HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Cost-Effective Radiation Hardened Techniques for Microprocessor
Pipelines

by

Yang Lin

Thesis for the degree of Doctor of Philosophy

April 2015

mailto:yl5g09@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Doctor of Philosophy

COST-EFFECTIVE RADIATION HARDENED TECHNIQUES FOR
MICROPROCESSOR PIPELINES

by Yang Lin

The aggressive scaling of semiconductor devices has caused a significant increase in
the soft error rate induced by radiation particle strikes. This has led to an increasing
need for soft error-tolerance techniques to maintain system reliability, even for sea-level
commodity computer products. Conventional radiation-hardening techniques, typically
used in safety-critical applications, are prohibitively expensive for non-safety-critical
microprocessors in terrestrial environments. Providing effective hardening solutions for
general logic in microprocessor pipelines, in particular, is a major challenge and still
remains open. This thesis studies the soft error effects on modern microprocessors, with
the aim to develop cost-effective soft error mitigation techniques for general logic, and

provide a comprehensive soft error treatment for commercial microprocessor pipelines.

This thesis presents three major contributions. The first contribution proposes two novel
radiation-hardening flip-flop architectures, named SETTOFF. A reliability evaluation
model, which can statistically analyse the reliability of different circuit architectures, is
also developed. The evaluation results from 65nm and 120nm technologies show that
SETTOFF can provide better error-tolerance capabilities than most previous techniques.
Compared to a TMR-latch, SETTOFF can reduce area, power, and delay overheads by
over 50%, 86%, and 78%, respectively. The second contribution proposes a self-checking
technique based on the SETTOFF architectures. The self-checking technique overcomes
the common limitation of most previous techniques by realising a self-checking capa-
bility, which allows SETTOFF to mitigate both the errors occurring in the original
circuitry, and the errors occurring in the redundancies added for error-tolerance. Evalu-
ation results demonstrated that the self-checking architecture can provide much higher
Multiple-Bit-Upsets-tolerant capabilities with significantly less power and delay penal-
ties, compared to the traditional ECC technique, for protecting the register file. The
third contribution proposes a novel pipeline protection mechanism, which is achieved by
incorporating the SETTOFF-based self-checking cells into the microprocessor pipeline.
An architectural replay recovery scheme is developed to recover the relevant errors de-
tected by the self-checking SETTOFF architecture. The evaluation results show that the
proposed mechanism can effectively mitigate both SEUs and SETs occurring in different
parts of the pipeline. It overcomes the drawback of most previous pipeline protection

techniques and achieves a complete and cost-effective pipeline protection.

mailto:yl5g09@ecs.soton.ac.uk

iv

Contents

Acknowledgements XV
1 Introduction 1
1.1 Radiation-Induced Soft Errors 2
1.2 Impact of Radiation Particle Strikes: Transient Faults 3
1.3 Types of Soft Errors and Metrics 4
1.4 Soft Error Effect on Technology Scaling Trends 4
1.5 Soft Error Mitigation Techniques and Their Limitations 8
1.6 Research Motivations and Objectives 9
1.7 Thesis Organisation 10
1.8 Publications 12
2 Literature Review 13
2.1 Error Control Coding Techniques 13
2.1.1 Parity Code 13
2.1.2 Hamming Code e 14
2.1.2.1 SEC-DED Code 15
2.2 Triple-Modular Redundancy and Dual-Modular Redundancy 17
2.3 Radiation-Hardened Cells 18
2.3.1 Dual Interlocked Storage Cell (DICE) 19
2.3.2 Feedback Redundant SEU/SET-Tolerant Latch (FERST) 20
2.3.3 Built-In Soft-Error Resilience (BISER) 22
2.3.4 Time Redundancy-Based Soft Error Mitigation 23

2.3.4.1 Time Redundancy-Based Error-Tolerance Architecture
(TRT) . . . o 23

2.3.4.2 Time Redundancy-Based Error-Detection Architecture
(TRD) . . . 24
2.3.4.3 Cost-Reduced TRD Architecture 25
2.3.4.4 The Detection Capability of TRD 26

2.3.4.5 Timing Constraints of the Cost-Reduced TRD Architec-
ture 26
2.3.5 Global Reliability Architecture Approach for Logic (GRAAL) . . . 27
2.3.6 SEM and STEM Cell 27
2.3.7 Razor Technique 30
2.3.8 Razorll Technique 30
2.3.9 Hardened Cells based on Blocking Feedback Transistors 32
2.3.10 Schmitt Trigger Circuit-Based Cells 33

vi CONTENTS
2.4 Memory and Cache Protection Techniques 34
2.4.1 ECC-based Memory and Cache Protections 34
2.4.2 Memory and Cache Protection Using Radiation-Hardened Cells . . 34
2.4.3 Other Memory and Cache Protections 35

2.5 Soft Error Protection Techniques For Microprocessor Pipelines 36
2.5.1 Pipeline Register Protection Techniques 36
2.5.1.1 Razorll pipeline protection 36

2.5.1.2 SEM/STEM pipeline protection 37

2.5.1.3 DIVA pipeline protection 37

2.5.2 Register File Protection Techniques 39
2.5.2.1 ParShield Architecture, 39

2.5.2.2 Compiler-Guided Partial ECC RF Protection 41

2.5.2.3 Duplication-Based RF Protection 41

2.5.2.4 Robust Register Cache (RRC) Technique 42

2.6 Software-Based Soft Error Mitigation Techniques 42
2.7 Other Soft Error Mitigation Techniques 44
2.7.1 Removing the Speed Penalty of ECC Technique 44
2.7.2 The Self-checking Controller with Datapath Interactions 45

2.8 SUmMmMAary e e 46
3 Soft Error and Timing Error Tolerant Flip-Flops 47
3.1 Soft Error Vulnerability of the Conventional Flip-Flop 48
3.2 Soft Error and Timing Error Tolerant Flip-Flops (SETTOFF) 48
3.3 SETTOFF1 49
3.3.1 Operating Principle of SETTOFF1 51
3.3.2 Transistor Level Design of SETTOFF1. 55

3.4 SETTOFF2 e 57
3.4.1 Operating Principle of SETTOFF2 57
3.4.2 Transistor Level Design of SETTOFF2 59

3.5 Circuit Implementation Issues for SETTOFF1 and SETTOFF2 61
3.6 Statistical Analysis of Soft Error Failure Rates of the Flip-Flop 63
3.6.1 SET Failure Rate Evaluation Model 63
3.6.1.1 SET Failure Rate Model for Conventional Flip-flops . . . 64

3.6.1.2 SET Failure Rate Model for SETTOFF 67

3.6.2 SEU Failure Rate Evaluation Model 68
3.6.3 Discussiono 69

3.7 Experimental Setups and Comparative Evaluation Results 70
3.7.1 Experimental Methodology 70
3.7.2 Area Overhead of SETTOFF 70
3.7.2.1 Area Overhead Comparisons 71

3.7.3 Power Consumption Overhead of SETTOFF 72
3.7.3.1 Power Consumption Overhead Comparisons 74

3.7.4 Delay Overhead of SETTOFF 75
3.7.4.1 Delay overhead Comparisons 76

3.7.5 Soft Error-Tolerance Capability of SETTOFF 76
3.7.5.1 Transistor-Level SET and SEU Injection and Simulation 77

3.7.5.2 SET Failure Rate Evaluation 79

CONTENTS vii

3.8

4 The
4.1

4.2

4.3

4.4

4.5

5 The
5.1

5.2

5.3

3.7.5.3 SEU Failure Rate Evaluation 80
3.7.5.4 Reliability Comparisons 80
Concluding Remarks 80
Self-Checking Register Architecture 83
Soft Error Vulnerability Analysis for the Redundancy Circuities in SET-
TOFF . . . 84
Self-Checking Radiation Hardened Register Architectures 86
4.2.1 Key Concept of the Self-Checker 86
4.2.2 Self-Checking Register Architecture 89
4.2.3 Circuit Implementation Issues 90
4.2.4 Recovery Mechanisms for the Errors Detected by the Self-Checker 91
4.2.4.1 Architectural Replay-Based Recovery Mechanism 91
4.2.4.2 Clock-Gating-Based Recovery Mechanism 92
4.2.5 Analysis for the Error-Tolerance Capability of the Self-Checking
Register o 93
Experimental Setups and Evaluations for the Self-Checking Radiation
Hardened Register oo 94
4.3.1 Experimental Methodology 94
4.3.2 Implementation Overheads 95
4.3.3 Reliability Evaluations and Comparisons 95
Radiation Hardened Register File Implementations 97
4.4.1 The Original Register File Architecture 97
4.4.2 The Radiation Hardened RF Implementations. 98
4.4.3 Statistical Analysis of Failure Rates for RFs 99
4.4.3.1 SET Failure Rate Model for the Register File 100
4.4.3.2 SEU Failure Rate Model for Register File 100
4.4.4 Experimental Setups and Comparative Evaluation Results for the
Radiation Hardened RFs, 101
4.4.4.1 Experimental Setups. 101
4.4.4.2 SET and SEU Failure Rate Results 101
4.4.5 Implementation Overheads 102
Concluding Remarks L o 103

Self-Checking Radiation Hardened OpenRISC Pipeline Design 105

The OpenRISC 1200 Microprocessor oo . 106
5.1.1 ORI1200 CPU Core v o vt ittt it e e 106
5.1.2 OR1200 Pipeline Architecture and Operating Principle 109
Soft Error Vulnerability Analysis for the OpenRISC Pipeline 110
5.2.1 Transparent Fault Injection and Simulation in VHDL 112
5.2.2 The Transient Fault Injection and Analysis Technique 115

5.2.2.1 SEU Injection into Sequential Gates 116

5.2.2.2 SET Injection into Combinational Gates 118
5.2.3 Vulnerability Analysis Results for the OpenRISC Pipeline 119
The Self-Checking Hardened Pipeline Design on OpenRISC Microprocessor125
5.3.1 The Radiation Hardened OpenRISC Pipeline Design 125

5.3.2 Operating Principles of Error-Tolerance in the Radiation-Hardened
Pipeline Architecture. o o 128

viii CONTENTS

5.3.2.1 Recovery Mechanism for Type (1) Errors 128
5.3.2.2 Recovery Mechanism for Type (2) Errors 128
5.3.2.3 Recovery Mechanism for Type (3) Errors 132
5.4 Experimental Methodology and Implementation Process 133
5.4.1 Cell Characterisation using Synopsys Liberty NCX 133
5.4.1.1 Cell Characterisation Flow 133
5.4.1.2 Characterisation of the Complete SETTOFF 136
5.4.1.3 Characterisation of the Error-Tolerance Circuitry in SET-
TOFF e 136
5.4.1.4 Characterisation of the Self-Checker 139
5.4.2 Setting TRD and TD Intervals and Clock Management 140
5.5 Evaluation Results and Comparative Analysis 142
5.5.1 Reliability Evaluation for the Radiation-Hardened Processor . . . 142
5.5.2 Implementation Details and Error-tolerance Overheads 143
5.5.3 Comparative Analysis with Razor and SEM/STEM Pipeline Pro-
tection Techniques 143
5.5.4 Comparative Analysis with ECC-based RF protection technique . 145
5.6 Concluding Remarks 145
6 Conclusions and Future Work 147
6.1 Conclusions and Contributions 147
6.2 Future Work e 151
6.2.1 Performance and Power-Efficiency Enhancement for Reliable Sys-
tems 151
6.2.2 Reliable System Design Automation 152
A Soft Error Analysis Model 153
A.0.3 The testbench for the SET injection and simulation 153

References 157

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27

3.1
3.2
3.3
3.4
3.5

The SRAM and DRAM soft error rate trends per bit vs. technology process. 6
The SRAM and DRAM soft error rate trends per chip vs. technology

PTOCESS. . v v v v i e e e e e e e e e e 7
Check bits encoding and syndrome bits generation. 16
Error detection and correction circuitries. 17
TMR configuration. o 18
Principle of the DICE architecture. 19
Transistor level design of a DICE memory cell. 20
The C-element. L 21
The architecture of the FERST latch. 22
The architecture of the BISER flip-flop. 23
Time redundancy-based error-tolerance architecture. 24
Time redundancy-based error detection architecture. 25
The optimized TRD architecture. 25
The timing diagram of the cost-reduced TRD architecture. 26
SEM cell. e 28
STEM cell. o o e 29
Razorll flip-flop. 31
Operation timing diagram of Razorll flip-flop. 31
The architecture of the hardening approach using blocking feedback tran-

SISEOTS. . . . o o 32
Schmitt Trigger-based soft error masking latch. 33
Baseline model for Cache Write Sure (CWS) system. 35
RazorlIl pipeline design. L Lo oo 37
DIVA structure. 38
The architecture of the DIVA checker. 38
Shield architecture. 40
Lifetime of a register version. 41
Elimination of extra delay in the write path.. 44
Elimination of detection and correction delays. 45
Basic controller/datapath architecture. 45
The conventional master-slave flip-flop. 48
The architecture of SETTOFF1. 50
The TRD and TD interval of SETTOFF1. 51
The operating principle of Part I in SETTOFF1. 52
The operating principle of Part I in SETTOFF1.. 54

ix

LIST OF FIGURES

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9
4.10
4.11

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

The circuit schematic of SETTOFF. (a) The transition detector. (b) The

detection clock generator. oo 56
The architecture of SETTOFF2. 58
The multiplexer-based flip-flop hold architecture. 58
The clock gating-based flip-flop hold architecture. 59
The operating principle of Part I in SETTOFF2.. 60
The circuit schematic of TD in SETTOFF2. 61
The correction XOR gate. Lo oo 61
The SET pulse generated from a combinational circuit node. 64
The synchronous pipeline architecture for failure rate model. 64
Timing Condition (a) of the transient pulse. 65
Timing Condition (b) of the transient pulse. 66
Timing Condition (b) of the SET for SETTOFF. 67
The area overhead comparisons, 65nm technology. 71
The power consumption of the flip-flops in 120nm technology. 72
The power consumption overhead of the SETTOFFs in 120nm technology. 73
The power consumption of the flip-flops in 65nm technology. 73
The power consumption overhead of the SETTOFFs in 65nm technology. 74
The power overhead comparisons, 65nm technology. 75
d .o 77
Soft error injection scheme. oo oL 78
SET failure rate results. 79
The TD-based architecture in SETTOFF1. 85
The TD-based architecture in SETTOFF2. 86
The self-checking SETTOFF architecture. 87
The transistor level design of the TD-checker. 88
The transistor level design of the glitch filter. 88
The self-checking radiation hardened register architecture. 89
The clock-gating based recovery mechanism for the self-checking archi-

tecture. L 92
An n-bit register for constructing the RF. 97
An original RF with 1 write port and 1 read port. 98
The self-checking register-protected RF. 99
The SEC-DED-protected RF. 100
Architecture of the OpenRISC 1200 IP core. 107
Block diagram of the OR1200 core. 108
Register abstraction view of the OR1200 pipeline. 109
The package declared for fault injection. 113
Two-input NAND gate with fault injection model. 114
Date structure of the fault model. 115
Fault simulation testbench template. 115
The modified D flip-flop for SEU injection. 116
The VHDL description of the modified D flip-flop for SEU injection. . . . 117
Part of SEU simulation testbench template. 118

The modification of a D flip-flop for SET injection. 119

LIST OF FIGURES xi

5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32

SET injection block. 120
Part of SET simulation testbench template. 120
The soft error effect analysis model based on ORPSoc platform.. 121
The timing diagram for soft error analysis simulation. 121
The soft error effect analysis simulation flow. 122
Part of the analysis results in error_record.txt.. 123
Part of the analysis results in error_record.txt.. 123
An example of the analysis results in summary.txt. 123
The soft error vulnerability analysis results for OpenRISC processor. . . . 124
The robust pipeline design of the OpenRISC processor 127
Timing diagram of the pipeline recovery operation for Case (1) 130
Timing diagram of the pipeline recovery operation for Case (2) 131
Timing diagram for pipeline register recovery with branch instruction

(Case 3) o 131
The data required for NCX characterisation. 134
Example of a library template. 134
Example of a cell template.o oL 135
The SPICE netlist of the TDXOR1 in SETTOFF1. 137
Function description of the TDXORI in Liberty format. 138
The SPICE netlist of the TDXOR2 in SETTOFF2. 139
Function description of the TDXOR2 in Liberty format. 139

Function description of the self-checker in Liberty format. 140

List of Tables

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3

44

4.5

5.1
5.2
5.3
5.4

Hamming code algorithm.00 15
Operating principle of SEM cell.o 28
Operating principle of STEM cell. 29
The operation states of Part II in SETTOFF1. 53
Area Overhead of SETTOFF1 and SETTOFF2 71
Clock-to-Q delay overhead in 120nm technology 76
Clock-to-Q delay overhead in 65nm technology 76
Transient fault injection simulation results for SETTOFF1 and SETTOFF2 78
Comparisons of the error-tolerance capability. 81
Error-tolerance capability analysis of the self-checking register. 93

Comparison of error-tolerance capability and overheads for 32-bit registers. 96
The SET-induced MBU failure rates for the self-checking register-protected

RF, the original RF, and the SEC-DED-protected RF. 102
The SEU-induced MBU failure rates for the self-checking register-protected

RF, the original RF, and the SEC-DED-protected RF. 102
Implementation overheads of the robust RFs in 65nm technology. 102
Abbreviations of the blocks inside CPU core 107
State table definition in Liberty format. 137
Reliability analysis results for the radiation hardened OpenRISC 143
Radiation hardened processor implementation details 144

xiii

Acknowledgements

I would like to thank my brilliant supervisor, Professor Mark Zwolinski, for his support
and invaluable guidance through my PhD. His vision and wisdom in approaching a
problem is the single greatest thing I have learnt from this project. I will try to keep

following it and benefit from it for the future of my life.

I would like to take this opportunity to thank Dr. Basel Halak, for his excellent technical
advices and insightful discussions on this research. His reviews of this work have always
been invaluable, and I am grateful to be able to work with him. Also, I would like to
thank Dr. Koushik Maharatna, for his revisions of my work and his valuable advices for

my first year and second year reports.

I would also like to offer my thank to the School of Electronics and Computer Science
(ECS), for supporting my work by means of studentship and state of the art research
facilities. This PhD project would not have been possible without this support. My
thank also goes to all my colleagues who have helped me in many ways during my PhD.
The joyful and active research atmosphere that is created by them will always be in my

memory.

Finally, my parents and my girlfriend have always been my strongest supporters. I am
greatly thankful for their love and faith on me, and I would like to dedicate this work
to them.

XV

Chapter 1

Introduction

Since the invention of the CMOS in 1970, the technology has been progressing rapidly.
The demands for the performance, functionality and power-efficiency have been increased
considerably for semiconductor devices. Microprocessors, in particular, are the main
driver of this trend. In 1965, Gordon Moore of Intel Corporation proposed Moore’s Law
[1], which predicted that the number of transistors integrated in a single chip will double
every 18-24 months. Over the past few decades, the drastic scaling of the feature size
has lead to an exponential growth in the number of transistors, which has significantly
improved the functionality of the chips. However, along with technology advance, each
succeeding technology generations have introduced new design challenges, due to the
limited budgets for chip area, energy dissipation, and the increasing requirement for
performance, functionality, and reliability. Innovating solutions need to be carried out
for satisfying various design constraints simultaneously during the design process. The
complexity of finding a balance between these constraints to meet all the specifications

has been increased substantially.

The energy consumption of a chip, for instance, has recently become one of the highest
priorities among various design constraints due to the increased leakage power dissipation
and the rapid extension of the mobile device market. The reliability issues caused by
the hard errors induced by permanent faults, and the soft errors induced by transient
faults have also become a significant challenge. Hard errors can typically be addressed
during the fabrication process, but addressing soft errors requires appropriate detection
and correction mechanisms. Therefore, the reliability issues caused by soft errors have

become the major cause of concern.

This thesis describes the effects of radiation-induced soft errors on modern integrated
circuits, and proposes new cost-effective techniques to mitigate soft errors and improve
system reliability. The proposed techniques have been implemented in modern technol-

ogy nodes and validated on a RISC microprocessor.

2 Chapter 1 Introduction

This chapter briefly introduces the preliminary background about the radiation-induced
soft errors, and outlines the work described in the subsequent chapters of the thesis.
Section 1.1 and Section 1.2 introduce the basic concept of soft errors and their impact
on digital circuits, respectively. Section 1.3 describes the types of soft errors, and the
metrics to calculate soft error rates. The technology trends on soft error effects are
described in Section 1.4. Section 1.5 provides an overview of the existing soft error
mitigation techniques. The motivations for the research are introduced in Section 1.6,

and the thesis organisation is described in Section 1.7.

1.1 Radiation-Induced Soft Errors

The first report of problems caused by soft errors at sea-level traces back to 1978. Soft
errors were found in the DRAMs of Intel computer chips. Intel Corporation declared
their problem to be soft errors induced by alpha particle contaminations [2]. Subse-
quently, IBM Corporation encountered soft errors affecting their chips due to cosmic
radiation in 1984 [3]. In 2000, Sun Microsystems observed soft error problems in their
commercial products. The SRAM chips of their UltraSPARC-II-based server were cor-

rupted, due to the insufficient soft error-mitigation features incorporated in the chips
[2].

Soft errors are a manifestation of underlying transient faults. There are variety of sources
that can cause transient faults, such as transistor variabilities, thermal cycling, and
radiation particle strikes, etc [4]. This thesis focuses on the radiation-induced transient
faults caused by two sources — alpha particles from the packaging and bonding materials,

and the neutrons from the atmosphere and beyond.

Alpha particles are produced from the impurities existing in the packaging materials,
and are very difficult to completely eliminate. Typically, alpha particles only possess the
kinetic energies of a few Mev, but they can affect semiconductor devices by depositing
a dense track of charge and create electron-hole pairs as they pass through the bulk or
substrate of a transistor [4]. A sufficient number of electron-hole pairs can result in tran-
sient current pulses, which induce transient faults. Neutrons are one of the subatomic
particles that construct atoms. Neutrons are induced by cosmic rays interacting with
the earth’s atmosphere [5]. Unlike alpha particles which interact directly with electrons,
neutrons create transient faults in an indirect manner: they interact with silicon, oxy-
gen, or other atoms to cause the emission of secondary particles such as protons, alpha
particles, neutrons, etc. These secondary particles can force ionization tracks to create a
sufficient number of electron-hole pairs, which induce transient faults in semiconductor

devices [4].

Chapter 1 Introduction 3

Certain shielding techniques, such as using small amounts of epoxy or nonradioactive
lead, can provide a shield against alpha particles and therefore reduce the circuit interac-
tion with such radiations. However, alpha particles are difficult to completely eliminate.
A small number of alpha particles can still seriously affect chip operations [4]. Neutrons,
on the other hand, cannot be shielded unless by using thick concrete, which is not prac-
tical. Consequently, detection and correction techniques are essential in order to tackle

the faults induced by these particles.

1.2 Impact of Radiation Particle Strikes: Transient Faults

In order for particle strikes to cause malfunctions in the circuit, the charge produced by
the particles has to exceed a certain threshold. The occurrence of the radiation-induced
circuit malfunction depends on two factors, namely, the critical charge of the circuit,
and the charge collection efficiency. The critical charge of the circuit, represented by
Qcrit, is defined as the minimum charge required to cause circuit malfunctions. Q¢+ can
typically be derived through circuit model simulations, by injecting different currents
into the circuit until it fails. The charge collection coefficient, denoted by Q..y, is the
ratio of the charge collected by the circuit and the charge generated by the particles. If
the collected charge crosses ()¢ when a circuit node is struck by radiation particles,
different transient faults will arise according to the types of the node being attacked. If
the node belongs to a storage cell, such a RAM, a latch, or a flip-flop, the state stored
in the cell may be flipped, resulting in a Single-Event-Upset (SEU). If the node belongs
to a combinational cell, it may produce a transient voltage pulse named a Single-Event-
Transient (SET).

SEUs are typical transient faults manifested at the output of storage cells, which may
incur soft errors directly. SETs, however, might not affect the system as they may be
masked during the propagation through the circuit. Only the SETs that are captured
by the forward storage cells can cause an error. There are three commonly observed

masking mechanisms: logic masking, electrical masking, and latch-window masking [6]

[71 8]:

e Logic masking: an SET pulse can be logically masked when it appears at the
portion of the circuit that does not affect the circuit output. In a two-input AND-
gate, for instance, if the first input is zero, the second input can be regarded as
"don’t care’. This is because no matter whether the second input is zero or one,
the output of the AND-gate is zero. An SET occurring at the second input of the
AND-gate will be logically masked if the first input is one.

e Electrical masking: the electrical masking can happen when an SET pulse attenu-
ates during the propagation before it arrives the forward storage cells. The storage

cells, in this case, will not capture the SET.

4 Chapter 1 Introduction

e Latch-window masking: Latch-window masking occurs when the SET pulse does
not arrive at the forward storage cells (latches or flip-flops) during their sampling
windows. The sampling window of a flip-flop, for example, is the clock transition.
The SETs that do not arrive at its input during the clock transitions will be

masked.

1.3 Types of Soft Errors and Metrics

The radiation-induced SETs and SEUs arising from circuit nodes can result in visible soft
errors if they are unmasked during propagations. Soft errors can be defined at different
levels, depending on how the transient faults affect the outcome of circuit operations and
how the system is being used. Architecturally, soft errors are typically categorised into
two types: Silent Data Corruption (SDC) and Detected Unrecoverable Error (DUE) [4].
SDCs and DUEs are the soft errors defined at the highest scope which corrupt the user
interface of a system. As the name suggested, SDCs are the data corruptions that affect
the user without any warnings or error flags. In contract, a DUE is an error detected
by the system, but recovery is not possible. DUEs can crash the system but can avoid
data corruption. SDCs are therefore normally perceived as significantly more harmful
than DUEs.

The soft error rate is often expressed by two metrics, Mean Time To Failure (MTTF)
and Failure In Time (FIT) [4]. MTTF of a electronic component expresses the mean
time elapsed between the component encountering two errors. FIT is defined as an error
in a billion (10?) hours. Equation 1.1 explains the relationship between the MTTF and
FIT.

10°
FIT rate x 24 hours x 365 days

MTTF in years = (1.1)
The MTTF or FIT of the components constituting a system can be used to derive the
MTTF or FIT of a whole system. The SDC and DUE rates of a system can be separately
expressed. For instance, a system can have MTTF SDC or FIT SDC, it could also have
MTTF DUE or FIT DUE.

1.4 Soft Error Effect on Technology Scaling Trends

The reliability problems caused by soft errors used to be a cause of concern merely
in space applications. This is because space applications are safety-critical, and they
routinely encounter heavy radiation hits generated by primary and secondary cosmic

rays in space [4]. However, drastic technology scaling, increasing system complexity,

Chapter 1 Introduction 5

supply voltage reduction, and increasing operation speed have dramatically increased
the soft error susceptibilities of modern ICs. The soft error effect has become a major
cause of concern even for electronics in terrestrial environments. This section describes

the prediction of future scaling trends based on current research and knowledge.
The Soft Error Rate (SER) can be predicted by the model proposed by Hazucha and

Svensson [9], shown as Equation 1.2 :

_ chit

Circuit SER = Constant x Flux x Area x e @cou (1.2)

Constant is a parameter that depends on the technology process and the circuit design
style. The Flux is the flux of alpha particles or neutrons at a particular location. Area
represents the area of the circuit that is sensitive to radiation hits. This model can
illustrate the general SER trend over process technology. Borkar, et al. [10] showed
that each time the technology progress to a new generation, the transistor size and the
supply voltage is reduced by 30%. The shrinking feature size makes the area occupied
by an equivalent circuit (such as a flip-flop) go down. This leads to less area to be
exposed to radiation particles, which will decrease the SER. However, according to the
equation, charge = capacitance x voltage?, Qe+ will be noticeably decreased across
process generations. This is because the supply voltage is reduced, and the capacitance
is decreased due to the shrinking transistors. The charge that is required for the particles
to incur transient faults, i.e. the Q¢.;¢, Will therefore be reduced. The decreasing Q¢

will increase the vulnerability of the circuit and thus increase the SER over generations.

For latches and flip-flops, the two effects seem to have cancelled each other out in present
progress technologies. Therefore, the SER for a single cell stays roughly constant over the
past few generations [4]. The SERs for the combinatorial logic gates are typically lower
than that for latches because many of the transient faults are masked by the masking
mechanisms discussed in Section 1.2. However, the SERs for combinational gates show
a different scaling trend, which has increased across process generations. The reason for

this can be explained by the changing of the masking mechanisms, as follows:

The logic masking effect will remain constant across technology generations. Electrical
masking, nevertheless, will decrease with technology scaling. This is because the delay of
the gates will keep reducing, which will allow more transient pulses to propagate without
attenuations. In addition, today’s microprocessors apply a high degree of pipelining with
increasing operating frequencies. This means that the clock period is decreasing, and
more flip-flops or latches are inserted between pipeline stages. Both of the factors will
significantly decease the probability of the transient pulses being masked by the latching-
window. Shivakumar et al. [8] predicted that the SER caused by the SET pulses in the
combinatorial gates will increase exponentially, and will become close to or even exceed

that is caused by the latches in 65nm technology or below. Recently, Mahatme, et

6 Chapter 1 Introduction

1E-02 4

A
A F A A

1E-03 1 —4 — ! —h—
a A &
E il Edw 28 5
E 1E-04- A
o 1E-05;
>.
z
® 1E-061
g 1E-07 4 —
g = B B DRAM Data
w == DRAM Trend

.08 - B
g 15“} A SRAM Data
. == SRAM Trend
1E-09 1
B
1E-10 . . v Y ' .
0 50 100 150 200 250 300

Design Rule (nm)

Figure 1.1: The SRAM and DRAM soft error rate trends per bit vs. technology
process [12].

al. have identified and reported the operating frequencies at which the SER from the
combinational circuits exceed that from the flip-flops in 28nm CMOS technology [11].

For the SRAMs which are typically constructed by six transistors making up two cross-
coupled inverters, the Q.. is sufficiently low compared to general logic '. As a result,
the shrinking area dominates the impact on SER. This is commonly referred to as the
saturation effect. Nevertheless, the saturation effect does not indicate that the SER of
an individual SRAM cell will decrease with technology scaling. Figure 1.1 shows the
SER scaling trend for SRAM per bit, which is obtained in the high energy neutron flux
at New York City [12]. The SER of a single bit SRAM remains roughly constant, with a
slight decrease from 250nm down to 50nm technology. This is because in the ’saturation’
region, the (.. is low enough to cause the circuit to be sensitive to any particle strikes.
The effect of the shrinking area, is therefore mostly balanced out. Figure 1.2 shows the
SER trend of the SRAM at system level. Since the number of SRAMs bits packed on
a chip has kept increasing across generations, the system-level SER shows an increasing

trend.

In contrast, as shown in Figure 1.1 and Figure 1.2, the SER of the DRAMs manifests
an optimistic trend. This is because techniques such as adding more stacks, using

thinner dielectrics, and using bigger capacitors have been found which can decrease
the collected charge without affecting the Q.-;;. The single bit SER for DRAMSs has

1According to Mukherjee, [4], the Qcrit of SRAMs is usually 5-10 times lower than that of latches.

Chapter 1 Introduction 7

1E+08
g
E 1E+0T 1
%‘ 1E+06 4
E 1E+05 1
@ 1E+04
o
- 18
% 1E+03 1
e B DRAM Data
& 1E+02 a 1 == DRAM Trend
E -] A SRAM Data
nl l l = == SRAM Trend
E 1E+01 - .
o M
1E'.'nﬂ r ¥ T L L} 1
0 50 100 150 200 250 300
Design Rule (nm)

Figure 1.2: The SRAM and DRAM soft error rate trends per chip vs. technology
process [12].

decreased exponentially over the past few generations. The system-level SER for DRAMs
has also been decreasing. However, the overall SER of DRAMs at the system level still
has a big impact on the reliability due to the large number of DRAMs produced.

On the other hand, radiation particles can also cause multiple transient faults in mem-
ories and logic. This is normally referred to as Multiple-Bit-Upsets (MBUs). There are
two types of MBUs: Spatial MBUs which are caused by the charge sharing between adja-
cent circuit nodes induced by a single particle strike [13] [14], and temporal MBUs, which
are the MBUs arisen from multiple particles simultaneously striking multiple nodes. As
chips are becoming more compact, the reliability problems caused by MBUs are getting
increasingly serious, especially in RAMs [15] [16] [17] [18] [8]. Raine, et al. showed that
the probability of the MBU occurrence in 65nm technology is fairly small, but when it
goes down to 45nm and 32nm technologies, the MBU probability in SRAMs increases
considerably, and even exceeds the SBU probability [19]. In addition, it has also been
suggested that supply voltage scaling also triggers noticeable increases in MBU rates in
modern CMOS technology [20] [21].

Overall, the SER of a system can be approximately predicted as the function of the SER
caused by the unprotected logic and RAMs. As the system complexity is increasing and
the total number of transistors is doubling every generation, the number of unprotected
cells will also double, unless more aggressive error-tolerance features are incorporated

into the system. Since the SERs of the individual cells generally remain constant, we

8 Chapter 1 Introduction

can expect that the overall SER of a system will roughly double in every new generation
[4]. Another observation is that, although the SRAMs and DRAMSs used to be the major
contributors of the SERs in a system, the contribution of the SERs in general logic is
catching up. This is because in modern microprocessors, the amount of the chip area
occupied by the general logic are increasing with chip complexity, thus even a small SER
in a logic gate could cause big impacts to the overall system SER. SRAMs and DRAMs
can typically be protected by using Error Correction Codes (ECCs) effectively. Effective
protection techniques for general logic are still open. General logic is much harder
to protect by simple coding techniques, therefore hardware redundancies or radiation
hardened cells are normally required. An overview of the current existing soft error

mitigation techniques will be carried out in the following section.

1.5 Soft Error Mitigation Techniques and Their Limita-

tions

Radiation-induced soft errors have long been managed by various techniques at different
abstraction levels in electronics. At device level, techniques are typically used to increase
the critical charge of the circuit by using bigger capacitance, or to minimise the amount
of collected charge on a device node under radiation hits. At circuit level, radiation
hardened cells are designed, for instance, by duplicating the state-holding elements in
a latch [22]. At gate-level or architectural level, techniques such as Triple-Modular-
Redundancy (TMR) or Dual-Modular-Redundancy (DMR) can be applied to combat
soft errors using redundant components. There are also techniques at software level

which reply on duplicating the execution of programs to provide error resilience [23].

Coding techniques such as ECC and parity coding are commonly effective solutions for
the soft errors occurring in SRAMs and DRAMs. ECC adds information redundancies
(ECC bits) to identify and correct bit-flip errors through particular encoding and de-
coding algorithms. The ECC bits need to be calculated or decoded during each memory
access operation, which can induce certain performance and power consumption over-
heads. In comparison, parity coding is a cheaper solution which can only detect errors,
but cannot correct. In most circumstances, vendors are able to adapt these coding
techniques to the computer memories to achieve various reliability requirements with

acceptable overheads.

The ECC or parity coding techniques, however, are very hard to use for protecting
general logic against particle strikes. This is because the sequential elements, such as
flip-flops and latches, are distributed across the entire chip. Hardware redundancy,
such as TMR, is a conventional protection scheme for logic in high-end or safety-critical
electronic applications such as aircraft. Applying TMR is expensive, as it requires

over 200% extra area and power. The reliability requirements in these applications are

Chapter 1 Introduction 9

sufficiently high such that the large overheads incurred by the error-mitigation features
can be tolerated. Nevertheless, most of these conventional solutions are far too expensive

for protecting products in mainstream commodity computer markets.

Another typical solution for soft errors in general logic is using radiation hardened se-
quential cells. Among general logic gates, sequential elements, such as flip-flops and
latches, have the highest priority for protection against particle strikes. Evaluation re-
sults presented by Ebrahimi have shown that apart from the SER produced by the
memories, the flip-flops and latches contribute most to the system SER in a micropro-
cessor [24]. This is because: 1. the flip-flops and latches can produce SEUs, which have
a higher probability to corrupt the system compared to the SETs from combinatorial
gates. 2. Only the SETs that are captured by the sequential elements are dangerous to
the system. Therefore, hardening the sequential cells can potentially protect the system
against both SETs and SEUs. One the other hand, the number of sequential elements
in a system is much smaller than that of combinatorial gates. Protecting the sequential
gates can be easier and more efficient. However, most of the previous radiation-hardened
sequential cells are either too expensive, or cannot provide decent tolerant-capabilities
for both SETs and SEUs. Few of them can effectively achieve a complete protection for

microprocessor pipelines.

Another limitation of most previous techniques is that they are not self-checking. The
soft error-mitigation features in previous techniques are normally achieved by adding
redundancies. However, most previous techniques can only mitigate the errors occur-
ring in the original circuitry using redundancies, but cannot protect the redundancies
themselves. The added redundancies increase the area and thus increase the soft error
vulnerability of the whole circuitry. The errors occurring in the redundancies may still

corrupt the cell.

A detailed overview of previous soft error-mitigation techniques is in Chapter 2.

1.6 Research Motivations and Objectives

The design of modern commercial microprocessors needs to meet the required SER bud-
get while still being competitive in the market. As the soft error issue keeps increasing
and customer demand keeps pushing the system performance and energy efficiency, the
development of modern microprocessors has become a daunting task. The bright side is
that in these commercial or non-safety-critical electronics, software and hardware bugs
typically account for majority of the errors. The radiation-induced soft errors, there-
fore, can be tolerated much more than those in the safety-critical applications. The
aggressive solutions such as TMR is prohibitively expensive, and in most circumstances,
are deemed as overkill. Seeking cost-effective soft error mitigation schemes is therefore

vitally important.

10 Chapter 1 Introduction

As discussed in previous sections, cost-effective protections for general logic are especially
a major concern. There are no effective solutions, especially for complex microprocessor
pipelines. The motivation of the work in this thesis is therefore to fill this gap. This work
focuses on developing cost-effective soft error mitigation techniques for general logic, and
providing a comprehensive SER treatment (design, evaluation model, reliability analysis)

for commercial microprocessor pipelines.

The objectives of the research presented in this thesis are summarised as follows:

e Develop cost-effective soft error-mitigation techniques suitable for protecting the
general logic of non-safety-critical applications. Try to overcome the significant
limitations of the previous techniques by providing acceptable trade-offs between

the reliability and error-tolerance overheads.

e Realise self-checking capabilities in the developed techniques. Allowing the tech-
niques to be robust to both the errors occurring in the original circuitry and the
errors occurring in the redundant parts. Minimise the overheads required by the
self-checking feature to keep the technique cost-effective for non-safety-critical ap-

plications.

e Implement the developed techniques using modern CMOS technologies. Develop
validation and evaluation mechanisms to comparatively evaluate the proposed
techniques with previous ones. Demonstrate the advantages of the proposed tech-

niques in terms of overhead-efficiency and error-tolerance capabilities.

e Incorporate the developed techniques into modern microprocessor pipelines, and
achieve a complete and efficient pipeline protection mechanism. Validate the tech-
niques at the system-level by modelling transient fault effects through simulations.
Comparatively analyse the efficiencies and the cost of the proposed pipeline pro-

tection mechanisms with previous techniques.

1.7 Thesis Organisation

Chapter 2 provides an overview of the literature and essential background related to
the work in this thesis. The advantages and potential drawbacks of the techniques
proposed in the literature are also discussed, allowing clear comparisons to be carried
out with the work proposed in this thesis. The traditional error coding techniques, dual
modular redundancy, and triple modular redundancy techniques are introduced first.
Then, the existing radiation hardened cell designs are summarised. Based on these
basic ideas, different previous mechanisms for protecting the memories and general logic
of microprocessors are introduced. Finally, software-level error protection techniques

and some other hardening techniques are also discussed.

Chapter 1 Introduction 11

In completion of the research objectives introduced in Section 1.6, this thesis presents

three main contributions which are described in Chapter 3, 4, and 5, respectively.

Chapter 3 presents the first contribution of the thesis by proposing two novel radiation
hardening flip-flop architectures, named SETTOFF. The SETTOFF architectures can
address both SEUs and the captured SETs originating from the preceding combina-
tional gates. An evaluation model that can statistically estimate the reliability of the
SETTOFF designs is also developed. The SETTOFF architectures are implemented
in both 65nm and 120nm technologies and are comparatively evaluated with previous
radiation hardened cell designs. The results show that SETTOFF can provide better
error-tolerance capabilities with less or comparable overheads compared to most pre-
vious techniques. Therefore, it has the potential to effectively protect the pipeline of

MiCcroprocessors.

Chapter 4 presents the second contribution, by proposing a self-checking technique based
on the SETTOFF architectures. The self-checking technique further improves the reli-
ability of the SETTOFF, by allowing SETTOFF to mitigate both the errors occurring
in the original circuitry, and the errors occurring in the redundancies added for error-
tolerance. The self-checking technique is achieved by using a self-checker, which can be
shared by multiple SETTOFFs to minimise the overheads. The SETTOFF-based self-
checking capability overcomes the drawback of most previous techniques which cannot
address the errors occurring in their error-tolerance circuitry. In addition, the pro-
posed technique is implemented in a register file architecture, and is compared with the
widely used ECC-protected register file. The evaluation results show that the proposed
self-checking technique produces significant lower soft error failure rates for both Single-
Bit-Upsets and Multiple-Bit-Upsets affecting the register file. Meanwhile, the proposed
technique also requires much smaller power and delay overheads, but bigger area than
the ECC technique for protecting the RF.

Chapter 5 proposes the last contribution, which is a complete pipeline protection mech-
anism for microprocessors. The pipeline protection is achieved by incorporating the
SETTOFF-based self-checking architectures into the error vulnerable sequential cells
of the pipeline. The radiation-induced transient faults occurring in each stages of the
pipeline are address by the radiation hardened cells incorporated in the corresponding
stages. An architectural replay recovery scheme is developed to recover the relevant
errors detected by the self-checking SETTOFF architecture. The proposed pipeline
protection mechanism is implemented in a 32-bit OpenRISC microprocessor in 65nm
technology. A gate-level transient fault injection and analysis technique is developed
to analyse the reliability of the robust processor. The evaluation results show that the
proposed mechanism can effectively mitigate both SEUs and SETs occurring in different
parts of the pipeline. It overcomes the drawback of most previous pipeline protection

techniques and achieves a complete and cost-effective pipeline protection.

12

Chapter 1 Introduction

Chapter 6 concludes the findings and contributions of the work in this thesis. Suggestions

for future work directions are also provided.

1.8

Publications

The contributions of the work presented in this thesis have been published in the fol-

lowing papers:

Y. Lin; Zwolinski, M., ?SETTOFF: A fault tolerant flip-flop for building Cost-
efficient Reliable Systems,” On-Line Testing Symposium (IOLTS), 2012 IEEE 18th
International , vol., no., pp.7,12, 27-29 June 2012

Y. Lin, M. Zwolinski, and B. Halak, ” A Low-Cost Radiation Hardened Flip-Flop,”
in Design, Automation Test in Europe Conference Exhibition (DATE), 2014.

Y. Lin and M. Zwolinski, ” A Cost-Efficient Self-Checking Register Architecture of
Radiation Hardened Designs,” in International Symposium on Circuits and Sys-
tems (ISCAS), 2014.

Y. Lin, M. Zwolinski, and B. Halak, ”An Energy-Efficient Radiation Hardened

)

Register File Architecture for Reliable Microprocessors,’
- System Effects (SELSE), 2014.

in Silicon Errors in Logic

Y. Lin, M. Zwolinski, and B. Halak, ” An energy efficient radiation hardened reg-
ister file architecture,” in Designing with Uncertainty - Opportunities and Chal-
lenges Workshop, 17 - 19 Mar 2014. 3pp.

Y. Lin, M. Zwolinski, and B. Halak, ” Low-Cost Radiation Design: A Novel Pipeline
Protection Technique for Microprocessors,” in IEEE Transactions on VLSI (In

preparation)

The following informal presentation has also been given:

Y. Lin, M. Zwolinski, ”A Cost-efficient Error Mitigation Technique”, 6th Cisco
Innovation in Test Conference (CITC), 2013.

Chapter 2

Literature Review

This chapter provides a broad overview of the state-of-the-art research that is related
to the topic in this thesis. The literature relevant to each of Chapters 3, 4, and 5 is
separately introduced, allowing the contributions described in these chapters to be in the
context of the relevant research. Section 2.1 and Section 2.2 describe the traditional error
control coding and TMR techniques, respectively. Section 2.3 summarises the existing
radiation hardened cell designs, which are related to the hardened designs proposed in
Chapter 3 and Chapter 4 of this thesis. The memory and cache protection techniques are
summarised in Section 2.4. Section 2.5 introduces the previous microprocessor pipeline
protection techniques, which are related to the proposed pipeline protection techniques
described in Chapter 5. In addition, several software-based error mitigation techniques
are briefly introduced in Section 2.6, while Section 2.7 includes some other error mit-
igation techniques. Finally, Section 2.8 summarises the literature introduced in this

chapter.

2.1 Error Control Coding Techniques

This section introduces error coding techniques, which are traditional ways of providing
soft error mitigation. In order to provide comparisons with the techniques proposed in
this thesis, some error coding techniques are applied and comparatively evaluated in
Chapter 4.

2.1.1 Parity Code
A parity code is an error-detecting coding technique which can detect (but not correct)

an odd number of errors in a codeword [4]. The number of check bits in parity code is 1,

regardless of the number of the data bits. There are two types of parity code, even and

13

14 Chapter 2 Literature Review

odd. In an even parity code, the parity check bit is encoded such that the total number
of "1s’ in the entire codeword is always even. For an odd parity code, the number of '1s’
in a codeword is always odd. During the decoding process, a single or an odd number

of errors will change the parity of the codeword, and will therefore be detected.

2.1.2 Hamming Code

Hamming codes are a class of binary linear block code, which is typically expressed as
Hamming(n, k). k denotes the number of data bits, and n is the total number of bits
in a codeword. For any positive integer r» > 2, the following relationships apply to the

Hamming codes:

e Length of codeword: n =2" —1
e Length of data bits: k =2"—r —1

e check bits: r=n—k&

Hamming codes are systematic codes in which the original input data is embedded in
the encoding output (i.e. the codeword). The Hamming code can detect and correct
single-bit error in a codewords. The check bits in Hamming codes are arranged such that
different erroneous bits trigger different error results. In a 7-bit codeword, for instance,
3 check bits are required to generate 7 different error results. The error results cannot

only detect the error, but also locate the particular error bit.

The encoding and the decoding process of the Hamming code can be expressed by
the generator matrix (G) and parity-check matrix (H), respectively. The parity-check
matrix is constructed by Equation 2.1, where I,. is an r X r identity matrix and P is an
r X k binary matrix [25]. Each column of matrix P has a Hamming weight no less than

two . A column in matrix P can be altered without affecting the effective codewords.

H =PI, (2.1)

The generator matrix (G) can be derived from (H) using Equation 2.2, where PT is the

transpose of P and [j is an k X k identity matrix.

G = [PT, I}] (2.2)

!The Hamming weight of a codeword is the number of nonzero components in the codeword.

Chapter 2 Literature Review 15

Let V' = (v1,v2,...,v,) be the n-bit vector representing the codeword, and the k-bit
vector D = (dy,ds, . ..,dy) represent the data bits. The encoding process of Hamming

code can be expressed by Equation 2.3, where all additions are performed in modulo 2.

V=D.-G (2.3)

During the decoding process, the codeword read from a computer memory, for instance,
may not be the same as the original codeword written into the same memory location.
Let the n-bit vector U = (uy,ug, ..., u,) be the codeword that needs to be decoded, and

E = (e1,ea,...,e,) be the error vector. Then Equation 2.4 applies:

U=V +E (2.4)

An error in the iz, position of U is indicated by a nonzero component e; of E. The error
and its location are indicated by the syndrome vector S obtained by Equation 2.5. If
all the components in S are zero, U is error-free. Otherwise S is used to determine the

error location.

S=U-HT (2.5)

The Hamming coding algorithm can also be explained visually by Table 2.1. The check
bits are parity bits (pl, p2...) located in the position that are powers of 2 (i.e. 1, 10,
100, etc). Each parity bit covers all the bits where the bitwise AND of the bit location
and the parity location is nonzero. Each bit is covered by a unique set of parity bits,

such that the error location can be identified during the decoding process.

Table 2.1: Hamming code algorithm.

Bit position 1 2 3| 4) 6 71819 10|11
Encoded data bits | pl | p2 | dl | p4 | d2 | d3 | d4 | p8 | d5 | d6 | A7
Parity pl X X X X X X
bit p2 X | X X | X X | X

coverage p4 X | X | x| x
p8 X | X | X | X

2.1.2.1 SEC-DED Code

The error detection and correction capability of a code is decided by the minimum
Hamming distance d, which is the minimum of components that two codewords differ

from each other. Assume that a set of codes has a minimum distance d = 2e + 1. Then

16 Chapter 2 Literature Review

k

data bits r
(read or write) check bits
(read)
XOR
tree
Bit-wise
XOR
r

check bits

(write) !

syndrome bits
(read)

Figure 2.1: Check bits encoding and syndrome bits generation [25].

the code is capable of correcting e errors, or it can detect 2e errors if correction is not
attempted [26]. The minimum distance of Hamming codes is 3, which means that it can
only correct a 1-bit error since it cannot distinguish a double bit error in a codeword

from a single bit error in another codeword.

The Single-Error-Correction Double-Error-Detection code, abbreviated as SEC-DED
code, provides a remedy for the Hamming code. SEC-DED code adds an additional
parity bit to extend the minimum distance to 4. By doing this, SEC-DED code can
distinguish a single-bit error from a double-bit error. Therefore, it can correct single-bit

errors and detect (but not correct) double-bit errors at the same time.

The SEC-DED code is a commonly used ECC technique in computer memories. The
hardware implementation of encoding and decoding circuitries are shown in Figure 2.1
and Figure 2.2. Apart from this circuit, an r bit redundant register for storing the
check bits, and control logic for timing are required. During write operations, check
bits are generated through the encoder, which is constructed by an XOR tree according
to Equation 2.3. The check bits and data bits are then stored in a particular memory
location. During read operations, the syndrome bits are generated from Equation 2.5,
typically by using the same XOR tree used for the encoding. The syndrome bits are then
decoded by a decoder constructed by n r — input AND gates to allocate the position of
the error bit. The outputs of the syndrome decoder are then used to invert the code bit
error through the error corrector constructed by n 2 — input XOR gates. An OR-gate
is used to generate the error signal from the syndrome bits. A NOR gate is used for
signalling the uncorrectable (UE) errors, which could be the double-bit errors. Notice
that the multiple-bit errors could be falsely corrected or detected by this architecture
[25].

Chapter 2 Literature Review 17

OR Error detected
12| ®°e°
Syndrome decoder
(n r-way AND-gates) ||
AND UE
° NOR

ECC word Error corrector
read (n 2-way XOR-gates)

1l

Corrected word

Figure 2.2: Error detection and correction circuitries [25].

2.2 Triple-Modular Redundancy and Dual-Modular Re-

dundancy

Triple-modular Redundancy is a technique frequently used in safety-critical applications
to provide high error-tolerance capabilities. TMR can be applied at different levels of
a system. Figure 2.3 shows a possible TMR configuration of a system constructed by
three microprocessors [27]. The outputs of the memories of all the three processors are
fed back into a majority voter, which generates the inputs for each processors. Any
errors occurring in one of the three copies will be outvoted by the majority voter, hence
the inputs of the three processors remain error-free. TMR can also be applied at other
levels, such as the gate level, where it can be used to construct TMR latches [28] [29].
The overhead of TMR in terms of power consumption and area will be over 200% more

than that of the original block being protected.

The Dual-modular Redundancy (DMR) is an alternative choice which requires less over-
heads than the TMR [4]. Unlike TMR, DMR only duplicates the components that need
to be protected. A comparator can be used to detect errors in either copy, by identifying
inconsistencies at the outputs of the 2 copies. However, DMR cannot correct errors since

it cannot distinguish which copy produced the correct result when an error is detected.

Chapter 2 Literature Review

— |
memory memory memory
i i i
processor processor processor
mt f %
voter voter voter
X S S T

Figure 2.3: TMR configuration [27].

2.3 Radiation-Hardened Cells

This section describes previous radiation-hardened cell designs. Some of them are effi-
cient for protecting memories, while others are suitable for protecting logic. Different
techniques provide different error mitigation capabilities, but also incur various error-
tolerance overheads. In general, the hardened cell designs can be divided into two

categories:

1. The cells based on radiation-hardened architectures. (Section 2.3.1 to Section 2.3.9)

2. The cells based on increasing the critical charge. (Section 2.3.10)

For the cells in the first category, extra circuity is normally required to combat transient
faults. The operations of such cells do not rely on specifically sizing the transistors,
thus they are easily scalable. The drawback is that noticeable overheads could be in-
curred by the extra radiation-hardened architectures. In the second category, cells are
normally hardened by increasing the node capacitance, which will increase the critical
charge. Such approaches normally require specific sizing of the transistors. Therefore,
the implementations of these techniques can be more complicated. It can also be more
difficult to transfer such techniques into new technology generations. The advantage of
the cells in the second category is that they may require less overheads compared to

those in the first category.

This section summaries the error-mitigation capabilities and overheads of several existing
techniques in both categories. The advantages, potential drawbacks and limitations of

each techniques are also discussed.

Chapter 2 Literature Review 19

>
N4 NS
5 - X0 4 pa .
PoSZ N
N3 P2
N2
X3 X2
.
gl | L
ck NS N7

Figure 2.4: Principle of the DICE architecture [22].

2.3.1 Dual Interlocked Storage Cell (DICE)

Calin, et al. [22] proposed an SEU-immune storage cell called Dual Interlocked Storage
Cell (DICE). DICE duplicates the storage element (i.e. the cross-coupled inverter pair)
of a conventional storage cell to construct a so-called dual node feedback control loop.
The operating principle of DICE can be explained by Figure 2.4. The four nodes X0 to
X3 store the state of the cell and are accessed simultaneously through the transmission
gates during write or read operations. The inverters shown in the figure are either single
N-type transistors or P-type transistors according to their labels. Assume that the state
stored in the cell in nodes X0 to X3 is 0101. The horizontal inverter pairs N0O-P1 and
N2-P3 are conducting, while the vertical ones N1-P2 and N3-P0 are blocked. This
allows the state stored in nodes X0-X1 to be isolated from the same state stored in
X3-X2. Similarly, when the state in X0 to X3 is 1010, the vertical invert pairs are
conducting to act as normal storage elements, and the horizontal ones are blocked. The

transistor-level design of the DICE memory cell is shown in Figure 2.5.

A particle strike at any node of the DICE cell can incur a transition. For example, a
negative transition in a node will propagate through the P-type inverter, and induce a
positive transition in one of its adjacent nodes connected to it by the blocked inverter
pairs. However, a negative transition cannot affect the other adjacent node which is
connected to it by the conducted inverter pairs. This is because the negative transition
will be blocked by the N-type inverter. As a result, only 2 nodes can be affected by a
single negative SEU. The other 2 unaffected nodes will correct such SEUs through the

feedback loop. Positive SEUs are tolerated in a similar manner.

20 Chapter 2 Literature Review

\—d PO Pl P2 P3
X

0 X1 X3 x4
NO JM NI N2 JFT N3

Clk

S N4E}JN5|:H—TN6:H—T N71:I?J 5

Figure 2.5: Transistor level design of a DICE memory cell [22].

DICE can be used to realise SEU mitigation in SRAM, by replacing the conventional
6-transistor SRAM cell with the 12-transistor DICE cell. The area overhead is close to
100%. Additional wires and capacitance are required by the extra write line in DICE,
which will incur a performance overhead. The power dissipation would also be increased
noticeably since the cross-coupled inverter pairs are duplicated. DICE can also be used
for protecting sequential logic (latches and flip-flops). Rennie, et al. have implemented
a radiation-hardened flip-flop based on the DICE architecture in 40nm process [30].
According to the evaluation results presented by the authors, the DICE-based flip-flop
incurs a power dissipation overhead of 78%, compared to a conventional master-slave
flip-flop. The delay of the DICE-protected flip-flop is also increased by 67%.

There are three major drawbacks of the DICE cell: it is not capable of addressing SET
pulses occurring at the input of its write line, which may corrupt all the states stored
in the 4 internal nodes. The SEU-correction process is achieved using a feedback loop
and is not immediate; therefore it generates a glitch upon a correction. The glitch
may propagate and corrupt the following stages when DICE is used in sequential logic.
Finally, DICE is not able to mitigate MBUs induced by one particle strike at 2 internal
nodes that are connected by the conducting inverter pairs. Interleaving methodologies
to optimise circuit physical organisations and separate the MBU-sensitive node pairs
need to be applied to increase the robustness of DICE against MBUs [31].

2.3.2 Feedback Redundant SEU/SET-Tolerant Latch (FERST)

A soft error tolerant latch architecture, namely the feedback redundant SEU/SET-
tolerant latch (FERST), was proposed by Fazeli, et al [32] [33]. FERST duplicates

Chapter 2 Literature Review 21

out
Inl

In2

1 1 3o

Figure 2.6: The C-element [33].

the storage element (the cross-coupled inverter pair) in a conventional latch and uses
C-elements to tolerate upsets. The C-element, shown in Figure 2.6, inverts its inputs
when the 2 inputs are identical (i.e. normal mode), and holds the previous state when
the 2 inputs are inconsistent (i.e. the filtering mode). The FERST latch, shown in
Figure 2.7, used 3 C-elements to construct a redundant feedback loop. FERST has four
internal nodes, N1 to N4, which store 2 copies of the latch states. Nodes N1 and N2
are protected by C-elementl and C-element2 against SEUs. Any state changes in either
nodes N1 or N2 will result in inconsistent inputs for both C-elementl and C-element2,
which will then be switched into the filtering mode to prevent the upset from propagat-
ing to nodes N3 and N4. The unaffected state preserved in nodes N3 and N4 will hence
correct the upset in either nodes N1 or N2 through the feedback loop. C-element3 is
used for protecting nodes N3 and N4 against SEUs. SEUs occurring in either N3 or
N4 will corrupt N1 or N2, respectively. Such SEUs will switch all the three C-elements
into their filtering modes to block any errors propagating to the output of the latch.
The output in such circumstance is in high impedance, and therefore requires a weak

keeper to hold its state.

The SET-tolerant capability of FERST is realised by the delay element added to one of
the two input lines of the latch. If the delay generated by the delay element is greater
than the width of the SET pulse, C-elementl and C-element2 will filter the SET pulses
occurring at the input. This is because the pulse and its delayed version will induce
inconsistent value at the input of the C-elements. However, if the delay of the delay
element is smaller than the width of the pulse, there is a possibility that the pulse will
be captured by the latch.

FERST is applicable for protecting latches in logic. It can also be used to construct a
master-slave flip-flop architecture, and hence can be used to protect mainstream flip-
flop based design. The advantage of FERST is that it can tolerate both SEUs and
SETs. However, it suffers from the following major drawbacks: Although FERST is

22 Chapter 2 Literature Review

Clk
N1 Clk
C-Elementl
N3 C-Element3
N4 Output
C-Element2
N2
Clk
Clk

Figure 2.7: The architecture of the FERST latch [33].

cost-effective compared to a TMR latch, it still incurs around 100% area and power
consumption overheads. The C-element3 added in the signal path also incurs a noticeable
delay overhead of around 70% in 65nm technology. In addition, C-element3 and the
keeper at the output of the latch are not protected. It has been reported by Anghel, et
al. that C-elements are suspectable to single event effects and can produce substantial
SERs [34]. The state stored in C-element3 can be corrupted by SEUs when it is in
filtering mode, which will cause an erroneous output. C-element3 and the keeper may
also generate SETs at the output of the FERST latch when C-element3 is in normal

mode.

2.3.3 Built-In Soft-Error Resilience (BISER)

Mitra, et al. proposed a built-in soft-error resilience (BISER) technique [35], which
re-uses the flip-flops used for scan to protect the system against particle strikes. The
architecture of a BISER cell is shown in Figure 2.8. The scan portion is a redundant
flip-flop added for the purpose of design-for-testability. All the scan flip-flops in the
system are connected together to construct one or more shift registers. They provide
high-quality testing and debugging since all the internal nodes are accessible. BISER re-
uses the scan flip-flop to act as a duplicate of the system flip-flop during normal system
operations (the scan flip-flop is still used for testing during test mode). The outputs
of both flip-flops are connected to a C-element. An SEU that corrupts either copy of
the flip-flop will be filtered out by the C-element, thus the actual output of the BISER

flip-flop remains unaffected.

Chapter 2 Literature Review 23

SCB
Al >0 SO
SI
Scan portion | | —— — — — —
SCA | C-Element |
Capture | |
| b
I 1B |
Update: | |
. |9 1 Q
D | System flip-flop | |_.| |
clk > I I Zi
I IJ—<
——i D
I I
Test l_ - = = _l

Figure 2.8: The architecture of the BISER flip-flop [35].

BISER is only applicable in design-for-test (DFT) applications with built-in scan flip-
flops. The re-use of the scan flip-flop as a duplicate allows BISER to have a relatively
small area overhead. However, the C-element added to the signal path will incur a
noticeable delay overhead. Also, BISER cannot address SETs from the preceding com-
binatorial gates. In addition, as with FERST, the C-element and the keeper at the
output of the cell are state-holding elements, but are not protected. Any transient

faults that they produce can corrupt the output of BISER directly.

2.3.4 Time Redundancy-Based Soft Error Mitigation

Nicolaidis proposed the time redundancy-based transient error tolerant techniques, [36]
[37], primarily for mitigating SETs captured by sequential logic gates. The idea is that
the SETs occurring in the combinatorial logic only manifest themselves for a limited
period of time, and will be recovered automatically. In other words, the presence of
the correct value will still dominate in the time domain when SETSs occur. Based on
this observation, the time redundancy-based error-tolerance technique moves hardware
redundancy (TMR or DMR) into the time-domain.

2.3.4.1 Time Redundancy-Based Error-Tolerance Architecture (TRT)

Figure 2.9 shows the Time Redundancy-based soft error-Tolerance (TRT) architecture
[36]. Three latches, which are driven by three clocks each being delayed by d, are used
for sampling the output of the combinatorial block at three different time instances. The
delay element ¢ is set by Equation 2.6, where Wgpr is the biggest width of the SET
pulse that need to be tolerated, and Dgesyp is the setup time of the latch.

24 Chapter 2 Literature Review

0= WSET - Dsetup (26)

Equation 2.6 ensures that any SET pulses with the width no greater than Wgpr cannot
be captured by more than one of the three latches. A majority voter is then used to
outvote the erroneous value when an error is captured by any of the three latches. The
output of the voter is hence always error-free, and will be forwarded to the actual system
latch.

Combinational Block +
v clk1 +28
Clk1 —Pp Latch 3
—p Latch 1
A\ 4

ck1+6 Latch 2

——| System Latch

Figure 2.9: Time redundancy-based error-tolerance architecture [36].

2.3.4.2 Time Redundancy-Based Error-Detection Architecture (TRD)

In the TRT architecture, three latches are used to sample the output of the combinational
block when it is stable. The hardware overheads are relatively big, and certain timing
constraints are also incurred since the output of the combinational block needs to remain
stable until all three latches finish sampling. In order to reduce the overheads and loosen
the timing constraints, the Time Redundancy-based error Detection (TRD) architecture
can be applied to only detect errors. The TRD architecture is shown in Figure 2.10 [36].
A redundant latch, Latchl, is used to sample the output of the combinational block with
a delay &, compared to the system latch. Similar to the TRT architecture, Equation 2.6
applies. The SETs with pulse widths no greater than Wgpr can only be captured by one
of the two latches. A captured SET will cause inconsistent outputs from the two latches,
and will hence be detected by the comparator. Note that SEUs that occurring in either

the system latch or latchl before the comparison is conducted will also be detected.

Chapter 2 Literature Review 25

Out
Combinational Block | o1
Clk System Latch P
A 4 error
Comparator —p»
clk+6 02
—Pp Latch 1 >

Figure 2.10: Time redundancy-based error detection architecture [36].

2.3.4.3 Cost-Reduced TRD Architecture

An optimised version of the TRD architecture was proposed, the architecture of which is
shown in Figure 2.11 [37]. The new architecture noticeably reduced the error-tolerance
overheads by removing the extra latch in the original TRD architecture. The comparator
compares the output of the main flip-flop against its input at two time instances. This
scheme maintains the same SET detection capability as the original TRD architecture
(Figure 2.10). Figure 2.12 shows the operation timing diagram of the cost-reduced TRD
architecture. The delay element of § can be set by Equation 2.7.

Comparator
inati Error
Combinational
Circuit » D Main Q‘__ﬁD_>D Error o—»
flip-flop Flip-flop
>
Clk—» >
Clk+6

Figure 2.11: The optimized TRD architecture [37].

0= WSET + Dsetup + Dcomp (27)

where Dcomp denotes the delay of the comparator, and D, denotes the setup time
of the Error Flip-flop. If SETs with widths no greater than Wgpr are captured by
the main flip-flop at time ¢0, they will recover at time t0 + 6 — Dsetup — Deomp- The
comparator will then assert the error signal due to its inconsistent input values. The time
between t0 and t0+ 0 — Detup — Deomp is referred to as the TRD interval in this thesis.
The Error Flip-flop can be shared by multiple cost-reduced TRD-based flip-flops in
a system. Therefore, the cost-reduced TRD technique is rather cost-effective as only
a comparator is required. However, it can only detect errors, but cannot correct. The

SEU-detection capability of the cost-reduced TRD architecture is also reduced compared

26 Chapter 2 Literature Review

t0 t0+8-Dsetup-Dcomp
Clk A \ / \
Clk+6 \ / \ / —

SET pulse
D : =\ _/
(main flip-flop) sample}x

a |/

(main flip-flop)

vy
Error

+—> <+—>
é TRD interval (6- Dsetup - Dcomp)

\inconsistent value

Figure 2.12: The timing diagram of the cost-reduced TRD architecture.

to that of the original TRD. The cost-reduced TRD can only detect SEUs that corrupt
the main flip-flop during the TRD interval. Other SEUs occurring in the main flip-flop
outside the TRD interval will escape detection. The escaped SEUs could be dangerous
to the system, as unlike SETs, SEUs cannot be recovered until the flip-flop is overwritten

by the next input value.

2.3.4.4 The Detection Capability of TRD

As introduced in Section 2.3.4.2 and Section 2.3.4.3, the TRD architectures can detect
all the SETs manifest on the output of the combinational circuit with durations no
greater than Wgpr. They can also detect the transient pulses with durations larger
than Wggr, but not all of them. In the original TRD architecture, a pulse will escape
detection when it overlaps the latching edge of both latches. In the optimized TRD
architecture, a pulse that overlaps both the sampling edge of the main flip-flop and
the time when the comparison is conducted will escape. On the other hand, the SET
pulses originating from the internal nodes of the preceding combinational circuit can be
broadened during propagation, particularly through re-convergent paths (the multiple
paths starting from one point and re-converging to another) [38]. Hence, in order to cover
all the SETs that arise from the combinational circuit, the Wggr should be chosen as
the maximum duration of the transient pulse manifest on the input of the sampling

sequential gates.

2.3.4.5 Timing Constraints of the Cost-Reduced TRD Architecture

The delay element (6 = Wspr + Dsetup + Deomp) in the cost-reduced TRD architecture
may incur certain performance penalties. In the case of § < 0, which means that the

comparison happens before the main flip-flop samples its input, the clock period needs

Chapter 2 Literature Review 27

to be increased by 0 to ensure that the value at the output of the combinational logic is

ready when the comparison is executing. The delay overhead is inevitable in this case.

In the case of § > 0, the comparison is executed after the main flip-flop finishes sampling.
The output of the combination block needs to remain stable until the comparison finishes.
This can be realised by utilising the the existing delay of the combinational block. If
the delay of the shortest path in the combinational block Dy, is big enough, such
that the new output of the combinational block from the next cycle will not arrive until
the comparison finishes, the TRD circuit can operate at the original clock frequency.
However, if Dy is not big enough, it needs to be augmented by using slower gates or

adding buffers to meet such a timing constraint.

2.3.5 Global Reliability Architecture Approach for Logic (GRAAL)

The SET-tolerant capabilities of the time redundancy-based techniques rely on the de-
lay, . With a bigger 4, SETs with wider pulse widths can be covered. However, as
discussed in Section 2.3.4.5, § incurs timing constraints. Such timing constraints can
be difficult or expensive to satisfy, to achieve the required error-tolerance capability. In
order to conquer the limitations of the time redundancy-based technique, Nicolaidis,
et al. proposed a technique called Global Reliability Architecture Approach for Logic
(GRAAL) [39] [40]. GRAAL adapted the TRD architecture (Figure 2.11) by splitting
the system flip-flop into a master and a slave latch. The combinational circuit at the
input of the main flip-flop is also split for matching the master and slave latches. In
other words, the GRAAL technique is achieved by changing the flip-flop based pipeline
architecture into a latch-based architecture. In a latch-based design, when one pipeline
stage is computing, its adjacent stages are in steady states and their outputs are sta-
ble. The timing constraint of the GRAAL architecture can be loose, and a conformable
SET-detection interval (i.e. bigger §) can be achieved more easily. However, GRAAL is
rather complex to realise in the mainstream flip-flop based systems, because the flip-flop

based architecture needs to be changed into a latch-based architecture.

2.3.6 SEM and STEM Cell

Two soft error-mitigation registers, namely, Soft Error Mitigation (SEM) and Soft and
Timing Error Mitigation (STEM) techniques are proposed in [41]. Both of them ap-
plied the TRD technique in a variant TMR, architecture to achieve error-mitigation for

sequential logic at gate-level.

Figure 2.13 shows the gate-level embodiment of a SEM cell. Three registers R1, R2
and R3 are driven by CLK1, CLK2 and CLK3, respectively. Dataln is captured by the

three registers at three different time instances. Error detection is achieved by comparing

28 Chapter 2 Literature Review

the outputs of the three registers. Error and Benign signals are generated from the
comparison to invoke the recovery process. Load_Backup is the control signal for the

recovery operation.

Table 2.2 shows the operating principle and the error-tolerance capability of the SEM
cell. Tt can tolerant SEUs occurring in either R1, R2 or R3, and the SETs occurring in
the preceding combinational logic. The recovery operation is only invoked when R1 is
corrupted by soft errors (Case I of Table 2.2). During the recovery process, the values
stored in R2 or R3 are loaded back into the register R1. Meanwhile, since the erroneous
data in R1 has been sent to the next stage when the error is detected, a single-cycle stall
is required to stall all other SEM cells, to prevent the erroneous data from contaminating
the following stages. Re-computations will then conduct after the stall cycle, to overwrite
the erroneous data. Since SEM does not invoke recovery operations when false errors, i.e.
the errors in R2 and R3, are detected, it eliminates the unnecessary recovery overheads
in the traditional error-tolerance schemes. On the other hand, SEM incurs a “small
performance overhead” during normal operation, as the data in R1 can be used by the
next computation stage as soon as it is ready. The detection circuitry of SEM is moved

away from the signal path.

CLK1

Dataln » v

1
3 Q >
Q RI p» DataOut

Load Backup

y

T:) i) - Error

TIr2| Q2

CLK2

D——> Benign

R3| Q3

CLK3

Figure 2.13: SEM cell [41].

Table 2.2: Operating principle of SEM cell (NE = No Error; SE = Soft Error;
TE = Timing Error) [41].

Case | R1 | R2 | R3 | Error | Benign Error Recovery
1 NE | NE | NE 0 0 No recovery required
II SE | NE | NE 1 0 Load R2 or R3 into R1
IIT | NE | SE | NE 1 1 No recovery required
IV | NE | NE | SE 0 1 No recovery required

Chapter 2 Literature Review 29

Figure 2.14 shows the gate-level embodiment of the STEM cell, which can tolerate both
soft errors and timing errors. Similarly to SEM, STEM uses three registers to sample the
input data at three time instances. However, in STEM, the delayed clocks CLK2 and

CLK3 can ensure no timing errors are sampled again by the two redundant registers.

The operating principle of the STEM cell is shown in Table 2.3. Once R2 samples the
input data, it is compared with the data sampled by R1. Since R2 is timing safe, this
comparison detects timing errors in R1 and soft errors in both R1 and R2. When a
mismatch is indicated by the Error signal, R3 will be shielded from the input data, and
the content in R3 will be used in the recovery process to restore R1 and R2 before the
re-computation is triggered (see cases II, III, V, and VI). If no mismatch is indicated
by the Error signal, R1 and R2 are error-free, R3 will then capture the new input data
for conducting another comparison. The comparison result will be indicated by the
Panic signal. As shown in case IV, the asserted Panic signal indicates that a soft error
occurred in R3, which will be restored by the data in R2 during the recovery process.
No re-computation is required in case IV. Since timing errors are tolerated by STEM, it

was used to achieve an over-clocking system to improve system performance in [41].

CLK1
Dataln > v Ql
Q3 R1 » DataOut
LBkup

Q R2| Q2
A

CLK2
—p Panic
A

LPanic
CLK3

Figure 2.14: STEM cell [41].

Table 2.3: Operating principle of STEM cell (NE = No Error; SE = Soft
Error; TE = Timing Error) [41].

Case | R1 | R2 | R3 | Error | Panic Error Recovery
1 NE | NE | NE 0 0 No recovery required
11 SE | NE | NE Load R3 into R1, R2
IIT | NE | SE | NE Load R3 into R1, R2
IV | NE | NE | SE Load R2 into R3
\Y TE | NE | NE Load R3 into R1, R2
VI | TE | SE | NE Load R3 into R1, R2

== O =
[} Nl il Nenl Nan

30 Chapter 2 Literature Review

The TRD technique applied in the TMR architecture provides the SEM and STEM cells
with strong mitigation capabilities against both SETs and SEUs. The implementation
of both cells are relatively easy since the architectures are constructed at gate-level.
However, the area and power dissipation overheads of both cells can be even bigger than

TMR ,because additional recovery circuitry is added.

2.3.7 Razor Technique

Das, et al. proposed the Razor flip-flop for combating Timing Errors (TEs) [42] [43].
The Razor flip-flop uses an adapted version of the TRD architecture. It adds a shadow
latch to sample the input of the main flip-flop, again with a delay. A sufficient delay
is applied to prevent the shadow latch from re-sampling the timing error. A captured
timing error is indicated by inconsistent values in the main flip-flop and the shadow
latch. The error signal triggers a recovery operation, during which the data stored in
the shadow latch will be trusted and used to restore the main flip-flop. Razor can be
used to realise aggressive Dynamic Voltage Scaling (DVS) systems by tolerating the
timing errors caused by the over-scaled supply voltage. Although the primary purpose
of Razor is to achieve power efficiency, it also naturally detects the soft errors occurring
in either the main flip-flop or the shadow latch. However, Razor does not consider soft
errors which corrupt the shadow latch. Thus the combined recovery mechanism may
actually corrupt the system by restoring an erroneous state using the shadow latch, if

the shadow latch is corrupted by radiation-induced soft errors.

2.3.8 Razorll Technique

RazorlIl is a newer Razor technique designed with the same aim of tolerating timing
errors to achieve aggressive DVS systems [44]. Razorll can also naturally detect soft
errors within a flip-flop. Figure 2.15 illustrates the architecture of the Razorll flip-flop,
while its operating principle is shown in Figure 2.16. The positive-edge sensitive latch
is augmented with a Transition Detector (TD) which is controlled by a Detection Clock
(DC) generator. The error detection is realized by detecting illegal transitions on the
internal latch node, N. To prevent valid transitions from being flagged as errors, DC
disables TD within the period of the CLK-to-Q delay of the latch, to allow the latch to
capture its correct input state. An architectural replay recovery signal is generated by

the asserted error signal.

Unlike the original Razor, if erroneous data from the preceding logic is captured by the
Razorll flip-flop, the recovery mechanism re-executes the faulty operation that wrote
to the flip-flop and overwrites the erroneous state. Such an operation can only recover
SETs and TEs occurring in the preceding combinational gates, since they are detected

during the write cycle of the flip-flop, thus the faulty operation can be easily targeted

Chapter 2 Literature Review 31

Clk = > Q

1
DDDQ@

N
Detection Clock | | Transition e
(DC) generator Detector
(ID)

Figure 2.15: Razorll flip-flop [44].

Dclk-to-Q De-tecti(m
window

k—k—

|
Clk | |

I
o S 1 e SO M
e D

DC \}‘—/.(_/ 4/7

Error

Figure 2.16: Operation timing diagram of RazorlI flip-flop [44].

to re-execute. However, if an SEU is detected during a hold cycle of the flip-flop, the
recovery mechanism can no longer find the latest operation that wrote to the flip-flop,
hence re-executions are not achievable to overwrite the SEU. This makes Razorll difficult

to use to achieve a complete error-tolerance systems.

Actually, in [44], the RazorlI flip-flops are only used for protecting timing-critical pipeline
registers. The architectural recovery re-fetches and re-executes the instruction in the
write back stage of the pipeline, to re-write all the pipeline registers when any errors
are detected. The registers storing the architectural state of the processor (such as the
RF), are protected by the more expensive ECC or TMR techniques. This is because the

SEUs occurring in them cannot be recovered by the RazorlIl recovery mechanism.

32 Chapter 2 Literature Review

Vp

Tpr
Vdd

—d[Tp1 —dLlTp2
B
——|[Tnl —[Tn2

-

Tnr

Vn

Figure 2.17: The architecture of the hardening approach using blocking feedback
transistors [45].

2.3.9 Hardened Cells based on Blocking Feedback Transistors

Nicolaidis, et al. introduced a hardening approach that uses blocking feedback transis-
tors [45]. The architecture of the hardening approach is shown in Figure 2.17. Transistors
Ty and T}, are held open to prevent transient pulses generated at node B and () looping
back to their creating points. Meanwhile, the two nodes, A1 and A2, for the input of the
first inverter are separated. Note that particle strikes on an n-transistor produce only
negative current pulses, while particle strikes on a p-transistor only produce positive
current pulses. Due to the separated nodes in the first inverter, the transient pulses
generated by T),, and T}, can only turn transistor 7,1 and T} off, but never on. Thus
the transient pulses at node Al and A2 cannot propagate to node B, but can bring node
B into high impedance state. Node Al and A2 can be restored by either the leakage
current through transistors 75, and T, or by periodically causing transistors 75, and

T, to conduct. Either way, V,, and V,, need to be carefully adjusted.

This hardening approach can be used to construct latches or memory cells. The ad-
vantage is that it significantly reduced the area overhead compared to the DICE cell
(Section 2.3.1). However, adjusting the supply voltage V,, and V;, to restore node Al
and A2 in every cell can be rather expensive and complicated, which affects the prac-
ticability of the cell. Lin, et al. in [46], introduced an 11-transistor memory cell based
on an adapted version of the approach in Figure 2.17. The authors claimed that the 11-
transistor memory cell can overcome the difficulties in implementing the supply voltage
Vp and V,.

Chapter 2 Literature Review 33

Schmitt trigger circuit

Out

Figure 2.18: Schmitt Trigger-based soft error masking latch [47].

2.3.10 Schmitt Trigger Circuit-Based Cells

The Schmitt Trigger (ST) circuit is typically used for removing jitter in A/D converters
using its hysteresis property [47]. The ST circuit has two threshold voltages, Vi and
Vin—. Rising transitions at the input of the ST circuit that exceed the Vi, will be
interpreted as high voltage states at the output. Falling transitions that fall below V;,_
are interpreted as low voltage states. Other signals between V. and Vy,— do not change
the output, thus the state retains. Sasaki proposed a soft error masking latch using the
ST circuit to prevent SETs being captured by the latch [47]. The architecture of the
latch is shown in Figure 2.18. Pass transistors are used at the input of the latch to
reduce the amplitude of the SET pulses to be within the range of the two threshold
voltages. The SETs with the reduced amplitudes will therefore be masked by the ST
circuit shown in the dotted arc. In addition, the extra transistors, M1 and M2, operate
in parallel with Invl. This increases the capacitance of node N1, and hence increases
its critical charge (Qcrit). The increased Qi+ provides node N1 a better immunity to

particle strikes.

Lin, et al. proposed several improved versions of the ST circuit-based radiation-hardened
latches [48]. The improved latches further increase the soft error immunity of the the
original ST-based latch shown in Figure 2.18, by increasing the critical charge (Qcrit-
The cascode ST latch, for instance, has 112% higher critical charge than a conventional
latch [48]. Glorieus, et al. proposed an SEU-tolerant flip-flop architecture named RST
(Robust Schmitt Trigger), which also relies on the ST circuit [49]. The authors demon-
strated from the evaluation results that the RST cell is more power-effective than the

DICE technique. Although the ST-based latches incur relative small area overheads (e.g.

34 Chapter 2 Literature Review

12.5% area overhead for the original ST-based latch), they can only efficiently address
SETs. Moreover, the ST-based techniques belong to the hardened cells in the second
category. Hence they can reduce the susceptibilities of the cells to radiation strikes, but

might still be vulnerable to the particles with rather high energy.

A 13-transistor memory cell, which combines the technique described in Section 2.3.9
and the ST technique, is proposed in [50]. The operating principle of the 13-transistor
cell is similar to that of the 11-transistor memory cell introduced in Section 2.3.9. But
the 13-transistor cell adds an ST structure to combat MBUs, by increasing the critical
charge of the secondary node under particle strikes [50]. The 13-transistor cell is 33%

faster than the DICE cell, but incurs 9% more area and 5% larger power penalties.

2.4 Memory and Cache Protection Techniques

As discussed in Chapter 1, Section 1.5, ECC is an effective technique for protecting
memories and caches against transient faults. Apart from ECC, there are also a number
of other memory- and cache-protection techniques, such as by using hardened cells. This

section gives a brief overview of these techniques.

2.4.1 ECC-based Memory and Cache Protections

ECCs are widely used for protecting memories or caches, they can also be adapted to
achieve more effective protections. For instance, the SEC-DED code is a commonly
used ECC technique. Although SEC-DED coding can only correct single bit errors, this
limitation can be addressed by applying interleaving to the memories or caches. The
interleaving technique can improve the error-correction capability of SEC-DED codes,
by arranging adjacent bits in a memory system to different codewords, thus decreasing
the probability of MBUs occurring in the same codewords. ECCs can also be applied to
achieve partial protections for memories or caches. Partially protecting only the most
vulnerable bits can significantly reduce the overheads, while still being able to maintain
acceptable error-tolerance capabilities. In [51], an ECC-based technique is proposed to
partially protect the caches, by offering the the caches with higher access rate higher

protection priorities.

2.4.2 Memory and Cache Protection Using Radiation-Hardened Cells

Using Radiation-hardened cells is an another way of protecting memories. DICE in-
troduced in Section 2.3.1, the Schmitt trigger circuit introduced in Section 2.3.10, and
the blocking feedback transistor-based technique introduced in Section 2.3.9, can all be

incorporated into the memory cells to achieve radiation hardening. Radiation hardened

Chapter 2 Literature Review 35

cells such as the RHM-12T cell (Radiation Hardened Memory cell with 12 Transistors)
proposed by by Guo, et al., were demonstrated to have better SEU-immunities and
comparable or lower overheads than the previous hardened cells, for protecting SRAMs
[52]. The memory-protection techniques based on these radiation-hardened cells can
naturally address MBUs as each individual bits are protected by hardened architec-
tures. Such techniques can be alternative choices for applications that require high-level
of MBU-tolerant capabilities.

2.4.3 Other Memory and Cache Protections

An error detection scheme called Cache Write Sure (CWS) was presented by Kim, et
al., for protecting cache memories [53]. The scheme takes advantage of the pre-existing
information redundancy in a multi-level caching system, and only protects the first level

on-chip cache as it communicates with the CPU core most frequently.

Figure 2.19 shows the structure of the baseline design. If a request is generated for
checking the data in L1 cache, the system writes the data into the Write Sure Queue.
The V-unit then verifies the integrity of data by comparing the data with the pre-existing
duplication in the L2 cache. The L1 cache uses a write through policy to guarantee the
data coherency between L1 and L2 during the whole operation period. The buffer is
used for minimising the wait time caused by the write operation in L2 cache. It is
assumed that the L2 cache is error free (i.e. L2 can be protected by radiation-hardened

structures), therefore it can correct the erroneous data in the L1 cache.

Processign unit
A A 4
Error signal v
I-cache ™ D-cache
A Write Sure A
Queue Y
Buffer
V-unit A
A v
A
Y
L2-Cache

Figure 2.19: Baseline model for Cache Write Sure (CWS) system [53].

Another fault-containment scheme for cache memories is realized by re-using the redun-
dant architectures in a TMR-protected processor [54]. It is a protocol approach that
protects the cache by re-using the existing TMR architectures in the datapath.

36 Chapter 2 Literature Review

2.5 Soft Error Protection Techniques For Microprocessor

Pipelines

As discussed in Chapter 1, Section 1.5 and Section 1.6, the soft error mitigation for
general logic is a much bigger challenge than for memories, and still remains open.
Protecting the pipeline of microprocessors, in particular, is a major cause of concern
for general logic protection. The microprocessor pipeline consists of a large number of
distributed logic gates which makes it hard to effectively protect. Nevertheless, there are
a number of existing soft error mitigation techniques for protecting the pipeline. Most
of them focus on hardening certain sequential gates (latches or flip-flops) to address
soft errors in certain parts of the pipeline. One major drawback of these techniques is
that they cannot provide a complete protection of the whole pipeline efficiently against
both SETs and SEUs. Some of them, for instance, are only suitable for protecting the
speculative pipeline registers, while others can only protect the Register File (RF). This
section summarises these existing pipeline protection techniques, and discusses their

error-tolerance capabilities and limitations.

2.5.1 Pipeline Register Protection Techniques

The pipeline registers stores the instructions and intermediate data for each pipeline
stage. They are typically both timing-critical and safety-critical. This is because the
errors occurring in the pipeline registers can easily corrupt the control signals, and

therefore result in the corruption of program executions.

2.5.1.1 Razorll pipeline protection

Das, et al. proposed a pipeline protection technique based on the Razorll flip-flop
introduced in Section 2.3.8 [44]. As shown in Figure 2.20, the RazorlI technique replaces
all the pipeline registers that connect the combinational blocks of each pipeline stages
with the Razorll flip-flops shown in Figure 2.15. This could realise timing error and
soft error detection within the pipeline. Error correction is achieved by using a replay
recovery mechanism at architectural level. The replay operation flushes the pipeline and
re-executes the instruction in the Write Back (WB) stage of the pipeline to overwrite
the erroneous state in all the pipeline registers. Such an approach can address the
soft errors occurring in the combinational blocks and pipeline registers before the WB
stage. This is because these blocks commit speculative executions for the pipeline,
replay executions can be easily applied to overwrite all the speculative execution results.
However, the soft errors occurring after the WB stage, such as the ones that corrupt
the RF, cannot be addressed by Razorll flip-flops. This is because the Razorll flip-flop

has a limited SEU-tolerant capability, thus cannot protect the non-speculative registers

Chapter 2 Literature Review 37

(see Section 2.3.8). The RF in the Razorll-based design is therefore protected by a
conventional ECC technique, which suffers from the common drawbacks of ECC-based
RF protection techniques (See Section 2.5.2). In addition, as all the errors before the
WB stage are recovered through the replay recovery process, the RazorIl technique can
incur large Instruction Per Cycle (IPC) overheads when the error rate is high. The IPC

overhead can have an evident impact on the overall performance and energy efficiency.

RdData <€ ‘
ECC H ECC
Check Check
|| Addr/
[] [-] [] [] / controls -

Addr/ >

controls

Razorll FF
Razorll FF
¥
Razorll FF
Razorll FF
Razorll FF

1

error error error error

L oL FT oA oA [

Replay

[Razorti flip-flop Ecc = ™r

Figure 2.20: Razorll pipeline design [44].

2.5.1.2 SEM/STEM pipeline protection

Avirneni, et al. proposed two pipeline protection schemes by incorporating either the
SEM or STEM cells (introduced in Section 2.3.6) into the pipeline registers of a micro-
processor [41]. The pipeline design of the SEM/STEM-based techniques are similar to
those of the Razorll-based techniques, since only the speculative pipeline registers are
protected. However, the SEM /STEM-based techniques rely on their own error-recovery
operations introduced in Section 2.3.6, rather than the pipeline replay recovery. As
discussed previously, the SEM and STEM cells can provide high level of protection ca-
pabilities against both SETs and SEUs occurring in the pipeline. However, the large
overheads (over 200% of area and power) incurred by the SEM/STEM cells make them
unapplicable to protect big storage units such as the RF. These two techniques again,

cannot achieve complete and efficient pipeline protections.

2.5.1.3 DIVA pipeline protection

Austin proposed a Dynamic Verification Architecture (DIVA) for protecting the pipeline
with the out-of-order execution feature [55]. DIVA, which is shown in Figure 2.21,

38 Chapter 2 Literature Review

achieves error-tolerance by adding a functional checker unit to the commit phase (CT) of
a processor pipeline. The functional checker verifies the correctness of the computations
from the processor core, and only permits correct computation results to pass through
the commit stage (CT).

DIVA Core DIVA checker
____________________ I I T T T T
| of-

out-of o'rder I | Watch |
| execution EX

| | L Doe !
| I Instructions | +
| A 4 | with inputs and I
I IF D REN > Rlo]s I outputs : p| CcHK T :
|
| In-order issue | | In-order ver.n‘y and |
| | | commit |
L e e I L _ |
Figure 2.21: DIVA structure [55].
CHKcomp pipeline
Success?
——» EX’ CMP ﬁ
Speculative
computations P CT
from DIVA core
—— »| RD CHK f
Success?

CHKcomm pipeline

Figure 2.22: The architecture of the DIVA checker [55].

Figure 2.22 shows the architecture of the DIVA checker which consists of two pipelines,
CHKcomp and CHKcomm. The CHKcomp pipeline verifies the functional units of the
DIVA core. EX’ is the duplicated execution block which re-executes the instructions.
It can be realised by utilizing simpler algorithms to reduce the cost as it receives the
instructions along with their inputs and outputs from the main core. In addition, larger
transistors and timing/voltage margins are typically employed in EX’ to make it robust.
The CHKcomm pipeline guarantees the correct communication between combinational
blocks and sequential blocks by re-executing all the communications. DIVA addresses
the faults occurred in the communication process which are not considered in most
conventional protection schemes. The duplicated circuitry in the DIVA checker is con-
sidered to be robust, therefore the recovery mechanism is realized by restoring the main

processor core by using the duplicated data in the checker.

Chapter 2 Literature Review 39

The drawback of the DIVA technique is that the checker re-executes all the instructions
which can incur a large power dissipation overhead. The implementation of the DIVA

checker is also complicated for the standard digital design process.

2.5.2 Register File Protection Techniques

The Register File (RF) in a microprocessor is the crucial part that affects the system
reliability. RF stores the intermediate execution results of the processor and is frequently
accessed. The errors occurring in the RF can easily propagate to other execution units
and cause visible errors in the final outcome of program executions. There are generally
two types of protection mechanisms for the RF in microprocessor pipelines: the ECC-

based RF protections, and radiation-hardened cell-based RF protections.

Because the RF is a dense storage block, ECC can be an applicable protection technique.
However, the ECCs applied in the RF are much less efficient than those are used in the
memories. There are three main reasons for this: 1. The ECC bits need to be calculated
and read during each operation. The performance and power overheads can be big
for the frequently accessed RF, and the situation gets worse when there are multiple
read ports and so multiple ECC decoding circuitries are required. 2. ECC requires a
noticeably larger number of redundant bits to address MBUs. The interleaving technique
introduced in Section 2.4.1 is not feasible for the RF. This is because RF is a small-size
storage block, so interleaving will significantly increase the complexity of the layout,
and also increase the power consumption. The chance of increasing the distance of each
bit in a codeword in RF is also rather limited. 3. ECC cannot address the SETs that
originate from the preceding pipeline stages and are captured by the RF. The majority
of the cell area within the RF is consumed by the read and write logic. Previous research
indicates that the majority of MBUs occurring in the RF are caused by captured SETS,
since the combinational logic have a high degree of fanout [56]. In contrast, radiation-
hardened cell-based RF protection can overcome some drawbacks of ECC-based RF
protection. This section discusses previous RF-protection techniques, their advantages

and limitations.

2.5.2.1 ParShield Architecture

Montesinos, et al. proposed an RF protection technique named ParShield [57]. ParShield
is based on a previous published technique named Shield [58]. The Shield architecture
shown in Figure 2.23 protects only a subset of the registers in the RF by generating,
storing and checking the ECCs bits of those registers. It contains a table that stores
ECC bits, and a set of ECC generators and checkers. These ECC-protected registers
are dynamically selected during the register renaming process, and are considered as the

most vulnerable registers that contain useful data.

40 Chapter 2 Literature Review

Read/Write Read

Register File P Original Datapath
RegData
Write
P I e |
1 |
i ECC > e | ! I
1 |
! Generator Checker| | To ROB
| ¢ Data E
|
[p| ECCTable ECC !
H Read i
| |
! Shield!

L e oY !

Figure 2.23: Shield architecture [57].

When a physical register needs to be written in a register renaming process, Shield
generates a request for protecting the register. If the request is accepted, Shield assigns
an entry in the ECC table to that register and generates the ECC bits for the data in the
register. During the read process of a register that is being protected, the corresponding
ECC bits will be sent to the ECC checker for verifying data integrity. When an error
occurs, Shield corrects the data in the physical register on the fly. It also flushes the
reorder buffer (ROB) from the latest instruction that reads the contaminated register,

and then flushes the whole ECC table before resuming the system.

The selection policy of the registers to be protected is based on the lifetime of a register
version. As shown in Figure 2.24, the lifetime of a physical register is defined as the
period between the register allocation and deallocation during the register renaming
process. One write operation and several read operations may occur during the lifetime
of a register. Only transient faults occurring between the period of the write operation
and the last read operation of a register can produce a visible error. This period is
defined as the Architecturally Correct Execution (ACE) time [59], or the useful period
of a register (Figure 2.24). The Architectural Vulnerability Factor (AVF) is defined as
the fraction of time that a single bit is in its ACE state. The Shield protection scheme
selects the registers that have the greatest AVF to protect. It is demonstrated in [57]
that the combined useful time of all registers is small, and a small set of long-lived
registers with long ACE time contribute most to the total ACE time of a system. Based
on these observations, Shield primarily selects the long-lived registers which are in their
ACE periods to protect. Since the ECC table is much smaller than the register file,

Chapter 2 Literature Review 41

a replacement policy is employed when no entry is available in the ECC table for a
protection request. The replacement policy either replaces an existing entry in the ECC
table, or rejects the protection request by predicting and comparing the lifespan of the

registers. A register with a relatively short life time will be evicted from the ECC table.

Allocation Worite Readl Read2 Last Read Deallocation TI&V
(I : : I I |
H A A)
Y Y
Pre-Write Useful (ACE) Post-LastRead

Figure 2.24: Lifetime of a register version [57].

The Parshield architecture reuses the ECC generator to add a parity bit for the entire
register file to reduce the SDC AVF (Silent Data Corruption AVF) to zero. In other
words, all single-bit errors will be detected by the parity.

ParShield consumes an average of 78% to 81% of the power incurred by a full ECC
protection design in various applications. However, it requires 17.6% more area than
the conventional ECC technique. Parshield also suffers the common drawbacks of the
ECC-based RF-protection techniques.

2.5.2.2 Compiler-Guided Partial ECC RF Protection

A compiler-guided technique that partially protects the RF using ECC is proposed in
[60]. This principle this technique is also based on partial ECC protection. However, this
technique can be applied to the processors without dynamic register renaming support.
In addition, the selection policy for the registers to be protected is based on a new
concept named the Register Vulnerability Factor (RVF). RVF is used to characterise
the probability that transient faults can escape from the register and thus potentially
impact the system reliability. RVF is defined by the write to read and read to read
intervals of a register. A register with higher RVF indicates it can potentially produce
higher error rates. Based on the RVF profiling of each registers in the RF, the compiler
selects the registers with the highest RVF to protect using ECC.

2.5.2.3 Duplication-Based RF Protection

Memik, et al. proposed an RF protection technique by partially duplicating the registers

in the register file [61]. Since not all the physical registers are active during an execution

42 Chapter 2 Literature Review

period of a program, the partial duplication is achieved by duplicating the active registers
using the unused registers during the register renaming process. Meanwhile, parity codes
are applied to identify the data integrity in the primary copy of the register. If an error
occurs in the primary copy, the duplication can correct the error. Similar to the partial
ECC protection techniques introduced in Section 2.5.2.1 and Section 2.5.2.2, replacement
policy is essential when the register file is full, and no unused registers are available for
duplications. The replacement policy used in [61] is based on capturing the register
age. Among the duplicated registers, the one that has not been accessed for the longest
period of time will be selected as the victim register and will be assigned to duplicate
a new register. The area overhead of this technique is relatively small as it re-uses the

existing redundancies in the original system.

2.5.2.4 Robust Register Cache (RRC) Technique

Fazeli, et al. proposed a partial RF protection technique named Robust Register Caching
(RRC) [62]. In RRC, a small highly robust register cache memory, which is constructed
using the FERST flip-flops introduced in Section 2.3.2, is added for protecting the RF.
The register cache memory works with the main RF in parallel. The data stored in the
most vulnerable registers in the RF are protected in the robust cache memory. Similar to
the ParShield architecture described in Section 2.5.2.1, the allocation and replacement
policy of the RRC protection is also developed based on minimising the AVF of a system.
It is suggested that the number of read operations during a register lifetime affects the
AVF of the register. The register that encounters the fewest read operations will be

selected as the victim register in the replacement policy in RRC.

Since all the bits in robust cache memory are hardened by the FERST, RRC is capable
of tolerating MBUs effectively. However, RRC suffers the drawbacks of the FERST flip-
flop discussed in Section 2.3.2. For instance, the C-element added in the signal path in
FERST can incur a large performance overhead, and the SEUs corrupting the C-element

may corrupt the output of FERST.

2.6 Software-Based Soft Error Mitigation Techniques

As introduced in Chapter 1, Section 1.5, there are techniques that work at the software-
level to address soft errors occurring in the hardware. From the device level to the
software level, the existing number of transient faults in a system decreases since many
of them are masked during the propagation through each level. Therefore, some software-
based approach at the higher level of the design may need to deal with fewer errors than

hardware-based approach, by ignoring the errors that are masked.

Chapter 2 Literature Review 43

A time-redundancy based software approach is introduced in [23]. Error detection is
achieved by running a duplicated program in parallel with the original program, and
comparing the execution results of the two programs. This approach does not require
hardware redundancies. However, the execution of the redundant program and the
comparison consume 10% to 30% more time than executing a single version of the original
program. Moreover, the duplicated program will incur a noticeable power consumption

overhead.

Another software-based approach proposed in [63] aims to reduce the soft error vulner-
ability of a system rather than detecting and correcting errors. This technique reduces
the time that the instructions sitting in the vulnerable storage structures, by filling the
instruction queue with invalid entries rather than valid instructions during lengthy stalls.
The technique reduces the probability that the valid instructions are attacked by radia-
tion particles. Since most bits in an invalid instruction will not be read, the possibility
of a fault in an invalid instruction to produce a visible error is small. The error rate can
hence be reduced. The drawback of this technique is that it only address the soft errors
caused by instructions, but cannot reduce the probability of the data being corrupted
by radiation strikes. This is because identifying active data and the non-active data is

relatively difficult.

In addition, a fault signalling technique is also introduced in [63]. The technique avoids
the so-called false detected faults (the faults that are masked and do not induce visible
errors) being signaled by the conventional fault-detection architectures. The technique is
achieved by tracking the propagation of the faults. An error signal is only asserted when
a visible error is induced by the fault during the tracking process. The fault signalling

technique avoids the unnecessary correction process invoked by the false detected faults.

Yan, et al. proposed a compiler-based approach that can increase the reliability of a
register file in an unprotected system [60]. The idea is based on reducing the RVF
rate (see Section 2.5.2.2) by re-scheduling the instructions. The re-scheduling method
aims to schedule the write operations as late as possible and the read operations as
early as possible to reduce the Write - Read and Read - Read intervals of a register.
The Superblock scheduling algorithm [64], hyperblock scheduling algorithms [65] and

scheduling slacks [66] are employed to achieve the compiler-based re-scheduling process.

The software-based error mitigation techniques can assist the hardware-based error-
tolerance architectures to further reduce the SER of a system. However, the software
approaches are typically too difficult or expensive to achieve an efficient error mitigation

on their own.

44 Chapter 2 Literature Review

2.7 Other Soft Error Mitigation Techniques

This section introduces some other soft error mitigation techniques that are not cate-

gorised in the previous sections.

2.7.1 Removing the Speed Penalty of ECC Technique

The speed penalty incurred when calculating and reading the ECC bits is the main
drawback of the ECC technique. Two schemes are introduced in [67] and [68], which
can eliminate the delays caused by computing and reading the ECC bits. Figure 2.25

and Figure 2.26 show the diagram of the two techniques, respectively.

Figure 2.25 shows the technique that eliminates the delay penalty caused by the ECC-
encoding process. The data bits and the ECC bits are stored in two separate memories.
The data is written into the data memory as soon as they are ready and the calculation
of the ECC bits is done in parallel. The delay caused by calculating the ECC bits in
the data write path is hence eliminated. The ECC bits are checked and the errors are
detected in XOR1, the correction process is conducted by the 1hot gate and the XOR2

gate afterwards.

Ck_> <
Data Code
Memory generation >
Latch1 P Logic > XOR1 | 1hot B xor2 P
Code N
generation Code
Memory
ck+é >

Figure 2.25: Elimination of extra delay in the write path [67].

Figure 2.26 shows the technique that eliminates the delay penalty caused by the ECC-
decoding process. The error detection and correction blocks in Figure 2.25 are amended
to work in parallel with the data read operations. The read operation directly provides
data from the ECC protected memory to the system through a MUX. If an error is
detected at some time after the read operation, all the latches will be held except latchl.
This is because latchl has already been contaminated by the erroneous data and needs
to be restored. MUX then provides the correct data from the correction block to correct

latchl before the system resumes.

Chapter 2 Literature Review 45

Error
indication

Detection

MUX— Logic [Latch —p

Memory

,_>

Correction

Figure 2.26: Elimination of detection and correction delays [67].

2.7.2 The Self-checking Controller with Datapath Interactions

reset, |

In_./"
L\ A A 4

Next state logic

Primary
A B inputs
- = = - = - — — "
> > | |
5 ™ > |
E 5 | |
& § I I
@ -
P i 2
0 Datapath
» : atapa I
| |
| |
|
| J

. _ Y _ _

I S S —_——r—_——————
Condition signals I IR
Primary

outputs

Figure 2.27: Basic controller/datapath architecture [69].

Oikonomakos, et al. proposed a self-checking system shown in Figure 2.27, which re-
uses the fault-tolerant architectures existed in the datapath to protect the controller in a
controller /datapath architecture [69]. Assuming that the datapath is already protected
by certain fault-tolerant architectures, the errors occurring in the control signals at point

B can also be detected by the existing fault tolerant architecture in the datapath. The

46 Chapter 2 Literature Review

re-use of the fault-tolerant architecture requires only a little more cost for protecting

both the controller and the datapath than for protecting the datapath alone.

2.8 Summary

The literature reviewed in this chapter suggests that traditional radiation-hardened
techniques used in safe-critical applications are far too expensive for un-safety-critical
commercial products. The general logic, such as the pipeline of microprocessors, are
especially hard to protect. A number of techniques were proposed to combat radiation-
induced soft errors in logic. However, most of them can either provide limited level
of reliability, or incur large implementation overheads for commodity electronics. In
addition, they lack of self-checking capability has caused the previous techniques to be
still vulnerable to the soft errors occurring in the redundant circuitry added for error-
tolerance. The limitations of the existing techniques make them incapable of providing
a complete and effective protection for complex microprocessor pipelines. Therefore,
cost-effective radiation-hardening solutions for general logic still remain open, and have

become the major challenge for modern commodity microprocessor designs.

Chapter 3

Soft Error and Timing Error

Tolerant Flip-Flops

It has been discussed in Chapter 1, Section 1.5 and Section 1.6 that transient faults
occurring in general logic are a particular cause of concern. Using radiation hardened
cells to protect the sequential elements can potentially be an effective solution for gen-
eral logic. However, as summarised in Chapter 2, Section 2.3 and Section 2.5, the
radiation hardened cells in the literature have various drawbacks. Most of them either
provide limited error-tolerance capabilities, or incur unacceptable overheads for com-
mercial applications. Consequently, they are difficult to use for achieving a complete
and efficient protection for microprocessor pipelines. This chapter proposes a novel radi-
ation hardened flip-flop architecture named SETTOFF. Two versions, SETTOFF1 and
SETTOFF2, are developed, which can overcome the drawbacks of the previous hardened
cells, and potentially provide a cost-effective protection for general logic. A reliability
evaluation model is also developed which can quantify the reliability of different designs,
and thus provide straightforward comparisons for the error-tolerance capabilities. Both
SETTOFFs are evaluated in 120nm and 65nm technologies, and are compared with the

previous techniques in terms of reliability and error-tolerance overheads.

In order to describe the error-tolerance capability of SETTOFF, Section 3.1 introduces
the soft error vulnerability of a conventional flip-flop. The principle of the SETTOFF
architecture is introduced in Section 3.2. Section 3.3 and Section 3.4 describe the designs
of the two versions of SETTOFF in detail, respectively. The implementation issues of
SETTOFF are discussed in Section 3.5. Section 3.6 proposes the reliability evaluation
model. The experimental work and the comparative evaluation results are described in

Section 3.7. Finally, Section 3.8 concludes the chapter.

47

48 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

I

Combinational D Q D Q I Q
block : Master Slave :
| Latch Latch |
clock | C QpP— C QpPo— :
L_______|____ DFlip-flopl

Figure 3.1: The conventional master-slave flip-flop.
3.1 Soft Error Vulnerability of the Conventional Flip-Flop

To explain the proposed SETTOFF architectures, the soft error vulnerability of the
conventional flip-flop will be introduced first. Figure 3.1 shows a D-type master-slave
flip-flop triggered by the positive clock edge. Radiation particle strikes can either induce
SEUs that corrupt the states stored in the two latches when they are opaque, or induce
SETs in the combinational circuits which can be captured by the two latches. However,
only the soft errors that corrupt the output) of the flip-flop can propagate to the

following stages of the system.

During the low phase of the clock, the master latch is transparent and the slave latch
is in opaque mode. The flip-flop in such a case is vulnerable to the SEUs that corrupt
the slave latch, which can directly produce an erroneous output at). During the high
phase of the clock, the master latch switches to opaque mode and the slave latch becomes
transparent. In this case, the flip-flop is vulnerable to SEUs that corrupt the master
latch, which will propagate through the transparent slave latch and manifest erroneous
values at (). SETSs originating in the preceding combinational logic and presented at the
input of the flip-flop may be captured by the master latch on the positive clock edge.
The captured SETSs in the master latch will again be captured by the slave latch on the
negative edge of the clock, therefore will incur an erroneous @) across the entire clock

cycle.

3.2 Soft Error and Timing Error Tolerant Flip-Flops (SET-
TOFF)

In order to combat both the SEUs that corrupt the state of the flip-flop, and the SETs
that are captured by the flip-flops, we propose two versions of radiation hardened flip-
flops, namely the Soft Error and Timing error Tolerant Flip-Flops (SETTOFF). The
primary goal of SETTOFF is to mitigate soft errors, but as the name suggested, timing

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 49

errors occurred in the combinational logic are also naturally addressed. SETTOFF aims
to provide such error-mitigation capability with minimum overheads for a microproces-
sor pipeline. As discussed in Chapter 1 and Chapter 2, achieving error detection and
correction normally requires much bigger overheads than only achieving error-detection.
SETTOFF can both detect and correct, but it minimises the overheads by conducting
all the error detections at circuit-level, but separating part of the error-correction oper-
ations into the architectural-level of the processor. The rationale of this is explained as

follows:

The errors that corrupt the output of a flip-flop during a write cycle are easy to recover
by an architectural pipeline replay operation. This is because the instruction that caused
the erroneous write operation can be easily targeted when such errors are detected. The
pipeline only needs to re-execute the faulty instruction and the instructions following it
to overwrite the corrupted output of the flip-flop before it contaminates the following
stages. The cost for incorporating the circuit architecture for the replay operation is low
since the replay is a conventional technique, which normally already exists in modern

microprocessors to support speculative operations such as the branch prediction [44].

The errors which may corrupt the state stored in a flip-flop during a hold cycle are
difficult otherwise to recover using the low-cost replay mechanism. This is because the
replay mechanism recovers errors by re-execution and re-writing the faulty flip-flops, but
when an error occurs in a hold cycle of a flip-flop, the latest instruction that writes to
the flip-flop may have already retired. Therefore, the simple replay mechanism cannot
target the replay point for re-writing the corrupted flip-flop. Checkpointing and rollback
operations may be required for architecturally recovering the errors occurring during the
hold cycle of the flip-flop [70]. However, the checkpointing and rollback mechanism is
much more expensive than the replay, as it requires the system states to be check-pointed
in the memory intermediately. A large power consumption overhead can be incurred due
to the extra communications with the memory. The rollback also incurs a noticeable
Instruction Per Cycle (IPC) overhead.

SETTOFF detects both the errors occurring during the write cycle and hold cycle of
a flip-flop. The errors occurring during the write cycle will trigger a replay recovery
operation at the architectural level; while the errors that occur during the hold cycle
will be corrected on the fly by the built-in circuit-level architecture. The details of both
versions of SETTOFF (SETTOFF1 and SETTOFF2) will be described in the following

sections.

3.3 SETTOFF1

Figure 3.2 shows the architecture of SETTOFF1. The main flip-flop is a conventional

master-slave flip-flop introduced in Section 3.1. For clarity, only the last state-holding

50 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

Part1
D Error _|Error
—
Detection XOR Clk d S FF Q
oo [o
Clk + Dxor + Dsetup

Combinationa
logic stage L1

\ 4%

orrection XOR

> DTrue_Q gt
o logic stage L2
’—g) g g

Clk > > storage unit
»finput Error SEU
Transition
Detection Clock »DCH Detector
DC t
q (DC) generator T? L (TD)
F Control signals 4 a0 Error Reset
3 - Part I1
SETTOFF1

Figure 3.2: The architecture of SETTOFF1.

element (the inverter pair) in the slave latch is explicitly shown. The internal node N
indicates the state held by the inverter pair. The output @ is the inverted version of
N. The logic block precedes the cross-coupled inverter pair represents the rest of the
flip-flop circuitry including the master latch and the rest of the slave latch architecture.

The error-tolerance circuitry is divided into two parts:

PartI is adapted from the Time Redundancy-based Detection (TRD) architecture intro-
duced in Chapter 2, Section 2.3.4.2. It contains a detection XOR-gate that compares
the input and output (True-Q) of SETTOFF1, and an error flip-flop which is driven by
a delayed clock (Clk_d). The delay element (§) is obtained from Equation 3.1.

0 = Dpeige + Dyor + Dsetup (31)

where Dy is the period of the high clock phase, D, is the delay of the detection
XOR-gate, and Dgeyp is the setup time of the error flip-flop. The TRD interval, which
is equal to the high phase of the clock (D), can hence be derived from Equation 3.2.
The error flip-flop is enabled during the write cycle of the main flip-flop to capture error
signals. When incorporating SETTOFF1 into a register architecture, the error flip-flop

can be shared by multiple bits to minimise the area and power overheads.

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 51

TRD interval TD interval

e
T
CLK_dg:_\ ,I(\ /S

8 = Dhclk+Dxor+Dsetup

Figure 3.3: The TRD and TD interval of SETTOFF1.

TTRD =0 — Dzor - Dsetup
= Dpei (3.2)

PartII is a Transition Detector (TD) based architecture. It comprises a transition de-
tector monitoring the output (@) of the main flip-flop, a detection clock (DC) generator
controlling the TD, and a correction XOR~gate which propagates or inverts node @ to
node True_@Q according to the output (Error_SEU) of the TD.

3.3.1 Operating Principle of SETTOFF1

Figure 3.3 illustrates the operating principle of SETTOFF1 during a clock cycle. The
clock cycle is separated into two intervals during which the two parts of the error-
tolerance circuitry work in turn. Partl of SETTOFF1 works during the TRD interval
which is equal to the high clock phase; While Partll of SETTOFF1 works during the

TD interval which is equal to the low clock phase.

Part I is responsible for detecting three types of error occurring during the TRD interval

in a write cycle of the main flip-flop:

1. As shown in Figure 3.4, the captured SETs manifest on the output of combina-
tional logic stage L1, with a pulse width no greater than Dy, will recover before
the comparison recording point. So when comparison is conducted at the compari-
son recording point, the captured SET presented at the output (Q) of SETTOFF1
and the recovered SET manifest at the input (D) of SETTOFF1 will cause incon-
sistencies at the inputs of the detection XOR~gate. Therefore these SETs will be
detected. The error signal will then be latched in the error flip-flop soon after the

negative edge of the clock (i.e. the comparison recording point).

52 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

Comparison . Comparison
" .. Sample point , .
recording point recording point

I I I
\ | Sampled } A Timing error}
Clk ample P

D RN /:\4/ SET : : /
Non-sar)npled |\ I 1

Q SET : / i\ i\
Error | |/ \ |

Sample point

—

Figure 3.4: The operating principle of Part I in SETTOFF1.

2. The SEUs that flip the state stored in the master latch of the main flip-flop during
Dy will propagate to the output of SETTOFF1. Similar to the SETs, these

SEUs will also be detected since they will cause inconsistencies at the input and
output of SETTOFF1.

3. A timing error, which is a delay error originated by the preceding combinational
logic, may cause the flip-flop to fail to capture the correct input for the current
cycle. As shown in Figure 3.4, the timing errors with a delay no more than Dy,

will be detected due to the inconsistent inputs of the detection XOR-gate.

It should be noted that the correct functioning of the TRD architecture requires the
input of the flip-flop to remain stable during the TRD interval (refer to Chapter 2,
Section 2.3.4.2 for details). This induces certain timing constraints during the design
process. The details of the constraints will be introduced later in Section 3.5. The
errors detected by the TRD architecture are the errors occurring during the write cycle
of the flip-flop. The error signals are recorded in the error flip-flop, which will then
trigger the architectural replay operations to recover these detected errors. The replay
recovery mechanism will be explicitly described in the system-level design in Chapter 5,
Section 5.3.1.

The TD-based architecture in Part II is responsible for detecting and on-line correcting
the SEUs that corrupts the slave latch during the TD interval (i.e. the negative clock
phase). Because these SEUs can occur during the hold cycle of a flip-flop, it is more
efficient to correct them at the circuit-level. With a small overhead to the detection ar-
chitecture, the TD-based architecture provides on-the-fly recovery for the SEUs detected
during the TD interval.

The TD-based architecture in PartIl has two operation states which are defined in
Table 3.1. In the normal operation state, the output of the TD (Error_SEU) is set
to zero to allow node @) propagating to node True_(). The DC generator disables TD

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 53

Table 3.1: The operation states of Part II in SETTOFF1

State Activities
Normal Operation Propagate Q
(Error_SEU=0) Enable TD during TD interval
Fault Operation Invert Q
(Error SEU=1) | Enable TD during both intervals

during the TRD interval to avoid legal transitions being flagged as errors. During the
TD interval, the TD is enabled by the DC generator, and will detect any SEUs that
reverse the state of the flip-flop at node @ as illegal transitions. Upon a detection, TD
asserts the Error_SEU signal, which feeds into the correction XOR-gate and the DC

generator.

Therefore when @ is flipped by any SEUs in the slave latch, the correction XOR-gate
and the asserted Error_SEU signal will then invert () back to the correct state at nearly
the same time. This ensures the output of SETTOFF1 (T'rue_Q) to be error-free during
the TD interval. Meanwhile, with the asserted Error_SEU signal, the DC generator
generates control signals to enable TD during the entire clock phase (both TRD and
TD intervals), such that SETTOFF1 is switched to the fault operation state.

SETTOFF1 will not return to the normal operation state until TD is reset to zero by
the ErrorReset signal, or TD detects the next transition in @, which will also switch
Error_SEU back to zero. To explain this, we assume two circumstances as shown in
Figure 3.5(a) and Figure 3.5(b):

(a) Figure 3.5(a) shows the first circumstance in which the next transition in node
Q is caused by another SEU flipping the slave latch when SETTOFF1 is in the fault
operation state. The second SEU will reverse the state of the main flip-flop back to
the correct value. TD detects such a transition and switches Error_SEU back to zero,
which will switch the DC generator and SETTOFF1 back to the normal operation state
to propagate @ to True_Q). In other words, an even number of SEUs during one cycle

will correct the state of the flip-flop.

(b) As shown in Figure 3.5(b), if the next transition is caused by SETTOFF1 sampling
the next input, the former detected SEU will be overwritten. Since TD is also enabled
during the high clock phase in the fault operation state, it will capture such transitions
and reset Error SEU. SETTOFF1 is therefore switched back to the normal operation

state.

A third circumstance can happen when a new input is captured by the flip-flop during
the following cycle, but the new input does not reverse the corrupted state of the main

flip in the former cycle. As is shown in Figure 3.5(c), in this case, the former detected

54 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

Clk _J’__‘{—)’—‘{_

D —/ | | '/\lSecond SEUI

Q — V First / L | |

) | SEU | ' |
Error_ SEU | Inverted Q ‘J/ Propagatdd Q

True Q / i : i
| | |

DCL —1 [VY N R
(a)

Clk _)’__‘{__/—‘l_

| |
b __/ SEUj\\— —/ - Valid tyansition

QO — VT TL__ 7 i

| L — I
Error_SEU I Inverted Q _—Propagated Q
True Q | Y |/ |
DCH : a / |
DCL —) [\ A
(b)

Comparison
recording point

Ck ____ /) \

Sample point

p —/ SEU : :
s 2
Error_ SEU / : : \ _\n_ormal
True Q — V7 | l * operation
Error Inverted Q Inverted Q [~

(©)

Figure 3.5: The operating principle of Part II in SETTOFF1.

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 55

SEU is overwritten, but no transition occurs in Q). SETTOFF1 therefore would stay in
the fault operating state which inverts the correct () to generate an erroneous output,
True_@). However, the erroneous True_() will not be read by the following stages since
it will be detected by the TRD architecture during the TRD interval in the same cycle.
The TRD architecture will then generate a replay signal to recover the erroneous output
(True_Q), and reset the Error_SEU through the ErrorReset signal. SETTOFF1 will
be switched back to normal operation after the replay recovery. For summary, Part 11
guarantees the output of the SETTOFF1 will never be corrupted by SEUs occurring
during the negative clock phase. Other faults are detected by Part I.

Upon corrections of the SEUs occurring during the TD interval, a correction glitch (see
Figure 3.5) may occur at the output of SETTOFF1 due to the propagation delay of the
TD and the correction XOR-gate. Such glitches may propagate. However, if sampled,
they will be detected as SET pulses in the following stage and will not corrupt the

system.

3.3.2 Transistor Level Design of SETTOFF1

The circuit schematics of the TD and the DC generator are shown in Figure 3.6. The TD
shown in Figure 3.6(a), is developed from the transition detector proposed for Razorll
[44]. The TD requires two pulse generators to generate an ‘implicit’ pulse out of a
rising and a falling transition at its input node, respectively. Each pulse generator is
constructed by a delay-chain formed by an inverter and a transmission gate, to capture
the correspondence transitions. The two delay chains are connected by four evaluation
trees each constructed by two transistors connected in serial. The four evaluation trees
are constructed as part of two dynamic OR-gates. When any transitions occurring at
the Input node, the ‘implicit’ pulse generated by the correspondence delay chain will
conduct one of the four evaluation trees, which will either charge or discharge node M
to switch the Error_SEU pin. The two control signals, DCH and DCL are generated
from the DC generator, and are the on/off switches for the dynamic OR-gates on the
upper and lower sides, respectively. The two sides work in turn in the two operation
states described in Table 3.1.

The Error Reset signal pre-charges node M to set the Error_SEU pin to zero and
the circuit to the normal operation state. During the normal operation state, the upper
side OR-gate is switched off by DCH; DCL turns on the lower side OR-gate during the
negative clock phase. In this case, the inverter I3 and the transmission gate TG2 act
as the pulse generator for the rising transition. The inverter /2 and the transmission
gate TG1 act as the pulse generator for the falling transition. If a rising transition is
captured by I3 and T'G2, the generated ‘implicit’ pulse will momentarily conduct the
evaluation tree constructed by d1 and d3 in the lower side OR-gate to discharge node

M. Similarly, a falling transition will produce an ‘implicit’ pulse to discharge node M

56 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

Upper side: falling transition delay chain

Lower side: rising transition delay chain Vig3
do 1 idl Upper side tg
—o o Vigl
_?_g Error Reset L ORt gate s '?'
| d3 DCH
Input i d3 =4 jo—
5 d Error SEU T
1 2|) X 7 A I |V S—
_?_Vth Clk d
& D_|_|:4 | o DpCL
TGl 'i‘ Lower side H
N - . OR gate
Upper side: rising transition delay chain]

Lower side: falling transition delay chain Y 1 """"""""""
(@ (b)

Figure 3.6: The circuit schematic of SETTOFF. (a) The transition detector.
(b) The detection clock generator.

through d0 and d2. When M is discharged, Error_SEU will switch the DC generator
and SETTOFF1 into the fault operation state.

In the fault operation state, the DC generator will generate a low DCL signal to switch
off the lower side OR~gate. The upper side OR-gate will be switched on by DCH during
all clock phases. This time I3 and T'G2 are the delay chain for the falling transitions,
while 12 and T'G1 form the delay chain for the rising transitions. Any transitions at the
input of the TD during fault operation state will charge node M through a conducted
evaluation tree on upper side, and will switch SETTOFF1 back into the normal operation

state.

The operating principle of DCH and DCL is given in Figure 3.5(a) and Figure 3.5(b).
The Error_SEU pin will be switched between ‘0’ and ‘1’ in the presence of multiple

transitions at the input of the transition detector.

The Error Reset signal can be generated in an architectural replay process invoked by
the Error signal from the TRD architecture. The cross-coupled inverter pairs are used

to protect the dynamic node N from discharging or charging by the leakage current.

The circuit architecture of the detection clock generator is shown in Figure 3.6(b). A
delay is created by the transmission gate for generating DCL and DCH signal. This
allows sufficient time for the dynamic node M to be charged or discharged when a
transition is captured by the delay chains. The voltage supply for all the transmission
gates in SETTOFF1 is tunable for controlling the delay they generate. However, the
normal supply voltage (1.2V) is used when validating the design.

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 57

3.4 SETTOFF2

SETTOFF1 provides a high level of reliability by mitigating both SETs and SEUs
occurring during the entire clock cycle. In the meantime, timing errors are also naturally
addressed. The error-tolerance overheads of SETTOFF1 are minimised by separating
the error recovery process into two different levels. However, there are some issues for
SETTOFF1. The primary one is that the correction XOR-gate added in the signal
path will introduce a Clock-to-Q delay overhead to the main flip-flop. In addition, the
speed of the on-the-fly correction process for the SEUs detected by the TD depends on
the propagation delay of the TD and the correction XOR-gate. Such a process can be
slow due to the complexity of the TD and DC generator in SETTOFF1, thus a wide

correction glitch can be produced upon the corrections.

In this section, we propose a second version of SETTOFF: SETTOFF2, which overcomes
the weakness of SETTOFF1, and further reduces the error-tolerance overheads. The
three major improvements of the SETTOFF2 are:

1) The TD-based error-tolerance architecture is significantly simplified, so that the

power and area are noticeably reduced.

2) SETTOFF2 removes the Clock-to-Q delay overhead caused by the SEU-correction
circuitry added in the signal path.

3) SETTOFF2 also eliminates the requirement of the TRD architecture to protect
the TD-based architecture of SETTOFF1 in a complementary manner (see the

third circumstance shown in Figure 3.5(c) in Section 3.3.1).

3.4.1 Operating Principle of SETTOFF2

Figure 3.7 shows the architecture of SETTOFF2. The TRD circuitry in Part I and its
operating principle stay the same as that in SETTOFF1. The Transition Detector (TD)
in Part II is re-designed and re-located to monitor the internal node N of the flip-flop.
The DC generator is completely removed. The correction XOR gate is moved into the
main flip-flop and replaces the inverter to drive the output). During normal operation,
the output of TD (ERROR_SEU _bar) stays high, such that the correction XOR-gate

acts as a normal inverter to invert node N to Q.

Similar to SETTOFF1, Part I and Part IT in SETTOFF2 work in turn in the two
intervals shown in Figure 3.3. During the TRD interval (i.e. when the clock is high),
TD is disabled by the high clock signal and its output (ERROR_SEU _bar) stays high
indicating no errors. During the TD interval, TD is enabled by the low clock signal,
such that any SEUs that flip the state stored in the slave latch will be detected as illegal

58 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

PartI §
D grror |Error_ SET
i —
Detection XOR | ’-i>cg<—(i> FF |
Combinational Main Cﬂk+onr+Dsetup
ombinationa »D flip-flop Correction| i
logic stage L1 ; b
qﬁb N XOR |,
CAPT
Clk——{> _ storage unit

L: input ™D J Error SEU_bar

clk

~ PartIl

SETTOFF

Figure 3.7: The architecture of SETTOFF2.

mux
Q
D
D — Q
En D flip-flop
clock ——> ap—a

Figure 3.8: The multiplexer-based flip-flop hold architecture.

transitions at node N. ERROR_SEU _bar will then be assigned to zero upon detection,
so that the correction XOR-gate will propagate N to correct the SEU at @), on the fly.
TD will be reset and FRROR_SEU _bar will be set to 1 by the next high clock signal
to switch the flip-flop back to normal operation. To further illustrate this, we assume

the three circumstances shown in Figure 3.10(a), Figure 3.10(b), and Figure 3.10(c):

(a) When the cycle following an SEU-correction cycle is a write cycle, the flip-flop
captures a new input value so that the bit-flip error in the slave latch presented at IV
is overwritten at the rising clock edge. Meanwhile, the rising clock edge will also assert
the ERROR_SEU _bar signal to let the correction XOR~gate invert N to) as a normal

inverter.

(b) When the cycle following an SEU-correction cycle is a hold cycle, flip-flops are
typically held by using one of two architectures: the multiplexer-based architecture
shown in Figure 3.8, or the clock-gating-based architecture shown in Figure 3.9. In the

multiplexer-based architecture, the flip-flop still captures the input in a hold cycle, but

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 59

D Qr—Q

D flip-flop
. fD— > ap—Q
clock

Figure 3.9: The clock gating-based flip-flop hold architecture.

the output @ is selected by a multiplexer to feed back into the input D. The flip-flop
therefore captures the @) corrected in the former cycle to overwrite the SEU stored in
slave latch during the hold cycle. Similar to case (a), the ERROR_SEU _bar is set to 1
by the rising clock edge, such that SETTOFF2 is switched back into normal operation.

(¢) During the hold cycle of a clock-gating-based architecture shown in Figure 3.9, the
enable signal En is set to zero, such that clock driving the flip-flop is gated by the AND-
gate. No input is captured by the flip-flop, hence the SEU remains in the slave latch
during the hold cycle. However, the clock feeding into the TD is also gated, therefore
FERROR_SEU _bar remains at 0 to ensure that the bit-flip error stays corrected at Q.

The on-the-fly correction of the SEU in SETTOFF2 also produces a correction glitch,
which again can be addressed by the SETTOFFs in the following stage of propa-
gates. Notice that although both SETTOFF1 and SETTOFF2 are developed based-on a
master-slave D-type flip-flop, they can also be adapted to protect other types of D-type
flip-flops. This is because the SETTOFF architecture mitigates the errors that corrupt
the last storage element of the flip-flop to ensure an error-free output. Other errors that

do not affects the output of the flip-flop are masked.

3.4.2 Transistor Level Design of SETTOFF2

Figure 3.11 shows the transistor level design of the optimised TD in SETTOFF2. The
construction of the delay chain is not changed from the TD used in SETTOFF1. The
upper side dynamic OR-gate in the original TD is removed. The high clock signal is
used to disable the TD and assert the FRROR_SFEU _bar signal. The lower side dynamic
OR-gate is enabled only during the negative phase of the clock to capture transitions
that will assign FRROR_SEU _bar to zero. It should be noted that the optimised TD
in SETTOFF2 significantly reduced the area and power consumption compared to the
TD in SETTOFF1. The removal of the DC generator and the simplified architecture
also increased the speed of the on-line SEU-correction process, which indicates a smaller
SEU-correction glitch will be induced. The widths of the correction glitch of both
SETTOFF1 and SETTOFF2 will be evaluated in Section 3.7.5.3.

60 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

SEU-correction cycle Write cycle
Clk _/II’—\—JI/—_
D — \ - :
SEU—4 ' o— New D is captured
N I S !
Error_SEU_bar ! o
- - | Propagated N—¢ I Inverted N
Q ____ J e
I I
(a)

SEU-correction cycle Mux-based hold cycle
Cck N\ ___

| |
D —

No valid D input

E I
N —I\i‘r—“‘\ Q is captured
: X
Error_SEU_bar | Propagated N | p— Inverted N
Q — I l
| I
(b)

. | Clock-gating-based
SEU-correction cycle hold cycle

Clk I S N Gated
D 7 |

SEU—4
N N

|
I _A— remains corrupted
|
Error_SEU_bar ! I :
|
I

| Propagated N4
Q -V |
I

r remains corrected

(c)

Figure 3.10: The operating principle of Part IT in SETTOFF2.

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 61

The trade-off for this reduction in resource usage is that the optimised TD can no longer
detect multiple SEUs occurring in the slave latch during one detection interval. This is
because that the FRROR_SEU _bar cannot be switched between 1 and 0 by multiple
transitions at the input of TD. Therefore, the design of the optimised TD is based on the
assumption that the probability of a single circuit node to be struck by multiple SEUs
during a single clock cycle is small, so such situations should have negligible contributions
to the overall SER of the flip-flop.

Figure 3.12 shows the circuit schematic of the correction XOR-gate, which is used
to replace the inverter in a conventional flip-flop to drive the output). The input
Error_SEU _bar is connected to the output of the TD, which is 1 in normal operation.
Therefore the Transmission Gate (TG) is blocked, and the delay of the XOR-gate equals
that of inverter 11, which has the same drive strength and the same delay as the replaced
inverter in normal operation. In other words, the SETTOFF2 architecture completely
removes the extra delay path added for the SEU-correction in SETTOFF1. The increase
of the Clock-to-Q delay in SETTOFF2 is only caused by the extra load added at the
output of the main flip-flop.

Delay chain for rising transitions

Error SEU_bar

BE |

Delay chain for
falling transitions |

|

Figure 3.11: The circuit schematic of TD in Figure 3.12: The correc-
SETTOFF2. tion XOR gate.

3.5 Circuit Implementation Issues for SETTOFF1 and SET-
TOFF2

Using the system clock to drive both the main flip-flop (on the rising edge) and the error
flip-flop (on the falling edge) is significantly simpler than using two separate clocks.
The TRD and TD intervals in SETTOFF can be altered by tuning the duty cycle
of the clock without affecting the operating speed. The ratio of the widths of the two
intervals represents a trade-off between the SET-detection capability and SEU-correction
capability. Specifically, a wider TRD interval detects SETs with greater pulse widths

and TEs with greater delays, while a wider TD interval detects and recovers more SEUs

62 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

on the fly. An asymmetric clock may be required to meet the reliability requirement
in certain circumstances. However, the falling edge of the clock is not timing-critical
in normal operation. The duty-cycle clock jitter at the falling clock edge only affects
the TRD interval, and hence only affects the error-tolerance capabilities rather than the
system operation. Clock jitter at the rising clock edge affects the system the same as

with a conventional symmetric clock.

The TRD interval formed by the adapted TRD architecture incur certain timing con-

straints, which will be explained by the following equations:

Trrp = 6 — Deomp — Dsetup (3.3)
Trrp > Wser (3.4)

Trrp 2 Wliteh (3.5)

0 > Dcik—to—Q + Deomp + Dsetup (3.6)
Dshort + Deomp = 0 (3.7)

where:

e § = Phase shift between Clk and Clk_d

Trrp = the TRD interval

Wepr =The maximum pulse width of the SET's,
or the maximum delay of the TEs that can be detected

Wiiten = The width of the correction glitch

Dghort = The shortest path of the combinational logic preceding SETTOFF

D omp = Delay of the comparator in the TRD architecture

D etup = Setup time of the error flip-flop

® Dcig—to—g = Clk-to-Q delay of the main flip-flop

The Trgrp is determined by Equation 3.3. Equation 3.4 indicates the detectable SETs
and TEs, while Equation 3.5 ensures that the correction glitches generated from Part
II of SETTOFF can be detected by the TRD architecture in the following stage. Equa-
tion 3.6 guarantees that the output of the main flip-flop is ready and stable before the
comparison is conducted in the TRD architecture. Equation 3.7 shows the shortest path
constraint of the combinational logic that precedes the TRD architecture. The shortest

path constraint ensures that the output of the combination logic is not updated by the

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 63

new input value from the following cycle, until the comparison result is captured by the
error flip-flop. After setting Trrp according to Equation 3.3, Equation 3.4, Equation 3.5
and Equation 3.6, buffers may need to be inserted to extend the shortest path to satisfy
Equation 3.7.

3.6 Statistical Analysis of Soft Error Failure Rates of the
Flip-Flop

In a digital system, an SEU or an SET induced by a radiation particle strike needs
to corrupt the output of a flip-flop in order to cause a visible soft error at the system
level. An SEU occurring in the master or slave latch of a conventional D-type flip-flop,
for instance, will corrupt the output of the flip-flop with 100% probability. An SET
however, can only corrupt the output of a flip-flop if it is captured. In this thesis, the
corruption of the output of a flip-flop due to either an SEU or a captured SET is defined
as a ‘failure’ of the flip-flop. A failure of a flip-flop may or may not propagate to a
higher level of the system to cause a soft error. The probability of a failure causing an
error at the system output depends on the system architecture and execution. However,
the overall SER of a system is the function of the failure rates of all the incorporated
flip-flops, or other sequential logic. Therefore, reducing the failure rate of the flip-flop
in the presents of SETs and SEUSs, is an efficient way of reducing the overall SER of a

System.

This section proposes an analysis model that can quantify the failure rate of various
types of flip-flops caused by SETs and SEUs. The failure rate analysis model takes
the variability of the circuit into account. We introduce two metrics, the SET failure
rate and the SEU failure rate, which represent the failures caused by SETs or SEUs,

respectively.

3.6.1 SET Failure Rate Evaluation Model

An SET generated from a combinational circuit node is a glitch with a peak that exceeds
the threshold voltage. It has two important characteristics: the peak of the glitch (Vp),
and the width of the glitch (w), as illustrated in Figure 3.13.

Consider a synchronous pipeline as shown in Figure 3.14. Assume an SET pulse has
been generated within the Combinational Logic (CL) and has propagated to DFF2. The
pulse can cause a functional failure if it is erroneously sampled (yet meets the setup and
hold times of DFF2), or if it forces the device to go into the metastability state (violates
the setup and hold time of DFF2). The occurrence time of the glitch, and its width

determine whether or not it causes a failure of a flip-flop.

64 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

Voltage
A

» Time

Logic (CL)

o =

Figure 3.14: The synchronous pipeline architecture for failure rate model.

3.6.1.1 SET Failure Rate Model for Conventional Flip-flops

For an SET pulse to be sampled and cause a failure in a conventional flip-flop, it has to

satisfy the following two conditions:

(a) The amplitude of the SET pulse should exceed the threshold voltage before the
data is sampled at the input of the flip-flop;

(b) The amplitude of the SET pulse remains higher than the threshold voltage, while
the input is being sampled.

The probability of a functional failure caused by a transient pulse is the product of the

probability of the two conditions.

Probability of Condition (a): When an SET is generated, there can be two scenarios as
shown in Figure 3.15. In Scenario (1), the amplitude of the pulse exceeds the threshold
voltage of the input gate before the data is sampled at the rising edge of the clock. In
Scenario (2), the amplitude of the pulse exceeds the threshold voltage after the data is
sampled. Scenario (1) satisfies Condition (a), while Scenario (2) does not cause a failure
as the SET cannot be sampled by the flip-flop.

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 65

Scenario (1) Scenario (2)

Figure 3.15: Timing Condition (a) of the transient pulse.

Let T be the clock period. t denotes the time that the pulse appears at the input of

the DFF2, which can be any time during the clock cycle, therefore ¢t can be written as:

t = aTu (3.8)

where

0<a<l1

D denotes the time it takes for the pulse to reach the threshold voltage. It depends
on the delay of the path the pulse has taken (logic + wire delay). The probability of

Scenario (1), g1, can be written as:

gl = PT(Tclk Z D + OéTclk) = PT’(D + (Od — 1)Tclk S 0) (39)

where Pr stands for the probability. The timing variables D and T, are functions
of the physical layout and the supply voltage of the circuit. The latter are subject to
random process variations [71] [72]. Based on the results and arguments in [71] [73, 74,
75, 76], it is reasonable to assume that these timing variables can be modelled by normal
distributions. up and pr,, denote the mean values of D and Ty, respectively, while op
and o7, denote the standard deviations. The closed form solution of Equation 3.9 can

be obtained as a function of o [77], as follows:

(Oé - 1)IU’Tclk + KD)

g1 = o
\/U%) + ((a = Doz,)?

(3.10)

the ®-function can be expressed in terms of the error function erf(z), as follows:

66 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

| Vin |
| |
- o e -
]
|
I
I
|
I
|
-

1
T
b
-

i

! I
i | I
T.
| Lo _ | '
Scenario (3) Scenario (4)

Figure 3.16: Timing Condition (b) of the transient pulse.

1 1

O(x) = 7+ erf(). (3.11)

T
f
where:

erf(z \F/ e dz. (3.12)

Probability of Condition (b): If the transient pulse satisfies Condition (a), there are
another two cases shown in Figure 3.16. Scenario (3) satisfies Condition (b), in which
the amplitude of the pulse remains higher than the threshold voltage when the pulse is
sampled. Scenario 4 does not cause failures since the amplitude of the pulse falls below
the threshold voltage before the data is sampled. w denotes the width of the pulse, the
time period for which the amplitude of the pulse exceeds the threshold voltage. The

probability of Scenario (3) can be given as:

92 = Pr(Tar < D + aTy, + w)
= PT(Tclk -l — D —w< 0) (313)

According to the SET distribution results presented in [78, 79, 80], SET pulses can also
be modelled by a normal distribution. Hence, similar to Condition (a), the closed form

solution for Equation 3.13, as a function of «, is:

(1 — @)y — 1D — P)

92 = &(
Job+ b+ (1 - a)or,)?

(3.14)

where that p,, and o, are the mean and the standard deviation of the width of the SET

pulse, respectively.

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 67

TRD interval TRD interval
= —p [

-

Scenario (5) Scenario (6) Scenario (7)

Figure 3.17: Timing Condition (b) of the SET for SETTOFF.

The failure rate of a conventional flip-flop in the presence of such a transient pulse is

hence the product of g1 and g2, as follows:

Fr=gl-g2
—1 1— — 1D — o
_ o (o =Dy, + pp D (1 —)z, —pp —p) (3.15)
Vob+(a—Dor,)2 \Joh+ 02 +((1-a)or,,)?

3.6.1.2 SET Failure Rate Model for SETTOFF

Both versions of SETTOFF used the adapted TRD architecture to mitigate the SETs
manifest at their inputs. The SET-tolerant capability of SETTOFF1 and SETTOFF2
are the same, therefore they produce the same failure rate in the presence of the same
SET pulses. We consider the circumstance when only an SET is captured, yet not
detected by the TRD architecture as a failure. The SETs that are captured but detected
by the TRD architecture will be recovered by the architectural recovery mechanism. In
other words, the failures caused by the detected SETs will be recovered and will not
contribute to the SER, of the system. Therefore they are not included in the failure rate
of SETTOFFs.

As with a conventional flip-flop, an SET also has to satisfy two conditions to produce
a failure in SETTOFFs. The first condition is the same as that for a conventional flip-
flop, where the amplitude of the pulse has to exceed the threshold voltage before the
data is sampled at the input of the SETTOFFs. However, the second condition changes
since the adapted TRD architecture is incorporated, for detecting the sampled SETSs.
Figure 3.17 shows three scenarios that exist for the second condition for SETTOFF.
Only Scenario (5) can cause a failure and satisfy the second condition. This is because
in this case, the pulse is sampled and the width of the pulse also exceeds the TRD
interval, which will let the pulse escape from the detection. In Scenario (6), the pulse
is not sampled. In Scenario (7), the pulse is sampled, but the amplitude of the pulse
falls below the threshold voltage before the end of the TRD interval. This will allow the

68 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

pulse to be detected by the TRD architecture. According to Scenario (5), the second
condition requires the amplitude of the SET pulse to remain higher than the threshold
voltage not only when it is sampled, but also until the end of the TRD interval.

Let the duty cycle of the clock be 7 = Trrp /T, where Trrp denotes the TRD interval
which is equal to the high phase of the clock. The probability of the second condition
for both versions of the SETTOFF can be derived as:

92" = Pr(Tar + mTar < D+ aTqy, + w)
= Pr(tTar + Tar — aTar — D —w < 0) (3.16)

Similar to the derivation of the failure rate for the conventional flip-flop, the closed form

of g2’ can be expressed by Equation 3.17, as follows,

147 - — D — i
(+ 7 O[)/‘LTclk ,uD :u) (317)

92" = ®(
Job+ (147 —a)or,)? +02

The SET failure rate of the SETTOFFs in the presence of the SET's can hence be derived
by the product of g1 in Equation 3.10, and ¢2’ in Equation 3.17, as follows:

Fr'=g1.g2
(Oé B 1)/'LTclk + 1D) (1 + T - a)MTclk — KD — Hw) (318)

=
(\/UQD + (o = 1)UTclk)2 \/O% +((1+7— a)UTclk)2 + 0-12u

3.6.2 SEU Failure Rate Evaluation Model

The SEUs that flip either the state stored in the master latch during the high clock
phase, or the state stored in the slave latch during the low clock phase will cause a
failure at 100% probability at the output of a D-type flip-flop. Therefore the failure rate
of a conventional flip-flop due to SEUs is simply 100%.

As discussed in Section 3.3.1 and Section 3.4.1, for both versions of SETTOFF, the
SEUs occurring in the master latch during the high clock phase will be addressed by the
TRD architecture, hence they cannot cause failures. The SEUs that corrupt the slave
latch during the low clock phase will be detected and corrected on the fly, by generating
correction glitches. The correction glitch is not considered as a failure unless it corrupts
the following stage. The failure rate caused by the SEUs occurring in the slave latch in
the SETTOFFs therefore equals the failure rate caused by the correction glitches in the

following stage. Similar to an SET pulse, the failure rate caused by a correction glitch

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 69

depends on the occurrence time of the glitch and its width, and can be derived using
the SET failure rate model.

When the following stage is a conventional flip-flop, the failure rate caused by the correc-
tion glitch can be derived by Equation 3.15. When the following stage is a SETTOFF,
the failure rate of the correction glitch can be obtain by Equation 3.18. Therefore,
rather than producing a 100% failure rate in a conventional flip-flop, SEUs can only
cause SETTOFF to produce a failure rate equalling to that is caused the induced cor-

rection glitches.

3.6.3 Discussion

It should be noted that the proposed SET and SEU failure rate models for both the
conventional flip-flop and the SETTOFFs are not intended to calculate the accurate
failure rates of the flip-flops. Nevertheless, the purpose is to provide a tool that can
predict the impact of the particle strikes, and quantitatively compare the reliability of

various sequential logic architectures.

On the other hand, the SET failure rate model for the SETTOFF can be used to
quantitatively predict the SET-detection capability of the TRD architecture. Although
it is claimed in Chapter 2, Section 2.3.4.2 that the TRD can detect all SETs when the
TRD interval is big enough, such a generous TRD interval can be hard or impossible
to achieve in modern microprocessors driven by high clock frequencies. This is because
the clock period can be smaller than the pulse width, but the TRD interval cannot
be greater than the clock period. Moreover, a bigger TRD interval introduces stricter
timing constraints (see Chapter 2, Section 2.3.4.5, and Chapter 3, Section 3.5), hence
may require more buffers to increase the shortest path delay of the combinational logic.

The buffers will incur extra area and power overheads.

For non-safety-critical commercial applications, a zero SET failure rate may not be a
prerequisite. A smaller TRD interval may be sufficient and desirable to satisfy the
required trade-offs between the reliability and the error-tolerance overheads. The SET
failure rate model can quantify different SET failure rates when different TRD intervals
are applied, therefore can provide a valuable reference for choosing the optimum TRD

interval at early design stages.

70 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

3.7 Experimental Setups and Comparative Evaluation Re-

sults

3.7.1 Experimental Methodology

Both SETTOFF1 and SETTOFF2 have been implemented ! and tested in STMicro-
electronics 65nm and 120nm technologies for verification and evaluation. The proposed
error-tolerant architectures in both SETTOFFs were constructed as SPICE netlists in
HSpice, using the transistor models from the two technology libraries. The SPICE netlist
of a conventional D-type flip-flop was picked from each technology library to construct
the main flip-flop in SETTOFF. The power consumption and performance (Clock-to-Q
delay and setup time) of both SETTOFFs are then measured through SPICE simu-
lations (The detailed setup of simulating the SPICE netlist for extracting power and
performance numbers will be explained in Section 3.7.3 and Section 3.7.4, respecively).
The cell area of the SETTOFFs are estimated and compared by counting the number
of transistors that are required for constructing the cell. This is because the average
transistor size for constructing both SETTOFFs is similar to the standard transistor
size for building the standard cell in the library, so the number of transistors can reflect

a fair comparison of the cell area.

The error-tolerant overheads of SETTOFF's are evaluated in both 65nm 120nm technolo-
gies. This enabled us to carry out fair comparisons with previous radiation-hardened
techniques, since some of the previous techniques such as Razorl are implemented and
tested in 130nm technology?, while others are evaluated in 65nm technology. The eval-
uation results from 2 different technologies can also indicate how the cost-efficiency of

SETTOFF architecture changes along with technology scaling trend.

On the other hand, the reliability of both versions of SETTOFFs are also evaluated
using both fault-injection and simulation in SPICE, and the failure rate model proposed
in Section 3.6. The reliability results are compared with the previous radiation-hardened

techniques.

3.7.2 Area Overhead of SETTOFF

The area overhead of SETTOFF is estimated by the number of extra transistors required
for constructing a SETTOFF architecture based on a conventional flip-flop. Table 3.2
summaries the area overhead of both SETTOFF1 and SETTOFF2. Since the error flip-
flop in the TRD architecture can be easily shared by multiple bits, a single SETTOFF1

!The transistor-level design of the cells are constructed using the library device model, but the cells
are not fabricated
2We consider the difference between 120nm and 130nm technology to be minor

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 71

Table 3.2: Area Overhead of SETTOFF1 and SETTOFF2

Radiation Extra Transistors No. of transistors
hardened Required of the main Area overhead
Flip-flop flip-flop
SETTOFF1 48 32 150%
SETTOFF2 30 32 94%

250 T T T T T T T

150 -

Area overhead (%)

124%
50

SETTOFF1 SETTOFF2 TMR STEM FERST DICE BISER

Figure 3.18: The area overhead comparisons, 65nm technology.

requires 48 extra transistors to construct, while a SETTOFF2 requires 30 extra transis-
tors. Compared with a conventional flip-flop that consists of 32 transistors, SETTOFF1
and SETTOFF2 have 150% and 94% area overheads, respectively.

3.7.2.1 Area Overhead Comparisons

Figure 3.18 shows the comparisons of the area overheads for several radiation hardened
cells. TMR and the SEM/STEM cell introduced in Chapter 2, Section 2.3.6, incur the
biggest area overheads of over 200%. FERST and DICE rely on the duplication of
the storage element (the cross-coupled inverter pair). As is reported in [33] and [22],
both of them require area overheads of around 100%. It should be noted that BISER
uses the Dual-Modular-Redundancy (DMR) architecture which uses a redundant flip-
flop and some extra comparison circuitry to mitigate soft errors in sequential cells.
BISER architecture induces an area overhead of 124%, compared to a conventional flip-
flop architecture. However, the BISER architecture can be constructed by re-using the
existing scan flip-flop to act as the redundant flip-flop in a system with scan chain. In this
case, when not taking the area of the existing redundant flip-flop into account, the area

overhead of BISER will only be caused by the additional comparison circuitry, which is

72 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

35 T T

= B = Conventional flip—flop|
=—¢— SETTOFF1
—O— SETTOFF2

30

251

Power (uw)
N
o
T

[
(%))
T

switching

"aa power
101 - he $ non-switching |
xr” power
ﬁ---ﬁ-----ﬁ---ﬁ-----ﬁ----ﬁ----?

0
0 20 40 60 80 100 120
Load Capacitance (fF)

Figure 3.19: The power consumption of the flip-flops in 120nm technology.

24%. In addition to the cells shown in Figure 3.18, SETTOFF1 and SETTOFF2 have
comparable area overheads with Razorl and Razorll flip-flops, which require 54 and 31

extra transistors, respectively.

3.7.3 Power Consumption Overhead of SETTOFF

The power consumption of SETTOFF1 and SETTOFF2 are measured in both 65nm and
120nm technologies, using SPICE simulations. The measurement results are compared
with a conventional flip-flop with the same drive strength. The power consumption
evaluation uses a 1.2V supply voltage, and a 185MHz clock to drive the flip-flops 2.
Both the clocks and the inputs of the flip-flops are driven by signals with 50ps transition
times. A range of different load capacitances within the driving capability of the flip-flops

are used for testing the power.

The power consumption of the conventional flip-flop and the two SETTOFFs in 120nm
technology are shown in Figure 3.19. The upper traces show the average power consumed
by a conventional flip-flop, SETTOFF1, and SETTOFF2 when the sampled data is
switching. The lower traces show the power consumption of the three flip-flops when the
sampled data is not switching. The power consumption overheads of both SETTOFF1
and SETTOFF2 compared with a conventional flip-flop in 120nm technology are shown
in Figure 3.20. With a 10% activity rate, the extra power consumed by SETTOFF1
drops from 41.1% to 27.8% as the load capacitance increases from 4fF to 120fF, while the
power overhead of SETTOFF2 ranges from 31.8% to 24.1% for the same conditions. The

reason for this is because the redundant error-mitigation circuitry in both SETTOFFs

3The reason of choosing 185MHz clock is to make fair comparisons with the power consumptions of
Razor flip-flops reported in [42] and [44].

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 73

I
N

‘
o - B - SETTOFF1
s —— SETTOFF2 |

N

o
T

’

-8

A

w w
R i
T T

w
o
T

Power Overhead at 10% activity rate (%)
3
T

N
o
T

N
EN

20 40 60 80 100 120
Load Capacitance (fF)

Figure 3.20: The power consumption overhead of the SETTOFFs in 120nm
technology.

30 T T

= B = Conventional flip—flop|
—¥#— SETTOFF1

—O— SETTOFF2

251

N
o
T

Power (uw)
=
(4]
T

switching
- power
10+ % B
non-switching
power
- - a’
5t~
: el alalelelidieinininlolaiaiaialy lalaials
0 20 40 60 80 100 120

Load Capacitance (fF)

Figure 3.21: The power consumption of the flip-flops in 65nm technology.

do not work during normal operations. So it can be observed from Figure 3.19 that
the extra power consumed by the error-mitigation circuitry in both SETTOFF1 and
SETTOFF2 stays nearly constant as the load increases. Therefore, while the power

consumption of the main flip-flop increases as load capacitances get bigger, the relative
power overheads of SETTOFFs decrease.

A similar power consumption evaluation was also carried out in the 65nm technology.
The same operating condition as in the 120nm technology is used. Figure 3.21 and
Figure 3.22 show the power consumption and the power overhead of SETTOFF1 and
SETTOFF2 over a library flip-flop in 65nm technology, respectively. As the load ca-
pacitance increases from 4fF to 120fF, the power overhead of SETTOFF1 ranges from
51.5% to 36.1%, while the power overhead of SETTOFF2 ranges from 30.8% to 26.5%

74 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

55

.
- B = SETTOFF1
a —O— SETTOFF2

a1

o
T
’

451 B 1

40 Ss B
-~

351 B

Power Overhead at 10% activity rate (%)

w
o
T
[
A\ 4

20 40 60 80 100 120
Load Capacitance (fF)

Figure 3.22: The power consumption overhead of the SETTOFFSs in 65nm tech-
nology.

at a 10% activity rate. The average power consumption overheads for SETTOFF1 and
SETTOFF2 in the 65nm technology are 40.8% and 28.0%, respectively.

3.7.3.1 Power Consumption Overhead Comparisons

Figure 3.23 shows the average power overhead comparisons of different hardening cells
in 65nm technology. Similar to a TMR flip-flop, the SEM/STEM flip-flops incur over
200% power consumption overheads since they triplicate the main flip-flop and also add
extra circuitry for error recovery. DICE and FERST rely on the duplication of the
state-holding elements which consumes extra switching power even in normal operation.
Therefore, their power overheads are around 100% [33], [30]. BISER incurs a power
overhead of 126% compared to a scan flip-flop [35]. SETTOFF1 and SETTOFF2 incur
relatively small power consumption overheads because the error-mitigation circuitry do

not introduce extra switching power in normal operation.

According to [44], a Razorll flip-flop consumes 28.5% more power than a conventional
flip-flop in 130nm technology 4 for the same operating conditions and activity rate that
are used for evaluating the power consumption of SETTOFFs. Razorl flip-flop consumes
30.0% more power in the same conditions °. Thus, SETTOFF1 and SETTOFF2 requires

comparable power overheads to the Razor flip-flops in 120nm technology.

4We consider the difference between 120nm and 130nm to be minor.
5The load capacitance used for measuring these results is not reported by the authors.

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 75

250

< 200 b

%

150 - N

power consumption overhead (

100k 210% 210% i
126%
50 100% 4
78%
40.8%
’ 28%
SETTOFF1 SETTOFF2 TMR STEM FERST DICE BISER

Figure 3.23: The power overhead comparisons, 65nm technology.

3.7.4 Delay Overhead of SETTOFF

The Clock-to-Q delay overhead of both SETTOFF1 and SETTOFF2 compared with a
conventional flip-flop with the same drive strength is measured with different input tran-
sition times and load capacitances. The Clock-to-Q delays of SETTOFFs are measured
from SPICE simulation based on the threshold and slew rate defined by the technology
library, which are listed as follows [81]:

e Delays are defined as the time interval between the input stimulus crossing the
threshold of 40% of Vdd for the rising signal and 60% of Vdd for the falling signal
and the output stimulus crossing the threshold of 40% of Vdd for the rising signal
and 60% of Vdd for the falling signal.

e The Transition times (slews) on input and output pins are defined as the time
interval between the signal crossing 20% of Vdd and 80% of Vdd

The Clock-to-Q delay of both SETTOFFs derived from simulations are then compared
with a conventional flip-flop with the same drive strength. The comparative results
in 120nm and 65nm technologies are shown in Table 3.3 and Table 3.4, respectively.
Compared to the conventional flip-flop, the delay overhead of SETTOFF1 is incurred
by the correction XOR-gate in the signal path and the extra load it adds. SETTOFF2
moves the correction XOR-gate into the main flip-flop to replace the inverter driving the
output @. As discussed in Section 3.4.2, the delay of the correction XOR-gate equals
that of the replaced inverter in normal operation. The increase of the Clock-to-Q delay
in SETTOFF2 is only caused by the extra load introduced by the TD at the internal
node N, and the TRD architecture at the output of the flip-flop.

In addition, the setup times of both SETTOFFs are measured in 65nm technology,

and are compared with the setup time of the conventional flip-flop that from which the

76

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

Table 3.3: Clock-to-Q delay overhead in 120nm technology

SETTOFF1 SETTOFF2
Input transition times | 4fF load | 120fF load | 4fF load | 120fF load
ops 37.6% 38.4% 31.6% 21.8%
33.3ps 34.9% 37.6% 25.8% 22.0%
100ps 29.6% 34.8% 24.8% 19.6%

Table 3.4: Clock-to-Q delay overhead in 65nm technology

SETTOFF1 SETTOFF2
Input transition times | 4fF load | 120fF load | 4fF load | 120fF load
5ps 45.0% 22.6% 20.8% 12.8%
33.3ps 41.0% 22.4% 18.4% 13.3%
100ps 33.3% 19.7% 15.2% 11.2%

SETTOFFs are constructed. The measurement is achieved by sweeping the transitions
at the input of the flip-flop across the rising edge of the clock, and identifying the
point where the flip-flop fails to sample the valid input transitions. The measurement
results show that both SETTOFFs do not worsen the setup time compared with the
conventional main flip-flop. With 50ps signal transitions for both the clock and the
flip-flop input, the setup times of both SETTOFF1, SETTOFF2, and the conventional

flip-flop are 40ps for the rising input transitions, and 30ps for the falling transitions.

3.7.4.1 Delay overhead Comparisons

Figure 3.24 shows the average Clock-to-(QQ delay overhead comparisons of different hard-
ened cells in 65nm technology. A TMR flip-flop requires a majority voter added in
the signal path, which incurs a delay overhead of around 70% in 65nm technology [33].
FERST and BISER both use a C-element at the output of the flip-flop. The C-element
incurs a delay overhead similar to that of the TMR (i.e. 70%) [33]. Apart from the
radiation hardened cells presented in Figure 3.23, Razorl and the SEM/STEM flip-flop
add extra loads at the output of the flip-flop, which will also incur certain Clock-to-Q
delay overheads . RazorIl has a slightly better CLK-to-Q delay since it is a latch based
design [44].

3.7.5 Soft Error-Tolerance Capability of SETTOFF

The error-tolerance capabilities of both versions of SETTOFF are evaluated through

both transistor-level simulations, and failure rate analysis using the model described in

5The delay overhead of Razor flip-flop and SEM/STEM cells was not reported by the authors

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 77

80

~
o
T
1

[o2}
o
T

1

a
o
T

1

oy
o
T
1

70% 70% 70%
67%

Clock-to-Q delay overhead (%)
w
o
T
|

N
o
T

1

30.7%

=
o
T
1

15.3%

SETTOFF1 SETTOFF2 TMR FERST DICE BISER

Figure 3.24: The Clock-to-Q delay overhead comparisons, 65nm technology ”.

Section 3.6. The evaluation results are then compared with the error-tolerance capabil-

ities of other radiation hardened techniques.

3.7.5.1 Transistor-Level SET and SEU Injection and Simulation

The transient fault injection and simulations are carried out in 65nm technology for
both SETTOFF1 and SETTOFF2. Independent current sources are used to simulate
the collected charge induced by the particle strikes at circuit nodes. When sufficient
charge is injected into a node, it will produce an SET or an SEU, depending on whether
the node belongs to a combinational circuit or a storage element. A similar transient
fault injection method has also been used in [33], [82]. Figure 3.25 shows the circuit
schematic used for the fault injection and simulation. A symmetric clock with 2ns period

is used for driving the main flip-flops.

For injecting SETs, an inverter is added at the input of the first SETTOFF. The current
source I1 is placed at the output of the inverter to create SETs. The width of the SETs
can be controlled by the injected current and the duration of the injection. A number
of SETs with pulse widths of 800ps are injected at different time instances distributed
across the entire TRD interval of the SETTOFF.

Another two current source, 12 and 13, are used for injecting SEUs into the master and
slave latch of the main flip-flop, respectively. During the simulation, the time instances
at which SEUs are injected into node N1 are swept across the entire high phase of the
clock. Similarly, the time instances at which SEUs are injected into node N2 are also

swept across the entire low phase of the clock.

"The delay overhead number for TMR, FERST, DICE, and BISER are obtained from the results
published by their authors.

78 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

Errorl Error2
TRD TRD
— [
Correction
~ N2 XOR
—(>c D@Nl [>>——D (Logic D Q D Q

Master storage unit | |qy,0 storage unit)

ck—1s SETTOFF

TD

Clk

SETTOFF

R %

Figure 3.25: Soft error injection scheme.

Table 3.5: Transient fault injection simulation results for SETTOFF1 and
SETTOFF2

SETTOFF1 | SETTOFF2
Number of injected SET's 50 50
Number of captured SETs 41 41
Number of detected SET's 41 41
Number of SEUs injected at node N1 50 50
Number of SEUs detected at node N1 50 50
Number of SEUs injected at node N2 50 50
Number of SEUs corrected at node N2 50 50
Number of correction glitches captured 3 1
Number of correction glitches detected 3 1

Table 3.5 shows the fault injection simulation results for both SETTOFF1 and SET-
TOFF2. All the captured SETs within the TRD interval are detected and error signals
are recorded in the error flip-flops for both SETTOFF1 and SETTOFF2. Also, all the
SEUs injected in nodes N1 are detected by the TRD architectures in both SETTOFFs.
The SEUs injected in nodes N2 for both SETTOFFs are detected and corrected on the
fly by their TD-based architectures. It should be noted that correction glitches are gen-
erated upon correction of the SEUs in node N2. However, only 3 correction glitches are
captured by the following stage for SETTOFF1. All of them are detected by the TRD
architecture in the second stage. For SETTOFF2, only 1 correction glitch is captured
by the second stage. This is because the width of the correction glitches generated by
SETTOFF2 is narrower than those are generated SETTOFF1. The captured correction
glitch in SETTOFF2 is also detected by the following stage.

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 79

1 \
=== Conventional FF

1O SETTOFF 1=0.2
0.8} =@ SETTOFF1=0.3
= %= = SETTOFF 1=0.4
=& SETTOFF 1=0.5

%’ 0.6 == SETTOFF1=0.6
% —)— SETTOFF 1=0.7
= =——e— SETTOFF 1=0.8
‘©

u 0.4

0.2

0.4
0 = t/Tclk

Figure 3.26: SET failure rate results.

3.7.5.2 SET Failure Rate Evaluation

The SET failure rates for the SETTOFFs are evaluated in the SET failure model pro-
posed in Section 3.6.1, and are compared with the SET failure rate of a conventional
flip-flop. Since both SETTOFFs used the same adapted TRD architecture to address
SETs, their SET failure rates should be the same. The analysis uses 1GHz clocks to
drive both the conventional flip-flop and the SETTOFFs.

According to the results presented in [83], the relative standard deviations of Ty, and D
were both set to 10% to model parameter variations. The mean of the parameter pup =
10ps, which is measured by using a combinational gate with a fixed drive strength and
a flip-flop connected together. The SET width distribution results in 65nm technology,
which are presented in [79], are used for the evaluation. The mean and the standard
deviation of the pulse widths are derived from the distribution results, where ., = 530ps
and o, = 150ps. Based on these numbers, the SET failure rates for the conventional

flip-flop and SETTOFFSs are derived from Equation 3.15 and Equation 3.18, respectively.

Figure 3.26 shows the comparative results of the SET failure rates between the conven-
tional flip-flop and the SETTOFF driven by clocks with 1GHz frequency, but different
duty cycles (7). For both the conventional flip-flop and SETTOFFs, the SET failure
rates are a function of o, which indicates the time instance when a transient pulse occurs
during the clock cycle (see Equation 3.8). Obviously, SETTOFF reduces the failure rate
over the conventional flip-flop, and as 7 increases, SETTOFF becomes more reliable

since the TRD interval becomes wider.

It can be calculated from Figure 3.26 that with different « values, the average SET failure
rate of a conventional flip-flop driven by a 1GHz clock is 45%. SETTOFF reduces the

80 Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops

average SET failure rate to 4% with a 1GHz symmetric clock (i.e. 7 = 0.5, TRD interval
= 500ps). It can further reduce the average SET failure rate to zero when the TRD
interval reaches 800ps (7 = 0.8).

3.7.5.3 SEU Failure Rate Evaluation

The analysis of the SEU failure rates for both the conventional flip-flop and the SET-
TOFFs are also carried out in 65nm technology. As is discussed in Section 3.6.2, the
SEU failure rate for a conventional flip-flop is 100%. The SEU failure rates of both SET-
TOFFs are equal to the failure rates caused by the SEU-correction glitches generated
from the TD-based architecture. In order to derive the SEU failure rate of both SET-
TOFFs, the widths of the correction glitches are measured under various PVT corners.
The temperature variation ranges from 5°C to 45°C with a typical value of 25°C. The
supply voltage of 1.2V, and transistor sizes vary from -10% to 10%. The measurement
results show that the correction glitches of both SETTOFFs can also be modelled by a

normal distribution.

For SETTOFF2, the mean of the width of the correction glitches p,,, = 98ps. The stan-
dard deviation o,y = 33ps. Based on these figures, the SEU failure rate of SETTOFF2
can be obtained by Equation 3.18. The results show that SETTOFF2 can reduce the
SEU failure rate to 0 when using a 1GHz symmetric clock (500ps TRD interval). This
is because the width of the correction glitch is much smaller than that of a typical SET
pulse, so the TRD interval can easily cover such glitches even when they propagate and

are captured.

For SETTOFF1, The mean and the standard deviations of the correction glitches are
= 153ps and o,y = 50ps, respectively. Again based on Equation 3.18, SETTOFF1

can also achieve a 0% SEU failure rate when using a 1GHz symmetric clock.

3.7.5.4 Reliability Comparisons

Table 3.6 compares the error-tolerance capability of SETTOFF with other previous
techniques. The SET-tolerant capability of SETTOFF is similar to that of the FERST,
STEM, and Razorll flip-flop. Other techniques cannot address SETs. Only SETTOFF,
STEM, and the Razor flip-flops can address TEs, but both Razor flip-flops have limited

soft error tolerant capabilities.

3.8 Concluding Remarks

Protecting the sequential elements (the flip-flops and latches) is the key for reducing the

SER of general logic. This is not only because the SEUs occurring in the sequential cells

Chapter 3 Soft Error and Timing Error Tolerant Flip-Flops 81

Table 3.6: Comparisons of the error-tolerance capability.

Capability | SETTOFF | TMR | DICE | FERST | BISER | STEM | Razorl | Razorll
SET v X X v X v X v
SEU v v v v v v X X

TE v X X X X v v v

contribute most to the SER, but also because only the SETs that are captured by the
sequential gates can induce soft errors. Radiation hardened cells are a effective technique
of protecting the sequential cells. However, most previous techniques either require large
overheads, or can only provide limited error-tolerance capabilities. This makes them
hard to use in commercial applications to achieve both a competitive performance and

the reliability requirement at the same time.

This section proposed two versions of a novel radiation hardened architecture named
SETTOFF, which can tolerate both SEUs and the captured SETSs originating from the
preceding combinational logic. Timing errors from the combinational gates can naturally
be addressed as well. SETTOFF provides a better error-tolerance capability than most of
the previous techniques. Meanwhile, SETTOFF minimises the error-tolerance overhead
by separating the error recovery process into two levels (circuit-level and architectural-
level). The evaluation results show that both versions of SETTOFF require less or
comparable error-tolerance overheads than most previous hardened cells. On the other
hand, since timing errors can also be addressed, SETTOFF can potentially be used to

achieve an over-clocking system like STEM, or an aggressive DVS system like Razor.

In addition, a reliability metric, the failure rate evaluation model, is also proposed in
this section. The model can quantitatively compare the reliability of various sequential
architectures. The SET failure rate model can also quantify the reliability that a TRD
architecture can provide by using different TRD intervals. It can be a valuable tool that
can provide a reference for choosing the optimum TRD interval in early design stages,
such that the best trade-off between the reliability and the implementation overheads

can be achieved.

Chapter 4

The Self-Checking Register

Architecture

As discussed in Section 1.6 of Chapter 1, apart from being expensive, the other drawback
of most previous radiation hardening techniques is that they can only mitigate the
errors occurring in the original circuitry, but cannot address errors occurring in the
redundancies added for error-tolerance. In other words, they are not self-checking. The
severity of this problem depends on the characteristic of the redundancies. The area and
geometry of the redundancies determine the probability that the circuity are exposed to
particles, while the critical charge determines the vulnerability of the circuit to particle
strikes. On the other hand, if the unprotected redundancies are combinational logic,
such as the encoding and decoding circuitry in an ECC or the majority voter in a TMR,
they may produce SET pulses which can cause errors if captured in the following stage.
If the redundancy is a retention element, such as the C-element in FERST or BISER,
introduced in Chapter 2, Section 2.3.2 and Section 2.3.3, respectively, it can produce

SEUs in a similar manner to a latch, and corrupt the whole cell directly.

The SETTOFF radiation hardened architectures proposed in Chapter 3 can mitigate
both the SEUs corrupting the state stored in the flip-flop, and the SETs captured by the
flip-flop. As demonstrated in Section 3.7 of Chapter 3, the SETTOFF architectures can
provide a higher level of reliability with less or similar error-tolerance overheads com-
pared to most of the previous techniques. However, similar to the previous techniques, a
single SETTOFF is not self-checking as the added TRD- and TD-based architectures are
not protected. This chapter describes a solution to this problem, by using a self-checker
to mitigate the errors occurring in the redundancies in SETTOFF. Also, a self-checking
register architecture is proposed to share the self-checking capability between multi-
ple SETTOFFs at the register-level. The self-checking register is applied to protect
the register file of microprocessors. The protected register file is implemented in 65nm

technology, and is compared with the traditional ECC-protected RF.

83

84 Chapter 4 The Self-Checking Register Architecture

This chapter is organised as follows: Firstly, in order to identify the problems caused by
not being self-checking, the error vulnerability of the redundancies in a single SETTOFF
is analysed in Section 4.1. Section 4.2 proposes a solution to the problem, which is to
apply a self-checking architecture at the register-level. The experimental methodology
and the evaluations of the self-checking architecture are described in Section 4.3. In
Section 4.4, the proposed self-checking radiation hardened architecture is implemented to
make a register file of a microprocessor robust. The robust register file is then compared
with the ECC-protected register file implementation. Finally, the chapter is concluded

in Section 4.5.

4.1 Soft Error Vulnerability Analysis for the Redundancy
Circuities in SETTOFF

It has been discussed in Chapter 3 that the SETTOFF architecture can tolerate errors
occurring in the original circuitry. However, SETTOFF is not fully self-checking. This
section analyses the error vulnerability of the redundant circuitry in SETTOFF. As
shown in Chapter 3, Figure 3.2 and Figure 3.7, the redundant circuitry in both SET-
TOFF1 and SETTOFF2 can be separated into 2 parts. The TRD architectures in Part
I are the same in both SETTOFFs. Radiation particle strikes can induce SEUs in the
error flip-flop, or SETs in the preceding comparator in the TRD architecture. Such
SEUs or the SETSs, if captured by the error flip-flop, can generate a false Error signal
at the output of the TRD architecture. The false Error signal, however, only invokes
an unnecessary replay execution when it appears during the TRD interval, but cannot
corrupt the system. The unnecessary replay operations can incur an Instruction Per
Cycle (IPC) overhead, thus affecting the performance of the processor. However it is
not a prerequisite to protect the TRD architecture since it does not affect the correct

system operation and therefore, the TRD architecture is not vulnerable to soft errors.

Part II of SETTOFF is the TD-based architecture. For both SETTOFF1 and SET-
TOFF2, shown in Figure 3.2 and Figure 3.7, respectively, the outputs of the TD-based
architectures are the error signals generated by the transition detectors. As shown in
Figure 3.6 and Figure 3.11, the transition detectors in both SETTOFFs are retention
cells, which hold their states during the corresponding clock phases. However, the op-
erating principles of the TD-based architecture in the two versions of SETTOFF are
different. The error vulnerabilities of the TD-based architectures in SETTOFF1 and
SETTOFF2 are therefore analysed separately.

The TD-based architecture in SETTOFF1 can be found in Figure 4.1. It consists of a
detection clock generator, a transition detector, and a correction XOR-gate. The state
stored in the internal node M of the TD can be switched by the transitions at the input

of the TD. However, because node M is not driven by any inputs, it holds its state during

Chapter 4 The Self-Checking Register Architecture 85

f——————-== 1 .
Upper side
e S >———TmefQ Error Reset
logic =
i [|Correction XOR ¢ —qE
| Error SEU
input Error_SEU;
Transition
Clk—» Detection Clock »DCH Detector
DC t
q (DC) generator yocL (TD)
r Control signals N———— Error Reset | .
| Lower side
. . | OR gate
TD-based architecture in SETTOFF1 |
|

Figure 4.1: The TD-based architecture in SETTOFF1.

the entire clock period. High energy particle strikes at node M can flip the state, and
induce SEUs at the output of the TD (Error_SEU). On the other hand, SETs arising
from other nodes of the TD, or the SETSs occurring in the detection clock generator
can also be captured by node M of TD, since the SET pulses may cause either of the
dynamic OR-gates in TD to conduct momentarily. The captured SETs will flip the
state stored in node M and hence flip the output of TD to generate a false Error_.SEU
signal. A false Error_SEU signal will corrupt the output of SETTOFF1 (True_Q)
directly through the correction XOR-gate. When any SETs or SEUs occurring in the
TD-based architecture induce false Error_SEU signals during the TRD interval, the
erroneous True_() will be detected by the TRD architecture. As described in Chapter 3,
Section 3.3, a replay recovery operation will be triggered upon the detection, which will
reset the TD to recover the erroneous True_). However, when the Error_SEU pin is
corrupted during the TD interval, the erroneous True_() will remain undetected, and
therefore can propagate to the following stages. Consequently the TD-based architecture
in SETTOFF1 is only vulnerable during the TD interval. The extra correction XOR-
gate in the TD-based architecture can generate SETs at the output of the SETTOFF1.
But similar to the SETs occurring in the original circuitry, these SETs will be detected
by the SETTOFFs in the following stage if captured.

The TD-based architecture in SETTOFF2 shown in Figure 4.2 consists of an optimised
transition detector and a correction XOR-gate. The optimised TD operates differently
from the TD in SETTOFF1. During the TRD interval, the P-type transistor connecting
node M is made conducting by the high clock signal. Therefore, node M is driven by
the high voltage and the state held in M is forced at 1. Radiation particle strikes at
any internal nodes of the optimised TD during the TRD interval cannot flip the state of
node M, and hence the output of the TD (Error_SEU _bar) will stay free from any SEUs
during the TRD interval. Nevertheless, SET pulses can arise from the internal nodes,
which may propagate to the output of the TD during the TRD interval. Such SETs may
further propagate through the correction XOR-~gate and induce SETs at the output of

86 Chapter 4 The Self-Checking Register Architecture

Correction | Clk
XOR { L.
N . L Q ombinationa o>—{>0—d Error SEU_bar
logic
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, do
o
L 8
input ™ Error SEU_bar
Clk—» clk S

The TD-based architecture in SETTOFF2

Figure 4.2: The TD-based architecture in SETTOFF2.

SETTOFF2. However, those SETs occurring during the TRD interval will be addressed
by the TRD architecture. During the TD interval, the P-type transistor is blocked, thus
the state-holding node M holds its state. In this case, node M can be corrupted by SEUs
directly, or by the SETSs occurring at other nodes that conduct the dynamic OR-gate in
TD. The corrupted node M will produce a false Error_SEU _bar signal at the output
of TD, which will then corrupt the output of the SETTOFF2 through the correction
XOR-gate. Therefore, the TD-based architecture in SETTOFF2 is also vulnerable to
transient faults during the TD interval. Similarly to SETTOFF1, SETs arising from the
correction XOR-gate will also be addressed by the TRD architecture in the following

stages.

4.2 Self-Checking Radiation Hardened Register Architec-

tures

As described in Section 4.1, both SETTOFF1 and SETTOFF2 are only vulnerable
to errors occurring in the TD-based architecture during the TD interval. In order to
realise the self-checking capability, a self-checker is required to address those errors that
corrupt the output of the TD-based architecture during the TD interval. The self-
checking mechanisms for both SETTOFF1 and SETTOFF2 can be both achieved by
the same self-checker-based self-checking scheme described in Section 4.2.1. In order to
minimise the overheads incurred by the self-checker, Section 4.2.2 proposes a sharing
mechanism, which achieves the self-checking capability at the register-level by sharing
the self-checker with multiple bits.

4.2.1 Key Concept of the Self-Checker

Since the output of the SETTOFF should be stable during the TD interval, soft errors
that corrupt the output of the TD will propagate through the correction XOR-gate and
induce a transition at the output of the SETTOFF. The idea of the self-checker is to

Chapter 4 The Self-Checking Register Architecture 87

Correction

N XOR Q
p—o s >
—@ | rising_tran Error TD

Main £f storage unit
| TD-checker | . Glitch filter ome'=TP-final
|: falling_tran
D iSelf-checker B

J_ Clk
Clk > SETTOFF1 /SETTOFF2

Figure 4.3: The self-checking SETTOFF architecture.

capture such illegal transitions at the output of SETTOFF, and to signal the errors in
the TD-based architecture. However, it should be noticed that during the TD interval,
correction glitches may also manifest themselves at the output of the SETTOFF with
the corrections of the SEUs corrupting the main flip-flop (See Chapter 3, Section 3.3.1
and Section 3.4.1.). The self-checker therefore needs to distinguish between transitions

caused by the correction glitches and illegal transitions caused by errors in the TD.

Figure 4.3 shows the architecture of the self-checking SETTOFF, which adds a self-
checker to monitor the output of the SETTOFF during the TD interval. The self-checker
consists of a TD-checker, an XOR-~gate, and a glitch filter, to detect any transitions that
are caused by the corrupted TD-based architecture in SETTOFF. The transistor level
design of the TD-checker shown in Figure 4.4 is adapted from the transition detec-
tor built in SETTOFF2. The two delay chains constructed by the inverters and the
transmission gates remain unchanged. The dynamic OR-gate for capturing the implicit
pulses generated by the delay chains is separated into two branches, both driven by the
system clock. During the TRD interval when the clock is high, node M1 and node M2
are charged by the high voltage, the TD-checker is disabled, and both of its outputs,
rising_tran and falling_tran, stay low. During the TD interval when the clock is low,
the TD-based architecture in SETTOFF becomes vulnerable to soft errors. Therefore,
the 2 branches are both enabled, to capture the pulses generated by the delay chain
for the rising transitions and by the delay chain for the falling transitions, respectively.
Any rising transitions occurring at the input of the TD-checker will discharge node M1
through transistors d1 and d3, and thus will be signalled at the output rising_tran.
Similarly, any falling transitions will assert the output falling_tran through the branch

for the falling transitions.

The design of the TD-checker allows it to distinguish the correction glitches from the
transitions caused by errors in the TD. This is because either a rising transition or a
falling transition can only assert one of the two outputs of the TD-checker. However,
a glitch consists of both a falling and a rising transition, thus will assert both outputs

of the TD-checker. The two outputs, rising_tran and falling_tran, are then XOR-ed

88 Chapter 4 The Self-Checking Register Architecture

.. Clk
rising tran
M2

Figure 4.4: The transistor level design of the TD-checker.

D

Delay chain for rising transitions

falling_tran

Delay chain for
falling transitions |

Figure 4.5: The transistor level design of the glitch filter.

together to generate the valid error signal (Error_TD) for the errors corrupting the
TD-based architecture. The Error T D signal will only be asserted when only one of its
input is asserted, which indicates an error. It will stay at 0 when both inputs are 0, or

when both inputs are asserted due to the correction glitches.

Notice that there is a possibility that correction glitches occurring at node) propagate
through the TD-checker. This can be caused by the rising and falling transitions not
asserting the rising_tran and falling_tran signals at exactly the same time instance.
The time difference in asserting the rising_tran and falling_tran signals may lead to a
positive glitch appearing at the Error TD signal. A Glitch Filter (GF) is hence used
to filter these positive glitches and generate the final error signal Error T D_final. The
transistor level design of GF is shown in Figure 4.5. The Transmission Gate (TG) and
the two inverters connected in series create a delay chain. The input signal In is delayed
by =, which denotes the delay generated by the delay chain. In and the delayed version
In_d are then AND-ed together, so that any positive glitches with widths no greater
than ~ are filtered out at the output. The value of v can be set by tuning the Vgf of
the TG. A normal transition occurring at the input of GF will simply propagate to the
output.

Chapter 4 The Self-Checking Register Architecture 89

Detection XOR
»)

4 D—P Error_SETO

DO]
> Main
flip-flop
» Q0
Clk ‘ TD |
— > SETTOFF
: reT-T T T T T T T T T T T T T T |
Q1 »! Parity | | ising_tran |
M —> Checker | EI‘I‘OI‘_TD_ﬁHal
i n bits: - :’
nl?lts : (XOR- —:-) TD-checker ' . I
Qn-2 > tree) falling_tran |
|Self-checker _ _ _ _ _ _ _ _ _ _ _ !
Dn-1 .
> Main
flip-flo;
p-tlop > Qn-1
ciy
>> SETTOFEF
| D——>Eror sETn1

Detection XOR

Figure 4.6: The self-checking radiation hardened register architecture.

4.2.2 Self-Checking Register Architecture

The self-checker added to the SETTOFF architecture incurs overheads in terms of area
and power. Such overheads can be relatively big with respect to a single SETTOFF.
In order to minimise the overheads introduced by the self-checking capability, we pro-
pose a mechanism to share the self-checker among multiple SETTOFFs in a register
architecture. Figure 4.6 shows the architecture of an n-bit register constructed with
SETTOFFs. Only one self-checker, as introduced in Section 4.2.1, is used to monitor
all the outputs of all the SETTOFFs in the register through a parity checker. The par-
ity checker is constructed by an n input XOR-tree, which connects the output of each
SETTOFFs. Any illegal transitions occurring at the output of any single SETTOFF
will change the parity of the total number of ones and zeros at the input of the parity
checker, and therefore will be detected. Upon detection, the parity checker generates a
transition at its output. Such transitions are then captured by the TD-checker and the
XOR-gate, such that the Error T D_final signal will be asserted. It should be noted
that the correction glitches occurring at the output of each SETTOFFs may also in turn
induce glitches at the output of the parity checker. Therefore, the GF is again used to
filter any positive glitches that may be induced by glitches at the output of the parity

checker.

90 Chapter 4 The Self-Checking Register Architecture

4.2.3 Circuit Implementation Issues

The sharing of the self-checker between multiple SETTOFFs causes certain implemen-
tation issues, which will be discussed. The parity checker constructed by the XOR-tree
introduces a propagation delay from the output of the SETTOFFs to the input of the
TD-checker. This delays the time that the transitions caused by the errors in TD take
to reach the input of the TD-checker. Since the TD-checker is only enabled in the
TD interval during which the TD-based architecture is vulnerable, the transitions that
arrive at the input of the TD-checker after the TD interval will escape detection. A
parity checker with a bigger delay indicates a higher probability that the transitions can
escape. This problem can be addressed by reducing the number of SETTOFFs sharing
the self-checker, so that a smaller parity checker can be applied. However, sharing the
self-checker with less SETTOFF's requires more TD-checker, and thus may incur bigger
area and power overhead. Therefore, the level of sharing the TD-checker represents
the trade-off between the tolerant-capability for the errors occurring in the TD-based

architecture, and the incurred error-tolerance overheads.

The delay of the parity checker also introduces timing constraints to the TRD interval.
This is because valid transitions can occur at the output of the register on the rising
edge of the clock during a write cycle of the register. The valid transitions will also
be detected by the parity checker if they change the parity at the input of the parity
checker. Such transitions would not normally be captured by the TD-checker as it is
disabled during the TRD interval. However, if the delay of the parity checker exceeds the
duration of the TRD interval, the valid transitions will arrive at the TD-checker during
the TD interval, and will be falsely signalled as errors. To prevent such situations from

happening, the delay of the parity checker must be smaller than the TRD interval.

In a register architecture constructed by SETTOFFs, the error flip-flop in the TRD
architecture can be shared by all the bits. As shown in Figure 4.6, all the Error_SET
signals from each bits of the register can be OR-ed together and fed into a shared error
flip-flop. Any SETs captured by any bits inside the register are all recorded in the
error flip-flop, which can be used to trigger an architectural replay recovery operation.
However, the OR-tree used for sharing the error flip-flop introduces an extra delay
(besides the comparators constructed by the XOR-~gates) for the error signals to reach
the error flip-flop. When implementing the TRD architecture at the register-level, the
delay of the OR-tree can be regarded to as part of the delay of the comparator, as

follows:

Dcomp = DXOR + DOR—tree (41)

where Dxor is the delay of the comparator constructed by the XOR-gate, and Dor_tree
denotes the delay of the OR-tree used for sharing the error flip-flop. Equation 4.1 can

Chapter 4 The Self-Checking Register Architecture 91

then be combined with the other TRD constraints explained in Chapter 3, Section 3.5,

to construct the TRD architectures at the register-level.

Notice that the extra delay introduced by the OR-tree affects the delay element § that
is required for covering SET pulses with certain widths. However, it does not affect the
shortest path delay of the preceding combinational logic required for satisfying the TRD
constraints. In other words, the delay of the OR-tree, and hence the sharing of the error
flip-flop does not increase the number of buffers that need to be inserted to satisfy the

shortest path constraint if required.

4.2.4 Recovery Mechanisms for the Errors Detected by the Self-Checker

The errors detected by the self-checker are the ones that corrupt the output of the TD-
based architecture in SETTOFF. The basic idea for recovering these errors is to reset the
TD-based architecture before the errors contaminate the forwarding logic. In this sec-
tion, two potential recovery mechanisms for the SETTOFF2-based self-checking architec-
ture are introduced. Both of them can be realised by combining with architectural-level
operations when using the proposed self-checking architectures to protect the pipeline
of a microprocessor. The recovery mechanism for the SETTOFF1-based self-checking
architecture can also be achieved based on the same concept, but is not explicitly de-

scribed.

4.2.4.1 Architectural Replay-Based Recovery Mechanism

This first recovery mechanism can be achieved by using the replay recovery operation
similar to that for the error detected by the TRD architecture (See Chapter 3, Sec-
tion 3.2). The Error_TD_final signal can be used to trigger the pipeline replay op-
eration in the following cycle, before the erroneous register output contaminates the
forwarding logic. The replay operation will re-execute the latest instruction that writes
to the corrupted register. During the re-write cycle, all the erroneous TDs in each bit
of the register will be reset, hence the bit-flip errors at the output of the register will be
recovered. It should be noted that with this recovery mechanism, the positive glitches
in the Error T'D signal caused by the correction glitches at the register output can be
tolerated. This is because such glitches can only trigger an unnecessary replay operation
if they are captured by the following clock edge, but cannot corrupt the correct system
operation. The glitch filter, therefore, can be removed from the self-checker when the
replay recovery mechanism is applied. The details of the system-level implementation

of this recovery mechanism can be found in Chapter 5, Section 5.3.2.

92 Chapter 4 The Self-Checking Register Architecture

Detection XOR
gD—bEnorﬁSETO
DO
d_clk_ff Main
gated_clk_ flip-floj
Clk— \ J e > Q0
we — J D P |
SETTOFFZ : rising_tran e
rror_TD_final
::)D_» checker)] :
DI . : falling_tran |
d Main |Self-checker _ _ _ _ _ _ _ _ _ _ _ |
N——»{> flip-flop
Clk — » QI
we :D_,— - D
gated_clk TD SETTOFF2
Error TD_final - D—V Error_SET1

Detection XOR

Figure 4.7: The clock-gating based recovery mechanism for the self-checking
architecture.

4.2.4.2 Clock-Gating-Based Recovery Mechanism

As discussed in Chapter 3, Section 3.2, the pipeline replay function normally already
exists in modern microprocessors to support speculative operations. Therefore, the
replay-based recovery mechanism is relatively easy and cheap to achieve. However,
the pipeline replay involves pipeline flush and pipeline re-executions, which cost extra
cycles. The second recovery mechanism offers a quicker recovery for the errors detected
by the self-checker, by using a clock-gating based architecture. An example of using
the second recovery mechanism to protect a 2-bit register is shown in Figure 4.7. This
mechanism can be applied to the SETTOFF2-based self-checking architecture combined
with a clock-gating based flip-flop hold architecture. When an error that corrupts one of
the TD-based architectures is detected by the self-checker, the asserted Error T D_final
signal will trigger a pipeline stall to stall all the pipeline registers for one clock cycle. The
disabled write enable signal, we, will gate the clock and force the register to hold during
the stall cycle. Meanwhile, unlike the single SETTOFF2 for which the TD will also be
gated during the hold cycle (See Chapter 3, Section 3.4.1), this recovery mechanism
feeds the asserted Error T D_final signal back into self-checking register to generate
a separate clock (gated_clk_T'D) to drive the TD in each SETTOFF2. Therefore, the
asserted Error_ T'D_final signal will pass the system clock to the TDs, such that all the
TDs will be reset by the high clock phase during the stall cycle. The detected errors
in the TD and the erroneous output of the register will then be recovered. Normal
execution resumes after the stall cycle so that the error-free data will propagate. Notice
that the clock-gating-based recovery mechanism only requires one extra cycle, but it is
more complicated and sacrifices more area and power consumption than the replay-based

recovery mechanism.

Chapter 4 The Self-Checking Register Architecture 93

4.2.5 Analysis for the Error-Tolerance Capability of the Self-Checking
Register

The soft error vulnerability of the SETTOFF architecture has been discussed in Sec-
tion 4.1. This section analyses the reliability of the SETTOFF-based self-checking regis-
ter in various error situations. Table 4.1 summarises the types of errors that may occur
in the proposed register, whether the errors can cause erroneous outputs, whether they
can be tolerated, and the ways in which they are tolerated. The radiation induced tran-
sient faults affecting the register can be categorised into 5 types: 1, the captured SETs
originated from preceding combinational logic. 2, the SEUs corrupting the output of the
main flip-flop. 3, the errors corrupting the TRD architecture. 4, the errors corrupting

the TD-based architecture. 5, the errors corrupting and the self-checker.

The captured SETs and the SEUs in the main flip-flop can induce erroneous outputs
at the register, but they can be tolerated by the TRD and TD-based architectures,
respectively. As discussed in Section 4.1, the errors corrupting the TRD architecture
can induce a false Error signal, which only invokes an unnecessary replay operation,
but does not damage the output of the register. Therefore, these errors do not need to
be addressed. The errors corrupting the TD-based architecture during the TD interval
affect the register output through the correction XOR-gate, thus they are mitigated
by the self-checker. Notice that the the self-checker can also be affected by radiation
strikes. SEUs can arise from the state-holding nodes, M1 and M2 of the TD-checker,
which will invert either of its outputs, rising_tran or falling_tran, and generate a false
Error TD_final signal (See Figure 4.4). However, similar to the errors in the TRD
architecture, the false Error_T'D signal does not corrupt the register output since it can
only invoke an unnecessary recovery process to reset the TDs in each bit. Therefore, the

self-checker do not need to be protected either.

Table 4.1: Error-tolerance capability analysis of the self-checking register.

Error type Damage to output | Tolerated Means
captured SET Yes Yes TRD arch.
SEU corrupting the main ff Yes Yes TD-based arch.
Errors corrupting the TRD arch. No No none
Errors corrupting the TD-based arch. Yes Yes self-checker
Errors corrupting the self-checker No No none

The built-in TRD and TD-based architectures in each SETTOFFSs in the register allow
the proposed register to tolerate an unlimited number of Multiple-Bit Upsets (MBUs)
corrupting the outputs of multiple main flip-flops. The shared self-checker can also ad-
dress MBUs corrupting multiple TD-based architectures during the same cycle. This is
because the first corruption will be detected, and the recovery operation will then reset

all the TDs in the register. However, if an even number of upsets simultaneously corrupt

94 Chapter 4 The Self-Checking Register Architecture

multiple TDs, they can escape detection since the parity of the register output will not
change in such situations. On the other hand, dangers can happen when MBUs corrupt
both an architecture and the architecture that protects it during the same cycle. The
SEUs in the main flip-flop, for instance, are protected by the TD-based architecture.
However, if two upsets each corrupt the main flip-flop and the TD-based architecture
during the same cycle, a recovery operation could be invoked to recover the upset in
the TD-based architecture, while the upset in the main flip-flop would remain. The
possibility of the occurrence of such MBUs can be reduced by applying certain layout
approaches to space the vulnerable node pairs. The SBU- and MBU-tolerance capa-
bilities of the self-checking design are demonstrated by circuit-level fault-injections and

simulations, described in Section 4.3.3.

The MBU-tolerance capability of the self-checking register give it an advantage over
an ECC-based register protection architecture, which requires noticeably larger over-
heads to correct MBUs (See Chapter 2, Section 2.5.2). The two architectures are both
implemented in 65nm technology, and are compared. The details of this are given in
Section 4.4.

4.3 Experimental Setups and Evaluations for the Self-Checking
Radiation Hardened Register

4.3.1 Experimental Methodology

A 32-bit self-checking register based on SETTOFF2 has been implemented in 65nm
technology for verification and evaluation. The SPICE netlist of the 32-bit self-checking
register is constructed using the transistor models from the 65nm library, and is used
for evaluating the power and performance of the register through SPICE simulations.
The power and delay measurements are based on the threshold and slew rate defined
by the technology library (see Chapter 3, Section 3.7.4 for detail). The supply voltage
used for the evaluation is 1.2V. A 185MHz symmetric clock is used for driving both the
register (with the positive edge), and the error flip-flop (with the negative edge) of the
TRD architecture. The TRD interval is hence equal to 2.5ns after taking the setup time
of the error flip-flop and the delay of the comparator into account. For a 32-bit register,
5 levels of gate delay are required for the XOR-tree that constructs the parity checker.
The maximum propagation delay of the parity checker is 210ps, which is smaller than
the TRD interval. The timing constraints of the self-checker discussed in Section 4.2.3

are therefore satisfied.

The maximum width of the positive glitches caused by the SEU-correction glitches
presented at the signal Error_T'D is 90ps under normal conditions. As reported in
Chapter 3, Section 3.7.5.3, the standard deviation of the width of the correction glitches

Chapter 4 The Self-Checking Register Architecture 95

is 33ps when taking PVT variations into account. The delay, 7, of the delay chain in the
glitch filter (See Figure 4.5) is therefore set to 130ps, to ensure all the positive glitches
appearing at signal Error_T D are filtered out at node Error T'D_final.

4.3.2 Implementation Overheads

The power consumption of the self-checking register was compared with a conventional
register implemented with the same operating conditions and drive strength. With a
10% activity rate for a single bit, the average power overhead of the proposed register
is 33%, which is only a 5% increase over the SETTOFF2 without the self-checking
capability. (As reported in Chapter 3, Section 3.7.3, under the same conditions, the
average power consumption overhead of SETTOFF2 in 65nm is 28%) In terms of area,
a single SETTOFF2 requires 30 extra transistors. The proposed register only adds
one self-checker, shared by each bit, thus the area overhead increase is insignificant.
Comparing to a conventional register constructed from flip-flops with 32 transistors
each, the area overhead of the 32-bit self-checking register is close to 136%. Since the
self-checker is not added to the signal path of the register, the delay overhead of the
register is comparable to that of a single SETTOFF2, with an average value of 16.5%.

4.3.3 Reliability Evaluations and Comparisons

The current source-based fault-injection mechanism introduced in Chapter 3, Section 3.7.5.1
is used for verifying the reliability of the self-checking register. Since the reliability of the
single SETTOFF2 has been evaluated in Chapter 3, Section 3.7.5.1, this section focuses
on simulating the transient faults occurring in the redundant circuitry of the proposed

register, and the MBUs occurring inside the register.

The redundancies in the register are separated into 3 parts: the TRD architecture, the
TD-based architecture, and the self-checker. As described in Section 4.2.5, the TRD
architecture and the self-check are not vulnerable to radiation strikes since soft errors
occurring in them cannot affect the output of the register. Therefore, transient fault
injection and simulation is only carried out in the TD-based architectures in each SET-
TOFF. Because only the errors flipping the state held by the TD during the TD interval
can corrupt the output (Error_SEU _bar) of the TD-based architecture in SETTOFF2,
an independent current source is used to inject SEUs to node M of the TD (See Fig-
ure 4.2) during the TD interval. 30 SEUs are injected into the TDs in each SETTOFF2
in the register, thus a total of 940 errors are simulated. The injection times of the SEUs
are evenly distributed during the TD interval. The simulation results show that out of
the 940 SEUs, 884 are detected by the self-checker, and only 56 errors (6%) escaped.
As discussed in Section 4.2.3, the escaped ones are caused by the delay of the parity
checker, which causes the SEUs to reach the self-checker outside the TD interval. The

96 Chapter 4 The Self-Checking Register Architecture

Table 4.2: Comparison of error-tolerance capability and overheads for 32-bit

registers.
Proposed Reg | TMR | ECC | FERST | BISER | STEM | DICE
Area overhead 136% 210% | 206% 110% 24% 210% | 100%
Power overhead 33% 210% | 160% 100% 126% | 210% | 78%
Delay overhead 16.5% 70% | 1cycle | T70% 70% - 67%
SET-tolerance YES NO NO YES NO YES NO
SEU-tolerance YES YES YES YES YES YES YES
TE-tolerance YES NO NO NO NO YES NO
Self-checking YES NO NO NO NO NO NO

problem can be addressed by using more self-checkers to reduce the number of the SET-
TOFF2s sharing them, since this would allow a small parity checker with fewer levels of
XOR-gates to be applied.

In order to validate the MBU-tolerant capability of the proposed register, the transient
fault injection and simulation mechanism described in Chapter 3, Section 3.7.5.1 is ap-
plied to inject multiple faults to corrupt multiple bits of the register simultaneously. The
simulation results demonstrate that all the MBUs are either individually corrected on the
fly at the outputs of the corrupted SETTOFF2s, or detected by the TRD architectures

incorporated in each bit.

Table 4.2 compares the implementation overheads and error-tolerance capabilities of
several techniques for protecting a 32-bit register in 65nm technology. Notice that ECC
is implemented with the SEC-DED (Single Error Correction Double Error Detection)
coding which requires 7 redundant bits for a 32-bit register. The delay overhead of ECC
is big due to the large decoding block, therefore an extra cycle may be required to reload
the register for error correction. Due to the C-element added in the signal path, the delay
overhead of FERST and BISER is similar to that of TMR. The area overhead of BISER
is small since it uses the existing scan flip-flops as duplications. STEM uses a variant of
TMR which removes the error correction from the signal path. The delay overhead of
STEM is small '. Compared with other techniques, the proposed register incurs fewer
comparable overheads. In terms of reliability, only the proposed register and STEM
can tolerate both SETs, SEUs, and TEs. In addition, only the proposed register has a
self-checking capability. Errors occurring in the redundancy circuit of other techniques
may either corrupt the cells directly (e.g. FERST and BISER), or produce SET pulses
(e.g. TMR, ECC, and STEM).

!The delay overhead of STEM was not reported by the authors in [41].

Chapter 4 The Self-Checking Register Architecture 97

D QF—
we D flip-flop | O
clk — >
n P80 “Z_1TTTTT coooo b2 —ou
Data—~— - _Z_"J1°-""_"°C .
Datan-1 .
_l D QOutn-l
D flip-flop
1>

Figure 4.8: An n-bit register for constructing the RF.

4.4 Radiation Hardened Register File Implementations

As introduced in Chapter 2, Section 2.5.2, the Register File (RF) is one of the most
vulnerable blocks in the microprocessor. The RF stores intermediate execution results
and is frequently accessed. Efficiently protecting the RF is crucial for reliable micropro-
cessor designs. Traditionally, the RF is protected by ECCs, which can introduce large
performance and power overheads since the ECC-bits need to be calculated during each
RF access. The SETTOFF2-based self-checking architecture proposed in this chapter
could offer a new solution for soft errors in the RF. In order to validate the efficiencies of
the proposed self-checking architecture applied to the RF, this section describes an im-
plementation of an RF protected by the self-checking architectures in 65nm technology.
The reliability and error-tolerance overheads of the protected RF are compared with the

traditional ECC-based RF protection mechanism.

4.4.1 The Original Register File Architecture

The architecture of the original RF used for both robust implementations is introduced
here. The RF is constructed from a number of registers with certain write and read
logic. Figure 4.8 shows the architecture of an n-bit register for constructing the RF.
The write enable signal (we) controls the write and hold operations of the register, by
propagating or gating the clocks driving each D flip-flop in the register. The architecture
of an RF consisting of m registers is shown in Figure 4.9. We implemented an RF with
only one write port and one read port for evaluation. Notice that the actual RF in a
microprocessor may require multiple write or read ports such that multiple registers can

be written to or read from during one cycle.

98 Chapter 4 The Self-Checking Register Architecture

i >
1
we—j '—|_\: W Register 0
D
: | >
. 1 .
erte_| logm tom ._|_\,-‘ VS/ Register 1
addr || decoder :
- 4
| #-OnE
= 4= =
| Write : >
|_Io—g|c——____“_,‘J VS/ Register m-1
n
data

Figure 4.9: An original RF with 1 write port and 1 read port.

Write and read logic are required for each write and read port in the RF. For writing
a register, a decoder is used to decode the write address and determine which register
to write to. During a write operation, the we signal is asserted. A register number is
fed into the decoder, which will then assert only the write line of the register to write
to through the AND-gate. All the other write lines will be gated by the outputs of the
decoder. The clock and the data feeding into each register are simply the ones to the
RF. A big multiplexer is required for each read port of the RF, to determine the register
to read from based on the read address. The multiplexer is an m-to-1 multiplexer, n-bits

wide, where n is the number of bits in each register.

4.4.2 The Radiation Hardened RF Implementations

Based on the basic RF architecture shown in Figure 4.8, two robust 32-bit RF's, each con-
taining 32 registers were implemented in 65nm technology. The first radiation hardened
RF is protected by the proposed self-checking architecture. The protection is achieved
by incorporating the self-checking register (Figure 4.6) into each register of the RF. In
order to minimise the overhead incurred by the TRD architecture in the proposed reg-
ister, only the TRD architecture for one register is implemented and is shared by the 32
registers in the RF. The architecture of the RF protected by the proposed self-checking
register is shown in Figure 4.10. The write and read logic are identical to those of the
original RF. Only 32 comparators (XOR-gates) are used for comparing the inputs and
outputs of a 32-bit register. The error signals are OR-ed together and fed into a shared
error flip-flop to record the error. A multiplexer is used for selecting the outputs of the
register which is updated during the write cycle of the RF. The output data is then fed
into the shared TRD architecture for SET detection. The shared error flip-flop is simply
driven by the negative edge of the clock to produce the delay element §, which is equal
to the positive phase of the clock.

Chapter 4 The Self-Checking Register Architecture 99

fread addy

clk =_ ________ 1 S . "
Self-checking
we: | F
T \| w Reg 0 i | Read
| | D | port
]
. | —) 3, Self-checking 3/2
Wnte_' 5t032)t va Reg 1 7
addr || decoder : - B
=1 T . 32
| * L .
| EEED 2 IR | N
. |
Write |
| logi] P Self-checking 3/2 !
| logic A SN e e
----- 32 D g : |write addr
data ——— Ll
l
[
T R
1 » 32 bits _ . Error_SET
. Error flipflop ——=
| al31] >
|
| d[31]
:-Shared TRD architecture

Figure 4.10: The self-checking register-protected RF.

It should be noted that the extra multiplexer introduces an extra delay for the outputs
of the register to reach the TRD architecture. Such an extra delay is equivalent to an
increase of the Clock-to-Q delay of the register. Therefore, the extra delay does not
affect the TRD detection capability as long as it satisfies the TRD constraint specified
by Equation 3.6 in Section 3.5, Chapter 3.

The second robust RF is protected by the ECC technique introduced in Chapter 2,
Section 2.1. The commonly used Single Error Correction-Double Error Detection (SEC-
DED) coding is applied, thus 7 redundant check bits are required for each register in
the RF. The architecture of the SEC-DED-protected RF is shown in Figure 4.11. The
redundant bits are added into each register, the write and read logic are amended to
include the ECC encoding and decoding circuity. The principles of the ECC encoder
and decoder can be found in Chapter 2, Section 2.1.2.1.

4.4.3 Statistical Analysis of Failure Rates for RFs

The soft error failure rate model introduced in Chapter 3, Section 3.6 was adapted for
modelling the failure rates of the implemented RFs under radiation hits. A failure of a
register file is defined as the corruption of single or multiple bits in one of its registers
as results of particle strikes. This section calculates the probability of the occurrence of
SBUs and MBUs of a single register in the RF.

100 Chapter 4 The Self-Checking Register Architecture

————————— I Read add
cli = .—\i > Register 0 3,9 1 \kea adar |
e : r—LJ| YDV (39 bits) ™ :
| | P Register 1 39 | |
Write | | 51032 '_I_\./I W (39 bits) 7/ e IE
addr decod D | 2 [Jdec -ﬁ-’f’_|_/_
| o —— | *-- : 39) S <l
! o ~ ‘7‘—]'- G ,I-ECfé} IRead
: :“"-- ' | i | port
1 Register 31 (|
: —_Di VS/ (39 bits) ™ / UE :
o, | |
W77 L Readosid
3 g /
R L S A
| ".,-"'f-"f Write Iogic|
e ———— Jd

Figure 4.11: The SEC-DED-protected RF.

4.4.3.1 SET Failure Rate Model for the Register File

The write operation of the RF can cause single or multiple SETs to be sampled by
multiple bits and result in SBUs or MBUs in the target register. The probability of
SET-induced SBUs and MBUs in a register can be derived from the SET failure rate
of a single flip flop proposed in Chapter 3, Section 3.6.1. Consider a register which has
n flip-flops affected by SETSs, the probability of these n SETSs corrupting m bits in the

affected flip-flops is given as below:

Fr(m) =C" x Fr™ x (1 — Fr)»=m) (4.2)

where 0 < m < n, Fr” denotes the probability of m errors calculated as the product of
the failure probability of m flip-flops. C7}}, is the combinatorial function which calculates

the number of cases that m errors occur when the register is affected by n SETs.

It should be noted that for deriving the failure of a conventional RF or an ECC-protected
RF 2, Fr should be calculated using Equation 3.15 in Section 3.6.1 of Chapter 3. For
deriving the failure of the self-checking register-protected RF, Fr should be replaced
by Fr’, which can be calculated using Equation 3.18 in Section 3.6.1 of Chapter 3.

4.4.3.2 SEU Failure Rate Model for Register File

The probability of an SEU-induced failure for a conventional RF is 100%. This is because

one or more bits in one of the registers will be corrupted. All the single-bit SEUs or

2The ECC does not have SET-tolerant capability, thus the failure rate of an ECC-protected RF is
the same as that of the original RF.

Chapter 4 The Self-Checking Register Architecture 101

multiple-bit SEUs in the self-checking register-protected RF can be corrected on the fly
by the incorporated SETTOFF2s. As the results showed in Chapter 3, Section 3.7.5.3,
the SEU failure rates of any single SETTOFF2 is zero. Therefore the SEU failure rate
of the self-checking register-protected RF is also 0. The SEC-DED-protected RF can
correct SBUs and thus reduce the SBU failure rate to 0. It also detects double-bit
errors. However, SEUs corrupting more than 2 bits of a register will escape detection

and produce a failure rate of 100%

4.4.4 Experimental Setups and Comparative Evaluation Results for
the Radiation Hardened RF's

4.4.4.1 Experimental Setups

The self-checking register-protected RF and the SEC-DED-protected RF are compared
in terms of their reliability and error-tolerance overheads. The SPICE netlists of the
3 RFs are constructed for evaluation. The 3 RFs are all 32-bit and each contains 32
registers, 1 read port and 1 write port. The power consumption and propagation delay of
the RF's are derived from SPICE simulations, based on the threshold and transition time
defined in the library (see Chapter 3, Section 3.7.4). The area of the 3 RFs are compared
by counting the number of transistors required for constructing the RFs. The reliability
of the 3 RF's are analysed using the failure rate model described in Section 4.4.3, and the
comparative results are illustrated in Section 4.4.4.2. The results for the implementation

overheads of 3 RF's are presented in Section 4.4.5.

4.4.4.2 SET and SEU Failure Rate Results

A 1GHz symmetric clock is applied for analysing the SET-tolerance capability of the
RF using the failure rate model. According to the results derived in Chapter 3, Sec-
tion 3.7.5.2, for a 1GHz symmetric clock, the average SET failure rate of a single
SETTOFF2, Fr' = 4%, and the average SET failure rate of a conventional flip-flop,
Fr = 45% in 65nm technology. Based on the Fr and Fr’, the SET failure rates of the
conventional RF and the self-checking register-protected RF are derived from Equation
(4.2). According to the results of the occurrence of multiple SETs reported in [56], the
number of the SETs presented at the input of the RF's, n is set to 5 for this evaluation.

Table 4.3 shows the failure rates of different number of SET-induced MBUs for the
original RF, the self-checking RF, and the SEC-DED-protected RF. The probability
that the original RF is not corrupted by the 5 SETs occurring at its input is only
5%; while 82% of the multiple SETs do not induce an error in the self-checking RF.
The self-checking RF also significantly reduced the failure rates of different numbers
of SET-induced MBUs. Notice that ECC does not have an SET-tolerance capability.

102 Chapter 4 The Self-Checking Register Architecture

Table 4.3: The SET-induced MBU failure rates for the self-checking register-
protected RF, the original RF, and the SEC-DED-protected RF.

No. of SET-induced MBUs Nil | 1 bit | 2 bits | 3 bits | 4 bits 5 bits

Self-checking register-protected RF | 82% | 17% | 1.4% | 0.06% | 1E-3 % | 1E-5%

Original / SEC-DED-protected RF | 5% | 21% | 34% | 28% 11% 18%

Table 4.4: The SEU-induced MBU failure rates for the self-checking register-
protected RF, the original RF, and the SEC-DED-protected RF.

No. of SEU-induced MBUs | 1 bit 2 bits more than 2 bits
Original RF 100% 100% 100%
SEC-DED-protected RF 0% | detected 100%
Self-checking RF 0% 0% 0%

Table 4.5: Implementation overheads of the robust RFs in 65nm technology.

Area overhead 3 | Power overhead | Performance overhead
Proposed RF 78% 46% 15.2%
ECC-protected RF 30% 90% extra cycle

SET pulses originated from the preceding logic can propagate through the encoder that
generates the ECC bits. The encoder itself can also produce SETs under radiation hits.
Therefore the SET failure rate of an ECC-protected RF is at least the same as that of

the conventional RF.

The failure rates of the SEU-induced MBUs for the three implemented RFs are shown
in Table 4.4. As mentioned in Section 4.4.3.2, the self-checking register-protected RF
has the best MEU-tolerance capability.

4.4.5 Implementation Overheads

Table 4.5 summarises the implementation overheads of the self-checking RF and the
SEC-DED-protected RF in 65nm technology. With a 10% activity rate for each bit, the
SEC-DED-protected RF incurs an average 90% power overhead during a write cycle,
while the proposed register consumes an average of 46% extra power. The self-checking
RF incurs a delay overhead of 15.2% due to the extra loads added for error-tolerance.
The delay overhead of the SEC-DED-protected RF is big due to the large decoding block
at the read port, therefore an extra cycle may be required to reload the register for error

correction. It should be noted that these results are derived from an RF with only 1

3The area overhead is estimated based on the number of transistors.

Chapter 4 The Self-Checking Register Architecture 103

read port. The area and power overhead of the ECC technique will increase significantly
for protecting an RF with multiple read ports. This is because multiple ECC decoders

and correction logic are required for multiple read ports.

4.5 Concluding Remarks

A common drawback of most previous radiation hardened techniques is the lack of self-
checking capabilities. Radiation hardening typically requires hardware redundancies
which can also be affected by transient faults, and hence introduce additional vulnera-
bilities to the circuit. Most previous techniques only use redundancies to mitigate the
errors occurring in the original circuitry, but cannot address the errors occurring in the
redundancies. The severity of this problem depends on the probability of the errors
arising from the redundancies, and the types of errors the redundancies can produce.
The ECC decoder and encoder, for instance, can produce SETs which can turn into soft
errors if captured. The widely used C-elements can produce SEUs which could corrupt
the cell directly.

This chapter proposed a self-checking radiation hardened technique based on the SET-
TOFF architecture proposed in Chapter 3. The new technique further improves the
reliability of the SETTOFF technique by adding a self-checking capability to mitigate
the errors occurring in the redundancies. The self-checking capability is achieved by
using a self-checker, which can be shared by multiple bits in a register architecture con-
structed by SETTOFFs. The sharing of the self-checker minimises the overheads that
the self-checking capability introduced. The evaluation results show that compared to
the original SETTOFF architecture, the increase of the area, power consumption, and
delay in the self-checking architecture is insignificant. However, the self-checking tech-
nique provides a noticeably better error-tolerance capability since the SETs and SEUs

in both the original circuitry and the redundancies can be mitigated.

In addition, the register file is one of the most vulnerable blocks of a microprocessor. So
in order to validate the efficiencies of the proposed self-checking technique, it is imple-
mented for protecting the register file. The reliability and the error-tolerance overheads
of the register file protected by the proposed technique are then compared with a typical
ECC-protected register file. The failure rate model, proposed in Chapter 3, Section 3,
is adapted to statistically analyse the reliability of the register-level implementations.
The results show that the proposed self-checking technique produces much lower SBU
and MBU failure rates caused by the SETs and SEUs affecting the RF. Meanwhile, the
proposed technique requires a bigger area, but much smaller power consumption and
delay overheads than the ECC technique for protecting the RF.

Chapter 5

The Self-Checking Radiation
Hardened OpenRISC Pipeline
Design

As reviewed in Chapter 2, Section 2.5, a number of pipeline protection mechanisms
have been proposed based on radiation hardening techniques, error coding techniques,
or duplication. However, due to the complexity of the processor pipeline and the limited
error-tolerance capabilities that these techniques can provide, few of the previous pipeline
protection mechanisms can achieve a complete protection for the entire pipeline. Some
of them, such as the Razor and SEM/STEM techniques can only protect the pipeline
registers, while others, such as the Parshield and RRC, are only suitable for protecting
the RF within the pipeline.

Since the SETTOFF-based self-checking techniques proposed in Chapter 3 and Chap-
ter 4 can provide efficient error-tolerance capabilities for both SETs and SEUs, they can
be applied to a microprocessor to achieve error-tolerance. This chapter proposes a com-
plete and cost-efficient pipeline protection mechanism based on the self-checking archi-
tectures. The radiation hardened pipeline is achieved by incorporating the SETTOFF-
based self-checking cells into the sequential cells constructing the pipeline. A replay
recovery mechanism is also developed at the architectural level to interact with the
self-checking cells to recover the corresponding detected errors. The proposed pipeline
protection technique is implemented in an OpenRISC microprocessor in 65nm tech-
nology. A gate-level transient fault injection and analysis technique is developed for

evaluating the error-tolerance capability of the proposed hardened pipeline design.

This chapter is organised as follows: Section 5.1 introduces the OpenRISC processor
used for implementing the proposed pipeline protection mechanism. Section 5.2 pro-
poses the gate-level transient fault injection and analysis technique, which is used for

analysing the soft error vulnerability of the unprotected OpenRISC processor. Based
105

106 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

on the analysis results, the self-checking radiation hardened pipeline design is proposed
in Section 5.3. The experimental methodology for implementing the processor is de-
scribed in Section 5.4, and the evaluation results are presented in Section 5.5. Finally,

the chapter is concluded in Section 5.6.

5.1 The OpenRISC 1200 Microprocessor

OpenRISC 1000 is a free and open architecture for a family of RISC microprocessor cores.
It is designed with the emphasis on performance, simplicity, low power requirements, and
scalability [84]. OpenRISC 1200 (OR1200) is a synthesizable RTL implementation of the
OpenRISC 1000 architecture [85]. It is a 32-bit scalar RISC machine implemented with
the ORBIS32 ! instruction set architecture and Harvard micro-architecture. OR1200 has
5 stage integer pipeline, 53 distinct instruction op-codes and three addressing modes:
immediate, displacement and pc-relative. The general architecture of the OR1200 IP
core is shown in Figure 5.1. The CPU core is the central block of the OR1200 processor.
The IP core has a separate level-1 data cache and instruction cache, which are connected
to their separate Memory Management Units (IMMU and DMMU). Only the write-
through policy is supported by the data cache. The IMMU and DMMU communicate
with the on chip and off chip memories through WISHBONE interfaces (IWB and DWB).

The IP core also consists of the following units:

e Power Management Unit (PMU): The OR1200 core has a sophisticated power
management support to optimize the power consumption. The CPU core can
operate in 4 different modes, (1) Slow mode, (2) Idle mode, (3) Doze mode, (4)

Sleep mode, which dynamically activate or deactivate certain internal modules.

e Debug Unit: It supports basic debugging for OR1200. Advanced debug features

such as the watchpoints and breakpoints are not supported.

e Tick Timer: The tick timer is clocked by the OpenRISC clock, and is used by the

operating system for precisely measuring time and scheduling system tasks.

e Programmable Interrupt Controller (PIC): The PIC receives interrupts from ex-

ternal sources and forwards them to the CPU core as low or high priority.

5.1.1 OR1200 CPU Core

The OR1200 core consists of 13 modules whose abbreviations and actual names are
listed in Table 5.1. The block diagram of the OR1200 core is shown in Figure 5.2, which

!This is the OpenRISC Basic Instruction Set with 32-bit wide instructions aligned on 32-bit bound-
aries in memory, and operating on 32-bit and 64-bit data. Refer to [84] for more details.

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

107

OpenRISC 1200

| System I/F I

IMMU

T/'\;' POWER MANAGEMENT
:3/'? DEBUG

TICK TIMER
INT | pPROGRAMMABLE INTERRUPT
I/F CONTROLLER (PIC)

IWB
Instruction-Cache
8KB
CPU Core
Data-cache

8KB

| DWB
DMMU

Figure 5.1: Architecture of the OpenRISC 1200 IP core [85].

Table 5.1: Abbreviations of the blocks inside CPU core

Module Abbreviation Name
Genpc Program counter generator
If Instruction fetch unit
Ctrl Control unit
RF Register file
Operandmux Operand multiplexer
SPR Special purpose registers
ALU Arithmetic logic unit
Except Exception unit
Mult_Mac Multiply accumulate unit
LSU Load and store unit
Cfgr Configuration Registers
Freeze Freeze logic
Whbmux Write back multiplexer

illustrates the main modules and their positions within the pipeline. Notice from the
left hand side of Figure 5.2 that although OR1200 has 5 pipeline stages, the memory

access stage (MEM) is optional, and is only invoked for a load or a store instruction to

exchange data with the data cache (DC). Otherwise, the operation goes directly into

the WB stage after the EX stage to write the execution results into the RF.

108 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

addr
genpc IC

insn addrt> v results
- /3 addr
o NI
—_—1— - —*— —Cm - reg_- N
= - operands
; Control
> . signals Operandmux |«
B
v vy -
F Lsu MUL_MAC ALU
I3 Hndl et Bt i
A r
2 MEM DC
5 | et
i WB | WBmux
[

Figure 5.2: Block diagram of the OR1200 core [86].

The functionalities of some important modules inside the CPU core are briefly described

as follows:

e if: The if module is connected to the instruction cache to fetch instructions. It

also passes instructions to the ctrl module for decoding.

e ctrl: This is the main controller of the CPU core that conducts most of the instruc-
tion decoding processes. ctrl generates control signals, addresses, and immediate

operands for the execution of the instructions.

e RF: The register file that contains 32 general purpose registers.

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 109

o Mul_Mac: This module is responsible for executing the multiplication operations.

e cfgr: This module controls the configurations of the CPU core through special

purpose registers

e cxcept: This module handles different kinds of exception conditions, such as ex-
ternal interrupt requests, internal errors, system calls, arithmetic overflow, and

memory access conditions.
e freeze: This module generates signals to freeze the pipeline stage when needed.

e [su: This module communicates with the data cache to exchange data for a load

or a store instruction.

5.1.2 OR1200 Pipeline Architecture and Operating Principle

In order to further explain the operating principle of the OR1200 pipeline, the register-
level abstraction of the pipeline is extracted in Figure 5.3. All the combinational logic
blocks are represented by white boxes, while the sequential blocks (including the flip-
flops, registers, and the caches) are presented by orange boxes. The blue boxes in
between each stage of the pipeline contains the pipeline registers that connects the
adjacent pipeline stage. These pipeline registers store data, instructions, and control

signals intermediately for the corresponding pipeline stage.

data_w

ex_forw|
opl,

“
I whb_forw

id_ctrls

ex_ctrls

y

if-
decoder

id-decoder ex-decoder

: whb_ctrls

OpenRISC
Pipeline

Ctrl

Figure 5.3: Register abstraction view of the OR1200 pipeline.

During the Instruction Fetch (IF) stage, instructions are fetched from the instruction
cache, and are stored in the if_insn register. The instruction decoder in the IF stage,

if — decoder, then decodes the instruction in if_insn to generate control signals to

110 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

be saved in if_ctrls flip-flops. The instruction in if_insn is also forwarded into the
id_insn register which feed the instruction into the Instruction Decode (ID) stage. Most
instruction decodings are committed during the ID stage. The instruction stored in the
id_insn register is decoded by the decoder in the ID stage (id—decoder), which generates
immediate operands, control signals, and addresses used for reading data from the RF.
The operand multiplexer (op — muz) then selects 2 operands from the data read from
the RF, or the immediate operands from the id — decoder, or the results forwarded from
the EX or WB stages of the pipeline. Before execution in the EX stage, the 2 selected
operands are stored in the 2 operand registers (opl and op2). In the mean time, the
instruction in the ID stage is forwarded to the ex_insn register, and the control signals
decoded during the ID stage are stored in the corresponding control flip-flops (ex_ctris).
During the execution (EX) stage, the execution units (ALU and MAC-MUL) conduct
specific operations based on the 2 operands and the controls generated by the decoder in
the EX stage (ex — decoder). In the case of executing a load or a store instruction, the
Load and Store Unit (LSU) in the memory access stage (MEM) is invoked for exchanging
data with the data cache. The final execution results are then selected by the write back
multiplexer (wbh-mux), which writes the results into the RF and the flag registers at the
beginning of the the WB cycle, using the rising clock edge. Meanwhile, the execution
results are also written into the wb — reg register, while the instruction and the control
signals in the EX stage are forwarded into the wb_insn and wb_ctrls in the WB stage,
respectively. Notice that the RF, the flag registers, the wb_insn, the wb_ctrls, and the
wb_reg are all updated at the same time, which is at the beginning of the WB cycle.

The pipeline forwarding technique is applied in the OR1200 pipeline which can forward
the execution results in the EX stage and the WB stage back into the ID stage (refer to
the ex_forw and wb_forw signals). The EX-forwarding technique feeds the output of
the wb— muzx back to the op — mux. This improves the pipeline efficiency and solves the
data hazard problem when the instruction in the EX stage needs the execution results
from the previous instruction as the execution operands. The WB-forwarding technique
feeds the execution results from the WB stage back into the MEM stage, so that the

following store instruction can save the results into the D — Cache.

5.2 Soft Error Vulnerability Analysis for the OpenRISC
Pipeline

The basic idea of the proposed pipeline protection technique is to protect the sequential
cells (such as registers and flip-flops) within the pipeline using the circuit-level and
register-level radiation-hardening approaches described in Chapter 3 and Chapter 4.
Because only the SETs captured by the sequential elements can propagate through the
pipeline, the proposed circuit-level and register-level cells can combat both the SEUs

occurring in the storage element, and the SETs occurring in the combinational logic when

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 111

they are captured. Therefore, if all the sequential cells are protected by the proposed
radiation-hardening approaches, the proposed pipeline protection technique can actually
protect against all types of soft errors occurring within the pipeline. However, such
full protection can result in big error-tolerance overheads due to the large number of

sequential cells inside the pipeline.

Mehdizadeh, et al. presented an analysis of the fault effects in the OpenRISC processor
in [86]. The authors injected different types of faults (such as stuck-at faults and bit-
flips) into the processor, and checked whether the execution results were corrupted by
the faults. The analysis results show that different units in OR1200 present different
vulnerabilities to the injected faults. The levels of vulnerability of different units are
independent of the programs that the processor runs. The register file unit, for instance,
is always more vulnerable than the WB-multiplexer unit regardless of the programs that
the processor runs. Ebrahimi, et al. also presented an SER analysis of the OpenRISC
processor implemented in 45nm technology [24]. The results show that 75% of the
flip-flops within the microprocessor make negligible contributions to the overall system
SER, and by protecting 20% of the flip-flops which are most vulnerable, the system SER
caused by all the flip-flops can be reduced by 80%. The authors in [24] have also shown
that the level of vulnerability of the flip-flops, again, has little dependency on different

workloads.

All these observations suggested that not all the registers inside the pipeline have the

same level of vulnerability to soft errors. The reasons for this are explained as follows:

1. Not all the soft errors occurring within the pipeline can corrupt the pipeline exe-
cution. For instance, a soft error occurring in a register that will not be read will

not affect the normal pipeline operation.

2. Some cells inside the pipeline, such as the pipeline registers and RF, are more fre-
quently accessed during the execution than other cells. Therefore, when corrupted
by soft errors, they will have a higher probability to corrupt the pipeline operation

compared to other less frequently accessed cells.

3. Not all the cells are equally important for the pipeline operation. For an instance,
the control unit generating the control signals can easily corrupt the pipeline op-
eration when itself corrupted. However, the errors occurring in the intermediate

data may be masked during speculative operations.

Full protection can be inefficient since it may sacrifice unnecessary area and power to
protect cells that are unlikely to contribute to the overall SER of the processor. In
order to achieve an effective and cost-efficient protection, a system-level analysis of soft
error effects on the OpenRISC processor were carried out. The analysis identified the

soft error vulnerability of different registers inside the pipeline. The safety-critical ones

112 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

(i.e. the registers which are most vulnerable to soft errors) can then be selected for

protection.

5.2.1 Transparent Fault Injection and Simulation in VHDL

A simulation-based transient fault injection and simulation technique was developed for
achieving the soft error vulnerability analysis. The technique can inject different types
of transient faults into different parts of the system during gate-level simulation. The
simulation results were then collected for statistically analysing the soft effects in differ-
ent parts of the system. The proposed transient fault injection and analysis technique
was developed from the transparent fault injection and simulation technique proposed
by Zwolinski in [87] and [88]. Before introducing the proposed analysis technique, an
overview of the transparent fault injection and simulation technique is provided, as fol-

lows:

Simulation-based fault-injection techniques are typically realised by perturbing a circuit
model and repeating the simulations. Conventionally, this is achieved by adding extra
ports and control wires to the circuit under simulation, such that particular control
signals can be applied to inject and activate particular faults in the circuit. However,
such approaches have the following drawbacks: A large number of control wires may
be needed for comprehensively evaluating a large system. This may require a radical
modification of the circuit; it would also require a complex testbench to switch the
control signals for activating the faults. In addition, the faults are difficult to uniquely

identify, making the fault effect difficult to record.

The transparent fault injection and simulation technique is achieved by injecting faults
into a VHDL description of the circuit gate model using shared variables. The shared
variable is provided in the 1993 VHDL standard as an additional way of transferring
values across modules other than generic and ports. For injecting faults into a circuit,
the gate models that construct the circuit are modified to include non-activated pre-
determined faults. All the pre-determined faults in all gates are contained in a linked
list structure, with each element representing a particular fault in a gate. A shared
variable is declared as a pointer, which moves along the linked list and controls the fault
injection process by activating the pre-determined faults one by one during simulation.
The technique does not require any extra controls wires, therefore during the fault
simulation, the circuit netlist remains unchanged compared to the fault-free simulation.
Only the VHDL descriptions of the gate models need to be changed to include the
faults, and a testbench needs to be created for the fault simulation. A detailed example

of applying the transparent fault injection and simulation technique is given below.

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 113

The first step is the declaration of a package for building the data structure during the
fault injection process. Figure 5.4 shows the fault injection package which contains the

following information:

fault_model : This is a record created for modelling each fault. The record contains
the faul_name, 2 boolean flags (simulating and detected), and a pointer pointing
to the next fault model. The simulating flag indicates whether the fault is being
activated; while the detected flag indicates whether the fault is detected.

fault_ptr : This is a pointer pointing to the fault_model. It is declared using a VHDL

access type.

first_fault : This is a shared variable that is a pointer, pointing to the first fault in a
linked list. The shared variable is initialized to null. It can pass values to any

other modules that use this package.

1 use std.textio.all; — contains definition of line
2 package fault_inject is

3 type fault_model; — incomplete type declaration
4 type fault_ptr is access fault_model;

5

6 type fault_model is

7 record

8 fault_.name : line; — line is access string
9 simulating : boolean;

10 detected : boolean;

11 next_fault : fault_ptr;

12 end record fault_model;

13

14 shared wvariable first_fault : fault_ptr := null;

15 end package fault_inject;

Figure 5.4: The package declared for fault injection [87].

The package can then be used for including the pre-determined faults in the VHDL
descriptions of the gate modules. Figure 5.5 shows an example of a two-input NAND-
gate modified for including fault models using the package. Three stuck-at faults are
included in the gate, which are the output Z stuck at 1, the input A stuck at 1, and
the input B stuck at 1. The three local variables, z_sal, a_sal, and b_sal, point to the
three faults, respectively. At the beginning of the simulation, the variable z_sal is set
to null, thus the data structure is created by lines 13 to 21 of the code in Figure 5.5.
Initially, the simulating and detected flags are assigned to be false to allow a fault-free
simulation. The fault_name is generated by the instance_name attribute appended
with the name of the variable. The instance_name attribute creates the full name of
the path from the top-level hierarchy of the system. The fault_name allows each fault
to be uniquely identified.

It should be noted that no extra ports or control wires are added to the modified NAND-

gate. Therefore, it can be used for modelling the included faults in any circuit that is

114 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

1 use IEEE.std_logic_-1164.all;

2 use WORK. fault_inject.all;

3 entity nand2 is

4 port (z : out std_logic; a, b : in std-logic);

5 end entity nand2;

6

7 architecture inject_fault of nand2 is

8 begin

9 nn : process (a, b) is

10 variable z_sal, a_sal, b.sal : fault_ptr := null;
11 begin

12 if z_sal = null then

13 z_sal := new fault_model ’(

14 new string ’(inject_fault ’instance_name & z_sal),
15 false , false, first_fault);
16 first_fault := z_sal;

17 a_sal := new fault_model ’(

18 new string ’(inject_fault ’instance_name & a_sal),
19 false , false, first_fault);
20 first_fault := a_sal;

21 b_sal := new fault_model ’(

22 new string '(inject_fault ’instance_name & b_sal),
23 false , false, first_fault);
24 first_fault := b_sal;

25 end if;

26 if fault_sim.simulating(z-sal) then — z/1

27 z <= '17;

28 elsif fault_sim.simulating(a_sal) then — a/l

29 z <= not b;

30 elsif fault_sim.simulating(b_sal) then — b/1

31 z <= not a;

32 else — fault—free

33 7z <= a nand b;

34 end if;

35 end process nn;

36 end architecture inject_fault;

Figure 5.5: Two-input NAND gate with fault injection model [87].

constructed with this gate. Figure 5.6 shows a circuit that is constructed with 3 two-
input NAND-gates modified with the fault injection model in Figure 5.5. The solid lines
are the physical wires connecting the gates together. The data structure is created at the
beginning of the simulation, where all the faults included in each gate are linked together
in a linked list. A template of the fault simulation testbench is shown in Figure 5.7.
During the simulation process, a fault free simulation is performed with certain test
vectors to extract the correct circuit response. Afterwards, sequential fault simulations
are carried out using the same test vectors. A local pointer (head_ptr) is created which
moves along the linked list and activates one fault during each simulation. The fault
simulation results are then compared with the fault-free simulation results to identify
errors. The simulation process is achieved by the local pointer (head_ptr) controlling
the shared variable (first_ptr) through the dash line in Figure 5.6.

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 115

© 0 N OO s W N

R e e
=W N = O

15
16
17
18
19
20

A et §

et §]

® First_fault

WilSirf et §]

Figure 5.6: Date structure of the fault model [87].

process is
variable head_ptr : fault_ptr;

begin
—— FAULT-FREE SIMULATION

— apply test vectors
— apply Xs

— SEQUENTIAL FAULT SIMULATION
head_ptr := first_fault;
while head_ptr /= null loop

head_ptr.simulating := true;
— apply test vectors
—— compare with fault free case and print

head_ptr.simulating := false;
— apply Xs

— move to next fault;

head_ptr := head_ptr.next_fault;

end loop;
end process sim;

differences

Figure 5.7: Fault simulation testbench template [87].

5.2.2 The Transient Fault Injection and Analysis Technique

A system-level transient fault injection and analysis technique was developed from the

transparent fault injection method described in Section 5.2.1. The proposed tech-

nique can inject radiation-induced transient faults into a system and collect the system

response data via gate-level simulations.

Similarly to the method described in Sec-

tion 5.2.1, the proposed technique uses the fault model package described in Figure 5.4

116 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

First_fault

’

|
| Bit-flip1[sim| Det \ﬁ
|

D—» i fip2sifoet | 3]
Conventional D IQ Bit-flip2 |Sim Det

flip-flop | [Bit-flip3[sim Det |
|

> SEU
Injection block

|

I

|
Clk Error trig +

Figure 5.8: The modified D flip-flop for SEU injection.

to include pre-determined faults into the gates. The linked list data structure is also used
for the simulation. However, the proposed technique models transient faults (i.e. the
SETSs in combinational blocks, and the SEUs in sequential blocks) rather than stuck-at
faults. The details of the SET and SEU modelling methods are described separately, as

follows:

5.2.2.1 SEU Injection into Sequential Gates

The transient fault injection technique models SEUs as transient bit-flip errors corrupt-
ing the outputs of sequential gates. Figure 5.8 shows an example of how the bit-flip er-
rors are modelled and included in a conventional D-type flip-flop. Since it is a sequential
gate, the injection method is different from the one in Section 5.2.1. An SEU-injection
block was added to the output of the conventional flip-flop such that the original output
becomes an internal signal I(). The SEU-injection block propagates IQ to the actual
output (Q) of the modified flip-flop during fault-free simulation. Three bit-flip error
models (bit_flipl, bit_flip2, and bit_flip3) are included as a linked list structure and are
pointed to by the shared variable first_fault. An Error_trig signal is added for con-
trolling the activation of the errors together with the simulation Boolean flag in the
fault model. The state of 1@ will be flipped to Q when any of the SEUs are activated.

Figure 5.9 shows the VHDL description of the modified flip-flop shown in Figure 5.8.
It should be noted that an extra port for the Error_trig signal was added to the flip-
flop. The CLK, Error_trig, and 1Q are all in the sensitivity list of the SEU-injection

block. A rising edge on CLK or any transitions on /@) mean the state stored in the

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

117

23

48
49

Library IEEE; Use IEEE.STD_LOGIC_1164. all ;Use work. fault_inject .all;

entity DFF_SEUinject is

port (
Q : out STD_LOGIC ;
D : in STD_LOGIC ;
CLK : in STD_LOGIC ;
Error_trig : in STD_LOGIC) ;

end DFF_SEUinject;

architecture VHDLFUNCT of DFF_SEUinject is
SIGNAL 1Q : STD_LOGIC;
begin

—— Conventional D flip —flop
PIQ : Process (CLK)
begin
— Description of the conventional D flip—flop
end Process;

— SEU—injection block
nn: Process (CLK, Error_trig, IQ) is

variable bit_flipl , bit_flip2 , bit_flip3: fault_ptr := null;
begin
if bit_flipl = null then
bit_flipl := new fault_model ’(
new string ’(VHDLFUNCT’ instance_-name & bit_flipl),
false , false, first_fault);
first_fault := bit_flipl;

— create data structure
end if;
if (bit_flipl.simulating) then — SEUs injection

If (Error_trig ’event) Then — activate bit—flip
Q<= t0-X01(not(IQ)) ;

error via Error_trig

elsif (rising_-edge(CLK) or (IQ’event)) Then — detect the update of ff
Q<= t0-X01(1IQ) ; —— bit—flip error overwritten by new input
end if;

— sequential fault simulations

elsif (rising.-edge(CLK) or (IQ’event)) Then —— fault—free

Q <= to_X01(I1IQ) ;
end if;
end process nn;

end VHDLFUNCT;

simulation

Figure 5.9: The VHDL description of the modified D flip-flop for SEU injection.

flip-flop is updated by the new input value D. Therefore in such cases, I() will pass its

value to @ when no errors are activated (see line 44-46 of Figure 5.9). During the fault

simulation, a pointer moves along the linked list that is constructed by the bit-flip error

models. The simulation flag in each fault model will be asserted one by one during the

simulation process. However, the bit-flip errors are not activated until any switching of

the Error_trig signal is detected. Each switching of the Error_trig signal will activate

the bit-flip error model, which has the asserted simulation flag, once. The activated

bit-flip error will not be recovered until the flip-flop is updated by the new input value,

when the bit-flip error will be overwritten (see line 35-40 of Figure 5.9).

118 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

1 head_ptr := first_fault;

2 while head_ptr /= null loop

3 head_ptr.simulating := true;

4 — apply test vectors

5 wait for inject_time; —— this defines the time the SEU occurs.

6 Error_trig <= ’l’ —— the switching of the Error_trig allows the
injection of a transient bit—flip

7 — compare with fault free case and print differences

8 head_ptr.simulating := false;

9 — apply Xs

10 — move to next fault;

11 head_ptr := head_ptr.next_fault;

12 end loop;

13 end process sim;

Figure 5.10: Part of SEU simulation testbench template.

Figure 5.10 shows a testbench for simulating the SEU injection. Only the code for
fault simulations is shown, other codes are omitted as they are similar to the ones in
Figure 5.7. The simulation flag of a particular fault is asserted during each entire
fault simulation. The Error_trig signal is initialized to ’0’, and is asserted after the
injection_time, which is a random number that allows injecting the SEU at a random
time during the program runtime. The Error_trig can also be switched multiple times

to allow multiple SEU injections during the simulation of a single fault model.

5.2.2.2 SET Injection into Combinational Gates

The SETs are modelled as the transient voltage pulses occurring at the output com-
binational gates. However, a system (such as the OpenRISC microprocessor) typically
consists of a significantly larger number of combinational gates than sequential gates.
Therefore, a large number of sequential fault simulations would be required to carry out
the SET analysis and identify the vulnerability of different combinational blocks. This
is inefficient and impractical. By observing that only the SETs captured by the sequen-
tial gates can affect the system and thus need to be considered, other SETs can hence
be ignored to save simulation time. The proposed SET-injection technique therefore
only injects SET pulses at the input of the sequential gates following the combinational
gates. This maximises the probability of the injected pulses being captured. The SET
vulnerability of the combinational gates can then be identified by the vulnerability of

their following sequential gates.

Figure 5.11 shows an example of how the SETs are injected into the combinational
gates preceding a D-type flip-flop. An SET-injection block is added at the input of the
flip-flop such that the original input becomes an internal node, ID. The actual input
of the modified flip-flop, D, is the input of the SET-injection block. The SET-injection
block contains two modified inverters and each includes 2 SET fault modules defined by
the package in Figure 5.4. Similar to the SEU-injection method, an Error_trig signal
is added for controlling the activation of the SETSs together with the simulating flag.

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 119

All the fault models are constructed in a linked list data structure. Figure 5.12 shows
the example code for the modified inverter. Parts of the testbench for simulating the
SETs are shown in Figure 5.13. For simulating a particular pre-determined SET, the
stmulating flag is asserted throughout the simulation. However, the particular SET
is only activated by the Error_trig signal which is asserted after the injection_time.
The activated SET will propagate the input of the inverter to its output and generate
a voltage-transition. After the pulse_width time, the Error_trig signal will be assigned
to 0, such that the inverter will operate normally. The voltage-transition will hence
be recovered and the voltage glitch (i.e. the SET pulse) with the width equal to the
pulse_width will be formed at the output of the inverter. The injection_time and
pulse_width variables can be randomly selected to allow injecting SETs with random

widths at a random time during the program runtime.

[sET]sim]Det [§ [sET1[sim|Det | ¢ D
[sET2[simDet | 4 | [sETZfsimDet[¢] Conv§ntional ‘ Q

| | D flip-flop
- I /r v ’—> >

SET injection block

Combinational block

A 4

Clk
Error_trig

Figure 5.11: The modification of a D flip-flop for SET injection.

It should be noted that for both the SET and SEU injection methods, an extra signal,
Error_trig, is added in the gate to be simulated. This is essential because inject-
ing radiation-induced transient faults is different from injecting stuck-at faults. The
transient faults only manifest themselves for a period of time, and will be recovered
automatically. This requires the fault model to be activated and also deactivated at
certain times during the simulation. The VHDL Process for fault injection needs to
be sensitive to a signal such that it can be evaluated during the simulation to control
the activation of the fault models. For both SET and SEU injection methods, only one
global control signal Error_trig is required. The modification of the circuit netlist is

relatively easy.

5.2.3 Vulnerability Analysis Results for the OpenRISC Pipeline

The proposed transient fault injection technique is used for analysing the soft error
vulnerability of the OpenRISC pipeline. The RTL description of the processor is syn-
thesized into a gate-level description using the STMicroelectronics 65nm technology.
Since OpenRISC is a flip-flop based architecture, all the flip-flop cells in the technology
library that construct the processor are modified, based on the SEU and SET injection

120 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

1 Library IEEE; Use IEEE.STD_LOGIC_1164. all;
2 — entity declaration —
3 entity INV_.SET is
4 port (
5 Z : out STD_LOGIC ;
6 A : in STD_LOGIC;
7 Error_trig : in STD_LOGIC) ;
8 end INV_SET ;
9 — architecture body —
10 architecture VHDLFUNCT of INV_SET is
11 begin
12 nn : process (A, Error_trig) is
13 variable SET1, SET2 : fault_ptr := null;
14 begin
15 if SET1 = null then
16
17 — construct data structure
18
19 end if;
20
21 if SET1.simulating then
22 if (Error_trig = ’1’) Then — activate SETI
23 z <= a;
24 else
25 z <= not a;
26 end if;
27 elsif SET2.simulating then
28 if (Error_trig = ’1’) Then — activate SET2
29 z <= a;
30 else
31 z <= not a;
32 end if;
33 else — fault—free
34 z <= not a;
35 end if;
36
37 end process nn;
38 end VHDLFUNCT;
Figure 5.12: SET injection block.
1 head_ptr := first_fault;
2 while head_ptr /= null loop
3 head_ptr.simulating := true;
4 — apply test vectors
5 wait for inject_time; — this defines the time the SET occurs.
6 Error_trig <= 1’ — asserting the Error_trig activate the SET.
7 wait for SET_width; — this defines the width of the SET pulse.
8 Error_trig <= ’0’ — assigning the Error_trig to 0 de—activate the
SET.
9 — compare with fault free case and print differences
10 head_ptr.simulating := false;
11 — apply Xs
12 — move to next fault;
13 head_ptr := head_ptr.next_fault;
14 end loop;
15 end process sim;

Figure 5.13: Part of SET simulation testbench template.

techniques described in Section 5.2.2.1, and Section 5.2.2.2. We define a visible soft
error as a corruption of the final program execution results stored in the data memory.

The transient faults that are masked and do not affect the outcome of the programs will

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

121

be ignored. The analysis is carried out on the ORPSoc platform, which provides the

smallest-possible reference system for testing the OpenRISC processor [89].

| Error_trig
|
W] error_record.txt

. _head_pr] -
Il S -
AR Testbench Kk

— rst ~
| & RN
|
I dump_mem| A Summary.txt
|
| write comparison
| results
|
|
P
|
|
|
IORPSoc
|
|

— — __ _memory write out
~ I -~

A iy

program.vmem

error_free.txt

error_l.txt

error_2.txt

5\\5

error_n.txt

compare

Figure 5.14: The soft error effect analysis model based on ORPSoc platform.

memory dump to error_1.txt memory dump to error_2.txt

| memory dump to

error_free.txt j

and comparison with
erro_free.txt \ﬂ

and comparison with
| erro_free.txt j

reset
CPU

error-free
simulation run

reset
CPU

simulation for
error_1

reset
CPU

simulation for
error_2

Program run

Program run

Program run

I time I time I time

Figure 5.15: The timing diagram for soft error analysis simulation.

Figure 5.14 shows the block diagram of the soft error vulnerability analysis model based
on the ORPSoc platform. The timing diagram of the soft error analysis simulation
is shown in Figure 5.15. During the simulation, a C program is compiled into machine
code (program.vmem) using the OpenRISC tool chain. The machine code is then loaded
into the memory. A fault-free simulation is run first, and the correct execution results
stored in the data memory are written out to a txt file (error_free.txt). Afterwards, the
processor is reset and the same program is re-executed with one single fault (either an
SET or an SEU) activated at a random time instance, each time re-running the program.

The execution results for the transient fault simulations are also written out, and are

122 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

then compared with the results from the error-free simulation. If any inconsistencies
in the results are detected, the particular transient fault that caused the inconsistency
will be recorded in error_record.txt. After all the pre-determined transient faults in all
the flip-flops within the pipeline are simulated, a summary detailing the total number
of corruptions in the data memory and the total number of the injected faults is written

out to summary.txt.

Write
execution Soft error-free
rocessor reset = g)) rocessor reset
P results to simulation < P
error_free.txt

v

head_ptr =
first_fault

head_ptr.detected =
true,

ead_ptr =
head_ptr.next_

name to
error_record.txt

Write R
Comparing

Sequential soft

execution
error — ——p] error_free.txt

results to

and error_n.txt
error_n.txt -

simulation

T ¥

Summary the
number of
detected errors
in summary.txt

Figure 5.16: The soft error effect analysis simulation flow.

VHDL file operations are used in the testbench for extracting and writing out the anal-
ysis results during the simulations. Figure 5.16 shows simulation flow realised by the
testbench, the code for which can be found in Appendix A. An example of the file op-
eration code that compares error_free.txt and error.txt is shown in Figure 5.17. The
data in the two files are compared line by line, and the soft errors are recorded in
error_record.txt when any inconsistencies are detected. Part of the analysis results in
error_record.txt are shown in Figure 5.18. The error record consists of the names of
the injected faults, the numbers of the errors, the corrupted memory content and the
expected memory content. An example for the summary of the analysis is shown in
Figure 5.19.

Two programs, quicksort, which sorts an array of integers, and tak, which is a recursive

function, are used for analysing the soft error effects on OpenRISC. Three soft errors,

Record the error je——

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

123

1 variable FFree, FlInject : bit_vector (31 downto 0);
2 file_open (memory, error_free.txt, read_mode);
3 file_open (faultl, error.txt, read_mode);

4 while not endfile(error_free) loop

5 readline (error_free , ILinel);

6 read (ILinel , FFree);

7 readline (error, ILine2);

8 read (ILine2, FlInject);

9 if FFree /= FlInject then

10 head_ptr.detected := true;

11 fname := new string ’(head_-ptr.fault_name.all);

Jun
N

writeline (error_record , fname);
write (OLine, string '(Fault #), left, 0);
write (OLine, fc, left, 5);
write (OLine, string '(Detected by mem:), left , 0);
write (OLine, FlInject, right, 9);
write (OLine, string '(expected:), left, 0);
write (OLine, FFree, right, 9);
writeline (faults , OLine);

end if;

end loop;

file_close (error_free.txt);

file_close (error.txt);

T T R e
XN = O O Lo U W

Figure 5.17: Part of the analysis results in error_record.txt.

1 :test_orpsoc(fileio):sl:0r1200_top0:0r1200_cpu:orl200_genpc:\ pcreg_-default_reg

[15] @hs65_11_dfprqnx9 (vhdl_funct)bit_flip2
2 Fault #10 Detected by mem:00000000000000000000000000000011 expected:
00000000000000000000000000001001

3 :test_orpsoc(fileio):sl:0r1200_top0:0r1200_cpu:o0rl1200_genpc:\ pcreg_default_reg

[15] @hs65_11_dfprqnx9 (vhdl_funct)bit_flipl
4 Fault #11 Detected by mem:00000000000000010011001100110011 expected:
00000000000000010011100100111001

5 :test_orpsoc(fileio):sl:0r1200_top0:0r1200_cpu:orl200_genpc:\ pcreg_-default_reg

[20] @hs65_11_dfprqnx9 (vhdl_funct) bit_flip
6 Fault #27 Detected by mem:00000000000000000000000000000000 expected:
00000000000000000000000000001010

7 :test_orpsoc(fileio):sl:0r1200_top0:0r1200_cpu:orl200_genpc:\ pcreg_-default_reg

[26] @hs65_11_dfprqnx9 (vhdl_funct) bit_flip1l
8 Fault #44 Detected by mem:00000000000000000010010110110000 expected:
00000000000000000010010111101000

9 :test_orpsoc(fileio):sl:0r1200_-top0:0r1200_cpu:0r1200_genpc:\ pcreg_default_reg

[7] @hs65_11_.dfpsqnx9 (vhdl_funct) bit_flip
10 Fault #78 Detected by mem:00000000000000000000000000000000 expected:
00000000000000000000000001010011

Figure 5.18: Part of the analysis results in error_record.txt.

1 Fault Cover:
2 90 faults , 9 detected

Figure 5.19: An example of the analysis results in summary.txt.

including one SET and two SEUs, are injected into each flip-flop inside the pipeline of

the processor. This is based on the assumption that the cell area that each bit occupies

is the same, therefore the probabilities that each bit is struck by radiation particles are

identical. The widths of the injected SETs are set as random numbers between 400ps

to 600ps. This is in agreement with the SET distribution results for 65nm technology

presented in [79].

124 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

40%

I
I quicksort
I =«

35%

—~ 30%

25%

20%

15%

Level of Vulnerability (LoV,

10%

5%

0%
id_insn RF opl&op2 ctriffs flags if_insn genpc whb_reg ex_insn wb_insn

Figure 5.20: The soft error vulnerability analysis results for OpenRISC proces-
SOT.

The Level of Vulnerability (LoV) is defined in Equation 5.1, which is equal to the number
of transient faults that caused corruptions in the execution results divided by the total
number of faults injected. According to Equation 5.1, the LoVs of different flip-flops
and registers can be identified. The higher LoV produced by a register or a flip-flop

indicates its higher vulnerability to transient faults.

LoV No. of transient faults that caused corruptions of program results
0] =

5.1
No. of injected transient faults (5-1)

The LoVs produced by different registers and flip-flops in the processor during the
simulation of both of the programs are shown in Figure 5.20. The PC register produces
the highest LoV in the simulation of both programs. A total of 90 transient faults
are injected into the PC register during each program simulation, and 31 (37.8%) and
34(34.4%) of them caused corruptions in the execution results for the quicksort and tak
program simulations, respectively. This is because the faults occurring in the PC can
easily corrupt the pipeline execution by fetching erroneous instructions. The flip-flops
that store the control signals (ctrl ffs) generated by the decoders in each stage of the
pipeline presents the second highest LoV. This is because the control signals are also
critical for correction pipeline execution. Other registers that present relatively high
LoVs are: the registers that store the instruction for the ID stage (id_insn) and IF stage
(if-insn); the registers that store the operand for the execution stage (opl and op2);
the RF, and the flag registers.

Notice that the registers that store the instructions in the EX stage (ex_insn) and the
WB stage (wb_insn) produced 0% LoV despite the injection of 198 transient faults in

both simulations. The reason for this is that most of the controls signals are decoded

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 125

in the IF stage and ID stage by using the instructions stored in 7 f_insn and id_insn.
The control signals are then saved in the ex_ctrls, which are the flip-flops that store the
control signals in the EX stage (see Figure 5.3). The ex_insn register is very rarely used
for the instruction decoding in the EX stage, hence the transient faults occurring in the
ex_insn can hardly affect the pipeline execution. Similarly, the wb_insn is not used for
the decoding process. The control signals for the WB stage stored in wb_ctrls flip-flops
are forwarded from the ex_ctrls flip-flops. The wb_reg also manifested 0% LoV for both
simulations. This is because wb_reg is used for WB forwarding, which is only invoked
for a store instruction to store the execution into the data cache. Therefore wb_reg has

a low vulnerability to radiation hits.

5.3 The Self-Checking Hardened Pipeline Design on Open-
RISC Microprocessor

Based on the soft error vulnerability results presented in Figure 5.20, the proposed
pipeline protection technique is developed in the OpenRISC 1200 microprocessor [84].
The radiation-hardened processor is then implemented in 65nm technology. The sequen-
tial cells, i f insn, id_insn, i f _ctrls, id_ctrls, ex_ctrls, RF, flags, opl, op2, and PC are
selected for protection since they manifest the highest vulnerabilities. The design of the

robust microprocessor pipeline and its operating principles are described in this section.

5.3.1 The Radiation Hardened OpenRISC Pipeline Design

The complete radiation hardened OpenRISC pipeline design is shown in Figure 5.21. The
pipeline architecture is broadly divided into a speculative domain and a non-speculative
domain. The speculative domain consists of the IF, ID and EX stages of the pipeline.
The registers and flip-flops in the speculative domain commit speculative executions,
which do not change the architectural state of the pipeline until the execution results
are stored in the non-speculative domain in the WB stage. The non-speculative domain
consists of the registers updated in the WB stage of the pipeline. These registers,
such as the RF and the flag registers, contain the intermediate execution results and
architectural states of the pipeline. During the architectural replay execution process,
the registers and flip-flops in the speculative domain of the pipeline can be simply flush
and do not need to be restored before the re-execution. This is because flushing these
registers and retrying the execution will not affect the correct architectural state of the
processor. However, the registers in the non-speculative domain of the pipeline stores
the state of the processor, therefore they need to be restored to the correct state before

any replay executions can be conducted.

126 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

The vulnerable registers, i f _insn, id_insn, opl, op2, the RF, and the flag registers are all
protected by the SETTOFF-based self-checking radiation register architectures proposed
in Chapter 4, Section 4.2.2. The vulnerable flip-flops storing the control signals between
each pipeline stage, if_ctrls, id_ctrls, and wb_ctrls, are replaced by the SETTOFF
architecture. In order to realise the self-checking capability in these SETTOFF-protected
flip-flops, two self-checkers are added, with one shared by the if_ctris and id_ctrils flip-
flops, and the other one shared by the the wb_ctris flip-flops. The PC register is protected

by a TMR, architecture since it is the most vulnerable part of the processor.

The architectural replay-based recovery mechanism introduced in Chapter 4, Section 4.2.4.1
is used for recovering the errors detected by the self-checkers. All the vulnerable registers
are therefore protected by the basic self-checking architecture illustrated in Figure 4.6
in Chapter 4, apart from the RF and the flag registers. This is because unlike other
registers, the RF and the flag registers might not be re-written during the replay op-
erations, thus the erroneous TD-based architecture might not be reset and the errors
could remain. Consequently, the RF and flag are protected by the clock gating-based
self-checking architecture described in Figure 4.7 in Chapter 4. The clock gating-based
architecture allows the Error_T'D signal to reset the corresponding TD architectures in
the RF or flags, even when the registers are not updated during the replay operations.
It should be noted that since the architectural replay-based recovery mechanism is in-
volved, the glitch filters are not incorporated at the system-level design. As discussed in
Chapter 4, Section 4.2.4.1, the glitches in the Error_T'D can only trigger an unnecessary

replay operation, but cannot corrupt the correct system executions.

All the Error T'D signals from self-checkers for the registers and flip-flops in the spec-
ulative domain are OR-ed together. The resulting Error_T D _spec signal is fed into the
pipeline recovery control unit to trigger corresponding replay operations. Similarly, the
ErrorT'D signals from self-checkers for the registers and flip-flops in the non-speculative
domain are also OR~ed together and fed into the control unit. The principle of the recov-

ery operations for the errors detected by the self-checkers is described in Section 5.3.2.3.

The Error_SET signals generated from the TRD architecture of the SETTOFFs in each
register are OR-ed together. Meanwhile, the Error_SET signals generated from the flip-
flops storing the control signals in the IF stage, ID stage, and EX stage are also OR-ed
together. The resulting signals from these OR-ed Error_SET signals are shown by the
red dashed arrows. The Error_SET signals generated by the registers and flip-flops in the
speculative domain (including SET _specl to SET _spec6) are further OR-ed together,
and the final result is fed into a shared error flip-flop for speculative operations. Similarly,
the Error_SET signals generated by the registers and flip-flops in the non-speculative
domain (including SET nonspecl to SET _nonspec3) are further OR-ed together, and
the results are fed into a shared error flip-flop for non-speculative operations. Rather
than generating a new delayed clock, we simply used the falling edge of the system clock

to drive both of the error flip-flops. As discussed in Chapter 3, Section 3.5, certain

127

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

19351824 pauapaey
dNL I uofielpes uyIayd-4as

goadsuou™ |35 -
¢oadsuou 135 --

Toadsuou™ |35

ERCCEINENEEEN

199057135 oo

g9oads— QL Jou3

To9ds QL 403

g€dadsuou™ QL Jou3

zoadsuou @l doMT - - - - P
Toadsuou gL Jou3

pecd

E||ror_TD S

Japodag

19p023P-pI 19p023p

aL Jou3

aL Jou3

Jadsuou
29ds™(

2ads™ 135
Jadsuou] 35

»
<
>

pec3

2
£ o
B -
w0
F gdidysnyy
_ma_a__ﬁm
ol o | IiT—————3 T - .
s} | quad
193
Q|
|

z23dsuou |35 y

e | H |
: I

Error_TD_s

uun |043u0)
Asanodau auljadid

M elep

urewo(J 9AnReMoadg

Figure 5.21: The robust pipeline design of the OpenRISC processor

128 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

constraints need to apply for the TRD architecture to effectively address SETs. The
realisation of a sufficient TRD interval, and the approach for meeting the constraints
required by the TRD architecture are further illustrated in Section 5.4.2. Notice that
the two error flip-flops only capture SET error signals during the write cycle of the
registers when the TRD architectures are enabled. The two error signals, SET _spec and
SET _nonspec, are fed into a pipeline recovery control unit which controls the recovery
operations within the pipeline. The principle of the recovery operations for the errors
detected by the TRD architectures are described in Section 5.3.2.2.

Two back-up registers, backup_rd and backup_flag, are added to back up the destination
register in the RF and the flag register, which are updated by the instructions in the
WB stage. The backed-up data is used for restoring the RF and flag registers during the
recovery operations for registers that are updated during the WB stage (see Section 5.3.2

for details of the replay operation). Both of the back-up registers are protected by TMR.

5.3.2 Operating Principles of Error-Tolerance in the Radiation-Hardened
Pipeline Architecture

The location of the radiation-induced transient faults inside the pipeline could be ran-
dom. However, they can be categorized into 3 types as follows. The recovery mechanisms

for the errors in each type are described separately.

1. SEUs that corrupt the data stored in the registers.
2. SET pulses that are produced by the combinational logic gates.

3. Transient faults occurring in the redundancy circuitry added for error-tolerance.

5.3.2.1 Recovery Mechanism for Type (1) Errors

As discussed Chapter 3, Section 3.3.1 and Section 3.4.1, the errors of type (1) can be
detected and recovered on the fly by the TD-based architecture within the SETTOFF.

Therefore, no extra recovery operations are required for these errors.

5.3.2.2 Recovery Mechanism for Type (2) Errors

For type (2), the SETs occurring at each stage of the pipeline will be detected by
the radiation hardened registers incorporated in the corresponding stages, if they are
captured. The architectural recovery operation is then required for correcting such
SETs. The PC moves forward and is check-pointed as it passes along each pipeline

stage. This allows the instruction at any stage of the pipeline to be replayed. As shown

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 129

in Figure 5.21, two SET error signals, SET _spec and S ET _nonspec, are generated for the
SETs captured by the speculative registers and non-speculative registers, respectively.
The two error signals trigger two types of architectural replay recovery operations which
re-execute the instruction in either the EX stage or the WB stage, depending on the

following three cases:

Case (1): If an SET occurs in the IF or ID stage of the pipeline, it will be detected by the
SETTOFF-based sequential cells incorporated in the speculative domain of the pipeline.
The detection of such SETs will assert the SET _spec error signal, which will trigger a
replay operation at the beginning of the following cycle, before the SET contaminates
the register file and the flag registers in the non-speculative domain. Since in this case,
the SET only corrupted the speculative operations, and none of registers storing the
architectural state of the pipeline are affected, the replay operation for case (1) will
simply flush the entire pipeline, re-fetch and re-execute the instruction in the execution

stage (i.e. the instruction in ex_insn.) to overwrite the capture SET.

Figure 5.22 shows an example timing diagram for the recovery process of an SET cap-
tured by the id_insn (Case (1)). PCn stands for the PC for the instruction INSNn. The
INSNS3 captured by the ¢d_insn at the rising clock edge of cycle 3 is corrupted by an
SET occurring in the decoder in the IF stage. If the pipeline is unprotected, the ID
stage of the pipeline will decode the erroneous INSN3 stored in the id_insn during cycle
3, and generate erroneous control signals to corrupt the execution stage. The corrupted
execution results will then be forwarded to the registers in the non-speculative domain
(RF, flag registers, and wb_reg). However, in the protected pipeline, the captured SET
is detected by the TRD architecture in id_insn at the falling clock edge of cycle 3,
which asserts the SET _spec signal in the error flip-flop for speculative operations. The
SET _spec signal then triggers the recovery operation for Case (1). The recovery op-
eration asserts the flushpipe signal, which flushes all the pipeline registers at the rising
clock edge of cycle 4 to prevent the erroneous execution from propagating. The stallpipe
signal is also asserted to stall the pipeline and disables all the registers from updating
the results from executing the instruction INSN3 stored in ex_insn in cycle 4. The PC is
rolled back to the PC in EX stage (i.e. the PC?2), by the PC_rb signal. When the new PC
value becomes available at cycle 6, the pipeline starts fetching the new instruction and
normal operation resumes (NOP stands for the NOP instruction that does not contain
any valid executions). The SET is not repeated in the IF stage during the re-execution
in cycle 8, so that id_insn captures the correct INSNS after the replay. The recovery
process for Case (1) ensures that the errors in all pipeline registers in the speculative
domain are overwritten during the re-execution to prevent them from corrupting the
WB stage.

Case (2): If an SET occurs in the EX stage, it can corrupt the non-speculative registers,
such as the RF, the flag register, and the wb_ctrl flip-flops during the WB cycle. The

recovery operation in this case will re-execute the instruction in the WB stage (i.e.

130 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

1 2 3 4 5 6 7 8 9 10
| | R | | | | |
"SR I Y N s S I Y I
PC Zo 1 S e) I) O TGN O G e

if insn INSN |NSN4 NOP INSN2 INS INSNS
oy X ' rei'overed # T~
id_insn NSNOX INSN1 X INSN2 Y INSN3 . NOP NOP. INSN2_K(INSN INSN4

N~
ex_insn]] LINS . OP__, NOP NOP INSN2
| | | | | |]] | | | |
wb_insn) { JINSNO X INSNI J NOP LNOP X NOP_Y NOP Y NOP X INSN2
SET _spec I I I I I I ! I I I I
1 |
flushpipe { y
. I| I
stallpipe T |
PC_rb 1 :I

Figure 5.22: Timing diagram of the pipeline recovery operation for Case (1)

the instruction in wb_insn) to re-write the RF, the flag register, and the wb_ctrl flip-
flops. However, unlike the replay operation in Case (1), the intermediate data and the
architectural state of the pipeline might have been corrupted by the SET. These data
and pipeline states may be used as operands or other operation conditions during the
re-execution. Therefore for Case (2), the RF and the flag register need be restored using

their back-up registers before the recovery operation is committed.

Figure 5.23 depicts an example timing diagram for the recovery process of an SET
captured by the RF (Case (2)) 2. When the execution in the EX stage is about to write
its results into the destination register (Rd) in RF and the flag register, both Rd and the
flag register are backed-up into their back-up registers before they are updated. resultn
and flagn stand for the execution results and the flags generated by the INSNn in the EX
stage. In cycle3, the captured result/ in Rd is corrupted by an SET occurring in the EX
stage. The SET nonspec signal is asserted upon detection which invokes the recovery
process for Case (2). The pipeline is flushed and stalled while the PC is rolled back to
the PC value in the WB stage (i.e. PC4), to re-fetch and re-execute the instruction in
wb_insn (i.e. INSN/) which corrupts the RF. In addition, Rd and the flag register are
restored by the back-up registers in cycle 4 to ensure that the system state is consistent
as the original execution during the re-execution. In cycle 10, Rd is re-updated and
recovered by the re-execution. The recovery process for Case (2) ensures that the all

SETs captured in the WB cycle can be mitigated.

Case (3): A third circumstance can happen if a captured SET is detected when a
branch instruction is executing. Figure 5.24 illustrates the timing diagram for Case (3).
PC2(brc) stands for the PC for the branch instruction brc. PC100 is the branching
address. In OpenRISC, the branch operation is committed in the ID stage to force the

2Control signals (flushpipe, stallpipe, PC_rb) are not shown in Figure 5.23 since they operate the same
as shown in Figure 5.22.

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 131

1 2 3 4 5 6 7 8 9 10 1
| | I | | | | | |
(1S I I I Oy Y oy O Iy
pc Pl FE PO IREY) ST TG S A G
if insn INSN4Y INSNS T INSN6 Y INSNZ X NOP " T NOP Y INSN4 T'INSN5 Y INSN6 Y INSN7 I INSN8
id_insn INSN3Y INSN4 J INSNS Y INSNe X NOP " T NOP_ T NOP_JTNSNZ TINSN5 TTNSN6 Y INSN7

ex_insn INSN2JX INSN3 J INSN4 ¥ INSNS X NOP . ¥ NOP T NOP Y NOP Y INSN4 I INSNS J INSN6

- ., “#restore flag
] flag2 [flag3 —
T T 1

| 1

backup-flag [' Tlaga

wh insn INSNIINSNZ X TNSN3 L INGNZ { NP [Nor I Nop { NoP 1 Nop Y INSNZ NSNS
- T T y {— T t T T r recovered —% — — |
| — SR [— | L [l L L L Z |
Rd Jresult2 [result3 J respitd kresylts | . . . L (resultd)] resultS
| : |4 #restoreRd | N~
backup-Rd Y Y result? Yresult3 A . N I resultd
| 1 L] L L : 4:
flag fla fla flagd) flag3 . I flagd X flags
T T L
L L
|
T

SET_nonspec

Figure 5.23: Timing diagram of the pipeline recovery operation for Case (2)

1 2 3 4 6 7 8 9 10 11 12
| | | | [| | | | | |
CIk
PC
if_insn
id_insn ¥INSNO J INSN1 ¥ brc {INSN3 " NOP : Il NOP_J NOP_ X brc X INSN3 JINSN100}
ex_insn ¥ %INSNO ¥ INSNl{ brc *INSJINEB{ NOP : Il NOP + NOP % NOP % brc %E\IS-N;
wb_insn ¥ ¥ ¥INSNO¥INSN1¥ b{c { NOP : Il NOP ¥ NOP ¥ NOP ¥ NOP ¥ brc
SET_spec | | | | | :|—| : : | | | |
flushpipe :I_I : :
stallpipe :I I :I
PC_rb J il

Figure 5.24: Timing diagram for pipeline register recovery with branch instruc-
tion (Case 3)

PC to jump to the branching address. Therefore a dangerous PC (denoted by PC3(dg))
is forwarded into the pipeline before the branching PC, to fetch the INSN3. A dangerous
situation can happen if an error is detected when INSNS is in the ez_insn. In this case,
re-fetching the instruction in ex_insn only forwards PC3(dg) into the pipeline, therefore
the branch instruction stored in PC2(brc) will not be executed during the replay. This
results in the branch operation not being detected during the re-execution, such that the
processor fails to jump to the branching address. The problem is solved by monitoring
the branch operation within the pipeline, and when such situation occurs, the branch
PC in the WB stage (PC2(brc) in this case) are replayed as is shown in Figure 5.24.

The error is corrected in cycle 11 in id_insn.

Most of the errors detected by the TRD architecture are transient faults which may not

occur again during the re-execution. In such cases, the recovery process can successfully

132 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

recover the error at one time. If other SETs occur during the replay operation, they will
be detected and will trigger further replays until no errors are detected. However, the
recovery mechanism is not feasible for timing errors. This is because timing errors may
repeat and be detected again during the recovery process to trigger another recovery
operation. To solve this problem, the number of the repeat recovering processes can
be recorded such that when it exceeds a certain value n, which is programmable, the
error is considered a timing error. Certain frequency or voltage tuning techniques may
be required for recovering from timing errors during re-execution. The usage of the
potential timing error-tolerance capability will be addressed as future work, discussed
in Chapter 6, Section 6.2.1.

5.3.2.3 Recovery Mechanism for Type (3) Errors

The errors of type (3) include errors that corrupt the TRD architecture, errors that

corrupt the TD-based architecture, and errors that corrupt the self-checker.

The errors that corrupt the TD-based architecture are detected by the self-checkers,
and are recovered by the replay-based recovery mechanism introduced in Chapter 4,
Section 4.2.4.1. Similar to the replay recovery mechanism for the errors of type (2), the
errors generated from the speculative domain will assert the Error T D _spec signal (see
Figure 5.21), which will then trigger a replay execution to flush the pipeline, re-fetch
and re-execute the instruction in the EX stage. The errors from the non-speculative
domain will assert the Error_T D _nonspec signal, which triggers a replay execution that
replay the instruction in the WB stage. During both replay operations, all the pipeline
registers and flip-flops storing the control signals will be re-written, such that all the
TD-based architectures in these cells are reset. The errors generated from the TD-based
architecture of these cells will be recovered after the replay, when normal operation can
resume. Nevertheless, if an error is detected from the TD-based architectures in the
RF or the flag register, the Error_T D signal will also trigger a reset signal to reset the
TD-based architectures in the corresponding register which generates the error, besides
triggering the replay operation. This is because the RF and the flags might not be
updated during the replay, such that the reset of TD may not be triggered automatically.
The erroneous TD-based architecture can stay corrupted unless the reset operation for

the TD is explicitly executed.

The errors corrupting the TRD architecture and the self-checker may produce a faulty
error signal triggering an unnecessary recover process. However, such errors do not cor-

rupt the pipeline execution results. Therefore, no extra recovery operations are involved.

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 133

5.4 Experimental Methodology and Implementation Pro-

cess

The OpenRISC processor with the proposed radiation hardened pipeline architecture
was implemented in STMicroelectronics 65nm technology [81] 3. The transistor-level
implementation of SETTOFF and the self-checker, which construct the radiation hard-
ened register architecture, have been characterized for the 65nm technology as new cells
using Synopsys Liberty NCX [90]. The behavioral model of the OpenRISC 1200 proces-
sor was re-designed to incorporate the new pipeline architecture described in Section 5.3,
which was then synthesized to gate-level descriptions using the characterized 65nm tech-
nology library. The 32-bit pipeline registers and the registers in RF were replaced by
the 32-bit radiation hardened registers. Gate-level simulation was carried out, based on
the ORPSoc platform which provides the smallest-possible reference system for testing
the processor [89]. This section describes the details of the experimental methods for

implementing the processor.

5.4.1 Cell Characterisation using Synopsys Liberty NCX

The two versions of the SETTOFF architecture introduced in Chapter 3 are custom
transistor-level designs. In order to incorporate SETTOFFs into the OpenRISC mi-
croprocessor and carry out system-level evaluation through gate-level simulations, they
need to be characterised as new cells to be added into a technology library. Synopsys
Liberty NCX, [90], is a software tool that can generate a library in Liberty (.lib) format
by extracting the essential timing and power information through a number of SPICE
simulations of the cells. The transistor-level design of the SETTOFFs are translated
into Liberty format and added into the STMicroelectronics 65nm standard cell library
by using Liberty NCX.

5.4.1.1 Cell Characterisation Flow

Figure 5.25 shows the data that is required for cell characterisation and the generation of
the new library. For translating a transistor-level design of a cell into the Liberty format,
the SPICE netlist of the cell, and the transistor model file that contains the process
information of any elements constructing the cell are compulsory. The SPICE netlist of
the cell needs to be contained within a sub-circuit. The library template, and the cell
templates for each cells to be characterised are also prerequisite. The library template
file specifies the library characterisation parameters, such as units, delay threshold, and
slew thresholds. An example of the library template is provided in Figure 5.26. The
delay threshold specifies the points that the propagation delays are measured (40% of the

3BUt is not actually fabricated

134

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

. _ . Models for
leertY Jdib t:r:ral‘;\t/e templates netlists for circuit
source library P cells elements
Liberty NCX HSPICE

HSPICE
simulation
data files

New Liberty
lib library

Figure 5.25: The data required for NCX characterisation [90].

signal voltage for rising transitions, and 60% of the signal voltage for falling transitions).

The slew threshold specifies the transition times to be measured, which is from 20% to

80% of the signal voltage. The list in the do statement specifies all cells that need to be
characterised by NCX.

*Unit definations
nom-_voltage : 1.2000000 ;
nom_temperature : 25.0000000 ;

time_unit

lns ;

voltage_unit : 1V ;

current_unit : 1lmA ;
pulling_resistance_unit : lkohm ;
capacitive_load_unit : 1.0000000 pf ;

*delay threshold
input_threshold_pct_fall : 60.0000000 ;
input_threshold_pct_rise : 40.0000000 ;
output_threshold_pct_fall : 60.0000000 ;
output_threshold_pct_rise : 40.0000000 ;

*slew threshold

slew_lower_threshold_pct_fall : 20.0000000
slew_lower_threshold_pct_rise : 20.0000000
slew_upper_threshold_pct_fall : 80.0000000
slew_upper_threshold_pct_rise : 80.0000000

*List of cells to be characterised

do {
invl
inv2

}

Figure 5.26: Example of a library template.

The cell templates specify the cell-level parameters, such as the cell area, the cell func-

tion descriptions in Liberty format, the input and output pins of the cell. Figure 5.27

shows an example of the cell template. The function of the cell (inverter) is described

using a simple Boolean logic function. For more complicated combinational cells, the

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 135

functions may need to be described in truth tables. For sequential cells, statetable, ff,
or latch groups are used for describing the functions. The details for the Liberty format
description of the functions of complicated cells will be introduced later in Section 5.4.1.2
and Section 5.4.1.3.

area : 3.6400000 ;

cell_footprint: inv ;
pin A {
direction : input ;
}
pin Y {
direction : output ;
function : !A ;
}

Figure 5.27: Example of a cell template.

The source library is optional, but can be used to generate the library template and the
cell templates if provided. The designer can then specify whether to use the templates
generated from the source library, or self-defined templates during the characterisation
process. When creating a new library, self-defined templates must be provided to specify
the parameters at both library-level and cell-level. When adding new cell models to a
library or modifying the existing cell models in the library, the templates generated from
the source library are normally used to maintain the coherence of the library attributes

between the new output library and the source library.

During the characterisation process, NCX sensitises all the cell-arcs that are required
to produce simulation measurements of the desired characteristics, such as the delay
and slew rates of each cells. The sensitisations of the cell-arcs are generated from the
cell function, or a sensitisation explicitly specified in the cell template file. The SPICE
netlists for simulating all the cell-arcs are then created and sent to the HSPICE simu-
lator. HSPICE simulates all the cell-arcs based on modelling the actual transistor-level
silicon behavior specified in the transistor model file. After all the simulations are per-
formed, the cell models are extracted and translated into the Liberty format. The new
library that contains the new characterised cells is finally written out. Liberty NCX can
describe a variety of models in the output library. Composite Current Source (CCS)
format, for instance, is a newer model which can be used for timing, power, and noise
analysis for 90nm technology or below. NCX can also acquire the models in Nonlinear
Delay Model (NLDM) format, which is a older format based on voltage sources. The
output library in Liberty (.1ib) format can be translated into database format (.db), or
HDL cell description models (.vhd or .verilog) using the Synopsys library compiler. The
database format can be used by the Synopsys Design Compiler for RTL synthesis. The
HDL cell description models can be used in gate-level simulations after the synthesis, to

verify the system-level functionality.

136 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

5.4.1.2 Characterisation of the Complete SETTOFF

The complete SETTOFF1 and SETTOFF2 architectures are characterised as new cells
and are added into the STmicroelectronics 65nm library. The SPICE models of both
SETTOFFs, and device models from the the 65nm technology process are used for the
characterisation. The library template used is generated from the 65nm source library.
The do lists in the library template (refer to Figure 5.26) are modified to include the
SETTOFF1 and SETTOFF2 for characterisation. The cell templates used for charac-
terising the SETTOFFs are also generated from the source library, and are consistent
with the cell templates of the main flip-flops that constructed the SETTOFFs. This is
because both SETTOFFs perform exactly the same as the conventional main flip-flop
during normal operation. The templates for the conventional flip-flops can correctly
describe the function of the SETTOFFs in normal operation, and therefore proper sen-
sitisations of the cell-arcs can be determined for characterising the SETTOFFs. Only
the cell area specified in the template file is manually modified according to the ratio
of the transistor count between the main flip-flop and the SETTOFFs. The character-
isation generated both the CCS and NLDM timing and power behavioral models. The
output library with the new SETTOFF cells can be used for synthesising the micropro-
cessor to incorporate the SETTOFFs into the pipeline. The gate-level description of the
microprocessor can be used for carrying out accurate timing and power analysis at the

system level.

5.4.1.3 Characterisation of the Error-Tolerance Circuitry in SETTOFF

The characterisation of the complete SETTOFF's captures the accurate timing and power
information of the transistor-level design during normal operation (error-free), and pre-
serves this information in the gate-level models for gate-level simulation. However, the
error-tolerance functionality and capability of the SETTOFFs were not captured. This
is because the characterisation used the template file of the main flip-flop, in which
only the function of a conventional flip-flop is specified. In order to characterise the
error-tolerance functionality of the SETTOFFs, a full description of the cell functions
in Liberty format for both error-free conditions and error conditions would be required.
However, the SETTOFF design is a complex cell, whose functionality cannot be fully
specified in Liberty format. To address this problem, the error-tolerance circuitry that
constructed the SETTOFFs are separated from the whole circuitry, and are treated as
individual cells for characterisation. This allows the functions of the error-tolerance
circuitry to be described separately from the main flip-flops. The details of characteris-
ing the error-tolerance circuitry of both SETTOFF1 and SETTOFF2 are explained as

follows:

The error-tolerance circuitry in SETTOFF1 which consists of the DC generator, the TD,

and the correction XOR-gate are separated and are constructed as a new cell named

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 137

Q temp — D_> Q
Correction XOR
»/input Error SEU
] Transition
CLK Detection Clock —»DCH Detector
’ (DC) generator (TD)
—»DCL

Lf\— Error Reset

Figure 5.28: The SPICE netlist of the TDXORI1 in SETTOFF1.

TDXOR1. The SPICE netlist of the TDXOR1 shown in Figure 5.28 is imported into
NCX for characterisation. The source library, the library template, and the device mode
file used for characterisation are all the same as the ones used for the characterisation
for the complete SETTOFF1. However, the cell template is self-defined to include the
function of the TDXORI1 specified in Liberty format, which is shown in Figure 5.29.
Since the TD is a retention cell (not purely combinational), its function needs to be
described using a state table. The definition of the values in the state table can be
found in Table 5.2. Qtemp, CLK, and Error_reset are the input pins of the cell, and
IError _SEU is the internal node of the TDXOR1. The values in the first 3 columns of
the state table in Figure 5.29 specify all the possible input combinations of the 3 input
pins. The last 2 columns leading by the colons represent the current state and the next
state of the node I Error_SEU, respectively. The current and next states shown in node
IError_.SEU match the correspondence input values. The function of the output pin

@ is specified by a Boolean expression of the inputs and the internal node.

Table 5.2: State table definition in Liberty format.

Value H L - R F N H/L L/H
expands to | expands to
hold | both L and | both H and
H L

Don’t | rising | falling

Meaning | high | low care edge edge

Because NCX does not support modelling complex sequential cells, the TDXOR1 will
be modelled as a conventional sequential cell (flip-flops or latches) during the character-
isation. The sensitisations of the cell-arcs are then performed based on the conventions
of flip-flops or latches, by regarding the Qtemp as a clock pin. Such sensitisations will
produce certain meaningless cell-arcs such as the setup time and the Clock-to-Q de-

lay. These cell-arcs cannot be measured for the TDXORI, so they need to be removed

138 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

statetable (Qtemp CLK Error_reset , IError_SEU) {
table : - - L - L, \
- H H L N, \
R L H L H, \
F L H L H , \
H L H L N o, \
L L H L N, \
R - H H L, \
F - H H L, \
H - H H N, \
L - H H N ;
}
pin Qtemp {
direction : input ;
}
pin CLK {
direction : input ;
}
pin Error_reset {
direction : input ;
}
pin Error_SEU {
direction : internal ;
internal_node : IError_ SEU ;
}
pin Q {
direction : output ;
state_function : !Qtemp*Error_SEU+Qtemp*!Error_SEU ;
}

Figure 5.29: Function description of the TDXORI1 in Liberty format.

manually before the SPICE netlists for simulating these arcs are created and sent to
the HSPICE simulator. After removing the meaningless cell-arcs, NCX will simulate all
the meaningful cell-arcs of TDXOR1, and extract the required information in Liberty

format. The output library will consist of the TDXOR1 as a new cell model.

Similarly, the error-tolerance circuitry in SETTOFF2 which consists of the optimised
TD and the correction XOR-gate is separated from the entire cell. The new cell shown
in Figure 5.30 is named as TDXOR2. Figure 5.31 shows Liberty-format function de-
scription of the TDXOR2 in the cell template for characterising the TDXOR2. The
characterisation process for the TDXOR2 is the same as that for characterising the
TDXOR1. Because the full functions of the cell are captured during the characterisa-
tion, and are preserved in the new cell models in the output library, the Liberty format
of the cell models of TDXOR1 and TDXOR2 can be translated into the HDL description
models for gate-level simulation. For realising the gate-level simulation of both SET-
TOFFs, the HDL descriptions of the TDXOR1, TDXOR2, and the main flip-flops are
manually connected to construct the SETTOFFs. The full functionalities under both

error-free conditions and error conditions for both SETTOFFSs can then be realised.

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

139

Correction XOR

Q temp bar —TD_> Q

L input D J Error SEU_bar

CLK —»clk

Figure 5.30: The SPICE netlist of the TDXOR2 in SETTOFF2.

statetable Qtemp_bar CLK IError_SEU_bar {

table : - H -+ L , \
R L/H -+ H/L , \
F L/H - : H/L , \
H L - N, \
L L - N
}
pin Qtemp_bar {
direction : input ;
}
pin CLK {
direction : input ;
}
pin Error_.SEU_bar {
direction : internal ;
internal_node : IError_SEU_bar ;
}
pin Q {
direction : output ;
state_function : !Qtemp_bar*Error_SEU_bar+Qtemp_bar*!Error_SEU_bar ;
}

Figure 5.31: Function description of the TDXOR2 in Liberty format.

5.4.1.4 Characterisation of the Self-Checker

The same method for characterising the TD-based circuitry described in Section 5.4.1.3

is also used for characterising the self-checker. As shown in Figure 4.3 in Chapter 4, the
self-checker consists of a TD-checker, an XOR-gate, and a glitch filter. Since the glitch

filter is not incorporated into the pipeline of the radiation-hardened processor (See Sec-

tion 5.3.1), only the TD-checker and the XOR-gate are combined and are characterised

as one new cell in the 65nm technology library. The Liberty-format function descrip-
tion of the combined TD-checker and the XOR-gate is shown in Figure 5.32. Refer to

140 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

the circuit schematic of the TD-checker shown in Figure 4.4, Chapter 4, Pin @ is the
input of the TD-checker connected to the output of the SETTOFF. rising_tran and
falling tran are the two outputs of the TD-checker. Error I'D is the output pin of
the self-checker generated from the XOR-gate. Again, since the full functions of the cell
are captured during the characterisation, the Liberty format of the cell model of the

self-checker can be translated into HDL models for gate-level simulation.

statetable CLK IFalling_tran IRising_tran {

o

table : H
L/H
L/H
L

L

/L, \

om0
{ I I |
==}
~
=
| T B B |
2= =
R

}
pin Q {

direction : input ;

}

pin CLK {
direction : input ;

}

pin falling_tran {
direction : internal ;
internal_node : IFalling_tran ;

}

pin rising_tran {
direction : internal ;
internal_node : IRising_tran ;

}

pin Error.TD {
direction : output ;
state_function : !falling_tran*rising_tran+falling_tran*!rising_tran ;

}

Figure 5.32: Function description of the self-checker in Liberty format.

For incorporating the characterised self-checking architecture into the register shown in
Figure 4.6 in Chapter 4, the parity checker is constructed by a XOR-tree using structural
HDL descriptions. The HDL description of the self-checker is then manually placed into
the gate-level description of the SETTOFF-protected register to construct the whole
self-checking register architecture. The self-checking register architecture can then be
incorporated into the gate-level description of the processor pipeline to carry out gate-

level simulations for the whole OpenRISC processor.

5.4.2 Setting TRD and TD Intervals and Clock Management

In the radiation-hardened OpenRISC processor implementation, only one clock is used
for driving both the system flip-flops (by using the positive clock edge), and the error
flip-flops in the TRD architecture (by using the negative edge of the clock). The TRD
and TD intervals of the incorporated SETTOFF architectures are hence decided by the

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 141

frequency and the duty cycle of the clock. In order to be consistent with the circuit-level
and register-level evaluations presented in Chapter 3, and Chapter 4, a 185MHz clock

is used for driving the processor.

The choice of the TRD and TD intervals is based on the purpose of providing desirable
SET and SEU coverage. The two intervals formed by the two clock phases represent
a trade-off between SET- and SEU-tolerant capabilities. A bigger TRD interval allows
more SETs with bigger widths to be addressed, while a bigger TD interval can detect
and correct more SEUs on the fly. Since the SEUs that are not corrected during the
TD interval will still be addressed during the TRD interval, the aim is then to provide
a sufficient TRD interval to efficiently reduce both the SET and SEU failure rate of the
SETTOFF. The widths of the potential SET pulses are the main factors for determining
the TRD interval. As reported in [79], the mean and the standard deviation of the width
of the SET pulses in 65nm technology are 530ps and 150ps, respectively. According to
the circuit-level evaluation results in Chapter 3, Section 3.7.5.2, a minimum 800ps TRD
interval is chosen because it can reduce the SET failure rate of the SETTOFF to 0 in
65nm technology. With a 800ps TRD interval, the SEU failure rate of the SETTOFF

is also reduced to 0 since it covers all the correction glitches.

In order to achieve a minimum of 800ps TRD interval with a 185MHz clock, the circuit-
level TRD constraints described in Chapter 3, Section 3.5, and the register-level TRD
constraints described in Chapter 4, Section 4.2.3 need to be satisfied. The TRD inter-
val is formed by the delay element &, which equals the high phase of the clock since
the negative edge of the system clock is used for driving the TRD architectures. The
maximum delay of the comparator (including the XOR comparator and the OR-tree)
of the TRD architecture at register-level is 400ps, which is obtained from Equation 4.1
in Chapter 4, Section 4.2.3. A 1.5ns delay element § is chosen, which can satisfy the
minimum TRD interval requirement and other TRD constraints described in Chapter 3,
Section 3.5. The duty cycle, Duty., of the 185MHz system clock is therefore shown by
Equation 5.2.

Dhclk . 1.5ns
Pclk - 5.4ns

Dutyey, = = 27.8% (5.2)

where Dy is the high phase of the clock, and P, is the clock period.

Finally, buffers are inserted into the shortest path of the combinational logic in each
pipeline stages to satisfy the shortest path constraint of the TRD technique for all the
incorporated radiation-hardened cells. The buffers that provide the maximum delay with
minimum power consumption and area occupation are chosen to minimise the incurred

overhead.

142 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

5.5 Evaluation Results and Comparative Analysis

The reliability and the implementation overheads of the proposed radiation-hardened
processors are evaluated through gate-level simulations. The results for the SETTOFF2-
based robust processor architecture are explicitly presented, and compared with previous

pipeline protection techniques.

5.5.1 Reliability Evaluation for the Radiation-Hardened Processor

The transient fault injection technique and the simulation methodology used for analysing
the error vulnerability of the original OpenRISC described in Section 5.2 are used for
evaluating the reliability of the radiation-hardened processor. However, besides injecting
transient faults into the original cells using the methods described in Section 5.2.2, the
same method is also used to inject transient faults into the redundant circuitry of the
processor added for error-tolerance. To be specific, the transient faults injected into the

redundant circuitry include:

e The SEUs injected into the transition detectors to corrupt the TD-based architec-
tures in SETTOFFs.

e The SEUs injected into the error flip-flops to corrupt the TRD-based architectures
in SETTOFFs.

e The SEUs injected into the TD-checkers to corrupt the self-checkers in the self-

checking registers.

e The SEUs injected into the backup registers for the RF and flag register.

Three programs, the quicksort and tak programs used in the vulnerability analysis in
Section 5.2.3, and a matrix multiplication program, are used for the fault simulation. The
evaluation results are compared with the reliability results of an unprotected OpenRISC
processor. Table 5.3 shows the number of transient faults injected into each processor and
the visible errors occurring in the data memories after running the programs. A total of
4050 identical faults (including both SETs and SEUs) are injected into the original cells
of each of the two processors. These faults incur 306, 305, and 354 errors in the original
process for the quicksort, tak, and matrix multiplication programs, respectively. All
these errors however, are mitigated in the proposed OpenRISC processor. In addition,
the transient faults injected into the redundancy circuitry in the proposed processor are

also tolerated and did not induce any soft errors in the outputs of the programs.

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 143

Table 5.3: Reliability analysis results for the radiation hardened OpenRISC

Faults injected into the original cells Faults injected 1.nt0 the
redundancies
Program 4050 1411

Errors in original | Errors in radiation Errors in radiation

OpenRISC hardened OpenRISC hardened OpenRISC
quicksort 306 0 0
tak 305 0 0

matrix

multiplication 354 0 0

5.5.2 Implementation Details and Error-tolerance Overheads

The implementation details of the SETTOFF2-based radiation-hardened OpenRISC
processor are summarised in Table 5.4. The results come from evaluating only the core
of the processor; the power consumption and area of other parts of the processor, such as
the caches and memory is not considered. The processor is implemented in 65nm tech-
nology with 1.2V supply voltage and 185MHz clock frequency. The total error-tolerance
area overhead and power overhead for the radiation-hardened OpenRISC processor are
26.7% and 17.8%, respectively, and break down as follows: the incorporated replay re-
covery architecture and the TRD circuitry of all SETTOFF2s incur 13% more area and
2.4% more power consumption. A total of 956 buffers are inserted into the pipeline
to achieve the timing constraint for the TRD architectures. The inserted buffers incur
1.5% extra area and 0.5% more power consumption in respect to the whole processor
core. A total number of 1219 SETTOFF2s and 39 self-checkers are incorporated. These
self-checking architectures incur an area overhead of 12.1% and a power consumption
overhead of 14.7%.

5.5.3 Comparative Analysis with Razor and SEM /STEM Pipeline Pro-
tection Techniques

Both the Razorll pipeline protection technique and the proposed pipeline protection
technique utilized an architectural replay recovery operation, which consumes extra
operation cycles and causes Instruction Per Cycle (IPC) overheads. However, in the
proposed pipeline protection technique, most of the SEUs are detected in the TD interval
and are recovered on-the-fly. The replay operation is only triggered for correcting the
captured SETs or the corrupted TD architectures during the TRD interval. Razorll
uses a conventional replay recovery mechanism and all the errors are recovered through
re-execution. Therefore, the proposed pipeline protection incurs a much smaller IPC

overhead than the conventional replay recovery mechanism used in RazorIl. In addition,

144 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

Table 5.4: Radiation hardened processor implementation details

Technology node 65nm
Frequency 185MHz
Supply Voltage 1.2V
Temperature 25C
Total Area (um) 121939
Total Power (mW) 22.4
No. of SETTOFF2s incorporated 1219
No. of self-checkers incorporated 39
Area Overhead of the self-checking arch. 12.1%
Power Overhead of the self-checking arch. 14.7%
Replay Recovery Area Overhead 13%
Replay Recovery Power Overhead 2.4%
Number of Buffers inserted for TRD 956
Buffer Area Overhead 1.5%
Buffer Power Overhead 0.5%
Total Error-tolerance Area Overhead 26.7%
Total Error-tolerance Power Overhead 17.8%

the system-level area and power consumption overheads for the proposed protection
technique to protect the pipeline registers (except the RF and flags) are comparable
with the RazorII technique. The SEM/STEM pipeline protection technique incurs much
bigger overheads that are similar to TMR.

On the other hand, RazorIl and SEM/STEM pipeline protection techniques cannot
protect the WB stage of the pipeline and the registers that store the architectural states
of the system during the WB stage (e.g. the RF and the flag registers.). This is
because Razorll cannot efficiently address SEUs, and the error-tolerance overheads are
too big for SEM/STEM to protect the RF. Razorll and SEM/STEM techniques use
a stabilizer buffer or register before the WB stage to make the WB stage not timing-
critical. Therefore, the TEs occurring in the WB stage are not considered. The stabilizer
buffer or the register also guarantee that no errors are forwarded into the RF during the
recovery process since the RF does not have SET /TE-tolerant capabilities (see [42] [41]
[44]). However, SETs occurring during the write cycle of WB stage can still corrupt the
registers that are updated during the cycle. The proposed pipeline protection eliminates
this extra stabilizer and shrinks the pipeline depth compared with the previous pipeline
protection techniques. Both the SETs occurring during the write cycle of WB stage,
and the SEUs occurring in the registers updated during the write cycle are tolerated by

the incorporated robust registers.

Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design 145

5.5.4 Comparative Analysis with ECC-based RF protection technique

It has been demonstrated in Chapter 4, Section 4.4 that the proposed radiation hard-
ened register can efficiently protect the RF. Compared with the traditional ECC-based
RF protection technique, the proposed RF protection significantly improved the MBU-
tolerance capability since each bit inside the protected RF has its own built-in error-
tolerance circuitry. In addition, previous research indicates that the majority of MBUs
occurring in the RF are caused by the captured SETs originated in the combinational
gates (such as the read and write logic) in the RF [56]. This is because that the com-
binational logic has a high degree of fanout, and the majority of the cell area within
the RF is consumed by the read and write logic. As a result, the proposed pipeline
technique can provide a noticeably better error-tolerance than ECC, since ECC does
not have SET-tolerant capabilities to combat these SET-induced MBUs.

As reported in Chapter 4, Section 4.4.5, the proposed technique requires much less power
consumption and delay overhead for protecting the RF, compared to the ECC technique,

but it occupies more chip area.

5.6 Concluding Remarks

This chapter proposed a radiation hardened pipeline architecture based on the self-
checking SETTOFF techniques proposed in Chapter 3 and Chapter 4. In order to achieve
a cost-effective pipeline protection, a gate-level transient fault injection technique is
developed and used for analysing the soft error vulnerability of the OpenRISC processor.
Based on the analysis results, the most vulnerable registers and flip-flops within the
pipeline are selected to protect using the SETTOFF-based self-checking architectures.
The entire pipeline, including the pipeline registers and the RF are protected. The
errors occurring in each stage of the pipeline are addressed by the radiation hardened
cells incorporated in the corresponding stage. The SEUs occurring within the protected
sequential cells will be detected and corrected on the fly at the circuit level. Other
harmful transient faults within the pipeline, such as the captured SETSs, and the transient
faults corrupting the redundant circuitry will be recovered by an architectural replay

recovery mechanism.

The proposed robust pipeline architecture is implemented in a 32-bit OpenRISC mi-
croprocessor in 65nm for evaluation. The evaluation results show that it can effectively
mitigate both SEUs and SETs occurring in different parts of the pipeline. The reliability
of the proposed pipeline protection is compared with previous techniques. The compar-
atively analysis shows that the proposed technique can provide noticeably higher level

of reliability for different parts of the pipeline, with less or comparable overheads. It can

146 Chapter 5 The Self-Checking Radiation Hardened OpenRISC Pipeline Design

overcome the drawback of most previous pipeline protection techniques and achieves a

complete and cost-effective protection.

Chapter 6

Conclusions and Future Work

With technology scaling, reliability issues caused by radiation-induced soft errors are
becoming increasingly severe. Sea-level non-safety-critical applications are facing a se-
rious challenge, not only because they are becoming more vulnerable to particle strikes,
but also because the existing error-mitigation techniques cannot provide effective and
affordable protection, especially for general logic. The contributions in this thesis pro-
vide novel and cost-effective techniques to achieve soft error mitigation in general logic.
The techniques address significant limitations of most previous techniques, and are able
to provide complete protection for microprocessor pipelines. Meanwhile, the proposed
techniques require lower or comparable overheads compared with previous techniques.
The contributions of the thesis are listed in the next section followed by some proposed

future research directions.

6.1 Conclusions and Contributions

All the objectives of this research have been clearly listed in Chapter 1, Section 1.6:

1. Develop cost-effective soft error-mitigation techniques suitable for protecting the
general logic of non-safety-critical applications. Try to overcome the significant
limitations of the previous techniques by providing acceptable trade-offs between

the reliability and error-tolerance overheads.

2. Realise self-checking capabilities in the developed techniques. Allowing the tech-
niques to be robust to both the errors occurring in the original circuitry and the
errors occurring in the redundant parts. Minimise the overheads required by the
self-checking feature to keep the technique cost-effective for non-safety-critical ap-

plications.

147

148 Chapter 6 Conclusions and Future Work

3. Implement the developed techniques using modern CMOS technologies. Develop
validation and evaluation mechanisms to comparatively evaluate the proposed tech-
niques with previous ones. Demonstrate the advantages of the proposed techniques

in terms of overhead-efficiency and error-tolerance capabilities.

4. Incorporate the developed techniques into modern microprocessor pipelines, and
achieve a complete and efficient pipeline protection mechanism. Validate the tech-
niques at the system-level by modelling transient fault effects through simulations.
Comparatively analyse the efficiencies and the cost of the proposed pipeline protec-

tion mechanisms with previous techniques.

The first objective is fulfilled by the radiation hardened flip-flop architectures, SET-
TOFF, proposed in Chapter 3. As discussed in Chapter 1 and Chapter 2, the major
drawback of most previous techniques is that they are either too expensive, or can only
provide a limited level of reliability. The SETTOFF architectures can provide better
error-tolerance capabilities than most previous techniques since they offer effective mit-
igation for both the SEUs occurring in the flip-flop, and the captured SETs originating
in the preceding combinational gates. Timing errors can also be naturally addressed
by SETTOFF. Meanwhile, SETTOFF minimises the error-tolerance overhead by sep-
arating the correction processes for different faults into two levels (circuit-level and
architectural-level). The reason for this is that error-corrections normally require much
larger overheads than pure error-detection. By investigating the natures of the transient
faults, SETTOFF realises circuit-level, on-the-fly corrections for the SEUs occurring
during the hold cycle of the flip-flop. This is because these SEUs are most difficult
to recover. Other faults, including the captured SETs and SEUs occurring during the
write cycle of the flip-flop, can be easily recovered by a pipeline replay operation at the
architectural-level. The overhead for incorporating an architectural replay feature can
be rather cheap since it normally already exists in modern microprocessors to support

speculative operations.

Two versions of the SETTOFF architecture, SETTOFF1 and SETTOFF2, are devel-
oped and implemented in both 65nm and 120nm technologies for evaluation. The second
version, SETTOFF2, provides a similar level of reliability as SETTOFF1, but can fur-
ther reduce the implementation overheads noticeably. A novel reliability metric called
the transient fault failure rate is proposed and used for evaluating the reliability of the
SETTOFFs. Both SETTOFF1 and SETTOFF2 are compared with previous radiation-
hardened techniques in terms of their implementation overheads and error-tolerance ca-
pabilities. The evaluation results show that the SETTOFFs can effectively reduce both
the SEU and SET failure rates to 0, while most previous techniques cannot address both
SEUs and SETs. The implementation overheads of the SETTOFFs in terms of area,
power, and delay, are smaller or comparable to most previous techniques. Compared to
the conventional TMR latch, for instance, SETTOFF2 requires over 50% and 85% less

Chapter 6 Conclusions and Future Work 149

area and power consumption overheads, respectively. The delay overhead is also reduced
by 85%. The results demonstrate that the SETTOFF techniques address the limitations
of most previous techniques, and can potentially be used for providing effective and low-
cost protection for general logic in non-safety-critical applications. Therefore, the first

objective is achieved.

The second objective is achieved by the self-checking technique based on the SETTOFF
architecture proposed in Chapter 4. The self-checking technique further improves the
reliability of the SETTOFF techniques by allowing SETTOFF's to mitigate not only the
SETs and SEUs in the original circuitry, but also errors in the added redundancies. It
overcomes the drawback of most previous techniques which cannot address the errors
arising in the redundant circuity. The self-checking capability is realised by using a
self-checker, which can be shared by multiple SETTOFFs in a register architecture.
The sharing of the self-checker minimises the overheads the self-checking feature incurs.
The SETTOFF-based self-checking techniques were implemented in 65nm for evaluation
and validation. The results show that the self-checker can effectively protect those
redundancies that are vulnerable to the soft errors. The extra overhead introduced by
the self-checking feature is also insignificant, compared to a pure SETTOFF architecture.
In a SETTOFF2-based self-checking technique, for instance, the added self-checking
feature only increases the area and power consumption by 28% and 16%, respectively,
compared to a single SETTOFF2 architecture. This allows the proposed technique to

remain cost-effective compared to most previous techniques.

In order to further validate the efficiencies of the self-checking capability, the technique
is also incorporated into the a register file architecture to achieve error-mitigation. The
register file protected by the proposed technique was implemented in 65nm technology,
and is compared with a register file protected by the traditional ECC technique. The
failure rate model proposed in Chapter 3 is adapted to statistically analyse the reliability
of the register-level implementations. The results show that the proposed register file
produces much lower SET and SEU failure rates for both SBUs and MBUs affecting the
RF. Meanwhile, the proposed RF reduces the power overhead by nearly 50%, compared
to the ECC-protected RF. The performance overhead is also significantly reduced since
most SEUs are corrected on the fly, hence no extra cycles are required for recovering

these faults.

The third objective is achieved by the following: The SETTOFF architectures proposed
in Chapter 3 and the self-checking architectures proposed in Chapter 4 are both imple-
mented in 65nm and 120nm technologies for evaluation and validation. SPICE simula-
tions were carried out to measure the power and propagation delay of the hardened cells,
which were then compared with other previous techniques. The error-tolerance capabili-
ties of the proposed architectures were validated using the transistor-level transient fault
injection technique, which is achieved by using independent current sources to simulate

the collected charge induced by the particle strikes at circuit nodes. In addition, a novel

150 Chapter 6 Conclusions and Future Work

failure rate model is developed which can quantitatively analyse and compare the relia-
bility of various designs. The reliability evaluation results validated the error-tolerance
capabilities of the proposed designs, and demonstrated that the proposed techniques
can provide a higher level of reliability than most previous techniques. Meanwhile, the
measurements of implementation overheads reveal that the proposed techniques require

less or comparable overheads than the previous techniques.

The final objective is achieved by the complete pipeline protection mechanism realised
on an OpenRISC microprocessor proposed in Chapter 5. The pipeline protection is
achieved by incorporating the SETTOFF-based self-checking cells into the most vul-
nerable sequential gates of the pipeline. A pipeline replay recovery mechanism is also
developed at the architectural level to recover the corresponding errors detected by the
hardened cells. The entire pipeline is protected, the errors occurring in each stages of
the pipeline are addressed by the radiation hardened cells in the corresponding stages.
The proposed robust OpenRISC microprocessor is implemented in 65nm technology for
validation and evaluation. A gate-level transient fault injection and simulation tech-
nique is developed, which can automatically inject SETs and SEUs into different parts
of the implemented pipeline, and record errors caused by the injected faults. The fault
simulation results show that the proposed processor pipeline is robust to both SEUs and

SETs occurring in different pipeline stages.

The major limitation of the previous pipeline protection techniques is that they can only
protect either the speculative pipeline registers or the RF. The limited error-tolerance
capabilities or the unacceptable overheads have made most previous techniques unsuit-
able for protecting the entire pipeline. The proposed technique, however, can effectively
protect both the speculative pipeline registers, and the non-speculative registers storing
the intermediate execution results, such as the RF and the flag registers. Compared to
the previous pipeline register protection techniques, such as Razor and SEM/STEM, the
proposed pipeline register protection requires less or comparable overheads in terms of
area, power, and performance. Compare to the conventional ECC-based RF-protection
techniques, the proposed RF-protection can provide a noticeable better mitigation capa-
bility for SETs and MBUs. Meanwhile, the proposed RF protection requires significantly
less power and delay overheads compared to the ECC-based RF-protection.

The three main contributions presented in this thesis provide novel and cost-effective
solutions for radiation-induced soft errors in general logic. The reliability that the pro-
posed mechanisms can provide and the low overheads that they require make them
suitable for protecting non-safety-critical commercial applications, such as modern mi-
croprocessors. The conclusions drawn in this thesis are supported by comprehensive
analysis of the proposed techniques implemented on modern CMOS technologies. Novel
reliability metrics, fault injection and simulation techniques are especially developed
for evaluating the proposed techniques. State-of-art EDA tools are used to help with

the circuit implementation and validation processes. It is hoped that the cost-effective

Chapter 6 Conclusions and Future Work 151

soft error solutions proposed in this thesis can make useful contributions towards the

development of future reliable electronic products.

6.2 Future Work

Based on the findings presented in this thesis, several directions for future research are

identified and described as follows:

6.2.1 Performance and Power-Efficiency Enhancement for Reliable Sys-

tems

Balancing the trade-offs between performance, power consumption, and reliability is a
vital task in microprocessor designs. This thesis focuses on effectively improving the
reliability of microprocessors by sacrificing minimum power and performance overheads.
The primary idea of the proposed techniques is to mitigate soft errors, but as discussed
in Chapter 3, timing errors are also naturally addressed. The natural timing error-
tolerance capability give us the potential of applying techniques such as over-clocking
and Dynamic Voltage Scaling (DVS) to enhance the performance and power efficiency of
the proposed radiation-hardened processor. The over-clocking technique, for instance,
can effectively improve the system performance but with the danger of inducing timing
errors at a certain rate. If that timing error rate can be tolerated by the timing error-
tolerance capability of the proposed radiation-hardened design, the system performance
can be enhanced without adding massive extra features. Similarly, aggressive DVS is an
effective way of reducing system energy consumption, but may also incur timing errors
since the speed of the logic gates is reduced due to lower supply voltages. The timing
error-tolerance capability can guarantee correct system operations in the presence of
timing errors, therefore it is possible to achieve reliable DVS in the proposed robust

processor architectures.

In order to fully realise timing error mitigation in the proposed design, the architectural
replay recovery mechanism, introduced in Chapter 5, needs to be amended to support
timing error recovery. This is because timing errors may repeat in a simple pipeline re-
execution, certain voltage or frequency adjustments may be required during the replay
for recovering timing errors. This future research direction explores the potential of the
proposed radiation-hardened techniques, and can potentially realise simultaneous im-
provements for performance, power-efficiency, and reliability of microprocessors, which
would be a promising contribution towards highly reliable, yet competitive microproces-

sor designs.

152 Chapter 6 Conclusions and Future Work

6.2.2 Reliable System Design Automation

It has been discussed in Chapter 1 that as technology scales, reliability issues caused
by radiation-induced soft-errors have become a major cause of concern. Certain error-
tolerance features have become essential, even for non-safety-critical commercial prod-
ucts, to satisfy reliability requirements. The ultimate goal of this research is to allow
designers to achieve the conflicting requirements of area, power dissipations, perfor-
mance, and reliability in modern microprocessor designs. It is therefore essential to
provide designers with the data of these metrics at early design stages, such that design-
ers can select appropriate error-mitigation features to incorporate into certain vulnerable
parts of the system. A much more efficient way of doing this is to let the EDA tools
automate this process according to the constraints of all the metrics. In order to achieve
this, the reliability metric with regards to soft errors needs to be built into EDA tools,
and qualitative analysis and estimation of system reliability at early design stage is also
crucial. The MTTF and FIT metrics introduced in Chapter 1 can be used to model the
reliability of the components comprising the system. However, in order to model the
reliability of the whole system, the vulnerability factors by which the intrinsic FIT rate
can be derated are also required. The reliability metric, the transient fault failure rate,
proposed in Chapter 3, Section 3.6 can therefore be a good starting point to achieve
this, by quantifying the transient fault failure rates of various design structures. The
error-tolerance architectures proposed in this thesis also need to be fully incorporated
into commercial CMOS technologies, and need to be recognised by EDA tools during
the design process. This potential future work can provide an efficient and reliable way

of designing future reliable systems.

Appendix A

Soft Error Analysis Model

A.0.3 The testbench for the SET injection and simulation

[

library ieee;

2 use ieee.std_logic_1164.all;

3 use std.textio.all;

4 use work. fault_inject.all;

5 use ieee.numeric_std. all;

6 use ieee.math_real.all;

7

8 entity test_orpsoc is end entity test_orpsoc;
9

10 architecture fileio of test_orpsoc is

11

12 —declare text file

13 file faults : text;

14 file memory : text;

15 file faultl : text;

16 file summary : text;

17

18 ——declare orpsoc_top component

19 component orpsoc_top is

20 port (tdo_pad_o : out std_logic;

21 tms_pad_i, tck_pad.i, tdi_pad_i: in std_logic;
22 uartO_srx_pad_-i : in std_logic;

23 uartO_stx_pad_o : out std_logic;

24 clk_pad_i, rst_n_pad_i : in std_logic;
25 dump_errorfree : in std_logic;

26 dump_error : in std_logic;

27 error_trig : in std_logic

28)5

29 end component orpsoc_top;

30

31 ——declare random number generator component
32 component pseudo_random_number is

33 port (

34 Id : in std-logic;

35 clk : in std_-logic;

36 result : out integer;

37 resultl : out integer

38);

153

154 Appendix A Soft Error Analysis Model

39 end component pseudo-random_number ;

40

41 ——orpsoc

42 —Clk and Rst

43 signal clk_pad_i_s : std_logic = ’0’;
44 signal rst_n_pad_i_s : std_logic = ’17;
45 ——JTAGDEBUG

46 signal tck_pad-i, tms_pad_-i, tdi-pad_-i : std_-logic;
47 signal tdo_pad_o : std_logic;

48 —UARTO

49 signal uartO_srx_pad_i : std_logic;

50 signal uartO_stx_pad_o : std_logic;

51

52 ——random generator

53 signal rst : std_logic := ’0’;

54 signal result_s : integer;

55 signal resultl_s : integer;

56

57 ——dump mem control

58 signal dump_errorfree_s : std_logic := ’0’;
59 signal dump_error_s : std_logic = ’0’;
60 signal error_trig_s : in std_-logic := ’07;
61

62 begin

63

64 —instantiation for OPRSoc

65 sl: orpsoc-top port map (tdo_pad_-o, tms_pad-i, tck_-pad_-i, tdi-pad-i,
uartO_srx_pad_i, uartO_stx_pad.o, clk_pad_i_s, rst_n_pad_i_s,
dump_errorfree_s , dump_error_s, error_trig);

66

67 —instantiation for a random number generator

68 rl: pseudo_-random_number port map (rst, clk_pad-i_s, result_s, resultl_s);

69

70 clk_pad_i_s <= not clk_pad_-i_s after 10 ns; ——system clock

71

72 pl: process is

73 variable head_ptr : fault_ptr := null;

74 variable inject_time , inject_period : time;

75 variable ILinel, ILine2, Oline, Olinel, fname : Line;

76 variable FFree, FlInject : bit_vector (31 downto 0);

7 variable fc, fd : natural := 0;

78 begin

79

80 —— fault free simulation

81 —do all the rst

82 rst_n_pad_-i_s <= ’0’ after 660 ns, ’l1’ after 1300 ns; — system reset

83 rst <= ’'1’ after 660 ns, ’'0’ after 1300 ns; — reset for the random
number generator

84 dump_errorfree_.s <= ’1’ after 2592920 ns, ’0’ after 2592930 ns; — this
is the point for dumping out the data memory after fault free simulation

85 wait for 2700000 ns; —————this is the program execution time

86

87 — sequential fault simulation

88 rst_n_pad_i_s <= ’0’ after 660 ns, ’'l’ after 1300 ns;

89 head_ptr := first_fault;

90 file_open (faults, faults.txt, write_mode);

91 while head_ptr /= null loop

92 head_ptr.simulating := true;

Appendix A Soft Error Analysis Model 155

93

94
95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

dump_error_s <= ’1’ after 2592920 ns, ’'0’ after 2592930 ns; — this
is the point for dumping out the data memory during fault simulations

fc := fc + 1; — fault count

inject_time := result_s * 27000 ns; —— —this is the program
execution time divided by 100, since result_s is a random number between 0
to 100.

wait for inject_time; —— a random number between 0 and programm time

error_trig.s <= ’17;

inject_period := (resultl_s + 1) % 2 ns; — random SET widths

wait for inject_period; —— inject SET with particular widths

error_trig_.s <= ’0’;

wait for (2700000 ns — inject_time — inject_period);

—— compare results with free case and print differences time
—wait for 5 ns;
file_open (memory, memory.txt, read_mode);

file_open (faultl, faultl.txt, read_mode);

while not endfile (memory) loop

readline (memory, ILinel);

read (ILinel , FFree);

readline (faultl, ILine2);

read (ILine2, FlInject);

if FFree /= Flnject then
head_ptr.detected := true;
fname := new string ’(head_ptr.fault_name.all);
writeline (faults , fname);
write (OLine, string ’(Fault #), left, 0);
write (OLine, fc, left, 5);
write (OLine, string ’(Detected by mem:), left, 0);
write (OLine, FlInject, right, 9);
write (OLine, string '(expected:), left, 0);
write (OLine, FFree, right, 9);
writeline (faults , OLine);

end if;

end loop;

file_close (memory) ;

file_close (faultl);

— reset the system

rst_n_pad_i_s <= ’0’ after 660 ns, ’1’ after 1300 ns;

head_ptr.simulating := false;

head_ptr := head_ptr.next_fault;

end loop;

file_close (faults);

—— summarize results
file_.open (summary, summary.txt, write_mode);
head_ptr:=first_fault;
while head_ptr /= null loop

if head_ptr.detected then

fd = fd + 1;

end if;

head_ptr := head_ptr.next_fault;
end loop;
write (OLinel, string ’(Fault Cover:), left, 0);
writeline (summary, OLinel);
write (OLinel, fc, right, 8);
write (OLinel, string’(faults,), left, 0);
write (OLinel, fd, right, 8);

156 Appendix A Soft Error Analysis Model

149 write (OLinel, string ’(detected), left, 0);
150 writeline (summary, OLinel);

151

152 wait; — halt

153 end process pl;
154
155 end architecture fileio;

References

1]

G. E. Moore, “Cramming more components onto integrated circuits, Reprinted from
Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” Solid-State Circuits
Society Newsletter, IEEFE, vol. 11, no. 5, pp. 33-35, Sept 2006.

T. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic memo-
ries,” FElectron Devices, IEEE Transactions on, vol. 26, no. 1, pp. 2-9, Jan 1979.

J. F. Ziegler and H. Puchner, SER - History, Trends and Challenges. Cypress

Semiconductor Corporation, 2004.

S. Mukherjee, Architecture Design for Soft Errors. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2008.

J. Ziegler and W. Lanford, “The effect of sea level cosmic rays on electronic devices,”
in Solid-State Circuits Conference. Digest of Technical Papers. 1980 IEEE INT, vol.
XXIII, Feb. 1980, pp. 70 — 71.

M. Baze and S. Buchner, “Attenuation of single event induced pulses in cmos com-
binational logic,” Nuclear Science, IEEE Transactions on, vol. 44, no. 6, pp. 2217—
2223, Dec 1997.

P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson, “On latching probability of
particle induced transients in combinational networks,” in Fault-Tolerant Comput-
ing, 1994. FTCS-24. Digest of Papers., Twenty-Fourth International Symposium
on, June 1994, pp. 340-349.

P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Modeling the effect
of technology trends on the soft error rate of combinational logic,” in Dependable
Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on,
2002, pp. 389 — 398.

P. Hazucha and C. Svensson, “Impact of cmos technology scaling on the atmospheric
neutron soft error rate,” Nuclear Science, IEEE Transactions on, vol. 47, no. 6, pp.
2586-2594, Dec 2000.

157

158

REFERENCES

[10]

[11]

[15]

S. Borkar, “Design challenges of technology scaling,” Micro, IEEFE, vol. 19, no. 4,
pp. 23-29, Jul 1999.

N. Mahatme, N. Gaspard, S. Jagannathan, T. Loveless, B. Bhuva, W. Robinson,
L. Massengill, S.-J. Wen, and R. Wong, “Impact of supply voltage and frequency
on the soft error rate of logic circuits,” Nuclear Science, IEEE Transactions on,
vol. 60, no. 6, pp. 4200-4206, Dec 2013.

C. Slayman, “Soft error trends and mitigation techniques in memory devices,” in
Reliability and Maintainability Symposium (RAMS), 2011 Proceedings - Annual,
Jan 2011, pp. 1-5.

O. Musseau, F. Gardic, P. Roche, T. Corbiere, R. Reed, S. Buchner, P. McDonald,
J. Melinger, L. Tran, and A. Campbell, “Analysis of multiple bit upsets (mbu) in
cmos sram,” Nuclear Science, IEEE Transactions on, vol. 43, no. 6, pp. 28792888,
Dec 1996.

W. Bennett, N. Hooten, R. Schrimpf, R. Reed, R. Weller, M. Mendenhall, A. Witul-
ski, and D. Wilkes, “Experimental characterization of radiation-induced charge
sharing,” Nuclear Science, IEEE Transactions on, vol. 60, no. 6, pp. 4159-4165,
Dec 2013.

N. Seifert, B. Gill, V. Zia, M. Zhang, and V. Ambrose, “On the Scalability of
Redundancy based SER Mitigation Schemes,” in Integrated Circuit Design and
Technology, 2007. ICICDT ’07. IEEE International Conference on, 2007, pp. 1-9.

F. Ruckerbauer and G. Georgakos, “Soft error rates in 65nm srams—analysis of
new phenomena,” in On-Line Testing Symposium, 2007. IOLTS 07. 13th IEEFE
International, 2007, pp. 203-204.

C. Zhao, X. Bai, and S. Dey, “Evaluating transient error effects in digital nanometer
circuits,” Reliability, IEEE Transactions on, vol. 56, no. 3, pp. 381-391, Sept 2007.

T. Merelle, F. Saigne, B. Sagnes, G. Gasiot, P. Roche, T. Carriere, M.-C. Palau,
F. Wrobel, and J. M. Palau, “Monte-carlo simulations to quantify neutron-induced
multiple bit upsets in advanced srams,” Nuclear Science, IEEE Transactions on,
vol. 52, no. 5, pp. 1538-1544, Oct 2005.

M. Raine, G. Hubert, M. Gaillardin, P. Paillet, and A. Bournel, “Monte carlo
prediction of heavy ion induced mbu sensitivity for soi srams using radial ionization
profile,” Nuclear Science, IEEE Transactions on, vol. 58, no. 6, pp. 2607-2613, Dec
2011.

R. Pawlowski, J. Crop, M. Cho, J. Tschanz, V. De, S. Borkar, T. Fairbanks,
H. Quinn, and P. Chiang, “A reference design for effective characterization of soft
error vulnerability of ultra-low voltage logic and memory circuits,” in Silicon Errors
in Logic - System Effects workshop, SELSE 2014 , April 2014.

REFERENCES 159

21]

22]

[24]

[25]

28]

H. Fuketa, R. Harada, M. Hashimoto, and T. Onoye, “Measurement and analysis
of alpha-particle-induced soft errors and multiple-cell upsets in 10t subthreshold
sram,” Device and Materials Reliability, IEEE Transactions on, vol. 14, no. 1, pp.
463470, March 2014.

T. Calin, M. Nicolaidis, and R. Velazco, “Upset hardened memory design for sub-
micron cmos technology,” Nuclear Science, IEEE Transactions on, vol. 43, no. 6,
pp- 2874 —2878, Dec. 1996.

E. Rotenberg, “Ar-smt: a microarchitectural approach to fault tolerance in micro-
processors,” in Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth
Annual International Symposium on, June 1999, pp. 84 —91.

M. Ebrahimi, A. Evans, M. Tahoori, R. Seyyedi, E. Costenaro, and D. Alexan-
drescu, “Comprehensive analysis of alpha and neutron particle-induced soft errors
in an embedded processor at nanoscales,” in Design, Automation and Test in Fu-
rope Conference and Exhibition (DATE), 2014, March 2014, pp. 1-6.

C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semiconductor memory ap-
plications: A state-of-the-art review,” IBM Journal of Research and Development,
vol. 28, no. 2, pp. 124 —134, Mar. 1984.

M. Abramovici, M. A. Breuer, and F. A.D., Digital Systems Testing and Testable
Design. Wiley-IEEE Press, 1990.

W. Van Gils, “A triple modular redundancy technique providing multiple-bit error

2

protection without using extra redundancy,” Computers, IEEE Transactions on,

vol. C-35, no. 7, pp. 623 —631, July 1986.

M. Favalli and C. Metra, “TMR voting in the presence of crosstalk faults at the
voter inputs,” Reliability, IEEE Transactions on, vol. 53, no. 3, pp. 342 — 348, Sept.
2004.

L. Sterpone and M. Violante, “Analysis of the robustness of the tmr architecture

in sram-based fpgas,” Nuclear Science, IEEE Transactions on, vol. 52, no. 5, pp.
1545 — 1549, Oct. 2005.

D. Rennie, D. Li, M. Sachdev, B. Bhuva, S. Jagannathan, S. Wen, and R. Wong,
“Performance, metastability, and soft-error robustness trade-offs for flip-flops in 40

nm cmos,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 59,
no. 8, pp. 1626-1634, Aug 2012.

S. Shambhulingaiah, S. Chellappa, S. Kumar, and L. Clark, “Methodology to op-
timize critical node separation in hardened flip-flops,” in Quality Electronic Design
(ISQED), 2014 15th International Symposium on, March 2014, pp. 486-493.

160

REFERENCES

32]

33]

[35]

[36]

[37]

[38]

[39]

[42]

M. Fazeli, A. Patooghy, S.-G. Miremadi, and A. Ejlali, “Feedback redundancy:
A power efficient seu-tolerant latch design for deep sub-micron technologies,” in
Dependable Systems and Networks, 2007. DSN 07. 37th Annual IEEE/IFIP Inter-
national Conference on, June 2007, pp. 276-285.

M. Fazeli, S.-G. Miremadi, A. Ejlali, and A. Patooghy, “Low energy single event
upset /single event transient-tolerant latch for deep submicron technologies,” Com-
puters Digital Techniques, IET, vol. 3, no. 3, pp. 289-303, 2009.

L. Anghel, V. Savulimedu, D. Alexandrescu, A. Steininger, K. Schneider-Hornstein,
and E. Costenaro, “Single event effects in muller c-elements and asynchronous cir-
cuits over a wide energy spectrum,” in Silicon Errors in Logic - System Effects
workshop, SELSE 201/ , April 2014.

S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Robust system design with
built-in soft-error resilience,” Computer, vol. 38, no. 2, pp. 43-52, 2005.

M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue nanometer
technologies,” in VLSI Test Symposium, 1999. Proceedings. 17th IEEE, 1999, pp.
86 —94.

L. Anghel and M. Nicolaidis, “Cost reduction and evaluation of a temporary faults
detecting technique,” in Design, Automation and Test in Europe Conference and
Exhibition. Proceedings, 2000, pp. 591 —598.

G. Bany Hamad, S. Hasan, O. Mohamed, and Y. Savaria, “New insights into the
single event transient propagation through static and tspc logic,” Nuclear Science,
IEEE Transactions on, vol. PP, no. 99, pp. 1-1, 2014.

H. Yu, M. Nicolaidis, and L. Anghel, “An effective approach to detect logic soft
errors in digital circuits based on graal,” in Quality of Electronic Design, 2009.
ISQED 2009. Quality Electronic Design, March 2009, pp. 236 —240.

M. Nicolaidis, “Graal: a new fault tolerant design paradigm for mitigating the
flaws of deep nanometric technologies,” in Test Conference, 2007. ITC 2007. IEEE
International, Oct. 2007, pp. 1 —10.

N. Avirneni and A. Somani, “Low overhead soft error mitigation techniques for high-
performance and aggressive designs,” Computers, IEEE Transactions on, vol. 61,
no. 4, pp. 488 —501, Apr. 2012.

D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner, and T. Mudge, “Razor: a low-power pipeline based on
circuit-level timing speculation,” in Microarchitecture, 2003. MICRO-36. Proceed-
ings. 36th Annual IEEE/ACM International Symposium on, Dec. 2003, pp. 7 —
18.

REFERENCES 161

[43]

[44]

[45]

[46]

[47]

[50]

S. Das, S. Pant, D. Roberts, S. Lee, D. Blaauw, T. Austin, T. Mudge, and K. Flaut-
ner, “A self-tuning dvs processor using delay-error detection and correction,” in
VLSI Clircuits, 2005. Digest of Technical Papers. 2005 Symposium on, June 2005,
pp- 258-261.

S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull, and
D. Blaauw, “Razorll: In situ error detection and correction for PVT and SER
tolerance,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 1, pp. 32 —48, Jan.
2009.

M. Nicolaidis, R. Perez, and D. Alexandrescu, “Low-cost highly-robust hardened
cells using blocking feedback transistors,” in VLSI Test Symposium, 2008. VTS
2008. 26th IEEE, April 2008, pp. 371-376.

S. Lin, Y.-B. Kim, and F. Lombardi, “A 11-transistor nanoscale cmos memory cell
for hardening to soft errors,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 19, no. 5, pp. 900 —904, May 2011.

Y. Sasaki, K. Namba, and H. Ito, “Soft error masking circuit and latch using schmitt
trigger circuit,” in Defect and Fault Tolerance in VLSI Systems, 2006. DFT ’06.
21st IEEE International Symposium on, Oct. 2006, pp. 327 —335.

S. Lin, Y.-B. Kim, and F. Lombardi, “Design and performance evaluation of radi-
ation hardened latches for nanoscale cmos,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 19, no. 7, pp. 1315 —-1319, July 2011.

M. Glorieux, S. Clerc, G. Gasiot, J.-L. Autran, and P. Roche, “New d-flip-flop
design in 65nm cmos for improved seu and low power overhead at system level,”
Nuclear Science, IEEE Transactions on, vol. 60, no. 6, pp. 4381-4386, Dec 2013.

S. Lin, Y.-B. Kim, and F. Lombardi, “Analysis and design of nanoscale cmos storage
elements for single-event hardening with multiple-node upset,” Device and Materials
Reliability, IEEE Transactions on, vol. 12, no. 1, pp. 68 =77, March 2012.

S. Kim and A. Somani, “Area efficient architectures for information integrity in
cache memories,” in Computer Architecture, 1999. Proceedings of the 26th Interna-

tional Symposium on, 1999, pp. 246 —255.

J. Guo, L. Xiao, and Z. Mao, “Novel low-power and highly reliable radiation hard-
ened memory cell for 65 nm cmos technology,” Circuits and Systems I: Regular
Papers, IEEE Transactions on, vol. 61, no. 7, pp. 1994-2001, July 2014.

S. Kim and A. Somani, “An adaptive write error detection technique
in on-chip caches of multi-level caching systems,” Microprocessors and
Microsystems, vol. 22, mno. 9, pp. 561 — 570, 1999. [Online|. Available:
http://www.sciencedirect.com/science/article/pii/S0141933198001094

http://www.sciencedirect.com/science/article/pii/S0141933198001094

162

REFERENCES

[54]

[58]

[59]

[60]

[61]

C.-H. Chen and A. Somani, “Fault-containment in cache memories for tmr redun-
dant processor systems,” Computers, IEEE Transactions on, vol. 48, no. 4, pp. 386
-397, Apr 1999.

T. Austin, “Diva: a reliable substrate for deep submicron microarchitecture de-
sign,” in Microarchitecture, 1999. MICRO-32. Proceedings. 32nd Annual Interna-
tional Symposium on, 1999, pp. 196 —207.

J. A. Blome, S. Gupta, S. Feng, and S. Mahlke, “Cost-efficient soft error protection
for embedded microprocessors,” in Proceedings of the 2006 International Conference
on Compilers, Architecture and Synthesis for Embedded Systems, ser. CASES ’06,
2006, pp. 421-431.

P. Montesinos, W. Liu, and J. Torrellas, “Using register lifetime predictions to
protect register files against soft errors,” in Dependable Systems and Networks,
2007. DSN °07. 87th Annual IEEE/IFIP International Conference on, 2007, pp.
286—296.

——, “Shield: Cost-effective soft-error protection for register files.”

S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A system-
atic methodology to compute the architectural vulnerability factors for a high-

performance microprocessor,” in Microarchitecture, 2003. MICRO-36. Proceedings.
36th Annual IEEE/ACM International Symposium on, Dec. 2003, pp. 29 — 40.

J. Yan and W. Zhang, “Compiler-guided register reliability improvement against
soft errors,” in In International Conference on Embedded Software, 2005, pp. 203—
209.

G. Memik, M. Kandemir, and O. Ozturk, “Increasing register file immunity to
transient errors,” in Design, Automation and Test in Europe, 2005. Proceedings,
March 2005, pp. 586 — 591 Vol. 1.

M. Fazeli, A. Namazi, and S. Miremadi, “Robust register caching: An energy-
efficient circuit-level technique to combat soft errors in embedded processors,” De-
vice and Materials Reliability, IEEE Transactions on, vol. 10, no. 2, pp. 208 —221,
June 2010.

C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt, “Reducing the soft-error rate
of a high-performance microprocessor,” Micro, IEFE, vol. 24, no. 6, pp. 30 -37,
nov.-dec. 2004.

W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bring-
mann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.

Lavery, “The superblock: An effective technique for vliw and superscalar compila-
tion,” THE JOURNAL OF SUPERCOMPUTING, vol. 7, pp. 229-248, 1993.

REFERENCES 163

[65]

[66]

[72]

73]

[74]

[75]

S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann, “Effective compiler
support for predicated execution using the hyperblock,” in Microarchitecture, 1992.
MICRO 25., Proceedings of the 25th Annual International Symposium on, dec 1992,
pp- 45 —54.

W. Zhang, N. Vijaykrishnan, M. Kandemir, M. Irwin, D. Duarte, and Y.-F. Tsai,
“Exploiting vliw schedule slacks for dynamic and leakage energy reduction,” in
Microarchitecture, 2001. MICRO-3/. Proceedings. 34th ACM/IEEE International
Symposium on, Dec. 2001, pp. 102 — 113.

M. Nicolaidis, “Design for soft error mitigation,” Device and Materials Reliability,
IEEE Transactions on, vol. 5, no. 3, pp. 405 — 418, Sept. 2005.

——, “Electronic circuit assembly comprising at least one memory with error cor-

recting means,” 2001.

P. Oikonomakos and M. Zwolinski, “On the design of self-checking controllers with
datapath interactions,” Computers, IEEE Transactions on, vol. 55, no. 11, pp. 1423
—1434, Nov. 2006.

N. Bowen and D. Pradham, “Processor- and memory-based checkpoint and rollback

recovery,” Computer, vol. 26, no. 2, pp. 22-31, Feb 1993.

S. Nassif, K. Bernstein, D. Frank, A. Gattiker, W. Haensch, B. Ji, E. Nowak,
D. Pearson, and N. Rohrer, “High performance cmos variability in the 65nm regime
and beyond,” in FElectron Devices Meeting, 2007. IEDM 2007. IEEE International,
2007, pp. 569-571.

K. Agarwal, M. Agarwal, D. Sylvester, and D. Blaauw, “Statistical interconnect
metrics for physical-design optimization,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 25, no. 7, pp. 1273-1288, 2006.

K. Agarwal, D. Sylvester, D. Blaauw, T. Liu, S. Nassif, and S. Vrudhula, “Varia-
tional delay metrics for interconnect timing analysis,” in Design Automation Con-
ference, 2004. Proceedings. 41st, 2004, pp. 381-384.

L. Zhang, Y. Hu, and C. Chen, “Statistical timing analysis in sequential circuit for
on-chip global interconnect pipelining,” in Design Automation Conference, 2004.
Proceedings. 41st, July 2004, pp. 904-907.

J. Xu, A. Roy, and M. Chowdhury, “Analysis of power consumption and ber of flip-
flop based interconnect pipelining,” in Design, Automation Test in Furope Confer-
ence Exhibition, 2007. DATE ’07, April 2007, pp. 1-6.

D. Hong, C.-K. Ong, and K.-T. Cheng, “Bit-error-rate estimation for high-speed
serial links,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 53,
no. 12, pp. 2616-2627, Dec 2006.

164

REFERENCES

[77]

[81]

[82]

J. A. Gubner, Probability and Random Processes for Electrical and Computer En-
gineers. Cambridge: Cambridge Univ. Press, 2006.

R. Harada, Y. Mitsuyama, M. Hashimoto, and T. Onoye, “SET pulse-width mea-
surement eliminating pulse-width modulation and within-die process variation ef-
fects,” in Reliability Physics Symposium (IRPS), 2012 IEEE International, 2012,
pp. SE.1.1-SE.1.6.

——, “Measurement circuits for acquiring SET pulsewidth distribution with sub-
FOl-inverter-delay resolution,” in Quality Electronic Design (ISQED), 2010 11th
International Symposium on, 2010, pp. 839-844.

T. Loveless, J. Kauppila, S. Jagannathan, D. Ball, J. Rowe, N. Gaspard, N. Atkin-
son, R. Blaine, T. Reece, J. Ahlbin, T. Haeffner, M. Alles, W. Holman, B. Bhuva,
and L. Massengill, “On-chip measurement of single-event transients in a 45 nm
silicon-on-insulator technology,” Nuclear Science, IEEE Transactions on, vol. 59,
no. 6, pp. 2748-2755, Dec 2012.

STMicroelectronics, “CORE65LPLVT_1.20V 4.1 Standard Cell Library User Man-
ual and Databook,” June 2006.

A. Fjlali, B. Al-Hashimi, M. Schmitz, P. Rosinger, and S.-G. Miremadi, “Com-
bined time and information redundancy for seu-tolerance in energy-efficient real-
time systems,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 14, no. 4, pp. 323-335, April 2006.

A. Narasimhan and R. Sridhar, “Impact of variability on clock skew in h-tree clock
networks,” in Quality Electronic Design, 2007. ISQED ’07. 8th International Sym-
postum on, 2007, pp. 458—466.

OpenCores, “OpenRISC 1000 architecture manual,” Apr. 2006. [Online]. Available:

http://opencores.org/openrisc,overview

D. Lampret, “OpenRISC 1200 IP core specification,” 2011. [Online|. Available:

http://opencores.org/openrisc,downloads

N. Mehdizadeh, M. Shokrolah-Shirazi, and S. Miremadi, “Analyzing fault effects in
the 32-bit openrisc 1200 microprocessor,” in Availability, Reliability and Security,
2008. ARES 08. Third International Conference on, Mar. 2008, pp. 648 —652.

M. Zwolinski, “A technique for transparent fault injection and simulation,” Micro-
electronics Reliability, pp. 797-804, 2000.

——, Digital System Design with VHDL. Prentice Hall, 2003.

J. Baxter, “ORPSoC - OpenRISC Reference Platform SoC.” [Online]. Available:

http://opencores.org/openrisc,orpsocv2

http://opencores.org/openrisc,overview
http://opencores.org/openrisc,downloads
http://opencores.org/openrisc,orpsocv2

REFERENCES 165

[90] Synopsys, “Liberty ncx user guide,” June 2012.

