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An important quality aspect of censuses is the degree of coverage of the population. When
administrative registers are available undercoverage can be estimated via capture-recapture
methodology. The standard approach uses the log-linear model that relies on the assumption
that being in the first register is independent of being in the second register. In models using
covariates, this assumption of independence is relaxed into independence conditional on
covariates. In this article we describe, in a general setting, how sensitivity analyses can be
carried out to assess the robustness of the population size estimate. We make use of log-linear
Poisson regression using an offset, to simulate departure from the model. This approach can
be extended to the case where we have covariates observed in both registers, and to a model
with covariates observed in only one register. The robustness of the population size estimate is
a function of implied coverage: as implied coverage is low the robustness is low. We conclude
that it is important for researchers to investigate and report the estimated robustness of their
population size estimate for quality reasons. Extensions are made to log-linear modeling in
case of more than two registers and the multiplier method.

Key words: Capture-Recapture methodology; dual-system estimation; sensitivity analysis;
census; Poisson log-linear regression.

1. Introduction

For the Census of 2011, an increasing number of countries used administrative data to

collect the necessary information. Under census regulations a quality report is obligatory,

and one of the aspects that needs to be addressed is the undercoverage of the census data.

This asks for an estimate of the size of the population. If one wants to estimate the size of a

population, capture-recapture methods, making use of log-linear models, are commonly

used (Fienberg 1972; Bishop et al. 1975; Cormack 1989; International Working Group for

Disease Monitoring and Forecasting 1995). These methods go by different names, such as

mark-recapture methods, dual-system methods or dual-record system methods. In this
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article we use the label capture-recapture. In countries with a traditional census a

postenumeration survey could be organised to collect recaptured data, as was the case for

instance in the United Kingdom (Brown et al. 1999; ONS 2012), and in the U.S. (Wolter

1986; Bell 1993; Nirel and Glickman 2009). In this case, a survey with a relatively small

sample size is linked to the census data. In countries with a census based on administrative

data, the approach used most is to find two registers and treating these as the captured and

recaptured data. The method includes linking the individuals in the registers and

subsequently estimating the number of individuals missed by both registers.

However, the outcome of the capture-recapture method depends heavily on some

assumptions underlying the data. In particular, if two sources are used, it is usually assumed

that inclusion in the captured data is independent of inclusion in the recaptured data. A second

assumption deals with homogeneity versus heterogeneity of inclusion probabilities. If there is

one source of heterogeneity it is assumed that at least for one of the two sources the inclusion

probabilities are homogeneous (Chao et al. 2001; Zwane and Van der Heijden 2004). If there

are two sources of heterogeneity (two covariates), the estimates are unbiased if the inclusion

probabilities of the first source vary with one source of heterogeneity, and the inclusion

probabilities of the second source vary with a second source of heterogeneity, but the two

sources of heterogeneity are statistically independent (Seber 1982, 86). The remaining two

assumptions are that the population is closed and that the registers are perfectly linked.

The assumption of independence between two registers is very strict and can easily be

violated. Under dependence between registers, the inclusion probability of one register is

related to the inclusion probability of the other register. Then, under positive dependence

individuals in the captured data have a higher probability of also being in the recaptured

data, resulting in an underestimation of the population size estimate. Additionally, under

negative dependence the opposite holds (Hook and Regal 1995).

Independence is an unverifiable assumption, that is, it cannot be verified from the data

used for the estimation of the population size. The log-linear independence model for the

linked captured and recaptured data has three parameters, whereas there are only three

counts. Because the observed counts are equal to fitted counts, the independence model is

the saturated model (compare van der Heijden et al. 2012). Thus we cannot assess

dependence from the saturated model. One way of reducing the impact of the strict

independence assumption is to replace it with the lesser strict assumption of independence

conditional on covariates. Adding covariates enables us to reduce heterogeneity

introduced to the model due to the specific covariate, adjusting the population size

estimate for the better. The situation of a saturated model also holds when covariates of

individuals are taken into account and we operate under the log-linear conditional

independence model. However, we are interested in what the impact of mild or severe

violations of (conditional) independence is on the population size estimate. It does not

necessarily have to be the case that violation of the (conditional) independence assumption

results in a substantive bias in the population size estimate. It is of important to also assess

what happens when the other assumptions are violated. However, looking at all

assumptions at once is very complex. In this article, we will thus focus on the violation of

the independence assumption, assuming all other assumptions to be met.

We propose a general approach to sensitivity analyses under the log-linear model

framework using a log-linear Poisson regression, a special case of the generalized linear
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model. Where in the saturated model specific interaction parameters are equal to zero,

we impute fixed values departing from zero for these parameters, thus simulating

dependence, and investigate the impact on the population size estimate. As the log-linear

interaction parameters are closely related to the (conditional) odds ratio, there is a clear

interpretation for the values to which we fix the parameters.

Similar findings come from the research of Brown et al. (1999), where the census was

linked to a Post Enumeration Survey to assess under- and overcoverage (cf. also Wolter

1986; Bell 1993). Brown et al. (1999) used a fixed odds ratio of 0.1 and 10 to investigate

the impact of simulated dependence on the population size estimate. They showed that

fixed dependence can seriously bias the population size estimate under the independence

assumption. Results like these are valuable, since they give insight to the size of the impact

of violated independence. However, research into the robustness of the population size

estimator under violation of independence is non standard. As far as we know, other

research on the impact of the violation of independence involves simulation studies, an

already known population size estimate or uses multiple sources (Wolter 1986; Bell

1993; Cormack et al. 2000; Hook and Regal, 1992, 1997, 2000; Brown et al. 2006; Baffour

et al. 2013).

We extend the results of Brown et al. (1999) by, instead of using the standard log-linear

model, working under a log-linear Poisson regression where we simulate a fixed

dependence using offsets. In simulating dependence by adding a fixed offset value to the

log-linear model, we can compare the population size estimate under independence to the

population size estimate under a ‘true’ dependence. Additionally we extend our two-register

independence model to the case with covariates observed in both registers (fully observed

covariates) and covariates observed in only one register (partially observed covariates).

Partially observed covariates are usually ignored because including them would lead to

missing values in the other register. However, ignoring these covariates when they

actually are related to the inclusion probability of the register results in a biased population

size estimate (Zwane and van der Heijden 2007). In assuming missing at random (MAR)

we can impute the missing values of the partially observed covariate in the other register

and use this covariate to replace the strict independence assumption with independence

conditional on covariates. For partially observed covariates the log-linear model is easily

extendable, so that we can also conduct sensitivity analyses in this context.

We proceed as follows. In section 2 we will discuss the log-linear model for a capture-

recapture model with two registers without covariates. In Section 3 we will discuss a two-

register capture-recapture model and conduct a sensitivity analysis on two registers with a

conditional independence. In Section 4 the independence assumption will be conditional

on partially observed covariates, where a covariate has been observed in only one register.

Here the sensitivity analysis is on the dependence of the partially observed covariate on the

register, thus whether the covariate influences the inclusion probability of the register.

Section 5 provides some extensions made to a specific model, namely for models for three

registers, the multiplier method and confidence intervals.

We use two data sources to illustrate the robustness of capture-recapture methodology,

which have been provided by Statistics Netherlands. We chose not to make a simulation

study because researchers in the field of capture-recapture use real data and we wanted to

make the impact of a possible dependence relevant to such researchers. The first data
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source is the GBA (Gemeentelijke Basisadministratie) which is the official Dutch

Population Register containing demographic information on the ‘de jure’ population. The

‘de jure’ population differs from the ‘de facto’ population, the latter also containing

residents who have immigrated from other countries of the European Union and did not

register as such, immigrants who (are planning to) stay less than four months and illegal

immigrants. An important part of the difference between the ‘de jure’ and the ‘de facto’

population is the group of temporary workers from eastern Europe, in particular Poland.

The second data source is the HKS (Herkenningsdienst systeem), which is a police register

of all persons suspected of known offenses. We refer the reader to van der Heijden et al.

(2012) for more details on the registers.

2. Two Registers Without Covariates

The simplest population size estimation model makes use of two registers, 1 and 2. Let

variables A and B respectively denote inclusion in registers 1 and 2. Let the levels of A be

indexed by i ði ¼ 0; 1Þ where i ¼ 0 stands for “not included in register 1”, and i ¼ 1 stands

for “included in register 1”. Similarly, let the levels of B be indexed by j ð j ¼ 0; 1Þ.

Expected values are denoted by mij. Observed values are denoted by nij with n00 ¼ 0,

because there are no observations for the cases that belong to the population but were not

present in either of the registers.

Recall that one of the assumptions in population size estimation is that the probability of

being in the first register is independent of the probability of being in the second register.

Under independence, the log-linear model for the counts n01; n10 and n11 is:

log mij ¼ lþ lA
i þ lB

j ð1Þ

where we used the identifying restrictions lA
0 ¼ lB

0 ¼ 0. There are two ways to derive the

estimate of the missed part of the population. First, by m̂00 ¼ expðl̂Þ, and second, by using

the property that the odds ratio under independence is 1, that is, m00m11=m10m01 ¼ 1

so that:

m̂00 ¼
m̂10m̂01

m̂11

¼
n10n01

n11

: ð2Þ

For the first way of estimating the missed portion of the population we need an estimate

of l in (1). There are several ways to estimate the parameters in (1), and it suits our

purposes later on to use the generalized linear model. We assume that nij follow a Poisson

distribution; a log link connects the expected values mij to the linear predictor. In terms of

matrices and vectors we get

log

m11

m10

m01

0
BB@

1
CCA ¼

1 1 1

1 1 0

1 0 1

0
BB@

1
CCA

l

lA
1

lB
1

0
BB@

1
CCA ð3Þ

where the right-hand side of (3) leads to a vector with elements

lþ lA
1 þ lB

1 ; lþ lA
1 ; lþ lB

1

� �
. Thus the estimates of l; lA

1 and lB
1 will get us estimates
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m̂11; m̂10 and m̂01 of which also the missed portion of the population m̂00 is found by log

ðm̂00Þ ¼ l̂, so that m̂00 ¼ exp ðl̂Þ.

However, the problem with using the independence model is that independence is an

unverifiable assumption, that is, we can not verify independence from the data. Thus the

Poisson log-linear model for independence works under the assumption that the

interaction parameter lAB
ij ¼ 0. As noted before, this assumption could be violated and

the population size estimate under independence may well be inaccurate. We are

interested in what happens to the population size estimate when we assume independence

when actually the inclusion probabilities of inclusion in registers 1 and 2 are dependent.

The approach we advocate is to include a fixed interaction parameter ~l
AB

ij in the model,

where the tilde indicates that the interaction parameter is not estimated but fixed. By

choosing interesting values for ~l
AB

ij we can conduct a sensitivity analysis on the population

size estimate. The log-linear model then becomes:

log mij ¼ lþ lA
i þ lB

j þ
~l
AB

ij ð4Þ

where we used the identifying restrictions ~l
AB

00 ¼
~l
AB

10 ¼
~l
AB

01 ¼ 0. In matrix terms we get:

log

m11

m10

m01

0
BB@

1
CCA ¼

1 1 1 1

1 1 0 0

1 0 1 0

0
BB@

1
CCA

l

lA
1

lB
1

~
l

AB

11

0
BBBBB@

1
CCCCCA

ð5Þ

The log-linear model for independence is a special case of this saturated model when

lAB
ij ¼

~l
AB

ij ¼ 0. Dependence can be introduced to log-linear models by fixing ~l
AB

ij to

anything but 0. In software for Poisson regression, Model (4) and (5) can be fit by entering
~l
AB

ij as a so-called offset. When ~l
AB

ij – 0, l̂ in (5) differs from l̂ in (3).

Note that interesting values for ~l
AB

ij can be chosen using a direct relationship between

lAB
ij and the odds ratio u, which is:

u ¼
m11m00

m10m01

¼ exp ~l
AB

11 : ð6Þ

Using the Poisson log-linear model with an offset is a general approach for carrying out

a sensitivity analysis. The approach is general in the sense that it can be applied in

more complicated log-linear models, for example when it is desirable to investigate

violations of more than one assumption simultaneously (cf. the models discussed in

Subsection 4.2). For completeness we also discuss a second method that is simpler but

less general.

The second way of estimating the missed portion of the population is by using odds

ratios directly, as has been done in Brown et al. (1999). We show this second way to give a

full overview of the method. This also provides for simpler notation, which we will use in

the rest of the article. Under independence, the odds ratio m11m00=m10m01 ¼ 1, and by

rewriting and replacing the expected values with observed values, we get maximum
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likelihood estimate (2). We can impute dependence by making the odds ratio u – 1.

Thus u ¼ m11m00=m10m01, and

m̂00ðuÞ ¼ u
m̂10m̂01

m̂11

¼ u
n10n01

n11

¼ um̂00: ð7Þ

Note that m̂00 uð Þ can be found simply by multiplying the estimate under independence, m̂00,

with u. Both approaches, the log-linear Poisson regression with an offset and the odds

ratio, yield the same m̂00. We will use the odds ratio to denote dependence as it provides a

simpler notation than the interaction parameter ~l
AB

ij .

The methods just described allow us to study the impact of a violation of the

independence assumption as a function of u. To get the population size estimate, let n be

the total of observed cases, n ¼ n01 þ n10 þ n11, let N̂ be the population size estimated

under u ¼ 1, thus N̂ ¼ nþ m̂00, and define N̂ðuÞ as the estimated population size under

dependence of size u, N̂ðuÞ ¼ nþ m̂00ðuÞ ¼ nþ um̂00. It follows that under negative

dependence (i.e., u , 1), N̂ will be an overestimation compared to N̂ðuÞ, and under a

positive dependence (i.e., u . 1), N̂ will be an underestimation compared to N̂ðuÞ. The bias

will be smaller the closer u is to 1.

Assume that Register 1 has a better coverage of the population than Register 2. Then when

n11=ðn11 þ n01Þ is high the observed coverage is high, and vice versa. Brown et al. (2006)

showed that as the observed coverage increases, the number of individuals that are missed

by Register 1 reduces and n11=n10n01 increases so that n10n01=n11 ¼ m̂00 decreases. Then,

the implied coverage of Register 1 is high, so that m̂00 is reasonably robust to dependence.

When the observed coverage decreases, the number of individuals missed by Register 1

increases and n11=n10n01 decreases. Then the implied coverage of Register 1 will be low,

so that m̂00 is less robust to dependence.

To illustrate, we use two registers of Statistics Netherlands, the GBA and the HKS, on

people with Afghan, Iranian, or Iraqi (AII) nationality living in the Netherlands in 2007

(shown in Table 1; van der Heijden et al. 2012), and on people with a Polish nationality

living in the Netherlands in 2009 (shown in Table 1; van der Heijden et al. 2011).

For the people with Afghan, Iraqi, and Iranian nationality m̂00 ¼ 6; 170 under indepen-

dence between the registers GBA and HKS. The population size estimated under u ¼ 1

becomes N̂ ¼ 27; 594þ 6; 170 ¼ 33; 764. Then, under dependence between the registers

GBA and HKS the estimated population size becomes N̂ðuÞ ¼ 27; 594þ ðu*6; 170Þ, see (7).

To investigate the robustness of the estimate under dependence we vary u from 0.5 to 2. In

the log-linear Poisson regression approach this corresponds to using offsets varying between

log(0.5) and log(2). Table 2 shows m̂00ðuÞ, the population size estimate N̂ðuÞ, the estimated

Table 1. The observed values for the two nationalities, with the Afghan, Iraqi,

and Iranian people residing in the Netherlands in 2007 on the left, and the Polish

people residing in the Netherlands in 2009 on the right.

AII HKS Polish HKS

GBA 1 0 GBA 1 0

1 1,085 26,254 1 374 39,488
0 255 - 0 1,445 -
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relative bias N̂=N̂ðuÞ and the bootstrapped standard error (se) of the estimate for both

nationalities (details about the parametric bootstrap are provided in Subsection 5.3). As can be

seen from the upper panel of Table 2, for the people with Afghan, Iraqi, and Iranian

nationality under a dependence ofu ¼ 0:5, the estimate m̂00ðuÞ is half the size of the population

size estimate under independence, and for a dependence of u ¼ 2 the estimate m̂00 is twice

the size of the population size estimate under independence. If in the population the registers

are dependent with a true size u, the population size estimate under independence varies

between a ten percent overestimation and a 15 percent underestimation. Thus when the

true u – 1 our population size estimate under independence remains fairly accurate.

However, for the Polish people the population size estimate under dependence is not

robust. As can be seen from the lower panel of Table 2, if in the population the registers are

dependent with a true size u, the population size estimate under independence deviates

between a 65 percent overestimation and 44 percent underestimation. Thus when the true

u – 1, the population size estimate under independence for the Polish people is not robust.

The most important reason why the population size estimate deviates this much is

because the implied coverage of the people with Afghan, Iraqi, and Iranian nationality

is smaller than for the individuals with a Polish nationality. For example, 1,085 is

1; 085= 1; 085þ 255
� �

¼ 0:81, thus 81 percent of implied coverage of the GBA measured

by the HKS. By contrast, for the individuals with Polish nationality the implied coverage

of the GBA is only 21 percent, confirming the research by Brown et al. (2006) that as the

observed coverage increases, the implied coverage increases and thus the population size

estimate is more robust against dependence.

The estimated standard error of N̂ðuÞ is mainly determined by the size of m̂00ðuÞ, and this

explains the sharp rise of the standard error from u ¼ :50 to u ¼ 2:00 and the difference in

standard error between the individuals with Afghan, Iraqi, and Iranian nationality and the

individuals with Polish nationality.

3. Two Registers With Fully Observed Covariates

Covariates were first introduced to capture-recapture by Alho (1990) to reduce the

heterogeneity resulting from individual differences on that covariate. As such, if covariates

Table 2. Sensitivity analysis of the population size estimate for the people residing in the Netherlands in 2007

with Afghan, Iraqi, and Iranian nationality (upper panel) and for people with Polish nationality in 2009

(lower panel).

Odds ratio

0.50 0.67 1.00 1.50 2.00

AII m̂00ðuÞ 3,085 4,114 6,170 9,255 12,341
N̂ðuÞ 30,679 31,708 33,764 36,849 39,935

N̂=N̂ðuÞ 1.10 1.06 1.00 0.92 0.85
se 223 293 441 647 864

Polish m̂00ðuÞ 76,284 101,712 152,567 228,851 305,135
N̂ðuÞ 117,591 143,019 193,874 270,158 346,442

N̂=N̂ðuÞ 1.65 1.36 1.00 0.72 0.56
se 4,473 6,024 8,787 13,630 17,866
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are available, the generally nonfeasible independence assumption can be replaced with a

less strict conditional independence assumption, where independence is conditional on

covariates (Bishop et al. 1975; van der Heijden et al. 2012). This assumption is less stringent

because it can take into account inclusion probabilities that are heterogeneous over the

levels of the included covariate. Another advantage of using covariates is that it allows us

to investigate the characteristics of the missing portion of the population.

Suppose we have observed covariate X, where the levels of X are indexed by x,

(x ¼ 0; 1). Under independence conditional on X, there are two zero counts for cases not

found in either register, namely for x ¼ 0 and for x ¼ 1. Let mijx denote the expected

values for A, B and X. The log-linear model for independence for two registers and

covariate X is

log mijx ¼ lþ lA
i þ lB

j þ lX
x þ lAX

ix þ lBX
jx ; ð8Þ

with identifying restrictions that a parameter equals zero when i or j or x ¼ 0. When

assuming independence between A and B conditional on X, lAB
ij ¼ lABX

ijx ¼ 0. We use the

notation of Bishop et al. (1975) to denote hierarchical log-linear models, that is, we denote

this model as [AX][BX].

In Section 2 we discussed two ways to estimate population sizes in a sensitivity analysis,

namely one using an offset in a Poisson log-linear model and another using odds ratios

directly. Here we only discuss the first way as it is more general. We assume that nijx

follow a Poisson distribution and a log link connects the expected value mijx to the linear

predictor.

It is important to note that in this context, too, sensitivity analyses are useful for

assessing the impact of assumptions that are not verifiable from the data under study. Here

conditional independence is the unverifiable assumption, since model [AX][BX] is the

saturated model. By contrast, model violations for more restricted models are verifiable in

the data, for example for a model such as [A][BX]. Hence, the impact of interaction

between A and X does not have to be investigated via a sensitivity analysis. However,

when there may be dependence between A and B, a sensitivity analysis is useful.

We model dependence in the data by adding fixed parameters ~l
AB

ij þ
~l
ABX

ijx to Model (8).

We again work under the saturated model, as the number of parameters to be estimated is

equal to the number of observed parameters:

log mijx ¼ lþ lA
i þ lB

j þ lX
x þ lAX

ix þ lBX
jx þ

~l
AB

ij þ
~l
ABX

ijx ; ð9Þ

with the additional restrictions that parameters ~l
AB

ij and ~l
ABX

ijx equal zero when i or j or

x ¼ 0.

Under dependence between A and B given X, the association between the odds ratio ux

and the log-linear parameters is:

ux ¼
m11xm00x

m10xm01x

¼ exp ~l
AB

11 þ
~l
ABX

11x

� �
: ð10Þ

When we assume that dependence for x ¼ 0 is identical to dependence for x ¼ 1, then:

u ¼
m110m000

m100m010

¼
m111m001

m101m011

¼ exp ~l
AB

11

� �
: ð11Þ
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We estimate (9) using log-linear Poisson regression with for cell (1,1,0) the offset ~l
AB

11 and

for cell (1,1,1) the offset ~l
AB

11 þ
~l
ABX

111 . After estimating (9), estimates for the missed

portions of the population are found by m̂000 ¼ expðl̂Þ and m̂001 ¼ exp l̂þ l̂
X

1

� �
.

Table 3 shows the data for the Afghan, Iraqi, and Iranian people distributed over males

ðx ¼ 0Þ and females ðx ¼ 1Þ. Under conditional independence, m̂000 ¼ 3; 583 and

m̂001 ¼ 2; 113. Taken together, both registers missed 5,696 cases. Note that conditional

independence does not imply marginal independence under model ½AX�½BX�, since the

marginal odds ratio 1; 085*5; 696=26; 254*255 ¼ 0:92, and hence shows dependence

(under marginal independence it would be equal to 1).

We estimate the parameters in (9) with a Poisson regression with ~l
ABX

ijx ¼ 0, so that the

odds ratio of the males equals the odds ratio of the females (cf. (11)). The upper panel of

Table 5 shows the results of the sensitivity analysis for the people with Afghan, Iraqi, and

Iranian nationality in 2007 and the covariate gender. If in the population the registers are

dependent with a true size u, the population size estimate under independence varies

between a nine percent overestimation to a 15 percent underestimation. As m̂00ðuÞ is

relatively small, the standard error is relatively small. Thus when the true u ¼ 0.5 but we

estimate under u ¼ 1, the population size estimate under independence is fairly robust.

For the people with a Polish nationality residing in the Netherlands in 2009 the covariate

gender is also used. Under conditional independence, the estimate m̂00x ¼ 144; 548. The

lower panel of Table 5 shows the sensitivity analysis of the population size estimator

under conditional independence. If in the population the registers are dependent with a

true size u, the population size estimate under independence ranged between a 58 percent

overestimation and a 42 percent underestimation. Thus when the true u – 1, the population

size estimate deviates greatly from the population size estimate under u ¼ 1, indicating that

for this dataset the population size estimate under independence is not robust.

We note that this example uses a covariate with only two levels. One can easily extend

this to covariates with more levels. Assume covariate W has three levels, where the levels

of W are indexed by w (w ¼ 0; 1; 2). Then there are three zero counts, namely for w ¼ 0,

w ¼ 1 and w ¼ 2. One can estimate the zero counts using Equation (10), where estimates

Table 3. The observed values for the Afghan, Iraqi, and Iranian people,

males on the left panel and females on the right panel.

Males HKS Females HKS

GBA 1 0 GBA 1 0

1 972 14,883 1 113 11,371
0 234 - 0 21 -

Table 4. The observed values for the Polish people, males on the left panel and

females on the right panel.

Males HKS Females HKS

GBA 1 0 GBA 1 0

1 313 19,152 1 61 20,336
0 1,349 - 0 96 -
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for the missed portions of the population are found by m̂000 ¼ exp ðl̂Þ and m̂001 ¼

exp l̂þ l̂
W

1

� �
and m̂002 ¼ exp l̂þ l̂

W

2

� �
.

4. Two Registers With Partially Observed Covariates

In Section 3 we used covariates that are present in both registers (fully observed

covariates) to replace the strict independence assumption with an independence

assumption conditional on covariates. However, a register usually also has a set of

variables that are only measured in one register and not in the other register (partially

observed covariates). Partially observed covariates in A are usually ignored because

including them leads to missing data in B for those individuals that are not in A, and vice

versa. When these covariates are related to the inclusion probability, ignoring the partially

observed covariates can lead to a biased population size estimate (Zwane and van der

Heijden 2007; van der Heijden et a1. 2012).

4.1. Partially Observed Covariates

Partially observed covariates can be approached as a missing data problem (Zwane and

van der Heijden 2007). If we assume MAR mechanism for the data, then we can use the

Expectation-Maximization (EM) algorithm to estimate the missing values of the partially

observed covariate of register 1 (and 2) for the individuals not present in Register 1 (and 2).

MAR assumes that the probability of missingness depends only on the observed variables

in the capture-recapture model (Little and Rubin 1987). When the assumption of MAR has

been satisfied, the EM algorithm will give unbiased estimates.

Suppose register 1 has the covariate X1, indexed by k k ¼ 0; 1
� �

, where the values for X1

are missing for A ¼ 0 because X1 is not in register 2. Assume that register 2 has the

covariate X2, indexed by l l ¼ 0; 1
� �

, where the values for X2 are missing for B ¼ 0

because X2 is not in register 1. The log-linear conditional independence model for two

registers, with two partially observed covariates X1 and X2, is denoted as

log mijkl ¼ lþ lA
i þ lB

j þ lX1

k þ lX2

l þ lAX2

il þ lBX1

jk þ lX1X2

kl ; ð12Þ

Table 5. Sensitivity analysis for the people with Afghan, Iraqi, and Iranian (AII) nationality residing in the

Netherlands in 2007 (upper panel), and the people with Polish nationality residing in the Netherlands in 2009

(lower panel), conditional on gender.

Odds ratio

0.50 0.67 1.00 1.50 2.00

AII m̂00 2,848 3,797 5,696 8,544 11,392
N̂ðuÞ 30,442 31,391 33,290 36,138 38,986
N̂=N̂ðuÞ 1.09 1.06 1.00 0.92 0.85
Se 292 390 576 863 1144

Polish m̂00 57,274 76,365 114,548 171,821 229,095
N̂ðuÞ 98,581 117,672 155,855 213,128 270,402
N̂=N̂ðuÞ 1.58 1.32 1.00 0.73 0.58
Se 3,814 5,088 7450 11,465 15,135
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with identifying restrictions lAB
ij ¼ lAX1

ik ¼ lBX2

jl ¼ lABX1

ijk ¼ lABX2

ijl ¼ lABX1X2

ijkl ¼ 0. The

conditional independence model is denoted by ½AX2�½BX1�½X1X2�. Inclusion of the

parameter lAX2

il instead of the parameter lAX1

ik may seem counterintuitive, but no interaction

for A and X1 can be identified as the levels of X1 do not vary over individuals for which

A ¼ 0, and similarly for B and X2 (Zwane and van der Heijden 2007).

Table 6 illustrates that two registers with two covariates lead to 16 cells. However,

because our covariates are only partially observed, columns X2 ¼ 1 and X2 ¼ 0 for B ¼ 0

are collapsed, just as rows X1 ¼ 1 and X1 ¼ 0 for A ¼ 0 are collapsed. In other words, we

do not observe counts for m0111 and m0101 but only one count for the sum m0111 þ m0101,

and similarly for m0110 þ m0100, m1011 þ m1010 and m1001 þ m1000. Note that we have no

observed values for m0011, m0001, m0010 and m0000, as these refer to individuals who are in

neither of the registers. Thus model ½AX2�½BX1�½X1X2� is saturated with eight observed

values and eight parameters to be estimated.

Using the EM algorithm we first estimate the four missing cells, that is, the cells that are

missing because the covariates are only partially observed. In the E-step we spread out the

four sums m0111 þ m0101, m0110 þ m0100, m1011 þ m1010 and m1001 þ m1000 over the eight

cells to get an expectation for the missing data. In the M-step we estimate log-linear model

(12) to the completed table of twelve cells. For estimation, we assume that the twelve

counts follow a Poisson distribution and a log link connects the expected counts to the

linear predictor. The resulting estimates are then used for the E-step where in the M-step,

following (12), we estimate the parameters again.

To illustrate we once more use the data on the people with Afghan, Iraqi, and Iranian

nationality residing in the Netherlands in 2007 with two partially observed covariates (van

der Heijden et al. 2012). The GBA has the partially observed covariate marital status ðX1Þ,

where X1 ¼ 1 denotes either being married or living together and X1 ¼ 0 denotes either

unmarried, divorced or widowed. The HKS has the partially observed covariate police

region ðX2Þ, where X2 ¼ 1 denotes residing in one of the five biggest cities of the

Netherlands (i.e., Amsterdam, Rotterdam, Utrecht, The Hague, and Eindhoven) and X2 ¼ 0

denotes residing in the rest of the country.

Due to the log-linear model used, the first four observed values remain unchanged for

each iteration (for GBA ¼ 1 and HKS ¼ 1). The upper panel of Table 7 shows the

observed counts and the lower panel of Table 7 shows the fitted counts after convergence

of the EM algorithm. As an example, the observed value of 91 (for X2 ¼ 1, where X1

values are missing under GBA ¼ 0) is spread out into the values 64 for X1 ¼ 1 and 27 for

X1 ¼ 0. After convergence, the unobserved part of the population is estimated. In total,

Table 6. Expected values for two registers and two partially observed covariates.

B ¼ 1 B ¼ 0

X2 ¼ 1 X2 ¼ 0 X2 ¼ 1 X2 ¼ 0

A ¼ 1 X1 ¼ 1 m1111 m1110 m1011 m1010

X1 ¼ 0 m1101 m1100 m1001 m1000

A ¼ 0 X1 ¼ 1 m0111 m0110 m0011 m0010

X1 ¼ 0 m0101 m0100 m0001 m0000
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we estimate that there were 33,770 individuals with Afghan, Iraqi, and Iranian nationality

residing in the Netherlands in 2007.

4.2. Sensitivity Analyses

We again make use of a sensitivity analysis to investigate the unverifiable assumption of

independence conditional on partially observed covariates. Model violations for more

restricted models are verifiable in the data. For example, using a model such as ½AX2�½BX1�

allows us to investigate absence of interaction lX1X2

kl in the data. Thus the impact of an

interaction between X1 and X2 does not need to be investigated via a sensitivity analysis.

However, in this context (12) is the saturated model and therefore model violations such as

dependence between A and X1, between B and X2, and between A and B are unverifiable,

rendering it useful to conduct a sensitivity analysis. Note that in the previous sections we

used a sensitivity analysis to assess the interaction between the two registers. In this

section we assess not only the interaction between A and B, but also the interaction

between the register and its partially observed covariate. To exemplify, we introduce an

interaction parameter that simulates dependence between the GBA and marital status.

Such a dependence would imply that marital status influences the inclusion probability of

being in the GBA.

The log-linear model for an interaction between A and B would be:

log mijkl ¼ lþ lA
i þ lB

j þ lX1

k þ lX2

l þ lAX2

il þ lBX1

jk þ lX1X2

kl þ ~l
AB

ij ; ð13Þ

with additional identifying restrictions that ~l
AB

ij ¼ 0 when i or j equals 0. Here exp ~l
AB

ij

� �
is

the conditional odds ratio for the interaction between A and B.

Assume the partially observed covariate marital status is related to the inclusion

probability of the GBA, thus lAX1

ik – 0. Because the interaction between A and X1 is

Table 7. Data for the Afghan, Iraqi, and Iranian people residing in the Netherlands in 2007, spread out over the

partially observed covariates marital status X1 and police region X2

Panel 1: The observed counts

HKS ¼ 1 HKS ¼ 0

X2 ¼ 1 X2 ¼ 0 X2 missing

GBA ¼ 1 X1 ¼ 1 259 539 13,898
X1 ¼ 0 110 177 12,356

GBA ¼ 0 X1 missing 91 164 -

Panel 2: The fitted frequencies

HKS ¼ 1 HKS ¼ 0

X2 ¼ 1 X2 ¼ 0 X2 ¼ 1 X2 ¼ 0

GBA ¼ 1 X1 ¼ 1 259 539 4,511 9,387
X1 ¼ 0 110 177 4,736 7,620

GBA ¼ 0 X1 ¼ 1 64 123 1,112 2,150
X1 ¼ 0 27 41 1,168 1,745
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unverifiable from the data, the fixed parameter ~l
AX1

ik has been added to the log-linear

model (12). We continue to work under the saturated model:

log mijkl ¼ lþ lA
i þ lB

j þ lX1

k þ lX2

l þ lAX2

il þ lBX1

jk þ lX1X2

kl þ ~l
AX1

ik ; ð14Þ

with additional identifying restrictions that ~l
AX1

ik ¼ 0 when i or k equals 0. The same can be

done for the interaction between B and X2. When the partially observed covariate X2 is

related to the inclusion probability of register B, lBX2

jl – 0. We add fixed parameter ~l
BX2

jl to

the log-linear model. The log-linear model then becomes:

log mijkl ¼ lþ lA
i þ lB

j þ lX1

k þ lX2

l þ lAX2

il þ lBX1

jk þ lX1X2

kl þ ~l
BX2

jl ; ð15Þ

with additional identifying restrictions that ~l
BX2

jl ¼ 0 when j or l equals 0. We can estimate

(13), (14) and (15) via Poisson regressions with offsets. Note that in modeling these

relationships we have to fix the offset variable on a log scale. Then we can estimate the portions

of the population that both registers have missed by m̂0000 ¼ exp ðl̂Þ, m̂0010 ¼

exp l̂þ l̂
X1

1

� �
, m̂0001 ¼ exp l̂þ l̂

X2

1

� �
and m̂0011 ¼ exp l̂þ l̂

X1

1 þ l̂
X2

1 þ l̂
X1X2

11

� �
.

The upper panel of Table 8 shows the sensitivity analysis for the interaction between

A and B, the middle panel shows the sensitivity analysis for the interaction between A and

X1 and the lower panel shows the sensitivity analysis for the interaction between B and X2

for the Afghan, Iraqi, and Iranian people. As can be seen, for the interaction between

A and B, the relative bias is similar to the bias found in Tables 2 and 5. If in the population

the GBA and marital status are dependent with a true size u, the estimation under

independence deviates between a 2.22 percent overestimation to a 2.89 percent

underestimation, and the estimation under independence between the HKS and police

region deviates between a 0.23 percent underestimation and a 0.19 percent overestimation.

Thus for the interactions AX1 and BX2, when the true u – 1, the population size estimate

under independence remains fairly robust.

We have done the same for the people with Polish nationality residing in the Netherlands

in 2009. The observed values are shown in the upper panel of Table 9 and the expected

Table 8. Sensitivity analysis of the population size estimate for the people residing in the Netherlands in 2007

with an Afghan, Iraqi, and Iranian nationality with the interaction A and X1 (upper panel) and the interaction

between B and X2 (lower panel).

Odds ratio

0.50 0.67 1.00 1.50 2.00

AB m̂00ðuÞ 3.088 4,117 6,176 9,264 12,352
N̂ðuÞ 30.682 31,711 33,770 36,858 39,946
N̂=N̂ðuÞ 1.10 1.06 1.00 0.92 0.85

AX1 m̂00ðuÞ 5,443 5,711 6,176 6,736 7,179
N̂ðuÞ 33,037 33,305 33,770 34,330 34,773
N̂=N̂ðuÞ 1.0222 1.0140 1.00 0.9837 0.9711

BX2 m̂00ðuÞ 6,253 6,220 6,176 6,136 6,112
N̂ðuÞ 33,847 33,814 33,770 33,730 33,706
N̂=N̂ðuÞ 0.9977 0.9987 1.00 1.0012 1.0019

Gerritse et al.: Parametric Assumptions in Log-linear Models 369

Brought to you by | University of Southampton
Authenticated

Download Date | 10/1/15 10:46 AM



frequencies are shown in the lower panel of Table 9. Again a sensitivity analysis has been

conducted, which is shown in Table 10. Just as with the individuals with Afghan, Iraqi, and

Iranian nationality, the estimates and thus the relative bias under dependence between A and

B remains unchanged (cf. Tables 2 and 5). If in the population the GBA and marital status are

dependent with a true size u, the population size estimate under independence ranges from a

seven percent overestimation to a nine percent underestimation (upper panel). The estimate

under independence between the HKS and police region deviates from a two percent

underestimation to a two percent overestimation (lower panel). Thus when the true u – 1,

the population size estimate under independence remains fairly robust.

Table 9. The observed counts for the people with Polish nationality residing in the Netherlands in 2009

(upper panel) and the fitted frequencies spread out over the partially observed covariates (lower panel).

Panel 1: The observed counts

HKS ¼ 1 HKS ¼ 0

X2 ¼ 1 X2 ¼ 0 X2 missing

GBA ¼ 1 X1 ¼ 1 111 188 25,416
X1 ¼ 2 32 43 14,072

GBA ¼ 0 X1 ¼ 1 603 842

Panel 2: The fitted frequencies

HKS ¼ 1 HKS ¼ 0

X2 ¼ 1 X2 ¼ 0 X2 ¼ 1 X2 ¼ 0

GBA ¼ 1 X1 ¼ 1 111 188 9,435 15,981
X1 ¼ 2 32 43 6,004 8,068

GBA ¼ 0 X1 ¼ 1 468 685 39,787 58,250
X1 ¼ 2 135 157 25,318 29,408

Table 10. Sensitivity analysis of the population size estimate for the the people residing in the Netherlands in

2009 with Polish nationality with the interaction between A and X1 (upper panel) and the interaction between

B and X2 (lower panel).

Odds ratio

0.50 0.67 1.00 1.50 2.00

AB m̂00ðuÞ 76,381 101,842 152,762 229,143 305,524
N̂ðuÞ 117,688 143,149 194,069 270,450 346,832
N̂=N̂ðuÞ 1.65 1.36 1.00 0.71 0.56

AX1 m̂00ðuÞ 139,494 144,238 152,762 163,584 172,582
N̂ðuÞ 180,801 185,545 194,069 204,891 213,889
N̂=N̂ðuÞ 1.07 1.05 1.00 0.95 0.91

BX2 m̂00ðuÞ 156,616 155,004 152,762 150,707 149,429
N̂ðuÞ 197,923 196,311 194,069 192,014 190,736
N̂=N̂ðuÞ 0.98 0.99 1.00 1.01 1.02
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Under the use of partially observed covariates it becomes clear why the log-linear

Poisson regression provides a more general approach than using odds ratios to implement

the sensitivity analyses. When using log-linear Poisson regression the process becomes

vastly simpler, in that the offset can be set to any number per cell. When multiple different

offsets are in use, the log-linear Poisson regression allows for this complexity, whereas

implementing odds ratios may become gruesome.

5. Miscellany

5.1. Extension to Multiple Sources

One way to make the impact of possible violations of the independence assumption less

severe is by conditioning on covariates, as we have seen in Section 3 and 4. Another way to

make the impact of possible violations of the independence assumption less severe is by

adding registers, when more registers are available (cf. Baffour et al. 2013). Assume we

have three registers 1, 2 and 3, where the variables A, B and C respectively stand for

inclusion in the registers. We denote the expected values mijp where i; j; p ¼ 1 stand for

the inclusion into Registers 1, 2 and 3 respectively and where i; j; p ¼ 0 stands for the

absence in registers 1, 2 and 3.

For three variables, the saturated log-linear model is denoted by

log mijp ¼ lþ lA
i þ lB

j þ lC
p þ lAB

ij þ lAC
ip þ lBC

jp ; ð16Þ

with identifying restrictions that a parameter equals zero when i; j or p ¼ 0. We assume

that interaction parameter lABC
ijp ¼ 0. Model [AB][BC][AC] is the saturated model, as the

number of observed parameters equals the number of parameters to be estimated. With

d registers, we assume that the d-factor interaction is absent.

For estimation, assume that nijp follow a Poisson distribution and a log link connects the

expected value mijp to the linear predictor. We can estimate the parameters in (16) via a

Poisson log-linear regression.

Model [AB][BC][AC] assumes that odds conditional on a third variable are equal, for

example for the odds ratio between A and B given C we find

m110m000

m100m010

¼
m111m001

m101m011

: ð17Þ

Model (16) assumes that for estimation with odds ratios under saturated model

[AB][BC][AC] we get:

m̂010m̂001m̂100m̂111

m̂011m̂110m̂101

¼
n010n001n100n111

n011n110n101

¼ m̂000: ð18Þ

An estimate for m̂000 is easily derived from (17) as [AB][AC][BC] is the saturated model in

this context; absence of the three-factor interaction is an unverifiable assumption as it

cannot be verified in the data. More restricted models such as [AB][AC] are verifiable in

the data. However, we can investigate the robustness of the population size estimate

against violations of the assumption that the three-factor interaction is absent by fixing the
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interaction parameter to anything but 0, that is, ~
l

ABC

ijp – 0. Thus the log-linear model

becomes:

log mijp ¼ lþ lA
i þ lB

j þ lC
p þ lAB

ij þ lAC
ip þ lBC

jp þ
~
l

ABC

ijp ; ð19Þ

with the additional identifying restriction where parameter ~
l

ABC

ijp equals zero when i or j or

p ¼ 0. The population size estimate under (19) can be estimated using Poisson log-linear

regression with parameter ~
l

ABC

ijp as an offset.

Under dependence between A and B given C, the association between the odds ratio u

and the log-linear parameters is:

u
p¼0ð Þ

AB ¼
m110m000

m100m010

¼ exp ðlAB
11 Þ; ð20Þ

and:

u
p¼1ð Þ

AB ¼
m111m001

m101m011

¼ exp ðlAB
11 þ lABC

111 Þ: ð21Þ

When we assume that the odds ratio between A and B is the same for p ¼ 0 and p ¼ 1,

we get

uAB ¼
m110m000

m100m010

¼
m111m001

m101m011

¼ exp ðlAB
11 Þ: ð22Þ

When more registers are available we can use these extra registers to reduce the impact

of violations of the independence assumption. As we have shown, the log-linear model is

easily generalizable to multiple registers.

5.2. Multiplier Method

The multiplier method is an alternative method to estimate the size of a population and it is

used, amongst others, in drug use research and HIV prevalence (European Monitoring Centre

for Drugs and Drug Addiction (EMCDDA) 1997; Cruts and van Laar 2010; Temurhan et al.

2011). Multiplier methods are user-friendly for their mathematical simplicity, and absence

of linkage, and are straightforward to use. At least two data sources are needed to use the

multiplier method, usually a comprehensive register and a survey. For example, assume we

wish to estimate the number of Polish people residing in the Netherlands in 2013. We assume

that everyone has an equal chance of going to a hospital, thus we go to hospitals to assess

how many Polish patients there are, and ask them whether they are in the GBA. Then

assume the data we found is the data from Table 11. There are 200 Polish people, of which

150 are in the GBA. Thus pðGBA jHospitalÞ ¼ 0:75. If a total of 40,000 Polish people are

registered, in the GBA, this means our actual total should be 40; 000=0:75 ¼ 53; 333 and

we missed 53; 333 2 40; 000 ¼ 13; 333 people who are not registered in the GBA.

The multiplier method can also be explained from the perspective of capture-

recapture methods. Using the counts provided above, we have n11, n01 and n1þ so

that n1þ 2 n11 ¼ n10 and Equation (2) gives 39; 850*50
� �

=150 ¼ 13; 283. Then N̂ ¼

150þ 50þ 39; 850þ 13; 283 ¼ 53; 333, which is the exact same value as we got above.

A sensitivity analysis could be conducted using Equation (7).
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The attractiveness of the multiplier method lies in the absence of the linkage of two

sources. When estimating hidden or hard-to-reach populations, it is likely that it is difficult

to obtain identifying variables to link the individuals in the samples. The absence of linkage

is what makes the multiplier method different from capture-recapture. However, it has to be

kept in mind that the multiplier method also relies on the underlying assumptions that being

in the hospital is statistically independent from being in the GBA, and that it relies on

individuals reporting their GBA status accurately when being admitted to the hospital.

5.3. Confidence Intervals

Apart from robustness, another aspect of the usefulness of a point estimate is its confidence

interval. Parametric bootstrap confidence intervals can be used to find these confidence

intervals in a simple way when dealing with incomplete contingency tables. In a

parametric bootstrap sample, the estimate m̂00 uð Þ for cell (0, 0) is used in the multinomial

probabilities. So for Table 1, the four probabilities are n11=N̂ uð Þ, n10=N̂ uð Þ, n01=N̂ uð Þ and

m̂00 uð Þ=N̂ uð Þ. A sample with size ~l
AB

ij is drawn with replacement. This yields four counts

nb¼1
11 , nb¼1

01 , nb¼1
10 and nb¼1

00 . The first bootstrap population size estimate N̂b¼1 is found using

only nb¼1
11 , nb¼1

01 , nb¼1
10 , that is, ignoring nb¼1

00 , and estimating m̂b¼1
00 uð Þ. This is repeated 10,000

times, yielding 10,000 bootstrap population size estimates. From these, 2.5 and 97.5

percentile scores are derived.

To exemplify we constructed a parametric bootstrapping confidence interval on the data

presented in Section 2, which can be found in Table 12. The R code for the parametric

bootstrap confidence interval can be found in Appendix A.3.

To compare, we also constructed the asymptotic confidence estimate

CI ¼ m̂00 þ = 2 z :975ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
^

Var nð Þ
p� �

, where
^

Var nð Þ ¼ n1þnþ1n10n01

� �
=
�
ðn11Þ

3
�

(Bishop

et al. 1975). The estimated confidence interval for the Afghan, Iraqi, and Iranian people

under independence is 32; 905:44 2 34; 623:16, which is close to the bootstrapped

confidence interval.

Table 11. Artificial observed data for the Polish people in the hospital

Hospital

1 0

GBA 1 150 39,850 40,000
0 50 - -

200 - -

Table 12. Confidence intervals

Odds Ratio AII Polish

0.50 30,254 – 31,132 109,529 – 127,022
0.67 31,156 – 32,288 132,278 – 155,837
1.00 32,931 – 34,654 177,476 – 212,431
1.50 35,607 – 38,125 245,439 – 298,960
2.00 38,292 – 41,682 314,212 – 384,579
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6. Discussion

We have shown for two different datasets that the population size estimate under

dependence could be fairly robust as well as not robust at all. Deviations from

independence when implied coverage is low (and thus m̂00 is high) result in bigger

deviations from the population size estimate under fixed dependence than when the

implied coverage is higher. Thus the estimate becomes less robust and this makes the

situation worse. For the Afghan, Iraqi, and Iranian people the population size estimate did

not change much when dependence was introduced; it also remained fairly robust whether

or not we assumed conditional independence on fully observed covariates. However, for

the Polish people, the implied coverage is small, resulting in a higher m̂00 so that the

deviation from independence will be large. The resulting lack of robustness makes it even

worse. Not only did the population size estimate under independence change dramatically

under fixed dependence, adding a covariate to replace the strict independence assumption

with the less strict independence assumption conditional on covariates changed the

population size estimate but did not improve the robustness.

This reflects the fact that Polish people, much more than people from Afghanistan,

Iraq, and Iran, are in the position that they work on a temporary basis without living

permanently in the Netherlands. By law, it is permitted for people from European

Union countries like Poland to work in the Netherlands without a work and living

permit. This is not the case for people from Afghanistan, Iraq, and Iran. Therefore, the

coverage of the GBA differs between both nationalities, which gives a relatively high

estimation of the missed population of the Polish people compared to the Afghan, Iraqi,

and Iranian people. Additionally, because we multiply m̂00 with u, it follows that a

bigger m̂00 will result in a bigger m̂00u than a smaller m̂00 would when multiplied with

the same u.

We also showed how to investigate robustness of the population size estimate in models

with partially observed covariates. For the example we used, the population size estimate

was relatively insensitive to violation of specific conditional independence assumptions.

Since adding covariates reduces heterogeneity and gives the opportunity to assess how the

population is divided over the levels of the covariate, it is useful to include a partially

observed covariate.

In this article we assumed that the only assumption that was violated was the

independence assumption. However, violation of other assumptions could also have a

large impact on the population size estimate. In particular, research on violation of the

assumptions that the registers are perfectly linked as well as that the population is closed

during the observation period is needed to draw conclusions on the usefulness of the

capture-recapture method for estimating the undercoverage of census data.

We have chosen a range of odds ratio from 0.5 to 2. To our knowledge, it is not possible

to get an accurate estimation of what a realistic u value would be, since it is impossible to

ascertain u from the data. One way of dealing with the strict independence assumption is

by adding a third register, hence using another source to estimate u, as has been done by

Brown et al. (2006) who created an adjustment factor based on a third source for the

census.
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In conclusion, it is important to assess the size of the implied coverage of one of the

registers. We have shown that lack of robustness under dependence is easily established

when implied coverage is low. However, when implied coverage is high the population

size estimate remains fairly robust. Thus, instead of accepting the population size estimate

as it is, researchers should report on the robustness of their estimate.

7. Appendix

To estimate the population size under log-linear models, we have used Poisson regression

with an offset in SPSS and R.

A.1. R Code

Below is given the R code to get estimates m̂00kl in the EM algorithm, for the Polish data

only.

##Give the data

data ¼ c(111,188,32,43,12708,12708,7036,7036,301.5,421,301.5,421) ## Polish data

data ¼ data*10000

freqitx ¼ freqit1 ¼ data

## Design matrix

A ¼ c(1,1,1,1,1,1,1,1,0,0,0,0)

B ¼ c(1,1,1,1,0,0,0,0,1,1,1,1)

X1 ¼ c(1,1,0,0,1,1,0,0,1,1,0,0)

X2 ¼ c(1,0,1,0,1,0,1,0,1,0,1,0)

## OR for independence

offst ¼ c(0,0,0,0,0,0,0,0,0,0,0,0)

for (i in 1:50000){

glm ¼ glm(freqitx , A*X2þ B*X1þ X1*X2, offset¼offst, family¼poisson)

freqdata ¼ c(data[1:4])

freqfit ¼ glm$fitted.values[5:12]

freqitx ¼ c(freqdata,freqfit)

freqitx ¼ round(freqitx)}

## Parameter estimates under independence

par ¼ glm$coefficients

m0011 ¼ as.numeric(exp(par[1]þpar[3]þpar[5]þpar[8]))

m0010 ¼ as.numeric(exp(par[1]þpar[5]))

m0001 ¼ as.numeric(exp(par[1]þpar[3]))

m0000 ¼ as.numeric(exp(par[1]))

matrix ¼ matrix(c(glm$fitted.values[1],glm$fitted.values[2],

glm$fitted.values[5],glm$fitted.values[6],glm$fitted.values[3],glm$fitted.values[4],

glm$fitted.values[7], glm$fitted.values[8], glm$fitted.values[9], glm$fitted.values[10],

m0011,m0010,glm$fitted.values[11],glm$fitted.values[12],m0001,m0000),4,4,byrow

¼ TRUE)

N ¼ sum(matrix)
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## Define the offsets. Here we only give an example for the offsets of BX2 ¼ 0.5

offst1 ¼ c(-0.6931472,0,-0.6931472,0,0,0,0,0,-0.6931472,0,-0.6931472,0)

## Iterative GLM Loop for the EM algorithm

for (i in 1:50000){

glm ¼ glm(freqitx , A*X2þ B*X1þ X1*X2, offset¼ offst1, family¼poisson)

freqdata ¼ c(data[1:4])

freqfit ¼ glm$fitted.values[5:12]

freqitx ¼ c(freqdata,freqfit)

freqitx ¼ round(freqitx)}

## Calculation of estimated missed frequencies

par ¼ glm$coefficients

m0011 ¼ as.numeric(exp(par[1] þ par[3] þ par[5] þ par[8]))

m0010 ¼ as.numeric(exp(par[1] þ par[5]))

m0001 ¼ as.numeric(exp(par[1] þ par[3]))

m0000 ¼ as.numeric(exp(par[1]))

m00comp ¼ m0011þ m0010þ m0001þ m0000

PSE ¼ sum(data)þ m00comp

print(m00comp)

print(sum(data)þ m00comp)

print(N/PSE)

A.2. SPSS Syntax

compute freqitx ¼ freqit1.

compute freqitx ¼ rnd(freqitx).

execute.

DEFINE EM_PGLM()

!DO !l ¼ 1 !TO 10000.

GENLIN freqitx BY A B X1 X2 (ORDER ¼ ASCENDING)

/MODEL A B X1 X2 A*X2 B*X1 X1*X2 INTERCEPT ¼ YES OFFSET ¼ offst05

DISTRIBUTION ¼ POISSON LINK ¼ LOG

/SAVE MEANPRED (pred_val).

compute diff ¼ ABS(freqit1-pred_val).

means diff.

compute freqitx ¼ pred_val.

IFððA ¼ 1Þ&ðB ¼ 1Þ&ðX1 ¼ 1Þ&ðX2 ¼ 1ÞÞfreqitx ¼ freqit1:

IFððA ¼ 1Þ&ðB ¼ 1Þ&ðX1 ¼ 2Þ&ðX2 ¼ 1ÞÞfreqitx ¼ freqit1:

IFððA ¼ 1Þ&ðB ¼ 1Þ&ðX1 ¼ 1Þ&ðX2 ¼ 2ÞÞfreqitx ¼ freqit1:

IFððA ¼ 1Þ&ðB ¼ 1Þ&ðX1 ¼ 2Þ&ðX2 ¼ 2ÞÞfreqitx ¼ freqit1:

COMPUTE freqitx ¼ rnd(freqitx).

execute.

delete variables pred_val.
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!DOEND

!ENDDEFINE.

##run the macro

EM_PGLM.

A.3. R Code Parametic Bootstrap

The R code presented below represents the parametric bootstrap for the Polish data from

Table 1

data ¼ c(374, 39488, 1445) ## Polish data

theta ¼ 2

m00 ¼ (data[2]*data[3])/data[1]

m00theta ¼ m00*theta

datacomp ¼ sum(data,m00theta)

## The estimate of N, under an offset theta

n ¼ sum(data)

N ¼ n þ m00theta

##The relative bias under an offset theta

(n þ m00)/N

## Parametric bootstrap

NN ¼ c(N)

p ¼ matrix(c(data/datacomp, m00theta/datacomp),1)

set.seed(N)

library(combinat)

databoot ¼ rmultinomial(rep(NN, 10000),p)

m00boot ¼ theta* (databoot[,2]*databoot[,3])/databoot[,1]

nboot ¼ databoot[,1:3]

Nboot ¼ m00boot þ nboot[,1] þ nboot[,2] þ nboot[,3]

quantile(Nboot, c(0.025, 0.5, 0.975), type ¼ 1)

sd ¼ function(x) sqrt(var(x))

sd(Nboot)
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