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Abstract— We explore some connections between the
Loewner approach to interpolation and realization, and that
based on bilinear differential forms arising in the behavioral
framework. We show that a crucial concept underlying both
approaches is that of duality of trajectories, and that many
known results can be interpreted in its light.

I. INTRODUCTION

The Loewner framework was initiated in [16], [17] in
the context of tangential interpolation and partial realization
problems (see also [1], [4]), and has been successfully ap-
plied also to model order reduction (see [2], [3], [14], [15]).
Vector-exponential time-series modelling from a behavioral
perspective has been introduced in [28], and applied to metric
interpolation problems in [12], [13], [25]. Some connections
between rational interpolation and behavioral modelling of
vector-exponential trajectories were first explored in [6],
and inform also more recent approaches (see [19], [21]) to
modelling based on bilinear- and quadratic differential forms
(B/QDFs in the following, see [29]).

The purpose of the present paper is to offer a novel point
of view on the Loewner- and the BDF-based approach, based
on the notion of duality of trajectories. We show that crucial
results in both approaches can be interpreted and formulated
in terms of (generalized) state-input-output representations
of the primal- and the dual system. Of particular relevance
is that the factorization of the Loewner matrix, that plays a
crucial role in obtaining state models from vector-exponential
data, can be given a trajectory-based interpretation based on
duality.

The paper is organized as follows. In section II we for-
mulate the problem of (bi-directional) rational interpolation,
and we introduce the concept of Loewner matrix. In section
III we use input-state-output representations and duality
to show how state trajectories corresponding to the input-
output data can be constructed from the factorization of the
Loewner matrix. In section IV we extend such results to the
case of systems represented by generalized input-state-output
equations. In section V we consider the higher-order case,
summarizing some of the results already presented in a more
thorough form in [18].
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Finally, section VI contains the conclusions and lists some
directions of current and future research.

NOTATION

The space of n dimensional real (complex) vectors is
denoted by Rn (respectively Cn), and that of m × n real
matrices by Rm×n. R•×m denotes the space of real matrices
with m columns and an unspecified finite number of rows.
Given matrices A,B ∈ R•×m, col(A,B) denotes the matrix
obtained by stacking A over B.

The ring of polynomials with real coefficients in the
indeterminate ξ is denoted by R[ξ]; the ring of two-variable
polynomials with real coefficients in the indeterminates ζ and
η is denoted by R[ζ, η]. Rr×q[ξ] denotes the set of all r× q
matrices with entries in ξ, and Rn×m[ζ, η] that of n × m
polynomial matrices in ζ and η. The set of rational m × n
matrices in the indeterminate ξ is denoted by Rm×n(ξ).

The set of infinitely differentiable functions from R to Rq
is denoted by C∞(R,Rq).

II. PROBLEM FORMULATION

Define the left and right interpolation data as the triples
in C× Cp × Cm and C× Cm × Cp, respectively:

{(µi, `∗i , v∗i )}i=1,...,k1 , µi ∈ C, `∗i ∈ C1×p, v∗i ∈ C1×m

{(λi, ri, wi)}i=1,...,k2 , λi ∈ C, ri ∈ Cm, wi ∈ Cp . (1)

In the rest of this paper we will assume for simplicity of
exposition that the µis and λis are distinct; the general case
follows with straightforward modifications of the statements
and the arguments. We will also assume that {µi}i=1,...,k1 ∩
{λj}j=1,...,k2 = ∅.

Let H ∈ Rp×m(ξ) be a proper rational matrix. H satisfies
the interpolation constraints if

`∗iH(µi) = v∗i , i = 1, . . . , k1

H(λi)ri = wi , i = 1, . . . , k2 . (2)

If only the first, respectively second, set of constraints (2)
is satisfied, we call H a left-, respectively right interpolant.
The problem we consider in this paper is that of deriving
a right/left interpolant H ∈ Rp×m(ξ) from data (1). The
following constant matrices play a crucial role in the solution
of this problem. The Loewner matrix associated with the
interpolation data (1) is defined by

L :=
[
v∗i rj−`

∗
iwj

µi−λj

]
i=1,...,k1;j=1,...,k2

. (3)

The shifted Loewner matrix is defined by

σL :=
[
µiv
∗
i rj−λj`

∗
iwj

µi−λj

]
i=1,...,k1;j=1,...,k2

. (4)



III. INPUT-STATE-OUTPUT EQUATIONS FROM DATA

Consider a system described in minimal input-state-output
form by the equations

d

dt
x = Ax+Bu

y = Cx+Du ; (5)

its dual is minimally represented by the equations

d

dt
x′ = −A>x′ + C>u′

y′ = B>x′ −D>u′ . (6)

We now state an important relation between the input-output
and the state trajectories of (5) and (6).

Proposition 1: Let col(u, y, x) and col(u′, y′, x′) satisfy
(5) and (6), respectively. Then

u′∗y + y′∗u =
d

dt
(x′∗x) . (7)

Proof: The claim follows from the chain of equalities:

u′∗y + y′∗u = u′∗ (Cx+Du) +
(
B>x′ −D>u′

)∗
u

= (u′∗C)x+ x′∗ (Bu)

=

(
d

dt
x′ +A>x′

)∗
x+ x′∗

(
d

dt
x−Ax

)
=

d

dt
(x′∗x) .

Now consider the case when col(u, y) and col(u′, y′) are
vector-exponential, i.e. there exist constant vectors w :=
col(u, y) ∈ Cm+p and w′ := col(u′, y′) ∈ Cp+m and
µ, λ ∈ C such that

col(u, y)(·) = weµ· and col(u′, y′)(·) = w′eλ· .

It is straightforward to check that also the corresponding state
trajectories are vector-exponential, i.e. there exist x, x′ ∈ Cn
such that

x(·) = xeµ· and x′(·) = x′eλ· .

It follows in a straightforward manner from the result of
Prop. 1 that for such vector-exponential trajectories the
following relation holds:

w′
∗
w = (λ∗ + µ)x′

∗
x . (8)

Consequently, given a pair of finite families of input-output
vector-exponential trajectories{

w′ie
λi·
}
i=1,...,N

and {wjeµj ·}j=1,...,N ,

under the assumption λ∗i 6= −µj , i, j = 1, . . . , N , equation
(8) implies that[

w′
∗
iwj

λ∗i +µj

]
i,j=1,...,N

=
[
x′
∗
i xj
]
i,j=1,...,N

. (9)

Given a matrix S ∈ Rk1×k2 , a rank-revealing factorization
of S is any factorization S = U1U2 with U ∈ Rk1×n,
U2 ∈ Rn×k2 of full rank n = rank S. Such a factorization
can be computed in a straightforward way for example from

a singular value decomposition of S. Now observe that
the left-hand side of equation (9) is the analogous of the
Loewner matrix L defined in (3); moreover, the relation (9)
between external- and internal (state) data also implies that
any rank-revealing factorization of the left-hand side yields
(the directions of) minimal state trajectories associated with
the external data.

The following result shows that under mild conditions,
from a factorization of the Loewner matrix one can obtain a
number of linearly independent state trajectories equal to the
McMillan degree n of the system. This result is analogous
to Lemma 2.1 in [16].

Proposition 2: Denote by n the McMillan degree of the
state-representations (5) and (6), and with N the number
of input-output data trajectories. Assume that N ≥ n, that
λ∗i 6= −µj , i, j = 1, . . . , N , and that λi 6= λj and µi 6= µj
for i 6= j. Then

rank
[
w′
∗
iwj

λ∗i +µj

]
i,j=1,...,N

= n .

Proof: Using (9) conclude that
[
w′
∗
iwj

λ∗i +µj

]
i,j=1,...,N

=

S∗P , where S and P are defined by

S :=
[
x′1 . . . x′N

]
∈ Cn×N

P :=
[
x1 . . . xN

]
∈ Cn×N .

We now prove that under the assumption that the λis are
distinct, the matrix P has full row rank n; a similar argument
yields the same property for S.

Assume by contradiction that rank(P ) = r < n;
then without loss of generality we can assume that there
exist αi ∈ C, i = 1, . . . , n, not all zero, such that
P ′col(αi)i=1,...,n = 0, where P ′ is the submatrix of P
consisting of its first n columns. Consider the state trajectory
x̂(·) :=

∑n
i=1 αixie

λi·, corresponding to the input-output
trajectory col(û, ŷ)(·) :=

∑n
i=1 αicol(ui, yi)e

λi·. The ex-
ternal behavior spanned by the trajectories col(ui, yi)e

λi· is
autonomous (see [27]), i.e. without inputs. Moreover x is a
state variable for such behavior. Now observe that x̂(0) = 0;
it follows that col(û, ŷ) is also zero. However this is in
contradiction with the assumption that not all αi’s are equal
to zero and that the λis are distinct. Consequently P has
rank n.

The following result is analogous to the first formula in (12)
p. 640 of [16]).

Proposition 3: Define the matrices

M := diag(µi)i=1,...,N

Λ := diag (λj)j=1,...,N

L :=
[
w′1 . . . w′N

]
∈ C(m+p)×N

R :=
[
w1 . . . wN

]
∈ C(m+p)×N .

The matrix
[
w′
∗
iwj

λ∗i +µj

]
i,j=1,...,N

satisfies the Sylvester equation

M
[
w′
∗
iwj

λ∗i +µj

]
i,j=1,...,N

+
[
w′
∗
iwj

λ∗i +µj

]
i,j=1,...,N

Λ = L∗R . (10)



Proof: The claim follows in a straightforward way from
(9).

Remark 1: For the case of lossless port-Hamiltonian sys-
tem (see [21], [22] for the definition) and symmetric data,
i.e. µi = λi, i = 1, . . . , N , the Loewner matrix (3) coincides
with the Pick matrix defined in formula (1) in [21]. The
result of Prop. 2 of this paper coincides with the result of
Prop. 1 of [21], and the Sylvester equation result of Prop. 3
coincides with that of Prop. 2 of [21].

Similarly, for the case of self-adjoint port-Hamiltonian
systems (see [21] for the definition) and symmetric data,
the Loewner matrix (3) coincides with the Pick matrix of
formula (34) in [21]. Results analogous to Prop. 2 and Prop.
3 of this paper appear as Prop. 6 and Prop. 7, respectively,
in [21]. �

Under the assumptions of Prop. 2, in order to find an input-
state-output (iso) representation (5) of an interpolant for a
finite family of primal input-output data {wieµi·}i=1,...,N ,
one can proceed as follows. Compute a rank-revealing fac-
torization

[
w′
∗
iwj

λ∗i +µj

]
i,j=1,...,N

= S∗P , and define

U :=
[
u1 . . . uN

]
∈ Cm×N

Y :=
[
y1 . . . yN

]
∈ Cp×N . (11)

The following result, whose proof is straightforward and
hence omitted, characterizes input-state-output representa-
tions of right interpolants.

Proposition 4: Define M as in Prop. 3, and U and Y
by (11). A quadruple (A,B,C,D) ∈ Rn×n × Rn×n ×
Rn×m × Rp×n × Rm×m defines an iso representation of
a right interpolant H(ξ) := C (ξIn −A)

−1
B + D for the

primal set of data (µi, ui, yi) if and only if[
PM
Y

]
=

[
A B
C D

] [
P
U

]
. (12)

A result analogous to that of Prop. 4 holds true also for
left-interpolants; we will not state it explicitly.

Remark 2: The solution of the linear system of equations
(12) involves standard linear algebra computations; we will
not deal with such details here. �

Remark 3: In our approach we use the data to first com-
pute state trajectories corresponding to it, and in a second
stage we compute a state representation for the data and the
identified state trajectories by solving linear equations in the
unknown state-, input- and output matrices (see Prop. 4).
Such two-stage approach is analogous to that of subspace
identification (see e.g. [8]). However, our methodology does
not exploit the shift-invariance of data trajectories, but rather
the fact that external properties, i.e. properties at the level
of external variables, in our case duality, are reflected into
internal properties, i.e. at the level of state. �

Remark 4: In our basis-free approach, state directions are
computed from the factorization of the Loewner matrix, and
determine through the equations (12) the state representation.
It follows that judiciously factorizing the Loewner matrix

yields special state representations, e.g. “balanced” ones,
that make evident the influence of state variables on the i/o
behavior of the system. See [23] for an application to the
data-driven model reduction problem. �

Remark 5: For pedagogical purposes we have proceeded
as if it were necessary to have available data also from
the dual system; however, this is not necessary, and dual
trajectories can be derived from primal ones by the following
mirroring procedure (see [12], [13], [25]). The following
result, which we state without proof, is crucial.

Proposition 5: Let w(·) = col(u, y)eλ· be an input-output
trajectory of the primal system. Let v ∈ Cm+p be such that
v∗w = 0. Then ve−λ

∗· is a trajectory of the dual system.

Thus to obtain dual vector-exponential trajectories it is
sufficient to mirror primal trajectories computing a direction
orthogonal to the primal one. �

IV. GENERALIZED INPUT-STATE-OUTPUT EQUATIONS
FROM DATA

In this section we consider the case of a system described
by the equations

E
d

dt
x = Ax+Bu

y = Cx . (13)

We also consider its dual (note that the terminology “dual”
is not uniform in the literature; on this issue see also [7],
[10], [11]), represented by

E>
d

dt
x′ = −A>x′ + C>u′

y′ = B>x′ . (14)

The following two results are crucial for computing E and
A from factorizations of the Loewner matrices.

Proposition 6: Let col(u, y, x) and col(u′, y′, x′) satisfy
(13) and (14), respectively. Then

d

dt
(x′∗Ex) = u′∗y + y′∗u . (15)

Proof: The claim follows from the following manipu-
lations:

d

dt
(x′∗Ex) =

(
−A>x′ + C>u′

)∗
x+ x′∗ (Ax+Bu)

= u′∗Cx+ x′∗Bu

= u′∗ (Cx) +
(
B>x′

)∗
u

= u′∗y + y′∗u .

Proposition 7: Let col(x, u, y) and col(z, u′, y′) satisfy
(13) and (14), respectively. Then

d

dt
(x′∗Ax) = u′∗

(
d

dt
y

)
−
(
d

dt
y′∗
)
u . (16)



Proof: The claim follows from:

d

dt
(x′∗Ax) =

(
d

dt
x′
)∗

Ax+ x′∗A

(
d

dt
x

)
=

(
d

dt
x′
)∗(

E
d

dt
x−Bu

)
+

(
−E> d

dt
x′ + C>u′

)∗(
d

dt
x

)
= −

(
B>

d

dt
x′
)∗

u+ u′∗
(
C
d

dt
x

)
=

(
− d

dt
y′∗
)
u+ u′∗

(
d

dt
y

)
.

If col(u, y) and col(u′, y′) are vector-exponential trajecto-
ries of the primal, respectively dual system, then the associ-
ated state trajectories are also vector-exponential. Using the
same argument as that following Prop. 1, we conclude from
Prop. 6 and Prop. 7 that given a pair of finite families of
input-output vector-exponential trajectories{

w′ie
λi·
}
i=1,...,N

and {wjeµj ·}j=1,...,N ,

and equations (15) and (16) imply that[
w′
∗
iwj

λ∗i +µj

]
i,j=1,...,N

=
[
x′
∗
iExj

]
i,j=1,...,N[

u′
∗
i µjyj−λ

∗
i y
′∗
i uj

λ∗i +µj

]
i,j=1,...,N

=
[
x′
∗
iAxj

]
i,j=1,...,N

.(17)

The left-hand side of the first equation in (17) is analogous
to the Loewner matrix introduced in the previous section,
while the left-hand side of the second equation is analogous
to the shifted Loewner matrix (4).

Denote

L :=
[
w′
∗
iwj

λ∗i +µj

]
i,j=1,...,N

Lσ :=
[
u′
∗
i µjyj−λ

∗
i y
′∗
i uj

λ∗i +µj

]
i,j=1,...,N

;

it follows from the equations (17) that there exist matrices
X ′, X ∈ Cn×N , whose columns are the directions associated
with the vector-exponential state trajectories corresponding
to the input-output data, such that[

L Lσ
]

= X ′∗
[
EX AX

][
L
Lσ

]
=

[
X ′∗E
X ′∗A

]
X . (18)

The equations (18) are the counterpart of those in formula
(2.25) of [5], with Y = X ′∗, Σ`X̃

∗ =
[
EX AX

]
and

Ỹ Σr =

[
X ′∗E
X ′∗A

]
. A “short” SVD of the two matrices on

the left-hand side of (18) yields matrices X ′∗ and X with
orthonormal rows; under such assumption we recover E and
A by projection of L and Ls as

E = X ′LX∗

A = X ′LsX∗ ,

respectively, see the first two formulas (22) p. 646 of [16].

From the output equation y′ = B>x′ of the dual system
(14) it follows that Y ′ = B>X ′, where

Y ′ :=
[
y′1 . . . y′N

]
∈ Cm×N .

Assuming that X ′ has been obtained via a short SVD and
consequently that its rows are orthonormal, it follows that

B = X ′Y ′∗ .

This is the third equation in (2.28) p. 17 of [5]. Analogously,
from the output equation y = Cx of the primal system (13)
it follows that Y = CX , where

Y :=
[
y1 . . . yN

]
∈ Cm×N .

Consequently, assuming that X has been obtained via a short
SVD and consequently its rows are orthonormal,

C = Y X∗ ,

the fourth equation in (2.28) p. 17 of [5].

V. THE HIGHER-ORDER CASE

We now sketch (see [18] for a thorough exposition) how
to deal with the controllable higher-order case, in which the
system generating the data is represented in kernel form

P

(
d

dt

)
y = Q

(
d

dt

)
u , (19)

where P ∈ Rp×p[ξ], Q ∈ Rp×m[ξ] are left-coprime. In such
case it can be shown that the set of trajectories col(u, y)
satisfying (19) can also be represented in image form by

col(u, y) =

[
D
(
d
dt

)
N
(
d
dt

)] ` , (20)

where ` is an auxiliary variable and D ∈ Rm×m[ξ] and N ∈
Rp×m[ξ] are right-coprime matrices. Moreover, PN = QD.

In the higher-order case, the notion of duality is defined
as follows. Denote by B the set of infinitely-differentiable
trajectories satisfying (19); we call this the primal behavior.
The dual behavior is the set B′ of all infinitely-differentiable
trajectories col(u′, y′) such that∫ +∞

−∞
u∗y′ + y∗u′ dt = 0 (21)

for all col(u, y) ∈ B of compact support. It can be proved
(see [29]) that B′ has the kernel representation

D

(
− d

dt

)>
y′ = N

(
− d

dt

)>
u′ , (22)

and the image representation

col(u′, y′) =

[
P
(
− d
dt

)>
Q
(
− d
dt

)>
]
`′ . (23)

Now denote R :=
[
P −Q

]
and M :=

[
D
N

]
; it follows

from (20) and (23) that B = im M
(
d
dt

)
and B′ =

im R
(
− d
dt

)>
. Moreover, since RM = 0, it follows (see



Prop. 10.1 of [29]) that there exists a two-variable polyno-
mial matrix Ψ ∈ Rp×m[ζ, η] such that (ζ + η)Ψ(ζ, η) =
R(−ζ)M(η). It also follows from Prop. 10.1 of [29] that
Ψ(ζ, η) can be factored as Ψ(ζ, η) = Z(ζ)>X(η), where
Z ∈ Rn×p[ξ] and X ∈ Rn×m[ξ] have the property that
x := X

(
d
dt

)
` and x′ := Z

(
d
dt

)
`′ are the state trajectories

corresponding to col(u, y) and col(u′, y′) defined by (20) and
(23), respectively (see [9], [24], [26] for a thorough introduc-
tion to such polynomial-differential operators). Consequently
the integral relation (21) between primal and dual trajectories
also admits a differential version

u∗y′ + y∗u′ =
d

dt
(x′∗x) , (24)

which coincides with that obtained in Prop. 1 using state-
space representations.

It can be shown (see Prop.s 2.4, 2.6 and 2.7 of [18],
respectively) that results analogous to those illustrated in (9),
Prop. 3 and Prop. 2 hold also in the higher-order case.

VI. CONCLUSIONS

Several results in the Loewner framework for interpolation
have been interpreted in the light of the concept of duality
of dynamical systems. We have shown how the duality point
of view allows novel insights of a more fundamental nature
on some crucial results in the Loewner framework (e.g. the
correspondence between state trajectories and factorizations
in equation (24)). Moreover, known results in the Loewner
framework have been shown to follow in a straightforward
way from the relation between primal- and dual trajectories
(e.g. the rank result of Prop. 2, the Sylvester equation in
Prop. 3).

Current research directions include the formulation of
recursive interpolation algorithms in the BDF framework,
and the extension of the results presented here to parametric
modelling and modelling of vector-exponential multidimen-
sional trajectories.
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