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An outpatient clinic serving two independent demand streams, one representing advance booking requests

and the other same-day requests, is considered. Advance requests book their appointments through an elec-

tronic booking system for a future day, and same-day requests are served on the day they arise. Taking an

integrated approach to demand and capacity planning, a policy formulation compatible with electronic book-

ing systems is proposed that incorporates major operational levers suggested in the literature. It combines

a static slot publication policy, which specifies the pattern under which slots are released to the booking

system, with an allocation policy that dynamically adjusts the daily workload of advance patients. The

optimal policies are found numerically by developing a novel queueing model that efficiently evaluates major

performance metrics. The application of the model with real data, obtained from one clinic with carve-out

delivery and another with advanced access, demonstrates substantial savings.
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1. Introduction

Outpatient medical facilities must typically serve both patients who require a same-day visit as

well as those who book an appointment in advance. This applies not only to clinics that operate a

“carve-out” mode of delivery, where a few slots in each day are reserved for patients with urgent

medical needs and the rest are available for advance booking, but also to clinics that have imple-

mented “advanced access”. The primary objective in advanced access is to offer every patient a

1



Izady: Demand and Capacity Planning in Outpatient Clinics
2 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

same-day appointment regardless of urgency (Murray and Berwick 2003). However certain patient

groups, such as commuters who often experience difficulty in making and attending same-day

appointments, tend to decline this offer in favour of advance booking (Pope et al. 2008). As such

with both delivery modes clinics must decide how much of their daily capacity should be allocated

to “advance booking” patients, and consequently how much be left open in anticipation of “same-

day” demand. Clinics may also decide to serve more pre-booked patients on particular days than

originally scheduled for those days in order to eliminate excessive appointment backlogs following

a temporary surge (decline) in demand (supply).

In addition to the capacity planning decisions mentioned above, clinics may exercise some con-

trol over the demand streams. In some clinics this is achieved through assigning each physician

a panel of patients, the size of which specifies the total demand for that physician. Appointment

scheduling window, i.e. the length of time in advance a patient can schedule an appointment with

a provider, is another operational lever clinics may deploy to regulate the demand for advance

appointments. In this paper, we develop an integrated approach that guides clinics in making

such capacity and demand planning decisions. We assume advance booking patients schedule their

appointments through an electronic booking system (EBS), and propose a novel policy formula-

tion that utilizes the existing functionalities of such systems. We find the optimal values of the

policies proposed numerically through developing a new queueing model that captures the major

complexities observed in outpatient environments.

A prime example of an EBS implemented on a large scale is that of the Choose and Book (CaB)

system used in the UK National Health Service. It enables routine patients referred to specialty

clinics to book their first outpatient appointment online. Under this system, the providers store the

information about their time slots, including timings, the clinicians providing them, and whether

they are publishable on CaB or not, in their computerized systems linked to the CaB. The free

and publishable time slots on each day are released to the CaB system a given number of days in

advance as specified by the appointment scheduling window (or the “polling range” as referred to
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in the CaB context) selected by the provider. These slots will then be available to routine patients

seeking appointments: once a routine referral is deemed necessary for a patient, first the referring

clinician jointly with the patient chooses where the patient must be referred to depending on

patient’s condition and preferences, and second the patient books the most convenient slot from a

menu of available slots displayed by the CaB for her chosen provider. The slots not released to the

CaB will be offered to urgent referrals and walk-in patients on the day they arise. There is a wide

range of other EBS’s used in primary and specialty clinics in different countries, e.g. ZorgDomein

for referral to specialty clinics in Netherlands (Dixon et al. 2010) and ZocDoc for primary care

practices in the US (Zocdoc 2015). The majority of these systems function on a similar basis to

the CaB.

When the EBS shows no available slot for the first choice provider of an advance booking patient,

the patient might switch to a different provider, or insist on being served by that particular provider.

The latter may be due to reasons such as geographical proximity or reputation of the provider.

Similar to Jiang et al. (2012), we call these two categories of advance booking patients “flexible” and

“dedicated”, respectively. Some EBS’s have built-in features enabling dedicated patients to enforce

an appointment with their chosen provider when the EBS shows no available slot. In the CaB, for

instance, this is provided through the “Defer to Provider” option. Alternatively, in some EBS’s

patients are advised to phone the clinic directly when they cannot find an appointment online.

Flexible patients on the other hand forgo the difficulties associated with securing an appointment

through these alternative routes and seek care elsewhere.

To enable the clinics to effectively manage the demand for and supply of appointments through

an EBS, we develop an integrated approach that combines a static slot publication policy with a

dynamic allocation policy. We define the slot publication policy as a two-dimensional policy where

the first dimension specifies the number of slots in each period of time that are made publishable

to the EBS by the clinic, and the second dimension determines the number of periods in advance

that such slots are released to the EBS. The slot publication policy is in fact a combination of two
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major operational levers investigated separately in the literature. The first dimension is similar

to the optimal urgent reservation level studied in Qu et al. (2007), Robinson and Chen (2010)

and Dobson et al. (2011) for capacity allocation, and the second dimension is the appointment

scheduling window proposed in Liu (2015) as a mechanism for demand management.

The slot publication policy, or its first dimension to be accurate, is a threshold policy as it

allocates a fixed number of slots to advance requests in each time period. However, studies on

allocation and advance scheduling suggest that a threshold policy may not be optimal. For example,

Truong (2015, p. 3) prove that with a specific cost structure, “the optimal policy does not schedule

the same number of regular [i.e. advance] patients for each day but dynamically increases this daily

regular workload as the total number of regular patients in the system increases.” Our discussions

with clinic managers suggest that this is consistent with what happens in practice; more advance

patients are seen in the clinic when there is a large appointment backlog. To reflect this, one could

make the first dimension of the slot publication policy dynamic, varying it by the numbers in the

backlog. But the resulting impact would appear only after the scheduling window which might

stretch up to several weeks. Therefore, we define a second policy called the dynamic allocation

policy. It specifies the additional number of pre-booked patients the clinic serves in each time

period, which varies depending on the size of the appointment backlog in the beginning of that

period.

The combination of slot publication and dynamic allocation policies gives clinics a framework

to plan their capacity and demand optimally depending on the optimality criteria they choose.

Here we define the optimal joint policy as the one that minimizes the average cost associated

with providing overtime slots whilst ensuring that advance patients’ access-to-care requirement

and provider’s service level requirement are met. The overtime cost is incurred when the number of

same-day requests on a day exceeds the number of slots available for them. The access requirement

we consider for advance booking requests is to be served on average in less than a pre-specified

amount of time. The service level requirement is to ensure that the average number of advance
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flexible patients forced to switch provider as a result of no slots being available online falls below

a given threshold. To find the optimal values for the two policies, we enumerate over a range

of possible values using a new queueing model for performance evaluation. As will be illustrated

through two real examples, the efficiency of the queueing model enables us to explore a wide range

of policies in a relatively short time. Drawing on empirical results obtained from our experiments,

we also propose a search process that reduces the number of policy combinations that must be

evaluated.

Our planning approach is integrated as (i) it considers capacity allocation and demand manage-

ment decisions in a single model, and (ii) it combines a static publication policy, which is essential

for compatibility with EBS’s, with a dynamic allocation policy that could substantially improve

the efficiency. Our approach captures the intrinsic complexities observed in many outpatient envi-

ronments including: arbitrary distributions for same-day and advance booking requests; patient

no-show and subsequent rescheduling, and their potential dependence on appointment delays; and

clinic slot cancellations caused by provider vacations, illnesses, or absences to attend professional

meetings. A restrictive aspect of our model is that a first-come first-serve (FCFS) discipline is

assumed in the analysis. However we also express a milder condition under which our analysis

remains valid even without FCFS.

We also believe that our optimization model is more relevant to practical applications than the

vast majority of models developed in the literature. This is because in these models cost values

are typically defined for every day an advance patient is made to wait, e.g. Gerchak et al. (1996)

and Truong (2015), and/or for every flexible patient who is forced to switch provider, e.g. Patrick

et al. (2008) and Jiang et al. (2012). Although this makes the analysis simpler by consolidating all

performance metrics in a single cost function, validating and implementing the resulting models

would be difficult as it is incredibly hard to find realistic estimates for the two cost elements. We

take a different approach by setting maximum thresholds for the average access time, i.e. the time

between a patient request for an appointment and the actual appointment, of advance booking
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patients as well as the average number of flexible patients turned away. These thresholds may

reflect similar performance targets imposed at a local or national level, or may simply represent

the clinic desired performance objectives.

We apply our model to two sets of data, first a dataset obtained from a specialty clinic in the

UK, and second the data for a magnetic resonance imaging (MRI) clinic in the US as reported

in Green and Savin (2008). Our experiments show that deployment of simple allocation policies,

that require only one or two additional consultations per week, could bring about substantial

savings as opposed to serving exactly the same number of advance patients as scheduled. They

also indicate that sequential optimization of the slot publication and dynamic allocation policies

may lead to sub-optimal solutions, justifying our integrated approach. We further establish that,

in the absence of dynamic allocation policies, the average number of flexible patients diverted with

the optimal slot publication policy would reach its maximum threshold, while the average access

time of advance patients would typically fall substantially below the corresponding maximum.

When dynamic allocation policies are jointly considered with slot publication policies, however,

both metrics reach their threshold values under optimality.

2. Literature Review

Our work is related to the appointment scheduling literature, see Cayirli and Veral (2003) and

Gupta and Denton (2008) for comprehensive reviews. This literature can be divided to “intra-day”

and “multi-day” scheduling. In intra-day scheduling, the focus is on a single day and intra-day

measures such as patients’ office waits and providers’ idle/over-time. The majority of papers in

this area seek to determine the optimal sequence of serving patients so that a combination of

patients’ office wait and providers’ idle/over-time is minimized. Recent examples include Hassin

and Mendel (2008), Klassen and Yoogalingam (2009), Koeleman and Koole (2012) and Cayirli et al.

(2012). Some others investigate the optimal proportion of a day’s capacity that must be reserved

for same-day requests in the context of advanced-access, see Qu et al. (2007) and Robinson and

Chen (2010).
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Multi-day scheduling is on the other hand concerned with access time. The focus of our research

is also on multi-day scheduling. Truong (2015) divide this area into two main paradigms, “allocation

scheduling” and “advance scheduling”. In allocation scheduling, “a wait list is maintained and

patients are notified on the day of their appointments”, whereas in advance scheduling, “patients

are given appointments in the future at the time of request”(Truong 2015, p. 1). See Gerchak et al.

(1996), Ayvaz and Huh (2010), and Min and Yih (2014) for allocation scheduling, and Patrick

et al. (2008) and Gocgun and Ghate (2012) for advance scheduling.

In a fundamental study, Truong (2015) show that for a broad class of advance scheduling problems

with same-day and advance booking requests, the optimal scheduling policy can be exactly and

efficiently constructed from a solution to an associated simple-to-calculate allocation scheduling

problem. However the policy formulation proposed in their work as well as in other studies on

advance and allocation scheduling does not fit the requirement of EBS’s. This is because in their

formulation the demand for advance booking in the current time period must be fully known before

a decision is made as to when each of the arriving requests must be met in the future, while with

the EBS a menu of slots is presented to patients, from which they choose one slot as they arrive

randomly over time. The studies of Liu et al. (2010) and Feldman et al. (2014) are more relevant in

this sense, as they seek to find the optimal set of days that must be offered to patients in each time

period. Their implementations are not straight forward however as the corresponding heuristic

algorithms must be coded within the EBS. There are other studies on multi-day scheduling that

do not fall within advance or allocation scheduling paradigms. In particular, Dobson et al. (2011)

consider an outpatient setting where a fixed number of slots in each day must be reserved for urgent

patients. They develop numerical models to find the optimal urgent reservation level as a function

of cost parameters and the order in which routine and urgent patients call for appointments.

The impact of appointment scheduling window has not explicitly been considered in any of the

papers cited above. However, using stylized M/M/1 queueing models, Liu (2015) show that optimal

choice of the appointment window can lead to substantial efficiency gains, especially when other
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demand management mechanisms, such as setting the patient panel size, are not available. Overall,

on the one hand, we introduce the slot publication policy to specify the pattern under which slots

must be released to the EBS in mid to long-term periods. It captures the joint impact of the urgent

reservation level and appointment scheduling window, and is also similar to the two dimensional

policy proposed in Jiang et al. (2012). On the other hand, motivated by advance and allocation

scheduling literature, we introduce the dynamic allocation policy to improve the efficiency. To the

best of our knowledge, this is the first paper that proposes such a policy formulation for integrated

demand and capacity management in outpatient clinics.

We find the (near-)optimal values of slot publication and dynamic allocation polices through

enumeration. This is achieved by developing a queueing model for appointment backlog and propos-

ing an efficient numerical method for evaluating its performance metrics. A number of queueing

models are developed in the literature for appointment queues. Green and Savin (2008) propose

M/D/1 and M/M/1 queues with backlog-dependent no-show probability to study panel size deci-

sions. Creemers and Lambrecht (2010) and Kortbeek et al. (2014) develop two-time scale queueing

models, representing both multi-day and intra-day performance. Izady (2015) propose a discrete-

time bulk service model with cancellations and no-shows for appointment capacity planning. Their

model is more flexible and fitting to the reality of outpatient clinics than the continuous-time mod-

els developed in Green and Savin (2008) and Creemers and Lambrecht (2010). Our queueing model

is in fact a state-dependent generalization of the model proposed in Izady (2015). We make this

model state-dependent so that both service capacity and arrival distribution can vary by the size

of appointment backlog. This allows us to model the joint impact of slot publication and dynamic

allocation policies. Jiang et al. (2012) also propose an M/D/1 queue with state-dependent arrival

process but they present performance metrics only for the extreme cases where all patients are

either flexible or dedicated. Dynamic allocation policies are not also considered in their work.

Our work differs from that of Izady (2015) in the following ways. First, we include both same-

day and advance booking requests while Izady (2015) consider only the latter group. Second, the
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focus of Izady (2015) is only on the appointment capacity, whereas we consider the impact of

scheduling window and a new dynamic allocation policy as well. Third, although both papers

follow a probability generating function approach to evaluate the performance metrics, ours is more

challenging due to the complexities caused by the state-dependence of our queueing model. Finally,

the models in Izady (2015) are limited to performance evaluation, while we also propose a heuristic

search process for finding optimal policies.

3. Problem Formulation

We assume the clinic provides services for two independent demand streams, one representing

same-day requests and the other advance booking requests. Note that in the carve-out mode the

urgency of care determines the group to which a patient belongs, while in the advanced access the

preference of a patient is the major identifier. We divide the time axis into equally spaced intervals

(periods), numbered 1,2,3, . . . , and assume a nominal capacity of r regular slots is available in each

interval. Same-day requests (or same-period requests, to be precise) must be met within their arrival

periods, while advance booking requests book the first available slot in the intervals following their

arrival intervals through the EBS. We define the appointment backlog (or appointment queue) in

the beginning of a time interval before the service of that interval begins as the number of advance

booking patients who have already scheduled an appointment but not yet served in the clinic. Note

that a time period in our representation does not necessarily correspond to a working day. In fact,

we observe that demand and supply patterns in some outpatient clinics vary substantially during

a week but are relatively stable across the weeks, making a weekly time unit more appropriate for

capacity and demand planning purposes.

Let (n,p) denote the slot publication policy of the clinic, where 0<n≤ r determines the number

of slots pre-allocated to advance booking patients in each interval, and p is the number of time

units in advance that such slots are released to the EBS, i.e. the polling range. (We use the terms

scheduling window and polling range interchangeably throughout.) Then f = pn is the total number

of slots available on the EBS for advance booking patients. If all f slots of the clinic are filled, an
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advance booking patient is assumed to become a dedicated patient with probability θ and a flexible

patient with probability 1− θ, independently of everything else in the system. Dedicated patients

will be offered appointments by the clinic, in a time period beyond the scheduling window, and

flexible patients switch to a different provider. We consider a static slot publication policy over the

planning horizon.

We assume in each time period, apart from serving patients scheduled for that period, the clinic

may serve some of the patients scheduled for future periods. The number of additional advance

patients served in a time period is specified by the dynamic allocation policy e(i), where i is the

size of backlog in the beginning of that period before the service starts, and e(i) = 0 for i= 0, . . . , n.

Motivated by Truong (2015), we assume that e(i) increases in i. We further assume that e(i) ≤ r−n

for all i, and e(i) ≤ i− n for i ≥ n, i.e. the number of additional visits is restricted by the total

number of regular slots and the number of patients scheduled to be served in future periods,

respectively. e(i) additional patients are selected on a FCFS basis, and the schedule is updated at

the end of each time period to fill up the slots released by these patients in a way that FCFS is

preserved. This entails expediting some patients, to which we assume patients always consent.

We assume that in the beginning of each time interval before the service of that interval begins, a

random number of slots in that interval is cancelled by the clinic as a result of providers’ vacations,

delays and absences. This results in some appointments being cancelled and subsequently resched-

uled if the slots have already been booked. Furthermore, some advance patients may not show up

for their appointments at all, or cancel their appointments too late to allow for new patients to be

substituted. We refer to both cases as patient no-show, and in line with some empirical evidence

reported in the literature, e.g. Gallucci et al. (2005), Green and Savin (2008) and Liu et al. (2010),

assume that the rate of no-shows may increase with increasing appointment backlogs. We assume

that at the end of each time interval, no-shows of that interval who request a new appointment

as well as patients whose appointments are cancelled by the clinic in that interval are given new

appointments at the end of the schedule.
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All same-day patients turn up for their consultations. They are seen in the slots that remain

unfilled and are not cancelled by the clinic, plus overtime slots if needed. Note that slots will remain

unfilled if they are not booked by patients in advance and also not allocated to advance patients

as a result of extra visits enforced by the dynamic allocation policy. We assume all unfilled slots

will be used when same-day demand exists. This may not necessarily happen in reality due to

late arrival of same-day requests. In addition, although it might be possible to schedule patients

carefully during a time interval so that some same-day patients are served in the slots left unused

by no-shows, see e.g. Zacharias and Pinedo (2014), we suppress that level of detail and assume all

no-show slots will be wasted.

To summarize, the order of activities taking place in period t with i patients in the backlog at

the start of the period is as follows: i) a maximum of n free slots on period t+ p is released to the

EBS, (ii) the slots cancelled by the clinic are identified, (iii) patients scheduled to be seen on period

t plus e(i) additional patients (selected on a FCFS order), who turn up for their appointments and

their slots have not been cancelled, are served in the clinic, (iv) new patients take the slots available

on the EBS (and beyond that if they are dedicated) on a FCFS order, (v) same-day patients are

seen in the slots left unused, and overtime slots if necessary, (vi) The schedule is updated to fill

up the slots released by additional patients served in period t, preserving the FCFS order, (vii)

appointments are booked for re-shows and cancellations at the end of the schedule, (viii) the EBS

is updated according to the schedule.

As an illustrative example, consider a clinic with one day as the time unit, r= 4 regular slots per

day, and the slot publication policy (n = 2, p = 4). Consider the dynamic allocation policy given

below

e(i) =


0, i≤ 5,

1, i > 5.

(1)

Figures 1 and 2 show the evolution of the appointment schedule for this clinic under two different

assumptions. In Figure 1, we assume a FCFS discipline is followed as explained above. In Figure
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2, we relax FCFS but with a condition that all the slots in the current day must be filled by the

time the service of that day begins if any of the slots in the following days are taken.

In the diagrams of Figures 1 and 2, each row shows the status of the schedule in the current as

well as following days in the beginning of the days specified by the vertical axis before the service

begins. Patients are represented by numbers and slots by circles. Dotted circles represent the slots

that are given to patients beyond the polling range. We assume there are no slot cancellations

except for day four when two slots are cancelled. Patient 7 in Figure 1 and patient 9 in Figure 2

are assumed to miss their appointments and reschedule new ones. Below we provide a day-by-day

explanation of the events in the diagram in Figure 1.

• At the beginning of day one (t= 1), two free slots on day five are released to the EBS. With

five patients in the appointment queue, based on Equation (1), only two patients scheduled for this

day are seen in the clinic. Three new advance patients arriving during the day, i.e. patients 6, 7,

and 8, take the slots available on days three and four. There will be two slots left open to be used

by same-day patients.

• At the beginning of day two (t= 2), two free slots on day six are released to the EBS. With six

patients in the appointment queue, one additional patient must be seen in the clinic. Thus, apart

from patients 3 and 4, the clinic serves patient 5 during the day. Note that EBS’s are typically

updated only once a day, often at midnight, so the slot freed up by patient 5 does not show up

on the system immediately. As a result, two new advance patients 9 and 10 take the two slots

available on day five. At the end of the day, the schedule (and the EBS) is updated by moving the

appointments of patients 7 and 9 to days three and four, respectively, preserving the FCFS. There

will only be one slot left open to be used by same-day patients.

• At the beginning of day three (t= 3), two free slots on day seven are released to the EBS. With

five patients in the appointment queue, only two patients scheduled for this day must be seen in

the clinic. Patient 6 is seen during the day but patient 7 does not turn up for her appointment. Five

out of the six new advance patients, i.e. patients 11, . . . ,15, take the slots available on days five,
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six, and seven. Patient 16 does not find any slot available but as she turns out to be a dedicated

patient, she is given an appointment on day eight. At the end of the day a new appointment is

given to patient 7 on day eight. There will be two slots left open to be used by same-day patients.

• At the beginning of day four (t= 4), there are no free slots available on day eight to be released

to the EBS. With ten patients in the appointment queue, one additional patient must be seen in

the clinic on this day. However, two of the slots are cancelled by the clinic, and so only patient 8 is

seen during the day and Patient 9’s appointment gets cancelled. The new advance requests during

the day are flexible (as we assume) and are turned away. At the end of the day a new appointment

is given to patient 9 on day 9. There will only be one slot left open to be used by same-day patients.

Figure 1 A simple illustration of evolution of the appointment schedule under FCFS policy.
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Following a FCFS policy as above would lead to a schedule with no gaps which is ideal for

queueing analysis. However it is not realistic as patients may not take the first available slot. Its

implementation is also difficult as it would require many appointments to be rescheduled when

additional visits are imposed by the allocation policy. In Figure 2, we illustrate the same system

as the one in Figure 1 but with FCFS relaxed. Now patients may take any of the slots that are
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available in the days after their arrival days. There is also no need to change the entire schedule

when additional patients are seen. For instance, on day two patient 5’s appointment is brought

forward by two days, assuming she is the first person in the queue who is happy to be seen earlier,

but the appointments of the other patients, i.e. patients 7, 3 and 4, remain as before. Counting

the numbered circles in Figures 1 and 2 shows that the sizes of appointment backlogs in the two

systems are exactly the same, i.e. 5, 6, 5, 10 and 9 at the start of days 1, 2, 3, 4 and 5, respectively.

This is because, although in Figure 2 there are gaps in the schedule on some days, the slots of each

day are always filled before the service of that day begins, and so the length of queue changes by

as much as it would under the FCFS policy. Similarly, clinics might have different strategies for

rescheduling appointments for re-shows and cancellations. This would not cause any difficulty in

queue length calculations as long as, when there are gaps in the schedule, the slots of each day are

filled before the service of that day begins. This naturally happens in many days in clinics, and so

our analysis would remain valid even if FCFS is not strictly followed.

Figure 2 A simple illustration of evolution of the appointment schedule without FCFS policy.
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4. Dynamics of Appointment Queue

In this section, we view the dynamics of appointment backlog from a mathematical perspective

in order to develop a model for performance evaluation of a clinic with given slot publication and

dynamic allocation policies. For this purpose, we develop a state-dependent discrete bulk service

queue with slot cancellation and customer no-show. The focus here is only on advance booking

patients, and the objective is to obtain the steady-state distribution for the size of appointment

backlog. Our queueing model is state-dependent in both service capacity and arrival process. The

dependence of service capacity to the size of backlog captures the impact of the dynamic allocation

policy. The state-dependence of the arrival process represents the balking process in the queue,

where flexible patients who find all the slots within a given period of time specified by the scheduling

window occupied, leave the system. Throughout for a non-negative discrete random variable Y , we

denote its mean by µy, its variance by σ2
y, and its associated probabilities by yj , P(Y = j). We

use the notation X(i) (x(i)) to show the dependence of a random variable X (parameter x) on the

size of backlog i.

Let A(i) denote the number of “accepted” requests, i.e. requests not turned away, for advance

appointments during a time period when there are i patients in the queue in the beginning of that

period before the service starts. This includes all dedicated requests as well as all flexible requests

who find an appointment slot available. For now we assume this distribution is fully known but later

in Section 6 we specify how it can be characterized based on the distribution for the overall number

of advance requests, polling range and parameter θ. The requests may arrive at any point of time

during an interval but they join the appointment queue at the end of that interval in order of their

arrival. This corresponds to the formulation given in Section 3, where advance booking patients

were assumed to take the first available slot in the intervals following their arrival intervals. A new

arrival who finds i customers in the queue upon arrival will have a no-show probability 0≤ γ(i) < 1,

and subsequently each no-show will require a new appointment with a fixed probability 0≤ ζ ≤ 1,

resulting in a re-show probability of δ(i) , ζγ(i). We assume γ(i) and thus δ(i) increases in i.
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The number of slots cancelled in an interval is represented by a random variable C, which is

assumed to be independent from everything else in the model, and independent and identically

distributed (i.i.d) across intervals. For simplicity, let C have a finite support {0,1, . . . , ξ} with ξ ≤ n.

The nominal service capacity allocated to advance patients, which we refer to as “advance service

capacity”, is identified by the function n(i) , n+ e(i). When there are i customers in the queue at

the beginning of a time interval, a batch of size i or n(i)−C, whichever is smaller, would therefore

be served during that interval. We assume no-shows remain in the queue and are served with other

patients in the interval where they would have been served normally, and rejoin the backlog with

probability ζ at the end of that interval.

Let Xt denote the size of appointment backlog in the beginning of a time interval t. The following

recursive equation represent the evolution of appointment backlog,

Xt+1 =
(
Xt− (n(Xt)−C)

)+
+D(Xt) +A(Xt), t= 1,2, . . . , (2)

where (x)+ , max{x,0} and D(Xt) denotes the number of re-shows at the end of period t. As

explained above, we assume that no-show probabilities of arriving customers depend on the number

of customers they see upon arrival in the queue. However, as we do not keep track of the size of

appointment backlog at arrival epochs, we use the size of backlog at departure epochs, i.e. the

end of time intervals, as a proxy as suggested in Green and Savin (2008) and Izady (2015). Note

that the number of customers left behind by the first and last departing patients in a batch at

the end of interval t will be (Xt − 1)+ and
(
Xt− (n(Xt)−C)

)+
, respectively. With an increasing

re-show function δ(i), we take a conservative approach and assume re-show probabilities of all

customers in a departing batch are the same as the first customer in the batch. This implies that

the conditional random variable D(Xt)|Xt = i,C = k has a binomial distribution with parameters(
min{i, n(i)− k}, α(i)

)
for i= 0,1, . . . and k= 0,1, . . . , ξ where α(i), δ(i−1)

+
.

There is no closed from expression for the stationary queue length probabilities xi , P(X =

i) = limt→∞ P(Xt = i) of the system identified by Equation (2). However, we can obtain these

probabilities numerically as explained below. All the proofs are given in the Appendix.
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5. Numerical Analysis of Appointment Queue

Let x, (x0, x1, . . . , xm) be the stationary distribution for the discrete-time Markov chain charac-

terized by Equation (2), where m is the maximum number of customers allowed in the system.

We assume m is large enough so that the probability of having m customers in the system is

sufficiently small. One can find the the stationary queue length probabilities by solving balance

equations xφ= x, with φ= [φij] the transition probability matrix specified below.

Proposition 1. The transition probabilities φij , P(Xt+1 = j|Xt = i) of the Markov chain given

in (2) are

φij = P(C ≤ n(i)− i− 1)α(i)jβ(i)i−j
j∑

l=max{j−i,0}

(
i

j− l

)(
β(i)

α(i)

)l
a
(i)
l

+α(i)j−i+n
(i)

β(i)i−j
ξ∑

k=n(i)−i

j−i−k+n(i)∑
l=max{j−i,0}

(
n(i)− k

j− i− k+n(i)− l

)(
β(i)

α(i)

)l
α(i)−ka

(i)
l ck, (3)

for j ≥ i−n(i), and φij = 0 otherwise, where β(i), 1−α(i).

Once the steady state probabilities are found, one can easily obtain the desired performance

metrics. Since our ultimate objective is to incorporate the queueing model into a numerical opti-

mization model where performance metrics are calculated for a wide range of input parameters, we

need to use an efficient method for calculating steady-state probabilities. The computation time

for solving balance equations however grows with system size m, and thus an alternative approach

based on probability generating functions (PGF’s) as we explain below might be more efficient for

systems with large m.

For a discrete random variable Y , define its PGF as Y (z) ,
∑∞

j=0 yjz
j, which is known to

be analytic for |z| < 1 and continuous for |z| ≤ 1. To find the PGF for X, we make three new

assumptions; A(i) the sequences {A(i)}∞i=0, {n(i)}∞i=0, and {α(i)}∞i=0 are eventually constant, i.e. there

exists positive integers hA, hn, and hα such that A(i) =A(∗) for i≥ hA, n(i) = n(∗) for i≥ hn, and

α(i) = α(∗) for i≥ hα; A(ii) a
(∗)
0 , P(A(∗) = 0) and c0 , P(C = 0) are positive; and A(iii) n(∗) ≤ hn.

A(i) naturally happens in practice. A(ii) may not hold in some situations but it can be fixed by
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assigning infinitesimally small probabilities to zero arrivals and zero cancellations and adjusting the

remaining probabilities. As we shall see in Section 8, the restriction imposed by A(iii) is minimal

in many practical situations.

Under A(i), A(ii), and A(iii), we must have µA(∗)/
(
1−α(∗)

)
< n(∗) − µC to achieve stability.

The left side of this inequality gives the limiting value of the effective arrival rate, i.e. the average

number of new accepted requests plus re-shows when the queue size i exceeds max{hA, hn, hα}, and

the right hand side gives the limiting value of average available capacity. The following proposition

provides the PGF of the stationary queue length X.

Proposition 2. Given µA(∗)/
(
1−α(∗)

)
< n(∗) − µC, A(i), A(ii), and A(iii), the PGF of the

stationary queue length X is given by

X(z) =

[
zn

(∗)
hn−1∑
i=0

A(i)(z)α(i, z)ixiP(C ≤ n(i)− i− 1)

+zn
(∗)

h−1∑
i=0

A(i)(z)zixi

ξ∑
k=n(i)−i

(
z

α(i, z)

)k−n(i)
ck−A(∗)(z)G(z)

h−1∑
i=0

zixi


/
(
zn

(∗)
−A(∗)(z)G(z)

)
, (4)

where h,max{hA, hn, hα}, α(i, z), β(i) +α(i)z, and

G(z),
(
1−α(∗) +α(∗)z

)n(∗)
C

(
z

1−α(∗) +α(∗)z

)
.

To obtain X(z) for special cases where either A(i) =A, α(i) = α or n(i) = n for all i, corresponding

to situations where either accepted requests distribution, re-show probabilities, or advance service

capacity is not state-dependent, we set (A(∗) =A, hA = 0), (α(∗) = α, hα = 0), or (n(∗) = n,hn = n),

respectively in the equation above.

The PGF of the queue length distribution given above depends on h unknown probabilities,

x0, x1, . . . , xh−1. The standard method for finding the unknown probabilities in a PGF is to solve

a series of simultaneous equations obtained by substituting the zeros of the PGF denominator on

or inside the unit circle in the numerator, see e.g. Kim et al. (2011). This is because the zeros of
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the denominator of a PGF on or inside the unit circle must be the zeros of the numerator too as

otherwise the PGF would not be analytic. The Lemma below gives the number of complex zeros

of the denominator of X(z) on or inside the unit circle.

Lemma 1. Given µA(∗)/
(
1−α(∗)

)
<n(∗)−µC and finite µA(∗), the equation

zn
(∗)
−A(∗)(z)G(z) = 0

has n∗ complex solutions on or within the unit circle.

Hence, by the lemma above, the number of equations provided by the zeros of the denominator

is n∗−1 (z = 1 is one of the zeros which leads to a trivial equation), which combined with X(1) = 1

would lead to n(∗) equations. By A(iii), however, n(∗) ≤ hn ≤ h, so the number of equations would

not be enough for finding the unknown probabilities. This situation has rarely been encountered

in the literature, the only example we are aware of being that of Powell and Humblet (1986).

To resolve this, we use the first h− n(∗) stochastic balance equations as the additional relations

required. Combining all these equations leads to the following proposition.

Proposition 3. The unknown probabilities x0, x1, . . . , xh−1 are found by solving the equation

χρ = y for χ , (x0, x1, . . . , xh−1), where y , ((1− α(∗))(n(∗) − µC)− µA(∗) ,0, . . . ,0), and ρ , [ρij]

with

ρ(i,0) =



n(∗)(1−α(∗)) +β(i)

P(C ≤ n(i)− i− 1)(n(i)− i)−n(i)

+

ξ∑
k=n(i)−i

kck

−µC(1−α(∗)) +µA(i) −µA(∗), for i= 0,1, . . . , hn− 1

n(∗)(α(i)−α(∗)) +µC(β(i) +α(∗)− 1) +µA(i) −µA(∗), for i= hn, hn + 1, . . . , h− 1,

(5)

ρ(i,j) =



zn
(∗)

j A(i)(zj)

α(i, zj)
iP(C ≤ n(i)− i− 1)+

ξ∑
k=n(i)−i

zk+i−n
(i)

j α(i, zj)
n(i)−kck

− zijA(∗)(zj)G(zj), for i= 0,1, . . . , hn− 1

zij

(
A(i)(zj)α(i, zj)

n(∗)C

(
zj

α(i, zj)

)
−A(∗)(zj)G(zj)

)
for i= hn, hn + 1, . . . , h− 1,

(6)
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for j = 1,2, . . . , n(∗)− 1, and

ρ(i,j) =


φ(i,j−n(∗))− 1 for i= j−n(∗)

φ(i,j−n(∗)) otherwise,

(7)

for j = n(∗), . . . , h− 1. z1, . . . , zn(∗)−1 are the complex roots of the denominator of X(z) excluding

z = 1.

The complex roots z1, . . . , zn(∗)−1 required for Equation 6 can be obtained by a software packages

such as Maple. The fixed point iteration algorithm can also be used as in Kortbeek et al. (2014).

The probabilities x0, x1, . . . , xh−1 fully specify the PGF X(z), from which we can obtain most of

the important performance metrics. One can also obtain the rest of the probabilities xi, i≥ h, if

needs be, by numerically inverting the PGF X(z) (see Abate and Whitt 1992a,b on discrete (fast)

Fourier transform method and Kim et al. 2011 on Taylor series expansion method).

The number of equations needed to be solved for the PGF approach is h+ 1, one equation for

finding the complex roots of the denominator of X(z) plus the simultaneous equations given in

Proposition 3. For the stochastic balance equations approach on the other hand m equations must

be solved. The choice between these two approaches would therefore depend on the time required

for finding the complex roots of the denominator in the PGF approach as well as the value of h.

The complex roots of the denominator can be found quickly if A(∗)(z) is a polynomial function,

i.e. when the random variable A(∗) has a finite support. This naturally happens when an empirical

distribution is used for representing arrivals. The computational speed would therefore depend on

the value of h and m. In systems with state-dependent no-show probabilities, the value of hα and

thus h is often large so using the PGF approach may not be efficient. In contrast, in systems with

constant no-show probability the value of h is typically substantially smaller than m, making the

PGF approach computationally more efficient.

6. Accepted Requests Distribution

In this section, we explain how we can specify the probability mass function (p.m.f) for the number

of accepted requests based on the overall number of advance requests. Assuming that the total
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number of advance booking requests in a time interval is given by the random variable A with a

known p.m.f, we have

A(i) =


A, A≤

(
f − (i−n)+

)+
,

(
f − (i−n)+

)+
+

A−(f−(i−n)+)
+∑

j=1

Ij, otherwise,

(8)

where Ij’s are i.i.d random variables with Bernoulli distribution with success probability θ. In

the equation above, when the total number of advance request in a time interval, A, is smaller

than or equal to the total number of slots available in the following intervals (recall that advance

requests cannot book slots in their arrival intervals), (f − (i−n)+)
+

, all appointment requests

will be satisfied. When the total number of slots available is not enough, however, only the first

(f − (i−n)+)
+

requests plus the remaining requests that are dedicated, given by
∑A−(f−(i−n)+)

+

j=1 Ij,

are satisfied. Note that in the intervals where additional consultations take place due to the dynamic

allocation policy, the slots freed up as a result do not show up on the EBS until the end of the

interval when the entire schedule is updated, as explained in Section 3. This is why we have used

n instead of n(i) in the equation above. If this is not the case, Equation (8) must be modified

accordingly but this would make the analysis very complex. The proposition below gives the p.m.f.

of A(i) for each i.

Proposition 4. The pmf for A(i) is given by

a
(i)
k , P(A(i) = k)

=


ak1ψ(i)(k) + θk−ψ

(i)
∞∑

l=max{k,ψ(i)+1}

(
l−ψ(i)

k−ψ(i)

)
(1− θ)l−kal, i= 0,1, . . . , f +n− 1

θk
∞∑
l=k

(
l

k

)
(1− θ)l−kal, otherwise,

(9)

where 1y(x) is an indicator function equal to 1 for x≤ y, and 0 otherwise, and ψ(i) , (f−(i−n)+)+.

The above characterizes A(i) as a state-dependent variable with distinct distributions for each

of the values of i= 0,1, . . . , f +n− 1, and a single distribution for all values of i≥ f +n. As such,

hA = f + n, and A(∗) has the p.m.f specified by the bottom-line equation given in (9). It is easily

verified that the condition a
(∗)
0 > 0 is met as long as θ < 1, or θ= 1 and a0 > 0.
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7. Optimization Model

In the optimization model, we seek to identify the combination of slot publication and dynamic

allocation policies that minimize the average cost of providing overtime slots whilst ensuring that

the mean access time of advance booking patients and the mean number of flexible patients turned

away in a time interval fall below maximum thresholds, q and b, respectively. Let S represent

the random number of same-day requests in a time interval. We assume S has a finite support

{0,1, . . . , η}, and is i.i.d. across time intervals. The clinic must provide overtime slots at a rate of

o per slot when the number of same-day requests in a time period exceeds the number of slots

available for them. The optimization model is

min
(n,p,e(i))

oE
[(

min{X,n(X)−C}+S− r+C
)+]

s.t. µW ≤ q

µA−µA(X) ≤ b,

(10)

where W is the access time of advance booking patients and µA(X) ,E(A,X)

[
A(X)

]
. The expressions

min{X,n(X)−C}+S and r−C in the objective function calculate the total demand for and supply

of slots in one time period, respectively. We refer to the first and second constraints above as the

“access” and “service level” constraints, respectively.

Using the queueing model developed in Section 4 and its numerical solution in Section 5, we can

find an approximate solution to the optimization problem above via numerical evaluation over a

range of sensible values for n,p, and e(i). The following proposition shows how each term in the

optimization model can be evaluated using the results of Section 5.

Proposition 5. For the optimization model given in (10),

E
[(

min{X,n(X)−C}+S− r+C
)+]

=

hn−1∑
i=0

ξ∑
k=0

η∑
j=0

(
min{i, n(i)− k}+ j− r+ k

)+
xicksj

+ (1−P(X <hn))

η∑
j=0

(
n(∗) + j− r

)+
sj, (11)
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µA(X) = (1− θ)
f+n−1∑
i=0

ψ(i) +

ψ(i)∑
k=0

ak(k−ψ(i))

xi + θµA, (12)

and

µW ,E[W ] = µX/

(
µA(X) +

hn−1∑
i=0

ξ∑
k=0

α(i)min{i, n(i)− k}xick + (n(∗)−µc)(
h−1∑
i=hn

α(i)xi +α(∗)(1−P(X ≤ h− 1))

))
− 1. (13)

As illustrated in the equations above, the only queue length probabilities needed for evaluating

the objective function and constraints in (10) are x0, x1, . . . , xh−1. With a PGF approach, these

probabilities are obtained through the equations given in Proposition 3. µX is also obtained by

evaluating the first derivative of PGFX(z) at z = 1. With the stochastic balance equation approach,

the entire range of probabilities are obtained, and so more complicated optimality criteria, e.g.

defined based on tail probabilities rather than averages, can also be used.

8. Empirical Results

In this section, we apply the models developed in the paper to two different outpatient clinics, one

an ophthalmology clinic in the UK, and the other an MRI clinic in the US as reported in study of

Green and Savin (2008). The first case represents an example of a carve-out mode of delivery with

a constant no-show probability and empirical distributions for urgent referrals, routine referrals,

and clinic slot cancellations. The second case represents an example of advanced access delivery

with delay-dependent no-show behaviour, no clinic slot cancellations, and Poisson distributions for

advance and same-day requests.

8.1. A Specialty Clinic in the UK

We focus on the data obtained from a glaucoma service provided in this clinic over a one year

period starting from July 2012. Using a weekly time unit, we infer empirical distributions for

numbers of new routine and urgent patients referred to this service as well the slots cancelled by

the clinic. As summarised in Table 1, all three distributions are over-dispersed. We did not observe

a strong delay-dependent behaviour for no-show rate so a constant no-show probability γ = 0.0627



Izady: Demand and Capacity Planning in Outpatient Clinics
24 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

and re-scheduling probability ζ = 1 obtained from the data is assumed in our analysis. Based on

discussions with clinic consultants, we set θ= 0.90, representing a highly dedicated demand stream

with minimum substitute services available in the area. The total number of slots available for the

glaucoma service is r = 18 slots per week. We set o= £180 (calculated as 1.8 times of the cost of

providing a regular slot estimated at £100 by the clinic).

Table 1 Summary statistics for weekly
referrals and slot cancellations.

Variable Mean Variance

Routine Referrals 13.942 48.683
Urgent Referrals 3.326 4.724
Slot Cancellations 1.098 3.050

In our first experiment, we assume e(i) = 0 for all i so the number of advance patients seen every

week is the same as the number scheduled (unless cancellations or no-shows occur). To find the

optimal slot publication policy, we numerically evaluate the objective function and other measures

required for the optimization model in (10) for all combinations of n= 15,16,17,18 (we must have

n≥ 15 to ensure stability) and f = 15,20,25, . . . ,150. Note that instead of working directly with

p, we use the total number of slots available to advance patients, f , in our experiments to have

a fair comparison between different slot publication policies. Figure 3 illustrates the three major

performance metrics we need for finding the optimal policies in terms of n and f . Panel (a) in

this figure suggests that the average overtime cost is increasing in both n and f . The impact of

n is intuitive but for f it is because with larger values of f the system becomes more congested.

This reduces the average number of slots released to the EBS that remain unfilled, thus increasing

the average number of required overtime slots for same-day requests. Panel (b) of Figure 3 shows

that mean access time decreases (increases) with n (f), and panel (c) illustrates that the average

number of patients turned away decreases with both n and f as expected.

In Table 2, the optimal policies and corresponding measures are displayed for all combinations

of threshold values q = 1,2, . . . ,8 weeks and b= 0.2,0.4,0.6,0.8 patients per week for the range of

values considered for n and f . This table suggests that the optimal n is decreasing in both q and
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Figure 3 The average overtime cost (a), access time (in weeks) (b) and weekly number of patients turned away

(c) as a function of n and f for the first experiment in Section 8.1.
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Table 2 Optimal slot publication policies for the first experiment in Section 8.1.

q b n f Mean Cost µW Mean Diverted q b n f Mean Cost µW Mean Diverted
1 0.2 18 35 425 0.62 0.15 1 0.4 17 30 341 0.93 0.36
2 0.2 17 50 355 1.26 0.19 2 0.4 17 30 341 0.93 0.36
3 0.2 17 50 355 1.26 0.19 3 0.4 17 30 341 0.93 0.36
4 0.2 17 50 355 1.26 0.19 4 0.4 17 30 341 0.93 0.36
5 0.2 17 50 355 1.26 0.19 5 0.4 16 100 274 4.74 0.40
6 0.2 17 50 355 1.26 0.19 6 0.4 16 100 274 4.74 0.40
7 0.2 17 50 355 1.26 0.19 7 0.4 16 100 274 4.74 0.40
8 0.2 17 50 355 1.26 0.19 8 0.4 16 100 274 4.74 0.40
q b n f Mean Cost µW Mean Diverted q b n f Mean Cost µW Mean Diverted
1 0.6 17 20 326 0.75 0.55 1 0.8 17 15 316 0.67 0.68
2 0.6 17 20 326 0.75 0.55 2 0.8 16 25 254 1.62 0.74
3 0.6 16 40 263 2.13 0.59 3 0.8 16 25 254 1.62 0.74
4 0.6 16 40 263 2.13 0.59 4 0.8 16 25 254 1.62 0.74
5 0.6 16 40 263 2.13 0.59 5 0.8 16 25 254 1.62 0.74
6 0.6 16 40 263 2.13 0.59 6 0.8 16 25 254 1.62 0.74
7 0.6 16 40 263 2.13 0.59 7 0.8 16 25 254 1.62 0.74
8 0.6 16 40 263 2.13 0.59 8 0.8 16 25 254 1.62 0.74

b. The optimal f is increasing in q, however it does not show a monotone behaviour with respect

to b. An interesting observation is that with the optimal slot publication policy the mean number

of patients diverted reaches its maximum threshold b (the small differences in Table 2 between b

and “Mean Diverted” are due to step size of 5 we considered for f values), but the mean access

time is typically far below its maximum q.
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To explain this phenomenon, the average number of patients diverted is plotted against the

average access time in Figure 4 for different values of n and f , with darker colour representing lower

cost. For threshold values q = 6 and b= 0.6, for instance, the feasible points are the points inside

the triangular area specified by the red lines and the two axes. Clearly the points associated with

n= 16 are the lowest cost points in this region. Among them, the point corresponding to f = 40

(highlighted by a triangle) is the point with smallest f that satisfies the service level constraint.

The mean access time for this point is 2.13 weeks, substantially below the six week threshold.

Increasing f further, up until f = 125 (highlighted by a square), would make the access time closer

to its threshold but at the expense of increasing cost. As such the optimal policy would be the one

with n= 16 and f = 40, which does not reach the six week maximum wait. In general, due to the

discrete nature of n, there will not necessarily be a feasible point on the top right corner of the

triangular area where both mean access time and mean diverted reach their maximum thresholds.

On the other hand, since both mean access time and mean cost increase with f , the optimal point

would be a point on the top border of the triangular area where mean diverted takes its maximum,

rather than on the right border where mean access time takes its maximum.

We use the empirical findings above to devise a search process that reduces the search space for

finding the optimal n and f . For each value of n, starting with the smallest possible f , we evaluate

the objective function and constraints for increasing values of f until the service level constraint

is satisfied for the first time. If the access constraint is also satisfied, then we have a candidate

optimum, whose cost must be compared with other candidates obtained by repeating the same

process with other values of n. Otherwise there is not any feasible point for the corresponding n

value. This leads to a considerable reduction in computation time for finding the optimal policy.

In the second experiment, we examine allocation policies jointly with publication policies. We

consider publication policies (n,f) with n= 14,15,16,17 and f = 15,20, . . . ,150, and restrict our

experiments to bi-level allocation policies in the form below

e(i) =


0, i < hn,

e(∗), i≥ hn,
(14)
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Figure 4 Mean number of patients diverted versus µW for different values of n and f for the first experiment in

Section 8.1.
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where e(∗) = 1,2,3,4 (corresponding to n(∗) = 15,16,17,18) and hn = 20,25,30, . . . ,160. Notice that

the only restriction imposed by A(iii) in our example is that hn should not be smaller that 18.

Figure 5 plots the performance metrics as a function of f and hn for the case with n= 16 and

e(∗) = 1. This figure shows that the impact of f on performance metrics is the same as in the

first experiment. Increasing hn clearly leads to longer access times and larger numbers of patients

turned away but smaller overtime cost.

Table 3 displays the optimal joint policies and the associated performance metrics. For each

combination of q and b, this table also gives the percentage saving gained by using a joint optimal

policy, compared to the corresponding case with only the optimal slot publication policy (that was

illustrated in Table 2). This suggests improvements up to 19 percent are likely to arise as a result

of employing simple bi-level allocation policies, which in all scenarios except one require only one

additional consultation per week when the queue length goes beyond hn. Table 3 also suggests

that both mean access time and mean patients diverted reach values close to their maximum

thresholds. This is because, as illustrated in Figure 6 for the specific case of n= 15 and e(∗) = 1,
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Figure 5 The average overtime cost (a), access time (in weeks) (b), and weekly number of patients turned away

(c) as a function of f and hn, for dynamic allocation policies with n= 16 and e(∗) = 1, for the second

experiment in Section 8.1.
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the introduction of a third parameters, i.e. hn, leads to a much wider spread of the feasible points,

compared to the case with only two parameters n and f . The final observation is that the optimal

slot publication policies reported in Table 3 are different from corresponding policies given in Table

2, suggesting that sequential optimization of slot publication and dynamic allocation policies may

lead to suboptimal solutions.

Based on empirical findings above, we devise a search process for finding the optimal f and hn

for given n and e(∗), assuming a bi-level allocation policy. Starting with smallest possible f and

hn, we evaluate the objective function and constraints for increasing values of f until the service

level constraint is met for the first time. If the access constraint is also met we have a candidate

optimum, whose cost must be compared with other candidates obtained by repeating the same

process with larger values of hn. Otherwise, the search stops as increasing hn further would only

make the access time larger.

8.2. An MRI Clinic in the US

Based on the data provided in Green and Savin (2008), the daily average number of patients

requesting a clinic appointment is 0.008v where v is the panel size of the clinic. There exists a total
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Table 3 Optimal joint slot publication and dynamic allocation policies for the
second experiment in Section 8.1.

q b (n,f) hn e(∗) Mean Cost µW Mean Diverted Savings
1 0.2 (17,40) 45 1 371 0.92 0.18 13%
2 0.2 (16,60) 45 1 323 1.85 0.20 9%
3 0.2 (16,85) 75 1 314 3.00 0.18 12%
4 0.2 (16,100) 95 1 308 3.81 0.18 13%
5 0.2 (16,120) 120 1 304 4.90 0.19 14%
6 0.2 (16,140) 140 1 303 5.91 0.18 14%
7 0.2 (16,150) 150 1 303 6.44 0.18 14%
8 0.2 (16,150) 150 1 303 6.44 0.18 14%
1 0.4 (16,30) 20 1 330 0.94 0.39 3%
2 0.4 (16,45) 55 1 293 1.78 0.40 14%
3 0.4 (16,60) 80 1 284 2.54 0.40 17%
4 0.4 (16,85) 130 1 277 3.88 0.40 19%
5 0.4 (15,105) 25 1 273 4.99 0.40 1%
6 0.4 (15,120) 45 1 271 5.97 0.40 1%
7 0.4 (15,130) 60 1 270 6.70 0.40 2%
8 0.4 (15,145) 75 1 270 7.69 0.40 2%
1 0.6 (15,25) 25 2 297 0.99 0.55 9%
2 0.6 (16,40) 90 1 267 1.98 0.57 18%
3 0.6 (15,50) 35 1 253 2.72 0.59 4%
4 0.6 (15,70) 55 1 252 3.94 0.57 4%
5 0.6 (15,80) 70 1 248 4.72 0.60 5%
6 0.6 (15,95) 85 1 248 5.73 0.60 5%
7 0.6 (15,105) 95 1 248 6.40 0.59 5%
8 0.6 (15,120) 110 1 248 7.42 0.59 5%
1 0.8 (16,15) 30 1 279 0.81 0.77 12%
2 0.8 (15,30) 30 1 240 1.94 0.76 5%
3 0.8 (15,45) 50 1 233 2.93 0.76 8%
4 0.8 (15,60) 65 1 233 3.88 0.74 8%
5 0.8 (15,65) 75 1 227 4.37 0.80 11%
6 0.8 (15,65) 75 1 227 4.37 0.80 11%
7 0.8 (15,65) 75 1 227 4.37 0.80 11%
8 0.8 (15,65) 75 1 227 4.37 0.80 11%

Saving column represents the percentage saving with the optimal joint policy com-
pared with the best corresponding case with only the optimal slot publication policy

of 20 regular slots per day, and the no-show probability of a patient who finds i patients in the

appointment backlog upon request for an appointment is estimated by the exponential function

γ(i) = 0.31− (0.31− 0.01)e−i/1000. (15)

All no-shows are assumed to reschedule an appointment, i.e. ζ = 1. Considering all patients in a

single group, Izady (2015) use the state-independent versions of the queueing model discussed in

Section 4 to find the smallest panel sizes under which 75% of the patients can be offered a same-day

appointment with various distributions for arrival requests. (The 75% figure reflects the 25% of
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Figure 6 Mean number of patients diverted versus µW for n= 15, e(∗) = 1, and different values of f and hn for

the second experiment in Section 8.1.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12
µW

M
ea

n 
D

iv
er

te
d

hn

●

●

●

20
30
40
50
60
70
80
90
100
110
120
130
140
150
160

200

225

250

275
Mean Cost

f
●

●

●

50
100
150

patients who opt to be seen on a future day as observed in Murray and Tantau 2000.) In particular,

they suggest when appointment requests follow a Poisson distribution, the minimum panel size

that achieves the 75% same-day probability is 2337. However, they do not specify how the capacity

should be divided between same-day and advance booking requests. They do not also consider the

impact of scheduling window.

For v = 2337, we specify how many slots of each day must be reserved for same-day requests,

and how long in advance the remaining slots must be released to the EBS for advance patients. We

do not consider dynamic allocation policies in this section. In order to apply the model developed

in this paper, we assume same-day and advance booking requests follow independent Poisson

distributions with averages 0.008× 2337× 0.75 = 14.022 and 0.008× 2337× 0.25 = 4.674 patients

per day, respectively. We assume there is no slot cancellation by the clinic, and following Green

et al. (2006), we set o = $100. We investigate three different scenarios with θ = 0.1,0.5, and 0.9.
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Simple analysis show that in order to achieve stability, we must have n≥ 1, n≥ 4, and n≥ 7, for

each of these scenarios, respectively. We consider slot publication policies with n from the minimum

possible up to 20 slots per day and f = 1,2, . . . ,50.

To show the impact of delay-dependent no-show probability, in panel (a) of Figure 7 we plot

the average number of patients diverted versus f for n = 4 and θ = 0.1. The plot shows that as

f increases, the mean patients diverted initially decreases due to more slots being released to

the EBS. But then as a result of larger queues, no-show probabilities increase leading to more

patients coming back for further appointments, thus reducing the slots available for new patients

and increasing the mean numbers diverted. The extent of this increase is more significant with

larger no-show probabilities as illustrated in panel (b) of Figure 7, where the no-show probability

function observed in Gallucci et al. (2005) as given below

γ(i) = 0.51− (0.51− 0.15)e−i/180. (16)

is used with other parameters the same as in panel (a).

Figure 7 Average daily number of patients diverted versus f for n= 4, θ= 0.1 and no-show function given in (a)

Equation (15) and (b) Equation (16), for the MRI case study in Section 8.2.
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Despite different behaviour of the mean diverted measure with respect to f as observed above,

we can apply the same search process for finding optimal values of n and f as the one proposed
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Table 4 Optimal slot publication policies and corresponding metrics for the MRI
case study in Section 8.2.

θ q b (n,f) Mean Cost µW Mean Diverted

0.1

1 0.01 (6,14) 106 0.19 0.008
2, 3, 4, 5, 6, 7 0.01 (5,35) 99 1.5 0.01
1 0.02 (6,13) 106 0.19 0.013
2, 3, 4, 5, 6, 7 0.02 (5,28) 99 1.33 0.019
1 0.03 (6,12) 106 0.18 0.020
2, 3, 4, 5, 6, 7 0.03 (5,24) 98 1.20 0.030
1 0.03 (6,11) 105 0.17 0.03
2, 3, 4, 5, 6, 7 0.04 (5,22) 98 1.12 0.037

0.5

1 0.01 (6,13) 106 0.19 0.009
2, 3, 4, 5, 6, 7 0.01 (5,34) 99 1.5 0.01
1 0.02 (6,12) 106 0.18 0.015
2, 3, 4, 5, 6, 7 0.02 (5,27) 99 1.33 0.02
1 0.03 (6,11) 106 0.18 0.023
2, 3, 4, 5, 6, 7 0.03 (5,24) 98 1.23 0.027
1 0.03 (6,10) 105 0.16 0.03
2, 3, 4, 5, 6, 7 0.04 (5,21) 98 1.12 0.038

0.9

1, 2, 3, 4, 5, 6, 7 0.01 (7,9) 111 0.06 0.007
1, 2, 3, 4, 5, 6, 7 0.02 (7,8) 111 0.06 0.014
1, 2, 3, 4, 5, 6, 7 0.03 (7,7) 111 0.05 0.027
1, 2, 3, 4, 5, 6, 7 0.04 (7,7) 111 0.05 0.027

for systems with constant no-show probability in Section 8.1. This is because, for a given n, both

mean cost and mean access time still increase with f , making the point with smallest possible f

that satisfies both constraints a candidate optimum. The resulting optimal policies and relevant

metrics are shown in Table 4 for q = 1,2, . . . ,7 days and b= 0.04,0.08,0.12,0.16 patients per day.

These results suggest that the optimal n decreases with q and increases with θ. As a consequence, it

seems reasonable to allocate 25% of the daily capacity to advance booking requests, corresponding

to their proportion out of the total demand, and reserve the rest for same-day booking as long as

the maximum access threshold is not too tight and θ is not too large. For large values of θ and

small values of q, however, more slots should be allocated to advance patients. Similar to the first

experiment in Section 8.1, we also observe that optimal policies lead to mean patients diverted

close to maximum thresholds and mean access times below maximum thresholds.

9. Conclusions

Online booking facilities have become an integral part of modern outpatient clinics. Apart from

giving patients a greater choice over the location and time of their treatments, these systems give
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providers a great deal of flexibility in managing their supply and demand. To utilize this flexibility,

an integrated approach that addresses demand and capacity planning decisions in a unified manner,

considering both static mid-term decisions as well as dynamic day-to-day adjustments is developed

in this paper. We did not include panel size as a decision variable explicitly in our policy formulation,

but it can be easily considered by adapting the accepted request distribution based on the size of

the panel.

We found the (near-)optimal values of the two policies by enumerating over a range of reason-

able values, relying on a state-dependent queueing model for efficient computation of performance

metrics. The probability generating function approach we developed for performance evaluation

resulted in significant time savings, compared to the more common approach of using balance

equations. In particular, we observed up to 20-fold reduction in calculation time with the PGF

approach, enabling us to explore about forty different policy combinations in every hour. A search

process was also proposed to further reduce the time required for finding the optimal policies.

The implementation of slot publication policy, as we formulated, is straightforward in almost

all EBS’s. The implementation of dynamic allocation policy would however require expediting

some patients. This might prove challenging in practice, in particular if FCFS is to be followed

strictly. Without FCFS the number of patients expedited in each time period would be limited

to the number of additional consultations required for that period. As an alternative approach to

expediting patients, clinics may fulfill the additional consultations by releasing the same number

of additional slots to the online system. Since patients cannot book slots for the same period, these

additional slots must be allocated to the next one or two periods, assuming such functionality is

available in the EBS. Some of the efficiency of the allocation policy would then be achieved without

the need for rescheduling patients.

Acknowledgments

Appendix. Proofs of Lemmas and Propositions
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A. Proof of Proposition 1

For j ≥ i−n(i), we have

P(Xt+1 = j|Xt = i) = P
[
(i− (n(i)−C))+ +A(i) +D(i) = j|Xt = i

]
=

ξ∑
k=0

P
[
A(i) +D(i) = j− (i+ k−n(i))+|Xt = i,C = k

]
ck

=

ξ∑
k=0

∞∑
l=0

P(D(i) = j− (i+ k−n(i))+− l|Xt = i,C = k,A(i) = l)cka
(i)
l

=

ξ∑
k=0

∞∑
l=0

(
min{i, n(i)− k}

j− (i+ k−n(i))+− l

)
×α(i)[j−(i+k−n

(i))+−l]β(i)[min{i,n(i)−k}−j+(i+k−n(i))++l]a
(i)
l ck

=

n(i)−i−1∑
k=0

j∑
l=max{j−i,0}

(
i

j− l

)
α(i)j−lβ(i)i−j+la

(i)
l ck

+

ξ∑
k=n(i)−i

j−i−k+n(i)∑
l=max{j−i,0}

(
n(i)− k

j− i− k+n(i)− l

)
α(i)j−i−k+n

(i)−lβ(i)i+l−ja
(i)
l ck

= P(C ≤ n(i)− i− 1)α(i)jβ(i)i−j
j∑

l=max{j−i,0}

(
i

j− l

)(
β(i)

α(i)

)l
a
(i)
l

+α(i)
j−i+n(i)

β(i)i−j
ξ∑

k=n(i)−i

j−i−k+n(i)∑
l=max{j−i,0}

(
n(i)− k

j− i− k+n(i)− l

)(
β(i)

α(i)

)l
α(i)−ka

(i)
l ck,

where α(i) = δ(i−1)
+

and β(i) = 1−α(i). For j < i−n(i) the transition probability is equal to 0 as the number

served in a time interval cannot exceed n(i). �

B. Proof of Proposition 2

From (2), we have

E[zXt+1 ] = E
[
z(Xt−(n(Xt)−C))++A(Xt)+D(Xt)

]
=

∞∑
i=0

A(i)(z)E
[
z(i+C−n

(i))++D(i) |Xt = i
]
P(Xt = i)

=

∞∑
i=0

A(i)(z)

ξ∑
k=0

E
[
z(i+k−n

(i))++D(i) |Xt = i,C = k
]
ckP(Xt = i)

=

∞∑
i=0

A(i)(z)

ξ∑
k=0

z(i+k−n
(i))+α(i, z)min{i,n(i)−k}ckP(Xt = i)

=

∞∑
i=0

A(i)(z)

n(i)−i−1∑
k=0

α(i, z)ickP(Xt = i) +

ξ∑
k=n(i)−i

zi+k−n
(i)

α(i, z)n
(i)−kckP(Xt = i)


=

∞∑
i=0

A(i)(z)α(i, z)iP(Xt = i)P(C ≤ n(i)− i− 1)

+

∞∑
i=0

A(i)(z)ziP(Xt = i)

ξ∑
k=n(i)−i

(
z

α(i, z)

)k−n(i)

ck,
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where α(i, z) = β(i)+α(i)z. Splitting the first and second sums in the last equality above at i= hn and i= h,

respectively, where h= max{hA, hn, hα}, we arrive at

E[zXt+1 ] =

hn−1∑
i=0

A(i)(z)α(i, z)iP(Xt = i)P(C ≤ n(i)− i− 1)

+

∞∑
i=hn

A(i)(z)α(i, z)iP(Xt = i)P(C ≤ n(∗)− i− 1)

+

h−1∑
i=0

A(i)(z)ziP(Xt = i)

ξ∑
k=n(i)−i

(
z

α(i, z)

)k−n(i)

ck

+A(∗)(z)G(z)
1

zn(∗)

∞∑
i=h

ziP(Xt = i), (17)

where

G(z) =
(
1−α(∗) +α(∗)z

)n(∗)

C

(
z

1−α(∗) +α(∗)z

)
.

Note that for the last term in (17) we have used the assumption n(∗) ≤ hn, resulting in k= n(i)− i= n(∗)− i≤

hn− i≤ h− i≤ 0 for i≥ h. The same assumption gives P(C ≤ n(∗)− i−1) = 0 for i≥ hn, so by removing the

second sum in (17) and taking the limit of both sides as t→∞, we obtain

X(z) =

hn−1∑
i=0

A(i)(z)α(i, z)ixiP(C ≤ n(i)− i− 1) +

h−1∑
i=0

A(i)(z)zixi

ξ∑
k=n(i)−i

(
z

α(i, z)

)k−n(i)

ck

+A(∗)(z)G(z)
1

zn(∗)

(
X(z)−

h−1∑
i=0

zixi

)
.

where X(z) =
∑∞

i=0 xiz
i. Solving the equation above for X(z) yields

X(z) =

[
zn

(∗)
hn−1∑
i=0

A(i)(z)α(i, z)ixiP(C ≤ n(i)− i− 1)

+zn
(∗)

h−1∑
i=0

A(i)(z)zixi

ξ∑
k=n(i)−i

(
z

α(i, z)

)k−n(i)

ck−A(∗)(z)G(z)

h−1∑
i=0

zixi


/
(
zn

(∗) −A(∗)(z)G(z)
)
.

For special cases where the arrival distribution, no-show probability, or advance service capacity do not

depend on the number of customers in the system, the proof is obvious. The only trick is to set hn = n for

the last case to satisfy A(iii).

�
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C. Proof of Lemma 1

We show zn
(∗)−U(z) has n(∗) zeros on and within the unit circle, where U(z),A(∗)(z)G(z). We use Theorem

(3.2) given in Adan et al. (2006). By this theorem, we need to show (i) U(z) is a PGF, (ii) U(0)> 0, (iii)

U(z) is differentiable at at z = 1, and (iv) U ′(1)< n(∗). To show that U(z) is a PGF, we re-write G(z) as

G(z) =
∑n(∗)

i=0 giz
i where

gi =

min{i,ξ}∑
k=0

(
n(∗)− k
i− k

)
(α(∗))i−k(1−α(∗))n

(∗)−ick

for i= 0,1, . . . , n(∗). This is obtained by expanding and re-arranging the terms in G(z) as below

G(z) =

= (1−α(∗) +α(∗)z)n
(∗)
C

(
z

1−α(∗) +α(∗)z

)
=

ξ∑
k=0

zkck
(
1−α(∗) +α(∗)z

)n(∗)−k

=

ξ∑
k=0

n(∗)−k∑
j=0

zkck

(
n(∗)− k

j

)
(α(∗)z)j(1−α(∗))n

(∗)−k−j

=

ξ∑
k=0

n(∗)−k∑
j=0

ck

(
n(∗)− k

j

)
(α(∗))j(1−α(∗))n

(∗)−k−jzk+j

=

ξ∑
k=0

n(∗)∑
i=k

(
n(∗)− k
i− k

)
(α(∗))i−k(1−α(∗))n

(∗)−ickz
i

=

ξ∑
i=0

i∑
k=0

(
n(∗)− k
i− k

)
(α(∗))i−k(1−α(∗))n

(∗)−ickz
i +

n(∗)∑
i=ξ+1

ξ∑
k=0

(
n(∗)− k
i− k

)
(α(∗))i−k(1−α(∗))n

(∗)−ickz
i.

Now Since G(1) = 1, and gi ≥ 0, G(z) is a PGF, and thus U(z) is also a PGF. For (ii), note that U(0) =

a
(∗)
0 (1− α(∗))n

(∗)
c0 which is positive since a

(∗)
0 , 1− α(∗) and c0 are all positive by assumption. Since G(z)

is always differentiable as it is a finite sum, condition (iii) holds when µA(∗) is finite. For (iv), note that

U ′(1) = µA(∗) +µC(1−α(∗)) +n(∗)α(∗) <n(∗) by stability condition. �

D. Proof of Proposition 3

Equation χρ= y is obtained from combining three sets of equations: (i) the equation derived from X(1) = 1

which forms the first column in matrix ρ as given in (5), (ii) the n(∗) − 1 equations obtained by replacing

the zeros of the denominator in (4) that lie on or within the unit circle in the numerator, which form the

next n(∗) − 1 columns in matrix ρ as given in (6), (iii) the first h− n(∗) stochastic balance equations that

form the last h−n(∗) columns in matrix ρ as given in (7).
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Equation set (i) is derived from X(1) = 1 using the l’Hopital’s rule. Let X(z) = N(z)/D(z). We first

evaluate the derivative of N(z) at z = 1

d

dz
N(z) |z=1

=

hn−1∑
i=0

xiP(C ≤ n(i)− i− 1)
(
n(∗) +µA(i) + iα(i)

)
+

h−1∑
i=0

ξ∑
k=n(i)−i

xick
(
n(∗) +β(i)(k−n(i)) + i+µA(i)

)
−
h−1∑
i=0

xi (µA(∗) +µG + i) .

Since µG = d
dz
G(z)|z=1 = n(∗)α(∗) + (1−α(∗))µC , we get

d

dz
N(z) |z=1

=

hn−1∑
i=0

xiP(C ≤ n(i)− i− 1)
(
n(∗) +µA(i) + iα(i)

)
+

h−1∑
i=0

ξ∑
k=n(i)−i

xick
(
n(∗) +β(i)(k−n(i)) + i+µA(i)

)
−
h−1∑
i=0

xi
(
α(∗)(n(∗)−µC) + i+µC +µA(∗)

)
.

Next we evaluate the derivative of D(z) at z = 1

d

dz
N(z) |z=1 = n(∗)−

(
µA(∗) +µC(1−α(∗)) +n(∗)α(∗))= (1−α(∗))(n(∗)−µC)−µA(∗) .

Now from X(1) =N ′(1)/D′(1) = 1, we obtain

hn−1∑
i=0

xiP(C ≤ n(i)− i− 1)
(
n(∗) +µA(i) + iα(i)

)
+

h−1∑
i=0

ξ∑
k=n(i)−i

xick
(
n(∗) +β(i)(k−n(i)) + i+µA(i)

)
−
h−1∑
i=0

xi
(
α(∗)(n(∗)−µC) + i+µC +µA(∗)

)
= (1−α(∗))(n(∗)−µC)−µA(∗) .

Combining the terms with coefficient xi, we have

hn−1∑
i=0

(
P(C ≤ n(i)− i− 1)

(
n(∗) +µA(i) + iα(i)

)
+
(
n(∗)−β(i)n(i) + i+µA(i)

)
P(C ≥ n(i)− i)

+

ξ∑
k=n(i)−i

β(i)kck−α(∗)(n(∗)−µC)− i−µC −µA(∗)

xi

+

h−1∑
i=hn

(n(∗)−β(i)n(i) + i+µA(i)

)
P(C ≥ n(i)− i) +

ξ∑
k=n(i)−i

β(i)kck−α(∗)(n(∗)−µC)− i−µC −µA(∗)

xi

= (1−α(∗))(n(∗)−µC)−µA(∗)

Since P(C ≤ n(i)− i− 1) +P(C ≥ n(i)− i) = 1, and P(C ≥ n(i)− i) = 1 for i≥ hn (due to A(iii)), we have

hn−1∑
i=0

(
n(∗) +µA(i) +P(C ≤ n(i)− i− 1)

(
iα(i) +β(i)n(i)− i

)
+ i−β(i)n(i)
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+

ξ∑
k=n(i)−i

β(i)kck−α(∗)(n(∗)−µC)− i−µC −µA(∗)

xi

+

h−1∑
i=hn

n(∗)−β(i)n(∗) + i+µA(i) +

ξ∑
k=n(∗)−i

β(i)kck−α(∗)(n(∗)−µC)− i−µC −µA(∗)

xi

= (1−α(∗))(n(∗)−µC)−µA(∗)

Simplifying the above we arrive at

hn−1∑
i=0

n(∗)(1−α(∗)) +β(i)

P(C ≤ n(i)− i− 1)(n(i)− i)−n(i) +

ξ∑
k=n(i)−i

kck


−µC(1−α(∗)) +µA(i) −µA(∗)

)
xi

+

h−1∑
i=hn

(
n(∗)(α(i)−α(∗)) +µC(β(i) +α(∗)− 1) +µA(i) −µA(∗)

)
xi = (1−α(∗))(n(∗)−µC)−µA(∗)

Coefficients of xi in the above equation constitute the first column in matrix ρ, and the right hand side value

will be the first element of vector y.

For equation set (ii), we replace the zeros zj of the denominator in (4) in the numerator to obtain

zn
(∗)

j

hn−1∑
i=0

A(i)(zj)α(i, zj)
ixiP(C ≤ n(i)− i− 1) + zn

(∗)

j

h−1∑
i=0

A(i)(zj)z
i
jxi

ξ∑
k=n(i)−i

(
zj

α(i, zj)

)k−n(i)

ck

−A(∗)(zj)G(zj)

h−1∑
i=0

zijxi = 0,

for j = 1,2, . . . , n(∗)− 1. Combining the coefficients of xi in the above equation we have

hn−1∑
i=0

zn(∗)

j A(i)(zj)

α(i, zj)
iP(C ≤ n(i)− i− 1) +

ξ∑
k=n(i)−i

zi+k−n
(i)

j α(i, zj)
n(i)−kck

− zijA(∗)(zj)G(zj)

xi

+

h−1∑
i=hn

zij

(
A(i)(zj)α(i, zj)

n(∗)
C

(
zj

α(i, zj)

)
−A(∗)(zj)G(zj)

)
xi = 0

Coefficients of xi in the above equation constitute column 2 to n(∗) in matrix ρ, and the corresponding

elements in vector y will be zero.

For equation set (iii), we use the first h−n(∗) stochastic balance equations as below∑
i

xiφ(i,j−n(∗))−xj−n(∗) = 0,

for j = n(∗), . . . , h−1, where transition probabilities φij are given in Equation (3). Since φij = 0 for i > j+n(i),∑
i, i≤j−n(∗)+n(i)

xiφ(i,j−n(∗))−xj−n(∗) = 0.

From this, the coefficient of xi for i 6= j−n(∗) will be φ(i,j−n(∗)), and φ(i,j−n(∗))−1 otherwise. These coefficients

form the last h−n(∗) columns in matrix ρ. �
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E. Proof of Proposition 4

Conditioning on A, we have

a
(i)
k , P(A(i) = k)

=

∞∑
l=0

P
(
A(i) = k|A= l

)
al

=

ψ(i)∑
l=0

P(A= k,A= l) +

∞∑
l=ψ(i)+1

P

l−ψ(i)∑
j=1

Ij = k−ψ(i)

al

= ak1ψ(i)(k) +

∞∑
l=ψ(i)+1

P
(
Binomial

(
l−ψ(i), θ

)
= k−ψ(i)

)
al

= ak1ψ(i)(k) +

∞∑
l=ψ(i)+1

(
l−ψ(i)

k−ψ(i)

)
θk−ψ

(i)

(1− θ)l−kal

= ak1ψ(i)(k) + θk−ψ
(i)

∞∑
l=max{k,ψ(i)+1}

(
l−ψ(i)

k−ψ(i)

)
(1− θ)l−kal

for all nonnegative i and k where ψ(i) = (f − (i−n)+)
+

. For i≥ f +n, the above simplifies to

a
(i)
k = θk

∞∑
l=k

(
l

k

)
(1− θ)l−kal.

�

F. Proof of Proposition 5

For (11),

E
[(

min{X,n(X)−C}+S− r+C
)+]

=

hn−1∑
i=0

E
[(

min{i, n(i)−C}+S− r+C
)+ |X = i

]
xi +

∞∑
i=hn

E
[(

min{i, n(∗)−C}+S− r+C
)+ |X = i

]
xi

=

hn−1∑
i=0

ξ∑
k=0

η∑
j=0

(
min{i, n(i)− k}+ j− r+ k

)+
xicksj +

∞∑
i=hn

E
[(
n(∗)−C +S− r+C

)+ |X = i
]
xi,

where the second term of the last equality is because n(∗) ≤ hn and so min{i, n(∗)−C}= n(∗)−C for i≥ hn.

Due to independence of S and X, we then have

E
[(

min{X,n(X)−C}+S− r+C
)+]

=

=

hn−1∑
i=0

ξ∑
k=0

η∑
j=0

(
min{i, n(i)− k}+ j− r+ k

)+
xicksj +E

[(
n(∗) +S− r

)+]
(1−P(X <hn)),

Expanding the expected value term above yields the result.
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For (12),

E[A(X)] =

∞∑
i=0

E[A(i)|X = i]xi

=

∞∑
i=0

(
E[A(i),A≤ψ(i)] +E[A(i),A > ψ(i)]

)
xi

=

∞∑
i=0

E[A,A≤ψ(i)] +E[ψ(i) +

A−ψ(i)∑
j=1

Ij ,A > ψ
(i)]

xi

=

f+n−1∑
i=0

E[A,A≤ψ(i)] +E[ψ(i) +

A−ψ(i)∑
j=1

Ij ,A > ψ
(i)]

xi

+

∞∑
i=f+n

(
E[A,A≤ 0] +E[

A∑
j=1

Ij ,A > 0]

)
xi

=

f+n−1∑
i=0

ψ(i)∑
k=0

kak +

∞∑
k=ψ(i)+1

[
ψ(i) + (k−ψ(i))θ

]
ak

xi +

∞∑
i=f+n

∞∑
k=1

kθakxi.

Simplifying the above, we have

E[A(X)] =

f+n−1∑
i=0

ψ(i)∑
k=0

kak +ψ(i)(1− θ)
∞∑

k=ψ(i)+1

ak + θ

∞∑
k=ψ(i)+1

kak

xi + θµA

∞∑
i=f+n

xi

=

f+n−1∑
i=0

ψ(i)∑
k=0

kak +ψ(i)(1− θ)
∞∑

k=ψ(i)+1

ak + θ

µA− ψ(i)∑
k=0

kak

xi + θµA

∞∑
i=f+n

xi

=

f+n−1∑
i=0

(1− θ)
ψ(i)∑
k=0

kak +ψ(i)(1− θ)
∞∑

k=ψ(i)+1

ak + θµA

xi + θµA

∞∑
i=f+n

xi

= (1− θ)
f+n−1∑
i=0

ψ(i)∑
k=0

kak +ψ(i)

∞∑
k=ψ(i)+1

ak

xi + θµA

f+n−1∑
i=0

xi + θµA

∞∑
i=f+n

xi

= (1− θ)
f+n−1∑
i=0

ψ(i) +

ψ(i)∑
k=0

ak(k−ψ(i))

xi + θµA,

for ψ(i) = (f − (i−n)+)
+

.

For (13), we apply the Little’s law with average number in the system, µX , and effective arrival rate,

E
[
A(X) +D(X)

]
= µA(X) +E[D(X)], to obtain the average number of time intervals a patient spends in the

system, which subtracted by one gives the average waiting time. The expected number of re-shows, E[D(X)],

is calculated as below.

E[D(X)] =

∞∑
i=0

ξ∑
k=0

E[D(i)|X = i,C = k]xick

=

∞∑
i=0

ξ∑
k=0

α(i) min{i, n(i)− k}xick
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=

hn−1∑
i=0

ξ∑
k=0

α(i) min{i, n(i)− k}xick +

∞∑
i=hn

ξ∑
k=0

α(i)(n(∗)− k)xick

=

hn−1∑
i=0

ξ∑
k=0

α(i) min{i, n(i)− k}xick +

∞∑
i=hn

α(i)xi

(
ξ∑

k=0

(n(∗)− k)ck

)

=

hn−1∑
i=0

ξ∑
k=0

α(i) min{i, n(i)− k}xick + (n(∗)−µc)

(
h−1∑
i=hn

α(i)xi +

∞∑
i=h

α(∗)xi

)

=

hn−1∑
i=0

ξ∑
k=0

α(i) min{i, n(i)− k}xick + (n(∗)−µc)

(
h−1∑
i=hn

α(i)xi +α(∗)(1−P(X ≤ h− 1))

)

�
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