 begin
122 i f ( LD INI )
123 reg count [ 3 1 : 0 ] <= r e g i n i [ 3 1 : 0 ] ;
124 e lse i f (CNT EN)
125 reg count [ 3 1 : 0 ] <= reg count [ 3 1 : 0 ] − 32 ’ b1 ;
126 end
127 end
128
129 / / S e t ZERO FLAG t o 1 when Counter R e g i s t e r r e a c h e s 0
130
131 assign ZERO FLAG = ˜ ( | reg count [ 3 1 : 0 ] ) ;
132
133 / / OUTPUT DATA
134 assign Q INI [ 3 1 : 0 ] = r e g i n i [ 3 1 : 0 ] ;
135
136 endmodule
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B.1.8.5 Watermark Controller

1 module WATERMARK CONTROLLER (
2
3 input wire CLK,
4 input wire RESETn , / / R e s e t ( neg a c t i v e )
5
6 / / −−−−−−−−−−INPUT CONTROL−−−−−−−−−−
7 / / Watermark C o n t r o l l e r
8 input wire [ 1 : 0 ] OP MODE, / / O p e r a t i o n Mode
9

10 / / Watermark G e n e r a t i o n C i r c u i t
11 input wire WGC SHIFT EN , / / Watermark G e n e r a t i o n C i r c u i t S h i f t Enab l e
12
13 / / L e a k a g e C i r c u i t
14 input wire LC SHIFT EN , / / L e a k a g e C i r c u i t S h i f t Enab l e
15
16 / / I n t e r v a l Counter
17 input wire IC CNT EN , / / I n t e r v a l Counter Count Enab l e
18
19 / / M0 T r i g g e r Enab l e
20 input wire M0 TRIG EN , / / C or t ex M0 T r i g g e r Enab l e − s i g n a l f o r t h e m u l t i p l i e r e n a b l e
21
22 / / −−−−−−−−−−INTERVAL COUNTER INTERFACE−−−−−−−−−−
23 input wire IC CNT0 ZERO FLAG , / / I n t e r v a l Counter 0 Zero F lag
24 input wire IC CNT1 ZERO FLAG , / / I n t e r v a l Counter 1 Zero F lag
25
26 / / −−−−−−−−−−OUTPUT CONTROL−−−−−−−−−−
27 / / WGC and LC
28 output wire WGC SHIFT ENO, / / Watermark Gen . C i r c u i t S h i f t Enab l e Out
29 output wire LC SHIFT ENO , / / L e a k a g e C i r c u i t S h i f t Enab l e Out
30
31 / / IC
32 output wire IC CNT LD INI , / / I n t e r v a l Counter Load I n i t i a l
33 output wire IC CNT0 ENO , / / I n t e r v a l Counter 0 Count Enab l e Out
34 output wire IC CNT1 ENO / / I n t e r v a l Counter 1 Count Enab l e Out
35
36 ) ;
37
38
39 / / OPERATION MODE PARAMETERS
40 localparam ON = 2 ’ b01 ; / / Normal a lways ON (WGC and LC ) o p e r a t i o n
41 localparam INTERVAL = 2 ’ b10 ; / / I n t e r v a l us ing I n t e r v a l Counter
42 localparam M0 TRIG = 2 ’ b11 ; / / M0 T r i g g e r − t r i g g e r s e l e c t e d by preprogrammed o p e r a t i o n
43
44 / / −−−−−−−−−−STATE MACHINE
45
46 / / P a r a m e t e r s (4 b i t s f o r ECS T o k a c h i a s w i l l have more s t a t e s f o r t r i g g e r i n g , f o r A5 4 th b i t w i l l be o p t i m i s e d )
47 localparam S MODECHOICE = 4 ’ b0000 ;
48 localparam S ON START = 4 ’ b0001 ;
49 localparam S ON ENABLE = 4 ’ b0010 ;
50 localparam S INT START = 4 ’ b0011 ;
51 localparam S INT LOAD CNT INI = 4 ’ b0100 ;
52 localparam S INT SHIFT EN CNT0 EN = 4 ’ b0101 ;
53 localparam S INT SHIFT DIS CNT0 DIS CNT1 EN = 4 ’ b0110 ;
54 localparam S M0 TRIG START = 4 ’ b0111 ;
55 localparam S M0 TRIG WAIT TRIG = 4 ’ b1000 ;
56 localparam S M0 TRIG LOAD CNT INI = 4 ’ b1001 ;
57 localparam S M0 TRIG CNT1 EN = 4 ’ b1010 ;
58 localparam S M0 TRIG SHIFT EN CNT0 EN = 4 ’ b1011 ;
59
60 / / S e q u e n t i a l
61 reg [ 3 : 0 ] s t a t e ;
62
63 / / C o m b i n a t i o n a l
64 reg [ 3 : 0 ] n e x t s t a t e ;
65
66 / / S e q u e n t i a l l o g i c
67 always@ ( posedge CLK or negedge RESETn )
68 i f ( ˜ RESETn )
69 s t a t e <= S MODECHOICE;
70 e lse
71 s t a t e <= n e x t s t a t e ;
72
73 / / C o m b i n a t i o n a l l o g i c
74 always@ ( ∗ )
75 begin
76 n e x t s t a t e = s t a t e ;
77 case ( s t a t e )
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78 S MODECHOICE : begin
79 i f (OP MODE == ON)
80 n e x t s t a t e = S ON START ;
81 e lse i f (OP MODE == INTERVAL)
82 n e x t s t a t e = S INT START ;
83 e lse i f (OP MODE == M0 TRIG )
84 n e x t s t a t e = S M0 TRIG START ;
85 end
86 / / −−−−−−−−−−OPERATION MODE ON−−−−−−−−−−
87
88 / / Wait u n t i l WGC and LC i n p u t s h i f t e n a b l e s a r e on
89 S ON START : i f (WGC SHIFT EN & LC SHIFT EN )
90 n e x t s t a t e = S ON ENABLE ;
91
92 / / When b o t h s h i f t e n a b l e s a r e on , s t a y in t h i s s t a t e u n t i l r e s e t
93 S ON ENABLE : ;
94
95 / / −−−−−−−−−−OPERATION MODE INTERVAL−−−−−−−−−−
96
97 / / Wait u n t i l WGC, LC and IC i n p u t s h i f t e n a b l e s a r e on
98 S INT START : i f (WGC SHIFT EN & LC SHIFT EN & IC CNT EN )
99 n e x t s t a t e = S INT LOAD CNT INI ;

100
101 / / Enab l e WGC and LC , l o a d INI t o IC ( f i r s t has t o l o a d i n i t i a l , t h en can s t a r t c o u n t i n g ) .

D i s a b l e CNT1 ( f o r l o o p o p e r a t i o n )
102 S INT LOAD CNT INI : n e x t s t a t e = S INT SHIFT EN CNT0 EN

;
103
104 / / Enab l e I n t e r v a l Counter 0 and wa i t f o r t h e Zero F l ag
105 S INT SHIFT EN CNT0 EN : i f ( IC CNT0 ZERO FLAG )
106 n e x t s t a t e =

S INT SHIFT DIS CNT0 DIS CNT1 EN ;
107
108 / / D i s a b l e WGC, LC and CNT0 . Enab l e CNT1 and wa i t f o r Zero F l ag . On c o m p l e t i o n go b a c k t o

S INT ENABLE WGC LC
109 S INT SHIFT DIS CNT0 DIS CNT1 EN : i f ( IC CNT1 ZERO FLAG )
110 n e x t s t a t e = S INT SHIFT EN CNT0 EN

;
111
112 / / −−−−−−−−−−OPERATION MODE M0 TRIGGER−−−−−−−−−−
113 / / Not s u p p o r t e d ( f o r A5 )
114 / / Wait u n t i l WGC, LC and IC a r e e n a b l e d
115 S M0 TRIG START : i f (WGC SHIFT EN & LC SHIFT EN & IC CNT EN )
116 n e x t s t a t e = S M0 TRIG WAIT TRIG ;
117 / / Wait f o r t h e t r i g g e r s i g n a l
118 S M0 TRIG WAIT TRIG : i f ( M0 TRIG EN )
119 n e x t s t a t e = S M0 TRIG LOAD CNT INI

;
120 / / Load c o u n t e r s
121 S M0 TRIG LOAD CNT INI : n e x t s t a t e = S M0 TRIG CNT1 EN ;
122
123 / / Enab l e c o u n t e r 1 ( c o u n t s t h e i n t e r v a l from t h e t r i g g e r s i g n a l t o t h e b e g i n n i n g o f t h e

watermark s e q u e n c e )
124 S M0 TRIG CNT1 EN : i f ( IC CNT1 ZERO FLAG )
125 n e x t s t a t e =

S M0 TRIG SHIFT EN CNT0 EN ;
126
127 / / D i s a b l e c o u n t e r 1 , e n a b l e c o u n t e r 0 ( c o u n t e r 0 c o u n t s t h e watermark s e q u e n c e p e r i o d ) ,
128 S M0 TRIG SHIFT EN CNT0 EN : i f ( IC CNT0 ZERO FLAG )
129 n e x t s t a t e = S M0 TRIG WAIT TRIG ;
130
131 / / D e f a u l t
132 default : n e x t s t a t e = S MODECHOICE;
133 endcase
134 end
135
136 / / OUTPUTS
137
138 / / S e q u e n t i a l
139 reg w g c s h i f t e n o u t q ;
140 reg l c s h i f t e n o u t q ;
141 reg i c c n t 0 e n o u t q ;
142 reg i c c n t 1 e n o u t q ;
143 reg i c c n t l d i n i o u t q ;
144
145 / / C o m b i n a t i o n a l
146 reg w g c s h i f t e n o u t ;
147 reg l c s h i f t e n o u t ;
148 reg i c c n t 0 e n o u t ;
149 reg i c c n t 1 e n o u t ;
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150 reg i c c n t l d i n i o u t ;
151
152 / / S e q u e n t i a l l o g i c
153 always@ ( posedge CLK or negedge RESETn )
154 i f ( ˜ RESETn )
155 begin
156 w g c s h i f t e n o u t q <= 1 ’ b0 ;
157 l c s h i f t e n o u t q <= 1 ’ b0 ;
158 i c c n t 0 e n o u t q <= 1 ’ b0 ;
159 i c c n t 1 e n o u t q <= 1 ’ b0 ;
160 i c c n t l d i n i o u t q <= 1 ’ b0 ;
161 end
162 e lse
163 begin
164 w g c s h i f t e n o u t q <= w g c s h i f t e n o u t ;
165 l c s h i f t e n o u t q <= l c s h i f t e n o u t ;
166 i c c n t 0 e n o u t q <= i c c n t 0 e n o u t ;
167 i c c n t 1 e n o u t q <= i c c n t 1 e n o u t ;
168 i c c n t l d i n i o u t q <= i c c n t l d i n i o u t ;
169 end
170
171 / / C o m b i n a t i o n a l l o g i c
172 always@ ( ∗ )
173 begin
174 w g c s h i f t e n o u t = w g c s h i f t e n o u t q ;
175 l c s h i f t e n o u t = l c s h i f t e n o u t q ;
176 i c c n t 0 e n o u t = i c c n t 0 e n o u t q ;
177 i c c n t 1 e n o u t = i c c n t 1 e n o u t q ;
178 i c c n t l d i n i o u t = i c c n t l d i n i o u t q ;
179
180 case ( s t a t e )
181 / / −−−−−−−−−−OPERATION MODE ON−−−−−−−−−−
182 / / Switch WGC and LC s h i f t e n a b l e s high , i n t e r v a l c o u n t e r i n a c t i v e
183 S ON ENABLE : begin
184 w g c s h i f t e n o u t = 1 ’ b1 ;
185 l c s h i f t e n o u t = 1 ’ b1 ;
186 end
187
188 / / −−−−−−−−−−OPERATION MODE INTERVAL−−−−−−−−−−
189 / / Load i n i t i a l d a t a i n t o i n t e r v a l c o u n t e r
190 S INT LOAD CNT INI : i c c n t l d i n i o u t = 1 ’ b1 ;
191
192 / / Enab l e s h i f t i n g and c o u n t e r CNT0 as l ong as t h e ZERO FLAG from CNT0 i s low , o t h e r w i s e

d i s a b l e s h i f t i n g and s w i t c h CNT1 ON
193 S INT SHIFT EN CNT0 EN : begin
194 i f ( IC CNT0 ZERO FLAG ) begin
195 w g c s h i f t e n o u t = 1 ’ b0 ;
196 l c s h i f t e n o u t = 1 ’ b0 ;
197 i c c n t 0 e n o u t = 1 ’ b0 ;
198 i c c n t 1 e n o u t = 1 ’ b1 ;
199 end else begin
200 w g c s h i f t e n o u t = 1 ’ b1 ;
201 l c s h i f t e n o u t = 1 ’ b1 ;
202 i c c n t 0 e n o u t = 1 ’ b1 ;
203 i c c n t 1 e n o u t = 1 ’ b0 ;
204 end
205
206 i c c n t l d i n i o u t = 1 ’ b0 ;
207 end
208
209 / / Keep CNT1 Enab l ed as l ong as t h e ZERO FLAG i s low , as soon as t h e ZERO FLAG i s high , d i s a b l e CNT1

( on t h e nex t c l o c k ) and l o a d i n i t i a l d a t a
210 S INT SHIFT DIS CNT0 DIS CNT1 EN : begin
211 i f ( IC CNT1 ZERO FLAG ) begin
212 i c c n t l d i n i o u t = 1 ’ b1 ;
213 i c c n t 1 e n o u t = 1 ’ b0 ;
214 end else
215 i c c n t 1 e n o u t = 1 ’ b1 ;
216 end
217
218 / / −−−−−−−−−−OPERATION MODE TRIGGER−−−−−−−−−−
219 / / Load c o u n t e r s
220 S M0 TRIG LOAD CNT INI : i c c n t l d i n i o u t = 1 ’ b1 ;
221
222 / / Enab l e c o u n t e r 1 ( c o u n t s t h e i n t e r v a l from t h e t r i g g e r s i g n a l t o t h e b e g i n n i n g o f t h e

watermark s e q u e n c e )
223 S M0 TRIG CNT1 EN : begin
224 i f ( IC CNT1 ZERO FLAG ) begin
225 i c c n t 1 e n o u t = 1 ’ b0 ;
226 i c c n t 0 e n o u t = 1 ’ b1 ;
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227 w g c s h i f t e n o u t = 1 ’ b1 ;
228 l c s h i f t e n o u t = 1 ’ b1 ;
229 end else
230 i c c n t 1 e n o u t = 1 ’ b1 ;
231
232 i c c n t l d i n i o u t = 1 ’ b0 ;
233 end
234
235 / / D i s a b l e c o u n t e r 1 , e n a b l e c o u n t e r 0 ( c o u n t e r 0 c o u n t s t h e watermark s e q u e n c e p e r i o d ) ,
236 S M0 TRIG SHIFT EN CNT0 EN : begin
237 / / I f c o u n t e r 1 f i n i s h e d ( count == 0 h e n c e

WGC d i d f u l l s e q u e n c e c y c l e )
238 / / s w i t c h t h e WGC, LC and c o u n t e r 1 o f f
239 i f ( IC CNT0 ZERO FLAG ) begin
240 i c c n t 0 e n o u t = 1 ’ b0 ;
241 w g c s h i f t e n o u t = 1 ’ b0 ;
242 l c s h i f t e n o u t = 1 ’ b0 ;
243 end
244 end
245
246 / / D e f a u l t
247 default : begin
248 w g c s h i f t e n o u t = 1 ’ b0 ;
249 l c s h i f t e n o u t = 1 ’ b0 ;
250 i c c n t 0 e n o u t = 1 ’ b0 ;
251 i c c n t 1 e n o u t = 1 ’ b0 ;
252 i c c n t l d i n i o u t = 1 ’ b0 ;
253 end
254 endcase
255 end
256
257 / / −−−−−−−−−−

258 assign WGC SHIFT ENO = w g c s h i f t e n o u t q ;
259 assign LC SHIFT ENO = l c s h i f t e n o u t q ;
260 assign IC CNT LD INI = i c c n t l d i n i o u t q ;
261 assign IC CNT0 ENO = i c c n t 0 e n o u t q ;
262 assign IC CNT1 ENO = i c c n t 1 e n o u t q ;
263
264 endmodule
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B.1.8.6 Noise Generator

1 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2 / / NOISE GENERATOR
3 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

4 / / Implements a b i g s h i f t r e g i s t e r (32 x 32− b i t WORD)
5 / /

6 / / In o r d e r t o make s h i f t i n g manner more random a 32− b i t LFSR , which s i t s a b o v e t h e
7 / / r e g i s t e r b l o c k , i s used t o c o n t r o l s w i t c h i n g o f e v e r y s i n g l e column . Hence , i f
8 / / b i t 0 o f LFSR i s 1 a l l r e g i s t e r b i t s 0 w i l l s h i f t on t h e nex t c l o c k c y c l e
9 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

10
11 ‘ t i m e s c a l e 1ns / 1ps
12
13 module NOISE GEN (
14
15 input wire CLK,
16 input wire CLKEN, / / C l o c k Enab l e
17 input wire SHIFT EN , / / S h i f t Enab l e
18 input wire [ 3 1 : 0 ] SHIFT CTRL , / / S h i f t C o n t r o l b i t −wise
19 input wire SHIFT WRITE , / / S h i f t ( 1 ) , Wri te ( 0 )
20 input wire WRITE EN , / / Write Enab l e
21 input wire [ 3 1 : 0 ] SEL DEC , / / S e l e c t i o n Decode
22 input wire [ 3 1 : 0 ] D, / / Input Data
23
24 output wire [ 3 1 : 0 ] Q / / Output Data
25 ) ;
26
27 / / Noise G e n e r a t o r Word Outputs
28 wire [ 3 1 : 0 ] noise gen word [ 0 : 3 1 ] ;
29
30 / / NOISE GENERATOR WORDS INSTANTATION − 32 X 32− b i t NOISE GENERATOR
31
32 NOISE GEN WORD lc word0 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 0 ] ) , .D(D) , . D Q( noise gen word [ 3 1 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 0 ] [ 3 1 : 0 ] ) ) ;

33
34 NOISE GEN WORD lc word1 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 ] ) , .D(D) , . D Q( noise gen word [ 0 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 1 ] [ 3 1 : 0 ] ) ) ;

35
36 NOISE GEN WORD lc word2 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 ] ) , .D(D) , . D Q( noise gen word [ 1 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 2 ] [ 3 1 : 0 ] ) ) ;

37
38 NOISE GEN WORD lc word3 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 3 ] ) , .D(D) , . D Q( noise gen word [ 2 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 3 ] [ 3 1 : 0 ] ) ) ;

39
40 NOISE GEN WORD lc word4 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 4 ] ) , .D(D) , . D Q( noise gen word [ 3 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 4 ] [ 3 1 : 0 ] ) ) ;

41
42 NOISE GEN WORD lc word5 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 5 ] ) , .D(D) , . D Q( noise gen word [ 4 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 5 ] [ 3 1 : 0 ] ) ) ;

43
44 NOISE GEN WORD lc word6 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 6 ] ) , .D(D) , . D Q( noise gen word [ 5 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 6 ] [ 3 1 : 0 ] ) ) ;

45
46 NOISE GEN WORD lc word7 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 7 ] ) , .D(D) , . D Q( noise gen word [ 6 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 7 ] [ 3 1 : 0 ] ) ) ;

47
48 NOISE GEN WORD lc word8 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 8 ] ) , .D(D) , . D Q( noise gen word [ 7 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 8 ] [ 3 1 : 0 ] ) ) ;

49
50 NOISE GEN WORD lc word9 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 9 ] ) , .D(D) , . D Q( noise gen word [ 8 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 9 ] [ 3 1 : 0 ] ) ) ;

51
52 NOISE GEN WORD lc word10 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 0 ] ) , .D(D) , . D Q( noise gen word [ 9 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 1 0 ] [ 3 1 : 0 ] ) ) ;

53
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54 NOISE GEN WORD lc word11 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (
SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 1 ] ) , .D(D) , . D Q( noise gen word [ 1 0 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 1 1 ] [ 3 1 : 0 ] ) ) ;

55
56 NOISE GEN WORD lc word12 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 2 ] ) , .D(D) , . D Q( noise gen word [ 1 1 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 1 2 ] [ 3 1 : 0 ] ) ) ;

57
58 NOISE GEN WORD lc word13 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 3 ] ) , .D(D) , . D Q( noise gen word [ 1 2 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 1 3 ] [ 3 1 : 0 ] ) ) ;

59
60 NOISE GEN WORD lc word14 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 4 ] ) , .D(D) , . D Q( noise gen word [ 1 3 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 1 4 ] [ 3 1 : 0 ] ) ) ;

61
62 NOISE GEN WORD lc word15 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 5 ] ) , .D(D) , . D Q( noise gen word [ 1 4 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 1 5 ] [ 3 1 : 0 ] ) ) ;

63
64 NOISE GEN WORD lc word16 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 6 ] ) , .D(D) , . D Q( noise gen word [ 1 5 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 1 6 ] [ 3 1 : 0 ] ) ) ;

65
66 NOISE GEN WORD lc word17 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 7 ] ) , .D(D) , . D Q( noise gen word [ 1 6 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 1 7 ] [ 3 1 : 0 ] ) ) ;

67
68 NOISE GEN WORD lc word18 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 8 ] ) , .D(D) , . D Q( noise gen word [ 1 7 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 1 8 ] [ 3 1 : 0 ] ) ) ;

69
70 NOISE GEN WORD lc word19 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 1 9 ] ) , .D(D) , . D Q( noise gen word [ 1 8 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 1 9 ] [ 3 1 : 0 ] ) ) ;

71
72 NOISE GEN WORD lc word20 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 0 ] ) , .D(D) , . D Q( noise gen word [ 1 9 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 2 0 ] [ 3 1 : 0 ] ) ) ;

73
74 NOISE GEN WORD lc word21 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 1 ] ) , .D(D) , . D Q( noise gen word [ 2 0 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 2 1 ] [ 3 1 : 0 ] ) ) ;

75
76 NOISE GEN WORD lc word22 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 2 ] ) , .D(D) , . D Q( noise gen word [ 2 1 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 2 2 ] [ 3 1 : 0 ] ) ) ;

77
78 NOISE GEN WORD lc word23 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 3 ] ) , .D(D) , . D Q( noise gen word [ 2 2 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 2 3 ] [ 3 1 : 0 ] ) ) ;

79
80 NOISE GEN WORD lc word24 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 4 ] ) , .D(D) , . D Q( noise gen word [ 2 3 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 2 4 ] [ 3 1 : 0 ] ) ) ;

81
82 NOISE GEN WORD lc word25 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 5 ] ) , .D(D) , . D Q( noise gen word [ 2 4 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 2 5 ] [ 3 1 : 0 ] ) ) ;

83
84 NOISE GEN WORD lc word26 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 6 ] ) , .D(D) , . D Q( noise gen word [ 2 5 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 2 6 ] [ 3 1 : 0 ] ) ) ;

85
86 NOISE GEN WORD lc word27 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 7 ] ) , .D(D) , . D Q( noise gen word [ 2 6 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 2 7 ] [ 3 1 : 0 ] ) ) ;

87
88 NOISE GEN WORD lc word28 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 8 ] ) , .D(D) , . D Q( noise gen word [ 2 7 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 2 8 ] [ 3 1 : 0 ] ) ) ;

89
90 NOISE GEN WORD lc word29 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 2 9 ] ) , .D(D) , . D Q( noise gen word [ 2 8 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 2 9 ] [ 3 1 : 0 ] ) ) ;

91
92 NOISE GEN WORD lc word30 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (

SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 3 0 ] ) , .D(D) , . D Q( noise gen word [ 2 9 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 3 0 ] [ 3 1 : 0 ] ) ) ;

93
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94 NOISE GEN WORD lc word31 ( . CLK(CLK) , .CLKEN(CLKEN) , . SHIFT EN ( SHIFT EN ) , . SHIFT CTRL ( SHIFT CTRL ) , . SHIFT WRITE (
SHIFT WRITE ) , . WRITE EN(WRITE EN) , . SEL ( SEL DEC [ 3 1 ] ) , .D(D) , . D Q( noise gen word [ 3 0 ] [ 3 1 : 0 ] ) , .Q( noise gen word
[ 3 1 ] [ 3 1 : 0 ] ) ) ;

95
96 / / DATA OUTPUT MUX
97 wire [ 3 1 : 0 ] q mux ;
98
99 assign Q[ 3 1 : 0 ] = q mux [ 3 1 : 0 ] ;

100
101 assign q mux [ 3 1 : 0 ] = ( { 3 2 { SEL DEC [ 0 ] } } & noise gen word [ 0 ] [ 3 1 : 0 ] ) |
102 ( { 3 2 { SEL DEC [ 1 ] } } & noise gen word [ 1 ] [ 3 1 : 0 ] ) |
103 ( { 3 2 { SEL DEC [ 2 ] } } & noise gen word [ 2 ] [ 3 1 : 0 ] ) |
104 ( { 3 2 { SEL DEC [ 3 ] } } & noise gen word [ 3 ] [ 3 1 : 0 ] ) |
105 ( { 3 2 { SEL DEC [ 4 ] } } & noise gen word [ 4 ] [ 3 1 : 0 ] ) |
106 ( { 3 2 { SEL DEC [ 5 ] } } & noise gen word [ 5 ] [ 3 1 : 0 ] ) |
107 ( { 3 2 { SEL DEC [ 6 ] } } & noise gen word [ 6 ] [ 3 1 : 0 ] ) |
108 ( { 3 2 { SEL DEC [ 7 ] } } & noise gen word [ 7 ] [ 3 1 : 0 ] ) |
109 ( { 3 2 { SEL DEC [ 8 ] } } & noise gen word [ 8 ] [ 3 1 : 0 ] ) |
110 ( { 3 2 { SEL DEC [ 9 ] } } & noise gen word [ 9 ] [ 3 1 : 0 ] ) |
111 ( { 3 2 { SEL DEC [ 1 0 ] } } & noise gen word [ 1 0 ] [ 3 1 : 0 ] ) |
112 ( { 3 2 { SEL DEC [ 1 1 ] } } & noise gen word [ 1 1 ] [ 3 1 : 0 ] ) |
113 ( { 3 2 { SEL DEC [ 1 2 ] } } & noise gen word [ 1 2 ] [ 3 1 : 0 ] ) |
114 ( { 3 2 { SEL DEC [ 1 3 ] } } & noise gen word [ 1 3 ] [ 3 1 : 0 ] ) |
115 ( { 3 2 { SEL DEC [ 1 4 ] } } & noise gen word [ 1 4 ] [ 3 1 : 0 ] ) |
116 ( { 3 2 { SEL DEC [ 1 5 ] } } & noise gen word [ 1 5 ] [ 3 1 : 0 ] ) |
117 ( { 3 2 { SEL DEC [ 1 6 ] } } & noise gen word [ 1 6 ] [ 3 1 : 0 ] ) |
118 ( { 3 2 { SEL DEC [ 1 7 ] } } & noise gen word [ 1 7 ] [ 3 1 : 0 ] ) |
119 ( { 3 2 { SEL DEC [ 1 8 ] } } & noise gen word [ 1 8 ] [ 3 1 : 0 ] ) |
120 ( { 3 2 { SEL DEC [ 1 9 ] } } & noise gen word [ 1 9 ] [ 3 1 : 0 ] ) |
121 ( { 3 2 { SEL DEC [ 2 0 ] } } & noise gen word [ 2 0 ] [ 3 1 : 0 ] ) |
122 ( { 3 2 { SEL DEC [ 2 1 ] } } & noise gen word [ 2 1 ] [ 3 1 : 0 ] ) |
123 ( { 3 2 { SEL DEC [ 2 2 ] } } & noise gen word [ 2 2 ] [ 3 1 : 0 ] ) |
124 ( { 3 2 { SEL DEC [ 2 3 ] } } & noise gen word [ 2 3 ] [ 3 1 : 0 ] ) |
125 ( { 3 2 { SEL DEC [ 2 4 ] } } & noise gen word [ 2 4 ] [ 3 1 : 0 ] ) |
126 ( { 3 2 { SEL DEC [ 2 5 ] } } & noise gen word [ 2 5 ] [ 3 1 : 0 ] ) |
127 ( { 3 2 { SEL DEC [ 2 6 ] } } & noise gen word [ 2 6 ] [ 3 1 : 0 ] ) |
128 ( { 3 2 { SEL DEC [ 2 7 ] } } & noise gen word [ 2 7 ] [ 3 1 : 0 ] ) |
129 ( { 3 2 { SEL DEC [ 2 8 ] } } & noise gen word [ 2 8 ] [ 3 1 : 0 ] ) |
130 ( { 3 2 { SEL DEC [ 2 9 ] } } & noise gen word [ 2 9 ] [ 3 1 : 0 ] ) |
131 ( { 3 2 { SEL DEC [ 3 0 ] } } & noise gen word [ 3 0 ] [ 3 1 : 0 ] ) |
132 ( { 3 2 { SEL DEC [ 3 1 ] } } & noise gen word [ 3 1 ] [ 3 1 : 0 ] ) ;
133
134 endmodule
135
136
137 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

138 / / NOISE GENERATOR 32− b i t WORD
139 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

140 / / A s i n g l e 32− b i t n o i s e g e n e r a t o r word .
141 / /

142 / / 32− b i t d a t a can be w r i t t e n t o t h e r e g i s t e r
143 / /

144 / / S h i f t i n g o p e r a t i o n i s a b i t −wise o p e r a t i o n . The c o n t r o l l e r ( SHIFT CTRL ) c o n t r o l s how
145 / / many b i t s s h i f t in any c l o c k c y c l e s . Hence , s h i f t can be word−wise , a l l 32− b i t s can
146 / / be s h i f t e d out , o r on ly a s i n g l e b i t can be s h i f t e d
147 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

148
149 ‘ t i m e s c a l e 1ns / 1ps
150
151 module NOISE GEN WORD (
152
153 input wire CLK,
154 input wire CLKEN, / / C l o c k Enab l e
155 input wire SHIFT EN , / / S h i f t Enab l e
156 input wire [ 3 1 : 0 ] SHIFT CTRL , / / S h i f t C o n t r o l b i t −wise
157 input wire SHIFT WRITE , / / S h i f t ( 1 ) , Wri te ( 0 )
158 input wire WRITE EN , / / Write Enab l e
159 input wire SEL , / / S e l e c t
160 input wire [ 3 1 : 0 ] D, / / Data from BUS
161 input wire [ 3 1 : 0 ] D Q , / / Data from prev REG
162 output wire [ 3 1 : 0 ] Q / / Data out
163
164 ) ;
165
166 reg [ 3 1 : 0 ] q reg ; / / Word R e g i s t e r
167
168 wire [ 3 1 : 0 ] bw word shift ; / / Bit−wise word s h i f t
169
170 assign bw word shift [ 0 ] = ( SHIFT CTRL [ 0 ] ) ? D Q [ 0 ] : q reg [ 0 ] ;
171 assign bw word shift [ 1 ] = ( SHIFT CTRL [ 1 ] ) ? D Q [ 1 ] : q reg [ 1 ] ;
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172 assign bw word shift [ 2 ] = ( SHIFT CTRL [ 2 ] ) ? D Q [ 2 ] : q reg [ 2 ] ;
173 assign bw word shift [ 3 ] = ( SHIFT CTRL [ 3 ] ) ? D Q [ 3 ] : q reg [ 3 ] ;
174 assign bw word shift [ 4 ] = ( SHIFT CTRL [ 4 ] ) ? D Q [ 4 ] : q reg [ 4 ] ;
175 assign bw word shift [ 5 ] = ( SHIFT CTRL [ 5 ] ) ? D Q [ 5 ] : q reg [ 5 ] ;
176 assign bw word shift [ 6 ] = ( SHIFT CTRL [ 6 ] ) ? D Q [ 6 ] : q reg [ 6 ] ;
177 assign bw word shift [ 7 ] = ( SHIFT CTRL [ 7 ] ) ? D Q [ 7 ] : q reg [ 7 ] ;
178 assign bw word shift [ 8 ] = ( SHIFT CTRL [ 8 ] ) ? D Q [ 8 ] : q reg [ 8 ] ;
179 assign bw word shift [ 9 ] = ( SHIFT CTRL [ 9 ] ) ? D Q [ 9 ] : q reg [ 9 ] ;
180 assign bw word shift [ 1 0 ] = ( SHIFT CTRL [ 1 0 ] ) ? D Q[ 1 0 ] : q reg [ 1 0 ] ;
181 assign bw word shift [ 1 1 ] = ( SHIFT CTRL [ 1 1 ] ) ? D Q[ 1 1 ] : q reg [ 1 1 ] ;
182 assign bw word shift [ 1 2 ] = ( SHIFT CTRL [ 1 2 ] ) ? D Q[ 1 2 ] : q reg [ 1 2 ] ;
183 assign bw word shift [ 1 3 ] = ( SHIFT CTRL [ 1 3 ] ) ? D Q[ 1 3 ] : q reg [ 1 3 ] ;
184 assign bw word shift [ 1 4 ] = ( SHIFT CTRL [ 1 4 ] ) ? D Q[ 1 4 ] : q reg [ 1 4 ] ;
185 assign bw word shift [ 1 5 ] = ( SHIFT CTRL [ 1 5 ] ) ? D Q[ 1 5 ] : q reg [ 1 5 ] ;
186 assign bw word shift [ 1 6 ] = ( SHIFT CTRL [ 1 6 ] ) ? D Q[ 1 6 ] : q reg [ 1 6 ] ;
187 assign bw word shift [ 1 7 ] = ( SHIFT CTRL [ 1 7 ] ) ? D Q[ 1 7 ] : q reg [ 1 7 ] ;
188 assign bw word shift [ 1 8 ] = ( SHIFT CTRL [ 1 8 ] ) ? D Q[ 1 8 ] : q reg [ 1 8 ] ;
189 assign bw word shift [ 1 9 ] = ( SHIFT CTRL [ 1 9 ] ) ? D Q[ 1 9 ] : q reg [ 1 9 ] ;
190 assign bw word shift [ 2 0 ] = ( SHIFT CTRL [ 2 0 ] ) ? D Q[ 2 0 ] : q reg [ 2 0 ] ;
191 assign bw word shift [ 2 1 ] = ( SHIFT CTRL [ 2 1 ] ) ? D Q[ 2 1 ] : q reg [ 2 1 ] ;
192 assign bw word shift [ 2 2 ] = ( SHIFT CTRL [ 2 2 ] ) ? D Q[ 2 2 ] : q reg [ 2 2 ] ;
193 assign bw word shift [ 2 3 ] = ( SHIFT CTRL [ 2 3 ] ) ? D Q[ 2 3 ] : q reg [ 2 3 ] ;
194 assign bw word shift [ 2 4 ] = ( SHIFT CTRL [ 2 4 ] ) ? D Q[ 2 4 ] : q reg [ 2 4 ] ;
195 assign bw word shift [ 2 5 ] = ( SHIFT CTRL [ 2 5 ] ) ? D Q[ 2 5 ] : q reg [ 2 5 ] ;
196 assign bw word shift [ 2 6 ] = ( SHIFT CTRL [ 2 6 ] ) ? D Q[ 2 6 ] : q reg [ 2 6 ] ;
197 assign bw word shift [ 2 7 ] = ( SHIFT CTRL [ 2 7 ] ) ? D Q[ 2 7 ] : q reg [ 2 7 ] ;
198 assign bw word shift [ 2 8 ] = ( SHIFT CTRL [ 2 8 ] ) ? D Q[ 2 8 ] : q reg [ 2 8 ] ;
199 assign bw word shift [ 2 9 ] = ( SHIFT CTRL [ 2 9 ] ) ? D Q[ 2 9 ] : q reg [ 2 9 ] ;
200 assign bw word shift [ 3 0 ] = ( SHIFT CTRL [ 3 0 ] ) ? D Q[ 3 0 ] : q reg [ 3 0 ] ;
201 assign bw word shift [ 3 1 ] = ( SHIFT CTRL [ 3 1 ] ) ? D Q[ 3 1 ] : q reg [ 3 1 ] ;
202
203 wire [ 3 1 : 0 ] d s e l ; / / Data from BUS or p r e v i o u s REG
204
205 assign d s e l [ 3 1 : 0 ] = ( SHIFT WRITE ) ? bw word shift [ 3 1 : 0 ] : D[ 3 1 : 0 ] ;
206
207 always@ ( posedge CLK)
208 i f (CLKEN)
209 i f ( ( SEL & WRITE EN & ˜ SHIFT WRITE ) | ( SHIFT WRITE & SHIFT EN ) )
210 q reg <= d s e l [ 3 1 : 0 ] ;
211
212
213 assign Q[ 3 1 : 0 ] = q reg [ 3 1 : 0 ] ;
214
215 endmodule
216
217
218 / /

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

219 / / NOISE GENERATOR CONTROLLER
220 / /

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

221 / / Noise G e n e r a t o r can work s y n c h r o n o u s l y or a s y n c h r o n o u s l y t o Watermark G e n e r a t o r C i r c u i t and L e a k a g e C i r c u i t .
222 / /

223 / / In synchronous mode Noi s e G e n e r a t o r w a i t s u n t i l WGC and LC a r e o p e r a t i o n a l , t h i s means t h a t i t w a i t s u n t i l
224 / / watermark c o n t r o l l e r p r o v i d e s e n a b l e s i g n a l s t o WGC and LC . S i n c e t h e i n p u t i s t h e e n a b l e s i g n a l from t h e

watermark c o n t r o l l e r
225 / / t h e n o i s e g e n e r a t o r w i l l s t a r t 1 c l o c k c y c l e a f t e r WGC and LC . Using t h i s mode i t w i l l be p o s s i b l e t o p r e d i c t t h e

number o f
226 / / c u r r e n t l y s w i t c h i n g r e g i s t e r s , in c a s e o f a n a l y s i s o f t h e s t r e n g t h o f n o i s e on t h e watermark p e r f o r m a n c e .
227 / /

228 / / In a synchronous mode Noi s e G e n e r a t o r d o e s not wa i t f o r WGC or LC , i t s t a r t s a s soon as p o s s i b l e a f t e r r e s e t .
T h e r e f o r e ,

229 / / i t w i l l no t be p o s s i b l e t o p r e d i c t how many r e g i s t e r s a r e s w i t c h i n g in any p a r t i c u l a r moment .
230 / /

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

231
232 ‘ t i m e s c a l e 1ns / 1ps
233
234 module NOISE GEN CONTROLLER (
235
236 input wire CLK,
237 input wire RESETn ,
238
239 input wire [ 1 : 0 ] NOISE GEN OP MODE, / / Noise G e n e r a t o r O p e r a t i o n Mode ( Synchronous or

Asynchronous )
240
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241 input wire WC WGC SHIFT EN, / / Watermark C o n t r o l l e r − Watermark G e n e r a t i o n C i r c u i t S h i f t
Enab l e Out

242 / / used f o r s y n c h r o n i z i n g t h e No i s e G e n e r a t o r t o WGC and LC
243 output wire NOISE GEN SHIFT ENO , / / Noise G e n e r a t o r S h i f t Enab l e Out
244 output wire NOISE SEED SHIFT ENO / / Noise Seed S h i f t Enab l e Out
245
246 ) ;
247
248 / / −−−−−−−−−−PARAMETERS−−−−−−−−−−
249 localparam NOISE GEN MODE SYNCH = 2 ’ b01 ;
250 localparam NOISE GEN MODE ASYNCH = 2 ’ b10 ;
251
252 / / −−−−−−−−−−STATE MACHINE−−−−−−−−−−
253 reg [ 1 : 0 ] s t a t e ;
254 reg [ 1 : 0 ] n e x t s t a t e ;
255
256 / / S t a t e p a r a m e t e r s
257 localparam S MODECHOICE = 2 ’ b00 ;
258 localparam S MODE SYNCH WAIT = 2 ’ b01 ;
259 localparam S MODE START = 2 ’ b10 ;
260
261
262 / / S e q u e n t i a l L o g i c
263 always@ ( posedge CLK or negedge RESETn )
264 i f ( ˜ RESETn )
265 s t a t e <= S MODECHOICE;
266 e lse
267 s t a t e <= n e x t s t a t e ;
268
269 / / C o m b i n a t i o n a l L o g i c
270 always@ ( ∗ )
271 begin
272 n e x t s t a t e = s t a t e ;
273 case ( s t a t e )
274 S MODECHOICE : i f (NOISE GEN OP MODE == NOISE GEN MODE SYNCH) n e x t s t a t e

= S MODE SYNCH WAIT ;
275 e lse i f (NOISE GEN OP MODE == NOISE GEN MODE ASYNCH) n e x t s t a t e

= S MODE START ;
276 / / SYNCHRONOUS MODE
277 / / Wait f o r t h e WGC S h i f t Enab l e
278 S MODE SYNCH WAIT : i f (WC WGC SHIFT EN) n e x t s t a t e = S MODE START ;
279
280 / / START NOISE GENERATOR (JUMP HERE IN CASE OF ASYNCHRONOUS MODE)
281 S MODE START : ;
282
283 / / DEFAULT
284 default : n e x t s t a t e = S MODECHOICE;
285
286 endcase
287 end
288
289 reg n o i s e g e n s h i f t e n o u t ;
290 reg n o i s e s e e d s h i f t e n o u t ;
291
292 reg n o i s e g e n s h i f t e n o u t q ;
293 reg n o i s e s e e d s h i f t e n o u t q ;
294
295 always@ ( posedge CLK or negedge RESETn )
296 i f ( ˜ RESETn )
297 begin
298 n o i s e g e n s h i f t e n o u t q <= 1 ’ b0 ;
299 n o i s e s e e d s h i f t e n o u t q <= 1 ’ b0 ;
300 end
301 e lse
302 begin
303 n o i s e g e n s h i f t e n o u t q <= n o i s e g e n s h i f t e n o u t ;
304 n o i s e s e e d s h i f t e n o u t q <= n o i s e s e e d s h i f t e n o u t ;
305 end
306
307 always@ ( ∗ )
308 begin
309 n o i s e g e n s h i f t e n o u t = n o i s e g e n s h i f t e n o u t q ;
310 n o i s e s e e d s h i f t e n o u t = n o i s e s e e d s h i f t e n o u t q ;
311 case ( s t a t e )
312 S MODE START : begin
313 n o i s e g e n s h i f t e n o u t = 1 ’ b1 ;
314 n o i s e s e e d s h i f t e n o u t = 1 ’ b1 ;
315 end
316 endcase
317 end
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318
319 assign NOISE GEN SHIFT ENO = n o i s e g e n s h i f t e n o u t q ;
320 assign NOISE SEED SHIFT ENO = n o i s e s e e d s h i f t e n o u t q ;
321
322 endmodule

B.2 Test Chip III

B.2.1 Brief Description

The watermark circuit modulates the architectural clock gate (except Bus Interface
Unit clock) during (case I) or immediately after (case II) the pipeline flush, caused by
Wait-for-Interrupt (WFI) request in ARM R© Cortex R©-A5 microprocessor. In case I, the
activation of the watermark circuit increases the time required to flush the pipeline and
depends on the bit pattern of a watermark sequence. In case II, the addition delay occurs
between clock gating and power gating, due to an extra period required to generate the
watermark power pattern.

B.2.2 Watermark Generation Circuit

The architecture of a WGC is the same as in test chips I and II. However, to reduce
the area overhead the WGC has been reduced to 16 bits. Therefore, the configuration
allows up to a 16-bit LFSR or 16-bit shift register.

B.2.3 Watermark Controller

The watermark circuit can be operated in two different modes, such as during WFI
pipeline flush (case I) or after WFI pipeline flush (case II). In case I, the controller
waits until Data Processing Unit (DPU) requests WFx pipeline flush, which is caused
by the WFI instruction. If such occurs, the controller enables WGC and the inverted
watermark sequence is generated. Once the pipeline has been flushed and DPU requests
the architectural clock to be gated, the controller preloads the WGC registers with the
data stored in layer0misc[31 : 16] register. This is to make sure watermark sequence
starts from the same position next time WFI is issued. In case II, the controller waits
until DPU requests the architectural clock to be gated. Upon receiving the signal, the
WGC is activated and executes a single period of a sequence, i.e. if 6-bit LFSR is used
63 clock cycles will be required to perform clock modulation. Once the full watermark
sequence rotation is complete, the WGC is stopped and controller waits for another
clock gate request from the DPU. In this case the output from the watermark circuit is
the original non-inverted watermark sequence.
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The control registers are shown in Table B.3.

Table B.3: Watermark Circuit Working Registers (Chips I and II)

Address Description

0xF0D00000 layer0 misc

[15:1] 1 - indicates the LFSR operation (uses XOR gate)

0 - indicates the shift register operation

[31:16] value stored initially and pre-loaded to the WGC register

0xF0D00004 layer1 misc

0 reset (active low)

1 clock enable

[3:2] operating mode

01 - clock modulation during WFI pipeline flush

10 - clock modulation after WFI pipeline flush

[9:8] write/shift control

01 - WGC shift operation (watermark active)

10 - WGC write (initial data read)

[19:16] WGC multiplexer control

B.2.4 RTL

1 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2 / / WATERMARK CA5 CRICKET
3 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

4 / / Watermark b l o c k f o r Cortex−A5 CRICKETi c h i p s p i n . O p e r a t e s in 2 a c t i v e modes
5 / / 1 . a c t i v e dur ing t h e WFI p i p e l i n e f l u s h
6 / / 2 . a c t i v e a f t e r t h e p i p e l i n e has be en f l u s h e d , b e f o r e e n t e r i n g t h e STANDBY mode
7 / /

8 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

9
10 module WATERMARK CA5 CRICKET (
11
12 / / I n p u t s
13 input wire CLKIN,
14 input wire [ 3 1 : 0 ] ahb layer0 misc , / / AHB Layer0 misc r e g i s t e r (0 xF0C0 0008)
15 input wire [ 3 1 : 0 ] ahb layer1 misc , / / AHB Layer1 misc r e g i s t e r (0 xF0C0 000C)
16 input wire n x t s t a n d b y i s w f i , / / Next STANDBY i s due t o WFI ( used f o r b o t h wmark modes )
17 input wire dpu gate c lk req , / / DPU r e q u e s t s i g n a l t o a r c h i t e c t u r a l c l o c k g a t e ( a f t e r p i p e l i n e

f l u s h )
18 input wire dpu wfx int req , / / DPU WFX r e q u e s t t o f l u s h t h e p i p e l i n e due t o WFx ( dur ing

p i p e l i n e f l u s h )
19
20 / / Outputs
21 output wire wmark gate clk req / / Watermark c l o c k g a t e r e q u e s t
22 ) ;
23
24 / / −−− Watermark C o n t r o l −−−
25 wire n r e s e t ; / / a c t i v e low r e s e t
26 wire clken ; / / g l o b a l c l o c k e n a b l e
27 wire [ 1 : 0 ] opmode ; / / watermark o p e r a t i o n mode
28 wire wg c sh i f t en ; / / WGC s h i f t e n a b l e
29 wire wgc write en ; / / WGC w r i t e e n a b l e
30 wire wgc preload ; / / WGC p r e l o a d f l a g f o r ’ dur ing t h e p i p e l i n e f l u s h ’ mode
31 wire [ 3 : 0 ] wgc mux ctrl ; / / WGC mux c o n t r o l
32
33 / / −−− Watermark Data −−−
34 wire [ 1 5 : 0 ] wgc d ; / / WGC d a t a
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35 wire [ 1 5 : 1 ] w g c s r l l f s r ; / / WGC s r l l f s r b i t s
36
37 / / −−− Watermark C o n t r o l a l l o c a t i o n −−−
38 / / b y t e 0 − g e n e r a l / o p e r a t i o n mode
39 assign n r e s e t = ahb layer1 misc [ 0 ] ;
40 assign clken = ahb layer1 misc [ 1 ] ;
41 assign opmode [ 1 : 0 ] = ahb layer1 misc [ 3 : 2 ] ;
42
43 / / b y t e 1 / 2 − WGC c o n t r o l
44 assign wg c sh i f t en = ahb layer1 misc [ 8 ] ;
45 assign wgc write en = ahb layer1 misc [ 9 ] ;
46
47 assign wgc mux ctrl [ 3 : 0 ] = ahb layer1 misc [ 1 9 : 1 6 ] ;
48
49 / / −−− Watermark Data a l l o c a t i o n −−−
50 assign w g c s r l l f s r [ 1 5 : 1 ] = ahb layer0 misc [ 1 5 : 1 ] ;
51 assign wgc d [ 1 5 : 0 ] = ahb layer0 misc [ 3 1 : 1 6 ] ;
52
53 / / −−− Wires and Regs −−−
54 wire wmark ; / / watermark s e q u e n c e
55 wire c t r l w g c s h i f t e n ; / / watermark c o n t r o l l e r WGC s h i f t en
56 wire c t r l w g c p r e l o a d ; / / watermark c o n t r o l l e r WGC p r e l o a d
57 wire [ 1 5 : 0 ] wgc ; / / Watermark G e n e r a t i o n C i r c u i t ou tp ut
58
59 reg wmarkrot ; / / watermark s e q u e n c e f u l l r o t a t i o n f l a g
60 wire [ 1 5 : 0 ] wmarkrot nxor ;
61 wire wmarkrot and 1 ;
62 wire wmarkrot and 2 ;
63 wire wmarkrot and 3 ;
64 wire wmarkrot and 4 ;
65 wire wmarkrot and 5 ;
66 wire wmarkrot and 6 ;
67 wire wmarkrot and 7 ;
68 wire wmarkrot and 8 ;
69 wire wmarkrot and 9 ;
70 wire wmarkrot and 10 ;
71 wire wmarkrot and 11 ;
72 wire wmarkrot and 12 ;
73 wire wmarkrot and 13 ;
74 wire wmarkrot and 14 ;
75 wire wmarkrot and 15 ;
76
77 / / watermark s e q u e n c e f u l l r o t a t i o n f l a g
78 assign wmarkrot nxor [ 1 5 : 0 ] = ˜ ( wgc [ 1 5 : 0 ] ˆ wgc d [ 1 5 : 0 ] ) ;
79 assign wmarkrot and 1 = wmarkrot nxor [ 0 ] & wmarkrot nxor [ 1 ] ;
80 assign wmarkrot and 2 = wmarkrot and 1 & wmarkrot nxor [ 2 ] ;
81 assign wmarkrot and 3 = wmarkrot and 2 & wmarkrot nxor [ 3 ] ;
82 assign wmarkrot and 4 = wmarkrot and 3 & wmarkrot nxor [ 4 ] ;
83 assign wmarkrot and 5 = wmarkrot and 4 & wmarkrot nxor [ 5 ] ;
84 assign wmarkrot and 6 = wmarkrot and 5 & wmarkrot nxor [ 6 ] ;
85 assign wmarkrot and 7 = wmarkrot and 6 & wmarkrot nxor [ 7 ] ;
86 assign wmarkrot and 8 = wmarkrot and 7 & wmarkrot nxor [ 8 ] ;
87 assign wmarkrot and 9 = wmarkrot and 8 & wmarkrot nxor [ 9 ] ;
88 assign wmarkrot and 10 = wmarkrot and 9 & wmarkrot nxor [ 1 0 ] ;
89 assign wmarkrot and 11 = wmarkrot and 10 & wmarkrot nxor [ 1 1 ] ;
90 assign wmarkrot and 12 = wmarkrot and 11 & wmarkrot nxor [ 1 2 ] ;
91 assign wmarkrot and 13 = wmarkrot and 12 & wmarkrot nxor [ 1 3 ] ;
92 assign wmarkrot and 14 = wmarkrot and 13 & wmarkrot nxor [ 1 4 ] ;
93 assign wmarkrot and 15 = wmarkrot and 14 & wmarkrot nxor [ 1 5 ] ;
94
95 always@ ( ∗ )
96 case ( wgc mux ctrl )
97 4 ’ b0001 : wmarkrot = wmarkrot and 1 ;
98 4 ’ b0010 : wmarkrot = wmarkrot and 2 ;
99 4 ’ b0011 : wmarkrot = wmarkrot and 3 ;

100 4 ’ b0100 : wmarkrot = wmarkrot and 4 ;
101 4 ’ b0101 : wmarkrot = wmarkrot and 5 ;
102 4 ’ b0110 : wmarkrot = wmarkrot and 6 ;
103 4 ’ b0111 : wmarkrot = wmarkrot and 7 ;
104 4 ’ b1000 : wmarkrot = wmarkrot and 8 ;
105 4 ’ b1001 : wmarkrot = wmarkrot and 9 ;
106 4 ’ b1010 : wmarkrot = wmarkrot and 10 ;
107 4 ’ b1011 : wmarkrot = wmarkrot and 11 ;
108 4 ’ b1100 : wmarkrot = wmarkrot and 12 ;
109 4 ’ b1101 : wmarkrot = wmarkrot and 13 ;
110 4 ’ b1110 : wmarkrot = wmarkrot and 14 ;
111 4 ’ b1111 : wmarkrot = wmarkrot and 15 ;
112 default : wmarkrot = 1 ’ bx ;
113 endcase
114
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115 / / −−− R e g i s t e r I n p u t s
116 reg n x t s t a n d b y i s w f i q ;
117 reg d p u g a t e c l k r e q q ;
118 reg dpu wfx int req q ;
119
120 always@ ( posedge CLKIN or negedge n r e s e t )
121 i f ( ˜ n r e s e t )
122 begin
123 n x t s t a n d b y i s w f i q <= 1 ’ b0 ;
124 d p u g a t e c l k r e q q <= 1 ’ b0 ;
125 dpu wfx int req q <= 1 ’ b0 ;
126 end
127 e lse
128 begin
129 n x t s t a n d b y i s w f i q <= n x t s t a n d b y i s w f i ;
130 d p u g a t e c l k r e q q <= dpu gate c lk req ;
131 dpu wfx int req q <= dpu wfx int req ;
132 end
133
134 WMARK CTRL
135 watermark contro l ler
136 (
137 . c l k (CLKIN) ,
138 . c lken ( clken ) ,
139 . n r e s e t ( n r e s e t ) ,
140 . opmode(opmode) ,
141 . w g c s h i f t e n i ( w gc sh i f t en ) ,
142 . wmark(wmark) ,
143 . wmarkrot ( wmarkrot ) ,
144 . w g c s h i f t e n o ( c t r l w g c s h i f t e n ) ,
145 . wgc preload o ( c t r l w g c p r e l o a d ) ,
146 . n x t s t a n d b y i s w f i ( n x t s t a n d b y i s w f i q ) ,
147 . d p u g a t e c l k r e q i ( d p u g a t e c l k r e q q ) ,
148 . dpu wfx int req ( dpu wfx int req q ) ,
149 . wmark gate clk req ( wmark gate clk req )
150 ) ;
151
152 WGC
153 wa t ge n c i rc
154 (
155 . c l k (CLKIN) ,
156 . c lken ( clken ) ,
157 . s h i f t e n ( c t r l w g c s h i f t e n ) ,
158 . wri te en ( wgc write en | c t r l w g c p r e l o a d ) ,
159 . mux ctr l ( wgc mux ctrl ) ,
160 . s r l l f s r ( w g c s r l l f s r ) ,
161 . d i ( wgc d ) ,
162 . wmark(wmark) ,
163 . wgc o (wgc)
164 ) ;
165
166 endmodule
167
168
169 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

170 / / WATERMARK CIRCUIT CONTROLLER
171 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

172 / /

173 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

174
175 ‘ t i m e s c a l e 1ns / 1ps
176
177 module WMARK CTRL (
178
179 / / −−− Watermark c o n t r o l −−−
180 / / I n p u t s
181 input wire clk ,
182 input wire clken , / / C l o c k e n a b l e
183 input wire nreset , / / A c t i v e low r e s e t
184 input wire [ 1 : 0 ] opmode , / / Watermark o p e r a t i o n mode
185 input wire w g c s h i f t e n i , / / WGC s h i f t e n a b l e i n p u t c o n t r o l
186 input wire wmark , / / watermark s e q u e n c e
187 input wire wmarkrot , / / watermark f u l l r o t a t i o n f l a g
188
189 / / Outputs
190 output reg wgc shi f t en o , / / WGC s h i f t e n a b l e ou tp ut c o n t r o l
191 output reg wgc preload o , / / WGC p r e l o a d
192
193 / / −−− CA5 c o n t r o l −−−
194 / / I n p u t s
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195 input wire n x t s t a n d b y i s w f i , / / Next STANDBY i s due t o WFI ( used f o r b o t h wmark modes )
196 input wire d p u g a t e c l k r e q i , / / DPU r e q u e s t s i g n a l t o a r c h i t e c t u r a l c l o c k g a t e ( a f t e r p i p e l i n e

f l u s h )
197 input wire dpu wfx int req , / / DPU WFX r e q u e s t t o f l u s h t h e p i p e l i n e due t o WFx ( dur ing

p i p e l i n e f l u s h )
198
199 / / Outputs
200 output reg wmark gate clk req / / Watermark c l o c k g a t e r e q u e s t
201 ) ;
202
203 / / −−− O p e r a t i o n Modes −−−
204 localparam WFI WITH FLUSH = 2 ’ b01 ; / / Watermark a c t i v e dur ing WFI p i p e l i n e f l u s h
205 localparam WFI AFTER FLUSH = 2 ’ b10 ; / / Watermark a c t i v e a f t e r WFI p i p e l i n e f l u s h
206
207 / / −−− S t a t e Machine −−−
208 localparam ST WAIT = 3 ’ b000 ;
209 localparam ST WITH PRELOAD = 3 ’ b001 ;
210 localparam ST WITH IDLE = 3 ’ b010 ;
211 localparam ST WITH ACTIVE = 3 ’ b011 ;
212 localparam ST AFTER IDLE = 3 ’ b100 ;
213 localparam ST AFTER ACTIVE = 3 ’ b101 ;
214
215 reg [ 2 : 0 ] wmark state ;
216 reg [ 2 : 0 ] nxt wmark state ;
217
218 always@ ( posedge c l k or negedge n r e s e t )
219 i f ( ˜ n r e s e t )
220 wmark state <= ST WAIT ;
221 e lse
222 wmark state <= nxt wmark state ;
223
224 always@ ( ∗ )
225 begin
226 / / D e f a u l t s
227 w g c s h i f t e n o = 1 ’ b0 ;
228 wgc preload o = 1 ’ b0 ;
229 wmark gate clk req = 1 ’ b0 ;
230 nxt wmark state = wmark state ;
231
232 case ( wmark state )
233 / / −−− WATERMARK ACTIVE DURING PIPELINE FLUSH −−−
234 ST WAIT : begin
235 / / WAIT − w a i t s u n t i l WGC s h i f t i s e n a b l e d and one o f t h e o p e r a t i o n modes has been s e l e c t e d
236 i f ( w g c s h i f t e n i )
237 begin
238 i f (opmode == WFI WITH FLUSH) nxt wmark state = ST WITH IDLE ;
239 e lse i f (opmode == WFI AFTER FLUSH) nxt wmark state = ST AFTER IDLE ;
240 e lse nxt wmark state = wmark state ;
241 end
242 end
243 ST WITH PRELOAD : begin
244 / / PRELOAD WATERMARK ( with ) − a f t e r t h e p i p e l i n e has been f l u s h e d and t h e watermark
245 / / i s e x p e c t e d t o s t op , t h e s e q u e n c e may not be in t h e c o r r e c t s t a r t i n g p o s i t i o n
246 / / h e n c e i t may be d i f f i c u l t t o merge m u l t i p l e s h o r t power v e c t o r s t o g e t h e r t o
247 / / o b t a i n a l o n g e r power v e c t o r f o r c o r r e l a t i o n . To make s u r e watermark s t a r t s
248 / / f rom t h e same s e q u e n c e e v e r y t ime WFI i s i s s u e d , t h e watermark i s p r e l o a d e d
249 / / with t h e d a t a from misc r e g i s t e r a f t e r t h e p i p e l i n e has be en f l u s h e d and t h e
250 / / r e q u e s t t o g a t e t h e a r c h i t e c t u r a l c l o c k has be en i s s u e d
251
252 wgc preload o = 1 ’ b1 ;
253 nxt wmark state = ST WITH IDLE ;
254 end
255 ST WITH IDLE : begin
256 / / IDLE ( with ) − w a i t s u n t i l DPU r e q u e s t s a p i p e l i n e f l u s h
257 i f ( n x t s t a n d b y i s w f i & dpu wfx int req ) nxt wmark state = ST WITH ACTIVE ;
258 end
259 ST WITH ACTIVE : begin
260 / / ACTIVE ( with ) − a c t i v a t e s watermark f o r t h e d u r a t i o n o f t h e p i p e l i n e f l u s h
261 / / h e n c e m o d u l a t e s t h e e n t i r e CA5 c l o c k ( e x c e p t r e s e t s y n c h r o n i z e r s , i n t e r r u p t e t c . )
262 / / Waits u n t i l c l o c k g a t e r e q u e s t i s i s s u e d t o t h e a r c h i t e c t u r a l c l o c k g a t e
263 i f ( d p u g a t e c l k r e q i ) nxt wmark state = ST WITH PRELOAD ;
264 e lse
265 begin
266 w g c s h i f t e n o = 1 ’ b1 ;
267 wmark gate clk req = ˜wmark ;
268 end
269 end
270 / / −−− WATERMARK ACTIVE AFTER PIPELINE FLUSH −−−
271 ST AFTER IDLE : begin
272 / / IDLE ( a f t e r ) − w a i t s u n t i l DPU r e q u e s t c l o c k t o be g a t e d and a c t i v a t e s t h e watermark
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273 i f ( d p u g a t e c l k r e q i ) begin
274 w g c s h i f t e n o = 1 ’ b1 ;
275 wmark gate clk req = wmark ;
276 nxt wmark state = ST AFTER ACTIVE ;
277 end
278 end
279 ST AFTER ACTIVE : begin
280 / / ACTIVE ( a f t e r ) − w a i t s u n t i l watermark has done a s i n g l e f u l l r o t a t i o n and d i s a b l e s i t
281 / / a l s o w a i t s
282 i f ( wmarkrot ) begin
283 i f ( ˜ d p u g a t e c l k r e q i ) nxt wmark state = ST AFTER IDLE ;
284 end
285 e lse begin
286 w g c s h i f t e n o = 1 ’ b1 ;
287 wmark gate clk req = wmark ;
288 end
289 end
290 default : begin
291 w g c s h i f t e n o = 1 ’ bx ;
292 wgc preload o = 1 ’ bx ;
293 wmark gate clk req = 1 ’ bx ;
294 nxt wmark state = 3 ’ bxxx ;
295 end
296 endcase
297 end
298
299 endmodule
300
301
302 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

303 / / WATERMARK GENERATION CIRCUIT MODULE
304 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

305 / / I n s t a n t i a t e s a S i n g l e Sequence G e n e r a t o r (SSG) module
306 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

307
308 ‘ t i m e s c a l e 1ns / 1ps
309
310 module WGC (
311
312 input wire clk ,
313 input wire clken , / / C l o c k Enab l e
314 input wire s h i f t e n , / / WGC S h i f t Enab l e
315 input wire write en , / / SSG Write Enab l e
316 input wire [ 3 : 0 ] mux ctrl , / / SSG Mux C o n t r o l
317 input wire [ 1 5 : 1 ] s r l l f s r , / / SSG S h i f t R e g i s t e r o r LFSR c o n t r o l
318 input wire [ 1 5 : 0 ] d i , / / Input Data
319
320 output wire wmark , / / Watermark s e q u e n c e
321 output wire [ 1 5 : 0 ] wgc o / / Watermark G e n e r a t i o n C i r c u i t ou tp ut
322 ) ;
323
324 SINGLE SEQ GEN ssg (
325 . c l k ( c l k ) ,
326 . c lken ( clken ) ,
327 . s h i f t e n ( s h i f t e n ) ,
328 . wri te en ( wri te en ) ,
329 . mux ctr l ( mux ctr l ) ,
330 . s s g i ( d i ) ,
331 . s r l l f s r ( s r l l f s r ) ,
332 . s sgs o (wmark) ,
333 . ssg o ( wgc o )
334 ) ;
335 / / −−−

336
337 endmodule
338
339
340 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

341 / / SINGLE SEQUENCE GENERATOR MODULE
342 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

343 / / Can be s e t t o implement LFSR , up t o 16− b i t ( G a l o i s LFSR ) or up t o 16− b i t S h i f t R e g i s t e r
344 / /

345 / / In o r d e r t o c h o o s e t h e f e e d b a c k l o o p f o r t h e LFSR ( and t h e ou tp ut ) and t h e o u tp ut f o r
346 / / t h e SRL , t h e 16− to −1 MUX i s used with m u x c t r l c o n t r o l b i t s
347 / / In o r d e r t o implement t h e LFSR , t h e f e e d b a c k i s XORed with r e g i s t e r s depend ing on t h e
348 / / LFSR l e n g t h t o be implemented , t h e r e f o r e 15 s r l l f s r c o n t r o l b i t s a r e r e q u i r e d
349 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

350
351 ‘ t i m e s c a l e 1ns / 1ps
352
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353 module SINGLE SEQ GEN (
354
355 input wire clk ,
356 input wire clken , / / C l o c k e n a b l e
357 input wire s h i f t e n , / / S h i f t Enab l e
358 input wire write en , / / Write Enab l e
359 input wire [ 3 : 0 ] mux ctrl , / / Mux 16− to −1 C o n t r o l b i t s
360 input wire [ 1 5 : 0 ] s s g i , / / Input Data
361 input wire [ 1 5 : 1 ] s r l l f s r , / / SRL LFSR C o n t r o l b i t s
362
363 output wire ssgs o , / / S i n g l e b i t o u t pu t
364 output wire [ 1 5 : 0 ] ssg o / / S i n g l e Sequence G e n e r a t o r ou t pu t
365 ) ;
366
367 / / B i t G e n e r a t o r s Outputs
368 wire bi tgen0 ;
369 wire bi tgen1 ;
370 wire bi tgen2 ;
371 wire bi tgen3 ;
372 wire bi tgen4 ;
373 wire bi tgen5 ;
374 wire bi tgen6 ;
375 wire bi tgen7 ;
376 wire bi tgen8 ;
377 wire bi tgen9 ;
378 wire bi tgen10 ;
379 wire bi tgen11 ;
380 wire bi tgen12 ;
381 wire bi tgen13 ;
382 wire bitgen14 ;
383 wire bitgen15 ;
384
385 / / Output from 16− to −1 MUX, f e d b a c k t o t h e 1 s t r e g i s t e r and a l l f e e d b a c k w i r e s t o XNOR g a t e s
386 wire feedback ;
387
388 / / REGISTER BANK INSTANTIATION
389 SEQ GEN BIT WITHOUT XOR reg0 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i [ 0 ] ) , .

dprev i ( feedback ) , . d o ( bi tgen0 ) ) ;
390
391 SEQ GEN BIT WITH XOR reg1 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 1 ] ) , . dprev i ( b i tgen0 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 1 ] ) , . d o ( bi tgen1 ) ) ;
392
393 SEQ GEN BIT WITH XOR reg2 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 2 ] ) , . dprev i ( b i tgen1 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 2 ] ) , . d o ( bi tgen2 ) ) ;
394
395 SEQ GEN BIT WITH XOR reg3 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 3 ] ) , . dprev i ( b i tgen2 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 3 ] ) , . d o ( bi tgen3 ) ) ;
396
397 SEQ GEN BIT WITH XOR reg4 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 4 ] ) , . dprev i ( b i tgen3 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 4 ] ) , . d o ( bi tgen4 ) ) ;
398
399 SEQ GEN BIT WITH XOR reg5 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 5 ] ) , . dprev i ( b i tgen4 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 5 ] ) , . d o ( bi tgen5 ) ) ;
400
401 SEQ GEN BIT WITH XOR reg6 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 6 ] ) , . dprev i ( b i tgen5 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 6 ] ) , . d o ( bi tgen6 ) ) ;
402
403 SEQ GEN BIT WITH XOR reg7 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 7 ] ) , . dprev i ( b i tgen6 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 7 ] ) , . d o ( bi tgen7 ) ) ;
404
405 SEQ GEN BIT WITH XOR reg8 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 8 ] ) , . dprev i ( b i tgen7 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 8 ] ) , . d o ( bi tgen8 ) ) ;
406
407 SEQ GEN BIT WITH XOR reg9 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 9 ] ) , . dprev i ( b i tgen8 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 9 ] ) , . d o ( bi tgen9 ) ) ;
408
409 SEQ GEN BIT WITH XOR reg10 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 1 0 ] ) , . dprev i ( b i tgen9 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 1 0 ] ) , . d o ( bi tgen10 ) ) ;
410
411 SEQ GEN BIT WITH XOR reg11 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 1 1 ] ) , . dprev i ( bi tgen10 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 1 1 ] ) , . d o ( bi tgen11 ) ) ;
412
413 SEQ GEN BIT WITH XOR reg12 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 1 2 ] ) , . dprev i ( bi tgen11 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 1 2 ] ) , . d o ( bi tgen12 ) ) ;
414
415 SEQ GEN BIT WITH XOR reg13 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 1 3 ] ) , . dprev i ( bi tgen12 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 1 3 ] ) , . d o ( bi tgen13 ) ) ;
416
417 SEQ GEN BIT WITH XOR reg14 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 1 4 ] ) , . dprev i ( bi tgen13 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 1 4 ] ) , . d o ( bi tgen14 ) ) ;
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418
419 SEQ GEN BIT WITH XOR reg15 ( . c l k ( c l k ) , . c lken ( clken ) , . s h i f t e n ( s h i f t e n ) , . wr i te en ( wri te en ) , . d i ( s s g i

[ 1 5 ] ) , . dprev i ( bi tgen14 ) , . d l a s t i ( feedback ) , . s r l l f s r ( s r l l f s r [ 1 5 ] ) , . d o ( bi tgen15 ) ) ;
420
421 / / −−−

422
423
424 / / FEEDBACK MUX INSTANTATION
425 wire [ 1 5 : 0 ] b i tgen ;
426
427 assign bi tgen [ 1 5 : 0 ] = { bitgen15 ,
428 bitgen14 ,
429 bitgen13 ,
430 bitgen12 ,
431 bitgen11 ,
432 bitgen10 ,
433 bitgen9 ,
434 bitgen8 ,
435 bitgen7 ,
436 bitgen6 ,
437 bitgen5 ,
438 bitgen4 ,
439 bitgen3 ,
440 bitgen2 ,
441 bitgen1 ,
442 bi tgen0
443 } ;
444
445 MUX16 ssg mux ( . d ( b i tgen [ 1 5 : 0 ] ) , . c t r l ( mux ctr l ) , . q ( feedback ) ) ;
446
447 / / OUTPUT DATA
448 assign ssgs o = feedback ;
449 assign ssg o [ 1 5 : 0 ] = bi tgen [ 1 5 : 0 ] ;
450
451 endmodule
452
453 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

454 / / 1− b i t REG with XOR g a t e
455 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

456 / / Used t o implement SRL / LFSR f u n c t i o n (XOR g a t e s used f o r f l i p − f l o p s from 1 s t t o 15 th f o r LFSR )
457 / / Also a d d i t i o n a l MUX i s used t o c h o o s e t h e d a t a e i t h e r from t h e misc r e g i s t e r s
458 / / or from t h e p r e v i o u s r e g i s t e r
459 / /

460 / / The i n p u t d a t a can be r o u t e d e i t h e r from t h e misc r e g i s t e r s o r from t h e p r e v i o u s r e g i s t e r
461 / / When i n i t i a l d a t a comes from t h e misc r e g i s t e r s s h i f t e n i s c l e a r e d and w r i t e e n i s s e t
462 / / I f d a t a comes from t h e p r e v i o u s r e g i s t e r s h i f t e n i s s e t and w r i t e e n i s c l e a r e d
463 / /

464 / / S i n c e t h e whole 16− b i t REG can be implemented as e i t h e r SRL ( s h i f t r e g i s t e r ) o r LFSR t h e
465 / / a d d i t i o n a l c o n t r o l b i t s r l l f s r s p e c i f i e s which mode t h e b i t i s c u r r e n t l y in (1 f o r SRL ,
466 / / 0 f o r LFSR ) . In c a s e o f SRL mode t h e d a t a i s s h i f t e d from t h e p r e v i o u s r e g i s t e r , w h i l e in c a s e
467 / / o f t h e LFSR t h e d a t a from t h e p r e v i o u s r e g i s t e r i s XORed with t h e b i t from t h e l a s t u s a b l e r e g i s t e r
468 / / ( f e e d b a c k l o o p )
469 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

470
471 ‘ t i m e s c a l e 1ns / 1ps
472
473 module SEQ GEN BIT WITH XOR (
474
475 input wire clk ,
476 input wire clken , / / C l o c k e n a b l e
477 input wire s h i f t e n , / / S h i f t Enab l e
478 input wire write en , / / Write Enab l e
479 input wire d i , / / Input Data
480 input wire dprev i , / / Data from p r e v i o u s REG
481 input wire d l a s t i , / / Data from l a s t REG
482 input wire s r l l f s r , / / Connec ted as s h i f t r e g i s t e r ( SRL − 0) or LFSR ( 1 ) ;
483 output wire d o / / Data Out
484 ) ;
485
486 wire d s r l l f s r ; / / d a t a c o n n e c t e d d i r e c t l y from p r e v i o u s Q ( SRL ) or through XOR ( LFSR )
487
488 assign d s r l l f s r = ( s r l l f s r ) ? ( dprev i ˆ d l a s t i ) : dprev i ;
489
490 wire d s e l ; / / d a t a c o n n e c t e d from t h e misc r e g i s t e r s o r d s r l l f s r
491
492 assign d s e l = ( s h i f t e n ) ? d s r l l f s r : d i ;
493
494 reg s e q b i t ;
495
496 always@ ( posedge c l k )



Appendix B Watermark Circuits Integrated on Test Chips 179

497 i f ( c lken )
498 i f ( s h i f t e n | wri te en ) s e q b i t <= d s e l ;
499
500 assign d o = s e q b i t ;
501
502 endmodule
503
504
505 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

506 / / 1− b i t REG w i t h o u t XOR g a t e
507 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

508 / / Used t o implement SRL / LFSR f u n c t i o n (XOR g a t e not ne ed ed as t h i s would be 1 s t REG f o r LFSR )
509 / / Also a d d i t i o n a l MUX i s used t o c h o o s e t h e d a t a e i t h e r from t h e misc r e g i s t e r s
510 / / or from t h e p r e v i o u s r e g i s t e r
511 / /

512 / / The i n p u t d a t a can be r o u t e d e i t h e r from t h e misc r e g i s t e r s o r from t h e p r e v i o u s r e g i s t e r
513 / / When i n i t i a l d a t a comes from t h e misc r e g i s t e r s s h i f t e n i s c l e a r e d and w r i t e e n i s s e t
514 / / I f d a t a comes from t h e p r e v i o u s r e g i s t e r s h i f t e n i s s e t and w r i t e e n i s c l e a r e d
515 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

516
517 ‘ t i m e s c a l e 1ns / 1ps
518
519 module SEQ GEN BIT WITHOUT XOR (
520
521 input wire clk ,
522 input wire clken , / / C l o c k e n a b l e
523 input wire s h i f t e n , / / S h i f t Enab l e
524 input wire write en , / / Write Enab l e
525 input wire d i , / / Input Data
526 input wire dprev i , / / Data from p r e v i o u s REG
527 output wire d o / / Data Out
528 ) ;
529
530 wire d s e l ; / / d a t a from t h e misc r e g i s t e r s o r d a t a i n p u t
531
532 assign d s e l = ( s h i f t e n ) ? dprev i : d i ;
533
534 reg s e q b i t ;
535
536 always@ ( posedge c l k )
537 i f ( c lken )
538 i f ( s h i f t e n | wri te en ) s e q b i t <= d s e l ;
539
540 assign d o = s e q b i t ;
541
542 endmodule
543
544
545 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

546 / / 16− to −1 MUX
547 / / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

548
549 ‘ t i m e s c a l e 1ns / 1ps
550
551 module MUX16 (
552
553 input wire [ 1 5 : 0 ] d , / / Input
554 input wire [ 3 : 0 ] c t r l , / / C o n t r o l
555 output wire q / / Output
556 ) ;
557
558 assign q = ( ( c t r l == 4 ’ b0000 ) & d [ 0 ] ) |
559 ( ( c t r l == 4 ’ b0001 ) & d [ 1 ] ) |
560 ( ( c t r l == 4 ’ b0010 ) & d [ 2 ] ) |
561 ( ( c t r l == 4 ’ b0011 ) & d [ 3 ] ) |
562 ( ( c t r l == 4 ’ b0100 ) & d [ 4 ] ) |
563 ( ( c t r l == 4 ’ b0101 ) & d [ 5 ] ) |
564 ( ( c t r l == 4 ’ b0110 ) & d [ 6 ] ) |
565 ( ( c t r l == 4 ’ b0111 ) & d [ 7 ] ) |
566 ( ( c t r l == 4 ’ b1000 ) & d [ 8 ] ) |
567 ( ( c t r l == 4 ’ b1001 ) & d [ 9 ] ) |
568 ( ( c t r l == 4 ’ b1010 ) & d [ 1 0 ] ) |
569 ( ( c t r l == 4 ’ b1011 ) & d [ 1 1 ] ) |
570 ( ( c t r l == 4 ’ b1100 ) & d [ 1 2 ] ) |
571 ( ( c t r l == 4 ’ b1101 ) & d [ 1 3 ] ) |
572 ( ( c t r l == 4 ’ b1110 ) & d [ 1 4 ] ) |
573 ( ( c t r l == 4 ’ b1111 ) & d [ 1 5 ] ) ;
574
575 endmodule
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