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Highlight 

 Mixed source term in the pressure Poisson equation without artificial coefficient 

 New solid and free surface boundary condition 

 Simple particle position shifting and collision handling 

 New version of “cell-link” neighbour particle searching strategy  

 Violent fluid structure interaction with rigid and flexible structures  
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Abstract 

As a Lagrangian mesh-free method, the Moving Particle Semi-implicit (MPS) method is very 

suitable for simulating violent flows, such as breaking waves on free surface. However, 

despite its wide range of applicability, the original MPS algorithm suffers from some inherent 

difficulties in obtaining an accurate fluid pressure in both spatial and time domain. Different 

modifications to improve the method have been proposed in the literature. In this paper, we 

propose the following modifications to improve the accuracy of pressure calculations and the 

stability of the method: i) A mixed source term in the pressure Poisson equation with no 

artificial term in the formulation, ii) New solid and free surface boundary handling methods, 

iii) Particle position shifting and collision handling, and  iv) A new version of “cell-link” 

neighbour particle searching strategy, which reduces about 6.5/9 (~72%) of the searching 

area compared with traditional “cell-linked” algorithm.  

The proposed modifications are verified and validated by some model free-surface flow 

problems, such as a two-dimensional dam break (with rigid and flexible structures on the 

impacting end - FSI model), liquid sloshing and ship cross section dropping problems. The 

numerical results obtained are found to be in good agreement with the available numerical or 

experimental results. With the proposed modifications, the stability and accuracy of the 

pressure field are improved in spatial and time domains. 
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1. Introduction 

Free surface flow problems play a vital role in the field of marine engineering. The 

interaction of ships and other floating structures with the waves could generate highly-

deformed and complex free surface flows. And this will in turn impose impact force to the 

structure, which needs to be evaluated to ensure structural safety.  

In the traditional mesh-based CFD approaches, the computational domain is first 

discretized by a set of grid, i.e. mesh; the governing equations are then solved by various 

numerical schemes (e.g. Finite Volume, Finite Difference or Finite Element). For problems 

with moving boundaries such as free surface flow, the mesh is not necessary fixed in the 

space. According to the movability of the mesh, the numerical methods could be classified 

into different categories:  

First, if the mesh is fixed in space, it is an Eulerian method, in which the moving 

boundaries need to be captured by some additional techniques such as Volume of Fluid (VOF 

) [1], Level Set (LS) [2], and Constrained Interpolation Profile (CIP) [3], etc. These schemes 

are quite popular for problems with complex geometry fluid interfaces such as free surface 

flow, where moving mesh to track the interface is not affordable or not desirable or just not 

manageable[4]. Although, the aforementioned methods have all been successfully applied to 

various free surface problems, these schemes usually require solving additional set of 

equations to capture the interface on the non-moving mesh and consequently increase the 

numerical complexity. Another issue with these kinds of methods is that the theoretical sharp 

free surface might grow thicker gradually due to the numerical diffusion. This problem could 

be mitigated to some extent by introducing some special treatment such as the function 
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transformation mentioned in Ref [5], but the complexity is again further increased.  

Furthermore, as pointed in Ref [4], for the fluid-solid interface, the accuracy of the boundary 

layer will be limited by the resolution of the fluid mesh at the interface no matter how 

accurately the interface geometry is represented.  

This issue could be tackled using another way of handling mesh, i.e. moving the mesh to 

track the boundary shape changing. Arbitrary Lagrangian Eulerian (ALE) and Space-Time[4] 

methods are both examples which fall into this category. In ALE, the mesh moves 

independently (not following the fluid motion exactly everywhere) based on the need of 

tracking the interface deformation or some other criteria. This mesh motion introduces an 

additional mesh velocity in the convective term of the governing equations. Alternatively, the 

Space-Time method adopts a different philosophy which is treating the time variable as an 

additional spatial coordinate over a generalized space-time domain[4, 6]. The governing 

equations are then solved over a sequence of space-time “slabs”[4]. And each slab is the slice 

of the space-time domain between the time level n and level n+1. The spatial mesh of the 

slabs would also change to accommodate the deformation of the computational domain at 

different time steps. Due to this special way of handling time dimension, there would be no 

mesh velocity in the formulation as in ALE method. 

Generally, as mentioned above, the interface-capturing methods (e.g. VOF) are more 

suitable for complex geometry deformation such as free surface flow. On the other hand, the 

interface-tracking approaches (e.g. ALE or Space-Time) make it easier to maintain a higher 

accuracy on the moving interface when its deformation is not too dramatic such as fluid-solid 

interface. This is the reason that the Mixed Interface-Tracking/Interface-Capturing Technique 

(MITICT)[7] was introduced for the problem that involves both kinds of interfaces. 

Finally, if the computational nodes follow exactly the physical fluid motion everywhere in 

the computational domain, i.e. the Lagrangian frame is employed, it leads to so-called 
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particle methods such as SPH (Smoothed Particle Hydrodynamics) [8], MPS (Moving 

Particle Semi-implicit) [9] and PFEM (Particle Finite Element Method) [10]. The PFEM still 

needs to update the finite element mesh at each time step to adjust the changing of the 

particle distribution, whereas in SPH and MPS, the use of fully meshless approach makes it 

more convenient to describe the violent fluid deformation and could avoid the distortion of 

mesh in grid-based methods. Additionally, the Lagrangian frame will also avoid the spatial 

discretization of the convection term in N-S equation, and prevent numerical diffusion.  

The original MPS method was proposed by Koshizuka et al. [9] to calculate the 

incompressible flow. It has been successfully applied to various problems [11, 12]. However, 

there are also some problems such as the non-physical pressure fluctuation and the falsely 

detected free surface particles. These defects hinder the application of MPS method to fluid-

structure interaction simulations. Following the previous improvements done by other 

researchers [11-14], the present study illustrates some new modifications to remedy some of 

the shortcomings of the standard MPS method, especially in suppressing the pressure 

fluctuations in both time and spatial domain. 

2. Governing equations  

The problems investigated here are all marine related problems with violent and rapid 

changing physical processes, which means that the viscosity effect is quite small. As such, 

the Lagrangian form of incompressible and inviscid Navier-Stokes equations are employed 

here as the governing equations of the flow. 

 

𝐷𝒖

𝐷𝑡
=

𝒖(𝑘+1) − 𝒖(𝑘)

∆𝑡
= 𝒈 −

∇𝑝

𝜌0

∇ ⋅ 𝒖 = 0

 
(2.1) 

where 𝒖 , 𝑝  and 𝜌0  are the fluid velocity, pressure and density respectively. The 

superscripts k and k+1 refer to the k
th

 and (k+1)
th

 time steps, respectively. This superscript 
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notation will be used in the subsequent sections.  𝒈 is the vector pointing to the gravity 

direction, i.e. 𝒈 = [0, −𝑔], where 𝑔 is the value of gravity acceleration. In Eqn. (2.1), the 

time derivative 
𝐷𝒖

𝐷𝑡
 is discretized by a first order Lagrangian finite difference as is shown. 

For the free surface particles, the pressure is taken as the atmospheric pressure (𝑝 = 𝑝0=0)  

The solid boundary condition proposed here is different to the one used in the standard 

MPS methods, and will be illustrated in Section 4.2. 

3. The standard MPS methodology 

In this section, the original MPS method [9] is briefly described, including the particle 

interaction model and time stepping procedure to enforce the incompressibility. 

3.1 Enforcing incompressibility---Projection method 

As a typical approach for the incompressible fluid computation, the two-step projection 

method, which is introduced by Chorin [15], is adopted here to decouple the velocity and 

pressure calculation: 

The first step is to calculate the intermediate velocity without considering pressure, and 

then move the particles to the intermediate location according to this velocity: 

 

{
𝒖(∗) = 𝒖(𝑘) + ∆𝑡𝒈

𝒓(∗) = 𝒓(𝑘) + ∆𝑡𝒖(∗)
 (3.1) 

where 𝒓 represents the location vector of particles. The superscript * indicates the value of 

intermediate status of a particular time step. A pressure Poisson equation is then derived as 

follows to solve the pressure field: 

∇2𝑝(𝑘+1) = 𝜌
0

𝑛0 − 𝑛(∗)

𝑛0∆𝑡2  (3.2) 

Here, the term 𝑛0  and 𝑛(∗)  are called “particle density”, with 𝑛0  the desired value 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7 

 

corresponding to uniform particle  distribution, and 𝑛(∗) the actual value at the intermediate 

status. They are proportional to the physical density and the definition is provided in Section 

3.2 

The solid particles which lie in the support domain of the adjacent fluid particles are also 

included in the pressure calculation. As a consequence, its pressure will push away the fluid 

particles which are too close to the solid, and thus avoiding the penetrating of fluid particles 

into solid boundary. To compensate the deficiency of neighbour particles for the solid and 

“near- solid” fluid particles when calculating𝑛(∗) , two additional layers of dummy particles 

are placed just outside the inner solid particle layer. These particles are only involved in the 

particle density calculation in standard MPS method. The Laplacian and gradient 

discretization do not take these dummy particles into account.  

In order to identify the free surface particles, all the fluid particles are examined by the 

following equation. 

 

𝑛(∗) < 𝛽𝑛0 
(3.3) 

where  𝛽  is a parameter slightly smaller than 1 (e.g. 0.97). Since within the neighbor 

domain of a free surface particle, there would be no fluid particles in the area which is outside 

the fluid domain, particle density of these free surface particles will drop dramatically. This 

difference of the particle density value between free surface and inner fluid particles makes 

the identification of the free surface particle possible.  

After obtaining the pressure, the velocity and location are then updated as: 
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{
𝒖(𝑘+1) = 𝒖(∗) − ∆𝑡 ∙

∇𝑝(𝑘+1)

𝜌0
  (𝑎) 

𝒓(𝑘+1) = 𝒓(𝑘) + ∆𝑡 ∙ 𝒖(𝑘+1)       (𝑏)

 
(3.4) 

3.2 Particle interaction model 

The gradient and Laplacian operators are discretized by a weighted average approach: 

 

∇𝑢(𝒓𝑖) =
𝑑

𝑛0

∑
𝑢(𝒓𝑗) − 𝑢(𝒓𝑖)

𝑟𝑖𝑗
2

(𝒓𝑗 − 𝒓𝑖)𝑤(𝑟𝑖𝑗)
𝑀

𝑗≠𝑖
 (3.5) 

 

∇2𝑢(𝒓𝑖) =
2𝑑

𝑛0𝜆
∑ [𝑢(𝒓𝑗) − 𝑢(𝒓𝑖)]𝑤(𝑟𝑖𝑗)

𝑀

𝑗≠𝑖
 (3.6) 

where 𝑑 is the number of space dimensions, and M is the particles number in the support 

domain. The length of the support domain is different for Laplacian and gradient operators. 

As suggested by [9], they are chosen to be 4 and 2.1 times of the initial particle distance 𝑟0, 

respectively. It should be mentioned that the divergence operator is just replacing the scalar 

function in Eqn. (3.5) to a vector using dot product accordingly.  𝑤(𝑟𝑖𝑗) is the weight function 

and 𝜆 is a parameter related to 𝑤(𝑟𝑖𝑗), which are given by: 

𝑤(𝑟𝑖𝑗) = {

𝑟𝑒

𝑟𝑖𝑗

− 1     0 ≤ 𝑟𝑖𝑗 ≤ 𝑟𝑒

0      𝑟𝑖𝑗 ≥ 𝑟𝑒

 
(3.7) 

𝜆 =
∑ 𝑤(𝑟𝑖𝑗)𝑟𝑖𝑗

2𝑀
𝑗≠𝑖

∑ 𝑤(𝑟𝑖𝑗)𝑀
𝑗≠𝑖

 (3.8) 

where 𝑟𝑒 is the radius of local support domain. The particle density is defined as follows: 

 

                  𝑛 = ∑ 𝑤(𝑟𝑖𝑗)𝑀
𝑗≠𝑖                          (3.9) 
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4. Proposed modifications for MPS 

4.1 Density error compensation in source term of Poisson equation 

Basically, there are two forms [16] of source term in the Poisson equation, namely the 

Density Invariant (DI) type and Divergence-Free velocity (DF) type. The one used in 

standard MPS (Eqn (3.2)) is the DI type. A heuristic explanation is given below to show the 

difference. The momentum is reformulated and then split into two successive equations as:  

 

𝒖(∗) = 𝒖(𝑘) + ∆𝑡𝒈 
(4.1) 

𝒖(𝑘+1) − 𝒖(∗) = −∆𝑡
∇𝑝(𝑘+1)

𝜌0

 (4.2) 

Similarly, the Lagrangian form of the continuity equation is also reformulated as: 

 

𝜌(∗) − 𝜌(𝑘)

∆𝑡
= −𝜌0∇ ∙ 𝒖(∗) (4.3) 

𝜌(𝑘+1) − 𝜌(∗)

∆𝑡
= −𝜌0∇ ∙ (𝒖(𝑘+1) − 𝒖(∗)) (4.4) 

Different types of Poisson equations could be obtained using different combinations of 

Eqns. (4.1)-(4.4). 

The DI type Poisson equation could be obtained by first taking the divergence of Eqn. 

(4.2) and then substituting the resultant equation into Eqn.(4.4). The incompressibility 

condition is realized by enforcing 𝜌(𝑘+1) to be the initial density 𝜌0. The final result is Eqn. 

(3.2) (replacing the physical density with particle density).   

On the other hand, if we take the divergence operation of Eqn. (4.2) and apply the 

incompressibility condition by enforcing the divergence of k+1 time step ∇ ∙ 𝒖(𝑘+1) to be zero, 

the DF type Poisson equation is obtained as: 
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∇2𝑝(𝑘+1) = 𝜌
0

𝛁 ∙ 𝒖(∗)

∆𝑡
 (4.5) 

The relation between DI type (Eqn. (3.2)) and DF type (Eqn. (4.5)) could be obtained by 

substituting Eqn. (4.3) into Eqn. (4.5), which leads to: 

 

∇2𝑝(𝑘+1) =
𝜌

0
∇ ∙ 𝒖(∗)

∆𝑡
= 𝜌

0

𝑛(𝑘) − 𝑛(∗)

𝑛0∆𝑡2
 (4.6) 

The comparison between Eqn. (3.2) and Eqn. (4.6) shows that the DI form is the DF form 

plus the accumulated density error (𝑛0 − 𝑛(𝑘)) from the last time step. Due to the inevitable 

error introduced by any numerical scheme, the accumulated density error will always exist. 

As a consequence, the DF approach is reported to suffer from the particle clustering and void, 

which will result in density error accumulation and bad pressure distribution [17, 18]. On the 

other hand, the DI type source will lead to large density variation (probably caused by the full 

inclusion of accumulated density error), and consequently large pressure fluctuations in both 

spatial and temporal domain [19]; which reduce the stability of the pressure computation. 

To tackle this problem, Hu et al. [15] proposed to use the DI and DF conditions in 

succession in ISPH. However this approach means to solve the Poisson equation two times, 

which is more time-consuming than both DI and DF methods. Xu et al. [20] have shown that 

the calculation time is 4-5 times larger than any of DF or DI scheme. Another strategy is to 

combine DF and DI in the source term [12, 14, 21] as: 

 

∇2𝑝(𝑘+1) =
𝜌

0
∇ ∙ 𝒖(∗)

∆𝑡
+ 𝛼𝜌

0

𝑛0 − 𝑛(𝑘)

𝑛0∆𝑡2 , (4.7) 

where 𝛼 is a coefficient which is normally far smaller than 1. Unlike DI scheme, this 

strategy attempts to take a certain amount (not all of them like in DI) of accumulated density 
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error into account. In most of these proposed modifications, the coefficient α needs to be 

calibrated based on different cases. One exception is shown in Ref [12], where the authors 

coupled the absolute density variation accumulated and the rate of density variation at the last 

time step to formulate a density error compensation term. Similarly, a new density error 

compensation term is proposed and added in the formulation with no artificial coefficient 

(which requires calibration). 

The coefficient 𝛼 in Poisson equation (Eqn. (4.7)) is chosen in the following way: 

𝛼 = {
|

𝑛0−𝑛(𝑘)

𝑛0
| + ∆𝑡|∇ ∙ 𝒖(𝑘)|   𝑖𝑓   (𝑛0 − 𝑛(𝑘))∇ ∙ 𝒖(𝑘) ≥ 0

|
𝑛0−𝑛(𝑘)

𝑛0
|                           𝑖𝑓   (𝑛0 − 𝑛(𝑘))∇ ∙ 𝒖(𝑘) ≤ 0

 (4.8) 

 

which means no artificial term appears in the process of the determination of α. 

The condition (𝑛0 − 𝑛(𝑘))∇ ∙ 𝒖n ≥ 0  means that the fluid is compressed, i.e. (𝑛0 − 𝑛(𝑘)) ≤ 0 (or 

expanded, i.e. (𝑛0 − 𝑛(𝑘)) ≥ 0) in the last time step (𝑡 = 𝑘∆𝑡), and will be further compressed 

according to the motion trend of particles, that is,  ∇ ∙ 𝒖(𝑘) ≤ 0 (or expanded, i.e. ∇ ∙ 𝒖(𝑘) ≥ 0). 

Under this situation, an additional term (∆𝑡|∇ ∙ 𝒖(𝑘)|) is added into the coefficient to help to 

control further the compression (or expansion). 

4.2 Boundary conditions 

a) Pressure Neumann condition on solid boundaries 

In most of the cases, the solid boundary in particle method will normally be handled by 

ghost (dummy) particle[16, 18] method , repulsive force method[22] or the combination of 

these two[23]. These traditional techniques require careful handling of the ghost (dummy) 

particle arrangement or repulsive force parameter selection according to various cases. In this 

study, as proposed by another particle method, MLPG_R[24] (Meshless Local Petrov 

Galerkin method with Rankine source solution) and also commonly used in mesh-based 

method, instead of Poisson equation (Eqn. (4.7)) as in the standard MPS, the following 
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Neumann condition (Eqn. (4.9)) is applied on the inner most layer of solid boundary. The 

gradient of Pressure is calculated between the current boundary particle and the nearest fluid 

particle (or the linear interpolation between nearest fluid particles), which will avoid the 

deficiency of particles within its support domain. 

 

𝒏 ∙ ∇𝑝(𝑘+1) = 𝜌0(𝒏 ∙ 𝒈 − 𝒏 ∙ 𝑼̇(𝑘+1)) 
(4.9) 

where 𝑼̇ is the acceleration of the boundary, and 𝒏 is the normal vector of the boundary. 

When the motion of the boundary is determined by the pressure of the surrounding fluid, the 

acceleration of next time step 𝑼̇(𝑘+1)  is unknown since the pressure has not been solved yet. 

As an approximation, the value of the last time step 𝑼̇(𝑘)  (or the last iteration when iterative 

process is involved in the fluid structure interaction) is adopted instead. 

 

b) Laplacian operator compensation near solid boundary 

 

For the fluid particles which are close to the solid boundary, the Laplacian operator needs 

to be modified to be consistent with the Neumann condition on solid boundary and 

compensate for the insufficiency of neighbour particles.  

More specially, as shown in Fig. 4.1, if the virtual particle, which is along the local normal 

direction and towards the outside of solid boundary with a distance of 𝑟0, is within the support 

domain of the fluid particle, this virtual particle will also be included in the calculation of 

Laplacian operator. The pressure value is derived according to Eqn. (4.9), i.e. 

 

𝑝𝑉 = 𝑝𝑆 + 𝜌0(𝒏 ∙ 𝒈 − 𝒏 ∙ 𝑼̇)𝑟0 
(4.10) 

 

where, 𝑝𝑉 is the pressure of virtual particle, and 𝑝𝑆 is the pressure of the corresponding 
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solid particle. 

 

c) Intermediate velocity of boundary particles 

 

The choice of intermediate velocity 𝒖∗  on solid boundary will affect the accuracy of 

pressure which is computed from the Poisson equation (Eqn. (4.7)), since the divergence of 

intermediate velocity is the source term of this equation [25]. According to the idea of 

Ref[25], for the case of viscous flow, the non-slip condition should be applied. This means 

the choice of 𝒖(∗) should guarantee that, at k+1 time step, the fluid velocity on boundary (i.e. 

𝒖(𝑘+1) |
𝝏𝜴

) is equal to the solid body velocity on the fluid-solid interface (𝒖𝒃
(𝑘+1)). Thus, if 𝒖𝒏+𝟏 

is replaced by boundary velocity 𝒖𝒃
(𝑛+1) in Eqn. (4.1), and using 𝛻𝑝(𝑘) to approximate 𝛻𝑝(𝑘+1) 

(since it is not known at this stage), the intermediate velocity of boundary particles is: 

 

𝒖𝒃
(∗)|

𝜕Ω
= 𝒖(𝑘+1)|

𝜕Ω
= 𝒖𝒃

(𝑘+1) + ∆𝑡
∇𝑝(𝑘)

𝜌0
  (4.11) 

Furthermore, the above equation could be split into two components after projecting to the 

tangent (i.e., 𝝉) and normal (i.e., 𝒏) directions, respectively. And Eqn. (4.9) could be used to 

calculate the normal component of the pressure gradient. The tangent part is calculated by 

simple finite difference approach between its neighbour solid particles. Finally, the 

intermediate velocity of the boundary particles is chosen as: 

 

𝜕𝒖𝒃
(∗)

𝜕𝑛
= 𝒏 ∙ 𝒖(𝑘+1)|

𝜕Ω
+

∆𝑡

𝜌0

∂𝑝(𝑘)

𝜕𝑛
= 𝒏 ∙ 𝒖𝒃

(𝑘+1) + ∆𝑡(𝒏 ∙ 𝒈 − 𝒏 ∙ 𝑼̇(𝑘+1))                         

𝜕𝒖𝒃
(∗)

𝜕𝜏
= 𝝉 ∙ 𝒖(𝑘+1)|

𝜕Ω
+

∆𝑡

𝜌0

∂𝑝(𝑘)

𝜕𝜏
= 𝝉 ∙ 𝒖𝒃

(𝑘+1) +
∆𝑡

𝜌0

∂𝑝(𝑘)

𝜕𝜏
             

                                                    (4.12) 

In this study, since the viscosity is not taken into account, the free-slip boundary condition 
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should be applied. The only difference that should be made is the tangential part of the fluid 

velocity on boundary (i.e., 𝝉 ∙ 𝒖(𝑘+1)|𝝏𝛀 ) is different to 𝝉 ∙ 𝒖𝒃
(𝑘+1) . So in this case the term 

𝝉 ∙ 𝒖𝒃
(𝑘+1) is then replaced by the velocity projection of the nearest fluid particle on the 

direction of 𝝉. 

 

d) Free surface identification 

A simplified version of the method used by Koh et al [26] is adopted. If the “circle” is 

completely covered by its neighbours, then it is recognized as an inner fluid particle, 

otherwise it is a free surface particle. The circle is discretized by 360 points which locate 

evenly along the circle. If all these points are covered, the circle is then regarded as being 

covered.  For example, in Fig. 4.2, particle A is recognized as free surface, because the 

yellow points on its “circle” are not covered by its neighbors. In contrast, particle B is 

identified as inner fluid particle. 

Finally, the use of this Neumann boundary could avoid the discretization of Laplacian 

operator and the calculation of particle density for the boundary particles. Therefore, the two 

layers of dummy particles in the standard MPS are not required. The one layer of virtual 

particles outside of solid boundary particles does not require any sophisticated generation 

procedure (simply along the normal direction of inner solid particles). It is helpful for 

constructing complex geometry boundary shapes. Moreover, it also provides a cover for the 

solid boundary particle to prevent them to be falsely recognized as free surface particles.  

4.3 Particle shifting and collision handling 

The disorder of particle distribution is one of the main sources of pressure fluctuation 

suffered by particle method. Many researchers have developed some techniques to handle 

this problem [13, 14, 16, 17, 27, 28]. Among these improvements, rearranging the particle 
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positions after each time step is considered to be a very effective approach. It could stabilise 

the pressure calculation in both spatial and temporal domain [13, 27]. For example, in Ref 

[13], a dynamic force is introduced during the evolution of the particle movement. The force 

is the summation of all the contributions from the neighbour particles. For each force 

component between the pair of the concerned particle and a neighbour particle, the principle 

of calculating this force is to guarantee that they will be separated and verged on each other 

by a distance, which is at least 𝑟0, for the next particle configuration. However for an arbitrary 

particle distribution, it is obvious that each force component will affect each other, and 

consequently makes the final particle configuration not exactly evenly distributed. But the 

overall distribution is much more improved and consequently makes the computation more 

stable and accurate. Following similar idea, in this study, a simple particle shifting method, 

which also intends to avoid the improper short distance between each pair of particles, is 

proposed to improve the stability of computation. The difference is that in this scheme the 

position is manipulated directly instead of by applying an artificial force. 

After each time step, the positions of particles are slightly shifted to regularize their 

distribution. This technique could also be regarded as a re-meshing procedure. Moreover, 

since the Poisson equation is derived based on the incompressibility condition (i.e. the second 

equation in Eqn. (2.1)), the resultant pressure would roughly keep the distance between 

neighboring particles to be around the same value (i.e. the initial particle distance 𝑟0). As a 

consequence, the space left for this further shifting would be very small. Therefore not 

mapping the value onto the new positions will not corrupt the result. 

The amount of shifting is chosen as: 
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𝛿𝒓𝑖 = ∑
𝑟̅0−  |𝑟𝑖𝑗|

2
𝑗≠𝑖

∙
𝒓𝑖−𝒓𝑗

|𝑟𝑖𝑗|
  

𝑤ℎ𝑒𝑛  |𝑟𝑖𝑗| ≤ 𝑟̅0 

(4.13) 

where 𝑟̅0 normally is set to be 99% of the initial particle distance. 

For the free surface particles which are far away from the main fluid body, their motions 

will barely be affected by pressure. Under some circumstances, they may get extremely close. 

This unusual and “suddenly-formed” very short distance between fluid particles will cause 

singularity problem when solving pressure Poisson Equations. This situation will not be 

completely eliminated by the aforementioned particle shifting. For example, the current 

distance between two particles are not very small (which will not activate the particle shifting 

scheme), but they have large relative velocities which mean they will get very close after 

prediction step. As a consequence, similar to [26], a simple collision handling technique is 

applied here. The basic idea of this approach is that the relative velocities between particles 

are set to be zero when they are forecasted to be closer than the threshold before the 

prediction step. Accordingly, before the calculation of each time step, we apply the following 

velocity manipulation for each fluid particle: 

 

𝛿𝒗𝑖 = ∑ −𝜖(𝑟𝑖𝑗)

𝑗≠𝑖

𝒗𝜏𝑖𝑗
,   

𝑓𝑜𝑟   (𝑟𝑖𝑗 − 𝒗𝜏𝑖𝑗
∆𝑡) ≤ 𝑟𝑚𝑖𝑛 

(4.14) 

where  𝒗𝜏ij
 is the tangential relative velocity between particle 𝑖  and 𝑗 , and 𝑟𝑚𝑖𝑛  is the 

threshold to activate the scheme. It is selected as roughly 30% of the initial particle distance 

in this study. Parameter ϵ depends on the property of particle 𝑗. If particle 𝑗 is a fluid particle, 

𝜖 is equal to 0.5, otherwise, if it is a solid boundary particle, 𝜖 is equal to 1.0. This kind of 

setting is chosen to make sure that the solid particles velocity involved will not be affected 
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while the relative velocity between its neighbor fluid particles will still be set to be zero. 

4.4 Neighbor particle searching strategy 

The discretizing of gradient /divergence and Laplacian operators on the position of each 

particle requires the information of its neighbour particles. Because of the Lagrangian nature 

of particle method, all the particles are constantly moving during the computation, and thus 

the neighbour particle lists need to be updated after every advance of the particle distribution. 

This neighbour particle searching could be very time-consuming if the primitive “all-pair” 

searching strategy is used. In terms of computational efficiency, the state-of-the-art neighbour 

particle searching acceleration strategy could basically be classified into three types: (1). 

Verlet list method, whose algorithm complexity is O(N
2
)[22]; (2). Cell-linked method and the 

Verlet list enhanced by cell-linked approach. The cell-linked and also the Verlet list enhanced 

by cell-linked methods have a linear complexity [29] i.e. O(N). This is proved by the results 

in Section 6.1 as well. (3). The so-called “tree algorithm”, which uses hierarchically tree-

structure to partition the computational domain into a sequence of squares (in 2D, for 3D, it 

becomes cubes) until each square contains only one particle or nothing [30]. It generally has a 

complexity with  the order of O(Nlog(N))[30]. Furthermore, this kind of algorithm is 

designed to handle the situation where the particles are highly unevenly distributed, which is 

not the case of this study.  

 

As a consequence, only the second type of methods i.e. the linear type is first reviewed in the 

following context. And then a new strategy based on the cell-linked method is proposed. 

 

In cell-linked method, all particles are distributed into a set of regular square cells which 

cover the entire computation domain. The length of the cell side is at least the cut-off distance 

of supporting domain for Laplacian operator, i.e. four times of the initial particle distance 
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(4𝑟0). As a consequence, the neighbour searching for a particular particle could be conducted 

just within the surrounding cells (nine cells in 2D, i.e., the rectangular area constrained by the 

yellow and green lines in Fig. 4.3).  

Alternatively, the Verlet list algorithm establishes a neighbour candidates list for each 

particle. This list contains all the particles with a larger distance from the concerned particle 

than the exact cut-off length of the Laplacian supporting domain (e.g., 5𝑟0 or 6𝑟0). Because 

the radius is chosen to be larger than 4𝑟0, the neighbour particles will not exceed the scope of 

this list for the next several particle distributions, consequently this list could be used as the 

base pool of refined searching for several time steps without the need of updating.  

The generation of the Verlet list could be accelerated by cell-linked method with the 

radius as the cell length instead of using “all-pair” searching. The tricky problem of Verlet 

list method is the choice of its radius. If it is too large, the candidates in the list might be more 

than those covered by the nine adjacent cells with exact 4𝑟0cell length (in 2D case), which 

means it would be meaningless to generate Verlet list since it is more time-consuming than 

using the cell-linked approach directly. Actually, the circle with the radius of 6𝑟0 already 

makes the area covered by Verlet list circle (shown in Fig. 4.3) almost the same as the nine 

cells with 4𝑟0cell length (rectangular area limited by the yellow and green line in Fig. 4.3). 

The radius of 5𝑟0will make the Verlet list circle smaller than the nine cells with exact 4𝑟0cell 

length. However, if we add the time used on establishing Verlet list with 5𝑟0 length cells (the 

green line covered area in Fig. 4.3) which contains more particles than the 4𝑟0  length cells 

(rectangular area limited by the yellow and green line in Fig. 4.3), the total time consumed 

would be similar or even larger. These facts about these two approaches will be further 

illustrated in Section 6.1.  

There is only one issue remaining, which is in cell-linked approach, after each changing of 

the particle distribution, all the particles need to be “re-registered” to the cells again. While 
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this is not required in Verlet list approach at every time when the particle configuration 

changes (as aforementioned, the Verlet list is valid for several time steps depending on the 

size of the list). This seems to be an advantage for Verlet list, however, as will be shown in 

Section 6.1, the time spent on particle registering is almost negligible compared to the time 

spent on other processes. As a consequence, the cell-linked method is overall better than 

Verlet list method or the combination of these two methods.  

 In this study, in order to further reduce the computation burden, this cell-linked principle 

is further explored by making the cell smaller than the traditional one, i.e. to be the initial 

particle distance (𝑟0 ), as shown in Fig. 4.3. This change means the searching could be 

performed just within the red line covered area instead of the area contained by yellow and 

green lines in Fig. 4.3. This reduces about 4/9 of the searching area compared with the 

traditional cell (with 4𝑟0 cell length). It is worth to mention that the time spent on cell 

establishing is basically the same for the smaller and traditional cell, because in both of these 

situations each of the particles is only required to be checked once for registering them to a 

particular cell (no matter larger or smaller cells). This means the cell establishing time is only 

proportional to the total particle number regardless of the cell length. 

Another strategy was developed to avoid repetitive checking of particle pair by Crespo 

[31] for the traditional cell-linked approach. The core idea is that if particle j is in the 

neighbour list of particle i, particle i is obviously also in the neighbour list of particle j. 

Hence, the repeating of pair interaction could be avoided if the neighbour list is updated 

simultaneously for both of the particles in the pair when one of them is currently regarded as 

a centre particle. And then this centre particle will be excluded during the following 

neighbour list generation process for the rest of particles. This means if the checking is 

conducted cell by cell (i.e. after the establishment of neighbour list is finished for all the 

particles in one cell, and then moving to the next cell), only the particles in the cells with 
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higher indexes in the related neighbour cells are needed to be checked (as the particles in the 

lower-index-cells have already been checked previously). This idea is also applicable to the 

new cell model aforementioned. If the cells are indexed vertically from bottom to top, the 

generation of neighbour list could be conducted just in the area covered by blue color in Fig. 

4.3. This means that the computation burden is further reduced by half. 

To summarise, the new proposed neighbour searching strategy is essentially a further 

improvement of the traditional cell-linked approach. It consists of two parts, i.e. smaller (i.e. 

𝑟0) and more economical cell length and the non-repeating particle pair checking. Generally 

speaking, this new strategy is applicable for the improvement of traditional cell-linked model 

with any cell length (e.g. 4𝑟0, 5𝑟0or 6𝑟0), and the searching area required by this new strategy 

is always about 2.5/9 of the corresponding traditional cell-linked model (the comparison of 

the blue color with the yellow and green line covered area is an example for the case of 4𝑟0 

length criteria). 

Finally, it is worth to discuss the computational complexity of the methods mentioned in 

this section. For the incompressible flow studied in this paper, the particles are roughly 

evenly distributed (although not regular, that is the reason of introducing the particle shifting 

in Section 4.3), hence the number of particles that is required to be checked for neighboring 

particle searching of a particular particle would be proportional to the area of the searching. 

 As discussed above, the searching area of each particle is always the same for a particular 

method (e.g. the blue area for the proposed strategy and the yellow line covered area for the 

traditional cell-linked method in Fig. 4.3). Moreover, the cell establishing time is only 

proportional to the total particle number regardless of the cell length. Based on these 

discussions, the number of particles that needs to be searched is a constant for each particle 

for any method mentioned in this section (although this constant is different for different 

method), so the overall searching time is proportional to the overall number of particles, 
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which means the complexity is linear, i.e. O(N). 

5.  Fluid Structure coupling strategy 

In order to verify the model, some fluid structure interaction cases with both prescribed 

boundary motion (sloshing) and fluid field dependent boundary motion (ship cross section 

dropping, breaking dam interacting with spring supported rigid wall and fixed end elastic 

wall) are computed. The strategy used for the fluid structure coupling algorithm is as follow: 

The interaction between the structure and fluid is computed in an iterative way. The 

Gauss-Seidel method with Aitken relaxation approach is adopted in this study. 

We suppose that all the fluid and structure variables are known at t=tn-1. The detailed 

process of interaction is: 

1). Predict the position, velocity and acceleration of all the points on fluid structure 

interface 𝜞𝛴,0
𝑛  , 𝜞̇𝛴,0

𝑛 and 𝜞̈𝛴,0
𝑛  at t=tn based on the value at time step t=tn-1. 

2). Based on the updated kinetic information of interface, calculate the fluid motion at t=tn, 

by the modified MPS method. Then, obtain the new pressure 𝑝𝛴,𝑖
𝑛 applied on the interface for 

i
th

 iteration at t=tn. 

3). Use the new fluid pressure 𝑝𝛴,𝑖
𝑛  to update the structure kinetic values 𝜞̃𝛴,𝑖+1

𝑛 , 𝜞̇̃𝛴,𝑖+1
𝑛  and 

𝜞̈̃𝛴,𝑖+1
𝑛  of all the points on the interface. 

4). Check the difference between 𝜞̃𝛴,𝑖+1
𝑛 , and the value from the last iteration, i.e. 𝜞𝛴,𝑖

𝑛 . If 

the convergence condition 

 |𝜞̃𝛴,𝑖+1
𝑛 − 𝜞𝛴,𝑖

𝑛 | ≤ 𝜖,                                 (5.1) 

is satisfied, then go to step (1) to continue the computation for the next time step (t=tn+1).  

Otherwise, correct the structure position 𝜞𝑖+1
𝑛  for (i+1)

th
 iteration using Eqn. (5.2),  
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𝜞Σ,𝑖+1
𝑛 = 𝜒𝑖𝜞̃Σ,𝑖+1

𝑛
+ (1 − 𝜒𝑖)𝜞

Σ,𝑖
𝑛

          (5.2) 

and update the velocity 𝜞̇Σ,𝑖+1
𝑛 and acceleration 𝜞̈Σ,𝑖+1

𝑛  by HHT [32] method: 

 

𝜞̈Σ,𝑖+1
𝑛 =

1

𝛽𝛥𝑡2 𝜞Σ,𝑖+1
𝑛 − [

𝜞Σ
𝑛−1

𝛽𝛥𝑡2 +
𝜞̇Σ

𝑛−1

𝛽𝛥𝑡
+ (

1

2𝛽
− 1) 𝜞̈Σ

𝑛−1]                                           (5.3)  

𝜞̇Σ,𝑖+1
𝑛 =

𝛾

𝛽𝛥𝑡
𝜞Σ,𝑖+1

𝑛 + (1 −
𝛾

𝛽
) 𝜞̇Σ

𝑛−1 + 𝛥𝑡 [(1 − 𝛾) − 𝛾 (
1

2𝛽
− 1)] 𝜞̈Σ

𝑛−1 −
𝛾

𝛽𝛥𝑡
𝜞Σ

𝑛−1   

(5.4) 

where 𝛾 =
1−2𝛼

2
, 𝛽 =

(1−𝛼)2

4
, and α is chosen to be 0.05 in this study. 

Using these corrected interface information, conduct (i+1)
th

  iteration by going back to 

step (2). 

In Eqn. (5.2), 𝜒𝑖 is the Aitken relaxation factor. Its value is calculated by the following 

equation[33]: 

𝜒𝑖 = −𝜒𝑖−1

∆𝜞𝛴,𝑖+1
𝑛 𝑇

(∆𝜞𝛴,𝑖+1
𝑛 − ∆𝜞𝛴,𝑖

𝑛 )

(∆𝜞𝛴,𝑖+1
𝑛 − ∆𝜞𝛴,𝑖

𝑛 )
𝑇

(∆𝜞𝛴,𝑖+1
𝑛 − ∆𝜞𝛴,𝑖

𝑛 )
  

(5.5) 

where ∆𝜞𝛴,𝑗
𝑛 = 𝜞̃𝛴,𝑗

𝑛 − 𝜞𝛴,𝑗−1
𝑛 . 

This procedure is summarized in the diagram Fig. 5.1. 

6. Numerical results  

6.1 Efficiency test of neighbour searching strategy 

The efficiency of the new proposed and traditional neighbour particle searching strategies 

are tested and compared, using the 2D dam-break problem with different particle numbers.  

Basically, the neighbour search requires two times neighbour searching in each time step 
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for the particle method, as the particle distribution will change twice, i.e. advancing particle 

position to the intermediate stage (Eqn. (3.1)) without pressure, and correcting them with the 

pressure from Poisson equation (Eqn. (3.2), (4.5) or (4.7)). The following strategies are tested 

for this two times neighbour searching in each single time step: 

 

(a). Pure traditional cell-linked 

 

Conducting the two times neighbour searching within the area contained by the yellow and 

green line in Fig. 4.3. 

 

(b). New strategy 

 

As illustrated in Section 4.4, by using the new strategy, the two times neighbour searching 

is only needed within the area covered by blue color in Fig. 4.3. 

 

(c). Verlet list combined with traditional cell-linked 

 

This strategy means we first generate a Verlet list using traditional cell-linked approach, 

and then conduct the refined searching within the Verlet list twice. As discussed in Section 

4.4, the refined searching within the Verlet list with 6𝑟0 radius will not be more efficient than 

directly searching within the nine 4𝑟0 length cells in 2D (as is shown in Fig. 4.3). Moreover, 

if we add the time consumed on establishing the Verlet list using the 6𝑟0length cells, the total 

time would be absolutely larger than the traditional cell-linked approach with 4𝑟0 length cell 

(this will require twice the time used in comparison to strategy (a)).  

If we repeat the above analysis for the case of 5𝑟0 radius, the comparison of overall time 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

24 

 

cost with (a) is not so obvious. Hence, this situation will be tested here. 

 

(d). Verlet list enhanced by new strategy 

 

The radius is taken to be the same as (c), i.e. 5𝑟0. The difference of the approach used in 

(d) as compared to the one in (c) is that the establishing of Verlet list is accelerated by the 

new strategy; since as mentioned in Section 4.4, the new strategy is applicable for the 

acceleration of cells with any length.  

Fig. 6.1 shows comparisons of the time consumed in a single time step by these four 

neighbour searching strategies. Fig. 6.2 shows the proportion of the time cost used by each 

part of the four searching strategies. It is worth mentioning here that the cell generation time 

is the same for different size cells, as has been explained in Section 4.4. Moreover, as shown 

in Fig. 6.2, the time spent on cell generation is indeed almost negligible compared with other 

parts (as mentioned in Section 4.4). All the simulations in this paper were run on computer 

with Intel(R) Core(TM) i5-2400 (duo 3.1GHz) CPU, RAM 4.0 GB. The compiler used is 

Microsoft Visual Studio. 

From Fig. 6.1, it can be seen that by using the new searching strategy, the computation 

time in one single time step has been reduced at least by half compared with all the other 

three approaches. The new searching time (red line) is only about one third of the traditional 

cell linked model (blue line), which is consistent with the prediction in Section 4.4. The 

efficiency of the neighbour particle searching has been improved remarkably.  

The Verlet list combined with the traditional cell-linked (i.e. (c)) is more time-consuming 

than the pure traditional cell-linked approach (i.e. (d)). From Fig. 6.2, it can be seen that the 

average time of the two parts in (c) i.e. Verlet generation (yellow bar) and refined searching 

(brown bar) with this list is basically equal to that of traditional cell-linked model (blue bar). 
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However, strategy (c) requires two times of refined searching within the Verlet list, which 

makes it slower. 

Also in Fig. 6.2, the comparison of time in traditional cell-linked (blue and yellow bar) 

and that after being accelerated by the new strategy (light blue and orange bar) proves that the 

new strategy will reduce the searching time to about 2.5/9, as illustrated in Section 4.4. 

 

6.2 Dam-break simulation 

Dam-break problem is a common benchmark testing case to verify particle method. 

Probably because it includes various rapid free surface deformation situations, such as 

splashing, water re-entry etc. Additionally, it also involves the impact between moving water 

and the wall, which is an important phenomenon in marine engineering. In this section, 

several 2D Dam-break cases are simulated, as shown in Figs. 6.3-6.6. It includes pure dam-

break within a rigid rectangular tank, dam-break with an obstacle in the middle of the tank 

and two fluid structure interaction cases, which are dam-break with a spring supported wall 

and a flexible wall at the impacting end of the tank, respectively. The effectiveness of the 

proposed modifications (Section 4) is tested by the dam-break within a rigid rectangular tank 

case. 

 

a). With rigid tank 

The model set-up is shown in Fig. 6.3. The initial particle distance is 0.005m, which 

corresponds to the number of fluid particles of 14400 (16164 particles in total). For the time 

step, the CFL condition is applied with a maximum value of 0.001s. And it is selected in the 

same way for the following cases. Four points on the impacting wall are selected to monitor 

the pressure time history.  

Fig. 6.7 shows the comparison of free surface profiles and pressure contours between 
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experiment results by Lobovsky et al. 2013 [34], for the original MPS and the Improved 

MPS. Although both the original MPS and the Improved MPS can give consistent flow 

configuration at various typical time instants compared with experiment results, the 

smoothness of the pressure field produced by the Improved MPS is much better than the one 

generated by the original MPS. 

In order to verify the effect of the modifications, different combinations of the 

modifications are tested, as shown in Table 1. The pressure time history results at P2 are 

depicted in Fig. 6.8. The pressure fluctuation of the original MPS is quite large and finally 

triggers the termination of the simulation, as shown in Fig. 6.8 (a). Fig. 6.8 (b) shows the 

effect of the boundary conditions.  The use of Neumann type solid boundary condition and 

the free surface recognition method adopted by [26] could reduce the fluctuation after the 

initial impact period. But the pressure is still too noisy because of the DI type source. 

Actually the comparison between Fig. 6.8 (b) and Fig. 6.8 (c) shows clearly that the DI type 

tend to generate larger fluctuation compared with DF type, as discussed in Section 4.1. The 

density error compensation scheme could further smooth out the high frequency part in the 

pressure time history, as shown in Fig. 6.8 (d). Finally, the use of particle position shifting 

successfully eliminates the singular pressure impulse by improving the regularity of the 

particle distribution as shown in Fig. 6.8(e). All the modifications proposed here make the 

numerical pressure history to be consistent with the experiment results in a very high level. 

Fig. 6.9 shows the pressure time histories monitored at the other three points, i.e. P1, P3 

and P4. All the curves at the four monitor points match well with the experimental data.  

      In order to test the convergence property of the Improved MPS method, three different 

initial particle distances, which are 0.01m, 0.0075m and 0.005m, are adopted to compute the 

same dam-break problem aforementioned. The pressure time history at the P2 monitor point 

and the pressure contour of the three cases are shown in Fig. 6.10 and Fig. 6.11. The 
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consistency of the pressure time history for different particle distances is well maintained, 

and they all agree well with the experiment results. The characteristic features of the free 

surface profile and the pressure contour at the same instant (t=1.25s) for the three cases are 

also very consistent, as shown in Fig. 6.11. 

The mass conservation performance of the MPS with proposed modifications is checked 

using the same dam-break problem with different initial particle distances i.e. 0.01m and 

0.0075m. The mass conservation is measured by the total volume (area in 2D) of the fluid 

domain[35]. More specially, the Delaunay triangulation is first established for the particle 

configuration at each time step, and then the area of the fluid domain is calculated by the 

summation of these triangles. The mass loss percentage is shown in Fig. 6.12. As is shown in 

this figure, the mass loss is within 5% and the refinement of particle distribution improves the 

mass conservation performance. The relatively large fluctuation after t(g/h)0.5=1.5 is caused 

by the splashing and re-entering of the water into the main body. 

 

b). With obstacle in the middle 

The model of breaking-dam impacting with a beam in the middle of tank is simulated, as 

shown in Fig. 6.4. The initial particle distance is also 0.005m. The fluid particle number is 

1682 (2440 particles in total).  

Fig. 6.13 compares the improved MPS results (third and last column from left) with 

experiment (first and fourth column from left) by Koshizuka et al. [36] and Particle Finite 

Element Method (middle column) by Larese et al. [10]. The results of the improved MPS are 

matching well with the experimental results and the Particle Finite Element Method, except at 

the time instant around 0.5 s. At about this time, the experiment results reveal a phenomenon 

in the air phase, which is completely covered by the water jet, is trying to break out from the 

coating water. In the experiment this causes the water jet to be higher than that in both of the 
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numerical results (PFEM and Improved MPS). This disagreement is reasonable since the air 

phase is not considered in both of the numerical computations. When the air is compressed 

out from the water, e.g. in the time instant of 1.0s, the Improved MPS results agree better 

with experiment than the PFEM results. 

 

c). With spring supported rigid wall 

The computational model for a spring with supported rigid wall is illustrated in Fig. 6.5. 

The initial particle distance is chosen as 0.01m, i.e., 7200 fluid particles are involved (8652 

particles in total). The motion of the rotating beam is governed by the following equation: 

𝐼𝑏𝜃̈𝑏 −
1

2
𝑀𝑏𝐿𝑏𝑔𝑠𝑖𝑛𝜃𝑏 + 𝐾𝑏𝜃𝑏 = 𝑇𝑏         (6.1) 

where θb is the rotation angle of the beam, Ib is the moment of inertia with respect to 

rotating axis, and Tb  is the torque generated by the fluid pressure. The other related 

parameters are chosen as: mass of the beam Mb = 1kg , stiffness coefficient Kb = 1500N/

m, and length of the beam Lb = 2m. Fig. 6.14 shows the pressure contour at several typical 

time instants. The initial space between particles is 0.01m, which corresponds to a total of 

7200 fluid particles. In order to compare the effect of rigid and this rotational beam, the two 

cases are both computed in this study. For the rigid beam case, in which iteration is not 

required, the computation time is about 8 CPU hours for 10s physical time under the same 

computer condition aforementioned. 

From Fig. 6.14, it can be seen that the distribution of the pressure is quite smooth in space 

domain. Two major impacts are found to occur in two durations, i.e. t=0.75-2s and t=5.1-

5.9s. During these two periods, the large fluid pressure which is generated from the falling of 

the water column pushes the beam to relatively large angles. 

Fig. 6.15(a) shows the time history of the rotational angle of the beam. The two significant 

angle impulses are consistent with the time of the two major impacts. Except from these 
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violent interactions, the water pressure applied on the beam is relatively much smaller. As a 

consequence, the beam oscillates with a period (≈0.2s) which is very close to the natural 

frequency ω=33.4312rad/s (T=0.1879s), as expected.  

In order to investigate the effect of the beam rotation to pressure field, the time history of 

the pressure monitored at the point, which is 0.16m above the right corner of the beam, is 

compared in Fig. 6.15(b). 

As can be seen in Fig. 6.15(b), the time history during the first major impact of rotational 

beam case is basically the same as the one in rigid beam case. However, the peak pressure 

value during the second major impact is larger than the one in first major impact for the 

rotational case. This is probably because that at the beginning of the second impact, the beam 

is rebounding back (which can be seen in Fig. 6.14 at about t=5s) which means that the water 

front and the beam are moving towards each other. And this consequently makes this impact 

more vigorous than the first one. The second difference is that there is a regular oscillation 

after t=6s for the rotational case, this is the reflection of the beam oscillation with its near-

natural frequency. The pressure fluctuations which occur at about t=3s and t=6s for both the 

rigid and rotational cases are caused by the isolated water particles re-entering the main fluid 

field near right corner, which shows that this is not due to the stability issue of the MPS 

solver.  

 

d). With fixed end elastic wall 

As illustrated in Fig. 6.6, the elastic wall impacted by a breaking-dam is simulated in this 

section. The related parameters are chosen as: Young’s modulus E = 0.2GPa, thickness δ =

0.006m , line density m = 47.16kg/m , and the moment of inertia of the beam cross 

section  I = 1.8 × 10−8m3. The other geometric parameters are all provided on the sketch 

picture in Fig. 6.6. The initial particle distance is 0.004m. Consequently 1250 fluid particles 
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are used in the simulation (1736 particles in total).  

The beam is fixed on the bottom, and its motion is solved by normal linear Finite Element 

(FE) method, as in Ref [37]. 

Similar to the spring supported beam case, both rigid and elastic beam cases are computed 

and compared. The physical simulation time is 10s, which requires roughly 1 CPU hours on 

the same computer, as illustrated above for the rigid case. 

The pressure contours and the beam deformation at some typical time instants are shown 

in Fig. 6.16. Smooth pressure field is successfully generated.  

The trajectory of the top end of the beam, which is represented by the global X coordinate 

of this point, is shown in Fig. 6.17 (a). The frequency of the oscillation (≈ 0.6s) is very close 

to its first order natural frequency ω = 10.5235 (T = 0.5971s). This is also consistent with 

the fact that the first modal shape is the dominant one as is shown in Fig. 6.16.  

The pressure history monitored at Y = 0.02m at the right corner for both rigid and elastic 

wall cases are shown in Fig. 6.17 (b). For both cases, the fluctuation of pressure at the time 

domain is very small. And the difference between them is also negligible, which means the 

small elastic deformation will not greatly change the fluid motion and consequently the 

pressure field.  

6.3 Sloshing simulation 

A 2D sloshing phenomenon in partially filled tank is simulated in this section. The 

physical dimensions are shown in Fig. 6.18. The initial particle distance is still 0.005m, 

which means that 2880 fluid particles are involved (3592 particles in total).  

The tank moves sinusoidally in horizontal direction as: X = Asin(ωt), where A  is the 

amplitude of motion and ω is the circular frequency of the excitation. In this simulation, the 

frequency ω= 4.8332 rad/s (period T is 1.3s) and the amplitude A= 0.05m. In order to 

simplify the coding, the equivalent acceleration, which is equal to the tank acceleration, is 
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added into the right hand side of the governing equation (Eqn. (2.1)).  And the benefit is that 

all the boundaries remain stationary.   

Fig. 6.19 shows the free surface profiles of both the experiment results and the Improved 

MPS at three representative time instants, i.e. 0.1T, 0.2T and 0.3T, where T is the period of 

the sloshing (1.3s). The contour is the pressure distribution. Again, since no falsely 

recognised free surface particles exist in the main fluid body, the pressure is very smoothly 

distributed. The Improved MPS shows a good agreement with experiment for the free surface 

profiles as well. 

Fig. 6.20 shows the comparison between the original MPS, experiment results and the 

Improved MPS. The original MPS results are scanned from Ref [14], and the experiment data 

are extracted from the paper of  Kishev et al. [38]. From this Figure, it is obvious that the 

fluctuation of pressure in the original MPS method is too large to be used for FSI application. 

In contrast, the Improved MPS could successfully capture the typical pressure characteristics. 

The period of the results also match well, although a shifting manipulation (also found in Ref 

[14, 38]) is made to align the first impulse. This may be due to the starting of the measuring 

time in the experiment, is not exactly the same as the start of the tank motion. The peak 

values of each impulse are not exactly the same as those in experiment results, but the overall 

maximum value, which is about 7000 Pa at around 2s and 10s, is successfully captured. 

6.4 Ship cross section dropping 

The ship bow section dropping has also been studied by Aarsnes [39] experimentally and 

Sun [40] numerically. The computational model is depicted in Fig. 6.21.  

Two scenarios are investigated here: the dropping heights of 0.02m and 0.118m. The 

corresponding entry velocities are 0.61m/s and 1.48m/s, respectively.  Except from the shape 

of the section, other experimental set-up is the same as the one described in wedge dropping 

case. The total weight of the falling rig is 261kg. 
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The simulation is conducted in a tank with the length of 2.4m and water depth of 1m. As 

in the above sections, the CFL condition is applied to determine the time step. The initial 

distance between particles is 0.005m, which corresponds to 96000 fluid particles involved in 

the simulation. Here, the same setting as in the wedge dropping case is used. At the beginning 

of the simulation, the wedge (ship section) is placed just above the water with a distance 

(from the apex of the wedge to the calm water surface) of the initial particle distance i.e. 

0.005m with the aforementioned initial velocity. Because of the symmetrical shape of the 

wedge and for programming convenience, the horizontal motion of the wedge is constrained. 

The physical simulation time is 0.12s to 0.18s, which takes roughly 8 CPU hours. 

The velocity and vertical forces are compared in Figs. 6.22-6.23. The results of the 

Improved MPS are generally in good agreement with experimental results[39]; and very close 

to the BEM results[40]. However, it can be noticed that after about 0.13s in scenario 1 (entry 

speed  0.61m/s) or 0.085s in scenario 2 (entry speed 1.48m/s), the Improved MPS and BEM 

results start to deviate from the experimental one, this may also be explained by the same 

reason as with the wedge dropping case. 

In order to illustrate the space distribution of pressure and velocity, the pressure and 

velocity contours of the fluid fields for scenario 1 (entry speed 0.61m/s) are shown in Fig. 

6.24. The three states selected here are representative time instants when the water reaches 

the characteristic positions. The pressure and velocity fields obtained are all quite smooth. 

7. Conclusion 

The particle method MPS is suitable for problems with rapidly changing boundaries/flow 

interfaces, such as free surface flow. The Lagrangian way of moving the computational 

points (i.e. particles) makes the numerical domain automatically match the deformation of the 

physical domain. However, this feature also brings problems such as the disordered particles 

distribution, which can lead to inaccurate results. In order to remedy this problem, several 
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modifications have been proposed in this paper to improve the performance of standard MPS 

method, including density error compensation in source term of Poisson equation, new type 

of solid and free surface boundary conditions, particle shifting technique and a more efficient 

neighbour particle searching method. 

 

To test these modifications, some 2D numerical examples such as Dam-break simulation 

(interacted with various structures), sloshing and ship cross section dropping are simulated 

using the MPS method with the proposed modification. The numerical results are compared 

with the existing numerical or experimental results, and are found to be in good agreement. 

The test results show that the proposed modifications are capable of producing smooth and 

stable velocity and pressure field for various free surface flow problems. 
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Source term Boundary condition Particle shifting

Original MPS Density invariant type (DI) Traditional MPS type No

Model A Density invariant type (DI)

New proposed type in 

section 4.2 No

Model B Divergence free type (DF)

New proposed type in 

section 4.2 No

Model C

Density error compensation 

scheme in section 4.1

New proposed type in 

section 4.2 No

Improved MPS

Density error compensation 

scheme  in section 4.1

New proposed type in 

section 4.2 Yes

Table 1. The models tested in the Dam-break simulation

Table 1. model list
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Fig. 6.8 Dam-break p history comparison with each modification
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Fig. 6.9 Dam-break pressure time history of P1 P3 P4
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Fig. 6.10: Comparison of pressure time history for different particle distances

Fig. 6.10 Comparison of p history for different particle distanc
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Fig. 6.11 convergence test
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Fig. 6.12 Mass Conservation
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Fig. 6.13: Dam break with obstacle: free surface profiles (comparison between experiment[36],PFEM[10] and Improved MPS)

Fig. 6.13 Dam with obstacle-pressure contour
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Fig. 6.14: Pressure contour and free surface profiles at several typical instants

Fig. 6.14 Spring supported wall pressure contour
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Fig. 6.15: Time history of rotation angle and the pressure monitor point

Fig. 6.15 Spring supported wall pressure and tip positon time hi
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Fig. 6.16: Pressure contour, free surface profiles and beam deformations at several typical instants

Fig. 6.16 elastic beam motion and p contour
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Fig. 6.17: Trajectory at the beam top and pressure time history at the impacting corner

Fig. 6.17 flex_beam p monitor and top tip monitor
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Fig. 6.18 sloshing sketch
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Fig. 6.19: Comparison of free surface profiles 

between experiment and Improved MPS

Fig. 6.19 sloshing_pressure_contour_compare
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Fig. 6.20: Comparison of pressure with experiment of Kishev et al[38] and original MPS 

from B. H. Lee et al[14]

Fig. 6.20 sloshing pressure compare
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Fig. 6.21 Shape of ship section
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Fig. 6.22: Vertical force and velocity comparison with experiment 

and BEM (entry speed =0.61m/s)

Fig. 6.22 Ship section force and vel comparison(v0_61)



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
0 0.02 0.04 0.06 0.08 0.1 0.12

0

50

100

150

200

250

300

350

time (s)

V
e
rt

ic
a
l 
F

o
rc

e
 (

m
/s

)

Vertical Force comparison of ship section, V
0
=1.48m/s

 

 

Improved MPS

EXP(Aarsnes 1996)

BEM(Sun 2007)

0 0.02 0.04 0.06 0.08 0.1 0.12
-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

time (s)

V
e
rt

ic
a
l 
V

e
lo

c
it
y
 (

m
/s

)

Vertical Velocity comparison of ship section, V
0
=1.48m/s

 

 

Improved MPS

EXP(Aarsnes 1996)

BEM(Sun 2007)

Fig. 6.23: Vertical force and velocity comparison with 

experiment and BEM (entry speed =1.48m/s)

Fig. 6.23 Ship section force and vel comparison(v1_48)
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Fig. 6.24: Velocity and pressure contour of scenario 1(entry speed 0.61m/s)

Fig. 6.24 Ship section dropping pressure contour


