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Recognition of Elementary Upper Limb Movements in Nomadic Environment

by Dwaipayan Biswas

ICT enabled body-worn remote rehabilitation system has been projected as an effective
means for combating the major socio-economic challenge resulting from the need for
quality care delivery for stroke survivors. The two major problems faced in such systems
are: 1) while effective for characterising the patient’s performance during a constrained
“exercise phase” in remote settings, the more natural indicator of rehabilitation status, i.e.,
the patient’s performance in an “unconstrained nomadic environment”, are often not
considered and; 2) being body-worn and thus constrained by the battery life, their
sustainability for long-term continuous monitoring is questionable. These shortcomings
motivated the: 1) exploration of effective algorithmic strategies for accurately detecting
movement of affected body parts, more specifically, the movement of the upper limb since
it frequently gets affected by stroke episodes — in unconstrained scenarios and; 2)
translation of the algorithms to dedicated low-power hardware with an aim of enhancing
the battery life of a resource constrained body-worn sensor based remote rehabilitation
system for its sustained operation satisfying the notion of long-term continuous
monitoring.

Following instructions of expert physiotherapists, this work concentrates on detecting three
fundamental upper limb movements in unconstrained scenarios: extension/flexion of the
forearm; rotation of the forearm about the elbow; and rotation of the arm about the long
axis of forearm, using body-worn inertial sensors. After selecting the appropriate type of
inertial sensors and their positions through exhaustive experiments, two novel algorithms
were proposed to recognize the above mentioned movements: 1) clustering and minimum
distance classifier based approach and 2) tracking the orientation of an inertial sensor
placed on the wrist. The performances of the algorithms have been evaluated prospectively
through an archetypal activity ‘making-a-cup-of-tea’ which includes multiple occurrences
of the chosen movements. The proposed clustering based approach detected the three
movements with an average accuracy of 88% and 70% using accelerometer data and 83%
and 70% using gyroscope data obtained from the wrist for healthy subjects and stroke
survivors respectively. Compared to that the proposed sensor orientation based
methodology using a wrist-worn accelerometer only recognized the three movements with
accuracies in the range of 91-99% for healthy subjects and 70%-85% for stroke survivors.
However the clustering based approach provides greater flexibility in terms of
incorporating new types of movements apart from the ones chosen here and can also be
used to track changes in motor functionality over time. Subsequently it was translated into
a novel ASIC resulting in dynamic power consumption of 25.9 mW @20 MHz in 130 nm
technology. On the other hand, the sensor orientation based approach was also validated in
hardware using an Altera DEIl FPGA system, for high speed real-time movement
recognition.
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1. Chapter 1

Introduction

Increased life expectancy due to better medical facilities in developed nations has
increased the prevalence of health impairments among the constantly increasing ageing
population. The world’s elderly population (on or above the age of 65 years) which stands
at 650 million at present is expected to reach 2 billion by 2050. In the European Union, the
85+ population is expected to increase three times by 2060 [1]. This implies that with more
life expectancy there would be a higher prevalence of health impairments necessitating
increased expenditure in their healthcare and an intensive support system for their daily life

operations [2].

Among the many diseases plaguing the elderly population is Cerebrovascular accident
(CVA) or popularly termed as stroke caused primarily due to blockages in the blood supply
to the brain, depriving the oxygen supply to the brain tissue which in turn causes the brain
cells to dysfunction and eventually die. It is considered as a medical emergency due to its
impact leading to death or physical disabilities caused by neurological disorders and ranks
second only to coronary heart diseases [3]-[5]. Nearly 2 million people are affected each
year in Europe out of which nearly 100,000 people are from the UK [6]. About one-third of
the patients who survive, more than 670,000, return home with permanent disabilities
leading to a significant reduction in the quality of their lives post-stroke [7]. The effect of
stroke on human beings is different for each individual based on the damaged area of the
brain but in general leads to paralysis, impaired vision, memory loss, speech and language
problems [8], [9]. Due to the prevalence of ageing in the European societies the number of
stroke affected people is expected to be on the rise and is predicted to account for 6.2% of
the total burden of illness by 2020 [3]. This alarming trend is also prevalent in rest of the
world [10].

Survivors require long term rehabilitation and support for leading an independent life,
which includes costly human intervention in the form of immediate carers, occupational
(ergo therapeutic) and physiotherapeutic sessions and visit of the therapists to the patient’s

home. The total cost of stroke in the European Union was calculated to be over 38 billion
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in 2006 which included direct healthcare costs (about 49% of the total cost), productivity
loss of the individuals due to disability and death (about 23% of the total cost) and care
expenses (about 29% of the total cost) thus having a very high socio-economic impact. The
‘care expenses’ Include inpatient treatment cost, outpatient hospital visits and long-term
rehabilitation and care. In recent years, the expenses incurred on long term care have
increased from 13% to 48% of the overall ‘care expenses’ [7]. Therefore, there is a need to
address the ‘care expenses’ to reduce the incurred costs and also to maximise the number

of patients being treated.

Patients who are left paralysed post-stroke are often treated with physiotherapy in order to
restore their motor functionality. The level of physiotherapy needs to be as intensive as
possible in order to ensure fast recovery [11]. Apart from conventional physiotherapy,
rehabilitation therapies have been provided in clinical settings using functional electrical
stimulation (FES), often involving the use of a controller like an iterative learning control
(ILC) [12], [13]. Robotic technology was also employed in FES systems to assist patients
in performing their rehabilitation exercises [14]. Some other methods employed are virtual
reality [15] and constrained induced movement therapy [16], [17]. Such different

rehabilitation modalities have been discussed at length in Chapter 2.

Although there has been partial success in achieving motor recovery in patients by these
rehabilitation methods, the main bottleneck is their suitability in a clinical setting because
they involve the use of many appliances and hence necessitates unnecessary patient
transfer to the clinic from their respective homes. Moreover, the use of sophisticated
robotic framework, correct placement of sensors and the use of specialised software
require trained individuals for using the systems, which again diminishes their practicality
in home settings. Hence, the clinical outcome of rehabilitation is quite unsatisfactory
among a wide group of stroke survivors [5]. The high socio-economic impact of post-
stroke rehabilitation necessitates the development of a telemedicine system for devising a
long-term and effective treatment strategy in home settings thereby also helping to reduce

costly human intervention [18].

1.1 Home-based rehabilitation for stroke survivors

Most survivors feel psychologically and physically more comfortable in their home than in

a hospital and therefore home based treatment helps in delivering an increased speed of
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rehabilitation [7]. A specialised application of telemedicine for stroke rehabilitation called
‘Telestroke’, has been in practise for over two decades and has had major success in
delivering ‘around-the clock’ specialist clinical evaluation of stroke survivors in home
settings [19]. The factors that have significantly contributed towards the advent of home-
based rehabilitation can be summarised as:

e it provides logistical convenience since it helps to reduce unnecessary patient transfer
to the clinic or hospital,

e it is cost-effective since it helps to reduce expenses incurred towards hospitalization
and human intervention,

e advances in computer-based technology to provide audio-visual interaction between
patients and clinicians and wireless sensor technology have helped in remote
monitoring of patients and

e it has further helped to maximize the number of patients being treated at home across a

wide spectrum of the population [19].

A typical home-based stroke rehabilitation system comprises of the survivor performing
various exercises as prescribed by the clinicians. Many systems further aim to motivate the
survivors by emulating the rehabilitation exercises/training through games played over
gaming consoles thereby preventing the exercises from being a mundane activity and also
expediting the rehabilitation process. Vision-based systems like Kinect motion capture [20]
or simple camera-based systems have also been popularly used but are mainly restricted to
indoor activities within a defined region and require an un-hindered surveillance of the
survivor. Further, installation of video cameras within the home is generally not preferred
by the survivors since it intrudes into their privacy. Sensors are also placed within the
home environment which helps to track the use of various objects that are typically used in

daily life using radio-frequency identification (RFID) [21].

The advancements in wireless sensor networks (WSN) have enabled the monitoring of
human body parts across a wide range of applications including remote health monitoring
[22], [23], human computer interaction [24], [25] and sports medicine [26], [27]. The
advent of low-cost, body-worn, miniaturised inertial sensors have helped in long-term
capturing of kinematic data from the human body [28], [29]. Therefore, wearable inertial
sensors coupled with the advantages of wireless communication, forming a body area

network (BAN) system are widely used for patient monitoring within home settings [30].
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The data collected from these sensors are transmitted wirelessly to a remote server where
they are analysed to infer the rehabilitation progress of the patients. The data are generally
uploaded onto a patient database commonly referred to as the patient health record (PHR).
The PHR can be accessed by the respective clinicians for assessing the recovery of the
patient at pre-decided intervals of time and if required they can prescribe modifications to
the rehabilitation protocol. Hence, the PHR can be utilised as a pre-emptive means to have

a regular update on the well-being of the patients [7], [31]-[32].

1.2 Shortcomings of the existing telemedicine modalities

The most significant drawback for a majority of remote monitoring systems at present is
that they are only effective for characterising the patient’s performance during a
constrained exercise phase without monitoring them in the nomadic environment (i.e. real
life) wherein the patients undertake various daily activities. A quantitative assessment on
the usage of the affected body parts (e.g. impaired limb) in the nomadic environment,
which essentially involves a longer monitoring duration than the stipulated exercise phase,
would be a natural indicator of rehabilitation progress and therefore also help the clinicians
to formulate an objective feedback.

Moreover, in typical health monitoring systems, the physiological data collected from the
patient’s body through various sensors are transmitted continuously to a remote server at
the back office service platform in two ways - wirelessly over a GSM network or through
the patient’s Bluetooth enabled mobile device, where the corresponding procedure of
analysing the transmitted signal takes place using ‘computationally intensive signal
processing and classification techniques’ [33]. The fundamental problem with continuous
data transmission is the energy requirement which is expended at the radio-front end of the
sensors. Hence, continuous transmission of data, affects the operational life-time of the
battery operated sensors, thereby rendering them ineffective for long-term remote
monitoring applications. Therefore, in such wearable systems the data analysis primarily
needs to be carried out at the sensor node itself, which has been shown to yield a more
energy efficient solution compared to the conventional continuous data transmission based
remote monitoring approach, provided the complexity of data analysis algorithms is
reduced [33]. Since the energy consumption is proportional to the computational
complexity of the data processing algorithm used, the use of high-complexity algorithms

(although they may be more ‘accurate’) will drain the battery faster, defying the objective
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of long-term monitoring. Hence, from the perspective of long-term system operation, when
implementing a body-worn wireless sensor node comprising of different sensors, it is

essential to select data analysis algorithms that are computationally of low-complexity.

1.3 Motivation

The highlighted shortcomings act as a motivation to detect the occurrences of the
movements performed by the stroke survivors with their impaired body parts at home
settings especially in an unconstrained nomadic environment. This research work
particularly focuses on the domain of upper limb rehabilitation for stroke survivors, since
the impairment of the upper limb is a common problem among a majority of survivors
which renders them ineffective in performing their essential activities in daily life [34] [35]
[35], [36]. Therefore, the aim is to detect the use of the impaired arm of the stroke
survivors during the exercise phase and during normal daily activities (i.e. nomadic
environment) using minimal number of sensors. The classification and enumeration of the
occurrences of specific arm movements (e.g. prescribed exercises) over time can be
indicative of rehabilitation progress since the frequency of these movements is more likely
to increase as the motor functionality of the person improves.

In view of this motivation, there is a two-fold objective:

o to explore effective low-complexity algorithmic techniques for detecting specific upper
limb movements in an unconstrained nomadic environment without compromising on
the accuracy of movement detection and

e translating the algorithms to dedicated low-power hardware which can be used within a
resource constrained body-worn sensor node with an aim of enhancing its battery life

for a sustained operation satisfying the notion of long-term continuous monitoring.
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1.4 Research challenges

The primary challenges towards fulfilling the research objectives can be summarised as:

¢ Intending to use only low-cost, wireless, body-worn inertial sensors for collecting and
analysing the kinematic data leading to movement detection. Sensor characteristics
present a significant challenge for long-term monitoring of activities as the raw sensor
data is often corrupted by noise and artifacts (e.g. drift) [37].

e Recognising a particular set of arm movements in an unconstrained nomadic
environment, using minimal number of inertial sensors (from a convenience and
mobility point of view) is challenging owing to the very high degree of variability in
human movement [38].

e Developing low-complexity data analysis algorithms which can be conveniently
mapped onto a hardware platform requires a holistic approach encompassing
algorithm-to-architecture mapping, performance analysis and optimisation for energy

consumption for sustained battery operation.

Therefore, a prerequisite is to determine the optimal number/combination of inertial
sensors, their placements and development of appropriate algorithmic techniques which

can be translated to hardware, enabling accurate detection of a number of movements.

1.5 Research contributions

In this work, the focus lies on detecting three elementary types of arm movement, which
were chosen since they constitute a significant proportion of the complex movements
performed with the upper limb in daily life, besides also resembling three tasks in the
standard Wolf Motor Function Test (WMFT) which is an established clinical assessment
method for quantifying upper extremity motor ability [32-34]. The three movements (along
with examples of their daily occurrence) are - extension/flexion of the forearm (reach and
retrieve object); rotation of the forearm about the elbow (drinking action); and rotation of
the arm about the long axis of forearm (opening a door, using a key or pouring action). In

view of this, the primary contributions of this research work can be outlined as follows:

e Development of three low-complexity algorithmic techniques for recognising the
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occurrence of the three arm movements performed within a controlled environment and
also in nomadic settings. — 1) tracking the orientation of a wrist-worn inertial sensor
with respect to the performed movements; 2) k-means clustering and minimum distance
classifier and 3) movement classification using the supervised learning algorithms:
linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and support
vector machines (SVM).

e The development of the algorithms also encompasses a detailed exploration to
determine the optimal number and placement of inertial sensors on the subject’s arm.

e The developed algorithms were evaluated using a ‘personalized’ approach with the
kinematic data collected from four healthy subjects and four stroke survivors who
performed the movements in two phases — 1) a controlled environment (within
laboratory) and 2) repeated trials of a daily activity (out-of-laboratory, i.e. kitchen).
The corresponding results (movement recognition accuracy) were analysed and
compared to determine the best performing recognition methodology in accordance to
the application scenario. The clustering based methodology and the sensor orientation
based methodology proved to be successful.

e An efficient algorithm-to-architecture mapping was done for both the recognition
methodologies to achieve an optimised low-power implementation on a hardware
platform with an aim of using them in resource constrained body-worn wireless sensor
nodes.

e The clustering based methodology which proved to be a flexible and scalable approach
(in terms of incorporating new/more category of movements) was developed into a
low-power novel Application Specific Integrated circuit (ASIC). On the other hand, the
sensor orientation based methodology which was aimed at detecting only these three
specific arm movements, yielded higher accuracy and was hence developed as a field

programmable gate array (FPGA) based system to detect arm movements in real-time.

The development of two novel movement recognition algorithms (the sensor orientation
based methodology and the clustering and minimum distance classifier based
methodology), their successful evaluation and their implementation on a hardware
platform — a FPGA-based real-time system and a low-power novel ASIC respectively, are
the primary novel features of this research work. The developed systems could be used as a
clinical tool to assess arm rehabilitation progress amongst stroke survivors by tracking the
number of times the person performs specific arm movements with their paretic arm

throughout the day.
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1.6 Approach

The generalized view of a home-based monitoring system for stroke survivors has been
illustrated in Figure 1.1. It mainly revolves around the patient at home who is monitored to
track rehabilitation progress in two distinct scenarios — a controlled exercise phase and an
uncontrolled nomadic phase. The movements performed by the impaired upper limb of the
stroke survivors are recognised and this information could be uploaded to a patient
database (PHR system) and referred by the clinicians at periodic intervals. The clinicians
can modulate the training schedule and the exercises through the PHR or in direct

consultation with the patient.

Patient at Home

<):"> v+
Exercise Phase Nomadic Phase Clinician
(movements performed || (movements performed in an
in controlled environment)|| uncontrolled environment) Patient
{==—=)| Database
\ Activity (PHR)
recognition

Figure 1.1: Overview of home-based monitoring for stroke survivors.

With respect to this overview, the approach is divided into three groups — 1) data
acquisition through optimal sensors, 2) development of movement recognition algorithms
and 3) hardware implementation, each of which is discussed briefly in the following

sections.

1.6.1 Data acquisition

A high degree of variability inherent in human motion necessitates the development of a
robust activity recognition system [38]. In view of this, the first step involves the collection
of kinematic data using wireless inertial sensors attached to the subjects’ body. An

experimental protocol was designed where movements are performed in two phases:

e subjects perform multiple trials of the three enlisted movements (cf. section 1.5) in a
controlled environment representative of the training or exercise phase. In this phase,
the three movements are performed by the subjects under the supervision of the

researcher in a laboratory. The activity recognition algorithm is expected to learn the
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movement patterns collected from the sensor data during the training phase and
recognize the occurrence of these specific movements during the testing phase.

e subjects then perform repeated trials of an archetypal activity of ‘making-a-cup-of-tea’,
which includes multiple occurrences of extension, flexion and rotation of the forearm,
representative of the testing or the nomadic phase. The subjects perform the
movements in a semi-naturalistic or an uncontrolled environment, termed in literature
as being an intermediate stage between the laboratory settings and a complete natural
environment [39]. Here, the subjects perform the movements in an out-of-laboratory
(i.e. real world) condition in a naturalistic manner. This might involve the movements

being performed naturally and not in a time constrained manner.

Shimmer wireless kinematic sensors with 9 Degree-of-Freedom (DoF) comprising of tri-
axial accelerometer, tri-axial rate gyroscope and tri-axial magnetometer are used as the
sensing platform [40]. For the experiments performed in this work, only a tri-axial
accelerometer and a tri-axial rate gyroscope were used. Two positions of the dominant
upper limb proximal to the wrist and elbow were chosen as the sensing positions since they
were envisaged to produce the largest sensor response, with respect to the arm movements

being investigated.

1.6.2 Movement recognition algorithms

As discussed, three low-complexity recognition approaches were developed to detect the
arm movements performed by the subjects during the archetypal activity, each of which is

discussed briefly.

(1) Sensor Orientation based movement recognition

A simple recognition methodology was explored using a low-complexity processing
technique that does not involve the overheads of training a system and can hence be used
within a resource constrained wireless sensor node. Here, the three arm movements are
recognized by mapping transitions of six predefined standard orientations of the wrist
accelerometer to the corresponding arm movements investigated. The experimental results
show that the proposed methodology can successfully recognize the three individual arm

movements across the healthy subjects and stroke survivors.
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(2) Classification using LDA, QDA and SVM

Sensor data collected from individual sensor axes (X, Y and Z) and fused signals (modulus
of the signals from respective sensors and specific accelerometer-gyroscope combinations)
are pre-processed (noise and drift removal) and 30 time domain features are extracted. A
wrapper approach based sequential forward selection technique (sfs) is used to select the
optimum number of features and three learning algorithms are used to classify the
movements — LDA, QDA and SVM. The classifiers are trained with subject-specific data
collected in the exercise phase and evaluated on the data collected from the same subject
during the nomadic phase. The LDA classifier, chosen due to its low computational
complexity, when evaluated in conjunction with individual sensor signals produced the

best overall accuracy.

(3) Clustering and minimum distance classifier based movement recognition

The exercise phase (training) data are represented by a ranked set of 30 time-domain
features. Using sfs, for each set of feature combinations three clusters are formed using k-
means clustering (k=3) followed by 10 runs of 10-fold cross validation on the training data
to determine the best feature combinations. The movements performed in the nomadic
phase (testing) are associated with each cluster label using a minimum distance classifier in
a multi-dimensional feature space, comprised of the best ranked features, using Euclidean
or Mahalanobis distance as the metric. The three movements were detected successfully
with data acquired from the wrist-based accelerometers and gyroscopes across the healthy

subjects and stroke survivors.

The algorithms were evaluated using the kinematic data collected from each individual
subject — a personalized approach, adopted in view of the large degree of inter-person
variability expected amongst the sample population. Furthermore, this would be beneficial
when applied to monitoring individual patients who demonstrate differences in levels of

impairment depending on their stage of rehabilitation.

1.6.3 Hardware design

Although the sensor orientation based methodology resulted in higher overall accuracy in

detecting the three movements, the clustering based approach provides greater flexibility as
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it can incorporate new types of movement categories other than those selected here and is
also scalable since more number of movements can be incorporated by conveniently
modifying the algorithm. This is quintessential from the clinical perspective since the
prescribed exercise schedule might vary according to the motor impairments of the
survivors and therefore new category of movements can be recognised. Hence, the
clustering and minimum distance classifier based approach was implemented in hardware
as a novel low-power ASIC which involved an efficient mapping of the algorithm to an
optimized architecture design. The feature computation, cluster formation on the training
data (being relatively time and memory intensive) were done in an offline mode (in
software). The computation of the selected features on the testing data and the distance
computation (Euclidean) of the features from the pre-computed cluster centroids was done
in hardware. The computation of the time domain features on the testing data involving
complex arithmetic operations were realized using the CoOrdinate Rotation Digital
Computer (CORDIC) algorithm by exploiting the similarities in the mathematical
formulation of the features [41]. The developed ASIC is envisaged to be used on a
wearable sensor platform, aimed at real-time recognition of arm movements for long-term

remote monitoring.

The approach based on sensor orientation which was specifically targeted towards
recognising the three movements investigated here, was also validated in hardware and
implemented on FPGA to design a system that detects performed arm movements in real-
time. Data from a wrist-worn tri-axial accelerometer was transmitted in real-time to a host
computer using Bluetooth which was processed and transmitted to the FPGA board
through a RS232 cable. The algorithm was coded using a hardware description language
and synthesized on the Altera DE2-115 Cyclone IV FPGA board which was used to detect

the performed arm movements and display them on a seven segment display in real-time.

1.6.4 Research Constraints

This research work was part of the European Union Seventh Framework Programme under
the project name “StrokeBack: Telemedicine system empowering stroke patients to fight
back” [7]. The project envisages empowering the stroke patients with advancements in
information and communication technology for rehabilitation within the home
environment. Data acquisition from stroke patients was performed at the Brandenburg

Klinik (BBK), Berlin, Germany, one of the clinical partners of the project. Kinematic data
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was acquired from only four patients who were available within the stipulated time at BBK
and agreed to participate in the experiments. Therefore, a selection of an age-matched
group which is common for clinical trials was not available for this study. The fabrication,
packaging, testing of the ASIC chip and its deployment in a customized body-worn sensor
node for use in real-life was entrusted with the company IHP- Innovations for High

Performance Microelectronics, Germany, one of the seven StrokeBack partners.

Hence, this work has been partly constrained by the availability of more stroke patients for
data acquisition and evaluation of the developed algorithms on a wide population and on a
longitudinal scale. Secondly, the use of the fabricated ASIC within a wearable sensor node
for real-life patient trial to detect and enumerate the occurrence of the elementary arm

movements have not been discussed here.

The primary focus of this work lies in developing low-complexity algorithmic techniques
for recognising the occurrence of the three arm movements in a nomadic environment, an
efficient algorithm-to-architecture mapping and its implementation on a low-power

hardware with an aim of using them in resource constrained body-worn sensor nodes.

1.7 Organisation

The rest of the thesis is organised as follows:

In Chapter 2, the relevant state-of-the-art remote health monitoring systems for activity
recognition in a controlled environment and in daily life situations have been discussed. A
detailed review of the relevant data processing techniques which includes feature
extraction, selection and the recognition algorithms used have been presented in this
chapter. Chapter 3 discusses the movement selection and the choice of sensors and the
calibration methodologies adopted. In Chapter 4, the low-complexity sensor orientation
based methodology to detect the arm movements and an optimized design and
implementation of the algorithm to develop the FPGA-based system for real time arm
movement detection, have been presented. The proposed supervised learning techniques
employing different classification algorithms for recognising the selected upper limb
movements have been discussed in Chapter 5. In Chapter 6, the clustering and minimum
distance classifier based approach to detect the performed movements have been presented.

Chapter 7, presents the architectural design and implementation of the minimum distance
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classifier to develop a low-power novel ASIC. Finally, the conclusions are drawn in
Chapter 8, where a comparative analysis has been presented for the two recognition
methodologies — sensor orientation and clustering based movement recognition, besides

discussing on future prospective work.
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2. Chapter 2

Background and Literature Review

2.1 Introduction

The after-effects of stroke pose a serious socio-economic challenge in terms of loss of
lives, disability amongst the survivors and the expenses incurred towards their
rehabilitation and care. A common after-effect of stroke in the UK is impaired arm
functionality which is seen in around 70% of cases, with 40% of them having a completely
non-functioning arm [35], leading to a degeneration of their lifestyle. Hence, rehabilitating
the limb is a key factor to help the survivors regain functional independence. Besides
helping them to perform their daily activities, an improved rehabilitation mechanism would

help in reducing expenses incurred towards care and disability services [36].

Rehabilitation, in general is primarily aimed at restoring a level of physical and
psychological functioning within patients that allows them to re-integrate themselves back
into their daily life [42]. Rehabilitation guidelines are specifically bespoke to the
requirements of each individual with an aim towards optimizing balance, mobility and gait
functionality. Intensive physiotherapy [11], use of robotic technology in FES systems
involving an ILC controller [12], [13] are some of the popular means adopted within a
clinical setting, to restore motor functionality amongst the stroke survivors. Physiotherapy
sessions are also carried out at the patient’s home. Monitoring of physical activity and
specific physiological parameters are the key components in interventions aimed at
maintaining health and well-being, preventing falls, reducing motor functionality loss and

the risk of recurrent stroke [43].

Physical activity has traditionally been monitored by questionnaires citing its usefulness in
covering large subject groups and cost effectiveness [44], [45]. These questionnaires can
be filled by the patients themselves on a daily basis from their home, manually or
electronically through computing facilities. This data helps to formulate a patient activity
log which is monitored periodically by the respective clinicians. There are also a wide
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range of clinical tests that are quite popular and performed by the therapists to assess arm
rehabilitation of survivors within a clinical environment. The wolf motor function test
(WMFT) [5], Box and Block (B&B) test [34] and the Nine Hole Peg (NHP) test [46] are
some of the popular means to assess the patient’s motor ability while they perform
designated tasks under the observation of a therapist. These tests are generally associated
with a scoring system which is used to quantify the performance of the subjects. However,
subjective measures of physical activity and arm movements may overestimate activity
levels as compared to assessments made by objective measures [47]. Hence, sensor-based
telemedicine modalities provide an alternative towards objective measurement for remote

patient monitoring [48], [49].

Telemedicine has long been influenced by technological advancement in the last century.
Modern telemedicine took its flight in the 1960s when a television link was established
between Nebraska Psychiatric Institute and Norfolk State Hospital [50] in order for
therapists to share findings and discuss medical issues. With the development of
information and communication technology (ICT), telemedicine has taken a giant leap
towards more flexible solution to home-based healthcare [51]. This has helped in providing
improved rehabilitation within home settings. Home-based patient monitoring is generally
performed with vision-based, body-worn or ambient sensors. Vision-based sensors
although quite effective suffer from occlusion problems and can only monitor movements
performed within a designated zone. Ambient sensors (sensors on doors, objects of daily
use such as RFID tags) have been used with an aim of developing smart homes that
provide health assistance in the subject’s living environment, also referred to as ambient
assisted living (AAL) [52], [53]. With advancements in wireless communication
technologies and integrated circuit design, the development of low-cost, power efficient,
un-obtrusive and lightweight body-worn sensors have become very popular and are being
used for wearable remote health monitoring applications. They have led to the
development of a wireless body area network (WBAN) or body sensor networks (BSN)
system which comprises of miniaturized wireless enabled sensor nodes. Apart from
sensing, front-end amplification, microcontroller functions and radio transmissions have all
been integrated into a single circuit thus resulting in a system-on-chip (SoC)

implementation on board the sensors [54] [55].

These sensors can be used for: 1) physical activity monitoring by recording kinematic data

and 2) continuous monitoring of significant physiological parameters like heart rate,



Background and Literature Review | 19

respiratory rate, blood pressure, blood oxygen saturation and muscle activity, which were
only possible within the hospital settings [30]. Recent advancements in material science
have led to the development of e-textile based systems which integrate sensing capability
into garments for collecting ECG, EMG and kinematic data [30], [56]. Some health
monitoring systems have also combined body-worn sensors and ambient sensors [52], [53].
In this context, information collected by the body-worn sensors can be augmented by the
data from ambient sensors distributed throughout the home environment to determine
activity patterns of the patients and provide feedback on living behaviors for a better health

management.

A holistic overview of a wireless body area network system for remote healthcare
monitoring is presented in Figure 2.1, comprising of sensors for capturing physiological
parameters and motion data. The obtained measurements from the sensor nodes are
transmitted to a central node which can be in the form of a personal digital assistant
(PDA), a smart-phone, a pc or a microcontroller-based device. The central node acts as a
gateway and can be used for displaying the vital information on a user interface or transmit

the clinically relevant information to a remote medical center [57].
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Figure 2.1: Overview of a wireless body area network system for remote healthcare monitoring, comprising
of on-body sensors for monitoring physiological parameters (ECG, SpO2) and motion and postural data. The
collected data is transmitted to a PDA (mobile device) and/or transmitted to a base station (personal
computer) or to the respective medical server through GPRS/Bluetooth, physician or caregiver for further
intervention [30].
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The ever increasing research in remote health monitoring in recent years, has led to the
development of many research prototypes [58]-[61], commercially available systems [62]—
[68] and smart phone based systems [69]-[73]. These developments have enabled long-
term physiological monitoring thereby improving the diagnosis and treatment of life
threatening incidents involved in cardiovascular or neurodegenerative diseases [57]. A
considerable research effort has also been spent towards fall detection, leading to
emergency situations with the elderly population alone at home [74], [75]. This is
commonly encountered in freezing of gait (FOG) disorders associated with Parkinson’s
disease [76]. Physical activity monitoring in general for helping with motor balance and

walking have been performed for post-stroke treatment [43].

In accordance to the research focus, in this chapter, activity monitoring of patients in home
and community settings in two circumstances — a controlled exercise phase and an

uncontrolled nomadic setting have been looked into.

2.2 Activity monitoring

Activity monitoring is a well-researched and a broad topic. Human activity monitoring has
gained prominence with the use of wearable sensors and video-based sensing technologies
and is a major area of remote health monitoring systems. For post-stroke rehabilitation,
tracking the number of times a patient performs specific movements (e.g. exercises) with
their impaired body parts (e.g. paretic arm) during training and also throughout the day can
provide useful information on the progress of the patient. The frequency of specific
movements and the quality of the movements performed (e.g. fluidity/smoothness) is likely
to increase as the motor functionality of the patient improves. It can also provide
information on the patient’s compliance to the specific guidelines set by the respective

clinicians during rehabilitation training.

The various exercise platforms, virtual reality (VR) based systems, gaming consoles and
the widely popular Kinect camera based system used for rehabilitation training have been
discussed. These approaches mainly aim to monitor the rehabilitation progress of the
patients during the exercise or the training phase in a controlled environment within a
designated zone (exercise/gaming platforms and vicinity of camera systems). The main
difficulty with this approach is that it offers no possibility to monitor the movement quality

of the patients and their compliance with the prescribed exercises in their natural
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environment (i.e. while performing daily activities) which are more objective reflections of
the actual rehabilitation state and of the effectiveness of the prescribed therapy. Therefore,
there has been a growing demand to monitor patient activity in daily life. Hence,
monitoring of activities performed in daily life in a nomadic environment have also been

focused upon. A brief overview of the review structure is presented in Figure 2.2.

Remote Activity
Monitoring systems

v h 4
Exercise phase _

(controlled environment) Nomadic phase

(uncontrolled environment)

» Rehabilitation exercise platforms

> Virtual Reality based exercise > ADL monitoring
platforms = Methodologies
» Gaming devices/consoles = Evaluation

» Kinect system

Figure 2.2: Review structure encompassing various modalities of home-based activity monitoring systems.

2.2.1 Rehabilitation exercise platforms

As the name suggests, in this section, a few state-of-the-art systems have been discussed
which are particularly aimed at monitoring the patients within their home environment

while they perform their rehabilitation exercises.

H-CAD (Home-care Activity Desk) built by Signio Motus is a task oriented program
comprising of nine functional tasks that help practice every day functional tasks such as
picking up keys, turning a switch on and off and opening drawer thus allowing patients
suffering from multiple sclerosis, stroke or traumatic brain injury to rehabilitate at home
[11]. It is composed of two subsystems: an in-hospital based server and a portable unit to
be placed at the patients’ home. The portable unit comprises of an activity desk which is
placed in the home of the patient containing a computer (e.g. PC) with inbuilt software for
controlling and monitoring the different rehabilitation activities, as well as allowing
telecommunication facilities with a doctor. There are various sensors like a webcam to
capture kinematic information, sensorized keyboard to measure pressure, sensorized table
platform to measure pressure while the patient performs various upper limb activities. The

setup is shown in Figure 2.3.
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Figure 2.3: H-CAD Portable Unit [77].

The data collected by these sensors are stored on the local PC and sent to the hospital-
based server. The server unit located at the hospital allows multiple portable units to be
linked with it allowing the appropriate clinician to remotely access results as well as
initiate telecommunication sessions with the patients through their portable unit. H-CAD
was also used in HELLODOC project (healthcare service linking tele-rehabilitation to
disabled people and clinicians) as a further development [78]. A pilot study was carried out
in HELLODOC on 81 patients during a one-month period. The overall results of patient
rehabilitation as assessed by conventional arm ability measures like action research arm
test and nine hole peg test were sent to the clinicians remotely who confirmed the

effectiveness of H-CAD system as being on similar lines as conventional physiotherapy.

A more complete home-based rehabilitation system, ‘Stroke Rehabilitation Exerciser’
focussing on compact design and minimal human-machine interaction was developed by
Philips Research [79]. It accommodates several components to support the execution of
functional exercises and assist the therapist in their assessment: a patient unit equipped
with wireless inertial sensors, a graphical user interface and a therapist station. Sensors
attached on the body segments to be tracked (for example, torso, shoulder, upper arm) are
used to track joint angles and extract postural information in a 3D space which are
presented through an animated display to the patient. The raw sensor data and angle
information is also used to classify the exercises performed and extract information on the
quality of the movements performed (duration, tremor, etc.). These information are used to
provide a concurrent feedback to the patients through animations, verbal cues or on-screen
text messages. A further comparison of the current performance and outcomes of previous
sessions and expected performances serve as a visualization of training progress and

enhances the patient’s motivation. The therapist exchanges data and provides information
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to the patients on new guidelines through the patient station over a secure internet
connection. The need for sensor calibration for postural tracking was a challenge, in

addition to the economic viability.

A lightweight, easily programmable and transportable elbow rehabilitation device as
shown in Figure 2.4 was built for patients suffering from elbow impairments. Continuous
passive motion (CPM) machine is an effective technique to regain the patient’s range of
motion by moving the forearm about the elbow joint. It consists of a D.C. motor, gearbox,
encoder, clutch and brake located in a portable unit, attached through a flexible shaft to an
absolute encoder located on an elbow brace [80]. The device has adjustable settings for the
entire rehabilitation stage. It is a smart wearable and portable device that uses constant
sensor feedback enabling a progressive increase in user’s range of motion (torque and
motion limits). The device is capable of applying variable resistance about the elbow joint
to build muscle mass and also acts as a brace to lock the arm movement in an unwanted
direction. The motor-gearbox combination controls the range of motion by means of a
current-limiter where the current measurement is converted to torque resistance in the
computer and once the pre-programmed limit is exceeded the motor direction is reversed.
The electrically controlled clutch acts as a safety feature for the patient. The device also
employs a real-time monitoring facility whereby the user can view the real time plots of
position and torque being applied to their joint during the exercise routine. The system
tested on volunteers show a promising application to stroke rehabilitation at home.
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Figure 2.4: The Portable Continuous Passive Motion Elbow Device [80].

Pushing towards portability, a wearable skeletal frame called RUPERT (robot assisted
upper extremity repetitive therapy), shown in Figure 2.5, was developed to provide a low

cost and easy to use robotic device to assist upper arm rehabilitation at home or clinical
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settings. It has four actuated degrees-of-freedom driven by pneumatic muscles (PMs) on
the shoulder, elbow and wrist and programmed to actuate the device to move the arm in a
3-D work space without gravity compensation in view of its applicability during activities
of daily living. The device interacts with a PC-based biofeedback system and provides the
torque at the shoulder, elbow and wrist during reach and retrieve and feeding tasks. The
signals from the pressure and angle sensors positioned on shoulder, elbow and wrist of the
subject are fed into the computer running specialised software SIMM (software for
interactive musculoskeletal modelling), to estimate the force needed to move the subjects
arm and the skeletal frame and also kinematic information as joint angles thus providing
real-time efficiency of the functional tasks performed. The device was evaluated with
stroke patients for performing daily activities like reaching and feeding and the clinical
outcome of their rehabilitation was assessed over duration of three weeks through a
modified Wolf Motor Function Test (WMFT) and Fugl-Meyer test which showed
satisfactory improvements. Further improvements in RUPERT are aimed at developing
additional degrees of freedom for complex activities of daily living and use of an adaptive
control to interact with users encouraging an active participation during their rehabilitation
process [81]. Although effective for monitoring during exercises, both the CPM and the
RUPERT are difficult for the subjects to wear on their own and carry for a long-time

primarily due to their architecture.

(b)

Figure 2.5: Development of RUPERT. Left: Initial design which has a robot arm attached to a chair. Middle:
A computer generated picture of the new robot arm. Right: The new RUPERT on a subject’s body [81].

2.2.2 Virtual reality based systems - virtual directional exercise platform

Virtual reality (VR) technology is being used in several areas of rehabilitation like
Parkinson’s disease for facilitating gait recovery, children suffering from cerebral palsy,
amongst orthopaedic patients after hand or ankle surgery. Robot-assisted training methods

have been effective in improving the motor functionality of the upper arm and hence have
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been used in stroke rehabilitation. VR creates an environment wherein the intensity of the
exercise schedule and corresponding feedback can be systematically modulated to suit the
patient’s need. This includes the use of a computer, internet connection, video-
conferencing facility with the therapist, motivational games, and animations of the
movements to provide visual feedback to the patients and the use of an avatar to guide the
patient. VR helps the patients to improve their motor functionality through specific training

schedule and apply it in the real-world conditions.

A virtual reality based tele-rehabilitation system was developed in [82] as shown in Figure
2.6, where the patient wearing two to three inertial sensors is exposed to a virtual
environment (VE) having a motor training system and a videoconference facilities with the
therapist. In contrast to the study by Philips Research [79], the sensors attached to the
patient did not need calibration every time the system was turned on. The movements
performed by the patient, as captured by the on-body sensors and camera systems, is
interpreted by the VE system and displayed as an animation on the computer screen for the
patient. The motion data is also transmitted to the therapist who can view the animations.
This enables the therapists to analyze the movements and correspondingly provide
feedback.

VE Video of Video of VE
Display Therapi Webcam Audio/Video Patient Display
= — —
————
ok~ - 3D Data, Software State VE
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Motion at Patient [ Sotware
Capture Home Control Signals from Therapist at Clinic

o Patient at Therapist
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Figure 2.6: Summary of a telemedicine system using virtual environment for stroke rehabilitation [83].

The training methodology employs an avatar wherein the patient tries to follow the
movements performed by the ‘virtual teacher’; the therapist can control and modulate the
movements of the avatar according to the need of the patients. A pilot study was conducted
with 12 selected subjects with prior stroke (more than 6 months after recovery), where they

performed various hand movements including reaching, grasping and finger movements
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with the virtual system. Patients were also clinically evaluated (Fugl-Meyer Test, WMFT,
Strength test) before, during and after the training schedule, which revealed significant
improvements in their condition. They were able to generalize the motor training received
during the VE training schedule to real world performance and even to tasks that were not
specifically tested during the training schedule. The system was limited by the internet

speed, continuous transmission of sensor data and the use of one camera system.

A study in [83] provides evidence of the effectiveness in transferring functional motion
from VR to real-life environment by using cyber gloves to get measurements mainly aimed
at testing finger motion and grasping abilities. The cyber glove is a sensitized structure
worn on the hand with embedded strain-gauge sensors that measure the
metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joint angles of the thumb
and fingers as well as finger abduction and wrist flexion. The glove is calibrated at the
beginning of each trial. An exoskeletal device known as RMII glove having lightweight
custom pneumatic actuators are attached to the tip of the thumb, index, middle and ring
fingers aimed at applying force to the finger tips and use infrared sensors to measure the
displacement of the fingertip with respect to the palm. Thus the cyber glove is used in the
VR exercises that primarily involve position measurement of the patient’s fingers and the
RMII glove is used in force-exertion exercises. The VR simulation comprises of four
exercises aimed at assessing the range of hand movement, the associated speed, finger
fractionation and strength. During each trial, the exercise parameters are estimated on-line
and a graphical model of the hand is shown to the patient, which is continuously updated to
represent the flexion of the fingers and thumb. Patient trial was carried over for two weeks
on 3 patients and their rehabilitation was clinically assessed using the Jebsen hand test and
the Fugel-Meyer hand assessment, before, during and after the VR session. Objective
measurements revealed the improvement of the subjects on most of the hand parameters

over the course of the training.

2.2.3 Commercial gaming devices for tele-rehabilitation

In the early 2000s, Sony released the PlayStation 2 EyeToy which was one of the first
attempts to create a virtual environment for home gaming [84]. The cost-effectiveness of
the device attracts researchers in the application of rehabilitation for both children and
adults. It uses computer vision and gesture recognition to process images taken by the

camera system allowing the players to interact with games using motion, colour detection
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and sound through the microphone. Various clinical settings have used the Sony
PlayStation 2 EyeToy for rehabilitation. It has been used successfully as an intervention
tool for training the impaired arm during sub-acute rehabilitation after stroke in addition to
conventional therapy. In [84] they use the PlayStation 2 with Wish-Washy and Kung-Foo
games as the two exercises to simulate rehabilitation environment for stroke patients.
Without any active support from the rehabilitation setup, participants having better motor
functional ability benefited the most from the exercises while patients with acute stroke
could not perform at the same level. The study conducted on twelve stroke patients
provides preliminary results in applying game-based VR in rehabilitation. A technical
shortcoming was the inability to record the user’s performance to track rehabilitation
progress. The Nintendo Wii gaming system has also been used in rehabilitation, where the

game is controlled by the patient’s movement [85].

On the other hand, the use of instrumental music supported therapy has been found to be
effective in facilitating subject participation and adherence during exercise schedule as it
reduces the perception of monotony, difficulty and discomforts [86]. Music supported
therapy was combined with the Playstation3 gaming console and 5DT (five sensors)
sensing gloves to build a home-based tele-rehabilitation system aimed at children and
adults with chronic hemiplegia post-stroke. A pilot study was carried out on 3 children
suffering from severe hemiplegic cerebral palsy aimed at rehabilitating their finger and
grasping movements. The hand movements were displayed on a computer screen at the
home station and audio-visual feedback was provided on the range and velocity of the
motions performed. The computerized data from the sensor gloves generated during the
game playing phase are stored in a clinical database to be observed by the respective
clinicians. The therapists also upload periodic reports through the secure server for the
patients to see their progress. The system also notifies the patient if there are any
discrepancies during the training phase. The daily activities of the subjects for a period of
30 minutes were also noted down along with the gaming phase for a period of three
months. All the children showed significant improvement in hand functionality thereby
proving the effectiveness of remote monitoring. The technical shortcomings of the system
such as the need to recalibrate the sensor glove at the beginning of every game consumed

valuable time during rehabilitation [87].
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2.2.4 Microsoft Kinect for rehabilitation

Visual marker based motion capture systems have been effectively used in 3D tracking of
human upper limb but they require a complex and costly hardware setup and are intrusive
in nature. This problem has been addressed by considering marker-less visual data using
model and appearance based approaches. Model-based approaches are computationally
intensive and their performance is dependent on the visual information extracted by the
multi-camera systems. Appearance based systems, on the other hand, have low
computational and hardware complexity but recognize a discrete set of hand movements.
In recent times, Microsoft Kinect has been used intensively in hand/arm tracking as shown
in Figure 2.7.

Figure 2.7: The Microsoft Kinect and the blue markers attached to a therapists” hand [20]

It provides an off the-shelf platform that can perform image processing, supporting easy to
program languages such as C, C++ and C#. A 3D model of the hand comprising of the
palm and five fingers was used in association with the Microsoft Kinect which accurately
distinguished the hand articulations in real-time at 15 Hz [88]. The proximity of the hand
to the Kinect system was investigated along with the effect of a noisy environment, both of
which had an impact within a tolerable limit. In [20] the hand movements involved in daily
living activities are performed in an off-line mode by the therapist and the various
parameters related to the movement are tracked by the Kinect, based on which a model of
the virtual hand is displayed to the patient using a Virtual Reality Toolbox. The
movements performed by the virtual hand are imitated by the patient, which is
consequently tracked by the Kinect camera and the difference between the prescribed and
achieved mobility is displayed as a feedback. It is evaluated on two basic grasping
activities with healthy subjects. Since skin tone and the distinction between the subjects’
upper limbs with the surrounding environment pose difficulty in using the Kinect, small
tracking markers are placed on the joint fingers as shown in Figure 2.7 which can help the
tracker algorithm to extract movement data.
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In another study [89], tracking information from the Kinect is obtained and compared with
data from a more sophisticated acquisition system known as OptiTrack for six upper limb
motor tasks that were incorporated into an application for game-based rehabilitation. The
performance of the low-cost Kinect is comparable to the high-cost multi-camera lab-based
OptiTrack system and hence can be conveniently used in VR based home rehabilitation
setup. A study in [90] further uses a smart system having a Microsoft Kinect placed on a
table and sensitized cutlery in order to monitor the patients’ movement without any

wearable sensors.

2.2.5 Monitoring activities of daily living (ADL)

Rehabilitation is primarily carried out by repeated exercises of the impaired limb to
maximize the chances of recovery [91]. However, it is well perceived in the medical
community that exercises alone do not suffice for achieving a speedy recovery due to
various factors. This is due to the lack of motivation among patients to exercise for
sustainable period of time and the fact that exercises comprise of only a minor proportion
of time and energy spent by a subject as compared to the wide range of activities
performed throughout the day. Moreover, patients tend to compensate their paretic arm

with their non-impaired arm making rehabilitation progress slower [92][93][94].

Hence, there has been a growing perception to monitor subjects as they perform their daily
activities within their home and community settings. Quantifying the daily activities
performed by patients would help to ascertain their degree of participation and thereby
formulate a qualitative index of their lifestyle [95]. A taxonomy of activities known as
Activities of Daily Living (ADLs) developed by [96] gained prominence in the research
community owing to its relevance to real-world applications. Typical examples of ADLs
include brushing teeth, combing, washing, cooking, bathing or walking [39], [97]-
[99][100]. Accordingly, there have been extensive research efforts to assess the accuracy
of wearable sensors in classifying ADLs [101]-[105] which has supported medical
diagnosis during rehabilitation and augmented traditional medical methods in recovery of

chronic impairments [2].

Human activity recognition (HAR) is a challenging and highly researched topic in many
diverse fields which include pervasive and mobile computing [106][107], context-aware

computing [108][109], remote health monitoring systems which also include ambient
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assisted living [110]-[114]. Advances in wireless sensor technology have caused a
paradigm shift from low-level data collection and transmission to high-level information
integration, processing and activity recognition [115]. The different approaches are
variants of the underlying sensor technology, the machine learning models and the
environment in which the activities are performed. Before embarking on activity modelling
and recognition methodologies it is imperative to understand the different levels of

granularity inherent in human behavior.

2.2.5.1 Movement categories

Depending on the complexity of activities performed, they can be categorized into mainly
four different levels: gestures, actions, interactions and group activities. Gestures are
movements performed by the subject’s body parts which are atomic components
comprising any holistic movement. Some common examples of gestures are raising the
hand or stretching the leg. Actions are activities performed by individuals that are
composed of multiple gestures aligned together to form a meaningful movement. For
example, walking or reaching and picking a cup can be described as completed actions.
Interactions are used to describe human-object or human-human interaction like making
tea. Group activities, as the name suggests are performed by multiple persons, for example
a group marching together [115][116].

2.2.5.2 Modalities of activity recognition

Home-based activity recognition can be classified as: Vision-based and Sensor-based

recognition.

Vision-based activity recognition uses visual sensing facilities such as video cameras and
still cameras, to monitor a subject’s movement in a designated area. The generated sensor
data are video sequences or digitized visual data. Recognition of activities further takes
place by the use of computer vision techniques which include feature extraction, structural
modelling, movement segmentation, action extraction and movement tracking to analyze
visual observations. The use of gaming consoles and the Microsoft Kinect having camera
systems in the field of rehabilitation have been discussed in sections 2.2.3 and 2.2.4

respectively. However, they suffer from occlusion problems since they are designated to
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mostly indoor activities with their surveillance restricted within a specific zone. Moreover,

inferring the performed movements involve complex image processing algorithms [117].

Sensor-based activity recognition was further explored owing to a paradigm shift towards
monitoring of activities in unconstrained daily life settings. The sensors used in activity
recognition mainly generate time series data of various parameters or state changes. The
data is processed through statistical analysis methods, probabilistic models, data fusion or
formal knowledge technologies for recognizing the underlying activity. Sensors for activity
recognition are generally attached on the body of the subjects as wearable sensors or in the
smart phones. Sensors are also embedded within the living environment of the subject and
thereby create ambient intelligent applications such as smart environments. For example,
sensors attached to objects of daily use can record human-object interaction. Recognition
methodologies utilizing multimodal miniaturized sensors present in the environment is
termed as dense sensing approach. In this approach, activities are characterized by the
objects that are manipulated during the performed movements in real-world settings. They
are widely used in ambient assisted living (AAL) through the smart home paradigm [118],
[119][120]. Sensors in smart homes are used to initiate a time-bound context-aware ADL
assistance. For example, a pressure mat sensor can suggest position and movement of the
subject within a defined environment and a switch sensor in bed can suggest sleeping
activity of the subject [53]. In general, wearable sensor based monitoring is used in
pervasive and mobile computing, while dense-sensing based approach is suitable for
intelligent environment enabled applications. They can also work together like in RFID-
based activity monitoring, where objects in an environment are instrumented with tags and

users wear RFID reader fixed to a glove or a bracelet [114][121].

In the following section wearable sensor-based activity recognition has been covered in
depth primarily using inertial sensors, which includes the scope, processing and challenges

that are related to it.

2.2.5.3 Inertial sensor-based activity recognition

Activity recognition using wearable inertial sensors primarily involves the capturing of
kinematic signals which are used to measure acceleration, velocity, distance, rotation, rate
of rotation, angle and time. These measurements help to determine position of a limb

segment or the angle of flexion of a limb joint. These classes of signals are widely used as
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health indicators encompassing gait, posture, spasticity, tremor, balance, some of which are
subjective parameters in clinical assessment. Most of these parameters can be measured
with the help of kinematic sensors like accelerometers, gyroscopes and magnetometers
[22][122], thereby removing the subjective quotient from symptomatic data [123].

A MEMS accelerometer is probably the most frequently used wearable sensor used for
activity recognition and measures the effect of acceleration rather than acceleration
directly. Gyroscopes are used primarily for computing rate of rotation (°/s) and are also
combined with accelerometers, known as inertial measurement unit (IMU) [124], where
the gyroscopes help to compensate the accelerometers since the latter is orientation
dependent. Therefore IMU’s can be used to measure velocity, direction and gravitational
forces [125]. A magnetometer is another device used in remote monitoring applications
that responds to the strength and direction of the Earth’s magnetic field. Considering, that
the magnetic field vector has a constant direction and magnitude within a predefined area
on the earth’s surface (given by the latitude and longitude), a magnetometer can be used to
track the orientation with respect to this constant field vector [125]. Magnetometers are not
extensively used in health monitoring applications due to the fact that the Earth’s magnetic
field (which acts a reference) can be distorted by the presence of ferromagnetic materials
[126]. Patients requiring wheelchair support (with steel frame) or the presence of other
ferromagnetic substances within the home environment (e.g. in the kitchen) are likely to
distort the reference magnetic field.

2.2.5.4 Data-driven vs Knowledge-driven approach

Processing of sensor data for recognizing activities can be categorized into two approaches
— Data-driven and Knowledge-driven. Development of activity models is important for
interpreting the sensor data to infer activities. In the Data-driven approach, sensor data
collected as a result of the movements performed by the subjects are used to build activity
models with the help of data mining techniques and relevant machine learning algorithms.
Since this involves probabilistic or statistical methods of classification driven by the data,
the process is generally referred to as Data-driven or bottom-up approach. Although this
approach has its advantages in being robust to uncertainties and temporal variation in
information but it requires the availability of a large dataset for training the activity model.
Further it suffers from reusability and scalability as often it has been seen that activity

models developed and evaluated on a particular subject’s data does not work on the
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movement data of another subject owing to the large degree of variability inherent in

human movement [115].

The knowledge-driven approach on the other hand is used to exploit the rich prior domain
knowledge to build upon an activity model. This involves knowledge acquisition, formal
modelling and representation and is hence referred to as knowledge-driven or top-down
approach. It is based upon the observation that most activities are performed in a relatively
specific location, time and space. A suitable example would be an act of brushing teeth,
which takes place in the morning, evening or at night and involves the use of a toothbrush.
Similarly, cooking in the kitchen involves the use of the microwave or cutlery. This
implicit relationship between activities, temporal and spatial context and the entities
involved provides a rich domain knowledge and heuristics for activity modelling and
pattern recognition [115]. This approach is semantically clear, logically simple but weak in

cases of uncertainty and temporal information.

Having discussed the different modalities and approaches of human activity recognition, it
Is imperative to take an in-depth look into the process of activity modelling, classification
and recognition using the Data-driven approach. Prior to this, it is worthwhile to look into

the various challenges concerning activity recognition.

2.2.5.5 Challenges in activity recognition

Activity recognition presents more degrees of freedom with respect to system design and
implementation as opposed to other fields in computer vision like natural language
processing or speech recognition [127]. Owing to the diversity inherent in the same
movement performed by different individuals, it requires a careful selection and placement
of sensors, data analysis techniques depending on the application scenario and activities to
be monitored [128]. These challenges are discussed at length in the following sections.

2.2.5.5.1 Class variability

A recognition system has to be robust enough to handle intra-class variability. In this
context, class refers to the activities that are to be detected by any recognition
methodology. This variability is primarily due to the fact that a same activity is performed
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differently by different individuals. Further this might also happen with an individual who
repeats the same activity over time due to factors as fatigue or environmental changes.

Therefore there can be two approaches towards training an activity recognition system.

A system trained with movement data of more than one subject, or a person-independent
training system would be susceptible to considerable inter-person variability [128]. To
address this issue, the number of data points for each subject can be increased or an
alternative approach can be person-dependent training, i.e. training the system on the
movement data of single person. This might as well be robust enough towards capturing
considerable intra-person variability. This system however requires the collection of a
large set of data collected from one individual to train the system thereby capturing as
much variability as possible. The choice of the training sample is application dependent
and hence a trade-off is required between the selection of a highly specific and
discriminative dataset or a generic dataset which is potentially less discriminative but
robust across multiple subjects [127]. In general, for remote health applications,
formulating a person-centric training data would be beneficial when applied to monitoring
of individual patients who demonstrate differences in levels of impairment depending on
their stage of rehabilitation [129].

Another interesting challenge in recognizing activities is the similarity in characteristics
prevalent across activities [130]. For example, it would be very difficult to distinguish
between drinking water from a glass and drinking coffee from a cup based on the
kinematic data collected from a wrist-worn sensor pertaining to both the movements.
Therefore, in such cases sensors deployed in the environment like RFID tags attached to
objects, can prove to be helpful. Therefore this is dictated by the requirements of the

application [121].

An intriguing problem occurs during activity recognition on continuous streaming data or
real-time monitoring applications where the data needs to be segmented depending on the
activities which are to be monitored and those that are irrelevant to the application. This is
referred to as the NULL class in relevant literature [131] and is difficult to model since it
represents a plethora of activities in infinite space. It can however be identified if the signal
characteristics gathered from the sensor data is completely different to the ones that are
being monitored and hence involves a threshold-based mechanism to filter out the

unwanted data.
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Class imbalance is a major problem especially during long-term monitoring where all
activities being tracked do not have the similar number of occurrences. A common
example would be the number of instances of a drinking action and a walking action [132].
There are however a couple of techniques which can be adapted to get around this problem
of class imbalance. Firstly, generating artificial training data for the class which is
underrepresented to balance out the inequality and secondly, oversampling or interpolating

the smaller class size to match it to the bigger class size [133].

2.2.5.5.2 Ground truth annotation

Annotating the ground truth of activities being monitored in real life scenarios is another
interesting challenge especially with data from wearable inertial sensors as opposed to data
obtained from video recordings. With activities performed in the laboratory or controlled
environment, annotations of the training data can be performed post-hoc based on video
footages. However, in nomadic settings, ground truth annotation of activities is a difficult
problem. Researchers generally depend on self-recalling methods [134], experience
sampling [135] and reinforcement learning all of which involves testimonies from the
subject themselves. Therefore many researchers have based their work on a list of activities
performed under a semi-naturalistic condition, where the subjects perform the movements
as they would do in normal daily life and another person annotates their activities by
means of visual inspection in real time [39]. This therefore helps in gaining the ground

truth information required for evaluating the recognition methodology.

2.2.5.5.3 Sensor requirements

The experimental design gives rise to another challenge that of data collection, sensor
selection, placement and the number of sensors to be used. As opposed to other computer
vision problems like heart monitoring, brain activity modelling or speech recognition,
human activity recognition does not have a standard allocated dataset to start with the data
analysis as it is completely dependent on the requirement and experiments are designed in
pursuit of recognizing only the selected movements. Sensor characteristics also present a
significant amount of challenge for long-term monitoring of activities as hardware failures,
sensor drifts and errors in the software aimed at capturing the data can lead to erroneous

situations. External factors such as temperature, pressure and change in positioning due to
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loose straps can cause the need for frequent recalibration thereby affecting the sensor data
being recorded [136], [137].

One of the last challenges is power requirement of the battery operated wireless sensors
which are increasingly being used in the field of remote health monitoring. The remote
monitoring system in place at present transmits the captured signals collected by the sensor
nodes placed on the patient’s body to the remote server at the back office service platform
wirelessly, where the signals are analysed [33]. This system requires continuous
transmission of data from the sensors to the server using wireless protocols taking into
account the nomadic environment. The fundamental problem with continuous data
transmission is the energy requirement. A result from respective investigations into
continuous data transmission at 1 kHz suggests that it can be supported for 24 hr.
monitoring using a 1200 mAh battery [138].

The analysis presented in [138] regarding the power consumption and longevity of
batteries pertains to transmission energy only, added to it the energy involved in pre-
processing the physiological data at the sensor nodes including analog to digital
conversion, quantization, filtering and the microcontroller operation, would bring down the
effective time of monitoring to 8 - 10 hours, thereby making the entire system power
hungry and affecting the life of the batteries. An increased battery capacity like the
prismatic zinc-air battery — 1800 mAh operating at 1.4 V used recently in the medical
community, would increase the respective sizes of the sensor nodes. Furthermore, the use
of Bluetooth transceivers consuming 40-55 mA with operating voltage in the range of 3-
3.6 V would necessitate the use of three such zinc-air batteries, making it non-ideal in
terms of volume for body-worn applications.

The supply voltage is quadratically proportional to the power dissipation and therefore an
optimal power supply to sustain the continuous Bluetooth transmission would have an
adverse impact on the operational life-time of the battery powered sensor nodes.
Considering Bluetooth as the primary means of communication, the energy dissipation is
directly dependant on the packet format of the data being transmitted which can be
optimized using standard duty cycling and might eventually lead to delays and packet loss
of data which would be highly undesirable for applications involving remote health

monitoring [33].
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Therefore, from the long-term system operation perspective, when implementing a wireless
body area network (WBAN) comprising of heterogeneous sensors, it is imperative to select
data analysis algorithms having low-computational complexity. This is because energy
consumption is directly proportional to the computational complexity of the processing
algorithms used. Therefore, for applications such as real-time movement detection
requiring online operation it is imperative to perform the data processing (feature
extraction, classification, etc.,) in a low-power way on the sensor platform [33], [128] itself
whereas for applications supporting long-term behavioural or trend analysis offline data

processing may be sufficient [139].

2.2.5.6 Activity recognition — process flow

In this section, a detailed description about the sequence of signal processing and pattern
recognition techniques that helps to implement a specific activity recognition behaviour
using supervised learning methodologies have been presented. The process flow is
depicted in Figure 2.8.

Sensors —» Raw » Preprocessing — Segmentgtion > Featufe
Data (windowing) Extraction
R
A 4
Performance | Classification ke Feature
Evaluation Normalization/Ranking/Selection

Figure 2.8: Activity Recognition Process Flow.

2.2.5.6.1 Data acquisition and pre-processing

Raw data is collected from multiple sensors attached to the body or sensors placed on
objects or in the environment or from both depending on the application requirement as
discussed in section 2.2.5.2. Data coming from each sensor sampled at regular intervals
results in a multivariate time series. However, the sampling rates of different types of
sensors might differ. Therefore there is a need to synchronise multimodal sensor data.
Inertial sensor data are generally sampled at low frequencies, 20 — 30 Hz depending on the

movements to be monitored. Certain sensors like accelerometers, gyroscopes and
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magnetometers can produce data that have multiple dimensions (X, Y and Z axis).
Therefore, a multi-dimensional and a multimodal sensor output can be represented by (2.1)
where S represents the sensor output, m represents the number of sensors and di...dn
represents the sensor-specific data sampled at regular intervals.

S, =[d,,d,..d,], i=1..,m (2.1)

The raw sensor data contains noise and is often corrupted by artifacts caused due to various
factors. Artifacts are generally induced into the data due to sensor malfunctioning (e.g.
drift) or due to unwanted movements of the body [127]. The pre-processing stage aims to
remove the low-frequency artifacts and high-frequency noise components by using high
pass and low pass filters [128]. The pre-processing algorithms also synchronise the data
coming from various sensors and prepares the data for the next stage of feature extraction.
It preserves the signal characteristics which carries the relevant information about the
activities of interest. Data from inertial sensors are in general calibrated, their units are
converted (as most sensor outputs are arbitrary units), normalized, resampled,
synchronised, filtered or fused in the pre-processing stage. Sensor fusion is generally
performed where signals from multiple sensor axes are selected a priori, based on the
activities being tracked. For example, specific accelerometer and gyroscope axes can be

fused (both sensors placed on the wrist) for detecting a reach and retrieve action [128].

2.2.5.6.2 Data segmentation

The pre-processed signal is segmented to identify only those segments that contain
information about the activities that are being monitored. This process is also commonly
referred to as event detection or activity spotting since it detects the signal frame
representative of the activity of interest. The boundary of each segregated time series data
is represented by the start and stop time. Thus each segmented time series represents the
potential activities to be monitored. As mentioned in section 2.2.5.5.1, segmenting a
continuous streaming data is a difficult task especially for monitoring ADL. For example,
for a drinking activity, it may start with reaching for the cup or glass, drinking and then
putting the cup back on the table or keeping it in the hand. In such circumstances, it is
difficult to determine the boundaries of the activity from the signal. There are various

segmentation algorithms that are used in relevant research, popular among them being the
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sliding window technique, energy-based segmentation, rest-position segmentation and
using data from one sensor to segment another sensor reading [127].

The sliding window technique is one of the most popular segmenting schemes followed in
diverse applications. As is suggested by the name, a fixed-size window representing
definite time duration is used to extract segments of a signal [2]. If a very small interval is
chosen, there is a possibility of missing out on a relevant activity whereas a longer window
size would pertain to multiple activities, thereby affecting the classification decision.
Hence, a dynamic window selection technique based on a data-driven or a probabilistic
approach for segmenting each individual activity would be an optimal solution although

this increases the computational load [115].

Another popular approach adopted for segmenting different activities is based on the
energy content of the signal reflecting the change in intensity levels. The differences in
energy levels in the signal are representative of the intensity variations of the activities that

produce these kinematic signals. The energy content of a signal s(t) is given by (2.2).

© 2

E=[[s(t) dt (2.2)

—00

Therefore, a threshold-based mechanism based on the value of E can help to identify
segments of activities which are identical [140]. Researchers have explored energy-based
segmentation with the assumption of a rest period between each activity which is
particularly useful for gesture recognition involving discrete activities and momentary

pauses [141].

2.2.5.6.3 Feature extraction

The choice of features is a fundamental step for classification and a highly problem-
dependent task. Although each of the sensors exhibits signal patterns that are distinctive for
each of the movements and may be recognizable to the human eye as shown in Figure 2.9,
in order for a machine to recognize these patterns a set of characterizing features need to be
extracted from the signals. Features represent the transformation of the raw sensor data into
another space known as the feature space where ideally, identical activities should be
clustered together. It is a measure to characterize the raw data in a quantitative as well as a
qualitative manner. Typical feature sets for human activity recognition include statistical

functions, time and/or frequency domain features, as well as heuristic features [10].
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Figure 2.9: Signal patterns generated by a tri-axial gyroscope placed near the elbow for three repetitions of
four different arm movements — reach & retrieve; lift hand; swinging arm in the horizontal plane; rotate wrist.
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Some of the commonly used time-domain features extracted from sensor data, used in
literature are: mean, variance, median, skew, kurtosis, inter-quartile range, root mean
square, standard deviation, correlation between axes [28], [142]. Correlation between
accelerometer axes can improve recognition of activities involving movements of multiple
body parts. For example, walking and climbing stairs might have same periodicity and
magnitude of the acceleration signal measured from the limb but walking involves
translation in one dimension as compared to climbing stairs which involves translation in
multiple dimensions [143]. Similarly, the features variance, inter-quartile range, root mean
square and standard deviation are a representative measure of the magnitude of the varying

quantity in the acceleration data.

The commonly used frequency domain features which are extracted from the coefficients
of various time-frequency transforms like Short Time Fourier transform (STFT), Fast
Fourier transform (FFT) and the Continuous or Discrete Wavelet transform (WT). The
high frequency components of an accelerometer signal also known as the AC component is
primarily related to the dynamic motion of the subject like walking, running, hand shaking
while the low-frequency DC component of the signal is related to the gravitational
acceleration and hence is informative about the orientation of the body in space and can be

used to classify static postural positions [144]. The signal energy and its distribution at
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different frequency bands are popular choices for discriminating activities of differing
intensities. More specifically some of the commonly used features are spectral centroid,
spectral spread, estimation of frequency peak, estimation of the power of the frequency
peak and signal power in different frequency bands [28], [144]. Frequency domain entropy
calculated as normalized information entropy of the discrete FFT component magnitudes
of the signal helps to discriminate activities with similar energy content. For example,
biking and running might result in same amounts of energy if captured with an
accelerometer placed near the hip. Biking involves a uniform circular motion and discrete
FFT of the acceleration data in the vertical direction may show a single dominant
frequency component at 1 Hz and low magnitude for all other frequencies. Running on the
other hand may have many major FFT components between 0.5 to 2 Hz (considering a
sampling frequency of 76.25 Hz) [39].

2.2.5.6.4 Feature selection

For real-time activity recognition, it is imperative to use the minimum number of features
with an eye on computational complexity and memory utilization. However, before
proceeding with feature selection, the feature vectors need to be pre-processed to remove
the outlier points and normalize the features. An outlier is a point that appears as a result of
noisy measurement and lies far away from the mean of the corresponding feature vector
causing large errors during the training of the classifier. For normally distributed data, a
threshold of up to three standard deviations from the mean is used to filter out the outliers.
For non-normal distributions, more complex measures like cost functions are considered
[145]. Feature normalization is another key step adopted for feature values lying in
different numeric ranges, such that features with large values do not dominate the cost
function in the design of the classifier. A common technique is linear normalization as
shown in (2.3), where the features are normalized by removing the mean from each sample
and dividing the samples by their standard deviation. This ensures that each feature has

zero mean and unit variance and can be represented as:

g =2"H i-123..,N (2.3)
(o2

where Xi represents the respective feature values, p is the mean value, ¢ is the standard

deviation and X represents the normalized feature values. Alternatively, other linear
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techniques can be used to normalise the feature values by restricting them between a
minimum and a maximum value as expressed in (2.4). Selecting the range depends on the

nature of the data.

_— xi—min(xi) i—
% = e (x) —min (%)’ i=12.3,...,N (2.4)

Non-linear methods of normalization are also applied for data which are not evenly
distributed about their mean. In such circumstances non-linear functions like logarithmic or

sigmoid can be used to transform the feature values within specific intervals [145].

The normalization step is followed by the feature ranking step. Fisher Discriminant ratio
(FDR) and Bhattacharya distance are such techniques used to quantify the discriminatory
ability of each individual feature between two equi-probable classes. Another class
separability technique, based on scatter matrices, can be used for a multiple-class scenario
[145]. The rank of each individual feature is determined, where a high rank represents a
small within-class variance and a large between-class distance among the data points in the

respective feature space [146].

Now, the core problem area is to select a subset of | features from the best ranked m
features (where | < m). The two major approaches are — scalar feature selection and feature
vector selection. In the scalar feature selection technique, each feature is treated
individually and their class separability measure is ascertained using any of the above
mentioned criterion c(k) (FDR, Scatter Matrices etc.) for each feature. Features are then
ranked in a descending order according to the criterion c(k) and | best features are

considered for classification.

Considering features individually involves low computational complexity but is not
effective for complex classification problems and for cases where features are mutually

correlated. Feature vector selection can be approached in two ways:

(1) Filter approach: The features are selected independent of any classification technique.
For each combination of features chosen, the class separability criterion as mentioned
above is used and the best feature combination is selected. Considering m = 10 and | =5,
can lead to 252 feature vector combinations which is very large and the number | is also

not known a priori.
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(2) Wrapper approach: The selection of the feature is based in association with the
classifier to be employed. For each chosen feature vector combination the classification
error probability of the classifier is estimated and the feature combination with the
minimum error is chosen. This approach can be further computationally complex
depending on the choice of the classifier. However, to reduce the complexity there are
some effective searching techniques, which have been proposed to select the best feature
vector combination: sequential backward selection, sequential forward selection and
floating search method [145].

In relevant literature, the principal component analysis (PCA) or the Karhunen-Loeve
transform, which transforms feature vectors into a smaller number of uncorrelated
variables called the principle components, is a very popular technique [143][144]. Another
popular approach is the Independent component analysis (ICA) applied in problems of
blind source separation which mainly attempts to decompose a multivariate signal into
statistically independent non-Gaussian signals [147]. The choice of relevant features, the
ranking or selection technique is completely dependent on the activities, choice of sensors
and the application scenario. The domain of classification which is the next most important

step after feature selection is discussed in the following section.

2.2.5.6.5 Classification

A wide range of classifiers have been used for activity recognition in recent years [148].
The determining factors for the selection of the classifier are accuracy, ease of
development and speed of real time execution [127]. Two distinct approaches can be used
in classifying human activities — supervised and unsupervised learning. In supervised
learning, the association of the training dataset comprising of selected feature vectors with
each class label is known beforehand [144]. In unsupervised learning, only the number of
classes is known and the system assigns a class label to each instance in the training
dataset. Clustering based unsupervised learning has been used in the field of activity
recognition [146][149]. In human activity recognition the classification schemes used can
be broadly categorized into three themes: probabilistic models, discriminative approach

and template-based similarity metrics.

(1) Probabilistic models: Probabilistic models are quite commonly used for behaviour

modelling since they are an efficient means of representing random variables, dependence
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and temporal variation. In this approach, the activity samples are modelled using Gaussian
mixture, yielding promising results for offline learning when a large amount of data is
available for training. Generative probabilistic models such as HMMs have been used to
model activity sequences and have been extended to hierarchical models like Conditional
Random Fields (CRFs) and Dynamic Bayesian Networks (DBNs) [149]. Hidden Markov
Models (HMM) have been very popular in speech recognition and have also been used in
applications for hand gesture recognition [150], [151]. In general, the HMM is trained on
pre-defined class labels using the Baum-Welch algorithm and is tested on new instances.
The Baum-Welch algorithm is a generalized Expectation Maximization (EM) algorithm
that computes the maximum likelihood estimates of the parameters of an HMM given the
observations as training data [152], [153]. The problem with HMMs is the first-order
Markov assumption where the current state depends only on the previous one. Further the
probability of a change in the hidden state does not depend upon the time that has elapsed
since entering into the current state. Therefore, a time-dependence has been added to
HMMs and they have been augmented to semi-HMMs where the hidden process is semi-
Markovian rather than Markovian. Coupled HMMs have also gained prominence which is
considered as a collection of HMMs, where the state at time t for each HMM is
conditioned by the states at time t-1 of all HMMs in the collection. They are used to model

the dynamic relationships between several signals [154].

(2) Discriminative approach: The classification is based on the construction of the
decision boundaries in the feature space, specifying regions for each class. The decision
boundaries are constructed on the feature vectors of the training set, through an iterative or
a geometric consideration. The Artificial Neural Network (ANN) commonly used for
detecting ADL, consists of inputs and outputs with a processing or a hidden layer in
between. The inputs are the independent variable and the outputs represent the dependent
variable. The internal (hidden) layers can be adjusted through optimization algorithms such

as the resilient back-propagation or scale-conjugate algorithms [104].

The k-Nearest Neighbor (k-NN) [155] and the Nearest Mean (NM) classifiers work directly
on the geometrical distances between feature vectors from different classes [156]. Support
Vector machines (SVM) work by constructing boundaries that maximize the margins
between the nearest features relative to two distinct classes. SVM is a very popular
technigue in machine learning community and generally produces high accuracy rates with

moderate computational complexity (depending on the number of support vectors used)
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[2], [157]. In principle, it is a binary classifier but has been extended to handle multiple
classes using the ‘one versus all’ or the ‘one versus one’ scheme [158]. However both of
these methods can be computationally intensive depending on the number of target classes.
The Naive-Bayes classifier has also been successfully used over the years [113], [142]. It
assumes conditional independence among all feature vectors given a class label and learns
about the conditional probability of each feature. They require large amounts of data and
do not explicitly model any temporal information which is very important in activity
recognition [115]. Finally, binary tree classifiers have been widely popular in the field of
human activity recognition, where the classification process is articulated in several
different steps. At each step, a binary decision is made based on different strategies like the
threshold-based or template-matching. With each stage, the classification is progressively
refined as the tree descends along the branches [159]. The C4.5 Decision Tree (DT)

algorithm has been successfully used to recognise daily living activities [28], [39].

(3) Template-based similarity metrics: The template matching technique exploits the
similarity between the observed data (testing dataset) and the pre-stored activity templates
which is user-defined or obtained from the training dataset. They can employ for example,
a k-NN classifier using the Euclidean distance computed between the testing and training
dataset having a fixed window size or dynamic time warping [160], [161] in the case of
varying window size. Another popular template matching technique used is string
matching [162]. The choice of a classifier depends on the trade-off between the

computational complexity, memory requirements and the recognition accuracy.

Lastly, one of techniques quite common in classification problems is cross-validation.
During estimation of the model parameters, validation of the employed classification
algorithm is essential to judge its robustness. This is particularly applicable in supervised
learning techniques, i.e. where the class labels of the dataset is known. The available
cohort of data is divided into independent training and testing datasets. The training set is
used to train the classifier whereas the test set is used to estimate the error rate of the
trained classifier. The cross-validation technique, also termed as the resampling method
can be divided into three approaches: random sampling, k-fold Cross-Validation, Leave-
one-out Cross-validation [127], [163]. The number of folds is determined by the size of the
dataset. A large number of folds on a sparse dataset leads to a more robust classifier.
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2.2.5.6.6 Performance evaluation

The recognition performance of an activity recognition system can be evaluated in terms of
correct classification through True positives (TPs) or False Negatives (FNs). Classification
can also lead to false detection of activities that did not occur and can be estimated through
False Negatives (FNs) and false positives (FPs). Besides there are few well known
performance metrics that are widely used in the research community like confusion

matrices, accuracy, precision, recall or Receiver Operating Characteristics (ROC) curves.

A confusion matrix is a popular means of evaluating the classifier performance for multi-
class problems. It summarizes the misclassifications of the different activity classes. The

rows of the matrix represent the actual number of instances in each activity classes while

. . . .. - TP
the columns represent the predicted instances in each activity classes. Precision (ﬁj
+

: recall(Lj and the overall accuracy (@j can be easily computed for each
+ a

activity class from the matrix. Normalized confusion matrices are commonly used for
unbalanced datasets where there is a significant amount of difference in the number of
ground truth annotations of the activity classes [127], [164], [165].

2.2.5.6.7 State-of-the-art activity recognition systems

In Table 2.1, a few state-of-the-art activity recognition systems have been listed which
have been developed in recent years mainly aimed towards ADL monitoring. Here, the
monitored activities, the sensors and their positioning, the classification schemes used and
the accuracies obtained have been highlighted. The review of the existing modalities
reveals that majority of the published work on activity recognition has been devoted
towards monitoring of gross dynamic human movements of such as, sleeping, sitting,
standing, cycling, running etc. Apart from them, efforts have also been made to ascertain
the activity levels of subjects in daily activities like bathing, combing, toileting, drinking,
etc. Monitoring of elementary arm movements or gesture recognition has also been
prevalent in the research community aimed at monitoring of specific tasks/movements in
rehabilitation based applications, specific hand gestures for human-computer interaction or
the monitoring of dietary intake for nutrition monitoring applications. Sensors have been
placed on the objects being manipulated [166] or embedded in special gloves [167].
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Ref. Sensors Activities Evaluation
[2] Wrist-watch based sensor BADLs - Brushing, Neural Networks and SVM; average accuracy of 90%;
containing accelerometer, dressing, walking dressing, ironing, brushing and washing are sometimes
altimeter, and temperature upstairs/downstairs and confused; system in cost effective and non-intrusive.
Sensors. sleeping; IADLs — washing
dishes, ironing, watching
television.

[38] Two tri-axial accelerometers in ADLs such as sitting down, ~ SVM; Accuracy of 92 — 100 %; limited by the number
the smartphone. standing up, walking and of activities and the charge on the smartphone.

stopping

[39] Five bi-axial accelerometers 20 different activities Decision Tree; Accuracy of 44 — 94%; riding elevator

including walking, sitting, and stretching confused with other activities; large
standing, lying down, number of sensors; wired connectivity and need for real
climbing stairs, folding time synchronization are the pitfalls.

laundry, etc.

[117]  Inertial sensor on the thigh for Lying, sitting, standing, HMM,; overall accuracy about 90%; accuracy increases
activity recognition; marker walking and transitions with location data; high set up cost and a fixed coverage
based system using twelve from sit-to-stand, lie-to-sit, area for location tracking using the camera system.
cameras to track the 3- stand-to-sit and sit-to-lie.
dimensional location.

[168]  Accelerometer on thigh and 18 activities - hand shaking,  Decision Trees; overall accuracy of 95%; walking was
waist; rope jumping, brushing, detected by 84% - confused with standing/running. The
RFID reader on hand glove; making phone calls, glove ‘iGrabber’ is too big to wear for elderly people
RFID tag on objects of daily use reading, using umbrellaand  and tagging of different objects with RFID is

other ADLs exhaustive.

[169]  Infrared sensors to detect Bathing, dressing, resting, SVM; Accuracy of 90% except for dressing (75%) and
location and movement; door use of toilet, moving in/out hygiene (64%) which had fewer occurrences in the
contacts; microphones; digital of bed/chair, feeding. training database; use of multiple ambient sensors is
temperature and hygrometry expensive; needs to be tested on the elderly population.
sensor; tri-axial accelerometer
and magnetometer

[170]  Four accelerometers on the Posture of human body, Average accuracy of 90%, uses wired sensors and
thigh, sternum and lower arm. lying, sitting, standing, hence is intrusive.

walking, climbing stairs,
cycling, driving, use of
wheel chair and running.
[171]  Tri-axial accelerometer placed 8 WMFT — reach and Dynamic Time Warping; average accuracy of 96.5%,

on the wrist.

retrieve tasks, card flipping,
grasping etc.

the system is small and non-intrusive and uses only one
sensor which is advantageous.

Table 2.1: State-of-the-art systems developed in recent years for ADL monitoring.

In addition to basic movements such as sitting, standing and walking, activities involving

the upper limb such as keyboard typing, writing on a white-board and handshaking were

looked in [172]. Using 12 sensor nodes over the body, the activities were detected

successfully (50-90%) using a combination of sensors placed on the wrist, elbow and

shoulder in conjunction with a Bayesian classifier. Tool-based workshop activities such as

sawing, hammering, drilling, and filling were recognised in [173]. The incoming data from

inertial sensors were partitioned using an intensity-analysis on the signals from two

microphones based on the fact that each relevant action in the workshop was accompanied

by a particular hand tool sound. The focus was to track the progress and sequence of the

work in workshop. Hence, single Gaussian HMMs were successfully used for modelling

and gestures were detected with an overall accuracy of 84%.
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Gestures involved frequently in human feeding motion have been looked in [174] for
determining the timing of nutrition intake. This work takes a two-fold approach - first
detecting object-interaction gestures, i.e. soup intake involves a spoon, drinking involves a
glass/cup/bottle and second, focusing on dietary intake gestures. HMM’s were used to
model the spatial temporal variations in the input data acquired through five inertial
sensors placed on the wrist, upper arm and torso from four young subjects. This study
aimed at spotting of sporadically occurring gestures from continuous data stream and
highlighted the inter-person variability of the gestures. The classification results suggest an
average of 70-80% precision across the gestures monitored. An attempt to classify 10 arm
activities as part of assembly-line workers in a car production environment were made in
[175] using meta-classifier that fuses information of classifiers operating on individual
sensors. Data was collected from 19 sensor nodes distributed over the two arms. Here,
HMM’s which are a common approach to handle temporal variations in gestures, along
with the naive Bayes classifier have been used. Recognition up to 80% was achieved with
data from a single inertial sensor node. Sequence of composite activities constituting of a
finite number of atomic or elementary activities involving the arm, have been recognised
using a two-layered abstraction model in [176]. In the lower layer, simple atomic activities
are recognised using multiple on-body and environmental sensors and these activities are
grouped depending on the location of the sensors to infer composite activities. This method
was evaluated on a car assembly scenario in the laboratory environment and an overall
recall and precision of 77% and 79% was achieved for 11 different composite activities. In
all the three works mentioned, the focus was on the detection of the sequence of gestures
involved in completion of the designated tasks (feeding activity, workshop activity and
assembly line work) and hence HMMs have been effectively used to model the state

transitions representing the activities.

Other classifiers such as decision tree, k-NN have also been successfully used for
recognising gestures such as drinking water, handling mouse, opening drawer, typing and
writing for online recognition on a wrist-worn sensor node [55]. The algorithms were run
on a TinyOS platform and implemented on a MSP430 microcontroller on-board the sensor
module with a recognition accuracy of 86%. Data collected in office work scenario was
used for both the training and testing purposes. Accelerometer based gesture recognition
using Continuous Time Recurrent neural Networks (CTRNN) has been performed in [177].
This method has the advantage of operating on the raw data directly rather than using

features as used in other classification methods. Eight gestures such as sitting, standing,
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reading books, opening drawers, etc., performed in a unconstrained environment were
classified with 64% accuracy. An SVM based activity recognition system using objects
attached with sensors to recognise drinking, phone use and writing activities was
introduced in [178], which achieved a performance of 72%, 84% and 80% respectively for

each activity.

In accordance to the research focus, there is a need to explore a methodology for detecting
the occurrence of elementary am movements performed in nomadic settings which is
relevant towards rehabilitation for stroke patients who are supposed to exhibit a higher
degree of variability within their movement profile as compared to healthy subjects. In
relevant literature, the critical aspects like optimal sensor selection and placement,
selection of a subject-dependent/independent database and development of associated low-
complexity data processing and classification techniques for implementation on a low-
power hardware platform did not take priority. This necessitates a complete exploration to

acheieve the research objectives.

2.3 Discussion

This chapter presents a detailed review of the systems used for physical activity monitoring
during rehabilitation training and ADL. Gaming consoles and other camera-based systems
can be effective to track rehabilitation of subjects under controlled environments. Given
the research focus on upper limb rehabilitation in nomadic settings, in this chapter
particular focuses on the systems aimed at ADL monitoring. Objective measures of a
subject’s participation in daily living activities can be obtained by using wearable sensors
(e.g. inertial sensors). But there is a need to limit the number of patches (i.e. sensor nodes)
used on a patient’s body and the wearable sensors need to be pervasive in nature for long-
time use from the convenience perspective of patients. For real-time activity recognition
applications the processing of the data takes place on board the sensors and hence it is
imperative to select data analysis algorithms that involve low-computational complexity.
The essential steps of feature extraction, selection, classification and cross-validation will
heavily depend on the system requirements covering important areas — type of activities,
number of activities, type of sensors, number of sensors, placement of sensors, multiple
sensor fusion, etc. This paves the way for a thorough exploration in recognizing upper limb
movements performed in a nomadic environment, considering a realistic implementation

scenario which can be translated to actual practice.






3. Chapter 3

Movement Selection and Sensor
Calibration

3.1 Introduction

As mentioned in Chapter 1, the primary aim of this research work is to develop low-
complexity algorithmic techniques for accurately detecting the impaired upper limb
movements of stroke survivors in nomadic settings. The developed algorithm will be
translated to dedicated low-power hardware which can be used within a resource
constrained framework of a body-worn sensor node aimed at detecting arm movements in
real-time for remote monitoring of stroke survivors. Developing a robust arm movement
recognition algorithm for nomadic settings on the backdrop of a high degree of variability
inherent within the human movement is particularly challenging. The exploration of an
accurate algorithmic technique depends on two key factors: 1) the specific arm movements
which are to be tracked/detected and 2) the optimal number and placement of appropriate
inertial sensors on the body. The latter point necessitates a study on the sensor
characteristics along with their calibration. Therefore, in this chapter the focus is on: 1) the
selection of specific upper limb movements to be tracked, 2) calibration of inertial sensors,
more specifically accelerometers and gyroscopes and 3) estimating the sensor
characteristics - noise margin and drift inherent within the sensors under static conditions.
This will help to lay the foundation for using these sensors for collecting data during the
experiments to be conducted within this research work, helping in the target algorithm

development for movement recognition.

3.2 Movement selection

The wrist, elbow and shoulder joints along with the fingers play an important part in
completing the majority of upper limb movements performed in daily life. Clinical

treatment of the paretic arm post-stroke, involves rehabilitation of these specific
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joints/parts by repeated exercises to help survivors regain their motor functionalities. As
mentioned in Chapter 2, there are a wide range of clinical tests that are quite popular and
performed by the therapists to assess arm rehabilitation of survivors within a clinical
environment. The Wolf motor function test (\WMFT) is one such standard clinical test used
to examine the effects of constraint-induced therapy (CIMT) for stroke survivors and was
later modified to be sensitive to the level of motor functioning characteristic of patients
with mild to moderate stroke [5]. It comprises seventeen motor tasks that are primarily
intended to measure the ability of performing motor tasks in a controlled environment and
has an associated scoring system like the ‘Functional Ability Scale’ (FAS) or ‘Fugl-Meyer
Assessment’ (FMA), [179]-[180] where the patient is given a score for the motor functions
that are performed under the supervision of the respective clinician. Therefore, the WMFT
can help in characterizing the functional ability of a patient and used as a tool in the
prescription of a patient-specific rehabilitation program.

There is a standard protocol for conducting the tests which includes: task descriptions,
starting positions for the subjects and the equipment used during the test, verbal
instructions to be read out to the subjects prior to each test and a scoring criterion. In
addition to the equipment required for each specific task, there are a few general
requirements which include — a height adjustable table (approximately 137 cm x 76 cm); a
straight back chair (46 cm) or wheelchair with firm back and without armrests; a WMFT
template/poster attached on top of the table highlighting the markers and distance measures
for each task (e.g. position of arm etc.); a stopwatch to note down the time required to
complete each task. The scoring scale varies from 0 to 5 and the subjects are marked
according to their performance by the observing clinician. A 0 implies that the subject does
not attempt the task with the impaired arm whereas a 5 indicates successful task

completion and a normal movement task with the impaired arm.

The seventeen motor tasks of the standard WMFT set [181] have been reduced to a select
group of 8 tasks only, as shown in Table 3.1, which is commonly referred to as the
streamlined WMFT set [182]. The streamlined WMFT set requires a shorter period of time
to administer and is hence popularly used within the medical community, and is deemed
sufficient for testing the functional ability of patients suffering from upper limb
impairment. The task numbers in Table 3.1, represent those selected from the original list

of 17 tasks. All tasks are performed while the patient is seated on a chair by a table.
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Motor Function Description Functionality
WMFT 1 Forearm to table (side) Shoulder movement
WMFT 2 Forearm to box (side) Shoulder movement
WMFT 5 Hand to table (front) Shoulder/elbow movement
WMFT 6 Hand to box (front) Shoulder/elbow movement
WMFT 8 Reach and retrieve Arm and hand
WMFT 9 Lift can Dexterity/object manipulation
WMFT 12 Stack checkers Dexterity/object manipulation
WMFT 13 Flip cards Dexterity/object manipulation
WMFT 15 Turn key in lock Dexterity/object manipulation
WMFT 16 Fold Towel Dexterity/object manipulation

Table 3.1: Streamlined Wolf Motor Function Test

As mentioned, these tasks are primarily aimed at assessing the motor functionality of the
survivors within a clinical environment. In the nomadic environment, there can be a large
number/type of movements performed with the upper limb. However, for this research
work, the movement selection was narrowed down following the streamlined version of
the WMFT set. From discussions with expert clinicians and trained occupational therapists
at the Brandenburg Klinik (BBK), Berlin, Germany, four fundamental arm movements
were identified from these set of eight motor tasks (streamlined WMFT set). The four

elementary movements of the upper limb are:

e Action A — Reach and retrieve an object, monitoring extension/flexion of the forearm;

e Action B — Lift cup to mouth, focussing on rotation of the forearm about the elbow;

e Action C — Reach out for an object sideways, monitoring rotation of the arm about the
shoulder and

e Action D — Rotate wrist with arm fully extended, involving rotation of the wrist about

long axis of forearm.

In principle, these elementary movements constitute a significant proportion of the
complex movements performed with the upper limb in daily life and could also be mapped
to the tasks numbered 8, 9, 1 and 15 respectively of the streamlined WMFT set (cf. Table
3.1) [181]. Moreover, the selected movements being elementary arm movements when
performed in nomadic settings can also capture a wide range of variability inherent in
human movement. Since the target is to develop algorithms that can track arm movements
performed in daily life by a generic stroke survivor population, the algorithm needs to be
robust against such variability. Therefore, if the model could be built using experimental
data obtained from a significant number of subjects executing these fundamental

movements, it has a better chance of being more robust to such inter-person variability.
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3.3 Inertial sensors and their calibration

As highlighted in sections 2.2.5.2 and 2.2.5.3, body-worn inertial sensors are widely used
for capturing kinematic information, from which various parameters are extracted that can
help in the clinical assessment of the patients. MEMS based inertial measurement units
(IMUs) containing three dimensional accelerometers and gyroscopes measuring
accelerations and angular rate are popularly used in human activity monitoring. In some
cases, three-dimensional magnetometers are also used. For this exploration, the
commercially available Shimmer 9DoF wireless kinematic sensor module, consisting of
mutually orthogonal tri-axial accelerometers, rate gyroscopes and magnetometers, was
selected as the sensing platform. However, only the tri-axial accelerometer and the tri-axial
rate gyroscope were used, leaving out the magnetometer since their measurement can be
distorted by ferromagnetic materials [126] expected to be present in the nomadic

environment of the survivors (cf. section 2.2.5.3).

The Shimmer module has an internal 2 gigabyte data storage capacity (smart card) as well
as low-power radio communication capabilities (Bluetooth and IEEE 802.15.4) allowing
both long-term data acquisition and real-time monitoring for experimental purposes. The
core element of the Shimmer platform is the low-power Texas Instrument MSP430F1611
microprocessor controlling the operation of the device. The processor has 8 ADC channels
for 12-bit A/D conversions for capturing sensor data. The firmware running on TinyOS
environment enables the real-time streaming or storage of the captured data onto the micro
SD card. The shimmer sensor modules are relatively light in weight, weighing 27 g and
small in dimension measuring 44.5x20x13 mm and thereby pose minimal hindrance and
discomfort for use over long periods. Hence, these features make it an ideal platform to be
used for the experimental purpose. The shimmer unit is plugged onto a docking station and
PC based application ‘Shimmer Connect’ allows a configurable parameter selection for the
sensors [40]. A basic Shimmer sensor unit (housing tri-axial accelerometers) used in the
experiments is shown in Figure 3.1. The positive X, Y and Z axis are labelled respectively.
Correspondingly, the negative X, Y and Z axis represent the directions on opposite sides
(not shown in Figure 3.1 for sake of clarity). These positions are referred as

positive/negative X, Y and Z axis during the calibration procedure.
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+Y

Figure 3.1: Sensor unit showing direction of positive response for tri-axial accelerometers.

Inertial sensors suffer from some existing errors in the accelerometer and gyroscope
signals that cause unacceptable drifts and bias. Subsequently, compensation for inherent
error sources is essential in the basic sensing device. To minimise these errors, the sensors
need to be calibrated. Calibration involves subjecting the accelerometer and the gyroscope
to a known acceleration or angular velocity respectively and recording sensor responses.
The process of calibration provides the parameters for measurand sensitivity and the sensor
offset value. These parameters are used to deduce the physical values of acceleration and

angular velocity from the MEMS sensor output.

3.3.1 Accelerometer calibration

A typical MEMS accelerometer measures force rather than acceleration directly. This is
achieved by measuring the displacement of an internal proof mass and making use of
Newton’s second law of motion (F = ma). It is not necessary to know the value of the
proof mass since this is accounted for during the calibration process (and it is assumed that
it remains constant) and thus a calibrated MEMS accelerometer produces an output that is
directly proportional to the acceleration experienced by it. Because an accelerometer
actually responds to force, it is always subjected to the ubiquitous force of gravity. Though
seemingly a drawback, this can in fact be quite beneficial. Firstly, it means that
gravitational acceleration can be used as the reference value during calibration of the
accelerometers. Secondly, in the absence of any other external forces acting on the
accelerometer (e.g. when stationary) a simple analysis of the recorded value of
gravitational acceleration as experienced by the accelerometer can be used for determining

orientation information for postural tracking [125].

Calibrating the accelerometers can be a very simple process, making use of the
omnipresent gravitational acceleration (g) as a reference standard. The accelerometer is

placed on a flat surface with its sensing axis either aligned, opposed or orthogonal to the
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direction of gravitational acceleration, causing it to experience accelerations equal to +1g, -
1g or 0g respectively. Hence a simple 3-point calibration procedure can be implemented
without the need of additional or specialist equipment, and this simple calibration is
adequate if it is known that the accelerometer exhibits a linear response to acceleration.
However, three calibration points that define the upper, lower and midrange values of a
measurand can be deceptive since both a linear or sine function can be fitted to them with
high correlation. It is therefore highly recommended that where practical, calibrations are
performed with more than three reference values. For an accelerometer, additional
reference accelerations can be experienced by placing it on an inclined surface with known
inclination angle so that the sensor axis experiences a component of the gravitational
acceleration. With bi-axial and tri-axial accelerometers where the axes are mutually
orthogonal, this technique has the advantage that a second accelerometer axis
simultaneously experiences a different component of the gravitational acceleration based

on an angle that is complementary to the slope inclination angle.

To perform this calibration, a rectangular containment unit, with perfectly parallel external
faces, was first constructed to securely hold the sensor module. This is essential since the
Shimmer sensors do not have an ideal shape for this form of calibration. Its external
packaging has tapered sides and certain other features that are slightly in relief on two
faces (e.g. nuts, bolts, LEDs), implying that it cannot be laid down perfectly flat on a
surface. To extend the range of calibration coefficients available, plastic wedges with faces
inclined at 10°, 20°, 30° and 40° to the horizontal were also fabricated to provide fractional

values of g, as described previously and as illustrated in Figure 3.2.

10°/20° Wedge 30°/40° Wedge

Figure 3.2: lllustration of Shimmer 9DoF sensor module enclosed in housing and resting on sloped wedges in
different orientations during calibration [183].

The Shimmer sensors can have 24 possible standard orientations (6 faces, any notional
edge pointing up, down, left or right). For illustration, the eight standard orientations of the
sensor module when rotated about the positive Z-axis (Positions A — D) and the negative

Z-axis (Positions E - H) are shown in Figure 3.3. The X, Y and Z axes are shown in red,
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blue and green colours respectively. Similarly, there are eight standard orientations when
rotated about the X and Y axes as shown in Figure 3.4 and Figure 3.5 respectively (all
positions not shown for sake of clarity). These 24 possible orientations of the sensor

module are named accordingly from Position A to Position X.

Position A Position B Position C Position D

Position E Position F Position G Position H

Figure 3.3: The eight standard orientations of the Shimmer sensor module when rotated about the Z-axis
accelerometer.

> Rotation about X-axis

> Rotation about Y-axis

Figure 3.5: Sensor module rotated about the Y-axis accelerometer.

By placing the Shimmer sensor on each sloped surface (having fixed inclinations of 10°,
20°, 30° and 40° to the horizontal) and in each of its 24 possible standard orientations, the
accelerometer responses from each axis can be recorded [183]. Hence, sensor data is
collected at 50 Hz for a period of at least 8 seconds with the sensor module placed at each
position (A — X) and is then plotted on separate graphs. A sample graph, showing
acceleration data collected while the sensor is placed at an inclination of 0° to the

horizontal in eight standard orientations that involve rotations about the Z-axis, is



58 | Movement Selection and Sensor Calibration

illustrated in Figure 3.6 and Figure 3.7. The markers on the graph represent each of the
eight reading windows comprising of 200 sensor data points, selected within the more
stable portion of the displayed data (representing 4 seconds of data collection),
corresponding to the orientations (Position A — E). The average values and the standard
deviation are computed for the sensor output for each of these reading windows (200 data

points) representing the eight positions.
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Figure 3.6: Tri-axial accelerometer output with the module inclined at 0° and rotated about the positive Z-
axis. The markers (vertical dashed lines) represent a reading window of 200 sensor data points for each of the
four standard orientations (Position A, B, C, D).
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Figure 3.7: Tri-axial accelerometer output with the module inclined at 0° and rotated about the negative Z-
axis. The markers (vertical dashed lines) represent a reading window of 200 sensor data points for each of the
four standard orientations (Position E, F, G, H).

This procedure is repeated by placing the Shimmer sensor on the flat surface (0°), on each
sloped surface (10°, 20°, 30° and 40°) and for each of the orientations (Position A — X) and
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subsequently the average sensor values and their standard deviation are computed
corresponding to each orientation. Therefore, a list of 120 measured average acceleration
values (24 positions x 5 inclination angles) for each axis of the accelerometer was
produced. These measured average sensor values can be plotted against theoretical values
of acceleration to produce the required calibration information. Since the accelerometer is
under static conditions, the theoretical values of acceleration for each accelerometer axis
as a function of its standard orientation and wedge inclination angle 6 to the horizontal can

be easily computed.

Using the least mean square linear fit to the calibration data, individual values for
acceleration sensitivity and offset were determined for each accelerometer axis using the

measured acceleration values of the form:

Sp =(mp.Ay) +Cy (3.1)

where n =X, Y or Z axes.
n = sensor output for axis n
An = acceleration experienced by accelerometer axis n
my = linearity function (gradient of slope of line of best fit), sensitivity

Cn = offset value for accelerometer n

From the computed values of the various parameters, a transfer function can be established
that relates the sensor reading to acceleration values as follows:

(3.2)

An example of calibration data collected from the Shimmer 9DoF sensor module (plotting
measured sensor output against theoretical acceleration values) is shown in Figure 3.8,
which reveals that the accelerometers have a highly linear response over the acceleration
range +1g and quite a large difference in offset values. Since it is established that the
accelerometers within the Shimmer module exhibit a highly linear response, henceforth,
prior to any experiments performed in this research work the sensors are calibrated using a
simple 3-point calibration procedure which is incorporated within the data logging
software provided by Shimmer [184]. The accelerometer is calibrated by placing the sensor

module in different orientations such that each axis is aligned towards, away or orthogonal
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to the direction of gravity. This simple procedure provides a fast and effective solution
prior to any data collection and the calibration parameters (sensitivity, m, and offset, Cy
thus computed are used to obtain the physical values of acceleration from the recorded
sensor data. Routinely performing a simple calibration in this manner helps to reduce
temporal errors in the sensor response, such as signal drift, which are inherent or associated

with aspects of the sensor manufacturing process.
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Figure 3.8: Example accelerometer calibration data showing highly linear responses over acceleration range
+1 g with high correlation (R?) values [183].

3.3.2 Gyroscope calibration

A MEMS gyroscope is used for measuring the rate of rotation (°/s) without a fixed point of
reference. Most common MEMs gyroscopes work on the principle of a tuning fork and are
comprised of a pair of identical masses (m) that are driven to oscillate with equal
amplitude but in opposite directions as shown in Figure 3.9. The positive X, Y and Z
directions are shown in the figure, the negative direction for each axis represent the
opposite directions (not shown for sake of clarity). If one of the masses is moving in the
positive X-axis direction with velocity Vx and an angular rotation Q; is applied about the
Z-axis, then the mass will experience a force (Fcorioiis) in the direction of the arrow shown
as a consequence of the Coriolis effect. Correspondingly, the other mass moving in the
negative X-axis direction with the same velocity (Vx) will also experience a Coriolis force
of the same magnitude, but acting in the opposite direction [125]. These two forces can be
measured by sensing mechanisms built into the MEMS structure (e.g. strain change

measured with piezoresistor or deflection measured by capacitance change). In MEMS
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based sensors, the change in the geometry of the piezoresistive material or the change in
distance between two capacitor plates due to an effect of external force is transduced to an
electrical signal obtained at the front end from the sensor device. Since the gyroscope
measures the angular rate of rotation, it requires a source of rotation to excite the device. In

relevant literature, turntables are generally used for calibrating the gyroscope [185].

Fcoriolis = -2mMQz X Vx

FConoIis

Figure 3.9: Principle of operation for MEMS vibrating gyroscope [125].

The Shimmer sensor module housed in the customized glass frame is placed on a record
turntable that has two defined speeds of 33 rpm and 45 rpm. For each 24 standard
orientations of the sensor module (Positions A — X) as shown in Figure 3.3 - Figure 3.5,
data is collected at a rate of 50 Hz as the turntable rotates at each of these speeds. The

turntable is initially kept stationary and then rotated in the following manner:

e 4 complete revolutions at 33 rpm (198°s™Y),
e 4 complete revolutions at 45 rpm (270°s2),
e 4 complete revolutions at 33 rpm (198°s?),
e 4 complete revolutions at 45 rpm (270°s?),

e 2 complete revolutions at 33 rpm (198°s).

A sample graph, showing gyroscope data collected while the sensor is placed at Position A
(cf. Figure 3.3) on the turntable and rotated in the above mentioned sequence is presented
in Figure 3.10. A reading window of 100 sensor data points is selected (shown by the
vertical markers) within the more stable portion of each different stage of the recorded data
(representing 2 seconds of data collection) from which the average values and standard
deviations are calculated. This process is repeated for all the 24 different sensor

orientations placed on the record turntable.



62 | Movement Selection and Sensor Calibration

2800 -

] 33 45 33 45 33 0

| | | | | (. |
2600 { | | | | | | |

| | I | | (. | i— ox

| | | i | | I | gy

.6,.2“““ 11 | [ | | | 1 S
£ | | [ | | | |
3 | | [ | | | |
g2 1 | | | I |
g | | [ | | | |
S 2000 ; | | [ | | | |
o I | [ | | | |
E | | [ | | | |
5 1800 4 | | | | | | t
0 | | | | | | |
| t { t } f I

1600 =dmimey — — —— L \
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Sensor Reading Number

Figure 3.10: Gyroscope output with the sensor module placed in position A at various speeds (stationary, 33
and 45 rpm) alternatively.

Therefore each position (A — X) produces average sensor outputs and the corresponding
standard deviation for the stationary phase and for the rotation speeds of 33 rpm and 45
rpm. Hence, a list of 72 measured average rotation values (24 positions x 3 rates of
rotation) for each axis of the gyroscope is obtained. These measured average sensor values
are plotted against theoretical values of rotation (0, +198°s?, +270°s) to produce the
required calibration information, as illustrated in Figure 3.11.

Similar to the previous calculation involving the accelerometer reading (cf. section 3.3.1),
using the least mean square linear fit to the calibration data, individual values for
gyroscope sensitivity and offset were determined of the form:

Sy =(my.Gy)+C,y, (3.3)

where, n = X, Y or Z axes,

Sn = sensor output for axis n

Gn = angular rotation rate experienced by gyroscope axis n

mn = linearity function (gradient of slope of line of best fit), sensitivity

Cn = offset value for gyroscope n

From the computed values of the various parameters, a transfer function can be established

that relates sensor reading to angular rotation rate as follows:
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Gp = (3.4)

Figure 3.11 shows that the gyroscopes are highly linear and that the X-axis gyroscope
exhibits a response that is counter clockwise to the Y-axis and Z-axis gyroscope. The
response of the X-axis with respect to Y and Z-axis was taken into account in all the sensor

recordings performed during any experiments within this research work.
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Figure 3.11: Gyroscope calibration curve showing a highly linear response with the X-axis response counter-
clockwise to the Y and Z-axis.

Therefore, using the aforementioned calibration methodology, it is established that the
accelerometer and gyroscope sensors exhibit a highly linear response. Henceforth, prior to
any experiments performed in this research work the gyroscope is calibrated using the
procedure incorporated within the data logging software provided by Shimmer [184]. Each
axis of the gyroscope is calibrated by rotating the sensor through 360° about that axis,
integrating the total response obtained over the time taken (angle x rate) and dividing the
result by 360 (rate). Rotations are performed both in clockwise and anti-clockwise
directions, and measurements are also averaged when the gyroscope is stationary. The
calibration coefficients thus determined are used to calibrate the raw sensor data before any
further processing.

3.4 Estimation of error margin and drift

Inertial sensors are susceptible to several error sources like interference by noise and a drift

in the recorded values over time [37]. Hence, it is important to estimate the effects of noise
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and drift on the sensors used in for the experiments. To determine the level of noise
inherent within the sensor (also referred to as the null bias error [186]), the module is left
prone on a flat surface undisturbed for 24 hours. During this time, the sensor continuously
streams data at 50 Hz and is oriented such that the Z-axis accelerometer faces gravity and
the X and Y axes experiences zero acceleration (cf. Figure 3.1). A histogram plot of the
sensor reading for the Z-axis of the accelerometer, illustrated in Figure 3.12, shows a
normal distribution. The distribution shows the mean value and the upper and lower ranges
for the sensor reading (given by three standard deviations, i.e. 36). The 30 value gives the
error margin of each sensor axis under static conditions. This is because under the normal

distribution hypothesis, 99.9% of the data samples lie within + 3c.

mean = 9.804
std= 0.1146

Frequency

93 9.4 95 9.6 97 9.8 99 10 101 10.2 10.3
Acceleration (m:‘sz)

Figure 3.12: A stationary accelerometer with Z-axis facing gravity, showing a normal distribution with a
mean acceleration of 9.804 m/s?.

Similarly, the three gyroscope axes should experience no rotation, since the sensor module
lies stationary. The distribution of the Y-axis gyroscope shown in Figure 3.13, illustrates
the majority of the sensor readings are centered about the mean value (-0.01). The mean
and error margin for each sensor axes for one sensor module is presented in Table 3.2. The

error margins for all the sensors used during the experiments are estimated similarly.
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Figure 3.13: Y-axis reading of a stationary gyroscope with a mean rotation rate of -0.0128 °/s.

Accelerometer (ms?) Gyroscope (°s™)
Parameters
X Y z X Y z
Mean -0.0150 0.0252 9.8037 -0.073 -0.0128 0.0541
Noise Margin (+ 30) +0.3243 +0.3276 +0.3438 +0.9432 +0.8679 +0.9552

Table 3.2: List of mean sensor readings and error tolerance (+ 36) when the sensor module is left static on a
flat surface for 24 hours.

For estimating sensor drift, the sensors are calibrated one month apart using the simple 3-
point calibration method as discussed previously [184]. The difference in the calibration
parameters (sensitivity and offset values) represent the drift experienced by each sensor
axis. It can be observed from Table 3.3 and Table 3.4 that there is a minor change (%
change) in the sensor configuration over a month long duration. The sensitivity and the
offset values have been abbreviated as Sa, Se, Ca and Cg for the accelerometer and the
gyroscope respectively in Table 3.3 and Table 3.4. Similar trends are exhibited by the other

sensor modules used during the experiments.

X-axis Y-axis Z-axis
Ca Sa Ca Sa Ca Sa
Before 1897.79 98.01 2084.42 100.32 1658.34 98.63
After 1897.10 98.09 2084.25 100.25 1659.14 98.61
%change 0.03 0.08 0.01 0.06 0.04 0.02

Table 3.3: Drift in the sensitivity (Sa) and offset (Ca) values for the accelerometer for a sensor module
recorded one month apart.

X-axis Y-axis Z-axis
Ce Se Ce Se Ce Se
Before 1872.41 2.67 1763.41 2.85 1830.77 2.76
After 1872.05 2.66 1762.80 2.83 1830.27 2.75
%_change 0.01 0.3 0.03 0.7 0.02 0.3

Table 3.4: Drift in the sensitivity (Sg) and offset (Cg) values for a gyroscope recorded one month apart.
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3.5 Discussion

In view of the research focus to recognize occurrences of particular arm movements that
are commonly used in daily life, this chapter, lists out the selection of four elementary arm
movements to be tracked and their significance, the inertial sensors to be used and their
respective calibration. The sensor characteristics in terms of the inherent error caused by
interference due to noise and drift in the recorded values over time have also been looked
into. Although the primary focus lies in capturing the discriminatory patterns pertaining to
each arm movement for classifying them using the data generated by these sensors, it is
essential to verify the reliability and repeatability of the sensors which produces the data
over a prolonged time. The corresponding higher order statistical analysis performed on
the sensor data makes it essential to calibrate the sensors (estimating the sensitivity and the
offset values) to obtain a standardized output. The adopted calibration methodology for the
tri-axial accelerometer and the gyroscope illustrate that the sensors exhibit a highly linear
response. Based on this fact, the sensors are calibrated using a simple 3-point calibration
methodology, to obtain the sensitivity and the offset values which are used to deduce the
physical values of acceleration and rotation rates, prior to any data acquisition during the

experiments conducted within this research work.

In the subsequent chapters, the activity recognition methodologies used to detect the arm
movements in nomadic settings using optimal number and placement of the sensors have

been presented.



4. Chapter 4

Sensor Orientation based Movement
Recognition

4.1 Introduction

In this chapter, a simple methodology is presented for recognising three arm movements
(reach and retrieve, lift cup to mouth, pouring/(un)locking), performed during an
archetypal daily activity of ‘making-a-cup-of-tea’. The methodology is based on
determining the orientation of a tri-axial accelerometer located near the wrist. Prioir to
exploring conventional means of learning methodologies (e.g. classification), here an
alternative methodology has been discussed, based on the analysis of the kinematic data
with particular impetus on the activities being monitored. The primary motivation for this
exploration was to avoid the essential step of learning or a training phase which is used in
conventional sensor-based activity recognition as discussed in section 2.2.5.6.5, involving
complex data processing using feature extraction/selection and a range of learning

algorithms.

This led to the development of a simple methodology that allows detection of these three
movements performed in an uncontrolled environment with maximal accuracy, while
accounting for their temporal and inter-subject variability, using a low-complexity
algorithm that can be implemented in a resource-constrained body-worn wireless sensor
node [33]. It is important to note that in Chapter 3, section 3.2, four elementary arm
movements were mentioned which are to be detected as part of this research. However, in
this chapter, the developed algorithm is aimed at detecting three arm movements
performed during the process of ‘making-a-cup-of-tea’. These three arm movements are a
subset of the four movements to be originally investigated and represent common activities
performed in daily life which is further evident from the archetypal activity-list of Table
4.1.
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4.2 Experimental setup

An activity-list (cf. Table 4.1) was designed which emulated the process of ‘making-a-cup-
of-tea’, a common activity performed in daily life, having repeated occurrences of three
types of arm movement (actions) [115]. The activity-list in the experimental protocol
comprises 20 individual activities including 10 occurrences of Action A, and 5 each of
Action B and Action D.

Activity Action

>

Fetch cup from desk

Place cup on kitchen surface

Fetch kettle

Pour out extra water from kettle

Put kettle onto charging point

Reach out for the power switch on the wall
Drink a glass of water while waiting for kettle to boil
Reach out to switch off the kettle

Pour hot water from the kettle in to cup
Fetch milk from the shelf

Pour milk into cup

Put the bottle of milk back on shelf

Fetch cup from kitchen surface

Have a sip and taste the drink

Have another sip while walking back to desk
Unlock drawer

Retrieve biscuits from drawer

Eat a biscuit

Lock drawer

20. Have adrink
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Table 4.1: Use case activity list - ‘Making-a-cup-of-tea’

In this investigation, experiments were performed within an open laboratory with an
attached kitchen at the University of Southampton (UoS) with four healthy subjects (age
range 24 to 40, male, all right arm dominant) and within a treatment centre at the
Brandenburg Klinik (BBK), Germany, with four stroke impaired patients (age range 45 to
73, both sexes, both left and right arm dominant). The stroke patients performed the
movements under the supervision of the expert physiotherapist members of the research
team, using the same set of equipment as used for the healthy subjects. A brief overview of
the degree of impairment of the four subjects has been provided in Appendix A. All
involved team members had trained together in the use of the equipment prior to
commencing these investigations. Healthy participants were requested to perform the
chosen activity-list four times within the same session, with a 10 minute rest period
between repetitions. By comparison, stroke patients performed the activity-list only twice.

The disparity in the number of trials performed by healthy subjects and stroke patients was
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due to the fact that the latter tend to tire quickly and were asked to perform the tasks only
whilst they felt comfortable to do so. Under the given circumstances, this was the
maximum trials that the patients could perform within the stipulated experiment session.

For the experiments, there were no restrictions on the seating or standing position with
respect to the kitchen surface or the time required to complete the actions. The activity-list
was prepared to facilitate the evaluation of the recognition methodology under semi-

naturalistic conditions [39] representative of the nomadic/daily living phase.

As mentioned in Chapter 3 (cf. section 3.3), the Shimmer 9DoF wireless kinematic sensor
module was used as the sensing platform for the experimental purpose. Only the tri-axial
accelerometer and the tri-axial rate gyroscope were used, leaving out the magnetometer.
Two positions on the dorsal side of the arm (forearm proximal to the wrist, and upper arm
proximal to the elbow) were used as the sensing positions and were chosen as those
locations were likely to produce the largest sensor responses to the arm movements being
investigated. The sensor is placed on the dominant arm for healthy subjects and on the
impaired arm for stroke survivors. The XY plane of the sensor module (cf. Figure 3.1) was
in contact with the dorsal side of the forearm, AccX (GyroY) points toward the fingers and
AccZ (GyroZ) points away from the dorsal aspect. The Shimmer sensors were attached to

the arm using elastic straps, providing an intimate, secure, yet un-constraining hold.

Sensor data is collected at a rate of 50 Hz, deemed sufficient for assessing habitual limb
movement which is on the higher side compared to assessing holistic activity as in [2],
[157]. The accelerometer and gyroscope ranges are selected at + 1.5g and + 500°sec
respectively. The sensors transmit kinematic data along with a time stamp to a host
computer using the Bluetooth wireless standard. Data from multiple streaming sensor
modules is synchronised with respect to their individual time stamps and each activity
performed by a subject is marked to record the beginning and end of the activities
performed during the trial. The start and stop time of the activities were noted down by the
researcher observing them as the subjects performed the designated tasks. The
corresponding data collected was segmented using the annotations from the researcher who
observed the subjects as they performed the designated tasks. For this exploration, data
obtained only from the tri-axial accelerometer placed proximal to the wrist is considered,
leaving out the gyroscope and the other sensing position (i.e. elbow) since here the aim
was to produce a methodology using a minimal number of sensors and with a minimal

amount of data processing.
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The accelerometers were calibrated prior to performing any measurements following the
technique mentioned in section 3.3.1. By applying a least mean square linear fit to the
calibration data, individual values for acceleration sensitivity and offset were determined
for each accelerometer axis. These calibration coefficients were used to calibrate the data
collected during the experimental session. The developed algorithm mines the
accelerometer data, analyzing transitions between occurrences of six predefined reference
orientations (or states) of the sensor to predict the corresponding arm movements. The
methodology was evaluated on the experimental data acquired from four healthy subjects

and four stroke survivors as they performed multiple trails of ‘making-a-cup-of-tea’.

4.3 Algorithm design

Estimation of the upper limb orientation and body positioning is achieved through fusion
and processing of heterogeneous sensor data obtained from magnetometers or inertial
sensors comprising of accelerometers and gyroscopes attached to the body segment. With
the aid of a kinematic model, the position of the individual body segments can be
determined in 3D space. The majority of the proposed solutions in literature are based on
Kalman Filter and its derivatives as the sensor fusion algorithm for estimating orientation
[187]-[191], along with other methods based on complimentary filters and gradient
descent methods [192], [193]. However, all these well-known methods which are targeted
towards determining position and orientation of the desired body segment (e.g. upper limb)
employ complex computations and are hence not applicable for this research exploration
where the target is to develop an algorithmic technique that can be implemented in the

resource constrained environment of a wireless body-worn sensor node.

The algorithm developed here is based on predicting the most likely orientation of the
sensor module at any particular time by assessing which of the three accelerometer axes is
the most active at that time. Specific arm movements are then inferred by detecting
sequence of transitions between sensor module orientations. This is a relatively simple
process when the arm is stationary since the total acceleration measured by the sensor
module is equal to the value of the gravitational acceleration (g) and its distribution over
the three mutually orthogonal accelerometer axes directly indicates the orientation of the
sensor module. To appreciate how this simple algorithm works, it is necessary to first
understand how a MEMS type accelerometer responds to acceleration. Typically a MEMS

accelerometer measures the displacement of a suspended seismic mass either by detecting
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changes in strain via a piezoresistive element at the root of a cantilever beam to which the
seismic mass is attached, or by detecting changes in capacitance of a micro-machined
structure where the seismic mass forms one plate of a capacitor. The Shimmer sensor uses
the Freescale MMAT361L tri-axial accelerometer which operates using the capacitive
principle, as illustrated in Figure 4.1. Here, the seismic mass is free to move between two
fixed plates, effectively forming two back-to-back capacitors (C1 and C2), whose values
can be measured using a differential charge amplifier. It is known that capacitance is
inversely proportional to the separation between the plates (distance), therefore,
measurement of capacitor value will be indicative of the position of the seismic mass
relative to the sensor frame. In Figure 4.1, C1 and C2 are the upper and lower capacitors
respectively, forming a bridge circuit for measuring a differential voltage. The subscript ‘s’
refers to the static condition when the accelerometer only experiences the gravitational
acceleration and the subscript ‘d’ refers to the dynamic condition when the accelerometer

experiences the physical acceleration in addition to the gravitational acceleration.

A Positive direction of
accelerometer axis

’a
I
=<1 _|cta<cis
=52 — C24>C2s
Frame | C2s>C1s | C24>>C1d
‘g "g
Static conditions Dynamic conditions

Figure 4.1: Operation of a differential capacitive type MEMS accelerometer. The rectangle with broken line
shows the initial position of the seismic mass when no acceleration is experienced in the direction of the
accelerometer axis and the rectangle in solid lines (green) represents the mass in displaced condition.

How an accelerometer acts in response to two different types of acceleration (physical and
gravitational) is quite different. The force of gravity is ubiquitous and is the process which
gives mass the quantity of weight. This attractive force is also bi-directional, meaning that
any object on the surface of the Earth is attracted toward the centre of the Earth with the
same magnitude of force as that object attracts the Earth toward it. Correspondingly, there
are two vectors for acceleration due to gravity: one accelerating an object toward the center
of the Earth and the other accelerating the Earth toward the centre of the object. However,
because the Earth is considerably more massive, it is only the acceleration vector that acts
on the object accelerating it in a direction toward the Earth that is observable (cf. F = ma).
Consequently, the seismic mass located within the accelerometer is pulled toward the Earth

with an acceleration of magnitude ‘g’. By comparison, when an accelerometer is physically
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accelerated (a) by an external force acting on it, the frame of the sensor moves forward in
the direction of acceleration but the suspended seismic mass moves backward (due to
inertia) with an equivalent acceleration. This will result in the counter-intuitive situation
shown in Figure 4.1 whereby the seismic mass moves in the same direction when under the
influence of gravity alone or when physically accelerated in the opposite direction to that

of gravitational acceleration.

This can be further explained with reference to Figure 4.1. Under the static conditions,
when the accelerometer experiences the gravitational acceleration only, the seismic mass is
closer to the bottom plate than the top and hence C2 has a much larger value than C1 (i.e.
C2s > Cls). However, under the dynamic condition, the seismic mass is even closer to the
bottom plate and so now C2 is even greater than C1 (i.e. C24 >> Clg) and also larger than
its previous value under static conditions (i.e. C2q4 > C2s). With the configuration shown in
Figure 4.1, the capacitors are connected to processing circuitry such that when C2 is
greater than C1, the output of the sensor has a positive value. This means that for the
orientation shown in Figure 4.1, an upward acceleration (a) in the positive direction of the
accelerometer axis results in a positive output voltage [183]. Having this working principle
in mind, 6 reference orientations of the sensor module in the horizontal plane were defined,

referred to as Positions 1-6, as illustrated in Figure 4.2.

Position 4

Static acceleration on axis:
X Y r4

Position1| 0 - 0

9
Position2| 0 0 | *+g
Position3| 0 +g 0

1 Position4| 0 0 g

Position 5| *g 0 0
Position 5 Position 6 Position6] *9 | 0 | 0
Figure 4.2: Predefined orientations of the sensor module with respect to the direction of gravity, showing

positive directions of accelerometer axes [183]. An illustration of the sensor worn on the wrist is also
presented.

For each position the dorsal side of the forearm is in contact with the XY plane of the
sensor, the X-axis points toward the fingers (illustrated in Figure 4.2) and the Z-axis points

away from the dorsal aspect. An illustration of the sensor module worn on the wrist has
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also been shown in Figure 4.2. The positions shown cater for all orientations expected
when performing the target actions with the sensor module secured to either the right or
left arm, and with forearm movement constrained to the horizontal plane. Figure 4.2 also
shows the distribution of the gravitational acceleration between the three accelerometer
axes when the forearm is stationary at each position.

With reference to Figure 4.2, Positions 1 to 4 represent sequential 90° rotations of the
forearm about the median axis of the arm (i.e. rotation about the X-axis accelerometer),
and transitions between subsets of these positions occur with activities such as using a key
to open or close a lock or when performing a pouring action (i.e. Action D). The transition
from Position 1 to Position 5 represents a 90° rotation of the forearm about the elbow (i.e.
rotation about the Z-axis accelerometer), which occurs when the sensor is worn on the left
arm and the forearm is rotated in a drinking action (i.e. Action B). The corresponding
orientation transition for when the sensor is worn on the right arm is given by Position 3 to
Position 6 [183]. The third arm movement of interest (Action A) is not as simple to detect
since it may not necessarily involve a change in orientation of the sensor. Typically, a
reach and retrieve action may be performed with the sensor remaining in Position 2 (e.g.
hand palmar side down grasping an object such as when using a computer mouse) or
remaining in Position 3 when worn on the right arm or Position 1 when worn on the left
arm (e.g. hand midway between pronation and supination such as when grasping a mug).
The sensor may also remain in Position 4 during a reach and retrieve action, such as when
accepting an object in the palm of the hand, though none of the activities defined in the
activity list use this type of movement. Quite frequently, Action A involves a change in
sensor orientation as the forearm rotates to adopt a particular prehensile shape for the hand
prior to grasping an object. Often this means that the orientation of the hand during the
retrieve phase of the motion is not the same as that during the reach phase. The key steps
involved in the algorithm, which has been implemented in MATLAB, are illustrated in
Figure 4.3 and described in the following sections. An overview of the algorithm used to
detect and classify each action is also presented in the flow chart shown in Figure 4.4.

Pre- | Orientation
processing Detection
Action Sequence
Subject Recognition Detection

Figure 4.3: Basic steps of movement detection using sensor orientation[183]
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| Pre-process data segment |
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l No
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Figure 4.4: Flowchart for arm movement detection [183].

4.3.1 Pre-processing

Raw accelerometer data is converted to physical values of acceleration expressed in units
of ‘g’ using individual sensor calibration coefficients. The event markers signifying the
start and end of each activity that were recorded during data capture are used to segment
the data into the 20 activities listed in Table 4.1. Each data segment is then filtered using a
3rd order low-pass Butterworth filter with a cut-off frequency of 5 Hz to suppress the high

frequency noise components.

4.3.2 Orientation detection

Each data segment contains a number of individual data samples, which in turn are
comprised of three acceleration values: X, Y and Z. For each data sample, the maximum
absolute value, its direction, and on which axis this occurred were determined. This
information is used to determine the most likely orientation of the sensor module and the
identifying number of the corresponding position is stored as an element in an

OrientationVector. The rules used to determine the orientation are as follows:
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¢ If the maximum acceleration occurs on the Y-axis is negative, and lies within the range
-g + 0.5g, the corresponding orientation of the sensor is denoted as Position 1.

e If the maximum acceleration occurs on the Z-axis is positive, and lies within the range
g = 0.5g, the corresponding orientation of the sensor is denoted as Position 2.

e If the maximum acceleration occurs on the Y-axis is positive, and lies within the range
g £ 0.5g, the corresponding orientation of the sensor is denoted as Position 3.

¢ If the maximum acceleration occurs on the Z-axis is negative, and lies within the range
-g + 0.5g, the corresponding orientation of the sensor is denoted as Position 4.

e If the maximum acceleration occurs on the X-axis, is positive, and lies within the range
g = 0.5g, the corresponding orientation of the sensor is denoted as Position 5 if worn on
the left arm or Position 6 if worn on the right.

e If none of these conditions are met, a value of 0 is assigned to the OrientationVector

indicating an unknown position.

As described above, the decision as to which orientation the sensor module lies is based on
acceptable acceleration ranges to allow for the fact that subjects may not orientate their
arm such that the sensor module is exactly in one of the orthogonal positions shown in
Figure 4.2. In practice, the forearm may be slightly rotated and the sensor module will
therefore be tilted with respect to the pre-defined positions. Furthermore, basing
orientation determination on a range of acceleration values caters for stroke patients who
exhibit varying degrees of tremor in the upper limb depending on their time post-stroke.
Limit values for these ranges of £0.5g were established experimentally and gave the best
action detection rates [183].

4.3.3 Sequence detection

Having established the most probable orientation of the sensor module for each set of
acceleration data recorded, a SequenceVector is constructed from the annotated positions
stored in the OrientationVector, wherein a sequence is defined as a continuous set of
orientations of the same type and spanning a minimum duration. This process involves
initially passing the OrientationVector through a median filter to remove all zeroes
(unidentified orientations). The remaining set of position numbers is further scanned and
any repeating sequence with a length less than 13 samples (representing 0.26 seconds of
data) is discarded. This step is performed since it is considered that the forearm is only



76 | Sensor Orientation based Movement Recognition

truly orientated in a particular position if it remains in that position for at least one quarter

of a second. The remaining set(s) of position identifiers forms the SequenceVector [183] .

4.3.4 Action recognition

The SequenceVector is examined to detect pre-defined transitions between identified
positions that correspond to the target actions, as described in Table 4.2.

Position Transitions Arm Action
Remaining in Positions 1, 2 or 3 Both A
1—2 or 2—1 Left A
1—2—>1 O 2—1—2 Left A
32 or 213 Right A
3—2—3 O 2—3—2 Right A
1—5-—1 Left B
3—6—3 Right B
Any transition between subsets of Positions 1to 4  Both D

Table 4.2: Sequence transitions and corresponding actions. Transitions for Action A involve additional
processing to distinguish from D.

Firstly, the SequenceVector is analysed to check for Action B, which is a simple transition
from Position 1 to Position 5 then back to Position 1 when the sensor is worn on the left
arm or from Position 3 to Position 6 and back to Position 3 when the sensor is worn on the
right arm. This movement is indicative of a drinking activity, as depicted in Figure 4.5.

Figure 4.5: Transition from Position 3 to Position 6, corresponding to a drinking type of activity (Action B)
with sensor on right arm [183].

Secondly, the SequenceVector is searched for those orientation transitions that are
indicative of Action D, which involves rotation of the arm about the median axis. This
action may involve a number of different transitions between Positions 1, 2 and 3. For
example, a pouring action is described by the position sequence 3 to 2 to 1 (or just 3 to 2)
for when the sensor is worn on the right arm, and by the sequence 1 to 2 to 3 (or just 1 to 2)
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when the sensor is worn on the left arm. For both left and right arm worn sensors, Position
4 is used when extra torque is required in the rotation action, for example when using a key

and lock.

Once a decision about Action B and Action D have been made, the occurrence of Action A
(reach and retrieve), which is a very generic activity performed in daily life is determined.
Action A can result in several different transitions in the activity-list, or demonstrate no
transitions at all (cf. Table 4.2). For an action aimed at reaching out for an object in the
forward direction is performed, the sensor may remain in Position 1, Position 2 or Position
3 throughout the duration of the activity or it may change between combinations of these
Positions depending on the starting position of the forearm and the type of object to be
retrieved (i.e. how it will be grasped in the hand). Hence the occurrence of Action A has to
be confirmed by additional processing.

To identify Action A, the SequenceVector is first examined to determine how many
sequences of consecutively identified orientations it contains. This indicates the number of
state changes that occurred during the movement. For each individual sequence in the
SequenceVector, the accelerometer axis that is aligned with the direction of gravity for that
particular orientation (as defined in Figure 4.2) is discarded and the acceleration ranges
(maximum value — minimum value) recorded by each of the other two axes over the

duration of that sequence is calculated. Specifically:

e For Positions 1 and 3, the acceleration ranges for the X and Z-axes are computed,
neglecting the Y-axis.
e For Position 2, the acceleration ranges for the X and Y-axes are computed, neglecting

the Z-axis.

Therefore, any non-zero value calculated for the range from either of these accelerometer

pairs would indicate:

e Movement of the forearm within the plane defined by the two accelerometer axes; or

e Rotation of the forearm about either or both of the accelerometer axes.

However, forearm rotation will have already been detected earlier in the algorithm when

testing for the occurrence of Action D, and therefore the second scenario never arises. For
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each orientation sequence, the computed acceleration ranges are compared against an
acceptance range of £ 0.2 g. For a movement to be recognised as Action A, either or both
of the computed acceleration ranges must be larger than this acceptance range (indicating
movement within the horizontal plane) for the majority of sequences stored in the
SequenceVector, otherwise the movement is considered as an Unknown Action. Limits for
this acceptance range of + 0.2g were determined experimentally and allow for the fact that
stroke impaired patients will demonstrate some degree of tremor in their arm movements

which could be erroneously interpreted as directional movement.

4.4 Results and analysis

The algorithm was evaluated on the data collected in the semi-naturalistic setup involving
the archetypal activity-list (cf. Table 4.1) emulating the process of ‘making-a-cup-of-tea’
comprised of 20 individual activities having 10 occurrences of Action A, and 5 each of
Action B and Action D.

4.4.1 Healthy subjects

The results for four healthy subjects each performing 4 trials of the activity-list, involving
20 occurrences of the target actions are presented in TableTable 43. It can be observed that
the average accuracy of correctly recognising the 3 movements over the 4 trials for all

subjects is within a range of 91%-99%.

Subject Recognised Actions (Out of 20) Average
Trial1 Trial2 Trial3 Trial 4 Accuracy (%)
1 19 20 19 20 98
2 16 20 18 19 91
3 19 18 19 18 93
4 20 19 20 20 99

Table 4.3: Recognition of trials for healthy subjects [183].

4.4.2 Stroke survivors

The results for four stroke patients each performing two trials of the designated activity-list
are presented in Table TABLE 4.4. The average recognition accuracy over the two trials for

all four patients is within a range of 70%-85%.
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Subject Recognised Actions (Out of 20) Average
Trial 1 Trial 2 Accuracy (%)
1 17 17 85
2 14 14 70
3 16 14 75
4 17 11 70

Table 4.4: Recognition of trials for stroke survivors [183].

4.5 Summary of explorations

A novel yet simple algorithm has been presented aimed at recognizing three elementary
upper limb movements involved in performing a representative activity of daily living,
namely the process of ‘making-a-cup-of-tea’. In this algorithm, the occurrences of six pre-
defined orientations of the sensor module are recognized by examining the distribution of
recorded accelerations across the 3 mutually orthogonal accelerometer axes. The sequence
of allocated orientations and their transitions are analysed to recognize the performed arm
movements. The fact that an accuracy range of 91%-99% for healthy subjects and 70%-
85% for stroke patients can be achieved using only a tri-axial accelerometer located on the
wrist, demonstrates an alternative approach that reduces the overheads associated with
complex data processing algorithms involved in conventional methodologies of human
movement recognition. The approach described here has the advantage of negating the
requirement of training a system to learn response patterns, as is the case in most
conventional pattern recognition systems. However, the pre-defined orientations and the
transitions are particularly aimed at recognizing the investigated movements, performed in
a horizontal plane. Therefore, this methodology is restrictive to these movements since it is
not scalable to adapt to other categories of movements. Nevertheless, it suits the given

application requirement of detecting the three chosen arm movements.

The proposed algorithm has low computational complexity, mostly involving comparisons,
additions, subtractions and few fixed multiplications. It is therefore suitable for translation
into hardware, and can be used as a low-power processing component in a wireless sensor

node based activity recognition system aimed at real-time operations.

4.6 Hardware design

In view of its low-computational complexity, and an added advantage of not requiring a

training system to learn response patterns, the algorithm was implemented on a
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reconfigurable platform (i.e. FPGA) for real-time detection of the three arm movements.
The algorithm is coded using a hardware description language (System Verilog) and
synthesized on the Altera DE2-115 Cyclone IV FPGA board. The DE2 board does not
have a Bluetooth receiver and hence for real-time operation, interfacing between the
streaming sensor unit (i.e. wrist-worn accelerometer), host PC and the FPGA was done
through a combination of Bluetooth, RS232 and application software developed in C#
using the .NET framework to facilitate serial port controls. An overview of the hardware
setup has been shown in Figure 4.6. A detailed description of the architectural design, its
evaluation and the sensor interface with the FPGA for real-time operations have been

presented in the subsequent sections.

=

Sensor attached
on the arm

T FPGA board with
LCD display

Figure 4.6: Setup for the real-time recognition of arm movements using the sensor orientation algorithm.

4.7 Algorithm to architecture mapping

The architecture presented in Figure 4.7, is divided into three modules having three 16-bit
inputs for the tri-axial acceleration data and one 4-bit output for the detected arm
movement. The Orientation Detection (OD) module determines the orientation of the
sensor from each tri-axial input data sample (X, Y and Z). The corresponding orientations
are sent to a subsequent module called Sequence Detection (SD) which tracks the length of
the sequence of the orientation states and saves the unique orientations in a register. The
module Action Detection (AD) is used to infer the performed arm movements (Action A, B
and D) by looking for pre-defined transitions among the unique orientation states. The
detected movements (actions) are displayed on an array of seven segment LEDs as well as

a 2x16 monochromatic LCD screen on the FPGA board.
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Figure 4.7: Architectural overview of the sensor based orientation algorithm.

4.7.1 Orientation detection (OD)

Each performed movement generates a data segment comprised of individual samples from
each accelerometer axis (X, Y and Z). A segment length of 512 samples is considered
(which can be represented on a dyadic scale, i.e. 2" and hence any divisions or
multiplications by the segment length can be implemented by n-bit shift operation),
implying duration of 10 seconds, for each movement which is deemed sufficient time, even
in view of the stroke survivors exhibiting varying levels of impairment. The absolute
maximum acceleration value, its polarity and the corresponding axis for each data segment

is computed using a maximum detector as illustrated in Figure 4.8.
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Figure 4.8: Architecture for computing the maximum from incoming data samples.

The maximum acceleration values on respective axes are further compared with a
predefined threshold of + 0.5g (cf. Table 4.5) using a comparator module and a
multiplexing logic to denote the corresponding orientation state for each sample in the
segment. This is in accordance with the algorithm which has been presented in section
4.3.2.
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Orientation  Processing
maximum acceleration occurs on the Y-axis, is

1 negative, and lies within the range -g + 0.5g
2 maximum acceleration occurs on the Z-axis, is
positive, and lies within the range g + 0.5g
3 maximum acceleration occurs on the Y-axis, is
positive, and lies within the range g + 0.5g
4 maximum acceleration occurs on the Z-axis, is
negative, and lies within the range -g + 0.5g
maximum acceleration occurs on the X-axis, is
/ positive, and lies within the range g + 0.5g,
5/6 Orientation 5 if the sensor module is worn on the
left arm or Orientation 6 if worn on the right
0 indicating an unknown position

Table 4.5: Computing logic for orientation states.

A 3-bit orientation state for each incoming data sample is computed on the fly, thereby
negating the use of any memory. On successful computation, a 1-bit signal, readyOD, is
set high which acts as an input flag to the next module, Sequence Detection. A simulation
snapshot of the Orientation Detection module, with a set of tri-axial data samples is shown
in Figure 4.9. As is illustrated, the module computes the absolute maximum value among
the tri-axial data samples (X, Y and Z) when a readySerial signal is detected and infers the
orientation (OrientationType) based on the aforementioned logic.

{OrientationDefinition_tb/clock

/OrientationDefinition_tb/reset

/OrientationDefinition_tb/X (1000 [4000 [-3000 1 6000 J6000
/OrientationDefinition_tb/y (8000 1000 [ 2000 J-4000 {2000
JOrientationDefinition_th/Z (-3000 | 5000 Js5000 12000 [-2000
[OrientationDefinition_tb/readySerial | ﬂ |_| |_| ﬂ ﬂ |_|_
/OrientationDefinition_tb/OrientationType —(0 }3 ){z I4 16 }(6
JOrientationDefinition_tb/readyOD |_| |_| ﬂ ﬂ |_|

JOrientationDefinition_tb/test/maxAbs —{0 [2]o I3]0 [3)o [1)o [1)o )

/OrientationDefinition_th/test/state IDLE [-I-fioe  {-{-JioLe  J-J-fioLe  J-f-JioLe  J-J-fioLe I+

Figure 4.9: Simulation of the Orientation Detection module with a sample X, Y and Z inputs (scaled up),
illustrating the detected orientation states (OrientationType) and the readyOD signal.

4.7.2 Sequence detection (SD)

Having determined the orientation of the sensor module for each set of tri-axial
acceleration data, this module computes a unique sequence of orientation states generated
for the performed movement. This module executes each time the readyOD signal is set

high. A specific orientation is considered part of a sequence only if a continuous set of
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orientations of the same type span for more than 13 samples (considering a particular arm
position if it lasts for more than quarter of a second). A counter module is used to look
through 512 orientation states determined for each data segment pertaining to a performed
movement and a comparator is used to compute the changes in orientation states. The
simulation waveform of the Sequence Detection module is shown in Figure 4.10. The

counter operation with respect to the simulation is explained in further detail.

/SequenceDefinition_tb/clock
/SequenceDefinition_tb/reset I_|_|
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Figure 4.10: Simulation of Sequence Detection with the orientation changes stored in the Type register and
the readySD signal.

e A counter countSeq increments whenever a readyOD signal is detected and therefore
counts upto 512 (i.e. all orientation states).

e Each incoming orientation state (OrientationType) is stored in a register tempType and
a sample counter Track is incremented until a new orientation appears. This counter is
used to check if the present orientation state lasts for more than 13 samples (i.e. quarter
of a second). If the counter value exceeds the minimum length threshold, then the
OrientationType is considered valid and the value stored in tempType is stored in the
Type register bank. Correspondingly, the counter Track is reset upon a change in
orientation.

e The register bank, Type (3-bits x 8) is used to store up to a maximum of 8 unique
orientation states. A counter countPos is used to keep a track of the maximum number
of unique orientations (i.e. 8) which can be stored in the Type register.

e Once countSeq reaches 512 (all orientation states), the counter is reset and the signal
readySD is set high indicating the completion of sequence generation. The unique

sequence of orientations is stored in the register bank Type.
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4.7.3 Action detection (AD)

In this module, pre-defined transitions of orientation states (cf. Table 4.2) are looked for
within the Type register to determine the performed movements. The reverse transitions are
also checked since each action involves a reciprocal of the original movement, for example
bringing the arm down after raising it to perform a drinking action. The architecture for
inferring the movements from the respective orientations in the Type register is illustrated
in Figure 4.11.

————— P Max & Min ——» Subtractor
—>
—>

Detector
Acc. range l

Comparator
Raw Data (A) logic

Pre-defined T
Comparator logic| , transtions %0.2g

«—

Figure 4.11: Architecture for Action Detection (AD).

Action B, involves a transition from Orientation 1 to 5 (left arm) or 3 to 6 (right arm)
whereas Action D, involves any transitions between orientations 1 to 4. Therefore, a
comparator and multiplexing logic are used to infer Action B and D using the pre-defined
transitions, but inferring Action A requires additional processing as it can involve different
transitions (orientations 1, 2 or 3) or no transition at all as described in section 4.3.4. A
subtractor is used to compute the acceleration range (maximum-minimum value) for each
orientation sequence and compare it against a pre-defined threshold of +0.2g, using a
comparator logic. The computed acceleration range must be larger than the threshold
(indicating movement within the horizontal plane) for the majority of the sequences stored
in the register Type, otherwise the movement is considered as an Unknown Action (U). A

flag readyAD is set high once an action has been inferred.

4.8 Evaluation

The HDL coding was done using System Verilog and synthesized on the Altera DE2-115
FPGA board, programmed through the USB blaster in Active Serial (AS) mode, providing
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non-volatile storage [194]. The synthesized RTL on the FPGA was tested to recognize the
movements performed as part of the experimental protocol of ‘making-a-cup-of-tea’ (cf.
Table 4.1). Test vectors were stored in memory initialisation files (MIF) and the
implemented design was tested at 50 MHz. The average accuracy of correctly recognizing
the 3 actions over the 4 trials for all healthy subjects is within a range of 85%-96% (cf.
Table 4.6) and for all stroke survivors is 63-75% (cf. Table 4.7), representing only slight
differences from the corresponding accuracies achieved with the software implementation
(cf. Table 4.3 and Table 4.4). The average accuracy dropped by 4.8% for healthy subjects
and 6.8% for the stroke survivors. This could be due to the changes in the implemented

design where the raw sensor data was not filtered prior to processing.

Subject Recognised Actions (Out of 20) Average
Trial1 Trial2 Trial3 Trial4 Accuracy (%)
1 18 19 18 18 91
2 16 20 18 18 90
3 18 16 18 16 85
4 18 20 19 20 96

Table 4.6: Recognition of trials for healthy subjects.

Subject Recognised Actions (Out of 20) Average

Trial 1 Trial 2 Accuracy (%)
1 15 15 75
2 12 14 65
3 16 12 70
4 15 10 63

Table 4.7: Recognition of trials for stroke survivors.

The execution time for each module in the worst case is shown in Table 4.8. The variables
lenSeq is set to 512 (segment length), lenPos is set to 8 (number of unique orientation
states that can be stored in the register bank Type). The OD module takes 4 clock cycles for
computing the orientation of each data sample. The SD computes the Type register from a
sample length of 512 orientation states in 2050 cycles (512x4 + 2) cycles and AD takes 10
cycles to infer the performed movement. The design synthesized @50 MHz uses 1804
logic elements and takes 2060 clock cycles (= 41.2 ps) to produce the desired output. The
simulation waveform of the top-level module with acceleration values are presented in
Figure 4.12. For this simulation, the parameter lenSeq has been set to 8 instead of 512 for

sake of clarity.

Signal Module Clock cycles
readyOD Orientation Detection 4
readySD Sequence detection lenSeq + 1
readyAR Action Recognition lenPos + 2

Table 4.8: Execution time for each hardware module, with lenSeq = 512 and lenPos = 8.
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Figure 4.12: Simulation showing the detection of Action B for an orientation transition from position 1 to 5
in the Type register.

A readySerial signal which is activated when a set of X, Y and Z values are obtained from
the serial receiver. The signal readyOD is set high every 4 clock cycles after computing the
orientation state for every data sample. A signal readySD is set high once the orientation
changes are stored in Type. Finally, a readyAD signal is set high to signify the detected
action, Action B for a transition in orientation from 1 to 5 (performed with the left arm). In
this implementation, the internal RAM was not used since OD computes the orientation
states on the fly. Furthermore, any multiplication or division was not used in order to

minimize the number of synthesized logic elements.

4.9 Sensor interface for real-time movement recognition

An overview of the hardware setup was shown in Figure 4.6. For real-time
implementation, the accelerometer transmits data through Bluetooth to a host PC, where
the raw sensor data is converted to physical values and transmitted through a RS232 cable
to the FPGA board. The RTL implementation of the RS232 receiver and the recognition
algorithm were integrated to complete the hardware functionality. The FPGA operates at a
much higher frequency (50 MHz) compared to the sensor which streams data at 50 Hz. The
application ShimmerConnect was used for the Bluetooth communication between the
sensor and the host PC [40]. Using the .NET 4.5 framework, an application software in C#
was developed for the serial port control [195]. For transmitting the data from the PC to the
FPGA, the baud rate was set to 4800 bits per second, with each set of data being 64-bits
wide (16-bits each for X, Y, Z axes and a header code). The header code was used to
indicate the start of transmission so that the receiver can determine the correct axes values.

On the FPGA, a baud tick generator produces a pulse (based on a counter logic) necessary
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for interface synchronization. The LCD screen on the DE2-115 board, using the HD44780
display controller [194], was used to display physical acceleration data derived from the
streaming sensor data as shown in Figure 4.13. The recognized arm movements were

displayed on a 7-segment display in real-time.
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Figure 4.13: LCD display for the acceleration data (left) and 7-segment display connections to the Altera
FPGA (right) [194].

For evaluating the system (cf. Figure 4.6) in real-time, the arm movements (Action A, B
and D) were performed multiple times with the sensor worn on the wrist, which were

detected successfully and displayed on the LEDs.

4.10 Discussion

In this chapter a novel algorithm has been presented to recognize three arm movements by
analyzing transitions between six pre-defined orientations of a wrist-worn accelerometer.
The algorithm has been developed simply as a proof of concept vehicle for this arm
movement recognition application in stroke survivors. The results have been encouraging
and show that these particular arm movements can be reliably detected with stroke patients
exhibiting moderate levels of involuntary tremor in their movements. The algorithm could
be extended for use with patients suffering from other neurodegenerative disorders that
might demonstrate greater levels of tremor or less fluidic movement profiles. In such
circumstances, additional band-pass filtering can be applied to sensor recordings to

suppress higher frequency data associated with rapid or discontinuous movements.

In view of its low-computational complexity, the algorithm was implemented on a
reconfigurable platform (i.e. FPGA) for real-time detection of the three arm movements.
The synthesized RTL used approximately 1804 logic elements, running at a clock
frequency of 50MHz and took 2060 clock cycles to complete thereby taking 41.2 ps to
generate the desired output. The implemented design does not use any memory element
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and avoids the overheads of complex data processing and a dedicated training phase,
involved in any standard activity recognition system. Although implemented on FPGA, the
salient features of the architecture makes it amenable for low-power application in body-
worn wireless sensor nodes. The architectural design can be further implemented as a low-
power ASIC chip and embedded on a sensor platform along with other vital components
such as A/D converter and a de-noising circuit for long-term monitoring of arm movement

recognition in real-time.

However, as discussed the six pre-defined orientations and the transitions are particularly
aimed at recognising the there investigated arm movements, performed in a horizontal
plane. Therefore, this algorithm is not scalable or flexible for incorporating new category
of movements which might need to be monitored depending on a patient’s impairment and
the corresponding guidelines of the clinicians. Hence, in the subsequent chapters the focus
is on devising low-complexity activity recognition methologies which can detect the
investigated arm movements in nomadic settings and can be implemented on a low-power
hardware platform. Furthermore, upon close examination of the designed activity-list (cf.
Table 4.1), it was realised that certain activities in the list (e.g. 3, 6, 8, 10 and 12) could
qualify as being denoted Action C, since they involve reaching out for an object sideways.
These tasks involve a rotation of the arm about the shoulder as originally defined in section
3.2. Hence, in the following chapter where three low-complexity supervised learning
algorithms have been explored to recognise the movements performed while ‘making-a-
cup-of-tea’, the activity-list has been modified to include 5 occurrences each of Action A,
B, C and D. This also satisfies the movement selection methodology, outlined in section
3.2, derived from the streamlined WMFT set.



5. Chapter 5

Movement Recognition using Supervised
Learning Algorithms

5.1 Introduction

In this chapter a systematic exploration is presented to recognize the four elementary
movements of the upper limb (Action A, B, C and D as mentioned in Chapter 3), using data
collected through inertial sensors. This involves a detailed description of the experimental
protocol for data acquisition from healthy subjects and stroke survivors under two distinct
scenarios - laboratory setup (controlled environment) and the semi-naturalistic setup
(uncontrolled environment). As discussed in section 2.2.5.6, in principle there are four
steps for human activity recognition using inertial sensors: 1) data capture by appropriate
sensors; 2) segmentation of the captured data to identify the beginning and end of an
activity, 3) data processing (filtering, feature extraction and selection) and 4) recognition of
the activity using appropriate classification techniques. In this chapter, the aim is to detect
the number of occurrences of specific arm movements performed by the subjects in the
uncontrolled environment. In view of this, the optimal number of sensors, their placement,
the best category of sensor signals and the appropriate data processing techniques have
also been investigated to enable consistent and accurate detection of these basic arm

movements, particularly accounting for temporal and inter-subject variability.

Supervised classification techniques involve two phases — training a model with a given set
of observations and evaluating the trained model with new set of observations (testing).
Hence, the data collected in the controlled environment is processed to develop the activity
recognition model retrospectively following two approaches - a person-dependent
(personalized) and a person-independent (generalized) training dataset. The trained model
for both the approaches is cross-validated in association with three supervised learning
algorithms independently — linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA) and support vector machines (SVM). The trained model (classifier) is then

prospectively evaluated on the data collected in the uncontrolled environment in
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association with the best performing learning algorithm to detect the performed

movements. The overall process is further described in detail in the following section.

5.2 Approach

The key steps involved in the overall approach are illustrated in Figure 5.1 and described in

detail in the following sections.
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Figure 5.1: Methodology used to evaluate data types and learning algorithms.

5.2.1 Data acquisition

The data acquisition step is divided into two phases — sensor data collected through an
experiment conducted on healthy subjects and stroke survivors in two distinct scenarios

and the pre-processing of the raw sensor data.

5.2.1.1 Experimental setup

In accordance to the requirements of supervised classification, a new experimental setup
has been used to collect data for training the classifer in addition to the previously used
seminaturalistic setup (cf. section 4.2). Therefore, the experimental setup represents two
scenarios — laboratory setup (controlled environment) representative of the exercise phase
and the semi-naturalistic setup (uncontrolled environment) representative of the

nomadic/daily living phase.

In the laboratory setup, subjects performed multiple trials of the four movements, Action
A, B, C and D in the laboratory. The subjects were generally encouraged to perform the
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tasks in a natural way, as they would normally do when extending, lifting, bending or
turning the arm during daily activities. For Action A, reaching and retrieving was
performed with a full/empty cup, mouse and a paper weight. Action B involved lifting a
full/empty cup, glass. For Action C, subjects reached out for a book, pen, cup kept
sideways. Lastly, Action D involved rotating the wrist for pouring out from a full/empty
cup, glass and a locking/unlocking action. The subjects were asked to perform the actions
in a random mix of both sitting as well as standing positions. The subjects were generally
encouraged to perform the tasks in a natural way, as they would normally do when
extending, lifting, bending or turning the arm during daily activities. In addition, there
were no restrictions on the various physical factors of the experiment such as the seating
position, height of the chair, distance between the chair and the table, position of the
objects on the table and the time required to complete the tasks. Un-constraining the
experiment in this manner helps to generate a wider range of variability in the data paving

the way for a robust arm movement detection system.

The semi-naturalistic setup as already introduced in section 4.2 (cf. Table 5.1) comprises
of the archetypal activity-list emulating the process of ‘making-a-cup-of-tea’, a common
activity performed in daily life. As discussed in section 4.10, the activity-list comprising of
20 individual activities, has been modified to have 5 occurrences each of Action A, B, C
and D as illustrated in Table 5.1.

Activity Action
Fetch cup from desk A

Place cup on kitchen surface

Fetch kettle

Pour out extra water from kettle

Put kettle onto charging point

Reach out for the power switch on the wall
Drink a glass of water while waiting for kettle to boil
Reach out to switch off the kettle

Pour hot water from the kettle in to cup
Fetch milk from the shelf

Pour milk into cup

Put the bottle of milk back on shelf

Fetch cup from kitchen surface

Have a sip and taste the drink

Have another sip while walking back to desk
Unlock drawer

Retrieve biscuits from drawer

Eat a biscuit

Lock drawer

20. Have adrink
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Table 5.1: Use case activity list - “Making-a-cup-of-tea’

For this exploration, kinematic data obtained from all the four tri-axial sensor nodes (tri-
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axial accelerometer and rate gyroscope — placed on the wrist and the elbow) were
considered. Movements performed during the laboratory setup are also observed by the
researcher to mark the beginning and end time of the activities. Simialr to the semi-
naturalistic setup, data collected was segmented using the annotations from the

accompanying researcher.

The data collected in the laboratory setup scenario is used to train the recognition
algorithm (classifier/machine) whereby it learns the kinematic characteristics of the
specific movements and is later evaluated or tested upon the data collected in the semi-
naturalistic setup. The primary focus is on detecting the elementary movements used
during the archetypal activity of ‘making-a-cup-of-tea’. Therefore, in the forthcoming
sections the data collected in the laboratory setup is referred as training phase data or
training dataset and the data collected in the semi-naturalistic setup is referred as testing
phase data or testing dataset. The strategic choice of training the classifier is of utmost
importance, given the huge degree of inter-person/temporal variability for the same
movement within the human population, and in particular, for people undergoing
rehabilitation. Therefore for the training phase, sensor data was collected using two types
of approaches: a person-independent (generalized) and a person-dependent (personalized)

approach:

e generalized approach — kinematic data was collected from a group of 18 healthy
subjects in a laboratory setup. Each subject performed 20 trials each of Action A, B, C
and D, separated into groups of five repetitions,

e personalized approach - kinematic data was collected from five healthy subjects in a
laboratory setup with each subject performing 120 trials each of Action A, B, C and D,
separated into groups of five repetitions. Four out of these five subjects had already
volunteered for the semi-naturalistic setup (cf. section 4.2).

Each group of trial comprising of five repetitions for each action, was separated by
approximately three minutes. This was done to avoid the generation and collection of
unrepresentative data due to fatigue and/or boredom, as well as the effects of unconscious
self-learning of the activities. At this stage data was collected only from healthy subjects
since the intention was to develop the recognition model and evaluate it to deduce if the
chosen methodology (sensor positioning, data processing, learning algorithms) were
successful in detecting the performed arm movements by a healthy subject population. The

data structure for training the model is summarized in Table 5.2.



Movement Recognition using Supervised Learning Algorithms | 93

Attributes Generalized Personalized
Number of subjects 18 5
Training dataset 4 actions x 20 times = 80 4 actions x 120 times = 480

Table 5.2: Data structure for each of the four sensor-position combinations for the training phase collected
from healthy subjects.

5.2.1.2 Data pre-processing

The captured raw sensor data was calibrated using the calibration coefficients (sensitivity,
offset) obtained for both the accelerometer and the gyroscope sensors, using the simple 3-
point calibration methodology discussed in Chapter 3 (cf. section 3.3). The calibrated data
Is then pre-processed to get rid of any inherent noise and artefacts generally associated
with the data acquisition process. The raw sensor data is low-pass filtered with a 3rd order
Butterworth filter having a cut-off frequency of 12 Hz to attenuate the high-frequency
noise components. The resultant data is passed through a high-pass 3rd order Butterworth
filter having a cut-off frequency of 0.1 Hz which attenuates the low-frequency artefacts
introduced in the data due to physical effects such as drift [157]. The filter order and cut-

off frequency values were experimentally determined using Matlab.

5.2.2 Data mining

Data is considered in three forms:

¢ Individual sensor signals: The two Shimmer 9DoF sensor modules transmit data in
real-time from a total of 12 individual sensors [(3 x accelerometers and 3 x gyroscopes)
X 2 positions], providing a database to search for characterizing patterns.

e Fused Signals (Modulus): modulus of the total acceleration (Ma) or total rate of rotation
(Mg) experienced by the individual limb segments, as given by (5.1). This results in 4
new signals, 2 each for the wrist and elbow sensor modules. Temporal variations in

these signals indicate periods of activity of the underlying limb segment.

M, =+ AccX 2 + AccY ? + AccZ?

(5.1)
M, :\/GyroX 2 +GyroY? +Gyroz?
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e Fused Signals (accelerometer-gyroscope combination): Fused signals were further
created, based on an a priori consideration of the expected trajectory of the subject’s
arm in relation to the sensor position on the arm and the orientation of the sensor axes
when performing the required tasks. For example, Table 5.3 lists the specific
accelerometer—gyroscope combinations that are expected to be the most active for each
task as a function of their location on the arm. There are 3 unique sensor combinations
for the wrist and 2 for the elbow to potentially identify the four tasks. Fusion of these
signals takes the simple form of multiplying together the pre-processed data from the
appropriate sensor combinations, thus creating 5 unique signals. Fusing data from
different sensor nodes were not considered since the aim was to find the minimum

number of sensor locations.

Movement Wrist Elbow
A AccX x GyroY AccY x GyroZ
B AccY x GyroZ AccY x GyroZ
C AccY x GyroZ AccY x GyroZ
D AccZ x GyroY AccZ x GyroY

Table 5.3: Definition of fused signals for each arm movement.

5.2.3 Feature extraction

Each data stream exhibit signal patterns that are distinctive for each of the arm movements,
which is characterized by a set of features extracted from the signals [157]. In this

investigation, 10 time-domain features were considered which are listed in Table 5.4.

No.  Features Description

1 standard deviation measure of the variability from the mean of the signal

2 root mean square (rms) measure of the signal energy normalized by the number of samples

3 information entropy measure of the randomness of a signal [196]

4 jerk metric rms value of the derivative of the data normalized with respect to the maximum value of the
integral [5]

5 peak number obtained from gradient analysis of the signal

6 maximum peak amplitude  measure of the amplitude of the peaks obtained after gradient analysis

7 absolute difference absolute difference between the maximum and the minimum value of a signal

8 index of dispersion ratio of variance to the mean

9 kurtosis measure of the ‘peakedness’ of a signal assuming a non-Gaussian distribution in the data

10 skewness measure of the symmetry of the data assuming a non-Gaussian distribution in the data [197]

Table 5.4: List of the features considered in this exploration.
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Although the last two features (kurtosis and skewness) are usually associated with defining
the shape of a probability distribution, they can still be used as classifying features if they
routinely return values that distinguish one pattern of data from another. Hence these 10
one-dimensional features were computed for each movement trial of each subject,

considering data from:

e each individual accelerometer (AccX, AccY, AccZ) and gyroscope (GyroX, GyroY,
GyroZ) signals for each of the wrist and elbow sensor modules,

e two modulus signals (Ma and Myg) as defined by eqgn. (5.1) for each of the wrist and
elbow sensor modules,

o five fused data signals (3 for the wrist and 2 for the elbow) as described above in Table
5.3.

5.2.4 Feature selection

Feature selection helps to select the optimal number of features thereby reducing the
computational load and helps in achieving the best possible classification accuracy. The
extracted features were normalised and as discussed in section 2.2.5.6.4, the Wrapper
approach was followed using the sequential forward selection (sfs) searching technique. It
selects various feature vector combinations to test for the minimal classification error
probability and is computationally simple [145]. Here, the selection of the optimal number

of features depends strongly on the employed classification algorithm.

The sfs technique can be explained with a working example by considering a feature vector
comprising of four different features [Xi, X2, X3, Xa]. First, the best ranked feature is
computed, say X, and the classification performance is evaluated with X>. Secondly, all
two-dimensional feature vector combinations with X> are computed: [X1, X2], [X2, Xs],
[X2, X4] and the classification performance for each of the combinations is evaluated.
Thirdly, all three-dimensional feature vector combination with X, are computed: [X1, Xz,
Xs], [X1, X2, X4] and the classification performance is evaluated with both the
combinations. Finally, the features forming the best feature vector combination are
selected [145].

The best features for a given classification algorithm are selected from a sensor-position
specific feature space for each signal type generated as a result of each movement trial

performed by each subject.
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s FS'ndividuaI :[fl_x flO_x’ fl_Y flO_Y’ fl_z flO_Z]

where FSindividual, represents a feature space comprising of 30 features - 10 individual
features (f1...f10) extracted from each individual sensor stream (X, Y, Z) for each sensor

type (accelerometer, gyroscope) and each position (wrist, elbow),

® FSfused(modqus) :[fl—M flO—M]

where FStusedmodulus), represents a feature space comprising of the 10 features extracted
from each of the modulus signals (Ma, Mg) for each sensor type (accelerometer, gyroscope)

and each position (wrist, elbow),

f, _sig,1--- fo _sig, L, f, _sig,2--- f,, _sig, 2,

FS fused (acc—gyro,wrist) = f]_ Slg 3 .. flO Slg 3
—~>l9y —Tow

where FStused(acc-gyro, wrist), represents a feature space comprising of 30 features - 10 features
extracted from each of the 3 unique signals (sigwl, sigw2, Sigw3) generated from the

specific accelerometer—gyroscope combinations for the wrist sensor node (cf. Table 5.3) ,

e FS fused (acc—gyro,elbow) — [ fl - Sigel' h f10 _SigeL f1 — Sigez e f10 — Sigez]

where FStused(acc-gyro, elbow), represents a feature space comprising of 20 features - 10 features
extracted from each of the 2 unique signals (sigel, sige2) generated from the specific

accelerometer—gyroscope combinations for the elbow sensor node (cf. Table 5.3).

The number of features selected in each of the cases is highlighted in the corresponding
results in section 5.4.

5.3 Classification using supervised learning techniques

In terms of classification, a review of the literature shows that different machine learning
techniques have been used depending on the application area, e.g. Support Vector
Machines (SVM) [157], [169], Decision Trees (DT) [28], [157], Naive Bayes (NB) [113],
Multi-Layer Perceptron (MLP) [2], Artificial Neural Networks (ANN) [28], or a
combination of these techniques [117]. The accuracy of any classification technique will

depend on the system requirements covering important areas — type of activities, number of
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activities, type of sensors, number of sensors, placement of sensors [38], multiple sensor
fusion, etc. Very little work has been reported in terms of activity recognition for
elementary arm movements. Further, an aspect which has not been investigated are the
differences prevalent among individuals performing the same activities, which is essential
considering the variability inherent within a subject population due to various physical
factors [29]. Although there are several well-known classification techniques used for
human activity recognition as discussed in section 2.2.5.6.5 , from the perspective of low
or moderate computational complexity, this study was restricted to three supervised
learning algorithms — Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA) and SVM.

As mentioned in section 2.2.5.6.5, in supervised pattern recognition or supervised learning,
the classifier is first trained with a set of data (training data) for which the correct class
labels are known. During the training of the classifier, the free parameters associated with
the classifier are adjusted adaptively to minimize classification errors. The classification
performance on the training data can be evaluated using a validation set for which class
labels are known, but this data is not used to modify the classifier parameters. Once
trained, the classifier is applied to a test dataset where it performs its designated function to
determine the most likely condition based on a given data pattern. A good classifier should
produce minimum classification error when evaluated on the test data (i.e. the data which it
has not been trained upon) [198].

5.3.1 Linear/Quadratic Discriminant Analysis

A discriminant function takes an input vector X and assigns it to one of the n classes,
denoted by Ch. As the name suggests, linear classifiers use linear decision boundaries, i.e.
hyper-planes for separating four or more variables (features). The output predicted by a
linear discriminator is given by (5.2).

M
Y= XW +b (5.2)
i=1

where y is the predicted class, M is the number of distinct features, xi is the i™" feature.
Classifier tunable parameters are given by weights (wi) and bias or off-set (b), both of

which together construct the hyper-plane for separation [198]. The orientation of the
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hyper-plane is determined by the weights and the location of the hyper-plane with respect

to the origin is determined by the bias.

LDA is widely used due to its powerful discriminatory capability. It generally works on the
principle where it maximizes the ratio of intra-class variance to the inter-class variance in
any particular dataset thereby maximizing separability between two classes (based on the
hyper-plane). If the number of classes is more than two, a natural extension of Fisher
Linear discriminant exists using multiple discriminant analysis [199]. The maximization of
the ratio (i.e. intra-class variance to the inter-class variance) is done among several

competing classes. For n classes, the intra-class matrix is calculated as:

Y, =Sty = 2L Y (=X (= x) (53)

XeC;

The inter-class scatter matrix can be computed as:

> =2 m (X =x) (X =) (5.4)

where m; is the number of training samples for each class, x' is the mean for each class and

x" is the total mean vector given by:

' 1 n ’
X :Ezi:lmixi (5.5)

The linear transformation, @ to maximize the Rayleigh coefficient, which represents the
ratio of the determinant of the inter-class scatter matrix of the projected samples to the
intra-class scatter matrix of the projected samples, can be obtained by solving the

generalized eigenvalue problem:

D D=1 @ (5.6)

Once the transformation,® is achieved, the classification is then performed in the
transformed space based on some distance measure like the Euclidean distance. A new

instance z is classified to argmin, d(z®,x®), where x/ is the centroid of n-th class

[199]. Therefore, it is a search for a linear transformation that reduces the dimension of a
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p-dimensional statistical model, consisting of n classes, to n-1 dimensions while preserving
a maximum amount of discriminant information in the lower-dimensional model. A
representative example of the LDA classifier has been shown in Figure 5.2 which separates
two classes by drawing a decision boundary between them in 2-D feature space. The black
filled circle and boxes denote the misclassified data points for the two respective classes.

Typical classification example with LDA

Figure 5.2: Typical example of two-class classification in 2-D feature space using LDA [198].

The LDA classifier gives good result if the data is linearly separable. For many practical
biomedical applications, more complex decision boundaries may be required. The easiest
way to address this problem is to use higher dimensional kernels. Any input feature vector
may be transformed to high dimensional feature space using a polynomial kernel.
According to Cover’s theorem, it is always possible to obtain a linear boundary or hyper-
plane if the order of the kernel is gradually increased when the data-set becomes linearly
separable [125]. The main problem of this approach is the classifier would not generalize
unless the training dataset contains large number of data-points and also results in an
increase of the computational complexity. The curse of dimensionality is the main obstacle
for using a generalized classifier on limited number of experimental data in majority of
classification tasks in biomedical applications. To visualize the effect of higher order
kernels, let us consider a 2-D feature vector {x1, x2}. A quadratic kernel would map the
feature vectors to form a new feature vector as {xi, Xz, X1, 22, x1x2}. Clearly, the new
feature vector consists of the original feature vectors, their squared values and their cross-
products. Similarly, for a 3-D feature vector {xi, x2, X3}, use of a quadratic kernel will
produce a new feature vector as {Xi, X2, X3, X12, X22, X32, X1Xz, X1X3, X2X3}. Using these higher
dimensional features for similar least square based discriminant analysis would produce

the well-known quadratic discriminant analysis (QDA) classifier [125].
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5.3.2 Support Vector Machines

As discussed in section 2.2.5.6.5, the support vector machine is fundamentally a two-class
classifier and works by putting special emphasis on the decision boundary. It maximises
the distance between those data points (i.e. features) of the training set from both classes
that are close to each other as opposed to considering all data points as is common for both
LDA and QDA. The points closest to the class separation boundary are called support
vectors and the classifier that maximizes the distance between these critical support vectors
is known as SVM classifier. Since the SVM classifier maximizes the margin between the
classes, it is also known as maximum margin classifier [198]. If the data is linearly
separable, the SVM classifier tries to find the optimum hyper-plane which maximizes the
margin (M) using an optimization routine, subjected to a constraint that all the data points
are lying on the appropriate side of the decision boundary. This has been further illustrated
with an example of a two-class classification problem in a two-dimensional feature space

in Figure 5.3.

Typical classification example with SVM

o

Margin = 2/|jw| =

1 |
3 4

Figure 5.3: Typical example of two-class classification in 2-D feature space using SVM [125].

To simplify the mathematical representation it is considered that the classes are assumed to

have a class label of y =21 which implies the decision boundary to be represented as y =

0. With input patterns (xi), weight vector (w) and the bias (b), the decision boundary can be
expressed as:

y=Xxw+b=0 (5.7)

Therefore, the lines going through the support vectors can be represented as:
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XxW+b>1 wheny=+1

5.8
XxW+b<1 wheny=-1 8
The above two expressions (5.7) and (5.8), can be combined as follows.
y; (xw+b)>1 (5.9)

Equation (5.9) signifies that if the parameters {w, b} can be chosen by a suitable
optimization framework, the two classes will lie on the appropriate side of the support
vectors. The distance of the hyper-plane from the origin can be derived from (5.7), as

—~b/|w|, where |\w||denotes the norm of w given by:

Wil =W+ W5+ W =W (5.10)

The distance of the hyper-planes in (5.8) to the origin can be expressed as (+1—b)/|w.

This can be used to find out the distance between two lines defined by (5.8) simply by

subtracting the two distances as shown in (5.11). Hence, the maximum margin (M ) can be

obtained by minimizing|w .

v b (-1-b)_ 2 (5.12)
Wl Wl w]

As mentioned in section 2.2.5.6.5, the binary SVM classifier has been extended to handle
multi-class problems through the one-versus-rest and one-versus-one approach. Besides
being computationally intensive, there are some inherent problems in both these
approaches. In the one-versus-rest approach, the training sets are imbalanced and in the
one-versus-one it takes a significantly longer training time [200]. Therefore, in this
exploration the toolbox LIBSVM was used, which is a library for SVM and is efficient for
multi-class classification [201]. The linear SVM is effective if the data is linearly
separable. For data which are not linearly separable, i.e. linearly non-separable features are
often mapped to a high dimensional feature space where they become linearly separable
(according to Cover’s theorem). In most real world applications, SVM is commonly
augmented with complex kernels like Radial Basis Function (RBF) which creates a

complex decision boundary based on a higher dimensional feature mapping [125].
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5.3.3 Classifier performance evaluation

Overall (average) correct classification or accuracy is generally used to measure the
performance of a binary classifier which might not always be applicable for multi-class
classification because of possible dissimilar classification rates of different classes
affecting the overall performance measure. Hence the sensitivity of a given class is
measured from the confusion matrix N following the scheme proposed in [202]. The
sensitivity S of class i estimates the number of patterns correctly predicted to be in class i

with respect to the total number of patterns in class i [202]:

S, = %xloo (5.12)

f.= i Cij (5.13)

where i = 1...c and c is the total number of classes. The diagonal and the off-diagonal
elements of the confusion matrix correspond to correctly classified and misclassified
patterns respectively. Cjj represents the number of times that the patterns are predicted to be
in class j when they really belong to class i. The overall accuracy of movement detection
for each subject is represented by the sum of individual class sensitivities (success rate of
individual movements) with respect to the total number of test patterns to be classified. A

sample confusion matrix N is shown in Figure 5.4.

Predicted ‘A’ Predicted ‘B’ Predicted ‘C’ Predicted ‘D’
=1 j=2 j=3 =4
Actual ‘A’ i=1 0.95 0.05 0 0
Actual ‘B’,i=2 0 0.9 0 0.1
Actual ‘C°,i =3 0.02 0 0.98 0
Actual ‘D’, i =4 0.05 0 0.05 0.9

Figure 5.4: An example confusion matrix for four classes.

This example shows near perfect classification since all diagonal elements approach unity

and all off-diagonal elements approach zero. Therefore, the sensitivity of class A

(expressed as a percentage), can be computed ass, ___ 0% - 950 and the overall
(0.95+0.05)
(0.95+0.9+0.98+0.9)
accuracy (expressed as a percentage) can be computed as Accuracy = 2 =

93.25%. These two metrics — sensitivity and overall accuracy have been used to report the
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classification performance in this exploration for movement recognition.

5.4 Cross-validation on the training dataset

As mentioned in section 5.2.1.1, the recognition model was developed retrospectively
using the data collected in the laboratory setup (training dataset) using two types of
approaches: generalized and personalized in association with the learning algorithms LDA,
QDA and SVM. The model in either approach is verified through cross-validation where a
segment of the original dataset is kept for training the model and the rest of the data for
evaluating the trained model. This process is repeated till whole of the original dataset has
been tested (or cross-validated). Feature extraction from the pre-processed sensor data and

classification were performed in Matlab.

5.4.1 Generalized approach

The fundamental assumption behind this approach is that if a pool of data encompassing
large variability of a particular type of movement from a population is used to train a
classifier then it would be able to successfully identify that particular type of movement for
a single subject as there is very high probability that the characteristics of the movement of
that subject is already embedded within the training dataset. To test this hypothesis, as
shown in Figure 5.5, a ‘leave-one-subject-out’ validation methodology was performed,
wherein one subject was left out of the training data set [128]. This process was repeated
for all 18 subjects. Since each subject performs a movement 20 times, for each sensor-
position and signal category, a data set consisting of 1440 samples (18 subjects x 20 trials
x 4 movements) was obtained. One subject’s data of 80 samples (1 subject x 20 trials x 4
movements) was used as the testing set and the remaining 1360 samples as the training set
in each iteration to evaluate each of the three classifiers (using LDA, QDA and SVM
algorithms) for data from each sensor-position (accelerometer and gyroscope on the wrist
and elbow) and each signal category (individual, fused-modulus and fused-combination).

-~ Data .
Leave_one_subject_out | / Classified '

fromlS ) (Validation process repeated for all 18 subjects) | \_  Results /
~subjects_~ ¢ >

Figure 5.5: Overview of the generalized classification approach.
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5.4.2 Results for the Generalized approach

The classification results (sensitivity for each arm movement recognised) of the
generalized approach using the individual sensor data, their moduli and the fused data for
each of the learning algorithms LDA, QDA and SVM for the wrist and elbow are presented
in Figure 5.6 and Figure 5.7 respectively. The sensitivities and the number of features
required for each case are also presented in Table 5.5.
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Figure 5.6: Generalized classification - sensitivities for each task using the wrist accelerometer and
gyroscope modulus signal (mod), individual sensor signals (X, Y, Z) and fused signals with LDA, QDA and
SVM. The number of features required for each signal and sensor type is shown at the top of each group.
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Figure 5.7: Generalized classification - sensitivities for each task using the elbow accelerometer and
gyroscope modulus signal (mod), individual sensor signals (X, Y, Z) and fused signals with LDA, QDA and
SVM. The number of features required for each signal and sensor type is shown at the top of each group.

Considering LDA with individual sensor signals, the wrist gyroscope recognises the four
movements with sensitivities in the range of 83-96% across all movements while the wrist
accelerometer also has a similar detection rate with sensitivities in the range of 84-91%
across all movements. However, the gyroscope uses only 12 features as compared to the 18
used by the individual sensor signals of the accelerometer (out of a total of 30 - 3x10
features) and hence is the obvious choice with regard to a low complexity solution. As can
be observed Action B has a higher sensitivity (91%) using the accelerometer but that

involves a cost of computing 6 extra features.
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Wrist Elbow
Classifier Signal A(%) B((%) C(%) D (%) Features A (%) B(%) C(%) D (%) Features

Acc_mod 58 58 51 73 9 63 77 48 87 8

Acc_xyz 85 91 84 90 18 77 84 56 85 11

LDA Gyr_mod 82 78 39 80 7 76 50 65 81 8
Gyr_xyz 96 83 83 88 12 81 81 79 84 15

Fused 81 74 60 75 13 63 67 66 64 9

Acc_mod 49 61 54 72 4 56 76 45 86 7

Acc_xyz 89 92 78 91 15 81 78 70 74 18

QDA Gyr_mod 82 71 36 85 7 74 54 64 67 7
Gyr_xyz 94 91 95 89 12 76 72 86 85 15

Fused 86 72 54 74 11 59 33 69 68 11

Acc_mod 42 53 55 70 5 57 76 35 82 4

Acc_xyz 89 87 82 90 8 86 82 55 84 8

SVM Gyr_mod 90 74 35 80 5 76 49 58 7 5
Gyr_xyz 97 85 90 89 11 88 81 78 83 14

Fused 75 71 50 69 9 55 71 56 44 9

Table 5.5: Generalized classification results using LDA, QDA and SVM.

A further comparison of the wrist gyroscope results using individual sensor signals with
QDA and SVM illustrates that the results for QDA and SVM are marginally higher than
LDA, and the number of features required for the three algorithms is nearly the same.
Hence, in view of the trade-off between the sensitivity and the complexity involved, LDA
being computationally less complex [36] appears as the best choice. The sensitivities
achieved using the individual signals from the elbow gyroscope for LDA (A: 81%, B:
81%, C: 79%, D: 84%), QDA (A: 76%, B: 72%, C: 86%, D: 85%) and SVM (A: 88%, B:
81%, C: 78%, D: 83%) are lower than those achieved with the individual signals from the
wrist gyroscope LDA (A: 96%, B: 83%, C: 83%, D: 88%), QDA (A: 94%, B: 91%, C:
95%, D: 89%) and SVM (A: 97%, B: 85%, C: 90%, D: 89%). Considering fused signals
from the wrist sensors, the sensitivity falls within 60-81% for the four movements with
LDA and lies within 54-86% with QDA and 50-75% with SVM whereas for the elbow the
sensitivities for the fused signals are within 60-81% with LDA, 33-69% with QDA and 44-
71% with SVM. In fact, a close examination reveals that in general the sensitivity for each
movement for the signals from the wrist are better than those from the elbow, which is
because the wrist is expected to produce the largest sensor response to the arm movements

being investigated.
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It can be observed that the sensitivity for each movement using the individual sensor
signals for both the accelerometer and the gyroscope placed on the wrist and elbow is
better than the modulus and the fused signals. The difference in the recognitions rates
between modulus and individual signals is due to the fact that for individual sensor signals
any bipolar information present in the raw data is retained, whereas the generation of a
modulus signal creates, by definition, only unipolar data. Hence, using the individual
sensor signals provides the classifier an opportunity to select the optimum number of
features from a wider pool of features and hence the recognition rate for the movements is
reflected in the higher sensitivities achieved. For the fused signals (accelerometer-
gyroscope combinations) the sensitivity is generally lower when compared to results
obtained from individual sensors, but better than results obtained when considering the

moduli signal.

5.4.3 Personalized approach

In contrast to the generalized classification methodology, the basic hypothesis in the
personalized approach is that the movement patterns have characteristic associations with
specific subjects which may not be possible to capture in a generalized scenario.
Personalized approach is a further testimony to the fact that each person undergoing any
sort of rehabilitation will have different forms and levels of impairment and thus would be
prescribed different exercises which would pertain to classifying individual movements.
Therefore, a classifier based on the training dataset of the movement data of a subject (in a
person-centric way) may yield more accurate classification results for that specific subject.
The main steps for developing the personalized classification strategy are shown in Figure
5.8. To test this hypothesis five healthy subjects were asked to perform the same four
movements 120 times each under the same experimental conditions. The collected dataset
from a subject is labelled as the training database specific to that particular subject and 10
runs of 10-fold cross validation are carried out on the data collected for each subject. The
cross-validation process creates 10 segments of the data sample (120 samples for each
action) with each segment having 12 samples. In each run of the stipulated 10 runs, one
segment is used as the testing set while the rest of the 9 segments are used as the training
set. The whole process is repeated for each subject as shown in Figure 5.8, using data from
each sensor-position (accelerometer and gyroscope on the wrist and elbow) and signal

category (individual, fused-modulus and fused-combination).
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Figure 5.8: Overview of the personalized classification approach.

5.4.4 Results for the Personalized approach

Having established the effectiveness of the individual sensor signals over the moduli and

fused signals,

the classification results (sensitivity for each task) for the personalized

approach comparing five healthy subjects using the individual signals for each sensor type

and position and the three learning algorithms are presented in Table 5.6 - Table 5.8. In

general, all the three classifiers (LDA, QDA and SVM) applied on data from all sensor-

position combinations give high levels of classification results across all tasks (above

90%). For sake of brevity, a comparative illustration of the classification results using the

individual signals from only the gyroscope wrist has been presented in Figure 5.9.

Wrist Elbow
Sensor  Subject A (%) B (%) C (%) D (%) Features | A (%) B(%) C(%) D (%) Features
Subject 1 99 100 100 98 7 100 100 100 99 7
Subject 2 100 100 100 99 3 100 99 96 98 5
Acc | Subject3 98 99 97 99 7 98 100 97 99 7
Subject 4 9 100 96 99 7 9 97 96 98 9
Subject 5 100 100 100 99 5 98 99 98 100 5
Subject 1 100 100 100 100 6 100 99 92 98 8
Subject 2 100 100 99 100 4 100 100 100 100 5
Gyr | Subject3 98 100 99 99 5 100 100 99 99 7
Subject 4 98 100 99 99 6 98 99 93 97 7
Subject 5 99 100 100 98 7 99 99 97 100 10
Table 5.6: Personalized classification results with individual sensor signals using LDA.



108 | Movement Recognition using Supervised Learning Algorithms

Wrist Elbow
Sensor  Subject A (%) B (%) C (%) D (%) Features | A(%) B((%) C (%) D (%) Features
Subject 1 100 100 100 98 7 95 99 98 98 5
Subject 2 100 100 99 99 3 100 98 100 100 4
Acc Subject 3 99 99 99 99 7 99 99 100 99 5
Subject 4 94 98 81 91 7 79 95 84 96 5
Subject 5 100 100 100 100 5 98 98 99 99 5
Subject 1 99 100 100 100 6 99 98 99 96 7
Subject 2 100 100 100 100 3 99 100 100 100 5
Gyr Subject 3 98 98 100 99 6 100 100 100 98 9
Subject 4 99 100 100 98 6 100 97 100 100 7
Subject 5 98 99 99 98 5 98 100 98 100 8

Table 5.7: Personalized classification results with individual sensor signals using QDA.

Wrist Elbow
Sensor Subject A(%) B(%) C(%) D(%) Features | A(%) B(%) C(%) D(%) Features
Subject 1 99 100 100 99 7 100 95 99 98 6
Subject 2 100 100 100 99 3 100 99 98 99 4
Acc Subject 3 98 100 97 99 6 98 100 98 98 8
Subject 4 91 100 90 99 6 93 98 90 99 10
Subject 5 100 100 100 100 5 99 100 98 100 5
Subject 1 100 100 100 100 7 100 99 92 98 8
Subject 2 100 99 100 100 5 100 100 100 100 5
Gyr Subject 3 99 100 100 100 7 99 99 100 99 8
Subject 4 98 100 100 98 7 93 98 93 99 10
Subject 5 98 99 98 98 6 94 98 93 99 5

Table 5.8: Personalized classification results with individual sensor signals using SVM.
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Figure 5.9: Personalized classification — sensitivities for each task using the wrist gyroscope
individual signals, with LDA, QDA and SVM for each of the 5 subjects. The number of features
required for each subject is shown at the top of each group.
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5.4.5 Conclusions from the cross-validation step

A systematic exploration has been made towards developing a robust training model based

on a group of subjects doing similar movements and in a subject specific manner to cater to

inter-subject variability. The model is verified using cross-validation methodologies with

attention on the selection of sensor type, position, and appropriate classification strategies

for detecting four fundamental types of upper limb movements that are used in daily life

activities. The following conclusions can be drawn from this exploration.

For the generalized approach, it is observed that the sensitivity for each movement for
the signals from the wrist are better than those from the elbow. The accelerometer and
the gyroscope placed on the wrist can classify all the four movements with accuracy in
the range 83-96% when data from individual sensors is used with LDA as the learning
algorithm. However, the number of features required to achieve it is on the higher side
(12-18) as compared to the personalized approach which implies higher computation
involved during feature extraction. This can be partly explained by the fact that the
classifier requires more feature-specific information to cater to the wider variability
inherent in the generalized database as compared to the personalized approach where
there is a high degree of repeatability in the tasks performed by each individual subject
and hence can be represented by fewer features.

Better results are achieved with the individual sensor signals as compared to using the
modulus of the accelerometer and gyroscope signals, or the fused signals. Using all the
individual sensor signals, rather than a single processed signal (i.e. moduli or fused),
provides the classifier an opportunity to select from a wider pool of features and hence
the recognition rate for the movements is reflected in the higher sensitivity achieved.

In the personalized approach, exploration with only the individual signals have been
presented, and the results demonstrate that LDA gives comparable results when
compared with more computationally intensive classification methods such as QDA
and SVM and hence is a better choice. The LDA algorithm can independently classify
all the four movements with sensitivity in the range 92-100% using a small set of
features (6-10) extracted from a tri-axial accelerometer or tri-axial rate gyroscope
placed near the wrist or elbow. Therefore any of these two types of sensor or locating
positions can be used for the target classification of the testing phase data collected in

the semi-naturalistic setup.

Hence, having established their supremacy, the LDA learning algorithm is used in
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conjunction with the personalized approach considering only individual sensor signals for
the prospective evaluation of the trained model on the data collected from the subjects
during the archetypal activity of ‘making-a-cup-of-tea’. Furthermore, the personalized
approach would be beneficial when applied to monitoring individual patients who
demonstrate differences in levels of impairment depending on their stage of rehabilitation.
Hence, it is essential for subject specific training especially for tracking activities that are

susceptible to individual and temporal variation [39].

5.5 Evaluation of the trained model - prospective study

Recognition strategies generally follow one of three themes. Firstly, using only data
collected under controlled conditions (e.g. in the laboratory) for training as well as testing,
which results in high accuracies [28]. Secondly, using both controlled and un-controlled
data (e.g. out-of-laboratory) for both training and testing, which results in reasonably high
accuracies [27], [39]. Finally, using controlled data for training and only un-controlled data
for testing, which generally results in lower accuracies but is more realistic of real-world
applications [27], [39].

In this work, controlled data was used for training and un-controlled data was used for
testing in order to explore the levels of recognition accuracy for a robust classification
mechanism applicable in the field of home based rehabilitation. The data collected in the
laboratory is representative of the scenario where patients are instructed to follow a
particular exercise regime involving the impaired arm in a controlled environment (clinic
or home) and are later monitored to track occurrences of these specific movements while
they perform daily activities with their impaired arm, facilitating a measure of
rehabilitation progress in natural settings.

5.5.1 Healthy subjects

Data collected (i.e. the testing dataset) in the semi-naturalistic experiment session (cf.
section 4.2), which was performed on a separate day from the laboratory setup
experiments, was used to evaluate the trained personalized model in a prospective manner
(the trained model has not been validated on this dataset) to classify the movements

performed by each subject during multiple trials of the archetypal activity, ‘making-a-cup-
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of-tea’. The data structure used for this analysis is summarized in Table 5.9.

Attributes Description
Number of subjects 4
Training dataset 4 actions x 120 times = 480
Testing dataset [4 actions x 5 times] x 4 trials = 80

Table 5.9: Data structure for prospective evaluation for each of the four sensor-position combinations using
individual sensor signals.

The data from the testing phase is pre-processed (cf. section 5.2.1.2) and only those
features are extracted from each test vector (i.e. each movement trial), which were already
selected during the cross-validation of the personalized training model (cf. Table 5.6). The
results are presented for all the four sensor-position combinations: acc_wrist, acc_elbow,
gyro_wrist and gyro_elbow along with the number of features required for each subject in
Table 5.10.

Wrist Elbow
Sensor Subject A(%) B((%) C(%) D (%) Features | A (%) B(%) C(%) D (%) Features
Subject 1 100 100 10 75 7 100 0 0 0 7
Subject 2 90 95 0 15 3 5 90 85 0 5
Acc i
Subject 3 0 100 0 10 7 50 50 20 60 7
Subject 4 90 100 0 100 7 0 100 0 60 9
Subject 1 95 95 65 100 6 100 0 0 0 8
Subject 2 0 100 0 5 4 0 0 0 45 5
Gyr .
Subject 3 60 100 100 55 5 70 50 40 50 7
Subject 4 30 95 80 60 6 75 80 100 60 7

Table 5.10: Personalized classification results with individual signals using LDA for healthy subjects

It is evident from Table 5.10 that using individual signals from the accelerometer and the
gyroscope on the wrist, relatively high recognition results are achieved but not across all
subjects and actions. For none of the subjects, all the actions are classified up to a
satisfactory level (>60%) except for subjectl with signals from the gyroscope wrist.
However, it is interesting to note that for these subjects, the results from the cross-
validation of the training data yielded high sensitivities (cf. Table 5.6). But when the
trained model is used to classify the data collected in the semi-naturalistic setup, the
sensitivities are quite low. This is a typical problem with many classifiers, where they
perform well on the training dataset but perform poorly on the testing dataset or for real-

world applications (data on which it has not been trained). Hence, it can be inferred that the
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learnt model or the classifier is poorly generalized because it cannot perform well on data

collected in a different scenario.

5.5.2 Stroke survivors

Having done an initial exploration with healthy subjects which involved the development
of the recognition model following a personalized approach, finding the optimal sensor
type, their position, the best signal category and an evaluation of the trained model, this
methodology was further evaluated on movements performed by stroke survivors.
Experiments were performed with four stroke survivors (who had volunteered for the semi-
naturalistic setup, cf. section 4.2) within the same treatment centre at BBK, Germany,
under the supervision of the expert physiotherapist members of the research team, to
generate the training phase data. The four stroke survivors performed — 40 trials each of
Action A, B, C and D (subjects 1 and 4) and 20 trials each of Action A, B, C and D (subjects
2 and 3) separated similarly into groups of five repetitions for each action in the laboratory
setup, following the protocol mentioned in section 5.2.1.1. The tasks were performed only
whilst they felt comfortable to do so giving rise to the disparity in the number of trials.
Similar to the healthy subejcts data was obtained from four tri-axial sensor nodes (tri-axial
accelerometers and tri-axial rate gyroscopes attached to the wrist and elbow of the
impaired arm of each patient).

Similar to the healthy subjects, the data from the training phase is pre-processed and used
to train an activity model retrospectively in a personalized manner in conjunction with the
LDA algorithm using only individual sensor signals. The trained model is evaluated on the
testing dataset prospectively, to classify the movements performed by each subject while
‘making-a-cup-of-tea’. The data structure used for this analysis is summarized in Table
5.11.

Attributes Description

Number of subjects 4

o 4 actions x 40 times = 160 (patient 1 and 4)
Training dataset . . .
4 actions x 20 times = 80 (patient 2 and 3)

Testing dataset [4 actions x 5 times] x 2 trial = 40

Table 5.11: Data structure for prospective evaluation involving stroke survivors for each of the four sensor-
position combinations using individual sensor signals.
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The results for each subject from the cross-validation stage (training) for all the four
sensor-position combinations: acc_wrist, acc_elbow, gyro wrist and gyro_elbow along
with the number of features required for each subject are presented in Table 5.12 and the

results from the prospective evaluation (testing) are presented in Table 5.13.

Wrist Elbow
Sensor Subject A (%) B (%0) C (%) D (%) Features | A (%) B(%) C(%) D (%) Features
Subject 1 80 100 58 100 5 93 80 73 83 6
Subject 2 100 100 90 100 5 95 85 80 90 10
Ace Subject 3 95 85 75 100 5 75 85 95 95 10
Subject 4 94 100 96 99 10 94 97 96 98 4
Subject 1 73 90 65 95 6 88 85 83 90 4
Subject 2 95 95 95 90 6 100 85 85 90 8
=4 Subject 3 100 90 90 95 6 95 90 90 90 9
Subject 4 98 100 99 99 8 98 99 93 97 5

Table 5.12: Cross-validation of the training dataset using a personalized approach with individual signals
using LDA for stroke survivors.

Wrist Elbow
Sensor Subject A(%) B((%) C (%) D (%) Features A (%) B(%) C(%) D(%) Features
Subject 1 10 30 10 20 5 10 20 20 20 6
Subject 2 0 0 0 50 5 10 10 30 40 10
Acc i
Subject 3 20 10 50 50 5 10 50 0 40 10
Subject 4 10 0 40 40 10 20 30 10 10 4
Subject 1 30 20 10 20 6 20 10 30 10 4
Subject 2 20 10 10 50 6 10 10 10 50 8
Gyr )
Subject 3 10 0 50 10 6 0 50 10 40 9
Subject 4 40 20 10 30 8 0 40 10 20 5

Table 5.13: Prospective evaluation of the testing dataset with individual signals using LDA for stroke
survivors.

From Table 5.12 and Table 5.13, it is evident that for the stroke survivors the trends are
quite similar to that of the healthy subjects. Although the sensitivities for each arm
movement are quite high in the retrospective cross-validation of the training dataset,
especially using signals from the wrist-worn accelerometer and gyroscope, but have low
sensitivities for each action during the prospective evaluation. When evaluated on the
testing dataset, the learnt model failed to classify the actions up to an acceptable level. The
maximum sensitivity obtained for any action was 50% (cf. Table 5.13) and for none of the

subjects, all the four movements are classified with a sensitivity of atleast 50%.
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5.6 Discussion

The classification results obtained for the four healthy subjects and stroke survivors was
low, with none of the subjects having all four actions classified with sensitivities up to a
minimal threshold (>60%). This reflects a poorly generalized learning model having high
sensitivities during retrospective modelling but having low sensitivities when evaluated on
datasets collected in a different experimental condition (prospective evaluation). This can
also be partly explained by the fact that there is a qualitative difference between the arm
movements performed in the laboratory setup (training dataset) and the semi-naturalistic
setup (testing dataset). Although the subjects performed the movements in the laboratory-
setup in a natural manner with considerable variability, the movements were performed in
a constrained environment within the laboratory emulating the exercise phase of patients
undergoing rehabilitation within the home environment. This was in contrast to the semi-
naturalistic movements performed during the ‘making-a-cup-of-tea’ session by the
subjects in the kitchen. Certain actions of the activity-list (cf. Table 5.1) like ‘switching the
power on/off for the kettle’ (no. 6, 8); ‘retrieve biscuits from the drawer’ (no. 17); ‘eat a
biscuit’ (no. 18) were quite different to those performed in the training set. However, this
is in accordance with the application scenario which as discussed in section 5.5, comprises
of the patient performing a set of prescribed exercises for a stipulated amount of time
within a designated space (e.g. exercise platform at clinic or home). They are later
monitored to track the occurrences of those characteristic movements (e.g. rotation of the
arm about the elbow) performed in real-life, thereby facilitating a quantification of the

usage of the impaired arm in daily activities.

This can be further analysed by looking at the classification results of one of the subjects at
a granular level. The confusion matrix shown in Figure 5.10 represents the actual/predicted
activity labels for Subject 4 (stroke survivor) as a result of classification (LDA) using the
gyroscope data from the wrist. This subject was selected because of being at an early stage

of rehabilitation and low on the functional ability scale.
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Figure 5.10: Classification results using LDA with data from wrist gyroscope for Subject 4 (stroke survivor).
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Table 5.14 further lists the actual and predicted labels as a result of the classification
(LDA) using data from the wrist gyroscope, for each of the 20 activities performed by

Subject 4 over the two trials.

Activity Action  Predictedl Predicted?
1.  Fetch cup from desk A A A
2. Place cup on kitchen surface A C C
3. Fetch kettle C C A
4. Pour out extra water from kettle D A A
5.  Putkettle onto charging point A C C
6. Reach out for the power switch on the wall C A A
7. Drink a glass of water while waiting for kettle to boil B A A
8.  Reach out to switch off the kettle C A A
9.  Pour hot water from the kettle in to cup D A A
10. Fetch milk from the shelf C A A
11. Pour milk into cup D D C
12. Put the bottle of milk back on shelf C A A
13. Fetch cup from kitchen surface A A A
14, Have a sip and taste the drink B A A
15. Have another sip while walking back to desk B A A
16. Unlock drawer D C C
17. Retrieve biscuits from drawer A C C
18. Eata biscuit B A D
19. Lock drawer D D D
20. Have adrink B B B

Table 5.14: Activity-list showing actual and predicted action labels for Subject 4 (stroke survivor).

It can be observed from Figure 5.10 and Table 5.14 that majority of the confusions or false
classifications arise due to the Actions A and C which are used interchangeably in daily
life. Action A has been correctly classified four times and falsely classified six times as
Action C. It can be observed that activities 1 and 13 were correctly classified which bear a
closer resemblance to the movements performed in the training set (reach and retrieve a
cup/mouse). However, activities 5 and 17 involving a kettle and a biscuit were mis-
classified which could be due to the fact that a kettle was a heavier object and grasping

patterns and wrist/forearm orientations would be quite different to fetching a cup.

Similarly for Action B, two of them were correctly classified whereas seven of them were
classified as Action A and one as Action D. Activity 20 involving a sitting and drinking was
correctly classified whereas activities 7 and 15 were misclassified as Action A. Activity 7
involves a reaching out action prior to a drink whereas activity 15 involves a drinking
action while walking. On similar lines, activity 18 involving ‘eating a biscuit’ has
considerable difference to a ‘lift cup to mouth action’ (as done in training), was
misclassified as Action A and D. Action C had the least number of correctly classified
instances out of the 10 occurrences with a majority of them being mis-classified as Action

A. Activities 10 and 12 involving fetching and keeping back a milk bottle bear a close
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resemblance to a reach and retrieve action (Action A). Similarly activities 6 and 8 involving
a switch have considerable difference to the ‘reach out for an object sideways’ action

performed during the training phase.

Lastly, Action D was correctly classified for the instances (activities 11 and 19) bearing a
close resemblance to the training movements whereas the other instances like pouring out
water from kettle were mis-classified. This could again be due the differences in the
objects handled during training and testing, inducing a difference in grasping and forearm

orientation especially for a subject having poor arm functional abilities.

These observations clearly indicate that activities performed during the ‘making-a-cup-of-
tea’ session which had a considerable deviation from the training set were misclassified to
a large extent. This augurs for devising a training set having activities which are a closer
match to the ones being classified in the testing set. However, as already mentioned in this
application scenario the aim is to learn the patterns of specific arm movements (resembling
prescribed exercises) and detecting the occurrence of such movements in daily life
activities which will involve a plethora of variations especially when it involves
elementary movements performed with the arm. Therefore, with this training and testing
set there is a need to explore a different algorithmic technique which can successfully

recognize the movements performed in an out-of-laboratory condition.

The employed classification algorithms in this chapter namely LDA, QDA and SVM
primarily work based on a decision boundary based system. Data points lying on either
side of the decision boundary are classified accordingly to the competing classes (cf.
Figure 5.2). LDA and QDA are also affected by outlier data points which might lead to a
complicated decision boundary which caters well for the variations of the training set but
fails to generalize for the data points not used for the modelling (testing set). Although
SVM caters to outliers by concentrating only on the support vectors that lie proximal to the
decision boundary rather than all the data points, none of these methods effectively model
the compactness of the data points in the respective feature space. Hence, in the following
chapter a clustering based methodology is explored to achieve this. The primary aim is to
cater to the underlying data distribution and search for a unique feature space where the

data can be represented in compact clusters having a minimal within-class variance.

There are some further important conclusions from this exploration which can be
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considered in the forthcoming analysis. From the corresponding results of the prospective
evaluation presented in Table 5.10 and Table 5.13 for the healthy subjects and stroke
survivors respectively, it is evident that both the accelerometer and the gyroscope sensors
placed on the wrist produced better results as compared to the elbow, in terms of individual
movement sensitivities and also in terms of the lesser number of features required. A
summary of the overall accuracy as a result of the prospective evaluation to detect the

movements performed while ‘making-a-cup-of-zea’ are presented in Table 5.15.

Overall accuracy (%)

Attribute Subject Acc_Wrist  Acc_Elbow  Gyr_Wrist  Gyr_Elbow
Subjectl 71.25 25 88.75 25

Healthy Subject2 50 45 26.25 11.25

subjects | gupject3 275 45 78.75 525
Subject4 725 40 66.25 78.75
Subjectl 125 175 16.25 11.25
Subject2 125 16.25 21.25 15

Stroke

survivors Subject3 31.25 225 16.25 18.75

Subject4 20 15 18.75 15

Table 5.15: Overall accuracy for the prospective study for healthy subjects and stroke survivors for each
sensor-position.

The results clearly reflect the effectiveness of the wrist over the elbow, which is because it
is expected to produce the largest sensor response to the arm movements being
investigated. The wrist is the most responsive position producing significant discriminatory
sensor responses to the arm movements being investigated. Therefore, in the forthcoming
analysis only the individual sensor signals collected from the accelerometer and the
gyroscope placed on the wrist are considered, thereby also helping to reduce the amount of

data processing involved.

On close examination (cf. Table 5.14) and in further consultation with the respective
clinicians, it is observed that there are fundamental similarities in Action A and Action C,
both of which are frequently used interchangeably in daily life for reaching and retrieving
objects kept in the front or sideways and involve an extension/flexion of the forearm.
Therefore, in the forthcoming analysis these two arm movements are treated to be of
similar nature, thereby having to recognize three movements in total (as considered for the
exploration in Chapter 4). Henceforth, the arm movements to be recognized in succeeding
chapters are: Action A (reach and retrieve object), Action B (lift cup to mouth) and Action

C (perform pouring action).






6. Chapter 6

Recognition of Arm Movements using k-
means Clustering Classification

6.1 Introduction

In this chapter, a systematic exploration is performed to recognise the arm movements
performed in an out-of-laboratory condition using a clustering and a minimum distance
classifier based methodology. From the explorations in Chapter 5 with three supervised
learning algorithms, although a high sensitivity across all arm movements could not be
achieved, but there were some important conclusions in terms of the sensor positioning and
the signal characteristics. With respect to the observations mentioned in section 5.6, here
the aim is to recognise only three arm movements performed by each subject, during the
archetypal activity of ‘making-a-cup-of-tea’, using data collected from only a wrist-worn,
wireless tri-axial accelerometer and tri-axial rate gyroscope. This approach is in view of -
the suitability of the personalized approach for arm movement detection as a rehabilitation
indicator, similarities in Action A and Action C, the effectiveness of the wrist over the
elbow as the sensing position and the efficiency of the individual sensor signals in

producing discriminative patterns.

The fundamental concept of the exploration presented in this chapter is to first form a set
of 3 clusters in multi-dimensional feature space (selected from a ranked set of features),
with each cluster representing a particular type of movement, using sets of features
generated from person-centric data collected in a constrained training phase (e.g. in the
laboratory). Subsequent data collected during an unconstrained testing phase (e.g. out-of-
laboratory) is tested for its proximity to each of the clusters by using a minimum distance
classifier. The basic philosophy and the approach adopted are further discussed in detail in

the following section.

The highlights of this exploration can be summarised as: (1) demonstrating a completely

personalized approach of detecting elementary arm movements accommodating a large
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degree of inter-person variability due to different levels of impairment and/or rehabilitation
status; (2) analysing kinematic data of healthy subjects and stroke survivors to test the
robustness of the methodology; and (3) demonstrating system that does not require
periodic training and can therefore be realistically implemented for real-time detection of
arm movements in a resource constrained environment. An overview of the application

framework for patient monitoring in real-life has also been presented.

6.2 Approach

Clustering techniques have been successfully used in diverse fields such as medicine
(EEG, Functional MRI), geography or marketing and can be conveniently deployed with
limited resources (memory and CPU) [203] [204]. Clustering techniques have also been
successfully used in the field of activity recognition for selecting the optimum number of
features [205] and for recognising activities as walking, lying, sitting etc from inertial
sensor and video data [206][207]. In this work, the application area is further extended to
recognise upper limb activities performed by stroke survivors, using the widely popular k-
means clustering algorithm. A major advantage of the k-means algorithm is its
computational simplicity making it an attractive choice for a wide variety of applications
[145]. It is a well-perceived fact in the research community that cluster analysis is
primarily used for unsupervised learning where the class labels for the training data are not
available. However, the k-means algorithm can also be used for supervised learning where
the class labels of the training data are known a priori [198][208]. In this proposed
methodology, the class labels for the training data pertaining to the three movements
performed in a constrained training phase are known. This helps to have a definitive
estimate of the underlying cluster structure to be formed on the data (three clusters),
thereby facilitating a faster convergence during cluster formation for reduced time
complexity [145].

The basic philosophy of the methodology has been illustrated in Figure 6.1, where three
clusters A, B and C are formed on the training dataset corresponding to the three
movements (Actions A, B and C) respectively, in a 2-dimensional feature space (Feature 1
(f1) and Feature 2 (f2)). The distance of the test vector T from each of the three cluster
centroids are represented by the distances da, ds and dc. These three distance measures are
compared to estimate the proximity of the test dataset T to each cluster and assigned to the

nearest one. This methodology can be further scaled up by forming more clusters
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corresponding to new categories of movements and associating a new dataset
(corresponding to the movement to be detected) to the proximal cluster. The formation of
unique clusters corresponding to each performed movement can be achieved by selecting
the optimum number of features which help to discriminate movement patterns in the

respective feature space.

min {dA, dg , dc} ?

Feature 2 (f,)

The data that defines

L _ _ _ _ ,these existing clusters
/ is collected during the
training phase
N 4
v |
I
L e ]

Figure 6.1: Illustration of the clustering and minimum distance classifier based methodology.

The regularized Mahalanobis distance based k-means clustering technique is used to form
the clusters on the person-centric training data (collected in the laboratory setup) and use
10 runs of a 10-fold cross validation technique to determine the best combination of cluster
forming features. A minimum distance classifier based on Euclidean and Mahalanobis
distance was used for associating the test data (collected during ‘making-a-cup-of-tea’) to

the formed clusters in the same feature space [209].

To verify the robustness of the proposed methodology two conventional supervised
learning algorithms (explored in Chapter 5) are used and the achieved results are
compared. The LDA classifier and the SVM classifier with a RBF kernel are used, which
are trained on the data collected in the training phase and evaluated to predict the
movements performed during the testing phase using the same best features used by the

minimum distance classifier in the proposed methodology.

The primary steps involved in the overall approach are illustrated in Figure 6.2 and
described in detail in the following sections.
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Figure 6.2: Basic stages of the data processing [146].

6.2.1 Data acquisition and pre-processing

For this investigation, the experimental data collected from four healthy subjects at UoS
and from four stroke survivors at BBK as mentioned in Chapters 4 and 5, was considered.
In view of the modifications to the nomenclature of the activities being monitored (cf.
section 5.6), the data-structure for the training and testing phase needs a re-look. The pre-
processed sensor data collected from the tri-axial accelerometer and tri-axial rate
gyroscope placed on the wrist on the dominant arm for healthy subjects or impaired arm
for stroke patients is considered. In view of the similarity between Action A and C, the

three arm movements (actions) now considered along with the new nomenclatures are:

e Action A — Reach and retrieve an object (extension and flexion of the forearm).
e Action B — Lift cup to mouth (rotation of the forearm about the elbow).
e Action C — Perform pouring or (un)locking action (rotation of the wrist about long

axis of forearm).

For the training phase aimed at the target cluster formation, for each of the four healthy
participants, 240 trials of Action A, 120 trials of Action B and 120 trials of Action C are
considered. For the stroke patients — 80 trials of A and 40 trials each of B and C (patients 1
and 4) and 40 trials of A and 20 trials each of B and C (patients 2 and 3) are considered.
This large training set offers a greater potential for accurate recognition [39] since the
cluster formulation on the training data inherently captures the person-centric nature of
movement patterns. It is interesting to note that now there are more number of trials for

Action A in comparison to the other two movements (Action B and C). However, this is in
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line with the fact that Action A represents a very generic movement performed more

frequently in daily lives.

For the testing phase, the archetypal activity-list (cf. Table 5.1) which emulated the process

of ‘making-a-cup-of-tea’ has been modified accordingly to have repeated occurrences of

the three types of arm movement (actions). Therefore, the activity-list, shown in Table 6.1,

comprising of 20 individual activities now includes 10 occurrences of Action A, and 5 each

of Action B and Action C. Sensor data corresponding to four trials of the activity-list by

each of the healthy subjects and two trials of the same by each of the stroke survivors are

used for this exploration.

Activity

Action

© 0N O WDPRE

e e N e
© O N Uk wDNPE O

20.

Fetch cup from desk

Place cup on kitchen surface

Fetch Kkettle

Pour out extra water from kettle

Put kettle onto charging point

Reach out for the power switch on the wall
Drink a glass of water while waiting for kettle to boil
Reach out to switch off the kettle

Pour hot water from the kettle in to cup
Fetch milk from the shelf

Pour milk into cup

Put the bottle of milk back on shelf

Fetch cup from kitchen surface

Have a sip and taste the drink

Have another sip while walking back to desk
Unlock drawer

Retrieve biscuits from drawer

Eat a biscuit

Lock drawer

Have a drink

WO ®WP>POTDID>P>OP>POD>D>E>>O>D>D

Table 6.1: Use case activity list - ‘Making-a-cup-of-tea’

The data structure for the training and testing phase used in this analysis is summarised in

Table 6.2.
Attributes Healthy person Stroke survivors
Number of subjects 4 4

Training dataset

Testing dataset

[Action A —10; Action B - 5;
Action C — 5] x 4 trials = 80

[Action A —80; Action B — 40; Action C — 40] = 160

[Action A — 240; Action B — 120; (patient 1 and 4)
Action C —120] = 480 [Action A —40; Action B — 20; Action C —20] = 80
(patient 2 and 3)

[Action A —10; Action B — 5; Action C — 5] x 2 trials = 40

Table 6.2: Data structure for each of the two sensor-position combinations using individual sensor signals.
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6.2.2 Feature extraction

Each accelerometer and gyroscope data stream (X, Y and Z) exhibit signal patterns that are
distinctive for each of the arm movements, which is characterized by a set of features
extracted from the signals which has already been introduced in section 5.2.3. Ten one-
dimensional features are computed on each individual accelerometer (AccX, AccY, AccZ)
and gyroscope (GyroX, GyroY, GyroZ) data segment for each movement trial of each
subject. The features are: 1) standard deviation, 2) root mean square, 3) information
entropy, 4) jerk metric, 5) peak number, 6) maximum peak amplitude, 7) absolute

difference, 8) index of dispersion, 9) kurtosis, 10) skewness.

The subsequent process of feature selection and cluster formation is performed on the

sensor specific feature space (comprising of 30 features), represented as:

FSindividuaI :[fl_x flO_X’ fl_Y"' flo_Y’ fl_z"' flO_Z] (6-1)

where, FSindiviqual, represents the respective feature space for each sensor type
(accelerometer or gyroscope). The suffix (X, Y or Z) represents the sensor axis on which

the respective feature was computed.

6.2.3 Feature selection

The extracted features are linearly normalized and the best features for each subject are
selected by using the low-complexity class-separability measure based on scatter matrices
which ranks the 30 features for each sensor-movement combination. The scatter matrices
quantify the scatter of feature vectors in the feature space. The rank of each individual

feature for a multiple-class scenario is determined by the R value calculated as [145]:

R=n (6.2)
S

S, =S,+S, (6.3)

m w

where Sy and Sy are the within-class and between-class scatter matrices respectively and Sm

is the mixture scatter matrix.
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S, =2 PS, (6.4)

where P, denotes the priori probability of a given class i =1, 2,...c and S, is the respective

covariance matrix of class i.

S, =3 R(m, —my)(m, ~my)’ (65)
m, =ZC:F>imi (6.6)

i=1

where mo is the global mean vector. A high value of R represents a small within-class
variance and a large between-class distance among the data points in the respective feature
space [145]. The ranked features are sorted in descending order with respect to their R
values. A sequential forward selection (sfs) technique is employed, selecting the first i
features of the ranked feature set in each iteration (i = 2,...,30) and it is checked if the data
from the training phase can be correctly clustered in a multi-dimensional feature space.

This has been described in detail in the following section [146].

6.2.4 Cluster formation on the training dataset

The fundamental concept of cluster analysis is to form groups of similar objects as a means
of distinguishing them from each other and can be applied in any discipline involving
multivariate data [203]. With a given dataset X = {xi}, i = 1,...,n to be clustered into a set of
k clusters, the k-means algorithm iterates to minimize the squared error between the

empirical mean of a cluster and the individual data points, defined as the cost function, J:

n k 2
JO,u)=% X ujjllx—6;ll (6.7)
i=1j=1

where 6 is the cluster center and ujj = 1 if x; lies close to 6, or O if otherwise [210]. Initially
k centroids are defined and the data vectors are assigned to a cluster label depending on
how close they are to each centroid. The k centroids are recalculated from the newly
defined clusters and the process of reassignment of each data vector to each new centroid
is repeated. The algorithm iterates over this loop until the data vectors from the dataset X

form clusters and the cost function J is minimized [145].
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Reqularized Mahalanobis distance for cluster formation

The Euclidean distance used to compute the squared distance between the vectors xi and
the mean of each cluster ; has an undesirable effect of splitting large and elongated
clusters, since most real datasets do not have a well-defined, isolated and spherical
underlying cluster structure. By comparison, the use of the Mahalanobis distance which
involves computing the covariance matrix of the data vector causes a large cluster to
absorb nearby smaller clusters, leading to the creation of unusually large or small clusters.
Hence the regularized Mahalanobis distance as mentioned in [210] is used which prevents
the clustering algorithm from producing unusually large or small clusters. The distance

measure J is given by:

3(%.07) = (% —0;)" [A- (T j+el) L+ A1](% - 6) (6.8)

where X is the covariance matrix of the k-th cluster and I is the dxd identity matrix, d is

the input dimensionality (no. of feature vectors representing the data vector) and ¢ (10) is
the regularization parameter. The value of 1 can be used as a parameter to control the
choice of distance measure to be used, with =0, J is the squared Mahalanobis distance and
when A=1, J is the squared Euclidean distance [210]. In this exploration, an initial value of
A=1 (Euclidean) is used and after 3 iterations it is changed to 1=0 (Mahalanobis). The
cluster formation on the training dataset is associated with a cross-validation step to

determine the best combination of the features, discussed in detail in the following section.

6.2.5 Cross-validation of the training dataset

Ten runs of ten-fold cross-validation on the feature vectors are computed from the
accelerometer and gyroscope data which characterizes the movement trials of the training
phase (480 trials for each healthy subject, 160 trials for patients 1 and 4 and 80 trials for
patients 2 and 3) to form three clusters representing the three arm movements. The cluster
formation and cross-validation steps are illustrated in Figure 6.3. The key steps involved in

the cross-validation process have also been highlighted.
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Figure 6.3: Overview of cluster formation and cross validation on the Training phase data collected from
each sensor and each subject [209].

e The cluster formation using the regularized Mahalanobis distance (as discussed in
section 6.2.4) runs on the training dataset for each subject comprising of feature
vectors (30 features) extracted from each sensor data segment.

e The algorithm runs in conjunction with the sfs algorithm sequentially selecting a
combination of 2 to 30 ranked features in each step (i).

e For a particular set of feature vectors selected (i), 10 runs (n) of 10-fold cross
validation are carried out whereby 10 segments of the training data are created.

e In each run (n) of the stipulated 10 runs, one segment is used as the test dataset while
the rest of the 9 segments are used as the training dataset.

e A threshold of 25% of the expected number of data points is set for each of the three
clusters formed (i.e. for healthy subjects: 240 + 60 for Action A and 120 + 30 for Action
B and Action C, for patients 1 and 4: 80 + 20 for Action A, 40 £ 10 for Action B and
Action C, for patients 2 and 3: 40 + 10 for Action A, 20 £ 5 for Action B and Action C).
This threshold value was experimentally selected since it produced the best results
[146]. If the number of data points in each cluster is within the threshold, it is
considered as correctly clustered for that particular combination (i) of features selected
(wherei =2,...,30).

e The distance of the mean of the training dataset for each class label from the cluster
centroids is computed and thereby each cluster is assigned with the class label that has

its closest proximity to that particular class of the training dataset.
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e Correspondingly a minimum distance classifier is used to compute the distance of the
test dataset (one segment of the stipulated 10-folds) from the centroid of each cluster in
a multi-dimensional feature space (considering the feature combination of the current
step, i) based upon: a). Euclidean distance and b). Mahalanobis distance. The
Mahalanobis distance is used to measure the distance of a point from a data distribution.
The data distribution is characterized by the mean and the covariance matrix which
defines the shape of how the data is distributed in the feature space and is generally
hypothesized as a multivariate Gaussian distribution. Here, the Mahalanobis distance
takes into consideration the covariance of the clusters along with their mean for the
maximum likelihood estimation of the covariance matrix and hence is effective for
clusters with larger variance along one or many directions and in general having an
ellipsoidal shape [145].

e The test dataset is assigned to a particular cluster depending on the minimum distance
computed for each of the two measures.

e The predicted label is verified with respect to the known annotations thereby
ascertaining the accuracy of the prediction for a single run (n).

e The accuracy of prediction for a particular feature combination is determined by
averaging the results produced over the runs (n <= 10) forming successful clusters.
This process is repeated for each of the sequentially selected best ranked feature

combinations (i = 2,...,30).

Therefore at the end of all iterations (i.e. i = 30), a detailed list of the feature combinations
that resulted in a successful cluster formation and the corresponding accuracies achieved
both with Euclidean and Mahalanobis distance measures, for each subject and each sensor
type is obtained. This information (minimal number of feature combination, resulting in
the best accuracy) is used for the target classification of the testing phase data collected in
the semi-naturalistic setup by associating them to the formed clusters in the chosen feature

space. A brief summary of the cross-validation results have been presented here.

For the healthy subjects, the number of features chosen was in the range of 2 to 27
(selected out of total of 30) and the individual sensitivities were in the range of 90% to
100% across both the sensor types. For the stroke survivors, the number of features was in
the range of 8 to 30 and the sensitivities were in the range of 80% to 100% using data from

the accelerometer or the gyroscope.
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6.2.6 Prospective evaluation with the testing dataset

The data from the testing phase (cf. Table 6.1), collected in the semi-naturalistic setup
during the ‘making-a-cup-of-tea’ session (80 test vectors for each healthy subject [(10A +
5B + 5C) x 4 trials] and 40 test vectors for each stroke patient [(10A + 5B + 5C) x 2 trials])
is pre-processed for each type of sensor, and only those features are extracted from each
test vector which resulted in the best accuracy in the cross validation of the training data.
A Euclidean and Mahalanobis distance based classifier is used to compute the distance of
each test vector (represented by the extracted features) from the centroid of each cluster in
a multi-dimensional feature space. The test vector is assigned to a particular cluster
depending on the minimum distance computed for each of the two measures. The predicted
label is verified with respect to the annotations in the activity-list of Table 6.1. The

clustering and the minimum distance classification were implemented in Matlab.

6.3 Results and analysis — prospective evaluation

The typical variations in accelerometer and gyroscope data recorded during a single
example of each action for a healthy and a stroke survivor is illustrated in Figure 6.4 and
Figure 6.5 respectively. The difference in movement profiles among the two groups and
the longer time taken by the stroke survivors to complete the actions with less smoothness

of movement is clearly visible.
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Figure 6.4: Data from a tri-axial accelerometer located on the wrist collected while performing arm actions
A, B and C from a healthy subject (upper) and a stroke survivor (lower) [183].
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There were a total of 80 movement trials (actions) to be recognized (40 of A, 20 of B, 20 of
C) for each healthy subject and 40 movement trials to be recognized (20 of A, 10 of B, 10
of C) for each stroke patient. The results of the prospective evaluation in terms of the
sensitivity of recognizing the movements performed in the testing phase for the healthy
subjects using accelerometer and gyroscope data are presented in Table 6.3 and Table 6.4
respectively and for the stroke patients are shown in Table 6.6 and Table 6.7 respectively.
The tables also show the minimum number of features that were required to successfully
form the three clusters for each subject. The number of features has been determined by 10
runs of 10-fold cross validation on the training phase data as discussed in section 6.2.5.
The results in general show that each subject required a different minimum number of
features to successfully form 3 separate clusters from the training data, reflecting the
variability in arm movement patterns between individuals. The minimum distance
classifier used for recognizing the arm movements has also been shown in each table. The
right hand column in Table 6.3, Table 6.4, Table 6.6 and Table 6.7 show the overall
detection accuracy for each subject (total number of recognized actions expressed as a

percentage of the total number of actions performed).

6.3.1 Healthy subjects

The overall accuracy covers the range 61% to 100% (average of 88%) using accelerometer
data and 60% to 94% using gyroscope data (average of 83%) for all healthy subjects. In
general, these recognition accuracies are quite favourable considering the elementary

nature of the arm movements being detected and using only the data collected in the
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laboratory for training. The obvious exceptions are the detection of Action B for Subject 2
(5%) using accelerometer and Action A for Subject 4 (30%) using gyroscope data

respectively.

Sensitivities (%)

Subject Features Minimum Distance Classifier Overall accuracy (%)

A B C
Subjectl 11 Euclidean 100 100 100 100
Subject2 2 Euclidean 80 5 80 61
Subject3 7 Euclidean 95 100 90 95
Subject4 23 Euclidean 95 100 85 94

Table 6.3: Recognition sensitivities for each arm movement with accelerometer data for healthy subjects.

Sensitivities (%)

Subject  Features Minimum Distance Classifier Overall accuracy (%)

A B C
Subjectl 10 Euclidean 93 90 100 94
Subject2 27 Euclidean 100 80 60 85
Subject3 18 Mahalanobis 90 90 100 93
Subject4 20 Euclidean 30 95 85 60

Table 6.4: Recognition sensitivities for each arm movement with gyroscope data for healthy subjects.

It is worth mentioning that Subject 2 required the smallest number of features (2) to form
clusters from the training data. This is somewhat counter-intuitive — fewer features imply
sufficient differences in arm movement patterns to make unique cluster formation easier.
Whilst this may be the case, however, the low detection accuracy for Action B could be
accounted for by poor repeatability by the subject in this particular arm movement.
Similarly, for Subject 4, using 20 features from gyroscope data and a Euclidean distance

classifier the low accuracy for Action A may be attributed to poor repeatability.

However, for these specific cases, for Subject 2, the sensitivity of Action B with gyroscope
data is 80% (27 features) and for Subject 4, the sensitivity of Action A with accelerometer
data is 95% (with 23 features). Therefore, although the overall recognition accuracies using
both accelerometer and gyroscope data are nearly similar, for specific cases considering
more than one sensor type can improve the overall accuracy of detection. The detection
accuracies for Subject 2 with accelerometer data using additional features are illustrated in
Figure 6.6, which reveals that increasing the number of features beyond 2 does not yield

successful cluster formations (blank spaces) or improved accuracy.
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Figure 6.6: Change in accuracy with number of features for healthy Subject 2 with accelerometer data using
Euclidean distance.

A list of features selected from a ranked list (sorted in descending order) is presented in
Table 6.5, specific to each subject and each sensor, illustrating the difference in the number
of features required to form the clusters. The suffix (x, y or z) represents the sensor axis on
which the respective feature was extracted. Although for each subject the ranked order of
features is different (reflecting the different ways in which they perform a movement) there
is a strong commonality in the top ranked features across all subjects for both the sensors.
Specifically, the features stddev_y and rms_y are the top two features extracted from the
accelerometer data across all subjects except for Subject 3, where it lies within the best five
features used. By comparison, the features rms_x, stddev_x and diff x are routinely

amongst the best five features extracted from the gyroscope data.

Accelerometer

Subject Ranked Features
Subjectl stddev_y, rms_y, rms_z, stddev_z, rms_x, diff_y, stddev_x, diff_z, max_mag_y, diff_x, max_mag_z
Subject2 stddev_y, rms_y

Subject3 rms_z, rms_x, stddev_y, stddev_x, rms_y, entropy_z, stddev_z

stddev_y, rms_y, stddev_x, rms_x, diff y, max_mag_y, diff x, max_mag_x, kurtosis_x, kurtosis_z, skewness_z,
Subject4 entropy_y, diff_z, max_mag_z, kurtosis_y, stddev_z, entropy_x, skewness_x, peaks_y, skewness_y, entropy_z, rms_z,
peaks_x

Gyroscope

Subject Ranked Features
Subjectl rms_x, stddev_x, rms_z, diff_x, diff_z, rms_y, stddev_z, max_mag_x, max_mag_z, stddev_y

rms_x, stddev_x, diff_x, max_mag_x, stddev_y, rms_y, diff_y, max_mag_y, rms_z, stddev_z, entropy_y, skewness_z,
Subject2 diff_z, entropy_z, entropy x, skewness_x, skewness_y, kurtosis_y, kurtosis_x, kurtosis_z, max_mag_z, jerk_y,
peaks_x, jerk_z, peaks_z, jerk_x, peaks_y

. rms_z, rms_x, stddev_z, stddev_x, diff_x, diff_z, max_mag_x, max_mag_z, max_mag_y, entropy_y, diff_y, entropy_z,
Subject3  yms_y, entropy_x, stddev_y, skewness_y, skewness_z, peaks_x

. rms_x, stddev_x, diff_x, max_mag_x, rms_z, max_mag_y, stddev_z, stddev_y, rms_y, diff_y, skewness_y,
Subject4  skewness_z, diff_z, entropy_x, kurtosis_y, entropy_z, jerk_y, max_mag_z, entropy_y, kurtosis_z

Table 6.5: Selected features in ranked order for healthy subjects
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6.3.2 Stroke survivors

For the stroke survivors, the overall accuracy is in the range of 40% to 88% (average of
70%) using accelerometer data and 40% to 83% (average of 66%) using gyroscope data as
shown in Table 6.6 and Table 6.7 respectively. Under closer examination, it can be
observed that for Subject 1 the sensitivities with accelerometer data for individual actions
are above 80%, but for Subjects 2 and 3, although the overall accuracy is above 70%, the
sensitivity for Action B and Action C are quite low (20%). When the gyroscope data is
taken into consideration, these particular action/subject combinations are improved
considerably: 100% detection for Action B with Subject 2 and 80% detection for Action C
with Subject 3. For Subject 4, the overall results with both sensors are not high, although it
can be see that Action A can be recognized by 60% (gyroscope), Action B by 80% and
Action C by 60% (accelerometer).

The low overall accuracy can be attributed to the fact that Subject 4 was at an early stage
of rehabilitation and the impaired arm being tested was not the naturally dominant arm
thereby resulting in poor repeatability. This further emphasizes how detection accuracies
may be improved by considering more than one sensor type for specific cases. Moreover, it
Is worth noting that for stroke patients the Mahalanobis distance based classifier is more
effective than the Euclidean distance. This is further reflective of the fact that there is a
high degree of variability in their movement profile resulting in clusters having a larger
variance along one or many directions, and in such conditions the Mahalanobis distance

acts as a more effective distance measure.

Sensitivities (%)

Subject Features Minimum Distance Classifier Overall accuracy (%)

B C
Subjectl 19 Mahalanobis 80 90 100 88
Subject2 19 Mahalanobis 90 20 100 75
Subject3 21 Mahalanobis 95 100 20 78
Subject4 8 Euclidean 10 80 60 40

Table 6.6: Recognition sensitivities for each arm movement with accelerometer data for stroke survivors.

Sensitivities (%)

Subject Features Minimum Distance Classifier Overall accuracy (%)

A B C
Subjectl 8 Euclidean 90 50 100 83
Subject2 10 Euclidean 60 100 60 70
Subject3 24 Mahalanobis 85 30 80 70
Subject4 30 Mahalanobis 60 40 0 40

Table 6.7: Recognition sensitivities for each arm movement with gyroscope data for stroke survivors.
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The ranked list of features selected for each stroke patient using each sensor is presented in
Table 6.8. In comparison to healthy subjects, the features selected for each stroke patient
are quite different, exhibiting a minimal degree of commonality among the top ranked
features. Each of the four subjects had differing levels of functional ability (as assessed by
the therapists) and hence, there was a great degree of intra-subject and inter-subject

variability in the movement patterns.

Accelerometer

Subject Ranked Features

stddev_y, stddev_x, rms_x, rms_y, entropy_y, diff_x, entropy_z, max_mag_x, stddev_z, rms_z, peaks_z, entropy_X,

Subjectl diff_y, peaks_x, diff_z, kurtosis_x, max_mag_z, peaks_y, kurtosis_y

diff_x, stddev_y, skewness_x, entropy_y, rms_y, stddev_x, rms_x, peaks_X, entropy_z, entropy_X, max_mag_X,

Subject2 peaks_z, kurtosis_y, diff_y, max_mag_y, peaks_y, kurtosis_x, skewness_y, max_mag_z

entropy_z, entropy_y, entropy_X, stddev_z, rms_z, rms_y, stddev_y, skewness_z, skewness_x, kurtosis_z, diff_z,

Subject3 kurtosis_x, max_mag_z, peaks_z, kurtosis_y, peaks_x, peaks_y, skewness_y, diff_x, rms_x

Subject4  entropy_y, entropy_z, stddev_y, peaks_X, entropy_x, rms_x, stddev_x, rms_y
Gyroscope

Subject Ranked Features

Subjectl ~ stddev_x, rms_x, diff_x, max_mag_x, stddev_z, rms_z, entropy_z, entropy_y
Subject2 diff_z, stddev_z, rms_z, max_mag_z, diff_x, stddev_x, rms_x, entropy_y, max_mag_X, stddev_y

diff_z, stddev_z, rms_z, max_mag_z, entropy_y, entropy_z, entropy X, stddev_x, rms_x, skewness_x, diff_x,
Subject3 Max_mag_X, jerk_x, peaks_z, peaks_x, peaks_y, skewness_y, stddev_y, kurtosis_z, jerk_y, kurtosis_y, rms_y,
kurtosis_x, diff_y

skewness_y, stddev_y, entropy_y, entropy_z, stddev_x, rms_x, peaks_z, max_mag_x, diff_x, peaks_x, entropy_X,
Subject4  peaks_y, rms_y, diff_y, stddev_z, rms_z, skewness_x, diff_z, jerk_y, max_mag_y, kurtosis_y, max_mag_z,
kurtosis_z, kewness_z, jerk_x, kurtosis_x, jerk_z, disp_y, disp_z, disp_x.

Table 6.8: Selected features in ranked order for stroke survivors.

6.3.3 Evaluation with LDA and SVM

For comparing the performance of the proposed methodology the supervised learning
algorithms LDA and SVM with radial basis function (RBF) kernel are used for classifying
the three arm movements performed during the testing phase. These algorithms were used
in the previous chapter but for classifying four movements. Therefore, this exploration
with three movement categories will be a further testimony to their effectiveness. The data
collected in the training phase is used to train the classifiers and they are evaluated to
detect the movements performed in the testing phase while ‘making-a-cup-of-tea’ [209],
following the approach mentioned in section 5.5. In this investigation the same set of
features were used as in the proposed clustering and minimum distance classifier based
methodology for both the healthy subjects (cf. Table 6.5) and the stroke survivors (cf.
Table 6.8). The classification results are presented in Table 6.9 - Table 6.12.
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Accelerometer Gyroscope
Subject Sensitivities (%) Overall Sensitivities (%) Overall
A B C accuracy (%) A B C accuracy (%)
Subjectl 45 80 0 42 60 0 95 54
Subject2 70 0 85 56 30 15 95 42
Subject3 60 95 15 57 100 15 10 56
Subject4 0 100 0 25 100 0 40 60

Table 6.9: Sensitivities for each arm movement and overall accuracies for healthy subjects using LDA.

Accelerometer Gyroscope
Subject Sensitivities (%) Overall Sensitivities (%) Overall
A B C accuracy (%) A B C accuracy (%)
Subjectl 35 100 40 52 40 90 100 67
Subject2 15 0 100 32 20 10 100 37
Subject3 60 100 20 60 35 0 70 35
Subject4 95 0 20 52 60 0 60 45

Table 6.10: Sensitivities for each arm movement and overall accuracies for stroke survivors using LDA.

Accelerometer Gyroscope
Subject Sensitivities (%) Overall Sensitivities (%) Overall
A B C accuracy (%) A B C accuracy (%)
Subjectl 50 95 0 48 85 80 20 67
Subject2 80 5 80 61 87 75 25 68
Subject3 45 95 10 49 90 75 20 69
Subject4 65 95 5 57 95 70 20 70

Table 6.11: Sensitivities for each arm movement and overall accuracies for healthy subjects using SVM.

Accelerometer Gyroscope
Subject Sensitivities (%) Overall Sensitivities (%) Overall
A B C accuracy (%) A B C accuracy (%)
Subjectl 30 70 100 57 95 60 90 85
Subject2 55 100 70 70 100 0 0 50
Subject3 65 20 90 60 30 0 100 40
Subject4 10 50 70 35 5 0 90 25

Table 6.12: Sensitivities for each arm movement and overall accuracies for stroke survivors using SVM.

Using LDA, for the healthy subjects, the overall accuracy is in the range of 25% to 57%
(average of 45%) using accelerometer data and 42% to 60% (average of 53%) using
gyroscope data as shown in Table 6.9. For the stroke survivors, the overall accuracy was in
the range of 32% - 60% (average of 49%) using accelerometer data and range of 35% -
67% (average of 46%) using gyroscope data as shown in Table 6.10. Using SVM, for the
healthy subjects, the overall accuracy is in the range of 48% - 61% (average of 54%) using
accelerometer data and 67% - 70% (average of 68%) using gyroscope data as shown in
Table 6.11. For the stroke survivors, the overall accuracy was in the range of 35% to 70%
(average of 55%) using accelerometer data and 25% to 85% (average of 50%) using
gyroscope data as shown in Table 6.12. The overall accuracies using LDA and SVM are
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comparatively on the lower side when compared to the results achieved using the proposed
methodology (cf. Table 6.3, Table 6.4, Table 6.6 and Table 6.7). The sensitivities for
individual actions achieved using LDA and SVM are high for some cases, though none of
the subjects have all three movements classified with a sensitivity of greater than 60%.

This therefore proves the effectiveness of the proposed methodology.

6.4 Summary of exploration

A proof-of-concept methodology based on k-means clustering and a minimum distance
classifier to recognize three fundamental movements of the upper limb has been presented
which uses data collected from a wrist-worn, wireless tri-axial accelerometer and a tri-axial
gyroscope. From, the results presented in section 6.3, for four healthy subjects and four
stroke patients it can be concluded that:

e the proposed method can recognize the three movements with an overall average
accuracy of 88% using just accelerometer data and 83% when using only gyroscope
data across all healthy subjects and an average accuracy of 70% using accelerometer
data and 66% using gyroscope data across all stroke survivors and arm movement
types.

e the minimum sensitivity for detecting each individual arm movement was 80% for
healthy subjects and 60% for stroke patients if more than one sensor is used. The
results particularly those obtained for the stroke survivors reveal that there is a need to
consider more than one sensor type while detecting such elementary arm movements.

e the results in general show that each subject required a different minimum number of
features to successfully form 3 separate clusters from the training data, reflecting the
variability in arm movement patterns between individuals. Although there is a strong
commonality in the top ranked features selected for both the sensors across the healthy
subject population, for the stroke survivors there was a minimal degree of
commonality.

o a further comparison of the achieved results against the classification results obtained
using supervised learning algorithms - LDA and SVM, clearly reflect the effectiveness
of the proposed methodology in detecting the three investigated arm movements.
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6.5 Application framework

In view of this exploration and the achieved results, the proposed clustering and minimum
distance classifier based methodology can be implemented in real life for monitoring arm
rehabilitation progress in remote health monitoring applications. This methodology could
be used to track the number of times a patient performs specific arm movements with their
paretic arm throughout the day. Therefore, the application framework for a patient

monitoring system has been highlighted.

It is evident from the results especially that of the stroke survivors with each subject
requiring differing number of features for movement classification, that there is a need for
a completely personalized approach of detecting elementary arm movements. Various
factors like stage of rehabilitation and the affected arm/natural arm, play a significant role
in detection since they affect the level of repeatability of individual movements as well as

introduce a high degree of temporal variation.

For any patient suffering from arm dexterity, the specific movements (or exercises) that
need to be tracked as defined by clinicians need to be performed multiple times, following
an exercise regime or a gaming session, in a controlled environment (clinic or home). The
sensor data collected during this phase can be analysed through cross-validation to
determine the best cluster forming features and obtain the centroids of each cluster
corresponding to each movement. This helps to perform a clinical profiling of the
individual patient with respect to their movement quality. Movements performed in the
uncontrolled nomadic environment (which can involve daily activities) can be associated

to the proximal cluster centroid using the minimum distance classifier.

It is also important to mention that this methodology can be adaptable to the changing
movement patterns of the patients over time reflective of an improvement in their motor
functionality depending on the rehabilitation. The change in movement patterns over a
longitudinal scale can be determined by two means: 1) when the recognition rate of the
movements become poor over time — since the movements performed in daily life would
have differing patterns in the feature space with respect to the pre-computed cluster
centroids and 2) clinical intervention — when the clinicians feel that there has been a
considerable change in the patient’s movements compared to the time of obtaining the

clusters from the training data. In such circumstances, the patient’s training data can be
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collected periodically and the cluster centroids and the associated features (new selected
feature set) can be recomputed to reflect the changing movement patterns. This
information (new cluster centroid and feature set) will be subject-specific due to the inter-
subject variability in movement profiles (as evident from section 6.3.2), variation in the
rehabilitation profile and the associated functional ability of each individual subject. This
information can be further used by the minimum distance classifier to recognize

movements performed in daily life.

Given the application framework, this methodology can be implemented for online
detection of arm movements in a resource constrained environment of body-worn sensor
nodes. For the training phase, the key steps of cluster formation and feature selection
(being relatively time and memory intensive) need only be done in an offline mode when
requested by the clinician, depending on the rehabilitation progress of the patient over
time. Further, an online detection module can be used to compute only the required
features and the distance to the pre-computed cluster centroids in near real-time, thereby
providing an energy efficient solution towards operation of wearable sensors for long
durations [33].

6.6 Discussion

In this chapter, an algorithmic exploration involving k-means clustering and minimum
distance classifier has been performed, to classify three arm movements performed in an
out-of-laboratory condition by four healthy subjects and four stroke survivors. The results
have highlighted the difference in the movement profiles inherent between the healthy
subjects and stroke survivors. In view of this, the application framework for real-time
patient monitoring within home settings has been discussed. An envisaged remote patient
monitoring system needs to encompass various other inter-connected sub-systems along
with the proposed recognition methodology. This could involve a patient workstation at
home or clinic, having motion capture systems (e.g. Kinect), an interactive touch-screen
surface and numerous objects for dexterous and functional hand exercises. This work
station could be used for collecting the data as part of the training phase while the patients
perform the stipulated movements. The data can be communicated by the workstation to
the PHR through a secure internet connection. The collected data can be analysed with the
computing facilities at the clinic or the patient’s home where the key steps of cluster

formation and feature selection can be performed. This information (cluster centroids and
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selected features) can be uploaded to the on-board memory of a body-worn sensor node.
The recognition logic built within the sensor node, employing the minimum distance
classifier can be used for online detection of arm movements. This further necessitates the
low-power implementation of the minimum distance classifier on hardware for sustained

operation of a resource constrained body-worn sensor node.






7. Chapter 7

ASIC Design for Minimum Distance
Classifier

7.1 Introduction

Body-worn wireless sensor nodes have facilitated long-term continuous monitoring of
patients in remote health applications [211]. The fundamental requirement for the sensor
nodes in such a system is low-power operation to prolong the battery life of the sensors
owing to its resource constrained nature. The major components of the recognition system
include computationally intensive steps like feature extraction from the data acquired by
the sensors and its corresponding analysis and therefore traditionally, these are carried out
off-line on mainframe computational facilities as discussed in section 2.2.5.5.3. However,
for a continuous monitoring scenario it is beneficial to perform these two steps within the
sensor node itself for compensating the significant energy required at the radio front-end of
the sensors for continuous data transmission. [33]. Therefore, it is of paramount
importance to develop a low-power strategy for feature extraction and classification in the

resource constrained environment of a sensor node.

In this chapter an architectural implementation of the arm recognition methodology
mentioned in Chapter 6 has been presented, employing a clustering and minimum distance
classifier based approach. The algorithm has been implemented using a hardware
description language (Verilog) aimed at developing an ASIC. The developed hardware can
be embedded on-board the sensor nodes for achieving a real-time arm movement
recognition system for long-term remote monitoring. It is envisaged that a wearable sensor
node having a customized ASIC chip can be used for capturing and on-board processing of
the raw data as shown in Figure 7.1. The chip which is dedicated to perform the key steps
of feature extraction and classification can be embedded on the sensor platform along with
other components aimed at pre-processing (noise and artefact removal) and compressing
the data. The inferred observations or results along with the raw sensor data can be stored

in memory within the sensor module and can be transmitted to the PHR using standard
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communication protocol, Bluetooth or Zigbee at pre-decided intervals of time. Data

compression can be achieved using the wavelet-based low-complexity methodology

proposed in [212], to store the raw sensor data and the classification results.

7.2 Approach
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The clustering based approach has been developed in an offline-online resource sharing

mechanism, targeted towards an ASIC implementation. The processing overview has been

illustrated in Figure 7.2.
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Figure 7.2: Overview of the offline-online processing — the training dataset is processed offline and the
testing dataset is processed online. The computation of the selected features on the testing data and
computation of the minimum distance from the pre-computed cluster centroids was done in ASIC for real-
time detection of arm movements.

The time and memory intensive process of feature computation, selection and cluster
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formation, on the training data were done in an offline mode (in Matlab). The computation
of the selected features on the testing data and computation of the minimum distance
(Euclidean) from the pre-computed cluster centroids was done in hardware (ASIC) for
real-time implementation. This offline-online processing approach satisfies the application
requirements of remote monitoring of arm rehabilitation. As highlighted in section 6.5, the
collection of the data during the exercise phase (training data) and the associated
processing (feature extraction/selection, clustering) need only be done in an offline mode
when requested by the clinician or the recognition rate falls below a threshold over a
longitudinal monitoring scale, reflective of the rehabilitation progress of the patient. The
online detection module can be used to associate the activities performed in nomadic
settings (testing data) to the pre-computed cluster centroids in real-time. Therefore the
ASIC does not need regular training and can be updated on a periodic basis with the new
feature set and cluster centroids (computed in software) which can be used by the hardware
to predict arm movements performed in daily life over time. The fabricated ASIC is
envisaged to be embedded on a sensor node, illustrated in Figure 7.3, along with a
microcontroller and other processing components like A/D converter, memory and de-
noising circuit (digital filters), which can be used to recognise arm movements performed

in daily life for real-time continuous monitoring.

__________________________________________
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Figure 7.3: Overview of the envisaged sensor node with the ASIC, microcontroller and memory.

The cluster centroids and feature-code (selected features) are uploaded to the on-board
memory when the sensor module is plugged into the docking station for charging at the
end of a monitoring session. The on-board microcontroller is aimed at controlling the

address and the data signals to and from the ASIC, placed within the sensor node. The
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classification results produced in real-time can also be stored within the memory along
with the raw sensor data, which can be uploaded to a local host computer and also to the

patient health record system (PHR).

The pre-processing of the raw sensor data for the training and testing phases as mentioned
in section 5.2.1.2 were not implemented in RTL. This is because a filtering circuit can be
added along with the implemented design on the envisaged sensor platform to pre-process
the data (cf. Figure 7.1). In this chapter, the focus was particularly on the hardware
implementation of the minimum distance classifier. It is also important to note that in this
implementation the Euclidean distance has been considered over the Mahalanobis distance
for the minimum distance classifier. This is primarily because the Mahalanobis distance
involves the calculation of the covariance matrix which is computationally complex. This
implementation was targeted as a proof-of-concept vehicle for implementing the minimum
distance classifier aimed at movement recognition. In the following sections the design and
implementation of a feature extraction engine has been described in detail aimed at
computing the time domain features from the testing phase dataset and the computation of
the minimum distance of the extracted features from the cluster centroids in hardware. The
computation of the time domain features and the minimum distance involving arithmetic
operations like addition, subtraction, multiplication, square root, division and logarithm on
the testing data, were realized using the different transcendental functions of the
CoOrdinate Rotation Digital Computer (CORDIC) algorithm.

7.3 Feature extraction

As discussed in Table 5.4, 10 one-dimensional features are computed on each individual
accelerometer (AccX, AccY, AccZ) and gyroscope (GyroX, GyroY, GyroZ) data segment for
each movement trial of each subject, which are as follows: 1) standard deviation (o), 2)
root mean square (rms), 3) information entropy, 4) jerk metric, 5) peak number, 6)
maximum peak amplitude, 7) absolute difference, 8) index of dispersion (D), 9) kurtosis,
10) skewness. Most of these features require the basic arithmetic operations like addition,
subtraction, multiplication, division, square root and logarithm for their computation.
Amongst these arithmetic operations, division, square root and logarithm require special
attention for low-power implementation. With the recent advances in VLSI, several
effective low-power design techniques have been proposed which include the non-

restoring algorithm for division [213] and square root calculations [214] and the piecewise-
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polynomial approximation for logarithm calculation [215]. These algorithms provide a
good trade-off between accuracy and hardware complexity and hence have been widely

employed in digital signal processing applications.

In terms of functional forms most of the features mentioned above have similarities to the
different transcendental functions realizable using CoOrdinate Rotation Digital Computer
(CORDIC) algorithm. Therefore, the design and implementation of a CORDIC-based low-
power engine for computing the 10 features is presented here. The primary motivation for
using the CORDIC algorithm is to explore its different transcendental functions and
compute the complex arithmetic operations reusing the same architecture which can be
implemented at low-cost with basic shift-add operations of the form a + b.2" [41].
CORDIC is a well-researched subject and several specialized architectural
implementations [41], [216]-[220] of it have been proposed over the years which can be
utilized for processing algorithms in low-power wireless sensor nodes. The fundamental
mathematical processes of the above mentioned features have been formulated in terms of
CORDIC and an optimized implementation strategy has been adapted by analysing their

shared computational stages.

7.4 CORDIC fundamentals

CORDIC is an iterative algorithm for computing different transcendental functions using
2D vector rotation. A vector [Xo, Yo] can be rotated through an angle 6 to achieve the final
component [X1, y1] through a series of micro-rotations in the clockwise or anti-clockwise

direction, as illustrated in Figure 7.4.

(x1, 1)
X, | (cos® —sin0)'x,
v, sin® cosb )\ vy,

(X6, Yo) :Rot(e){x“}

Yo

6 For +ve (counter-clockwise rotation)

X, | [ cos® sinB )X,
v, | —sin® cose Yo
X
:Rot(—e)[ ”}
Yo

For -ve (clockwise rotation)

Figure 7.4: Overview of CORDIC vector rotation from [Xo, Yo] to [X1, Y1] through an angle 0 using a series
of micro-rotations in the clockwise or anti-clockwise direction.
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The final vector is obtained by a matrix product of the initial vector with a rotation matrix
Rot [41] as shown in Figure 7.4. CORDIC can be used to compute this vector rotation by
employing the following iterative equation:

Xj+1:Xj —ILIO'j.Z_J.yj
yj+1= yJ +(7j.2_J.Xj (71)
Zj+1:Zj —O'j.aj

where [x;, yj]" is the intermediate result vector;

zj is the residual angle;

aj € {1, -1} is the direction of vector rotation at the j-th iteration stage;

aj is the pre-defined angle of rotation at each j-th iteration stage {= tan"}(29)} which add up
to make the final target angle of rotation 0;

W e {1, 0, -1} being the coordinate of rotation — circular, linear and hyperbolic respectively.

Given an input vector [Xo Yo]", in different coordinate system, CORDIC operates in two
modes viz. rotation and vectoring, for computing a series of transcendental functions as
shown in Table 7.1. In the rotation mode, starting with a vector [xo Yo]" and a target
rotation angle (zo) the objective is to compute the final coordinate [x1 yi]T through a series
of backward and forward rotation of the vector in an iterative manner to make the target

angle zero (zo —0).

In a similar manner, in the vectoring mode, where the target rotation angle is unknown, the
vector [Xo Yo]' is rotated towards the x-axis through a finite number of iterations, so that
the y-component approaches zero (yo —0) [41]. These two types of operation while
executed in different coordinate system (p) circular, linear and hyperbolic, generates a
series of transcendental functions as shown in Table 7.1. These forms of the transcendental
functions, more specifically, those generated by the vectoring operation of CORDIC in

different coordinate systems could be adapted for computing the target features.

In Table 7.1, the variables x, and yn correspond to the coordinates of the target vector [x:
y1]" and K and K, are the scale factors corresponding to the CORDIC operation in circular
(u = 1) and hyperbolic (1 = -1) coordinate systems respectively. As long as the number of

CORDIC iterations is constant, the scale factor also remains a constant value. The final
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result is scaled by a constant factor shown in (7.2), discussed here only for the vectoring

operation of CORDIC in circular mode:

K =[P }cosq; (7.2)

where b is the word-length of the machine. The scale factor, K remains a machine constant
as long as the index i runs through all of the values from 0 to b-1, i.e. at the end of all
iterations. The sum of all angles of micro-rotations (output angle z,) is equal to the angle of
rotation of the vector [Xo Yo]" while x, corresponds to its magnitude. In this mode (circular)
the decision about the direction of the micro-rotation depends on the sign of y;. For a

positive value of y;, sj=-1 and for a negative yj, o;=1.

m ROTATION MODE (Zo —0) VECTORING (Yo —0)
Xy = K (%o C0s 25— ypsinzy) X, = K /xonryOz
1 Yn =K (Yo €082+ YoSinzy) Y, =0
=0 2y =29 +tan " (Yo /%)
Xn =Xo Xn =X
0 Yn =Yo t+XoZo Yp =0
Zn:0 zn:20+(y0/x0)
X, = Kp (X cosh zg — yg sinh z5) %, = Kp, /on v
-1 Y = Ky, (Yo cosh zg + Xy sinh ) Yo =0
7, =0 z, =2 +tanh ™ (yo/X)

Table 7.1: Generalized CORDIC algorithm in three Co-ordinate systems [41].

In this investigation, the vectoring operation of CORDIC is used, represented by the
operators Vece, Veci and Vech in circular (4 = 1), linear (u = 0) and hyperbolic (n = -1)

coordinate system respectively.

7.5 CORDIC formulation of features

For the formulation of the features, the input dataset is represented by dsi, where i € {0, 1,
2...n-1} and di is the output of vectoring CORDIC operation on dsi-1) data sample. With
this convention the formulation of the target statistical features in terms of CORDIC
operation is described in the following sections. It is important to note here that the
features mean, absolute difference, peak number and maximum peak amplitude do not

require the use of CORDIC functionalities, but they have also been presented here. The
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feature mean (p) was not in the original list of chosen features, but it has been included

here since it is used for computing other features like rms, o, D, kurtosis and skewness.

7.5.1 Mean (p)

The mean represents the average of a number of data samples calculated by accumulating n
samples and dividing the resultant by n. If n = 2™, where m is an integer, the final division

can be achieved by m bit right shift of the result.

7.5.2 Root mean square (rms)

The rms is a measure of the signal energy normalized by the number of samples and is

given by:

rms = ll(nildszi) (7.3)
N i=o0

In terms of the operator Vecc, rms computation could be represented as:

rms = i(nﬁlVecc[di dgj ]T j (7.4)
X

Jnlizo
Physically, (7.4) means that ds are fed in the y input of the CORDIC while the x-
component of the output is fed back to the x-component of its input. Therefore, at every

clock cycle as the new data sample dsi arrives the computed x-component of the CORDIC

IS given by:

di = K\/dsoz +d512 +.... +ds(i—l)2 (7.5)

After every complete CORDIC operation the x-component of the output is scaled with the
scale factor K. If uncompensated, feeding back this result into the x-component of the
CORDIC input will result in accumulation of this scale factor corresponding to each dsi and
therefore (7.5) will not hold true. To avoid this problem, after every complete CORDIC
operation (comprising of N stages) with a set of input data, the scale factor compensation
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step needs to be invoked before feeding this output to the x-input of the CORDIC for the
next iteration. With this scale factor compensation step in place, after n number of
operations the final result at the x output of the CORDIC is multiplied with 1/n to obtain
the true result of rms. However, since n is a fixed number the value of 1/vn could be pre-
computed and finally multiplied with the CORDIC output using a reduced complexity

fixed-number multiplier or multiplier-less shift-and-add technique.

7.5.3 Standard deviation (o)

o represents the variation of the data samples from the mean and is expressed as:

o= Jl(fil(dsi — p)? (7.6)
N j=o

As can be seen from the functional similarity of (7.3) and (7.6) the formulation shown in

(7.4) can be reformulated for computing o in terms of CORDIC operation as:

1 (n-1 T
= IT Vece[di  (dsj— )]
n\i=0 x (7.7)
Similar to the rms computation, here the x component of the CORDIC output needs to be
multiplied with the pre-computed value of 1/vn to obtain the true value of o which again
can be achieved by a reduced complexity fixed-number multiplier or shift-and-add
technique. Like rms, here also the scale factor compensation step needs to run after each

complete CORDIC operation.

7.5.4 Index of dispersion (D)
It is a normalized measure of the dispersion of a data distribution, expressed as:

5.9
U

(7.8)

In terms of CORDIC operation D may be formulated as:
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D =(Vec, [u a]T) xo (7.9)
z
Referring to Table 7.1, setting i and o as the xo and yo inputs to the CORDIC, operating in

vectoring mode in the linear coordinate system, the output will result in (6/u). This output
is then multiplied with ¢ to obtain the desired value of D using a multiplier.

7.5.5 Kurtosis

Kurtosis is a normalized measure of the dispersion of a data distribution, as expressed in
(7.10) and re-framed in (7.11):

kurtosis =%[n§(dsi Y /&J (7.10)
i=0

kurtosis = %[{(dso —u)fo}t o+ {(dgi - 1) /0}4} (7.11)

For each sample (dsi - M), the operator Veci produces the output [(dsi-u)/o] when (dsi - 1)
and o are set as the xo and yo inputs to the CORDIC. Two squaring circuits and an
accumulator module are then used followed by multiplying it with the pre-computed value

of 1/n to achieve the desired value of kurtosis as shown in Figure 7.5.

o
—> : :
Veciinear —>| Squaring |—)| Squaring I—)‘ Accumulate Kurtos|s

- 4
dipt ds-W/o Z (=
4

o
Figure 7.5: Architecture for computing kurtosis.

7.5.6 Skewness

Skewness is a measure of the alignment of the probability distribution of a real valued
random variable to one side of the mean and mathematically defined as:

skewness = %[nil(dsi - ,u)3 / 03} (7.12)
i=0
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Exploiting the functional similarity of (7.10) and (7.12), the overall architecture for

computing skewness is shown in Figure 7.6.

g Multiply
) > squaring >
Vecinear and Skewness
—>
ds:" 3]

> n-l
ds-wo Accumulate Y- u®

3
a
Figure 7.6: Architecture for computing skewness.

7.5.7 Absolute difference (abs. diff)

It is the absolute difference between the maximum value and the minimum value of a

signal and is given by:

abs.diff =abs(max(dgj) —min(ds;j)) (7.13)

This computation can be achieved by using a maximum and minimum detection circuit as
shown in Figure 7.7 and then taking the absolute difference of the values corresponding to

them.

dsf
i=0...n-1 | |

=

max(d;)

K

Yy

>
»] = | min(d,)
oz
Mux
]

Figure 7.7: Architecture for computing maximum and minimum values of a signal.

Y

7.5.8 Information entropy (inf. entropy)

Information entropy is a measure of the randomness present in a signal represented by
[168]. To compute it, the histogram plot representing the distribution of data sample is first
divided into a number of bins and then the probability distribution is computed by counting
the number of samples (frequency of observations) in each bin. For ease of implementation
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an approximation was applied where the signal ds;, is divided into four bins (bink, where k ¢
{0, 1, 2, 3}) between the minimum and maximum values of the signal as shown in Figure

7.8 considering a Gaussian distribution as an example.

I
|
|
|
= I
32 |
E I
s I
=
.a |
"_9 I
& |
2 /
3 / ! |
£ I
= | | :
| | |
| l |
| l I
| l |
| | I
| | I
| | I
| l |
- 1 =
min(dy) thrl= thri= thr3= max(dy)

(min+thrl)/2 (max+min)/2 (thrl+max)/2
amplitude of data (signal) samples

Figure 7.8: The selected bins from normal distribution of data samples.

n
Info.Entropy = -3 p(dsj)log, p(dsj) (7.14)

In hardware, the bin thresholds could be computed by simple add-shift mechanism. The
architecture for computing the probability of the signal in each of the four bins is
illustrated in Figure 7.9. A comparator logic is used to find out the appropriate bin in which
each sample dsi belongs and accordingly for each of the bins a sample counter is used to
compute the total number of samples lying in it. The sample count in each bin is multiplied

with the pre-computed value of 1/n to calculate the probability of data samples p(bing).

—»[ sample counter 0 |—{1/n }—®»p[bing]
—» sample counter 1—{1/n —®»plbin;]
—» sample counter 2 }—{1/n }—»p[bin,]
[ sample counter 3}—{1/n }—®»p[bin;]

Comparator
logic
Figure 7.9: Architecture for computing the probability of each bin of the signal.

The logarithm of the respective probability for each bin can be calculated using the
CORDIC operator Vecn as shown in (7.15). It should be noted that CORDIC computes the
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natural logarithm (base e), which is further multiplied with a constant scale factor to obtain
logz (i.e. base 2). Therefore altogether four CORDIC operations are needed for computing
logarithm of the probability corresponding to the four bins. Accordingly (7.14) could be
realized using the block diagram shown in Figure 7.10.

In p(biny) :(Vech [@+ p(bing)) (@— p(bin ))]T )Z (7.15)
p(biny
1- p(biny) > Multiply
Vecyper and — inf. entropy
—P —»| Accumulate
1+ p(biny) In p(biny)

Figure 7.10: Architecture for computation of information entropy.
7.5.9 Jerk metric

The jerk metric characterizes the average rate of change of acceleration in a movement. It
is calculated as the rms value of the derivative of the acceleration (jerk) normalized by the
maximum value of the integral (velocity) as shown in (7.16). It is important to note here
that although the calculation of jerk is physically related to the acceleration data but the
same computing logic is also applied to the rotation data from the gyroscope. This is
because the jerk metric calculated on the gyroscope data serves its purpose as a

discriminating feature for characterising and recognising the movements.

rm{d(dsi)}

Cdt
max| (dg; )dt |

jerk metric = (7.16)

The computation of jerk metric requires the CORDIC operations Vec. and Vec;. Since the
data samples are equally spaced due to the constant sampling frequency, the first derivative
iIs computed as the difference of the consecutive data samples using a subtractor. The
integral of the data is computed using trapezoidal integration which involves the addition
of the consecutive data samples and a divide by 2 (implemented as a one-bit right shift).

From (7.4), it can be deduced that the rms of the first derivative of the data samples (d.si )

can be computed using the operator Vecc, which is shown in (7.17). The samples d;i are
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fed in the y input of the CORDIC while the x-component of the output is fed back to the x-
component of its input. After every complete CORDIC operation the x-component of the

output is scaled with a factor K.

rms = 1 n_1Vec [d; d. i ]T (7.17)
= ﬁ il;lo clHi  Usj ) :
jerk metric = (Vec, [max ([ dg;) rms[d;i J]T } (7.18)

The jerk metric is finally computed using the CORDIC operator Vec as shown in (7.18).
Referring to Table 7.1, max(Jdg)and rm{d;iJ are set as the Xo and yo inputs to the

CORDIC, operating in vectoring mode in the linear coordinate system.
7.5.10 Peak number (peaks)

It represents the tremor during arm movement and will ideally decrease as the patient
improves. The peak number is obtained from gradient analysis of the data samples (dsi).
The difference of the consecutive data samples is computed using a subtractor. Two
consecutive differences are compared (using a comparator) against a pre-defined threshold
to count the number of peaks using a sample counter.

7.5.11 Maximum peak amplitude (max_mag)

It is a measure of the amplitude of the peaks obtained after gradient analysis. It represents
the magnitude of the samples where the peaks lie. Hence, this is calculated along with the

peak number.

7.6 Architecture and evaluation

From the foregoing section, it is clear that the actual CORDIC operation is needed only for
the features root mean square (rms), standard deviation (o), index of dispersion (D),

kurtosis, skewness, information entropy and jerk metric. In the below section on
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architecture the mean (u) and the abs. diff are also included since they are used for

computing other features.

7.6.1 Architecture

Typically CORDIC is implemented in two ways: iterative and pipelined. The iterative
CORDIC architecture utilises a single implementation of (7.1) and computes the final
result in b iterations where b is governed by the required accuracy and the word-length.
Therefore, b clock cycles are required for completion of one CORDIC operation. The
pipelined architecture overcomes this problem by exploiting the identical nature of the
CORDIC iterations (shift/add operations) and mapping them onto a pipelined architecture.
The first output of a N-stage pipelined CORDIC is obtained after N clock cycles (the
latency period) and thereafter the outputs will be generated at each clock, helping in
achieving a high throughput and is therefore the most popular approach for CORDIC

implementation.

The equations (7.4) and (7.5) suggest a tight computing recursion, which indicates a
computing loop in the corresponding signal flow graph (c.f. Figure 7.11). Any attempt to
pipeline the computation in the loop would lead to inaccurate result and therefore, in this
particular application, the mathematical formulations described in section 7.5 cannot be
realized using the pipelined CORDIC approach. Without loss of generality, this can be
explained by the following example by considering a 4-stage pipelined CORDIC for
computing rms with a dataset of 8 samples, {ds,...,ds7}. A cycle-by-cycle snapshot of the
process, is presented in Figure 7.11, where Xip, Yip are the x and y component of the
CORDIC input and Xosp is the x-component of the output, dsi is the input data sample, d; is
the CORDIC output of the ds.1) data sample.

v ds; do dys 4 dss d; d; s 0 ds 0
wl | O A I A A O e I
dy dy (dy, ds) (d;, di) (dz, dy7) (d;, 0)
dy; dy (dy, dys) (dy , dy) (d;, d;)
dy; dyz dyy (dy , dys) (d; , dyg)
dy; dy2 dy; dy (dy, d,s)
- B B— B— B B
clock cycles —» 1 5 6 7 8 9

Figure 7.11: Pipelined architecture for a 4-stage CORDIC for computing rms on a data stream having eight
samples.
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In this operation, the final target operation is given by (7.19).

rms = \/%[dsoz +g? ot der? | (7.19)

It is clearly evident from Figure 7.11 that the expression in (7.19) cannot be computed
using this pipelined architecture. Moreover, if extra registers are used to store the
intermediate result of each pipeline stage, it would nullify the advantage of the pipelined
architecture and result in increased complexity in the control mechanism and the associated
hardware. On the other hand, although the mathematical form in (7.19) can be realized
using iterative CORDIC, the overall time required will be significantly high and hence the
throughput will suffer. Therefore, to overcome this problem a unit latency design, which
coalesce all iterations into one computing stage (clock cycle), is adopted in this work.
Carry-save arithmetic (CSA) technique enabling a complete CORDIC operation in one
clock cycle is employed [221]. Since, the delay of one CSA adder is equivalent to one
carry propagation, for an N-stage CSA-CORDIC, the overall propagation delay for
computing one complete operation is equivalent to N number of carry propagation delay
(equivalent to an N-bit ripple carry adder) and therefore is achievable in one clock cycle.
Accordingly a CSA-based CORDIC has been used in the proposed design. The overall

architecture of the statistical feature computation engine is shown in Figure 7.12.

dsi dSI
i=0...n-1
\ 4 d.: dsi-p
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>
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\ 4
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estimation 1-p(biny) v
10 00 01
Mode Coordinate-system \ s
01 Circular
00 Linear >
10 Hyperbolic A A 4
Counter Mode Feature X Y mode
0-n 01 rms CSA based CORDIC [
(n+1)-2n 01 o
2n+1 00 D \ 4
(2n+1)-3n 00 kurt Multiply, Squaring and |«
skew Accumulate Unit
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Multiply - rms, o, D
Squar'i)n‘é & MAC - kurt, skew, Computed features
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Figure 7.12: Architectural overview of the CORDIC operation for feature extraction.
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In principle, the engine consists of a CSA-based CORDIC module, a subtractor, an
accumulator, a probability estimator (as shown in Figure 7.9) and a multiply-squaring-
accumulate unit. In order to maintain an acceptable level of accuracy (in this case 16-bit)
the CORDIC was implemented with 24-bit datapath following the principles described in
[219]. A 2-bit mode signal (01: circular, 00: linear and 10: hyperbolic) is used to enable
the CORDIC operation in different coordinate systems. A control counter is used to input
the appropriate data (dsi - for rms, (dsi -p) - for o and (dsi -|), 1 and o - for D, kurtosis,
skewness) to the CORDIC module at appropriate clock cycle. The components for
computing jerk metric have not been shown in Figure 7.12 for the sake of clarity but have

been described in detail.

For computing |, dsi are initially stored in the register bank ‘Data Store’ from which they
are sequentially passed onto the accumulator and finally after n number of clock cycles the

result is multiplied by the pre-computed value of 1/n.

For rms computation, in the first cycle the raw samples dso and ds: are fed into the x and y
inputs of the CORDIC (Vecc mode—01, shown in blue in Figure 7.12). The subsequent x-
component of the output of the CORDIC is fed back into its x input and the next sample ds>
into the y input of the CORDIC and this process is repeated for n number of clock cycles
while the end result is multiplied by the pre-computed value of (1/vn) to achieve the

desired rms value.

For computing o; W is subtracted from ds using a subtractor and is fed into the CORDIC
module to compute the resulting expression f(”il(dsi _ 2 which is multiplied by (1/Vn) to
i=0

obtain the true value of ¢ at the end of 2n clock cycles.

For computing Dispersion (D) the values u, o are used as inputs to the CORDIC (Vec)
mode—00, shown in red in Figure 7.12) to compute (o/u) in one cycle which is multiplied

by o to obtain D.

Each sample (dsi - 1) and o are used as inputs to the CORDIC (Veci) to generate the
expression [(dsi - #)/o] which is used for calculating Kurtosis and Skewness in n cycles as
shown previously in Figure 7.5 and Figure 7.6 respectively. Hence, 3n clock cycles are

required for computing the kurtosis and skewness.
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For computing the information entropy, first the values p(bing) is computed for each bin
using the probability estimation block and then a pair of adder and subtractor are used for
computing [1 - p(bing)] and [1 + p(bink)] which are used as inputs to the CORDIC (Vech
mode—10, shown in green in Figure 7.12) and thereby computing In[p(bink)] at every clock
cycle. Finally, the result is multiplied with a constant scale factor (for computing log2) and

p(bink) and accumulated using a MAC unit as shown in Figure 7.10.

For computing the jerk metric, as discussed in section 7.5.9, the samples (dg; ) are used as

input to the CORDIC (Vecc mode—01) to compute /(nil(d;i—y)z which is multiplied by
i=0

(1/\n) to obtain the rms of the jerk value in n + 1 clock cycles (one clock cycle is used for
computing the first derivative using a subtractor). The max of the first integral is computed
in n + 1 cycle. The CORDIC operation Vec is then used to compute the jerk metric
obtained in the (n + 2)-th cycle. The peak number and the maximum peak amplitude
involves the computation of the gradient (subtraction of data samples dsi) and a comparison

with a pre-set threshold, and therefore takes (n + 2) clock cycles.

In this implementation, a signal length of 256 data samples has been considered which can
be represented on a dyadic scale and therefore any multiplication or division can be
implemented through a shift operation. Following the procedure described above the p and
rms are computed in 256 (n) clock cycles while the ¢ computation takes 512 (2n) clock
cycles altogether. The value of o is used to compute D in the 513-th (2n+1) cycle and
Kurtosis and Skewness are generated in the 768-th (3n) cycle. Information entropy is
independent of the other features and requires 4 clock cycles as the logarithm of the
probability of each bin is computed in one CORDIC operation. However, the maximum
and the minimum computation takes 256 (n) clock cycles followed by the threshold
computation for probability estimation. Therefore, the information entropy is computed in
the 262 (n + 6) clock cycles. The jerk metric is computed in 258 (n + 2) clock cycles. The
peak number and the maximum peak amplitude are calculated in 258 clock cycles. The

computation time for each feature is listed in Table 7.2.
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Features Number of clock cycles
1l 256 (n)
rms 256 (n)
Abs. difference 257 (n+1)
Jerk metric 258 (n +2)
Peak number/ max peak amp. 258 (n+2)
Information entropy 262 (n + 6)
c 512 (2n)
D 513 (2n+1)
Kurtosis/Skewness 768 (3n)

Table 7.2: Computation time for the features employing the CORDIC engine.

7.6.2 Hardware complexity analysis of proposed architecture

A hardware complexity analysis is presented considering a generalized word-length b of
the N-stage CORDIC module for a single iteration. The hardware resource for one iteration
of CORDIC can be reused for multiple iterations (for example, rms computation),
applicable for all three modes of operation. The complexity is described in terms of the
total number of full adders (FA) used. It is important to note here that only those features
have been considered which employ the CORDIC module and the operations (1/vn) or
(1/n) have not been included in this estimation since it can be pre-computed. The
arithmetic operations with respect to the feature computation is summarised in Table 7.3

Features CORDIC Multiplication  Addition/Subtraction Accumulator  Squaring

rms 1
o 1 1
D 1 1
kurtosis 1 1 1 2
skewness 1 1 1 1 1
inf. entropy 1 1 5 1
jerk metric 1 2

Table 7.3: Arithmetic operations required in the proposed CORDIC-based architecture for feature extraction

e rms— CORDIC,

e o - 1subtractor for computing (dsi -i) and CORDIC,

e D - CORDIC and 1 multiplier for multiplying (¢/u) with o,

e  kurtosis — 1 subtractor for computing (dsi -pt), CORDIC, 2 squaring units and 1
accumulator block,

e skewness - 1 subtractor for computing (dsi -), CORDIC, 1 squaring unit, 1

multiplier and 1 accumulator block,
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o inf. entropy - 3 adder/subtractor for calculating the bin thresholds for computing the
respective probabilities of each bin, 2 adder/subtractor for calculating the inputs [1-
p(bink)] and [1+ p(bink)] for computing log2p(bink), hence 5 add/sub operations in total. 2
adder/subtractors can be considered in total which can be used for computing both the
inputs to the CORDIC and also the bin thresholds. Besides needing the CORDIC, 1
multiplier and accumulator for multiplying logzp(bink) and p(bink) in computing the
information entropy is also required as shown Figure 7.10.

Si

e  Jerk metric — 1 subtractor and CORDIC for computing rms(d J and 1 adder for

computing (Jdg;) by trapezoidal integration. Finally CORDIC (Vec)) is used for computing
the value of the feature.

As mentioned in the architectural implementation, the features rms, o, D and
kurtosis/skewness are computed sequentially, due to their functional dependencies.
However, kurtosis and skewness can be computed in parallel. The computation of inf.
Entropy and jerk metric is independent of any of the above features. The computation of
inf. Entropy is dependent on the minimum and maximum computation for obtaining the
thresholds and thereby has to wait for n clock cycles. Similarly the computation of the jerk
metric is dependent on the rms of the derivative and maximum of the integral which takes

n+ 1 cycles.

In view of this operational sequence, one can reuse majority of the arithmetic components
thereby saving hardware. Considering such resource sharing, the optimal list of hardware

components required for computing all the six mentioned features are:

e the CORDIC module can be reused for computing all the features based on their
formulation and architecture as mentioned in section 7.5,

e 1 subtractor is required for computing (dsi -p) for the features: o, kurtosis, skewness.
This subtractor can be reused in the computation of inf. entropy (requiring 2 add/sub
operations), thereby requiring 1 additional adder/subtractor. These 2 adder/subtractor can
be reused for computing jerk metric,

e 1 multiplier can be reused for D, skewness and inf. entropy,

e 2 accumulator blocks are needed since the computation of kurtosis and skewness
takes place in parallel and can be reused for inf. entropy,

e 3 squaring units are needed for kurtosis and skewness.
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For the sake of convenience, 2 squaring units can be considered as 1 multiplier, therefore
requiring 2.5 multipliers in total (1 CAM + 3 squaring units). A conventional array
multiplier (CAM) requires b(b - 2) FA, b half adders (HA) and b> AND gates [222].
Considering, 2 HA as 1 FA and 4 AND gates as 1 FA [222] (due to transistor count and
area), the total gate count of a CAM can be reduced to (1.25b? — 1.5b) FA. Hence, for 2.5
multipliers, Amuit = 2.5(1.25b% — 1.5b) FA, where (A«) represents the total number of FA’s
in each circuit. An accumulator block can be considered to comprise of a FA (any registers
associated with the accumulator are not considered, thereby accounting for mathematical
operations only). A b-bit Ripple carry adder/subtracter (RCA) requires b full adders (FA).
Therefore in total Aaddisun = 4b FA (2 adder/subtractors + 2 accumulators) are required. A N
stage b-bit CORDIC implemented using Carry-Save Arithmetic (CSA) requires 6Nb FA.
For this case, N=16, hence the CORDIC module requires Acorpic = 96b FA. Therefore the
total gate count for the implementation of these seven features (let us name it as archtl) in
terms of FA count is Aarchtr = (Amuit + Aadaisub + Acoroic) = (3.125b% + 96.25b) FA. Hence,
for a 24-bit datapath, Aarchtz = 4110 FA.

7.6.3 Hardware complexity analysis of non-CORDIC architecture

Now let us consider an alternative architecture (archt2) for computing the same six
features (rms, o, D, kurtosis, skewness and inf. entropy), also summarized in Table 7.4. In
this architecture a Ripple carry adder (RCA), conventional array multiplier (CAM), non-
restoring iterative cellular square rooter (SQRT), non-restoring array divider (NAD) and
multiplicative normalization based logarithm [223] are considered as the arithmetic
components for implementing the fundamental mathematical operations. Similar to the
proposed CORDIC based design (archtl), the operations (1/Yn) or (1/n) are not considered

in this estimation.

Features Division ~ Multiplication ~ Addition/Subtraction  Square root Accumulator Squaring
rms 1 1 1
o 1 1 1 1
D 1 1

kurtosis 1 1 1 2
skewness 1 1 1 1 1

inf. entropy 1 9 1
jerk metric 1 2 1 1 1

Table 7.4: Arithmetic operations required in non-CORDIC-based architecture for feature extraction
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e rms—1squaring unit, 1 SQRT and 1 accumulator,

e ¢ -1 subtractor for computing (dsi -p), 1 squaring unit, 1 SQRT and 1 accumulator,

e D-1NADand1CAM,

e  kurtosis — 1 subtractor for computing (dsi -p), 2 squaring units, 1 NAD and 1
accumulator block,

e  skewness - 1 subtractor for computing (dsi -p), 1 squaring unit, 1 NAD, 1 CAM and
1 accumulator block,

e inf. entropy - 3 adder/subtractor for calculating the bin thresholds for computing the
respective probabilities of each bin. For computing the logarithm of each bin, logop(bink), 2
variable shifters, a 4:2 adder, a 3:2 adder, a carry propagate adder (CPA), selection
module, 2 multiplexers, a look-up table (LUT) and 4 registers [223] are needed. A 4:2
adder corresponds to 3b FA, a 3:2 adder can be realized by 2b FA and a b-bit CPA requires
b FA, hence requiring 6b FA in total. In addition, 1 CAM is required for multiplying the
probability of each bin, p(bink) with its logarithm logzp(bink). It is important to mention
here that the consideration is for one iteration of the logarithm computation. In the end, an

accumulator block is used for adding the product [p(bink)* logzp(bink)] for each bin.

e  jerk metric - 1 subtractor for computing 4. ; 1 squaring unit, 1 SQRT and 1

si?

Sl

accumulator for computing rms(d'.]; 1 adder for computing (jdg;) ; and finally 1 NAD.

Most of the components can be reused keeping in view the sequential nature of the feature
computation with an exception for kurtosis and skewness which are computed in parallel
after computing o and the computation of inf. Entropy and jerk metric are independent of
the other features. Therefore the optimal list of hardware components required for
computing the features are:

e 2 SQRT — 1 SQRT for computing rm{d; Jfor jerk metric and 1 SQRT can be

reused for rms and &,

e 1 subtractor is required for computing (dsi -p) for the features: o, kurtosis, skewness
and for computing 4 for jerk metric.

e 1 adder for computing (jdg;) for jerk metric.

These adder/subtractor can be reused for computing the bin thresholds in inf. Entropy.
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e  For computing logarithm, considering m iterations, méb FA are required. For the
sake of convenience, considering m=16 (similar to the stages in CORDIC), thereby
requiring 96b FA.

e 2 accumulator blocks are needed since the computation of kurtosis and skewness
takes place in parallel, they can be reused for rms, ¢ and inf. entropy,

e 1 CAM can be reused for D, skewness and inf. entropy,

e 3 squaring units required for kurtosis and skewness which are computed in parallel,
one of the squaring units can be reused for rms and o.

e 2 NAD for kurtosis and skewness, out of which one can be reused for computing

jerk metric and D.

Therefore, 2.5 multipliers are required in total (1 CAM + 3 squaring units), hence Amuit =
2.5(1.25b% — 1.5b) FA. The total count for adder/subtractor, Aagasib = 100b FA (2
adder/subtractor + 2 accumulators + 96b FA). A bxb NAD requires 0.5xb(3b - 1) FA and
0.5x b(3b - 1) XOR gates. Two b-bit SQRT requires 0.25xb(b + 6) FA and XOR gates
[222]. Therefore, the total FA count: Anap = (4.5b? — 1.5b) FA, Asorr = (0.375b? — 2.25b)
FA. The total gate count for computing these seven features using an alternate architecture
(archt2) in terms of FA count is Aarchtz = (Amuit + Aadaisub + Anap + Asort) = (80% + 92.5b)
FA. Hence, for a 24-bit datapath, Aarchtz = 6828 FA. It is important to note here that for the
complexity analysis of computing logarithm, the selection module, 2 multiplexers, a look-
up table (LUT) and 4 registers were not considered. The variable shifters were also left out
since it cannot be ascertained. This is similar to the assumptions for the proposed CORDIC
based design where the comparator and counter logic for computing the probability of each

bin p(bink) were not considered.

A comparative analysis has been presented in Figure 7.13, for both the architectures
(archtl — CORDIC based operation, archt2 — without using CORDIC, considering m = 8,
12 and 16 in logarithm computation), varying the word-length, to show the number of FA
being used for computing the seven features. This clearly shows the effectiveness of the
proposed CORDIC based feature computation engine in terms of hardware complexity
which is further prominent with an increase in word-length. To the best of knowledge there
is no unified architecture or design for computing the statistical features considered in this
work. Therefore, for the alternate architecture (archt2 — without CORDIC), a Ripple carry
adder (RCA), conventional array multiplier (CAM), non-restoring iterative cellular square

rooter (SQRT), non-restoring array divider (NAD) and multiplicative normalization based
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logarithm are considered to compute the required features and a hardware complexity
analysis is provided in terms of basic arithmetic operations i.e. full adder (FA) counts. This
complexity analysis presents a more objective reflection of the qualitative difference
between the two architectures. Hence in the next section the synthesis and verification
results for only the proposed CORDIC based design has been presented.

%7 CORDIC vs NON-CORDIC —+—archt1

37000 - == Archt2 (m=8)

34000 A == pArcht2 (m=12)
Archt2 (m=18)

31000

23000

25000 4

22000 4

19000

16000 o

13000 4

10000 A

Number of Full Adders (FA)
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8 12 16 20 24 28 32 36 40 ag a8
Wordlength (b)

Figure 7.13: Comparison of hardware complexity for a CORDIC and non-CORDIC based architecture for
feature extraction, showing variation in the number of full adders (FA) required with change in word-length.

7.6.4 Synthesis and verification

Having established the advantage of the proposed design in terms of the hardware
complexity, the architecture was coded using Verilog as the HDL. To verify the
functionality of the feature computation engine five datasets of 256 samples in the range of
-20 to +20 were randomly generated, and the target features were computed using Matlab.
The Verilog output on the same dataset are then compared with the Matlab results and the
average errors are calculated as shown in Table 7.5. It is evident that the average error may
become significant for the features particularly involving higher-order terms even when the
accuracy of the CORDIC itself is set high. To achieve higher accuracy, therefore, adjusting
the datapath width for the MAC unit may be necessary depending on the error tolerance of

an application.

The design was synthesized using STMicroelectronics 130-nm technology library with a
supply voltage of 1.08V and a clock frequency of 50 Hz. The 2-input NAND gate

equivalent cell area of the synthesized design was 159 K. The dynamic power for the
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synthesized design was 6.4 nW@50 Hz. The design was synthesized at 50 Hz, in view of
the application where the sensors are sampled at very low frequencies (20 ~ 50 Hz), but the
design was functionally verified at higher clock frequencies (up to 75 MHz) for high speed
applications. The engine computes all the features sequentially in 3n clock cycles and

could also be utilized for stand-alone feature computation.

Features Average Error
Mean 0
Absolute Diff 0
RMS 0(2°)
Standard Deviation 0(@2™)
Index of Dispersion o@™)
Kurtosis 0(2%)
Skewness o™
Entropy 0(@2™)
Jerk o@™)
Peaks 0
Max_mag 0

Table 7.5: Average error between Matlab and RTL simulation for feature extraction

7.7 Minimum distance computation

Having implemented the feature computation engine, the architecture for computing the
minimum distance classifier is presented here. The offline-online processing approach as
discussed in section 7.2 has been illustrated in Figure 7.14, representing the input-output

signal names.

— — — — — — — — — — — — — —

( Training phase \
I |
| Feature Feature Cluster |
| Extraction Selection Formation |
~— e e —_—— -
feature cluster
Sggts;r data in code centroid
16-bit 30-bit 16-bit
~—— — —_— = T — —_——
Hardware — Testing phase \

Predicted |
cluster |

CORDIC-based
engine for Feature
extraction

Minimum distance
classifier

2-bit |

Figure 7.14: Design overview for the offline-online processing involving clustering and minimum distance
classification.
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The important signals used by the hardware module are:

« data_in - 16-bits input for tri-axial sensor data corresponding to a movement performed
in the testing phase (Acc_X, Acc_Y, Acc_Z or Gyro_X, Gyro_Y, Gyro_Z),

o feature-code — 30-bits input for denoting the features selected out of a total of 30 features
during cluster formation on the training phase dataset (having ‘1’ for a selected feature
else ‘0’).

The sequence of features (10 features) has been illustrated in Figure 7.15, which are
extracted from each tri-axial data segment (X, Y and Z) of each sensor type, thereby
making up a total of 30 features (cf. section 6.2.2). The features selected (out of a total of
30) during the cluster formation are represented using this feature-code. An example of a
30-bit code can be of the form: 000100000000000001001000000000, which represents
that the features (3, 17, 20) viz. D_x (dispersion computed on x-axis data), jerk_y (jerk

metric on y-axis) and rms_z (rms on z-axis) were selected during the cluster formation.

‘ rms ‘ abs. diff ‘ ) ‘ D ‘ kurtosis ‘ skew ‘ inf. entropy ‘ jerk ‘ peaks ‘ max_mag ‘
1 2 3 4 5 6 7 8

Figure 7.15: Sequence of features extracted from each tri-axial data segment to form a 30-bit feature-code.

e cluster centroid - 16-bits input each for 3 cluster centroids corresponding to the clusters
formed from the features selected from the training phase data,
e predicted cluster — 2-bits output for the predicted cluster depending on the minimum

distance of the test dataset from the cluster centroids.

The methodology, already presented in Figure 6.1, has been illustrated through a
mathematical approach having three clusters in a 2-dimensional feature space and a test
vector to be associated based on the computation of the minimum distance. In Figure 7.16,
A, B, C represent the three clusters formed using k-means on the training dataset of the
three movements (A, B and C) represented by two features — Feature 1 (f1) and Feature 2
(f2), T represents the test vector. The distance of the test vector T from each of the three
cluster centroids are represented by da, ds and dc. These three distance measures are
compared to estimate the proximity of the test dataset T to the clusters. Let us understand
the distance computation in the respective feature space through this working example.

According to Figure 7.16, the two dimensional co-ordinates can be represented as:
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e  Cluster centroid A — (fa1, fa2)
e  Cluster centroid B — (fs1, fz2)
e  Cluster centroid C — (fc1, fc2)

e  Testvector T — (fr1, fro)

~
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Figure 7.16: Illlustration of the minimum distance classification methodology.

The Euclidean distance of the test feature vectors from the three cluster centroids can be

computed as:

da :\/( fri~ fag)” +(Fro ~ fap)’ (7.20)

dg :\/( fr1~ fg1)’ +(Fro ~ o)’ (7.21)

2

de Z\/( fry~ fea)” +(fr2 ~ feo) (7.22)

In this example, a two dimensional feature space (f1, f2) has been considered which can be
easily extended to incorporate all the 30 features. The distance computation expressions in
(7.20) — (7.22) can be generalized as:

2

2
dA:\/( fro~ fao)” +(fro~ far)”+ - +(Frag ~ fasg) (7.23)

2

2 2
dg Z\/( fro~ feo) +(fro~ fgo) +---+(fra9 ~ f29) (7.24)

2 2 2
dc Z\/( fro~ fco)” +(fri~ fc1) +---+(frao ~ fc2o) (7.25)
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The expressions (7.23) — (7.25) can be reframed as:

da= \/dA502 +dast” + -+ dasag” (7.26)
dg =\/d8302+d8312+"'+d83292 (7.27)
dc = \/dCSOZ +doer” ++ -+ +dcs2g” (7.28)
where the data samples (dasi, dgsi, dcsi, 1 = 0, 1,..., 29) are the computed differences

between the feature vectors of the test dataset and the cluster centroids. The expressions
(7.26) — (7.28) can be generalized as:

29

da :4/(_Zod,%\si) (7.29)
i=
29

dg =1/(_§od%si> (7.30)
29

de =ﬂ/(_20 dési) (7.31)
i=

The expressions (7.29) — (7.31) have a functional similarity to the rms computation
mentioned in (7.3) and hence can be realized using the CORDIC operator Vecc, represented

as:

n-1 T
dA = (.I‘{)Vecc [d Aj dASi] j (732)
1= X

Similar to the rms computation, the samples dasi are fed in the y input of the CORDIC
while the x-component of the output, dai is fed back to the x-component of its input.
Therefore, at every clock cycle as the new data sample dasi arrives, the computed x-

component of the CORDIC is given by:

2 2 2
dAi = K\/dASO +dSl +..... +dAS(i—1) (733)

After every complete CORDIC operation the x-component of the output is scaled with the
scale factor K. With this scale factor compensation step in place, the final result at the x

output of the CORDIC is obtained after n number of operations, where n is dependant on
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the number of features selected (1 > n < 30). Similarly, the distances dg, dc can be

computed using the operator Vecc.

The architecture for the minimum distance computation for associating the test dataset

(corresponding to the movement performed in an uncontrolled environment) to pre-

computed cluster centroids is shown in Figure 7.17 and Figure 7.18.

fro fr2 frs

2ot | ||
Feature -
Code \ ilp’s
NS
30-bit \ o/p
Features selected from
v frsi the testing dataset
A 4
Feature AR — - -
Counter 77> Minimum Distance Computation
5-bit 2 7y 2
fAsi sti szi
Feature Feature
olp Counter A Counter A
ilp’s ilp’s ilp’s
24-bit} T ..... T 24—bit} T ..... T 24—bit} T ..... T
Cluster centroids obtained__, on fAZ fA29 fBo fBz fBzg fco fcz fczg

from the Training dataset

Figure 7.17: Overview of the minimum distance classifier architecture.

The features mentioned in the feature-code are selected. The cluster centroid for that

corresponding feature is selected through a sample counter (feature-counter) which counts

through the 30-bit feature-code. The features selected from the testing set (frsi) and the

corresponding cluster centroids (fasi, fesi, fcsi) are passed onto a minimum distance

computation module.

24-bit d
frsi 7> — da
Subtractor Vec,
fasi > 5 >
Asi
24-bit d Predicted
Bi Y
frsi 7#—> > ds > cluster
) Subtractor Vec, > COTgairCator ,
fos > > g 2-bit
sti
24-bit q
Ci
frsi = <>
Subtractor Vec,
fesi > > de
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Figure 7.18: Architecture for the minimum distance computation module.
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The minimum distance computation module as shown in Figure 7.18 uses a subtractor to
compute the difference between the corresponding features and passes it onto the CORDIC
module, Vec.. The CORDIC operation takes place in accordance with (7.29) — (7.31) to
produce the respective distances of the test set from each cluster centroid (da, dg and dc). A
comparator logic is used to determine the proximal cluster, which is denoted by a 2-bit
output (‘00° - A, ‘01’ - B and 10’ - C).

It is interesting to note here that three CORDIC modules have been used in parallel to
compute the distances from each of the three cluster centroids in parallel (cf. Figure 7.18).
This can also be achieved by reusing one CORDIC module to compute each distance
sequentially but would increase the computation time. For real-time detection of arm
movements, a high speed design is more suitable. Using multiple CORDIC modules on the
other hand has its effects on the chip area and power. Therefore, a trade-off between the
computation time and area-power is necessary to have an optimal design. In the worst case
scenario, if all 30 features are selected, then the distance computation from each of the
three centroids as mentioned in (7.26) — (7.28) would involve 30 CORDIC operations. If
each CORDIC operation takes time T, the total estimated time is 30T. If the same process
was repeated by re-using a single CORDIC, the time taken would be 3x30T, along with the
overheads of a control logic (multiplexer, counter, buffers) to handle the data going in and
out of the CORDIC module after the distance from each cluster is computed. The feature
extraction engine consumes as little as 6.4 nW of power given the low frequency
operations (@50 Hz) and therefore, in this design, priority has been given to saving the

computation time by using three CORDIC modules in parallel.

Another important factor that requires special mention is the effect of normalization. The
clusters are formed in a multi-dimensional feature space where the cluster analysis takes
place on the features extracted from the training data. These features are linearly
normalized with respect to their minimum and maximum value. This is explained in the
expression (7.34), where x; represents the feature vector, min(x;) and max(xi) represents the

minimum and maximum value of the feature vector respectively and X.is the normalized

feature vector.

% —min(x)

= X () i (1) i=123..N (7.34)
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Therefore, the cluster centroids are represented by the normalised values of the selected
features. However, during the testing phase, when a movement is performed, the relevant
features (according to the feature-code), are extracted from the corresponding sensor data
using the feature extraction engine as discussed in section 7.6.1. These features are further
used for computing the minimum distance (Euclidean) from each of the cluster centroids.
However, the features lie in different numeric ranges whereas the respective centroids
(formed using normalized features, extracted from the training data) lie within a range of
0-1. Therefore, prior to computing the Euclidean distance, the cluster centroids are un-
normalized and used as inputs to the RTL module. This could have been avoided by taking
as inputs the minimum and maximum values for the respective features to the feature
extraction module and normalizing the extracted features (from the test dataset) in RTL.
But this would involve division in hardware which is computationally intensive (power

consuming).

7.8 Synthesis and verification

The architecture for feature extraction and minimum distance computation was coded
using Verilog as the HDL with a target ASIC implementation. The design was functionally
verified using the experimental data from 2 healthy subjects and 2 stroke survivors. For
each healthy subject, there were 80 test vectors (4 trials of ‘making-a-cup-of-tea’, having
20 movements in each trial). Similarly, for each stroke survivor there were 40 movement
trials to be recognised (2 trials of ‘making-a-cup-of-tea’, having 20 movements in each
trial). It is important to note here that since there is a fixed register bank capable of storing
256 samples, for testing with the data already collected during the experimental protocol,
an interpolation/extrapolation module in Matlab was implemented to pre-process the test
data to restrict the sample size to 256 samples. The results using the accelerometer and the
gyroscope data from the wrist are shown in Table 7.6 - Table 7.9 for both healthy subjects

and stroke survivors.

Two healthy subjects were chosen representing two extreme conditions during the
evaluation of the methodology as mentioned in section 6.3. Subjects 1 and 2 had the
highest and lowest overall accuracy respectively, with accelerometer data (cf. Table 6.3)
and required the maximum and minimum number of features respectively, with the data
from the gyroscope (cf. Table 6.4). Similarly, for the stroke survivors, subjects 1 and 4

were selected.
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Recognition accuracies (%)

Subject Features Overall accuracy (%)

A B C
Subjectl 11 93 90 40 78
Subject2 2 100 100 75 94

Table 7.6: Recognition sensitivities for each arm movement with accelerometer data for 2 healthy subjects.

Recognition accuracies (%0)

Subject Features Overall accuracy (%)

A B C
Subjectl 10 50 80 100 70
Subject2 27 70 80 70 73

Table 7.7: Recognition sensitivities for each arm movement with gyroscope data for 2 healthy subjects.

Recognition accuracies (%)

Subject Features Overall accuracy (%)

A B C
Subjectl 19 70 80 100 80
Subject4 8 20 80 50 43

Table 7.8: Recognition sensitivities for each arm movement with accelerometer data for 2 stroke survivors.

Recognition accuracies (%0)

Subject Features Overall accuracy (%)

B C
Subjectl 8 80 60 80 75
Subject4 30 50 50 0 38

Table 7.9: Recognition sensitivities for each arm movement with gyroscope data for 2 stroke survivors.

The results obtained as a result of the RTL simulation are on the lower side when
compared to those obtained during the software evaluation (cf. section 6.3). However,
there is an exception for healthy subject 2, where the overall accuracy achieved is higher
for the RTL simulation. The decrease in individual movement sensitivities and the overall
accuracy is primarily due to accumulation of truncation error which is a common
phenomenon in fixed-point arithmetic. This is further evident from the fact that the
minimal errors occur for healthy subject 2, requiring the computation of minimum number
of features, viz. 2. Furthermore, in this implementation the test data was modified to 256
samples, which could also have an effect on the obtained results.

The RTL was simulated using Modelsim, a snapshot of the simulation has been presented
in Figure 7.19. The variable data_in takes as input the tri-axial data sequentially. The input
data is stored in a register bank (data_store) capable of storing 256 elements. The counters
feature_count_x/y/z are used to count the number of features computed on each of the input
data stream (X, Y and Z). The register bank feature_store is used to store the extracted
features and can save up to 30 features. A 1-bit flag f_finish_x/y/z is used to denote the end
of feature extraction on each data stream. The registers centroid_1/2/3 are used to store the

centroid variables. The 30-bit feature code is used to compute the Euclidean distance
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between the selected features and the centroid variables. The predicted cluster label is
denoted by the 2-bit register group and a 1-bit signal batch_finish is set high once all

processing is completed.
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Figure 7.19: RTL simulation of the hardware module encompassing feature extraction, selection and the
computation of the Euclidean distance. The predicted cluster label is A (group — 01).

The design was synthesized using STMicroelectronics 130-nm technology library with a
supply voltage of 1.08V and clock frequency of 50 Hz. The 2-input NAND gate equivalent
cell area of the synthesized design was 242 K. The dynamic power for the synthesized
design was 65 nW@50 Hz. The design was also functionally verified at a higher clock
frequency of 20 MhZ, where the synthesized design occupied an area of 347K (2-input
NAND gate equivalent) and the dynamic power consumed was 25.9 mW. The design takes
(9n + 30) clock cycles (where n is the number of input data samples) in the worst case,
considering it has to compute all the 30 features from the testing dataset and compute the

Euclidean distance to the three cluster centroids.

7.9 Chip design

The layout of the synthesized design was performed using the Cadence Encounter tool.
The final chip, as shown in the envisaged design in Figure 7.3 was interfaced with a
microcontroller, aimed at controlling the address and the data signals to and from the
ASIC. The implemented design has only one 16-bit input/output port which is used to
input the three sensor data streams (AccX, AccY, AccZ or GyroX, GyroY, GyroZ)
sequentially. Same is followed for the three centroids which are passed as inputs
sequentially. The 30-bit feature-code (cf. Figure 7.15) is split into two parts — initially, the
lower 16-bits are passed as inputs and secondly the higher 14 bits are padded with two
extra zeroes and passed through as inputs into the hardware module. The 2-bit output field

signifying the predicted cluster label is padded with 14 zeroes. It is important to note here
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that although the input data is 16-bits wide, the width of the datapath in the CORDIC-
based feature extraction engine and the minimum distance computation module is 24-bits
as mentioned in section 7.6.1. In order to achieve the desired 16-bit accuracy a 22-bit
word-length should be selected [219], according to the formulation (N + Log2N + 2) and
atleast 16 iterations. Therefore, to obtain a high accuracy a 24-bit CORDIC was used for

this implementation.
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Figure 7.20: Core chip layout with all pin assignments.

The size of the final chip placed in a QFN-48 package was 2.221 mm x 2.215 mm, having
25 signal pads and 8 power/ground pads. The important pins are the 16-bit input/output
data bus (DATA_0, DATA 1 ... DATA 15) and the 3-bit input address bus (ADDR O ...
ADDR_2), the core layout is shown in Figure 7.20. A total of 95 working chips were
fabricated. The average power measurement from all the working chips is presented in
Table 7.10.

Mode VDD Core VDD Pad
Standby 0.166 mAat 1.2V 0.001 mA at 3.3V
Operating 4.366 mA at 1.2V 0.073 mA at 3.3V

Table 7.10: Averge power measurements of the 95 working chips.

In view of one of the objectives of this research work to maximize the battery life of the

wearable sensors by preventing continuous transmission of the data, it is imperative to
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estimate the operational life time of the envisaged senor node (cf. Figure 7.3) having the
ASIC within it enabling on-board data processing. The energy capacity of the latest
prismatic zinc-air battery favoured by the medical community is 1800 mAh operating at
1.4V [33]. Considering the average power of the working chips in the operational mode for
the core (cf. Table 7.10), it can be deduced that the operational life-time of the sensor node
would be approximately 480 hours [(1800 x 1.4)/(4.366 x 1.2)], implying that the sensor
node can work for 20 days without charging. This calculation presents an approximate
overview considering only the operational power consumption of the chip core (the
primary research focus), other vital components of the sensor node would also have an
effect on the operational life-time. It is also important to note that the power consumption
in the standby mode have not been considered as well as the current consumption of the
pads since the later would vary according to the technology library used. This further
reflects the effectiveness of the design whereby the ASIC can be used for long-term

monitoring of arm movements in real-time.

7.10 Discussion

In this chapter, an architectural implementation of the minimum distance classifier to
recognize a movement performed in an out-of-laboratory environment has been presented.
Three movements performed initially in a controlled environment or the training phase, are
processed in software to form clusters in a multi-dimensional feature space. The hardware
module is aimed at associating the kinematic data corresponding to the movements
performed in the testing phase to the proximal cluster centroid. The processing of the data
involves feature extraction, selection and computation of the Euclidean distance to the
three cluster centroids. The synthesized design consumes 65 nW@50 Hz of dynamic
power, occupying 242 K NAND-2 equivalent area. The synthesized RTL was simulated to
verify its functionality. The fabricated core has been packaged in a QFN-48 package.
However, in view of the designed architecture, there are a few fundamental factors which

can be considered in future designs.

First, the size of the register bank to store the incoming data samples (data_in) from the
sensors has been fixed at 256 (which can be represented on a dyadic scale, 2%) and hence is
convenient for feature computation. With the sensor streaming data at 50 Hz, 256 samples
represent approximately 5 seconds of kinematic data. This time duration is suitable for the

healthy subjects for the completion of the elementary arm movements (actions) chosen for
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the experimental protocol. For patients, depending on the level of dexterity, the time
duration might be more especially when they are in their initial stage of rehabilitation. The
next available window size, in view of representing it in dyadic scale is 512 implying 10
seconds and would suit the requirements of patients needing more time to complete the
actions. An alternate approach would be to reduce the sampling frequency in the range of
20~25 Hz which has also been considered to be suitable in human activity recognition

[27][2]. Such a case of window selection has been discussed at length in section 2.2.5.6.2.

Secondly, the difference in the results of the software implementation of the methodology
(cf. section 6.3) and its RTL implementation have been briefly discussed in section 7.8.
The differences in the results are primarily due to the accumulation of truncation error
which is a common phenomenon in fixed-point arithmetic operations and occurs due to the
implemented logic. In this application, where a data point is being classified based on some
decision boundary, this error may accumulate to such an extent that the data point may
come very close to the decision boundary or even overshoot it, resulting in
misclassification. The software implementation in Matlab presents the obtained results in a
64-bit operating system whereas the CORDIC module implemented in RTL has a datapath
width of 24-bits. Since, in this implementation, to achieve 16-bit accuracy, 16 iterations are
used and hence this recursive CORDIC operation results in error accumulation to a higher
degree. Therefore, the difference of accuracy is further evident especially while computing
a higher number of features. Hence, a fundamental exploration in terms of error
accumulation and propagation needs to be carried out and accordingly the datapath

adjustment for the ASIC implementation needs to be done in view of the target accuracy.

Thirdly, as discussed in section 7.7, the cluster centroids are un-normalized prior to the
computation of the Euclidean distance from the test features. However, for cases with more
number of features it is better to normalize the features computed on the test dataset with
the minimum and the maximum values of the cluster forming features computed on the
training dataset. The normalization step involving division can be achieved using the
CORDIC operator Vec;.

This chapter concludes the explorations performed to achieve the research objectives. In
the following chapter conclusions are drawn comparing the performance of the adopted

methodologies and relevant future prospective work has been outlined.



8. Chapter 8

Conclusion and Future Works

This work reports on a systematic exploration to recognise three elementary arm
movements that are used in daily life. It has also been demonstrated that with particular
focus on the algorithm and architecture design, a real-time movement detection system can
be achieved suitable for use in a resource constrained environment of a body-worn wireless
sensor node. Three approaches have been used to recognize the movements performed by
four healthy subjects and four stroke survivors in an out-of-laboratory environment, during

the archetypal activity of ‘making-a-cup-of-tea’.

The first approach based on sensor orientation presents a novel yet simple algorithm to
recognize the three arm movements by analysing transitions between six pre-defined
orientations of a wrist-worn accelerometer. Accuracy in the range of 91%-99% for healthy
subjects and 70%-85% for stroke survivors was achieved using only a tri-axial
accelerometer on the wrist. Therefore, this methodology reduces the overheads of complex
data processing (i.e., feature extraction/selection and classification) and does not require a
training system to learn response patterns which is involved in conventional methodologies
of human movement recognition. Although this approach has proved to be quite
successful, the pre-defined orientations and the transitions are particularly aimed at
recognising the investigated movements, performed in a horizontal plane. Therefore, this

algorithm is not scalable or flexible for incorporating new category of movements.

For the second approach three classifiers were used, namely, LDA, QDA and SVM for
recognizing the performed arm movements. A robust training model was developed
retrospectively using the data collected in the laboratory setup (training dataset) following
two types of approach: subject-independent (generalized) and subject-dependent
(personalized), in association with each of the learning algorithms - LDA, QDA and SVM.
The model is verified through cross-validation methodologies to determine the best
classification methodology, the appropriate sensor signals and its position for recognizing
the movements. The LDA learning algorithm involving low-computational complexity had

comparable performance to the other two investigated classifiers. Hence, LDA was used in
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conjunction with the individual sensor axes signals, to prospectively evaluate the
developed model on data collected while ‘making-a-cup-of-tea’ (testing phase) following a
personalized approach. However, a satisfactory level of classification (> 60%) was not
achieved across all the arm movements for any of the healthy subjects. For the stroke
survivors, the maximum sensitivity obtained for any action was 50% and for none of the
subjects, all actions were classified with a sensitivity of atleast 50%. Although the
sensitivities for each arm movement were quite high in the retrospective cross-validation of
the training dataset, especially using signals from the wrist-worn accelerometer and
gyroscope, but when prospectively evaluated on the testing dataset, the learnt model failed

to classify the actions up to an acceptable level.

In view of the achieved results, the implementation of this classification methodology in
hardware was not pursued. However, from this exploration three important conclusions
were drawn: 1) effectiveness of the subject-dependant (personalized) approach; 2)
efficiency of the individual sensor signals over the modulus of the accelerometer and
gyroscope signals, or their combined fused signals and 3) effectiveness of the wrist over
the elbow as the sensing position for both the accelerometer and the gyroscope.

The third approach considers the formation of three clusters pertaining to the three
movements (reach and retrieve; lift arm, rotate arm) performed in the training phase in a
multi-dimensional feature space and recognizes the movements performed while ‘making-
a-cup-of-tea’ (testing phase), by computing its proximity to the cluster centroids using a
minimum distance classifier. The three movements were detected with an overall average
accuracy of 88% using the accelerometer data and 83% using the gyroscope data from the
wrist, across all healthy subjects and the three arm movement types. The average accuracy
across all stroke survivors was 70% using accelerometer data and 66% using the data from
the gyroscope. The minimum sensitivity for detecting each individual arm movement was
80% for healthy subjects and 60% for stroke survivors if more than one sensor is used. The
results particularly those obtained for the stroke survivors reveal that there is a need to
consider more than one sensor type while detecting such elementary arm movements. The
achieved results were further compared against the classification results of LDA and SVM,

to establish the effectiveness of the proposed clustering-based methodology.

For the sake of generality, to recognise other types of arm movements using the sensor

orientation based approach, new sensor positions and their transitions have to be defined.
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This requires specific inputs from the therapists regarding the movements they would like
to monitor. Correspondingly, the algorithm can be tuned to detect the occurrence of the
specific movements. Hence, there is a need for a close coordination between the therapists
and data analysts for extending it to future applications. Another interesting factor that
needs to be mentioned is that for a supposedly day-long monitoring period, the orientation
of the sensor module placed on the wrist needs to be constant. However, from practical
experience of wearing a watch it is a well-known fact that the positioning is more likely to
change over the course of a day. Therefore, a firm wrist band housing the sensor module,
which is comfortable for the patients to wear, needs to be used such that the sensor stays at

a fixed position without affecting its orientation.

In comparison, the approach based on clustering and minimum distance classifier appears
as a more efficient methodology in view of its flexibility and scalability. It can be
modulated to include any other category of movements depending on the clinical
requirements. In this work three arm movements have been considered primarily as a
proof-of-concept methodology. The choice of the movements were further guided by the
consultation with therapists who highlighted the importance of tracking elementary arm
movements that constitute majority of the activities performed with the upper limb in daily
life. To incorporate more number of movements, more clusters (reflecting the number of
unique movements) can be formed and the functionality can be tuned in accordance
(Euclidean distance computed from the test dataset to the new cluster centroids) to
recognize the respective movements. Therefore, this approach is a preferred option for
detecting any category of arm movements as compared to the one based on sensor

orientation.

The clustering based approach was developed in an offline-online resource sharing
mechanism. The time and memory intensive process of feature computation, selection and
cluster formation, on the training data were done in an offline mode (in Matlab). The
computation of the selected features on the testing data and computation of the minimum
distance (Euclidean) from the pre-computed cluster centroids was realised through a novel
low-power ASIC, to be used within a wireless sensor node for real-time continuous
monitoring. The fabricated ASIC has a dynamic power consumption of 25.9 mW @20
MHz and a total chip area of 2.221 mm x 2.215 mm. This chip can be embedded on a
body-worn wireless sensor node along with other processing components like A/D

converter, filtering circuit, memory, power source (cf. Figure 7.1), to associate the
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activities performed in daily life (testing data) to the pre-computed cluster centroids in
real-time. As discussed in the application framework in section 6.5, this methodology can
be adaptable to the changing movement patterns of the patients reflective of an
improvement in their motor functionality depending on the rehabilitation. The patient’s
training data can be collected periodically as and when requested by the clinician and the
cluster centroids and the associated features can be recomputed to reflect the changing
movement patterns in offline mode. This information can be further used by the ASIC,

embedded within the wireless sensor node to recognize movements performed in daily life.

Given the overall accuracy achieved with the sensor orientation based approach, it was also
implemented on a reconfigurable hardware platform, i.e. FPGA, to develop a real-time arm
movement recognition system. The synthesized design used 1804 logic elements and
recognises the performed arm movements in 41.2 ps, @50 MHz clock on the FPGA. This
system acts a proof-of-concept and can be implemented as a low-power ASIC chip and
embedded on a sensor platform to detect and enumerate the occurrence of the three arm
movements in daily life. There was only an opportunity to pursue the fabrication of one
design (at IHP, cf. section Research Constraints1.6.4). Therefore, the minimum distance
classifier based methodology was translated to an ASIC in view of its flexibility and

scalability to incorporate changing movement patterns or new categories of movements.

The achieved results, for both the healthy subjects and the stroke survivors using both the
approaches can be considered favorable because the methodology was tested to detect
activities performed in out-of-laboratory, semi-naturalistic scenario, having a significant
degree of variability. The accuracy rates reported for the stroke survivors are acceptable,
according to clinicians, since it provides a gross measure of impaired arm use. It is
important to mention here that a misclassification or a false detection of a performed
movement may not have any significant clinical impact because in this application the final
decision on the rehabilitation measure and the corresponding prescription lies with the
jurisdiction of the respective clinicians. This methodology could help to augment the
clinical findings and provide a quantitative measure on the rehabilitation progress of the

patients over time outside the clinical environment.

A completely personalized approach has been presented and the results obtained have been
encouraging and show that these particular arm movements can be reliably detected with

stroke survivors exhibiting moderate levels of involuntary tremor in their movements. The
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developed system could be used as a clinical tool to assess arm rehabilitation progress
amongst stroke survivors by tracking the number of times the person performs specific arm

movements with their paretic arm throughout the day.

8.1 Future works

The research done in this thesis provides a foundation for further exploration and use of
advanced techniques to detect arm movements or human movements in general. This work
was the first attempt to propose two novel arm movement recognition algorithms and their
implementation on a hardware platform, facilitating its application for remote monitoring
of patient activity in real-time. The future prospects and other interesting avenues of

research are outlined as follows:

(1) Segmentation of activities

Continuous monitoring of activities in nomadic settings involves the key steps of data
segmentation and then the corresponding analysis of the data to recognise the movements
of interest as highlighted in section 2.2.5.5.1. Although these two aspects are in practice
interrelated but are individually two separate research problems owing to the possible
qualitative non-uniqueness of an activity pattern exhibited by an individual subject and due
to inter-person variability. In the research reported here, the focus has been only on the
activity recognition part as a proof-of-concept methodology. A fixed size sliding window
of 256 samples has been used which is in accordance to the requirements of the hardware
platform implementing the movement recognition algorithm. However the pitfalls of a

fixed size sliding window have already been discussed in section 2.2.5.6.2.

Therefore, as a future work, a segmentation algorithm needs to be developed which can be
used as a precursor to the movement recognition algorithms proposed in this work. A
dynamic window selection technique based on a data-driven or a probabilistic approach
can be further explored. A threshold based segmentation mechanism whereby observing
the modulus signal of the tri-axial accelerometers and gyroscopes can help to infer whether
an activity has been performed and to some extent the type of an activity. This is because,
when the arm is stationary the total acceleration measured by the sensor module is equal to
the value of the gravitational acceleration (g) and gyroscopes should measure zero as the

three axes experience no rotation. Hence, checking a continuous stream of data against
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values (g = x%) for the accelerometer and (0 = x%) for the gyroscope (where x is the

selected threshold value) can help to separate periods of inactivity.

(2) New movement recognition algorithms

In this present study, time domain features have been used with respect to their popularity
in relevant literature. Therefore, new features especially those obtained from frequency
domain analysis (Fourier and Wavelet decomposition) can be used in conjunction with new
learning algorithms. Some of the common frequency domain features can be: power
spectral density from the Fourier analysis; the energy content, entropy and the number of

peaks from the signal at various frequency bands obtained from Wavelet decomposition.

Here, three supervised learning algorithms — LDA, QDA and SVM have been explored.
These algorithms produced high sensitivities for each investigated arm movement during
the retrospective cross-validation of the training dataset but the learnt model failed to
classify the arm movements during the prospective evaluation on the testing dataset. In
view of this, new recognition algorithms can be evaluated to recognize the performed arm
movements in an out-of-laboratory situation. An initial analysis was also performed using
k-nearest neighbor classifier (k-NN, varying k from 3 to 7) and Hidden Markov model
(HMM) but it did not lead to a betterment of the individual sensitivities of the movements.
Since the main objective was to implement the designed algorithm on a resource
constrained hardware platform, commonly used methods like Multi-layer perceptron [2] or
Artificial Neural Networks (ANNSs) [28], were not explored due to the high complexity
involved. These explorations have not been reported here for the sake of brevity. One
prime reason, towards the low sensitivities for individual movements obtained is the
number of data points. To develop a robust learning model, it is always better to train the
classifier with a large pool of data so that it inherently captures the variations in the

underlying data samples.

As a future work, different variants of HMMs can be explored, given its popularity in
activity recognition literature and its feasibility for implementation onto a hardware
platform [224]. Semi-Markovian HMMs or coupled-HMMs can be used for classifying the
arm movements. Decision trees (DT) classifiers are also another popular choice [28] [157]

and can be used to recognize the performed movements in an uncontrolled environment.
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(3) Quality of movement

The primary objective of stroke rehabilitation is to detect the improvement in the motor
functionality of the patients over time. Estimating the quality of the movements performed
over a period of time can be a key rehabilitation indicator. This thesis focusses on the
recognition methodology of particular arm movements. Enumeration of such specific
movements over time could be used as a rehabilitation indicator, since the frequency of
these movements is more likely to increase as the motor functionality of the patient
improves. Various other parameters can be analysed using data from pervasive body-worn
sensors to indicate change in the quality of movements performed within the home

environment.

An initial study on the measurement of movement fluidity of the upper arm for four stroke
survivors for duration of 3 weeks was performed. Details of these findings have been
presented in Appendix A. The four stroke survivors, who had participated in the study for
an archetypal activity of ‘making-a-cup-of-tea’, were requested to perform a trial of the
same over 3 weeks during their regular visit to the clinic (i.e. Brandenburg Klinik,
Germany). Kinematic data was collected using tri-axial accelerometers placed near the
wrist and analyzed to determine the jerk metric [225] and the peak number on each
orthogonal sensor axes and their moduli. The jerk metric characterizes the average rate of
change of acceleration in a movement. It is calculated as the negative root mean square
value of the derivative of the acceleration data normalized by the maximum velocity and
will ideally increase with time as the patient improves. By comparison, the peak number is
obtained from gradient analysis of the acceleration data. It represents the tremor during
arm movement and will ideally decrease as the patient improves. Less number of peaks in
the speed signal (integrating the acceleration signal) represents fewer periods of
acceleration and deceleration, indicating a smoother movement. During the same time, the
patients also undergo three trials of the Box and Block ) test [34] and Nine Hole Peg test
test [46] at the beginning of each experiment session, performed over the same 3 week
period under the supervision of the clinicians. These two tests are reliable measures of
gross manual dexterity and arm functionality, performed by clinicians to assess
rehabilitation in clinical settings. An increase in number of blocks transported per minute

and number of pegs placed per second indicates improvement in arm functionality [226].

The results of the clinical tests illustrate an increase in the number of blocks transferred per

minute for all four subjects over the three weeks. The results from the Nine Hole Peg test
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also reflect an increase in the number of pegs placed per second across all subjects. The
results for the statistical features, jerk metric and peak number, calculated on the
accelerometer data indicate a decrease in the number of peaks and an increase in the value
of jerk metric for all the four subjects over the experimental duration of three weeks. This
supports the clinical observations as obtained from the B&B and the NHP test scores.
These results suggest that low-cost body worn sensors can be used in a pervasive manner

to determine the rehabilitation of patients within the home environment.

This work is an initial exploration and presents a preview into the wide area of clinical
research on estimating the quality of movements performed by the stroke survivors with
their impaired arm. This study can be further extended by analyzing other metrics like joint
angles, postures in the three dimensional space as subjects perform their daily activities
over a prolonged period for estimating the movement quality. A longitudinal study based
on a larger subject base and over a longer time period, can facilitate the formulation of
useful rehabilitation indices which can complement the clinical measures for assessing

patients within the home environment.

(4) Applicability in real-life

In this thesis, two novel arm movement recognition algorithms have been proposed and
they have been translated to a hardware platform. Given the efficiency of the sensor
orientation algorithm, it was also implemented as a Matlab based graphical user interface
(GUI). This GUI has been installed at the Brandenburg Klinik, Germany and has been used
to test arm movements performed by stroke survivors. Since this algorithm does not
require a dedicated training session, it can conveniently be used to track the three arm

movements — reach and retrieve, lift and rotate arm.

The clustering and minimum distance classifier based approach which was developed into
a low power ASIC can be embedded on a body-worn wireless sensor node (cf. Figure 7.1),
to perform movement recognition in real-time and the results can be displayed on a
PDA/mobile platform carried by the patient as well as stored in memory for future referral
by clinicians. Since this methodology has been implemented as offline-online processing
system, it can be trained to detect any category of movements in an offline mode and the
ASIC can be used to detect those movements in real-time. This methodology could be
extended for use with patients suffering from other neurodegenerative disorders exhibiting

less fluidic movement profiles. It can also be extended towards monitoring of lower limb
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movements. Real-time detection of arm movements can be very useful in a wide array of
applications in the field of sports, human computer interaction or other treatments of arm
dexterity. Therefore, the developed system can be used to track movements of required

body segments in these respective fields outside a controlled environment.






Appendix A

The four stroke survivors involved in the experiments at BBK, Germany were selected by
the physiotherapists depending on their availability and agreement to participate in the
trials. An initial analysis to ascertain their degree of impairment was performed using the
streamlined WMFT set. However, consent was not available from BBK to disclose these
scores due to ethical issues. On further consultation, a brief summary of their functional
state has been presented in Table A.1. The functional ability in Table A.2 reports on the
qualitative content of the WMFT score and the physiotherapist’s standard evaluation.

Natural  Impaired

Subject Sex Age Functional ability

arm arm
Subjectl ~ Female Right Right 45 High WMFT score, low impairment
Subject2 Male Right Left 65 Average WMFT score, average impairment
Subject3 Male Right Right 72 Low WMFT score, high impairment
Subjects Male Right Left 73 Low _\_/\IMFT score, high impairment, early stage of
rehabilitation

Table A.1: Functional details of the four stroke participants as assessed by the therapists.

The following segment on Box and Block test, Nine Hole Peg test and movement fluidity

addresses the initial exploration on determining quality of movement (cf. section 8.1).

Figure A.1: Experimental setup for the Box and Block test (left) and Nine Hole Peg test (right).

Box & Block (blocks/min) | Nine Hole Peg (pegs/sec)
Subject
Weekl Week3 Week1 Week3
Subjectl 29 49 0.25 0.31
Subject2 17 19 0.065 0.067
Subject3 12 34 0.10 0.12
Subject4 47 59 0.35 0.41

Table A.2: Clinical results for assessing the motor functionality of the impaired arm over 3 weeks (only
presented for the first and third week) [226]
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Figure A.2: The decrease in number of peaks for 4 subjects from week 1 to week 3 on X, Y, Z, modulus

(horizontal axis) of the accelerometer data [226].
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Figure A.3: The increase in jerk metric value for 4 subjects from week 1 to week 3 on X, Y, Z, modulus

(horizontal axis) of accelerometer data [226].
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